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1 Introduction

Chiral Perturbation Theory (χPT) is an effective field theory of Quantum Chromody-
namics (QCD) which describes the low energy regime (IR) of Quantum Chromodynamics
(QCD). In χPT, the degrees of freedom are hadrons (which include mesons and baryons
and hyperons but we will study only mesonic χPT). χPT Lagrangian consists of various
terms which are invariant under chiral symmetry SU(Nf )L×SU(Nf )R, charge conjugation
and parity symmetry of QCD. Chiral symmetry SU(Nf )L × SU(Nf )R is spontaneously
broken to SU(Nf )V yielding (N2

f − 1) (pseudo-)Goldstone bosons where Nf is the number
of flavors. As an effective field theory, it is renormalizable order-by-order in momentum.
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The ρ vector meson can also be incorporated by augmenting the chiral symmetry with
the inclusion of a HLS (Hidden Local Symmetry) whose gauge group is Gglobal × Hlocal,
where Gglobal = SU(Nf )L × SU(Nf )R and H = SU(Nf )V is the HLS [2]. The ρ meson
and its flavor partners are identified with gauge boson of HLS. Chiral symmetry breaking
scale is Λχ ∼ 4πFπ ∼ 1.1GeV [3] in the chiral limit [5]. Since Λχ is much larger than the
ρ mass scale and Mρ < Λχ, therefore we can expand the generating functional of QCD
in terms of p/Λχ or m/Λχ. At scale µ = Λχ, perturbative expansion in µ/Λχ breaks
down. One can construct the most general form of the Lagrangian order by order in the
derivative expansion consistently with the chiral symmetry. The “universal” leading order
Lagrangian is constructed from the terms of O(p2). J. Gasser and H. Leutwyler worked out
the SU(2) [4]/SU(3) [5] chiral perturbation theory lagrangian up to O(p4) and the renor-
malization of the coupling constants at scale µ = mη [5]. At NLO, i.e. O(p4), there are 12
coupling constants “(Li=1,2,...10, H1, H2)”. Some of the low energy constants L4, L5, L6, L8
have been calculated from Lattice simulation from the MILC collaboration [6]. In [7], the
ten low energy constants Li=1,2,...10 were evaluated at scale µ = Mρ; [8] also contains the
low energy constants at µ = Mρ. Updated values are given in [1].

QCD is a non-abelian gauge theory coupled to quarks. This theory can also be explored
using gauge/gravity duality which is a duality between strongly coupled gauge theory and
weakly coupled gravitational theory. Originally, it started with the AdS/CFT correspon-
dance [9] which is a duality between strongly coupled N = 4 SU(N) supersymmetric
Yang Mills theory in large N limit and type IIB string theory on AdS5 × S5 background.
N = 4 SU(N) supersymmetric Yang Mills theory is a conformal field theory but QCD is
non-conformal. This correspondence has been generalised to study QCD. There are two
approaches to study holographic theories. One is the top-down approach in which one
starts with ten dimensional type IIB/IIA string theory or eleven dimensional M-theory
and then compactifies it to four dimensions with desired properties; this will be the ap-
proach followed in this work. The other is the bottom-up approach, in which one has to
first know what properties we are looking for and then construct the gravitational dual,
which usually involves an AdS5.

As regards a top-down approach, Kruczenski et al. [10] considered an interesting probe
D6-branes in a D4-brane type IIA supergravity background, which they used to explore
various aspects of low energy phenomena in QCD. An important ingredient which was still
missing from their model, however, were the massless pions as Nambu-Goldstone bosons
associated with the spontaneous breaking of the U(Nf )L×U(Nf )R chiral symmetry in QCD.
Following [10], Sakai-Sugimoto (SS) in [11, 12] considered a nice modification by looking
at a D4/D8/D8 system in type IIA supergravity background with anti-periodic boundary
condition for fermions along a circle to break supersymmetry. This model exhibited chiral
symmetry breaking with D8 − D8 pairs merging into D8-branes. This model also yields
massless pions which are identified with Nambu-Goldstone bosons associated with chiral
symmetry breaking, and the lightest vector meson (ρ meson). The Sakai Sugimoto model
is closely related to the HLS formalism which produces Kawarabayashi-Suzuki-Riazuddin-
Fayyazuddin-type relation among the couplings. Chern-Simons term on the probe brane
leads to the Wess-Zumino-Witten term. In [12], Sakai Sugimoto obtained few low energy
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constants (L1, L2, L3) of SU(3) chiral perturbation theory at O(p4) which were close to the
values given in [7] for suitable choice of a parameter κ. Although Sakai Sugimoto model
reproduces various physical quantities of low energy QCD but this model deviates from
realistic QCD above the energy scale of the vector mesons because they obtain a four-
dimensional theory by compactifying D4-branes on a circle of radius M̃−1

KK with an infinite
tower of Kaluza-Klein modes of mass scale M̃KK arises. These Kaluza-Klein modes do not
appear in realistic QCD. Further, the SS model caters to the IR and is not UV complete.
This was taken care of by the (only) UV-complete D3, D5/D5, D7/D7 holographic dual of
large-N thermal QCD of the McGill group [14], its type IIA SYZ mirror and theM-theory
uplift of the same (in particular in the ‘MQGP limit’ (2.4)) as constructed in [15] (with
one of the co-authors [AM]).

In [2], the authors considered the Sakai Sugimoto model [11] as holographic QCDmodel
and proposed a method to integrate out infinite number of higher KK modes appearing in
the expansion of five dimensional gauge field which consists of infinite number of vector and
axial vector fields including pion as Nambu Goldstone boson arising due to spontaneous
chiral symmetry breaking. First, they truncated the spectrum at certain level so that
number of fields “integrated in” becomes finite in the theory and then integrated out
all the KK modes except pion and lowest lying vector mode (ρ meson and the flavor
partners). Using this method they obtained the effective lagrangian up to O(p4). However
this Lagrangian is not same as the SU(3) chiral perturbation theory Lagrangian [5]. The
authors in [13] derived relations between the SU(3) low energy coupling constants of [5]
and O(p4) couplings in [2].

The main takeaway from this paper is that QCD imposes a relationship between the
higher derivative corrections and large-N suppression when comparing ourM-theory/type
IIA holographic computational results for the low energy coupling constants of χPT La-
grangian up to O(p4) and corresponding experimental values of these coupling constants.

The rest of the paper is organized as follows. In section 2, we give a quick review of
the type IIB holographic dual of large-N thermal QCD as constructed in [14], its SYZ type
IIA mirror (and itsM-theory uplift) as obtained in [15] and summarize results pertaining
to the applications of the type IIA/M-theory dual of holographic QCD phenomenology as
obtained by the group to which the authors of this paper belong. In section 3, we outline
obtaining the chiral limit of the Chiral Perturbation Theory Lagrangian up to O(p4) involv-
ing the π and ρ mesons as well as their flavor partners, using the HLS formalism/notation
of [2]. In section 4 which forms the core of the paper with all the results, we obtain the
values of the LECs of [5] up to O(p4) as radial integrals using the type IIA SYZ mirror
of [14] inclusive of the O(R4) M-theory corrections worked out in [16]. In the process of
matching the holographic results with experimental values see that there is a deep con-
nection between the large-N suppression and the aforementioned l6p (O(R4)) corrections.
Section 5 has a summary of the results and the lessons learnt. There are four supporting
appendices. Appendix A is about showing that the O(R4) corrections to theM-theory up-
lift of large-N thermal QCD-like theories at low temperatures (i.e. below the deconfinement
temperature) can consistently be made to be vanishingly small in the UV. Appendix B has
some details pertaining to the evaluation of the coupling constants appearing in the “HLS”

– 3 –



J
H
E
P
0
8
(
2
0
2
1
)
1
5
1

chiral Lagrangian as radial integrals, which is relevant to the computation of section 4.
Appendix C is a brief review of the HLS formalism and a derivation of the O(p2) SU(3)
χPT Lagrangian of [5] as well as contributions to the low energy coupling constants (LECs)
of O(p4) SU(3) χPT Lagrangian of [5] arising from integrating out the rho mesons from the
theory. Appendix D provides details of obtaining the DBI action for the type IIA flavor
D6-branes incorporating the O(R4) corrections to theM-theory uplift of large-N thermal
QCD-like theories.

2 Brief review of the (UV complete) type IIB/IIA SYZ mirror (and
M-theory) holographic dual of large-N thermal QCD at intermediate
coupling, and holographic QCD phenomenology

In the context of a UV-complete top-down holographic dual of large-N thermal QCD,
the following summarizes the main features of the brane construct and the gravity dual
of [14], its type IIA mirror and M-theory uplift (up to O(R4)) as well as holographic
phenomenological applications of the same.

• Brane construct of [14]: the type IIB string dual of [14] consists of N D3-branes
placed at the tip of six-dimensional conifold, with M D5-branes wrapping the van-
ishing S2, referred to as fractional D3-branes, and M D5-branes distributed along
the resolved S2 placed at antipodal points relative to the M D5-branes. Denot-
ing the average D5/D5 separation by RD5/D5, r > RD5/D5, would be the UV.
The Nf D7-branes, holomorphically embedded via Ouyang embedding [17] in the
resolved conifold geometry, “smeared”/delocalized along the angular directions θ1,2,
are present in the UV, the IR-UV interpolating region and dip into the (confining)
IR (but do not touch the D3-branes; the shortest D3 −D7 string corresponding to
the lightest quark). In addition, Nf D7-branes are present in the UV and the UV-IR
interpolating region for the reason given below. The following table summarizes the
aforementioned brane construct wherein S2(θ1, φ1) denotes the vanishing two-sphere
and (NP/SP of) S2

a(θ2, φ2) is the (North Pole/South Pole of the) resolved/blown-up
two-sphere — a being the radius of the blown-up S2 — and rUV is the UV cut-off
and ε(

R
D5/D5−|µOuyang|

2
3
) < 1 in table 1. Also, µOuyang is the Ouyang embedding

parameter that is defined as:(
r6 + 9a2r4

) 1
4 e

i
2 (ψ−φ1−φ2) sin

(
θ1
2

)
sin
(
θ2
2

)
= µOuyang, (2.1)

effected by (3.4) for vanishingly small |µOuyang|, while describing the embedding of
the flavor D7-branes in the resolved conifold geometry.

• In the UV, one has SU(N+M)×SU(N+M) color gauge group and SU(Nf )×SU(Nf )
flavor gauge group. There occurs a partial Higgsing of SU(N +M)× SU(N +M) to
SU(N + M) × SU(N) as one goes from r > RD5/D5 to r < RD5/D5. This happens
because at energies less than RD5/D5 (IR), the D5-branes are integrated out resulting
in the reduction of the rank of one of the product gauge groups (which is SU(N +

– 4 –



J
H
E
P
0
8
(
2
0
2
1
)
1
5
1

S. No. Branes World Volume
1. N D3 R1,3(t, x1,2,3)× {r = 0}
2. M D5 R1,3(t, x1,2,3)× {r = 0} × S2(θ1, φ1)×NPS2

a(θ2,φ2)

3. M D5 R1,3(t, x1,2,3)× {r = 0} × S2(θ1, φ1)× SPS2
a(θ2,φ2)

4. Nf D7 R1,3(t, x1,2,3)× R+(r ∈ [|µOuyang|
2
3 , rUV])× S3(θ1, φ1, ψ)×NPS2

a(θ2,φ2)

5. Nf D7 R1,3(t, x1,2,3)× R+(r ∈ [RD5/D5 − ε, rUV])× S3(θ1, φ1, ψ)× SPS2
a(θ2,φ2)

Table 1. The type IIB Brane Construct of [14].

number of D5 − branes) × SU(N + number of D5 − branes)). By the same token,
the D5-branes are “integrated in” for energies more than RD5/D5 (UV), resulting in
the conformal Klebanov-Witten-like SU(M +N)× SU(M +N) product color gauge
group.

• The pair of gauge couplings, gSU(N+M) and gSU(N) can be shown to flow oppositely.
The flux of the NS-NS B through the vanishing S2 is the reason for introduction of
non-conformality which is why M D5-branes were included in [14] to cancel the net
D5-brane charge in the UV. Further, as the Nf flavor D7-branes enter the RG flow of
the gauge couplings via the dilaton, their contribution therefore needs to be canceled
by Nf D7-branes which is the reason for their inclusion in the UV.

Using UV-complete top-down type IIB holographic dual of lagre-N thermal QCD
at finite gauge/’t Hooft coupling [14], delocalized Strominger-Yau-Zaslow (SYZ) type
IIA mirror of [14] and its M theory uplift in the ‘MQGP’ limit as worked out in [15],
our group has made the following contributions to the top-down holographic dual of
large N thermal QCD phenomenology at intermediate gauge/’t Hooft coupling.

• In the IR, at the end of a Seiberg-like duality cascade, the number of colors Nc gets
identified with M , which in the ‘MQGP limit’ to be discussed below, can be tuned
to equal 3 (see [18]).

