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ABSTRACT: This paper provides a holographic approach to compute some most-frequently
used quantum distances and quasi-distances in strongly coupling systems and conformal
field theories. By choosing modular ground state as the reference state, it finds that the
trace distance, Fubini-Study distance, Bures distance and Rényi relative entropy, all have
gravity duals. Their gravity duals have two equivalent descriptions: one is given by the
integration of the area of a cosmic brane, the other one is given by the Euclidian on-shell
action of dual theory and the area of the cosmic brane. It then applies these duals into
the 2-dimensional conformal field theory as examples and finds the results match with the
computations of field theory exactly.
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1 Introduction

In recent years it has been suggested that quantum information theory and gravity theory
have deep connection. The gauge/gravity duality, which shows an equivalence between
strongly coupling quantum field theories (QFTs) and weakly coupling gravitational theories
in one higher dimensions [1-3], offers us a powerful tool towards such connection. As
a result, the quantum information theoretic considerations have provided various useful
viewpoints in the studies of gauge/gravity duality and quantum gravity. One example
is the Ryu-Takayanagi (RT) formula [4-6], which connects the area of a codimension-2
minimal surface in the dual spacetime and the entanglement entropy of the boundary
QFT. The RT formula has been generalized into the Rényi entropy [7, 8], higher order
gravity theory [9-11] and the cases with quantum corrections [12, 13]. An other quantity
in quantum information named “complexity”, which measures the difference of two states
according to the size of quantum circuits in converting one state into the other, also has
been studied widely in gravity and black hole physics [14-19].

From a general viewpoint, the complexity is a kind of “distance” between quantum
states [20]. Except for complexity, there are other several different measures of the distance
between states, which are widely used in quantum information [21, 22]. For example, given
two density matrices p and o in the same Hilbert space, two families of distance are widely
used in quantum information theory. The first one are based on the fidelity

Fi(p,0) = Tr\/Vopyo. (1.1)

The fidelity is not a distance but we can use it to define two kinds of distance, the
Fubini-Study distance Dp(p,0) = arccosFi(p,o) and the Bures distance Dp(p,0) =
v/1—=TFi(p, o). The other family of distances, depending on a positive number n, is provided
by the n-distances

1
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Here Tr| X |™ := Y, A and ); is the i-th eigenvalue of vV XTX. When X is hermitian {);} are
just the absolute values of eigenvalues of X. Two special choices are widely applied. One is
Hilbert-Schmidt distance, which chooses n = 2. This distance leads to some conveniences
in mathematics because the calculation is straightforward by its definition. The other
choice is n = 1, which is called the “trace distance”.

Though the trace distance and fidelity are complicated than Hilbert-Schmidt dis-
tance, several properties make them special [21]. Firstly, the trace distance and fi-
delity (and so Fubini-Study distance and Bures distance) are bounded by each others:
1—Dy <Fi<,4/1-— D%. Secondly, they offer us dimension-independent bounds on the
difference between the expected values of an operator O in different states: [(O),—(0),| <

D1(p,0),/Tr(0O0") < /1 — Fi(p,0)?,/Tr(OOT). Thirdly, they supply lower bounds for the
relative entropy S(p || 0): [1 — Fi(p,0)] < Di(p,0) < /S(p | 0)/2.

Despite that trace distance and fidelity have these important properties, their com-
putations are highly challenging in quantum field theory. The first breakthrough towards
this issue is achieved by ref. [23], which develops a replica trick to compute the fidelity
for 2-dimensional conformal field theory. Refs. [24-26] then also develop replica method
to compute the trace distance for a class of special states for single short interval in 141
dimensional CFTs. However, there are still huge difficulties in the calculations of trace
distance even for 1+1 dimensional CFTs, such as to compute the trace distance between
two thermal states or two large intervals in CFTs. There is also no compact method to
compute the trace distance in higher dimensional CFTs or general quantum field theories.
On the other hand, the holographic descriptions of entanglement, relative entropy [27] and
complexity have been found, however, the trace distance does not yet. Refs. [28, 29] propose
holographic duality to compute the fidelity between a state and its infinitesimal perturba-
tional state, however, they cannot be used into the case when the difference between two
states are not infinitesimal.