• Gravity dual of the brane construct of [14]: the finite temperature (> Tc) on
the gauge/brane side is effected in the gravitational dual via a black hole in the latter.
Turning on of the temperature (in addition to requiring a finite separation between the
M D5-branes and M D5-branes to provide a natural scale above which one is in the
UV) corresponds in the gravitational dual to having a non-trivial resolution parameter
of the conifold. IR confinement on the brane/gauge theory side corresponds to having
a non-trivial deformation of the conifold geometry in the gravitational dual. The
gravity dual is hence given by a resolved warped deformed conifold wherein the D3-
branes and the D5-branes are replaced by fluxes in the IR, and the back-reactions
are included in the warp factor and fluxes.

• Color-Flavor Enhancement of Length Scale in the IR: in the IR in the MQGP
limit (2.4), with the inclusion of terms higher order in gsNf in the RR and NS-NS
three-form fluxes and the NLO terms in N in the metric, there occurs an IR color-
flavor enhancement of the length scale as compared to a Planckian length scale in
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Klebanov-Strassler (KS)’s model even for O(1) M , thereby ensuring that quantum
corrections will be suppressed. This was discussed/summarized in [19]/[18]. Essen-
tially, defining:

Neff(r) = N

[
1 + 3gsM2

eff
2πN

(
log r +

3gsN eff
f

2π (log r)2
)]

,

Meff(r) = M + 3gsNfM

2π log r +
∑
m≥1

∑
n≥1

Nm
f M

nfmn(r),

N eff
f (r) = Nf +

∑
m≥1

∑
n≥0

Nm
f M

ngmn(r), (2.2)

wherein the type IIB axion C0 = N eff
f

(ψ−φ1−φ2)
4π , at the end of a Seiberg-like duality

cascade, Neff(r0 ∈ IR) = 0 and writing the ten-dimensional warp factor h ∼ L4

r4 , the
length scale L in the IR will be given by:

L ∼ 4√
MN

3
4
f

√√√√√
∑
m≥0

∑
n≥0

Nm
f M

nfmn(r0)

∑
l≥0

∑
p≥0

N l
fM

pglp(r0)

 1
4

LKS, (2.3)

LKS ∼ 4
√
gsM
√
α′. The relation (2.3) implies that in the IR, relative to KS, there is

a color-flavor enhancement of the length scale in the MQGP limit. Hence, in the IR,
even for N IR

c = M = 3 and Nf = 2(u/d) + 1(s), upon inclusion of n,m > 1 terms in
Meff and N eff

f in (2.2), L� LKS(∼ LPlanck) in the MQGP limit (2.4), implying that
the stringy corrections are suppressed and one can trust supergravity calculations.

• Obtaining Nc = 3: as explained in [18], in the IR, at the end of a Seiberg-like
duality cascade, the number of colors Nc gets identified withM , which in the ‘MQGP
limit’ (2.4) can be tuned to equal 3. This is briefly summarized now. One can identify
Nc with the effective number Neff of D3-branes and the effective number Meff of D5-
branes as: NC = Neff(r) + Meff(r). Neff(r) is defined via F̃5 ≡ dC4 + B2 ∧ F3 =
F5 + ∗F5, wherein F5 ≡ Neff × Vol(Base of Resolved Warped Deformed Conifold).
Similarly, Meff is defined via Meff =

∫
S3 F̃3 (the S3 being dual to eψ ∧ (sin θ1dθ1 ∧

dφ1 − B1 sin θ2 ∧ dφ2), B1 being an ‘asymmetry factor’ defined in [14]; eψ ≡ dψ +
cos θ1 dφ1 +cos θ2 dφ2) and [20]: F̃3(≡ F3−τH3) ∝M(r) ≡M 1

1+e
α(r−R

D5/D5) , α� 1.
AsNeff varies between N � 1 in the UV and 0 in the deep IR, andMeff varies between
0 in the UV and M in the deep IR, Nc varies between M in the deep IR and a large
value [ in the MQGP limit of (2.4) for a large value of N ] in the UV. Therefore, at
very low energies, the number of colors Nc can be approximated by M , which in the
MQGP limit is finite and can hence be taken to be equal to three. Additionally, one
can set Nf = 2(u/d) + 1(s). Hence, in the IR, this is somewhat like the Veneziano
limit in which Nf

Nc
is fixed (but, unlike [14, 15], Nc, Nf → ∞ in the Veneziano limit

in, e.g., [21]) as (in the IR) Nf
Nc
∼ Nf

M in [14].
Thus, under the aforementioned Seiberg-like duality cascade, the N D3-branes

are cascaded away and there is a finite M left at the end corresponding to a strongly
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coupled IR-confining SU(M) gauge theory; the finite temperature version of this
SU(M) gauge theory is what was considered in [14]. So, at the end of the Seiberg-
like duality cascade in the IR, the number of colors Nc, identified with M , in the
‘MQGP limit’ can be tuned to equal 3.

• The MQGP limit, type IIA Strominger-Yau-Zaslow (SYZ) mirror of [14]
and its M-theory uplift at intemediate gauge coupling:

– For constructing a holographic dual of thermal QCD-like theories, one would
be required to consider intemediate gauge coupling (as well as finite number of
colors) — dubbed as the ‘MQGP limit’ in [15]. From the perspective of gauge-
gravity duality, this would hence require looking at the strong-coupling/non-
perturbative limit of string theory — M theory. The MQGP limit in [15, 19]
was defined as:

gs ∼
1
O(1) ,M,Nf ≡ O(1), N � 1, gsM

2

N
� 1. (2.4)

– The M-theory uplift of the type IIB holographic dual of [14] was constructed
in [15, 19] by working out the Strominger-Yau-Zaslow (SYZ) type IIA mirror
of [14] effected via a triple T duality along a local special Lagrangian (sLag)
T 3 — which could be identified with the T 2-invariant sLag of [22] with a large
base B(r, θ1, θ2) (of a T 3(φ1, φ2, ψ)-fibration over B(r, θ1, θ2)) [19, 23].1 Let us
briefly discuss the basic idea. Consider the aforementioned N D3-branes with
its world-volume directions x0,1,2,3 at the tip of conifold. Further, assuming the
M D5-branes to be parallel to these D3-branes as well as wrapping the van-
ishing S2(θ1, φ1), a single T-dual along ψ yields N D4-branes wrapping the ψ
circle and M D4-branes straddling a pair of orthogonal NS5-branes. The world
volumes of these pair of NS5-branes correspond to the vanishing S2(θ1, φ1) and
the blown-up S2(θ2, φ2) with a non-zero resolution parameter a (the radius of
the blown-up S2(θ2, φ2)). Two more T-dualities along φ1 and φ2, then convert
the aforementioned pair of orthogonal NS5-branes into a pair of orthogonal
Taub-NUT spaces, the N D4-branes into N color D6-branes and the M strad-
dling D4-branes also to D6-branes. Also, in the presence of the aforementioned
Nf flavor D7-branes (embedded holomorphically via the Ouyang embedding),
oriented parallel to the D3-branes and “wrapping” a non-compact four-cycle
Σ(4)(r, ψ, θ1, φ1), upon T-dualization yield Nf D6-branes “wrapping” a non-
compact three-cycle Σ(3)(r, θ1, φ2). An uplift toM-theory of the SYZ type IIA
mirror so obtained, converts the D6-branes to KK monopoles that are variants

1As explained in [18] also as a footnote, consider D5-branes wrapping the resolved S2 of a resolved coni-
fold geometry [24], which one knows, globally, breaks SUSY. As in [25], to begin with, SYZ is implemented
wherein the pair of S2s are replaced by a pair of T 2s in the delocalized limit, and the correct T-duality
coordinates are identified. Then, when uplifting the mirror to M theory, it is found that a G2-structure can
be chosen which is free of the delocalization. For the SYZ mirror of the resolved warped deformed conifold
which figures in the gravitational dual of large-N thermal QCD of [14], that gets uplifted toM-theory with
G2 structure worked out in [15], the idea is exactly the same.
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of Taub-NUT spaces. Therefore, all the branes are converted to geometry and
fluxes and one ends up with M-theory on a G2-structure manifold. Similarly,
one may perform identical three T-dualities on the gravity dual on the type IIB
side, which is a resolved warped-deformed conifold with fluxes, to obtain another
G2 structure manifold, giving us the MQGP holographic dual of [15, 19].

Hence, the type IIB model of [14] make it an ideal holographic dual of thermal
QCD because: (i) it is UV conformal (Landau poles are absent), (ii) it is IR confin-
ing, (iii) the quarks transform in the fundamental representation of flavor and color
groups, and (iv) it is defined for the full range of temperature — both low and high.

• Conceptual physics issues miscellanea

– Regime of validity of the top-down holographic model and ΛQCD: a natural ques-
tion that one would like to answer is the range of scales in which the top-
down holographic model elaborated upon, is expected to match QCD. The
basic idea, using the notations introduced earlier on in this section, that an-
swers this question is that the range of variation of the radial coordinate in the
supergravity dual corresponding to the energy scale in QCD-like theories is de-
termined by:

{
r|Neff(r) =

∫
M5(θ1,2,φ1,2,ψ) (F5 +B2 ∧ C3) ≈ 0

}
∩{r|Meff ≡ O(1)}

— M5(θ1,2, φ1,2, ψ) being the base of the non-Kähler resolved warped deformed
conifold — because this will ensure that the (effective) number of colors can be
set to be O(1), and in fact 3. One can show that in the IR (wherein | log r| � 1)
in the MQGP limit, Neff(r) ∼ N

[
1 + gs

gsM2(gsNf )
N log3 r

]
[28] and from (2.2),

estimating: M
[
1 + 3gsNfM log r

2π

]
≡ O(1), or log r = −2π(−O(1)+M)

3gsMNf
and substi-

tuting into Neff yields, e.g., for N ∼ 102, Nf = 3, M ∼ O(1) as in the MQGP
limit.

The computations in this paper are in the low temperature limit, i.e., for
temperatures below the deconfinement temperature whereat one has bound
states of quarks such as mesons which is what we are interested in looking at.
To therefore understand the upper limit in energy on the QCD side or r in the
gravitational dual side, we therefore need to understand the non-perturbative
QCD scale, ΛQCD, in terms of the geometrical data of our top-down holo-
graphic model. Let us remind ourselves that (before the Seiberg-like dualities)
the SU(M ×N) and SU(N) gauge couplings gSU(M+N) and gSU(N) satisfy [14]:

4π2
(

1
g2
SU(M+N)

+ 1
g2
SU(N)

)
eφ

IIB(r,θ10,θ20) = π; 4π2
(

1
g2
SU(M+N)

− 1
g2
SU(N)

)
eφ

IIB(r,θ10,θ20) ∼
1

2πα′
∫
S2(θ1,φ1)B

IIB ∼ gsMeff(r)N eff
f (r)logr

∣∣∣
r∈IR-UV interpolating region

. Note, every-
where r, a are in fact r

R
D5/D5

, a
R
D5/D5

where RD5/D5 is taken to be
√

3a (a being
the resolution parameter of the blown-up S2) [28]. Hence, ΛQCD = RD5/D5 ∼√

3a because near r = RD5/D5, the aforementioned gauge couplings become
very large indicating the onset of non-perturbative QCD. Recall, in the UV, i.e.,
∀r > RD5/D5, we obtain the conformal SU(N + M) × SU(N + M) Klebanov-
Witten-like (asymptotically supersymmetric as the complexified three-form type
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IIB flux G3 becomes ISD for r � RD5/D5) gauge theory, and in the IR, i.e., ∀r <
RD5/D5, we obtain the non-conformal non-supersymmetric SU(M+N)×SU(N)
gauge theory, which after a Seiberg-like duality cascade, is expected to yield IR
confining QCD-like gauge theory.

– Hierarchy of scales in the gravitational dual : there is an IR cut-off denoted by r0
indicative of the boundary of the deep IR. The D5−D5 separation RD5/D5 pro-
vides another scale so that at energies larger than RD5/D5, the D5−D5 strings
become massive and the gauge group, as already mentioned above, becomes the
Klebanov-Witten-like UV-conformal SU(M +N)×SU(M +N), and at energies
less than RD5/D5 the gauge group is Higgsed down to the Klebanov-Strassler-
like SU(M + N) × SU(N);2 there is also a U(1)M for massless strings starting
and ending on the same D5-brane. For all practical purposes, r > RD5/D5 is
in the UV. As one is always working in the “near-horizon” limit in which the
ten-dimensional warp factor h(r, θ1,2) ∼ L4

r4 (1 + f (r;N,M,Nf )), even in the
UV (i.e., one drops the 1 that figures, e.g., in the warp factor in the Klebanov-
Witten supergravity dual: h = 1 + L4

r4 ), where L ≡ (4πgsNα′)
1
4 , hence, the UV

cut-off rUV
<∼ L. So, in our holographic dual, the gravitational analog of ΛQCD

and rUV are separated.