In this paper, it will develop holographic duals to compute the trace distance, Fubini-
Study distance, Bures distance and Rényi relative entropy. By choosing a characteristic
reference state which will be called “modular ground state”, this paper will show that they
all have gravity duals. Their gravity duals have two equivalent descriptions. The one is
given by the integration of the area of a cosmic brane with respective to its tansion. The
other one description contains two parts, one of which is the on-shell action of gravity
theory and the other one of which is the area of the cosmic brane. We then apply them to
the calculations of the trace distance in 141 dimensional CFT and show our holographic
calculations exactly match with the results of CFT’s.

2 Distances to modular ground state and holographic proposals

In the field theory two different density matrices will often be almost orthogonal Tr(po) = 0
and so their trace distance will almost saturate the upper bound. In this case, it will be
more convenient to study a “refined trace distance”

Dr(p, o) = —In[l - Di(p,0)]. (2.1)



Due to the monotonicity, the refined trace distance and trace distance contain same infor-
mation. Similarly, we also defined a “refined Fubini-Study distance” Dr(p, o) and “refined
Bures distance” Dpg(p, o) as follows:

Dr(p,0) = —Incos Dp(p,0), (2.2)

and
Dp(p,0) = —In[l — Dy(p,0)?. (2.3)

One can verify that Dp(p,0) = Dp(p,0) = —InFi(p, o).

Differing from entanglement entropy which is an intrinsic property of target state p, the
above three quantum distances do not only depend on the target state p but also depend
on a reference state 0. We can choose a characteristic reference state which belongs to
the target state so that these quantum distances also become intrinsic properties of target
states. If p is a thermal state, one natural choice is the ground state. Such choice has been
widely used in studying quantum phase transitions, e.g. see refs. [30, 31]. This choice can
be generalized into arbitrary target states. Assume that p is an arbitrary quantum state.

K with a

As p is both hermitian and positive semi-definite, we can formally define p = e~
hermitian operator K. Here K is known as the modular Hamiltonian in axiomatic quantum
field theory [32] or entanglement Hamiltonian in some literatures studying entanglement
entropy [33, 34]. To discuss the quantum distance for state p, we choose the reference

state to be

Y2

2p) = Jim Do), 0ulo) = i

We call this special reference state to be “modular ground state” of state p, as it is the

. (2.4)

ground state of modular Hamiltonian K. The quantum distance between p and its modular
ground state becomes an intrinsic quantity of quantum state p. We call such quantum
distance to be “intrinsic quantum distance” of p. If the state p is just a thermal state, then
the modular ground state is just the zero temperature state of the system. We denote the
“intrinsic refined quantum distances” to be

Dr(p) == Dr(p,p)), Dr(p) = Dr(p.2p)) (2.5)

and

Dx(p) := Dp(p, 2p)) . (2.6)
Our main results are holographic formulas for above three intrinsic refined quantum dis-
tances. They are given by two kinds of descriptions.

Assume that quantum state p is dual to a boundary region A in a time slice of an
asymptotically AdS spacetime. In the first description, the intrinsic refined quantum dis-
tances of state p are related to the area in Planck units of a bulk codimension-2 cosmic
brane C), which is homologous to the region A:

. R o Area(Cy) Area(Cy)
7(p) = 2Dr () /1 4Gy T 4Gy

Here G is the Newton’s constant and we use the subscript n on the cosmic brane to

(2.7)

denote that its brane tension as a function of n is given by T,, = (n — 1)/(4nGx). The



geometry of above asymptotically AdS spacetime with above cosmic brane can be regarded
as the solution an Euclidean gravity theory with the total action

Lisou = Touic + Iy

brane *

(2.8)

Here Ik = Igravity +Imatters, Jgravity i the Euclidean Hilbert-Einstein action with negative
cosmological constant, Iyatters is the action of matter fields, I t()ra)me = T,Area(C,). One can
obtain the classical solution for theory (2.8) by minimizing total action for a given boundary
subregion A and tension T},. Due to the nonzero tension, the brane will backreact on the
bulk geometry. Thus, the bulk geometry and position of cosmic C,, depend on subscript n.
In the second description, we take M, (p) to be the bulk domain of which the equal
Euclidean time hypersurface ¥ satisfies > = AU C,,. The intrinsic refined quantum dis-
tances of state p are given by on-shell action of gravity theory and the area of cosmic brane

in following way:
Dr(p) = 2Dp(p) = Ipui[Moo] — Tpui[M1] — I52) (2.9)

brane

By egs. (2.9) and (2.7), the calculations of intrinsic refined quantum distances become
solving partial differential equations in an Euclidean gravity theory with cosmic brane.
When the variation of Iig, admits more than one classical solutions, we have to choose
the one which has the smallest bulk action Iy, rather than the one which has smallest
total action (2.8). The reason is similar to the discussion in ref. [8] and will be clarified
briefly later.