• Holographic QCD phenomenology

– In [26], two of the authors (VY and AM) along with K.Sil, studied the glueball
spectra and evaluated the masses of 0++, 0−+, 0−−, 1++, 2++ glueballs in type
IIB/type IIA/M theory supergravity backgrounds using WKB quantization and
by imposing Neumann/Dirichlet boundary conditions at the IR cut-off. It was
found that WKB quantization produces masses of 0++, 0−+, 0−−, 1++, 2++ glue-
balls very close to the lattice results.

– In [27], two of the authors (VY and AM) along with K.Sil calculated (pseudo-)
vector and (pseudo-)scalar meson spectra at finite coupling (part of the ‘MQGP’
limit), and compared their result with PDG data. It was found that masses
of the (pseudo-)vector (ρ[770], a1[1260], ρ[1450], a1[1640]) and (pseudo-)scalar
(f0[980]/a0[980], f0[1370], f0[1450]) mesons were closer to the PDG data than
previously obtained in the literature.

– In [29], two of the authors (VY and AM) studied (exotic) scalar glueball 0++
E

which correspond to metric fluctuations of the M theory uplift at finite coupling.
Using the same (exotic) scalar glueball 0++

E -meson interaction Lagrangian linear
in (exotic) scalar glueball and quartic in meson fields was derived. Decay widths

2In principle, there is another scale that exists in the type IIB holographic dual, which is provided by
the embedding of the D7-branes via the Ouyang’s embedding (2.1), where the modulus of the Ouyang
embedding parameter |µ| 23 gives a measure of the radial separation of the “deepest” embedded flavor D7-
branes in the IR from the color D3-branes corresponding hence to the mass of the lightest quark. Hence,
one could have a refinement of the hierarchy and assume the IR to be given by r ∈ [r0, |µ|

2
3 ], the IR-UV

interpolating region given by r ∈ [|µ| 23 ,R
D5/D5] and the UV corresponding to r ∈ [R

D5/D5, rUV]. However,
for simplicity of calculations, we have merged the first two in this paper.
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S. No. Manifold G-Structure Non-Trivial Torsion Classes
1. M6(r, θ1, θ2, φ1, φ2, ψ) SU(3) T IIA

SU(3) = W1 ⊕W2 ⊕W3 ⊕W4 ⊕W5 : W4 ∼W5

2. M7(r, θ1, θ2, φ1, φ2, ψ, x
10) G2 TMG2

= W14 ⊕W27

3. M8(x0, r, θ1, θ2, φ1, φ2, ψ, x
10) SU(4) TMSU(4) = W2 ⊕W3 ⊕W5

4. M8(x0, r, θ1, θ2, φ1, φ2, ψ, x
10) Spin(7) TMSpin(7) = W1 ⊕W2

Table 2. Summary of IR G-Structure Torsion Classes of Six-/Seven-/Eight-Folds in the type
IIA/M-Theory Duals of Thermal QCD.

of the processess GE → 2π,GE → 2ρ, ρ → 2π,GE → 4π,GE → ρ + 2π as well
as indirect four π decay associated with GE → ρ + 2π → 4π and GE → 2ρ →
4π, were also obtained. By appropriate choice of combination of constants of
integration appearing in the solutions to the EOMs of the profile functions of
the π and ρ mesons and six metric perturbations these decay widths were shown
to match exactly with PDG data.

• O(R4)-correctedM-theory uplift and G-structure torsion classes

– In [16], two of the authors (V. Yadav and A. Misra), worked out the O(l6p)
corrections to the aforementioned M-theory metric arising from terms quartic
in the eleven dimensional supergravity action.

– The SU(3)/G2/SU(4)/Spin(7)-structure torsion classes of the relevant six-, seven-
and eight-folds associated with the aforementioned M theory uplift (near ψ =
0/2π/4π coordinare patches) were worked out which can be summarized in
table 2.

3 Obtaining L(4)
χPT [π, ρ] from DBI on flavor D6 branes

In this section, similar to the discussion in [2] using the “HLS formalism”, starting from
the DBI action on flavor D6-branes (obtained from the SYZ type IIA mirror of the type
IIB holographic dual of large-N thermal QCD as constructed in [14]) we review obtaining
the χPT Lagrangian for π, ρ mesons and their flavor partners, up to O(p4) wherein the
coupling constants are obtained as appropriate radial integrals.

The type IIB dual corresponding to high temperatures, i.e., T > Tc, will involve a
black hole with the metric given by [14]:

ds2 = 1√
h(r, θ1,2)

(
−g(r)dt2 +

(
dx1

)2
+
(
dx2

)2
+
(
dx3

)2
)

+
√
h(r, θ1,2)

(
dr2

g(r) + r2ds2(θ1,2, φ1,2, ψ)
)
,

(3.1)
where g(r) = 1 − r4

h
r4 , and for low temperatures, i.e., T < Tc, is given by the thermal

gravitational dual:

ds2 = 1√
h(r, θ1,2)

(
−dt2 +

(
dx1

)2
+
(
dx2

)2
+ g̃(r)

(
dx3

)2
)

+
√
h(r, θ1,2)

(
dr2

g̃(r) + r2ds2(θ1,2, φ1,2, ψ)
)

(3.2)
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where g̃(r) = 1 − r4
0
r4 . One notes that t → x3, x3 → t in (3.1) following by a Double

Wick rotation in the new x3, t coordinates obtains (3.2); h(r, θ1,2) is the ten-dimensional
warp factor [14, 15]. This amounts to: −gBH

tt (rh → r0) = gx3x3 Thermal(r0), gBH
x3x3(rh →

r0) = −gtt Themal(r0) in the results of [16, 29] (See [31] in the context of Euclidean/black
D4-branes in type IIA).

In (3.2), we will assume the spatial part of the solitonic D3 brane world volume to be
given by R2(x1,2)×S1(x3) where the period of S1(x3) is given by a very large: 2π

MKK
, where

the very smallMKK = 2r0
L2

[
1 +O

(
gsM2

N

)]
, r0 being the very small IR cut-off in the thermal

background (see also [32]) and L = (4πgsN)
1
4 . So, limMKK→0 R2(x1,2)×S1(x3) = R3(x1,2,3),

thereby recovering 4D Physics.
As explained in [33], the T 3-valued (x, y, z) (used for effecting SYZ mirror via a triple

T-dual in [15, 19]) are defined via:

φ1 = φ10 + x
√
h2 [h(r0, θ10,20)]

1
4 sin θ10 r0

,

φ2 = φ20 + y
√
h4 [h(r0, θ10,20)]

1
4 sin θ20 r0

,

ψ = ψ0 + z
√
h1 [h(r0, θ10,20)]

1
4 r0

, (3.3)

h1,2,4 defined in [14], and one works up to linear order in (x, y, z). Up to linear order in
r, i.e., in the IR, it can be shown [34] that θ10,20 can be promoted to global coordinates
θ1,2 in all the results in the paper. The meson sector in the type IIA dual background of
top-down holographic type IIB setup is given by the flavor D6-branes action. For

θ1 = αθ1

N
1
5
, θ2 = αθ2

N
3
10
, (3.4)

i.e., restricting to the Ouyang embedding (2.1) for a vanishingly small |µOuyang|, one will as-

sume that the embedding of the D6-brane will be given by ι : Σ1,6
(
R1,3, r, θ2 ∼

αθ2

N
3
10
, y

)
↪→

M1,9, effected by: z = z(r). As obtained in [27] one sees that z=constant is a solution
and by choosing z = ±C π2 , one can choose the D6/D6-branes to be at “antipodal” points
along the z coordinate. As in [27], we will be working with redefined (r, z) in terms of new
variables (Y,Z):

r = r0e
√
Y 2+Z2

,

z = C arctan Z
Y
.

Vector mesons are obtained by considering gauge fluctuations of a background gauge
field along the world volume of the embedded flavor D6-branes (with world volume
Σ7(x0,1,2,3, Z, θ2, ỹ) = Σ2(θ2, ỹ) × Σ5(x0,1,2,3, Z)). Turning on a gauge field fluctuation
F̃ about a small background gauge field F0 and the backround i∗(g + B)[i : Σ7 ↪→ M10,

– 11 –
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M10 being the ten-dimensional ambient space-time]. This implies:

Str
√
−detΣ7(x0,1,2,3,Z,θ2,ỹ)

(
i∗(g+B) + (F0 + F̃ )

)∣∣∣∣∣
Y=0

δ

(
θ2−

αθ2

N
3
10

)

=
√
−detΣ2(θ2,ỹ) (i∗(g+B)) Str

√
detΣ5(x0,1,2,3,Z)

(
i∗(g+B) + (F0 + F̃ )

)∣∣∣∣∣
Y=0

δ

(
θ2−

αθ2

N
3
10

)
=
√
−detΣ2(θ2,ỹ) (i∗(g+B))

√
detΣ5(x0,1,2,3,Z)(i∗g)

·Str
(

13−
1
2
[
(i∗g)−1

(
(F0 + F̃ )

)]2
+ . . .

)∣∣∣∣
Y=0

δ

(
θ2−

αθ2

N
3
10

)
, (3.5)

where Y = 0 is the SYZ mirror of the Ouyang embedding [27].
Picking up terms quadratic in F̃ :

SIIAD6 = TD6(2πα′)2

4

(
πL2

r0

)
Str

∫ 3∏
i=0

dxidZdθ2dyδ

(
θ2 −

αθ2

N
3
10

)
e−Φ

·
√
−detθ2y(ι∗(g +B))

√
detR1,3,Z(ι∗g)gµ̃ν̃F̃ν̃ρ̃gρ̃σ̃F̃σ̃µ̃, (3.6)

where µ̃ = i(= 0, 1, 2, 3), Z
To begin with, for simplicity let us assume the absence of any external (axial-)vector

fields. Expanding Aµ(xν , Z) = ∑∞
n=1 ρ

(n)
µ (xν)ψn(Z), AZ(xν , Z) = ∑∞

n=0 π
(n)(xν)φn(Z),

one obtains (as also earlier discussed in [11, 29, 30]):

− VΣ2

4

∫
d3xdZ

∑
n,m

tr
(
V2(Z)F̃ (n)

µν F̃
(m)µνψm(Z)ψn(Z) + V1(Z)ρ(m)

µ ρ(n)µψ̇mψ̇n

+ V1(Z)∂µπn∂µπmφnφm − V1(Z)∂µπ(n)ρ(m)µφnψ̇m − V1(Z)∂µπ(m)ρ(n)µφmψ̇n

)
. (3.7)

The terms quadratic in ψ/ψ̇( . ≡ d
dZ ) in (3.7) are given as:

− VΣ2

4

∫
d3xdZ

∑
n,m

tr
(
V2(Z)F̃ (n)

µν F̃
(m)µνψm(Z)ψn(Z) + V1(Z)ρ(m)

µ ρ(n)µψ̇mψ̇n
)
, (3.8)

where:

Fµν(xρ, Z) =
∑
n

F̃ (n)
µν (xρ)ψn(Z),

VΣ2 = −TD6(2πα′)2

4

∫
dydθ2δ

(
θ2 −

αθ2

N
3
10

)
,

and,

V1(z) = 2
√
hgzze−φ

√
−detθ2y(ι∗(g +B))

√
detR1,3,Z(ι∗g),

V2(z) = he−φ
√
−detθ2y(ι∗(g +B))

√
detR1,3,Z(ι∗g). (3.9)
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The EOM satisfied by ρµ(xν)(n) is: ∂µF̃µν(n)+∂µ log√gt,R1,2,|Z|F̃
µν
(n) = ∂µF̃

µν
(n) =M2

(n)ρ
ν
(n).

After integrating by parts once, and utilizing the EOM for ρ(n)
µ , one writes:∫

d3xdZ tr
(
−2V2(Z)M2

(m)ψ
ρµ
n ψ

ρµ
m + V1(Z)ψ̇ρµn ψ̇ρµm

)
ρµ(n)ρ(m)

µ , (3.10)

which yields the following equation of motion for ψµ(m):

ψµ(m) : d

dZ

(
V1(Z)ψ̇µ(m)

)
+ 2V2(Z)M2

(m)ψ
µ
m = 0. (3.11)

The normalization condition of ψ(n) are given as

VΣ2

∫
dZ V2(Z) ψnψ(m) = δnm

VΣ2

2

∫
dZ V1(Z) ∂Zψn∂Zψ(m) = M2

(n)δnm. (3.12)

Thus the action for vector meson part for all n ≥ 1can be wriiten as

−
∫
d3x

∑
n

tr
(

1
4 F̃

(n)
µν F̃

(n)µν +
M2

(n)
2 ρ(n)

µ ρ(n)µ
)
. (3.13)

To normalize the kinetic term for π(n), we impose the normalization condition for all
n corresponding to π(n) which ranges from 0 to ∞

VΣ2

2

∫
dZ V1(Z) φnφm = δnm. (3.14)

From (3.12), it is seen that we can choose φn = M−1
(n)ψ̇n for all n ≥ 1. For n = 0

corresponding to φ0 we choose its form such as it is orthogonal to ψ̇n for all n ≥ 1. By
writing φ0 = C

V1(Z) , we have

(φ0, φn) ∝
∫

dZ C∂Zψ = 0.