3 Derivation via holographic replica trick

We now present the holographic derivations on egs. (2.9) and (2.7). We first consider
intrinsic refined trace distance. The even order n-distance between p and €2,,,(p) satisfies

k: 2n— k r(p k+m(2n—k)
D2n(pv ZCQn (Tr(Q Zc2n k T%()kTr( )Qn)k (31)

Here C% := (2n)!/[k!(2n — k)!] is the combinatorial number and €, is defined by eq. (2.4).
For convenience, we here do not assume p is normalized. The intrinsic refined trace dis-
tance then is obtained by the limit m — oo and analytical continuation n = 1/2. Define
exp(—Frmnk(p)) = Tr(pFmEn=k)) /[Tr(p)*Tr(p™)?"*] and we will have

Fongk = (2n—k)InTr(p™) + kInTr(p) — In Tr(pFtmn=k)y (3.2)

Now we use the gravity replica method [8, 12] to compute the F, , ;. Following the
usual holographic dictionary, the trace of p™ is given by the partition function of the QFT
on a branched cover M,,. Here M,, is m-fold cover branched over A, which is defined
by taking m copies of the original Euclidean spacetime M; where the QFT lives with
a cut along the entangling region and gluing them along the cuts in a cyclic order. In
the large N limit, the bulk physics is classical and we have Tr(p™) = e~ fou(Mm)  The



branched cover M,, has a manifest Z,, symmetry, which is not spontaneously broken in
the dominant bulk solution [35]. Take this Z,, replica symmetry into account and we can
define an orbifold M,, := M,,/Zy,. As a result, we the bulk on-shell action becomes
Iyuk (M) = mIpuk(M,y). Then we obtain

Fmmk = [k + (2n — E)m] Thuk (Mg (2n—k)m)

(3.3)
— (2n — k)mIpux (M) — Elpuk(M1) .

After the quotient of Z,,, there are conical singularities which are the fixed point of Z,,
quotient. Such conical singularities are some co-dimensional 2 surfaces. The cosmic brane
is added into the total action (2.8) so that the variation problem can just generate the
solutions with such conical singularities. The real action of theory in the branched cover
M., only contains the bulk term. This explains why the we need to choose the classical
solution minimizing Iy, when theory (2.8) has multiple classical solutions.

Though the parameters m,n and k are assumed to be integers in the definition of
Fmnk, we will analytically continues them into nonnegative real numbers. We first note

that, for large m,
Toulk(Mim) = Tpuik(Moo) + 1 /m + O(1/m?) . (3.4)

Here I = — lim, 00 M?OpIouic(Mon). The 2n-th term in the summation of eq. (3.1) is
special and should be handled in different way because (2n — k)m — oo when k # 2n but
(2n — k)m = 0 when k = 2n. We then have two cases. If k # 2n, we see

I

m + (9(1/m2) . (3.5)

Touk (Mt 2n—kym) = Touk(Meo) +

and so

Fmnk =k {Ibulk(Moo) — Tpui (M) — mQamIbulk(Mm)}
+(2n — 1)m28m-[bulk(Mm) +O(1/m)
If £ = 2n we have
Fmmon = 2n[Tpuk(Map) — Tpuik(M1)] (3.7)

We then take egs. (3.6) and (3.7) into eq. (3.1) and take the limit m — oco. We first sum
the terms from k£ = 0 to k = 2n — 1, then we add the k£ = 2n term. The result reads

2n—1 BQn

n 1 —ka—(2n— €
Don(p, )" = 5 3 O, (~1)fehemCnobh 4 —— (3.8)
k=0

Here
a = Ipuk(Moo) — Tpui(M1) + I

and
By, = —2n[Ihyx(Moan) — Ipuk(M1)] . (3.9)