Thus the cross component in (3.7) vanishes for n = 0, and the remaining cross components
can be absorbed in the ρ(n)

µ by following a specific gauge transformation given as,

ρ(n)
µ → ρ(n)

µ +M−1
(n)∂µπ

(n).

Then the action becomes:

−
∫
d3x tr

1
2∂µπ

(0)∂µπ(0) +
∑
n≥1

(
1
4 F̃

(n)
µν F̃

(n)µν + m2
n

2 ρ(n)
µ ρ(n)µ

) . (3.15)

Working in the AZ(xµ, Z) = 0-gauge, integrating out all higher order vector and
axial vector meson fields except keeping only the lowest vector meson field [2] V (1)

µ (xµ) =

gρµ(xµ) =

 1√
2(ρ0

µ+ωµ) ρ+
µ K∗+µ

ρ−µ − 1√
2(ρ0

µ−ωµ) K∗0µ

K∗−µ K̄∗0µ φµ

 and lightest pseudo-scalar meson field i.e. π =
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1√
2

 1√
2
π0+ 1√

6
η8+ 1√

3
η0 π+ K+

π− − 1√
2
π0+ 1√

6
η8+ 1√

3
η0 K0

K− K̄0 − 2√
6
η8+ 1√

3
η0

 meson, the gauge field Aµ(xν , Z) up

to O(π) is given by:
Aµ(xν , Z) = ∂µπ

Fπ
ψ0(Z)− Vµ(xν)ψ1(Z), (3.16)

where ψ0(z) =
∫ Z

0 dZ ′φ0(Z ′), V (1)
µ (xν) = ρ

(1)
µ − 1

M(1)
∂µπ

(1).
To introduce external vector Vµ and axial vector fields Aµ, one could use the Hidden

Local Symmetry (HLS) formalism of [2] and references therein, wherein 1
Fπ
∂µπ → α̂µ⊥ =

1
Fπ
∂µπ + Aµ − i

Fπ
[Vµ, π] + · · · (refer to (C.3)), and one also works with α̂µ|| ≡ −Vµ +

Vµ − i
2F 2
π

[∂µπ, π] + · · · (refer to (C.4)). To obtain the low energy effective theory of QCD,
again truncating the KK spectrum at certain level because mode expansion of the gauge
field contains infinite number of vector meson fields V (n)

µ (xµ) and axial vector meson fields
A

(n)
µ (xµ) [2],

Aµ(xµ, z) = α̂µ⊥(xµ)ψ0(z) + (α̂µ||(xµ) + V (1)
µ (xµ)) + α̂µ||(xµ)ψ1(z), (3.17)

implying therefore

Fµν = −Vµνψ1 + vµν(1 + ψ1) + aµνψ0 − i[α̂µ||, α̂ν||]ψ1(1 + ψ1) + i[α̂µ⊥, α̂ν⊥](1 + ψ1 − ψ2
0)

−i([α̂µ⊥, α̂ν||] + [α̂µ||, α̂ν⊥])ψ1ψ0. (3.18)

From appendix C (based on [36]), as regards a chiral power counting, one notes that
Mρ ≡ O(p) implying α̂ν|| ≡ O(p3)

M2
ρ
≡ O(p), α̂ν⊥ ≡ O(p). Further, Vµν , aµν and vµν are of

O(p2). Hence, using (3.18), (FµνFµν)m is of O(p4m),m ∈ Z+. Therefore, one considers the
kinetic term (m = 1) at O(p4), which yields the following expansion:

FµνF
µν = ψ2

1VµνV
µν −ψ1(1 +ψ1)Vµνvµν −ψ0ψ1Vµνa

µν + iψ2
1(1 +ψ1)Vµν [α̂µ|| , α̂

ν
||]

−iψ1(1 +ψ1−ψ2
0)Vµν [α̂µ⊥, α̂

ν
⊥] + iψ0ψ

2
1Vµν([α̂µ⊥, α̂

ν
||] + [α̂µ|| , α̂

ν
⊥])−ψ1(1 +ψ1)vµνV µν

+(1 +ψ1)2vµνv
µν +ψ0(1 +ψ1)vµνaµν − iψ1(1 +ψ1)2vµν [α̂µ|| , α̂

ν
||]

+i(1 +ψ1)(1 +ψ1−ψ2
0)vµν [α̂µ⊥, α̂

ν
⊥]− iψ0ψ1(1 +ψ1)vµν([α̂µ⊥, α̂

ν
||] + [α̂µ|| , α̂

ν
⊥])

−ψ0ψ1aµνV
µν +ψ0(1 +ψ1)aµνvµν +ψ2

0aµνa
µν − iψ0ψ1(1 +ψ1)aµν [α̂µ|| , α̂

ν
||]

+iψ0(1 +ψ1−ψ2
0)aµν [α̂µ⊥, α̂

ν
⊥]− iψ2

0ψ1aµν([α̂µ⊥, α̂
ν
||] + [α̂µ|| , α̂

ν
⊥])

+iψ2
1(1 +ψ1)[α̂µ||, α̂ν||]V µν − iψ1(1 +ψ1)2[α̂µ||, α̂ν||]vµν

−iψ0ψ1(1 +ψ1)[α̂µ||, α̂ν||]aµν −ψ2
1(1 +ψ1)2[α̂µ||, α̂ν||][α̂µ|| , α̂

ν
||]

+ψ1(1 +ψ1)(1 +ψ1−ψ2
0)[α̂µ||, α̂ν||][α̂µ⊥, α̂

ν
⊥]−ψ0ψ

2
1(1 +ψ1)[α̂µ||, α̂ν||]([α̂µ⊥, α̂

ν
||] + [α̂µ|| , α̂

ν
⊥])

−iψ1(1 +ψ1−ψ2
0)[α̂µ⊥, α̂ν⊥]V µν + i(1 +ψ1)(1 +ψ1−ψ2

0)[α̂µ⊥, α̂ν⊥]vµν

+ψ1(1 +ψ1)(1 +ψ1−ψ2
0)[α̂µ⊥, α̂ν⊥][α̂µ|| , α̂

ν
||]− (1 +ψ1−ψ2

0)2[α̂µ⊥, α̂ν⊥][α̂µ⊥, α̂
ν
⊥]

+ψ0ψ1(1 +ψ1−ψ2
0)[α̂µ⊥, α̂ν⊥]([α̂µ⊥, α̂

ν
||] + [α̂µ|| , α̂

ν
⊥])

+iψ0ψ
2
1([α̂µ⊥, α̂ν||] + [α̂µ||, α̂ν⊥])V µν − iψ0ψ1(1 +ψ1)([α̂µ⊥, α̂ν||] + [α̂µ||, α̂ν⊥])vµν

−iψ2
0ψ1([α̂µ⊥, α̂ν||] + [α̂µ||, α̂ν⊥])aµν −ψ0ψ

2
1(1 +ψ1)([α̂µ⊥, α̂ν||] + [α̂µ||, α̂ν⊥])[α̂µ|| , α̂

ν
||]
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+ψ0ψ1(1 +ψ1−φ2
0)([α̂µ⊥, α̂ν||] + [α̂µ||, α̂ν⊥])[α̂µ⊥, α̂

ν
⊥]

−ψ2
0ψ

2
1([α̂µ⊥, α̂ν||] + [α̂µ||, α̂ν⊥])([α̂µ⊥, α̂

ν
||] + [α̂µ|| , α̂

ν
⊥]). (3.19)

Defining parity as xi → −xi, i indexing the conformally Minkowskian spatial directions and
Z → −Z, given that Aµ(x, Z) will be odd, α⊥ will be even, α|| will be odd and Vµ will be
odd implies ψ0(Z) will be odd and ψ1(Z) will be even. As coupling constants are assumed
to be scalars and they are given by Z-integrals, the Z-dependent terms in the action must
be separately of even-Z parity. As ψ0 has odd Z-parity and ψ1 has even Z-parity, therefore
at O(p4), terms with (3α̂||s , 1α̂⊥ or 3α̂⊥s , 1α̂||), are dropped as they involve coefficients of
the type ψ2m+1

0 ψ2n
1 (Z) for appropriate postive integral values of n,m. Similarly, at O(p2),

tr(α̂µ⊥α̂µ||) accompanied by ψ̇0ψ̇1( . ≡ d
dZ ) of odd-Z parity, is dropped. At O(p4), one hence

obtains [2]:

L(4) 3 y1 tr[α̂µ⊥α̂µ⊥α̂ν⊥α̂
ν
⊥] + y2 tr[α̂µ⊥α̂ν⊥α̂µ⊥α̂

ν
⊥] + y3 tr[α̂µ||α̂µ||α̂ν||α̂

ν
||] + y4 tr[α̂µ||α̂ν||α̂µ||α̂

ν
||]

+ y5 tr[α̂µ⊥α̂µ⊥α̂ν||α̂
ν
||] + y6 tr[α̂µ⊥α̂ν⊥α̂µ||α̂

ν
||] + y7 tr[α̂µ⊥α̂ν⊥α̂ν||α̂

µ
|| ]

+ y8
{

tr[α̂µ⊥α̂ν||α̂ν⊥α̂
µ
|| ] + tr[α̂µ⊥α̂µ||α̂ν⊥α̂

ν
||

}
+ y9 tr[α̂µ⊥α̂ν||α̂µ⊥α̂

ν
||]

+ z1 tr[vµνvµν ] + z2 tr[aµνaµν ] + z3 tr[vµνV µν ] + iz4 tr[Vµνα̂µ⊥α̂
ν
⊥]

+ iz5 tr[Vµνα̂µ||α̂
ν
||] + iz6 tr[vµνα̂µ⊥α̂

ν
⊥] + iz7 tr[vµνα̂µ||α̂

ν
||]− iz8 tr

[
aµν

(
α̂µ⊥α̂

ν
||+ α̂µ||α̂

ν
⊥

)]
(3.20)

where:

vµν = 1
2
(
ξRRµνξ†R + ξLLµνξ†L

)
and aµν = 1

2
(
ξRRµνξ†R − ξLLµνξ

†
L

)
, (3.21)

Lµν = ∂[µLν] − i[Lµ,Lν ] and Rµν = ∂[µRν] − i[Rµ,Rν ] and Lµ = Vµ − Aµ where Rµ =

Vµ +Aµ, and ξ†L(xµ) = ξR(xµ) = e
iπ(xµ)
Fπ ; also, Vµν = ∂[µVν] − i[Vµ, Vν ].

The various couplings, using (3.19), are hence given by the following expressions [2]:

F 2
π = −VΣ2

4 〈〈ψ̇
2
0〉〉

aF 2
π = −VΣ2

4 〈〈ψ̇
2
1〉〉

1
g2 = VΣ2

2 〈ψ
2
1〉

y1 = −y2 = −VΣ2

2 〈(1 + ψ1 − ψ0)2〉

y3 = −y4 = −VΣ2

2 〈ψ
2
1(1 + ψ1)2〉

y5 = −VΣ2〈ψ2
0ψ

2
1〉

y6 = −y7 = −VΣ2〈ψ1(1 + ψ1)(1 + ψ1 − ψ2
0)〉

y8 = −y9 = −VΣ2〈ψ2
0ψ

2
1〉

z1 = −VΣ2

4 〈(1 + ψ1)2〉
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z2 = −VΣ2

4 〈(ψ0)2〉

z3 = VΣ2

2 〈ψ1(1 + ψ1)〉

z4 = VΣ2〈ψ1(1 + ψ1 − ψ2
0)〉

z5 = −VΣ2〈ψ2
1(1 + ψ1)〉

z6 = −VΣ2〈(1 + ψ1)(1 + ψ1 − ψ2
0)〉

z7 = VΣ2〈ψ1(1 + ψ1)2〉

z8 = VΣ2〈ψ2
0ψ1〉 (3.22)

where:
〈〈A〉〉 =

∫ +∞

0
V1(z)AdZ (3.23)

and
〈A〉 =

∫ +∞

0
V2(z)AdZ. (3.24)

4 The coupling constants in L[4]
χPT (π, ρ) from SD6

DBI incorporating O(R4)-
corrections from M theory

This section has the core of the main results of this paper. Inclusive of the O(R4) corrections
to the M-theory uplift of large-N thermal QCD as worked out in [16], we show how
to obtain lattice-compatible values of the coupling constants up to O(p4) of the χPT
Lagrangian of [5] in the chiral limit. The O(R4)-corrections — indicated by a˜ (e.g., the
M-theory metric: G̃MMN = GMQGP

MN (1 + fMN ) [16]) in (D.1) — to the D6-brane DBI action
is described in appendix D.
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where:

Σ1 ≡ 19683
√

6α6
θ1 + 6642α2

θ2α
3
θ1 − 40

√
6α4

θ2

Global−−−−→ N
6
5
(
19683

√
6 sin6 θ1 + 6642 sin2 θ2 sin3 θ1 − 40

√
6 sin4 θ2

)
, (4.2)

C(1)
MN are constants of integration that figure in (4.1) after solving the EOMs for the O(β)

metric perturbations fMN , and GMQGP
MN are theM theory metric components in the MQGP

limit at O(β0) [29]. The explicit dependence on θ10,20 of theM-theory metric components
up to O(β), using (3.4), is effected by the replacemements: αθ1 → N

1
5 sin θ10, αθ2 →

N
3
10 sin θ20 in (4.1). Also, see (3.3). The main Physics-related take-away is the following.

From (4.1), one notes that in the IR: r = χr0, χ ≡ O(1), up to O(β):

fMN ∼ β
(log r0)m

rn0N
βN

, m ∈ {0, 1, 3} , n ∈ {0, 2, 5, 7} , βN > 0. (4.3)

As estimated in [28],
∣∣∣∣log

(
r0

R
D5/D5

)∣∣∣∣ ∼ N
1
3 , implying there is a competition between

Planckian and large-N suppression and infra-red enhancement arising from m,n 6= 0
in (4.3).

Now, using the standard Witten’s prescription of reading off the type IIA metric (in-
clusive of the O(R4) corrections):

ds2
11 = e−

2φIIA
3

 1√
h(r, θ1,2)

(
−dt2 +

(
dx1

)2
+
(
dx2

)2
+ g̃(r)

(
dx3

)2
)

+
√
h(r, θ1,2)

(
dr2

g̃(r) + ds2
IIA(r, θ1,2, φ1,2, ψ)

)+ e
4φIIA

3

(
dx11 +A

F IIB
1 +F IIB

3 +F IIB
5

IIA

)2
,

(4.4)

where AF
IIB
i=1,3,5

IIA are the type IIA RR 1-forms obtained from the triple T/SYZ-dual of the
type IIB F IIB

1,3,5 fluxes in the type IIB holographic dual of [14].
Turning now to obtaining the EOM for the profile function of the vector mesons, we

will use (3.11). Using (3.9) and (D.2), (D.3) and (D.5), one first obtains:

V1 = VLO
1 +VO(R4)

1 where :

VO(R4)
1 =

√
he−2Z(2e−φGMx10x10GMrr TrC.F + e−φ

IIA√
gIIA(−Fx10x10GMrr − 2FrrGMx10x10 + 2GMx10x10GMrr ))

GMx10x10
3/2GMrr

2r2
0

= −
3gsM 5

√
1
NNf

2e−4Z
(
e4Z − 1

)
(C(1)
zz − 2C(1)

θ1z
+ 2C(1)

θ1x
) log

(
r0e

Z
) (

72a2r0e
Z log

(
r0e

Z
)

+ 3a2 + 2r2
0e

2Z
)

8π2αθ1α
2
θ2

;

V2 = VLO
2 +VO(R4)

2 where :

VO(R4)
2 = e−φ

IIA
hTr(C.F) + Ex10x10h

√
gIIA

=
3gs2MN4/5Nf

2e−2Z(C(1)
zz − 2C(1)

θ1z
+ 2C(1)

θ1x
) log

(
r0e

Z
) (

72a2r0e
Z log

(
r0e

Z
)
− 3a2 + 2r2

0e
2Z
)

4πr2
0αθ1α

2
θ2

,

(4.5)
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where VLO
1,2 are the LO terms as obtained in [29]. The equation of motion (3.11) satisfied by

the profile function of the vector meson ψ1(z), using ideas similar to [29], can be rewritten as
a Schödinger-like equation with a potential V = VLO +VO(R4) where

(
M(1) = m0

r0√
4πgsN

)
and VLO is the LO potential as given in [29]. Further,

VO(R4) = −2M2
(1)
VO(R4)

1 V2
V2

1
+ 2M2

(1)
VO(R4)

2
V1

− V
O(R4)
1 (V ′1) 2

V3
1

+
V ′1
(
VO(R4)

1

)′
2V2

1
+ V

O(R4)
1 V ′′1

2V2
1

−

(
VO(R4)

1

)′′
2V1

= βN

(2πgs7/2 logNM2
(1)Nfe

−4Z(C(1)
zz − 2C(1)

θ1z
+ 2C(1)

θ1x
)
(
72a2r0e

Z log
(
r0e

Z
)
− 3a2 + 2r0

2e2Z
)

r08 (e4Z − 1)
(
gse−4Z

r04

)3/2
Ω̃(Z)

+
2πgs2 logNM2

(1)Nfe
4Z(C(1)

zz − 2C(1)
θ1z

+ 2C(1)
θ1x

)
(
72a2r0e

Z log
(
r0e

Z
)

+ 3a2 + 2r0
2e2Z

)
81r02 (e4Z − 1)α2

θ1
Ω̃(Z) 2

)

×
[
243a2e−2Zα2

θ1

(
3 log

(
r0e

Z
)(

gsNf

(
8 logNr0e

Z + 1
)

+ 32πr0e
Z
)
− gs(logN + 3)Nf

− 72gsNfr0e
Z log2

(
r0e

Z
)
− 4π

)
+ 162r0

2α2
θ1

(
gs logNNf − 3gsNf log

(
r0e

Z
)

+ 4π
)]

= −β
(
3b2− 2

)
logNm0

2(C(1)
zz − 2C(1)

θ1z
+ 2C(1)

θ1x
)

4 (3b2 + 2) (logN − 3 log(r0))Z +O(Z0),

(4.6)
where a =

(
b+ γ gsM

2

N (1 + log r0)
)
r0, and,

Ω̃(Z) ≡ 3 log
(
r0e

Z
) (

3a2
(
gsNf

(
8 logNr0e

Z − 1
)

+ 32πr0e
Z
)
− 2gsNfr0

2e2Z
)

+3a2(gs(logN − 3)Nf + 4π)− 216a2gsNfr0e
Z log2

(
r0e

Z
)

+ 2r0
2e2Z(gs logNNf + 4π).

(4.7)

As in [29], one defines g(Z) ≡
√
V1(Z)ψ1(Z), where g(Z) satisfies the following Schrö-

dinger-like equation that, as mentioned above, is obtained from (3.11):

g′′(Z) +
(
ω1 + βCzzθ1z θ1x

Z
+ ω2 + 1

4Z2

)
g(Z) = 0, (4.8)

wherein:

ω1 ≡
1
4
(
m0

2 − 3b2
(
m0

2 − 2
))

+ 18b2rh log(rh)

− 3bγgsM2 (m0
2 − 2

)
log(rh)

2N + 36bγgsM2rh log2(rh)
N

,

ω2 ≡ −
4
3 + 3

2b
2
(
m0

2 + 72rh − 4
)
− 36b2rh log(rh)

+ 3bγgsM2 (m0
2 − 4

)
log(rh)

N
− 72bγgsM2rh log2(rh)

N
,

Czzθ1z θ1x = −
(
3b2 − 2

)
logNm0

2(C(1)
zz − 2C(1)

θ1z
+ 2C(1)

θ1x
)

4 (3b2 + 2) (logN − 3 log(r0)) ,

(4.9)
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and whose solution (using arguments similar to the ones in [29]) is given in terms of
Whittaker functions:

g(Z) = c
(1)
ψ1
M

−
i

(
ω1+βCzz

θ1z θ1x

)
2√ω2

,0

(2i√ω2Z) + c
(2)
ψ1
W

−
i

(
ω1+βCzz

θ1z θ1x

)
2√ω2

,0

(2i√ω2Z) . (4.10)

We pause here and note that the effect of the inclusion of the O(R4) corrections into the
EOM for the radial profile function ψ1(Z) for the ρ meson is a shift in the residue of the
simple pole in the potential of the Schrödinger-like equation satisfied by the redefined ρ

meson profile function g(Z).
Using arguments similar to the ones in [29], implementing Neumann boundary condi-

tion (ψ′1(Z = 0) = 0), one sees that in the IR (i.e., near Z = 0):

ψ1(Z) =
√

2C(1) IR
ψ1

√
i
√
ω2
[
1− Z

(
βCzzθ1z θ1x + ω1

)]
; C(1) IR

ψ1
≡ CIR

ψ1 = N−Ωψ1 , Ωψ1 > 0.
(4.11)

Now, as explained in section 3,

φ0(Z) =
CIR
φ0

V1(Z) = φ
(−1)
0
Z

+ φ
(constant)
0 + φ

(1)
0 Z + φ

(2)
0 Z2 +O(Z3). (4.12)

By requiring:

αθ2 = 9
√

logN − 3 log r0√
2
√

logN + 3 log r0
N

1
10αθ1 , logN > | log r0|,

b = 1√
3

+ ε, (4.13)

for a very tiny ε to be ascertained later, one can set: φ(−1)
0 = φ

(1)
0 = 0 and one obtains:

φ0(Z) =
π2CIR

φ0
N2/5α3

θ1
(logN − 3 log r0)

(
27

8b2gs logN(logN+3 log r0) −
81b2β(C(1)

zz −2C(1)
θ1z

+2C(1)
θ1x

)
8 log(r0)

)
gsMNf

2r03(logN + 3 log r0)

−
π2CIRφ0

N2/5α3
θ1

(logN − 3 log r0)
(

9(3b2+1)β(C(1)
zz −2C(1)

θ1z
+2C(1)

θ1x
)

4 log r0
+ 1944b4

(3b2+2)4

)
gs log r0MNf

2r02(logN + 3 log r0)
Z2 +O(Z3).

(4.14)

One can similarly show that one obtains the following profile functions in the UV:

ψUV
1 (Z) = CUV

ψ1

e−2Z

Z
3
2
,

φUV
0 (Z) = CUV

φ0

e−2Z

Z2 . (4.15)

Let us discuss the normalization conditions on ψ1(Z) and φ0(Z) and the consequent
constraints on CUV

ψ1
and CUV

φ0
(Z).
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• The normalization condition on ψ1(Z) (3.12): VΣ2

∫∞
0 dZV2 (ψ1(Z))2

∣∣∣
b= 1√

3
+ε

= 1

obtains:

CUV
ψ1 =

√√√√√7(fr0−1)fr0gs2MNf
2VΣ2C

IR
ψ1

2 logN
(

7β(C(1)
zz −2C(1)

θ1z
+2C(1)

θ1x
)fr0

2γ2gs2M4 log2(N)+3456ε2(fr0+1)N2
)

2 33/4ε3/2(fr0+1)N7/5α3
θ1

− 93312π

24
√
− (fr0−1)gs2MN3/5Nf

2VΣ2
ε2(fr0+1)α3

θ1
logN

,

(4.16)
wherein, similar to [28], the IR cut-off r0 is assumed to be given as r0 = N−

fr0
3 . Let

us impose CUV
ψ1

= 0 which is equivalent to:

VΣ2 =
186624 33/4πε3/2(fr0 + 1)N7/5α3

θ1√
7(fr0 − 1)fr0gs2logNMNf

2CIR
ψ1

2
(
7β(C(1)

zz − 2C(1)
θ1z

+ 2C(1)
θ1x

)fr02γ2gs2logN2M4 + 3456ε2(fr0 + 1)N2
) .

(4.17)
• The normalization condition on φ0(Z) (3.14): VΣ2

2
∫∞

0 dZV1 (φ0(Z))2 = 1 obtains:

CUV
φ0 =

243 4√3π2CIR
φ0

√
εNfr0+ 2

5

√
(fr0 + 1)(−β(C(1)

zz − 2C(1)
θ1z

+ 2C(1)
θ1x

) + 2fr0 + 2)
32(fr0 − 1)2gs2 (logN)2MNf

2 +O(ε
3
2 ).

(4.18)
Being proportional to

√
ε and assuming ε � 1 (for black-hole gravity dual, ε <

r2
h (log rh)

9
2 N−

9
10 [16]), we will henceforth be approximating CUV

φ0
≈ 0, i.e., ψUV

1 (Z) ≈
0, φUV

0 (Z) ≈ 0.

To evaluate y1,3,5,7 and z1,...,8 using (3.22) along with (3.23) and (3.24), one will be
splitting the radial integral into the IR and the UV, e.g., 〈A〉[G̃IR

MN ] + 〈A〉[GUV
MN ], where

using the results of appendix A, fUV
MN ’s are vanishingly small (impling G̃UV

MN = GUV
MN ).