The summation (3.8) can be computed analytically

6—(2n—1)11 2n 632"
D2n(P, Q)2n :f Cé:n(_l)kefka _ 672na + 5
k=0 (3.10)
—(2n-1)11 Bon
_¢ _,—a 2n _ ,—2na €
— 5 {(1 e %) e } + -
Analytically continue it into n = 1/2 and we find
Di(p,)=1—¢e"". (3.11)
Thus, we find
Dr(p) = Inuk(Moo) — Tpui(M1) + 11 . (3.12)
Using eq. (3.14) we find
Dr(p) = Touic(Moo) — Touic(M1) — Iioo) .. (3.13)

The holographic formula (2.7) can be obtained after we integrate following formula [8]

m2amlbulk(Mm) == MLW (314)
4G N

and use the fact I{°% = Area(Cx)/(4GN).

brane
In order to compute the fidelity, we consider a more general expression, i.e. Rényi

relative entropies of two states, which in general is defined as follow [23, 36, 37]

1 _ ek
Sk(pllo) = — InTx [(alzk’“palak’“) } . (3.15)

The Rényi relative entropy is just a quasi-distance function as it is not symmetric in general,
i.e. Si(pllo) # Sk(cllp). It is clear that 2D (p, ) = Sy 2(pl|o). The limit limy,_,1 Sk(pllo) =
S(p||lo) is just he relative entropy between p and o. Take o0 = Q,,(p) and we find

1 _ fm, k
Sk(pl|n) = — InTr (oFh*) = % (3.16)

The intrinsic refined Fubini-Study distance and intrinsic refined Bures distance are ob-
tained by

A

A 1
Dr(p) = Dp(p) = 551/2(PHQ) = Foon/2,1/2 = Fo/2. (3.17)

Take eq. (3.6) into eq. (3.17) and we then obtain duals of Dp(p) and Dg(p).
Using eq. (3.6), we also find a holographic duality for the k-th Rényi relative entropy
between p and its modular ground state when k € (0,1)

k 0o
Sk(pl|Q) = 1-% {Ibulk[Moo] = Tpu[M1] — l()raie}

__k {/Oo Area(Cn)dn B Area(Coo)] ‘ (3.18)

1—-k 4GNn2 4GN



The relative entropy S(p||€2) is given by the limit k¥ — 1, which is divergent. This agrees
with the analysis from quantum information theory. By definition of relative entropy,
we have S(p|lo) = Tr(plnp) — Tr(plno). When the state 0 = 2, we can find that
Tr(plno) = co and so S(p||2) = oco. Note the Rényi relative entropy is not symmet-
ric about two states when k # 1/2. However, there is a special permutation symmetry
(1 —Fk)Sk(2p) = kS1-1(p]|S2). We then have

S(2]1p) = IyuilMeo] — T M) — 15

brane
B /00 Area(Ch) dn — Area(Cy) (3.19)
N 1 4GNn2 4GN '

Thus, we see Sk(Qp) = Dr(p) is independent of k. As a self-consistent check, we can
compute Si(€2|p) directly in qubit system. Assume that p is density matrix in a finite
dimensional Hilbert space and Ay is its largest eigenvalue. Then we can find Si(2|p) =
=5 InTr(W*p!=F) = Lo In Tr(Wp' %) = —1In Ao, which is independent of k as expected.

4 Application in CFTs

In following, we will show examples about how to use the holographic formula (2.7) to find
the intrinsic trace distance of some states in CFT5. In the first example, we consider a
spherical disk A with radius R in a d-dimensional vacuum state. In princple, we need to
solve Einstein’s equation with the cosmic brane. However, as the disk is spherical, the task
of finding the cosmic brane solution can be essentially simplified. In this case we can use
conformal map of ref. [7] to direct obtain the bulk geometry. After the conformal map, the
bulk geometry is a d + 1-dimensional Euclidean hyperbolic AdS black hole [8, 38]

dr?

A0

and f,(r) = r2 =1 —r42(r2 — 1)/r%2. The cosmic brane is mapped into the horizon.

ds?