Using (4.11) and (4.14), one arrives at the expressions for the coupling constants y1,3,5,7
and z1,...,8 as explained in appendix B:

y1,...,7, z1,...,8|∼IIB Ouyang

= VΣ2

(
CIR
ψ1

)nyi/zj (CIR
φ0

)myi/zj
×
(
Fyi/zj (r0;M,N,Nf ) + β

(
C(1)
zz − 2C(1)

θ1z
+ 2C(1)

θ1x

)
Hyi/zj (r0;M,N,Nf )

)
. (4.19)

Further,

F 2
π = VΣ2

243π2β
(
C(1)
zz − 2C(1)

θ1z
+ 2C(1)

θ1x

)
CIR
φ0

2fr0(fr0 + 1) log2(3)α3
θ1
N

4fr0
3 + 2

5

8192(fr0 − 1)3gs3 (logN)3MN2
f

+
81
√

3π2CIR
φ0

2εfr0(fr0 + 1)2 log(3)(log(243)− 6)α3
θ1
N

4fr0
3 + 2

5

2048(fr0 − 1)3gs3 (logN)3MN2
f

−
243π2CIR

φ0
2fr0(fr0 + 1)2 log2(3)α3

θ1
N

4fr0
3 + 2

5

4096(fr0 − 1)3gs3 (logN)3MN2
f


(4.20)

and

g2
YM =

logNN
(
7(C(1)

zz − 2C(1)
θ1z

+ 2C(1)
θ1x

)fr02γ2gs
2M4 log2(N) + 3456(fr0 + 1)λ2

ε

)
288λ2

εα
2
θ1

logN
(√

3β3/2(C(1)
zz − 2C(1)

θ1z
+ 2C(1)

θ1x
)λεm2

0 − 12(fr0 + 1)N
) . (4.21)
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In the chiral limit, the O(p4) SU(3) χPT Lagrangian is given by [5]:

L1
(
Tr(∇µU †∇µU)

)2
+L2

(
Tr(∇µU †∇νU)

)2
+L3Tr

(
∇µU †∇µU

)2

−iL9Tr
(
Lµν∇µU∇νU †+Rµν∇µU∇νU †

)
+L10Tr

(
U †LµνURµν

)
+H1Tr

(
L2
µν +R2

µν

)
,

(4.22)

where ∇µU ≡ ∂µU − iLµU + iURµ, U = e
2iπ
Fπ . For completeness, we have reviewed the

arguments of [36] to obtain (4.22)-like terms from the HLS Lagrangian by integrating out
the ρ mesons in appendix C. Using hence (C.20) along with results of [38], one obtains
relationships between the LECs yi, zi of (3.20) and the Lis of (4.22)–(4.29) for L1, (4.37)
for L9 and (4.46) for L10.

The parameters Li and Hi are renormalized at one-loop level with all vertices in one-
loop diagrams arising from the O(p2) terms. Using dimensional regularization and per-
forming renormalizations of the parameters via [5]:

Li = Lri (µ) + Γiλ(µ) , Hi = Hr
i (µ) + ∆iλ(µ) , (4.23)

where µ is the renormalization point, and Γi and ∆i are certain numbers given later; λ(µ)
is the divergent part given by

λ(µ) = − 1
2 (4π)2

[1
ε̄
− lnµ2 + 1

]
, (4.24)

where 1
ε̄

= 2
4− d − γE + ln 4π , (4.25)

d being the non-radial non-compact space-time dimensionality to be set to four. The
constants Γi and ∆i for SU(3) χPT theory were worked out in [5]:

Γ1 = 3
32 , Γ2 = 3

16 , Γ3 = 0 , Γ4 = 1
8 , Γ5 = 3

8 ,

Γ6 = 11
144 , Γ7 = 0 , Γ8 = 5

48 , Γ9 = 1
4 , Γ10 = −1

4 ;

∆1 = −1
8 , ∆2 = 5

24 .

(4.26)

The analog of the 1-loop renormalization in χPT can be understood on the gravity dual
side by noting that the latter requires holographic renormalization. This can be seen as
follows. It can be shown [39] that the bulk on-shell D = 11 supergravity action inclusive
of O(R4)-corrections is given by:

Son-shell
D=11 = 1

2

[
−7

2S
(0)
EH + 2S(0)

GHY +β

(
20
11SEH−

117
22

∫
M11

√
−g(1)R(0) + 2SGHY−

2
11

∫
M11

√
−g(0)gMN

(0)
δJ0
δgMN

(0)

)]
.

(4.27)
The UV divergences of the various terms in (4.27) are summarized below:∫

M11

√
−gR

∣∣∣∣
UV−divergent

,

∫
∂M11

√
−hK

∣∣∣∣
UV−divergent

∼ r4
UV log rUV,

∫
M11

√
−ggMN δJ0

δgMN

∣∣∣∣
UV−divergent

∼ r4
UV

log rUV
. (4.28)
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LECs GL 1985 [5] NLO 2014 NNLO free fit NNLO BE14 [35]
103 Lr1 0.7(3) 1.0(1) 0.64)06 0.53(06)
103 Lr2 1.3(7) 1.6(2) 0.59(04) 0.81(04)
103 Lr3 −4.4(2.5) −3.8(3) −2.80(20) −3.07(20)
103 Lr4 −0.3(5) 0.0(3) 0.76(18) 0.3
103 Lr5 1.4(5) 1.2(1) 0.50(07) 1.01(06)
103 Lr6 −0.2(3) 0.0(4) 0.49(25) 0.14(05)
103 Lr7 −0.4(2) −0.3(2) −0.19(08) −0.34(09)
103 Lr8 0.9(3) 0.5(2) 0.17(11) 0.47(10)

Table 3. Various fits for NLO LECs Lri (i = 1, 2, . . . , 8).

i Lri (Mρ) 103 Source
1 0.4 ± 0.3 Ke4, ππ → ππ

2 1.4 ± 0.3 Ke4, ππ → ππ

3 −3.5 ± 1.1 Ke4, ππ → ππ

4 −0.3 ± 0.5 Zweig rule
5 1.4 ± 0.5 FK : Fπ
6 −0.2 ± 0.3 Zweig rule
7 −0.4 ± 0.2 Gell-Mann-Okubo, L5, L8
8 0.9 ± 0.3 MK0 −MK+ , L5, (ms − m̂) : (md −mu)
9 6.9 ±0.7 〈r2〉πV
10 −5.5 ± 0.7 π → eνγ

Table 4. Phenomenological Values of the 1-loop renormalised couplings Lri (Mρ) of (4.22) [7]. Last
column shows the source to extract this information.

It can be shown [39] that an appropriate linear combination of the boundary terms:∫
∂M11

√
−hK

∣∣∣
r=rUV

and
∫
∂M11

√
−hhmn ∂J0

∂hmn

∣∣∣
r=rUV

serves as the appropriate counter terms
to cancel the UV divergences (4.28).3

We will now discuss how to match our results with the experimental values of the 1-
loop renormalized coupling constants Lr1,2,3,9,10 in (4.22) and F 2

π and g2
YM; the experimental

value ofH1 apparently is unavailable. Table 3 contains the values of the 1-loop renormalized
values of the coupling constants in (4.22) [1].

Table 4 elaborates upon the column titled GL 1985 [5].
We will now show how, in five steps, it is possible to match the phenomenological

values of the O(p4) SU(3) χPT Lagrangian [5] one-loop renormalized LECs Lr1,9,10 as well
as F 2

π , gYM(ΛQCD = 0.4 GeV,Λ = 1.1Gev, µ = Mρ) where Λ is the “HLS-QCD” matching
scale [36] and µ is the renormalization scale, as well as the order of magnitude and signs
of Lr2,3.

3For consistency, one needs to impose the following relationship between the UV-valued effective number
of flavor D7-branes of the parent type IIB dual, NUV

f and log rUV: NUV
f = (log rUV)

15
2

logN .
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• Step 1: matching Lr1,2,3.
Using (4.17), (4.21), (B.2), (B.3) and y2 = −y1 one obtains:

Lr1 = Lr2
2 =−L

r
3

6 = 1
g2

YM
− z4 + y2 (4.29)

= 1
143360

√
7(fr0 − 1)fr0gs

8 logNM4N8
fα

3
θ1
CIR
ψ1

2Ω

{
3π(fr0 + 1)N7/5

×

(
−

4822335
√

2 8√3 4√7π3β
(
C(1)
zz − 2C(1)

θ1z
+ 2C(1)

θ1x

)
CIR
φ0

2ε9/4fr0 (fr0 + 1)gs4M2N4
fα

9
θ1C

IR
ψ1 N2fr0 + 7

5

(fr0 − 1)3 (logN)3

+
430080

√
21β

(
C(1)
zz − 2C(1)

θ1z
+ 2C(1)

θ1x

)
ε3(fr0 − 1)fr0gs

8 logNM4m0
2N3/5N8

fα
5
θ1C

IR
ψ1

2

π(fr0 + 1)

+
64
√

7
π

(fr0 − 1)2gs
9 log r0M

4N8
f CIR

ψ1
2N

2fr0
3 − 3

5 Ω
(fr0 + 1)2 +

26880
√

7(fr0 − 1)gs9 log r0M
4N8

f CIR
ψ1

2N
2fr0

3 − 2
5 Ω

(fr0 + 1)2

−
8960

√
7(fr0 − 1)fr0gs

9 logNM4N8
fα

2
θ1C

IR
ψ1

2N
2fr0

3 − 2
5 Ω

fr0 + 1

−
132269760

√
2 8√3 4√7π3CIR

φ0
2ε17/4fr0 (fr0 + 1)2gs

4M2N4
fα

9
θ1C

IR
ψ1 N2fr0 + 7

5

(fr0 − 1)3 (logN)3

−
5160960

√
7ε2(fr0 − 1)fr0gs

8 logNM4N3/5N8
fα

5
θ1C

IR
ψ1

2

π

−
195259926456 4√3π7CIR

φ0
4ε13/2fr0 (fr0 + 1)4α15

θ1N
4fr0 + 11

5

(fr0 − 1)7 (logN)7

)}
, (4.30)

where:

Ω ≡
(
7β
(
C(1)
zz − 2C(1)

θ1z
+ 2C(1)

θ1x

)
fr0

2γ2gs
2 (logN)2M4 + 3456ε2(fr0 + 1)N2

)
.

(4.31)
Now, as we are working up to O(β) and further due to the smallness of ε assuming
working up to O(ε2), one sees that (4.29) gets simplified to read:

Lr1 = 1
143360

√
7(fr0 − 1)fr0gs

8 logNM4N8
fα

3
θ1

×

3π(fr0 + 1)N7/5

64
√

7
π (fr0 − 1)2gs

9 log r0M
4N8

fN
2fr0

3 −
3
5

(fr0 + 1)2

+
26880

√
7(fr0 − 1)gs9 log r0M

4N8
fN

2fr0
3 −

2
5

(fr0 + 1)2 −
8960

√
7(fr0 − 1)fr0gs

9 logNM4N8
fα

2
θ1
N

2fr0
3 −

2
5

fr0 + 1

−
5160960

√
7(fr0 − 1)fr0gs

8 logNM4N3/5N8
fα

5
θ1

π

(
ε2

Ω

) (4.32)

As will be shown below (4.39) and (4.40), to match the experimental value of Lr9, one
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needs to set fr0 = 1− κ, 0 < κ� 1. Hence:

Lr1 = 1
143360

√
7fr0gs8 logNM4N8

fα
3
θ1

{
3π(fr0 + 1)N7/5

(
26880

√
7gs9 log r0M

4N8
f

(fr0 + 1)2

−
8960

√
7fr0gs9 logNM4N8

fα
2
θ1

fr0 + 1 −
5160960

√
7fr0gs8 logNM4N

1
3N8

fα
5
θ1

π

(
ε2

Ω

))}
.

(4.33)

Further, as the log r0 in (4.33) is in fact log
(

r0
R
D5/D5

)
— RD5/D5 > r0 being the

D5–D5 separation — one sees from (4.33) that in order to obtain a positive value (as
required from phenomenological value of Lr1), Ω < 0. Note, as shown below in (4.36),
matching with the experimental value of the pion decay constant Fπ requires an N -
suppression in αθ1 , implying the N enhancement in the last term in (4.33) is artificial.
So, to ensure one does not pick up an O

(
1
β

)
contribution in L1 from ε2

Ω in (4.33) and
also to ensure that the third term in (4.33) required to partly compensate the first
two negative terms in the same (as explained above) to produce a positive term, is
not vanishingly small, from (4.31), one needs to set:

ε = λε

√
β

N
. (4.34)

Finally, combining the above observations with the requirement to match the experi-
mental value Lexp

1 = 0.64× 10−3, one requires to implement the following constraint:(
C(1)
zz − 2C(1)

θ1z
+ 2C(1)

θ1x

)
= −493.7(δ + 1)(fr0 + 1)λ2

ε

fr0
2γ2gs2 (logN)2M4

,

δ =
0.053α3

θ1
N−

2fr0
3 −1

gs
. (4.35)

We hence see from (4.34) that ε provides an expansion parameter connecting the
1
N and β expansions. Also, together with (4.35), this is the first connection between
large-N and higher derivative corrections in the context ofM-theory dual of large-N
thermal QCD-like theories.

From (4.29) upon comparison with experimental values of Lr2,3, we see that one
can obtain a match with their order of magnitude and sign, but not the exact nu-
merical value.

• Step 2: matching F 2
π .

Now, using (4.35) and (4.17), one can show that the difference of (4.20) and the

experimental value of F 2
π = 0.0037N−

2fr0
3 −1

gs
,4 vanishes for:

αθ1 =
0.03 24√βgs11/3 12√λε (logN)2/3 3√MN

2/3
f

3
√
CIR
ψ1

(1− fr0)2/3N−
fr0
3 −

13
60

3
√
CIR
φ0

3
√
fr0 + 1

. (4.36)

4F 2
π can be made to match the experimental value of 92.3MeV wherein from 0++-glueball mass [18], one

identifies: 1700
4 MeV ≡ r0√

4πgsN
.
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• Step 3: matching Lr9.
Using (C.20) and [38], one can show that:

Lr9 = 1
8

(
2

g2
YM
− 2z3 − z4 − z6

)
. (4.37)

By using (4.35), (4.17) and (B.3) one obtains:

Lr9 = −0.0031(fr0 − 1)gsN
2fr0

3 + 4
5

(fr0 + 1)α3
θ1

. (4.38)

Now, assuming:
fr0 = 1− ωα3

θ1 , (4.39)

where

ω = 4.6N−
2fr0

3 −
4
5

gs
, (4.40)

one sees one gets a match with the phenomenological/experimental value Lexp
9 =

6.9× 10−3. Substituting (4.39)–(4.40) into (4.35), one obtains:(
C(1)
zz − 2C(1)

θ1z
+ 2C(1)

θ1x

)
≈ − 987.4λ2

ε

γ2gs2 (logN)2M4
. (4.41)

Consistency of (4.39), (4.40) and (4.36), setting 24√β ≈ β0.04 to unity (because of the
very small exponent of β), requires:

αθ1 =
11.33 3

√
CIR
φ0
N55/36

gs
12√λε 3√MNf

2/3 3
√
CIR
ψ1

log 2
3 (N)

. (4.42)

• Step 4: matching g2
YM(ΛQCD = 0.4GeV, Λ = 1.1GeV, µ = Mρ).

Similarly, g2
YM can be chosen to match the experimental value 36 (at ΛQCD = 0.4GeV

and the HLS-QCD matching scale “Λ′′ = 1.1GeV [36]) and renormalization scale
µ = Mρ by imposing:

12δN

α2
θ1

(
855.11β3/2(δ+1)λ3

εm02

fr0
2γ2gs2(logN)2M4 + 12N

) = 36, (4.43)

which can be effected by:

γ = 106λ
3/2
ε m0β

3/4αθ1
√

8.4(δ + 1)

fr0gs (logN)M
√
N
(
3.27× 109δ − 1.18× 1011α2

θ1

) (4.44)

By requiring the argument of the square root in the denominator of (4.44) to be
positive, one hence obtains an upper bound on CIR

φ0
from (4.44):

CIR
φ0 <

1.04× 10−13 8√β(fr0 − 1)2gs
2 4√λεMN2

f CIR
ψ1

N−3fr0−
73
20 log2(N)

fr0 + 1 . (4.45)
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• Step 5: matching Lr10.
Now, using (4.17), (4.35), (B.3) and [37, 38] (which provides also the UV-finite part
of the ρ − π one-loop correction via an “a(Mρ)” factor taken to be equal to 2) one
can show that (for Nf = 3):

Lr10 = 1
4

(
− 1
g2

YM
+ 2z3 − 2z2 + 2z1

)
+ 11Nfa(Mρ)

96(4π)2

= 0.47gsN
2fr0

3 +1

αθ1
−

8640.gsN5/3α2
θ1

gsN5/3 − 1831.63α3
θ1

+ 4.4× 10−3.

(4.46)

Now, using Lr10 = −5.5×10−3, one obtains the following value of the θ1 delocalization
parameter αθ1 :

αθ1 = −2.8× 10−14gsN
5
3 +

√
4.2× 10−6 − 2.9× 10−11g2

sN
10
3

2 . (4.47)

For gs = 0.1, this implies N < 140. For numerical computation we set N = 102, gs =
0.1,M = Nf = 3, and from (4.42) and (4.47) we obtain the following non-linear
relation between CIR

ψ1
, λε and CIR

φ0
(assumed to be also satisfying (4.45)):

1.6 3
√
CIR
φ0

λ
1
12
ε

3
√
CIR
ψ1

= 10−7. (4.48)

The key results of this section are summarized below.

1. Fixing (eight non-zero) parameters:
(a) a linear combination of constants of integration appearing in the solutions of the

EOMs of the O(R4) M-theory uplift’s metric components GMzz,θ1z,θ1x;
5

(b) constants of integration CIR
ψ1,φ0

,6 appearing in the solutions of the EOMs in the
IR of respectively the ρ and π mesons;

(c) ε (or equivalently λε as in ε = λε

√
β

N ), γ as in b = 1√
3 + ε in the relationship

between the resolution parameter a (i.e., the radius of the blown-up S2) and the
IR cut-off r0: a =

(
b+ γO

(
gsM2

N

))
r0;

(d) θ1 delocalization parameter αθ1 ;
5In principle, there are other costants of integration appearing in other O(R4)M-theory metric compo-

nents (4.1), but it turns out that there is a specific combination of only three that appears while matching
χPT LECs up to O(p4). Even though it is unclear why a specific combination, but it is intuitively evident
that it involves GMzz,θ1z,θ1x as these essentially correspond to the S3, part of the non-compact four-cycle
wrapped by the flavorD7-branes in the type IIB dual of [14]; theseD7-flavor branes are (triple) T dualized to
the type IIA D6 flavor branes. This, in fact, is an extremely non-trivial signature of the four-cycle wrapped
by the type IIB D7-branes, that manifests itself as O(R4)-corrections to the MQGP background [15]/M-
theory uplift of thermal QCD-like theories.

6CUV
ψ1,φ0 can be self-consistently set to zero — see 2. and 3.
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S. No. Quantities whose Parameters of the holographic dual Equation numbers
experimental values used for fitting

are fitted to
1. Lr1,2,3 Specific linear combination of (4.35)

constants of integration appearing in [using (4.34)]
solutions to O(R4) corrections
toM-theory metric components

GMzz,θ1z,θ1x; fr0 ; γ;λε;
O(R4)− 1

N connection: (4.34)
a− r0 relation must have

an ε ∼ l3p
N contribution

at O
(
gsM2

N

)0

2. F 2
π ; Lr9 fr0 ;αθ1 ; CIR

φ0
; CIR
ψ1

;λε (4.36), (4.38)–(4.42)[consistency
check]

3. gSU(3) γ; upper bound on CIR
φ0

(4.44), (4.45)
4. Lr10 αθ1 ; CIR

φ0
; CIR
ψ1

(4.47)–(4.48) [even though
specific values of N,M,Nf , gs

chosen, but can find analog of
(4.48) ∀N < 140 (4.47)

respecting (2.4)]

Table 5. Summary of Matching of Parameters of theM-theory uplift and Experimental values of
1-Loop renormalized χPT LECs, F 2

π , g
2
SU(3).

(e) D6-brane tension or equivalently α′;

(f) fr0 as in r0 = N−
fr0
3

[all for given values of N,M,Nf in the MQGP limit (2.4)] of the top-down holo-
graphic dual by matching with experimental values of one-loop renormalized χPT
Lagrangian’s LECs Lr1,2,3,9,10, F

2
π , gSU(3): table 5 lists out the same.

Using the values of the parameters of our M-theory dual of thermal QCD-like
theories, one can also obtain the values of the LEC H1 of (4.22), and in principle,
the LECs of the χPT Lagrangian at O(p6) [40]. We defer the latter in particular for
later exploration.

2. Further, the normalization condition of the ρ-meson profile function ψ1(Z) (n = 1
mode) is used to determine the constant of integration CUV

ψ1
appearing in the solution

to ψ1(Z) in the UV, in terms of CIR
ψ1
, fr0 , γ, ε, λε and TD6 or equivalently α′ (via “VΣ2”);

it was shown that one could self-consistently set CUV
ψ1

= 0.7

3. Substituting the expression for TD6/α
′/VΣ2 obtained above from the normalization

condition of ψ1(Z) into the normalization condition for the profile function φ0(Z),
one could self-consistently set CUV

φ0
= 0.

7The ρ-meson mass parameter m0 can be fixed by imposing Dirichlet boundary condition on ψ1(Z) at
Z = 0 [29].
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5 Summary

In this paper, we have shown that O
(

1
N

)
-corrections of theM-theory uplift of holographic

thermal QCD of [14] as worked out in [15, 19] in conjunction with the O(R4)-corrections to
the same as worked out in [16], can be used to match the experimental values of the coupling
constants up to O(p4) appearing in the SU(3) Chiral Perturbation theory Lagrangian for
the pion and rho vector mesons as well as their flavor partners, in the chiral limit.

The following are the key lessons learnt in this paper:

• There is a particular combination of the constants of integration appearing in the
solutions to the O(R4) corrections to the M-theory dual of thermal QCD that will
appear in all the coupling constants of χPT at least up to O(p4). As an example,
in working in the ψ = 0, 2π, 4π patches close to the type IIB Ouyang embedding
effected by working near small θ1,2 the aforementioned combination is C(1)

zz − 2C(1)
θ1z

+
2C(1)

θ1x
, where C(1)

MN s are the constants of integration appearing in the solutions to
the EOMs for the O(R4)-corrections GM,(1)

MN = G
M,(0)
MN (1 + fMN ), being the MQGP

metric of [14, 19]. This dependence is expected to change in the ψ 6= 2nπ, n = 0, 1, 2-
patches.

• Matching the result obtained from ourM-theory O(R4)-corrected holographic com-
putation with the experimental values of one-loop renormalized Lr1,2,3, one sees one
that one is required to do two things. One, the O

(
1
N

)
correction to the leading

order (in N) result in expressing the resolution parameter in terms of the IR cut-off,
also must involve a term proportional to l3p

N , i.e., a =
(
b+ γ gsM

2

N (1 + log r0)
)
r0 →(

b̃+ λ
l3p
N + γ gsM

2

N (1 + log r0)
)
r0. The second, the value of the aforementioned linear

combination of integration constants figuring in the solutions to the O(R4) correc-
tions to the MQGP metric of [15, 19], gets fixed in terms of λ, γ,M, gs and N . This
is the first evidence of the relationship between the O

(
1
N

)
and O(β) corrections.

• Matching the experimental values of F 2
π and the one-loop renormalized Lr9 and in-

ternal consistency, determine the angular delocalization in the polar angles θ1,2 (3.4)
consistent with the type IIB Ouyang embedding of the flavor D7-branes in the type
IIB holographic dual and its SYZ type IIA mirror [27]. Note, similar to as explained
in [25], the SYZ type IIA mirror (and hence its M theory uplift) is independent of the
angular delocalization. In the context of obtaining the values of the χPT Lagrangian’s
coupling constants this is encoded in the fact even though the aforementioned an-
gular delocalization parameters αθ1,2 would change depending on the values of θ10,20
of (3.3), the corresponding values of αθ1,2 can always be found.

• Matching the experimental value of g2
YM at ΛQCD = 0.4GeV, the HLS-QCD match-

ing scale Λ = 1.1GeV and renormalization scale µ = Mρ with the value obtained
from our setup, provide the following pair of results. One, the O

(
gsM2

N

)
correction

appearing in the resolution parameter — IR cut-off relation turns out to also have
an l

9
2
p dependence apart from dependence on gs, N,M,Nf , as well as the constants
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of integration appearing in the solutions to the radial profile functions of the π and
ρ mesons (and their flavor partners) in the IR. Second, one obtains an upper bound
on the constant of integration appearing in the expression for the profile function of
the π meson (and its flavor partners) in the IR.

• Upon matching with the experimental value of the one-loop renormalized Lr10, one
obtains a non-linear relation between the constants of integration appearing in the
radial profile functions for the π and ρmesons in the IR, as well as the coefficient of the
l3p
N term required to exist in the resolution-parameter-IR-cut-off relation (discussed
in the second bullet above) upon matching with the experimental values of Lr1,2,3.
For numerical clarity, we explicitly wrote down the same for N = 102, gs = 0.1,
M = Nf = 3.
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+
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−
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c 2
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r 0
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=
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−
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f
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g(
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+
8π
)

32
π

2

b 1
(r

)
=

1
6√
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5/

4 r
2 α

θ 1
α

2 θ 2

{ g s
3/

4 M
U

V
×
[ −

g s
N

U
V

f

( r2
−

3a
2) lo

gN
(2
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g(
r)

+
1)

+
lo

g(
r)
( 4g

s
N

U
V

f

( r2
−

3a
2) lo

g( 1 4α
θ 1
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)

+
8π
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−
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) +
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2
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wherein MUV ≡ Meff(r > RD5/D5) and similarly NUV
f ≡ N eff

f (r > RD5/D5). We should
keep in mind that near the ψ = ψ0 6= 2nπ, n = 0, 1, 2-patch, some GMrM ,M 6= r and
GMx10N , N 6= x10 components are non-zero, making this exercise much more non-trivial. As
shown in [16], the contributions from E8 is sub-dominant as compared to the contributions
from J0 terms.