+ fu(r)dr? + 72 {du2 + sinhQ(u)dQZ_Q} . (4.1)

The Euclidean time direction 7 has the period 27 and so leads to the conical singularity
at r = r,. To match with the cosmic brane, we have to set f/ (r,) = 4w /n. Then we find

rn = [14+ /14 n2?d(d—2)]/(nd) and roo = /(d —2)/d. As the cosmic brane is just the
horizon, we find Area, (C) = Vy_1(R)rd~! with

In(2R/¢)
Vi (R) = Qu_s / sinh(@2) (u)du (4.2)
0

Here Q49 = 27r(d_1)/2/F(%) is the area of the unit (d — 2)-sphere. The upper limit of
integration is the UV-cut off [7]. In the case d = 2, we find r,, = 1/n and eq. (2.7) gives us
a simple result

Dr(pa) = n(2R/e)/(4GN) = ¢ n(2R/e) . (4.3)

Here ¢ = 3/(2Gy) is the central charge.
As a check, we can also calculate the intrinsic refined trace distance in this case from
CFT. We still start from the egs. (3.1) and (3.2). The difference is that now we will use



Figure 1. The cosmic branes of two intervals in the limit 2 < 1 (subfigure (a)) and  — 1
(subfigure (b)).

the replica trick of field theory. In 2D CFT, the trace of p™ can be obtained by using twist
operators. Follows the usual computations in CFT5 (e.g. see ref. [6]), one can find that the
result in large c-limit reads

In Tr(p™) = —g(m —1/m)In(2R/e). (4.4)
Taking this into eq. (3.2) and considering the large m limit, we find
Fon = 2=V 0R 0 + % In(2R/€) + O(1/m) . (4.5)
if k # 2n and
Funnan = gl2n = 1/2n)] n(2R/e). (4.6)

Then we take egs. (4.5) and (4.6) into eq. (3.1). Following the similar steps to
egs. (3.8)—(3.11), the summation can be computed analytically and we finally find that
the trace distance reads

Di(p, Q) =1 —exp [—g 1n(zR/e)} . (4.7)

[

Thus, we see Dr(p) = §In(2R/¢), which matches with the our holographic result exactly.

In the second example, we assume that the subregion A contains two symmetric disjoint
intervals in 2D case, i.e. A = A; U Ag, where A; = [0,{] and Ay = [1,1 +{]. The cross
ration z = (2. We first consider the limit < 1, which means two cosmic brane will be
separated far enough. See the subfigure (a) of figure 1. Though every brane will backreact
on the bulk geometry, the interaction between two branes will be suppressed. Thus, up
to the leading order of z, the final result would be simply twice of a single brane. The
intrinsic refined trace distance in this case becomes

Dr(pa) ~ gln(l/e) x 2 = gln(x/eQ). (4.8)

For large cross ration  — 1, the configuration of two cosmic branes is shown in subfigure
(b) of figure 1. The second cosmic brane Cy will shrink into the boundary and two brane
will also decouple with each other. As the result, we can compute two branes separately
and obtain

Dr(pa) = & {Inl(1+ 1)/ + {(1 ~ 1)/} = (1 - )/, (49)

Comparing with eq. (4.8), we see that two limits have a symmetry z — 1—z. Note that the
computation here only involves the leading terms of x — 0 or z — 1. It will be interesting
to study what will happen if the interaction between two branes cannot be neglected in
the future.



5 Summary

To summary, this paper paves the holographic approach to systematic studies of three most
frequently-used quantum distances and a quantum quasi-distance, i.e. the trace distance,
Fubini-Study distance, Bures distance and Rényi relative entropy. By choosing the modular
vacuum as the reference state, it finds that they all have holographic duals. Then it applies
these holographic duals into 2-dimensional CFTs and show that holographic results exactly
match with the calculations of field theory.

For the holographic formula (2.7), there is no difficulty to obtain generalizations to
theories dual to higher derivative gravity. The basic idea is similar to the directions of
refs. [9-11]. The area term in right-hand side of eq. (2.7) should be replaced by the Wald
entropy [39] evaluated on a cosmic brane. In addition, following the methods of [12, 13]
we can also include quantum corrections into eq. (2.9) by taking the bulk matters into
account. For 2 dimensional CFT with 2+1 dimensional gravity duality, it is also interesting
to consider the perturbational expansion of small cross ration in gravity side by taking the
interaction of two cosmic branes and then compare it with the results of CFTs. As a
primary explore, the examples in this paper only focused on 2D CFT, it is also interesting
to compare the holographic results and higher dimensional conformal field theories in the
future.
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