As the EOMs are too long, they have not been explicitly typed but their forms have
been written out. The explicit forms of FMN have been given.

Using (A.1), one obtains the following EOMs in the UV:

EOMMN :
x10∑

M,N=0

2∑
p=0
HMN (p)
MN

(
r; r0, a,N,M

UV, NUV
f , gs, αθ1,2

)
f

(p)
MN (r) +βFMN

(
r; r0, a,N,M,Nf , gs, αθ1,2

)
= 0,

(A.2)
where M,N run over the D = 11 coordinates, f (p)

MN ≡
dpfMN
drp , p = 0, 1, 2.
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B Coupling constants y1,3,5,7 and z1,...,8

In this appendix, we work out the IR and UV contributions to the coupling constants
y1,3,5,7 and z1,2,...,8. In the following, ψ0(Z) =

∫ Z
0 φ0(Z)dZ. In the following, we will be

splitting
∫
dZ into

∫
IR +

∫
UV. Now, one can argue that

∫
UV ∼

(
CUV
φ0

)m (
CUV
ψ1

)n
,m, n ∈ Z+,

and as argued in section 4, we can self-consistently set CUV
φ0

= CUV
ψ1

= 0, and one can hence
argue that one can disregard

∫
UV. In the following calculations, one will need the value of

V2 in the IR, which can be shown to be given by:

V2(Z ∈ IR) = −3
(
3b2− 2

)
gs

2MN4/5Nf
2 log(r0)(logN − 3 log(r0))

2π logNαθ1α2
θ2

3
(
2− 3b2

)
βgs

2 log r0MN4/5Nf
2Z(C(1)

zz − 2C(1)
θ1z

+ 2C(1)
θ1x

)
4παθ1α2

θ2

(
9b2gs2MN4/5Nf

2 log(r0)(logN − 3 log(r0))
π logNαθ1α2

θ2

)
.

(B.1)
Therefore, using (3.22) and using b = 1√

3 + ε [16] and setting r0 = N−
fr0
3 [28], one obtains

the following results for y1,3,5,7:

• y1 =
∫
V2(Z)

(
1 +ψ1(Z)−ψ2

0(Z)
)2

=
177147π6βCIR

φ0
4ε6fr0 (fr0 + 1)3 log r0α

6
θ1N

4fr0 + 14
5

(
C(1)
zz − 2C(1)

θ1z
+ 2C(1)

θ1x

)
8192(fr0 − 1)6gs4 (logN)7 M2N4

f

−
4782969

√
3π7CIR

φ0
4ε5fr0 (fr0 + 1)4α9

θ1N
4fr0 + 11

5

20480(fr0 − 1)7gs6 (logN)7 M3N6
f

• y3 =
∫
dZV2ψ

2
1(Z) (1 +ψ1(Z))2

= −
21gs2 log r0MN4/5Nf

2CIR
ψ1

4(logN − 3 log r0)
8π logNαθ1α

2
θ2

+
39/873/4 4√εgs2 log r0MN4/5Nf

2CIR
ψ1

3(logN − 3 log r0)
2
√

2π logNαθ1α
2
θ2

+945 3√3 6
√
π

2 βεgs
3/2
(

1
logN

)2/3

log r0MN3/10Nf
4/3r0

2CIR
ψ1

4(C(1)
zz − 2C(1)

θ1z
+ 2C(1)

θ1x
)

• y5 =
∫
dZV2ψ

2
0(Z) (ψ1(Z))2 =

6561 4√3
√

7π3CIR
φ0

2ε5/2fr0 (fr0 + 1)3α5
θ1C

IR
ψ1

2N2fr0 + 8
5

256(fr0 − 1)4gs2 (logN)3 MN2
fα

2
θ2

−
63 4√3

√
7π3βCIR

φ0
2ε3/2fr0 (fr0 + 1)α3

θ1C
IR
ψ1

2N2fr0−
3
5

(
C(1)
zz − 2C(1)

θ1z
+ 2C(1)

θ1x

)(
6εN + fr0γgs logNM2)2

32768(fr0 − 1)3gs2 (logN)3 MN2
f

• y7 =
∫
dZV2ψ1(Z)(1 +ψ1(Z))(1 +ψ1(Z)−ψ0(Z)2)2

=
4782969 4√3

√
7π7CIR

φ0
4ε9/2fr0 (fr0 + 1)4α9

θ1C
IR
ψ1

2N4fr0 + 11
5

40960(fr0 − 1)7gs6 (logN)7 M3N6
f

−
3720087 4√3

√
7π7βCIR

φ0
4ε9/2fr0 (fr0 + 1)3α9

θ1C
IR
ψ1

2N4fr0 + 11
5

(
C(1)
zz − 2C(1)

θ1z
+ 2C(1)

θ1x

)
262144(fr0 − 1)7gs6 (logN)7 M3N6

f

. (B.2)
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C Gglobal ×Hlocal HLS formalism and obtaining GL’s mesonic χPT La-
grangian up to O(p4) after integrating out the vector mesons from
the HLS Lagrangian [36]

In this appendix, we summarize the HLS formalism and the arguments of how to obtain
the SU(3) χPT Lagrangian of [5] up to (NLO in momentum below the chiral symmetry
breaking scale) O(p4) by integrating out the vector mesons from the HLS Lagrangian (both
as discussed in detail in [36])

C.1 HLS formalism

The HLS formalism describes a model based on Gglobal × Hlocal symmetry, where G =
SU(Nf )L × SU(Nf )R is the global chiral symmetry and H = SU(Nf )V is the H(idden)
L(ocal) S(ymmetry). The building blocks of this model are SU(Nf )-matrix valued variables
ξL and ξR which are introduced by splitting U in the ChPT as

U = ξ†LξR .

Now, under Gglobal ×Hlocal, ξL,R(x) transform as follows:

ξL,R(x)→ ξ′L,R(x) = h(x) · ξL,R(x) · g†L,R ,

where h(x) ∈ Hlocal, gL,R ∈ Gglobal. These variables are parameterized as

ξL,R = eiσ/Fσe∓iπ/Fπ , [ π = πaTa , σ = σaTa] ,

where the matrix-valued π denotes the Nambu-Goldstone (NG) bosons associated with
the spontaneous breaking of G chiral symmetry and σ denotes the NG bosons absorbed
into the gauge bosons. Further, Fπ and Fσ denote the relevant decay constants, and the
parameter a is defined via: a ≡ F 2

σ
F 2
π
. From ξL and ξR the following are constructed:

α⊥µ =
(
∂µξR · ξ†R − ∂µξL · ξ†L

)
/(2i) ,

α‖µ =
(
∂µξR · ξ†R + ∂µξL · ξ†L

)
/(2i) ,

which transform under Hlocal as

α⊥µ → h(x) · α⊥µ · h†(x) ,
α‖µ → h(x) · α⊥µ · h†(x)− i∂µh(x) · h†(x) .

The covariant derivatives of ξL and ξR can be obtained from the transformation prop-
erties of ξL,R(x) as:

DµξL,R = ∂µξL,R − iVµξL,R ,

where Vµ = V a
µ Ta are the gauge fields corresponding to Hlocal. Now, Vµ transforms under

Hlocal as:
Vµ → h(x) · Vµ · h†(x)− i∂µh(x) · h†(x) .
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The “covariantized 1-forms” defined as

α̂⊥µ = 1
2i
(
DµξR · ξ†R −DµξL · ξ†L

)
= α⊥µ ,

α̂‖µ = 1
2i
(
DµξR · ξ†R +DµξL · ξ†L

)
= α‖µ − Vµ ,

transform homogeneously under Hlocal:

α̂µ⊥,‖ → h(x) · α̂µ⊥,‖ · h
†(x) .

Thus, one can construct the following two invariants:

LA ≡ F 2
π tr

[
α̂⊥µα̂

µ
⊥
]
,

aLV ≡ F 2
σ tr

[
α̂‖µα̂

µ
‖

]
= F 2

σ tr
[(
Vµ − α‖µ

)2
]
.

Therefore, the most general Lagrangian made out of ξL,R and DµξL,R with the lowest
number of derivatives, i.e., at O(p2) (see [4, 5, 36] for power counting arguments), is
given by:

L = LA + aLV .

Using the EOM for Vµ at O(p2), one obtains:

Vµ = α‖µ .

Further, with the relation

α̂⊥µ = 1
2i ξL · ∂µU · ξ†R = i

2 ξR · ∂µU † · ξ†L

substituted into (C.1), one obtains the following O(p2) term in the χPT Lagrangian:

L = LA = F 2
π

4 tr
[
∂µU

†∂µU
]
.

In the unitary gauge, σ = 0,8 two SU(Nf )-matrix valued variables ξL and ξR are related via:

ξ†L = ξR ≡ ξ = eiπ/Fπ .
8This unitary gauge is not preserved though under the Gglobal transformation, which in general has the

following form

ξ → ξ′ = ξ · g†R = gL · ξ
= exp

[
iσ′(π, gR, gL)/Fσ

]
exp
[
iπ′/Fπ

]
= exp

[
iπ′/Fπ

]
exp
[
−iσ′(π, gR, gL)/Fσ

]
.

However, exp [iσ′(π, gR, gL)/Fσ] can be eliminated if we simultaneously perform the Hlocal gauge transfor-
mation:

h = exp
[
iσ′(π, gR, gL)/Fσ

]
≡ h (π, gR, gL) .

Therefore there is a global symmetry G = SU(Nf )L × SU(Nf )R under the following combined transfor-
mation:

G : ξ → h (π, gR, gL) · ξ · g†R = gL · ξ · h† (π, gR, gL) .
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C.2 Obtaining the O(p2) SU(3) χPT Lagrangian by integrating out the vector
mesons from the HLS Lagrangian

First, we introduce the external gauge fields Lµ and Rµ which include W boson, Z-boson
and photon fields. This is done by gauging the Gglobal symmetry. The transformation
properties of Lµ and Rµ, Lµ → gLLµg†L− i∂µgL.g

†
L and Rµ → gRRµg†R− i∂µgR.g

†
R are used

to define covariant derivatives of ξL,R:

DµξL = ∂µξL − iVµξL + iξLLµ ,
DµξR = ∂µξR − iVµξR + iξRRµ . (C.1)

It should be noticed that in the HLS these external gauge fields are included without
assuming the vector dominance. It is outstanding feature of the HLS model that ξL,R have
two independent source charges and hence two independent gauge bosons are automatically
introduced in the HLS model. Both the vector meson fields and external gauge fields are
simultaneously incorporated into the Lagrangian fully consistent with the chiral symmetry.
By using the above covariant derivatives two Maurer-Cartan 1-forms are constructed as

α̂⊥µ =
(
DµξR · ξ†R −DµξL · ξ†L

)
/(2i) ,

α̂‖µ =
(
DµξR · ξ†R +DµξL · ξ†L

)
/(2i) . (C.2)

These 1-forms upon expansion in a power series in π yield:

α̂⊥µ = 1
Fπ
∂µπ +Aµ −

i

Fπ
[Vµ , π]− 1

6F 3
π

[[
∂µπ , π

]
, π
]

+ · · · , (C.3)

α̂‖µ = 1
Fσ
∂µσ − Vµ + Vµ −

i

2F 2
π

[
∂µπ , π

]
− i

Fπ
[Aµ , π] + · · · , (C.4)

where Vµ = (Rµ + Lµ) /2 and Aµ = (Rµ − Lµ) /2.
The covariantized 1-forms in eqs. (C.2) transform homogeneously:

α̂µ‖,⊥ → h(x) · α̂µ‖,⊥ · h
†(x) . (C.5)

Then we can construct two independent terms with lowest derivatives which are invariant
under the full Gglobal ×Hlocal symmetry as

LA ≡ F 2
π tr

[
α̂⊥µα̂

µ
⊥
]

= tr [∂µπ∂µπ] + · , (C.6)

aLV ≡ F 2
σ tr

[
α̂‖µα̂

µ
‖

]
= tr

[
(∂µσ − FσVµ) (∂µσ − FσV µ)

]
+ · · · , (C.7)

where the expansions of the covariantized 1-forms in (C.3) and (C.4) were substituted to
obtain the second expressions. These expansions imply that LA generates the kinetic term
of pseudoscalar meson, while LV generates the kinetic term of the would-be NG boson σ
in addition to the mass term of the vector meson.

The HLS gauge boson field strength defined by Vµν ≡ ∂µVν − ∂νVµ − i[Vµ, Vν ], which
also transforms homogeneously:

Vµν → h(x) · Vµν · h†(x) , (C.8)

– 42 –



J
H
E
P
0
8
(
2
0
2
1
)
1
5
1

is another building block of the χPT Lagrangian. Then the simplest term with Vµν is the
kinetic term of the gauge boson:

Lkin(Vµ) = − 1
2g2 tr [VµνV µν ] , (C.9)

where g is the HLS gauge coupling constant.
Now the Lagrangian with lowest derivatives is given by:

L = LA + aLV + Lkin(Vµ)

= F 2
π tr

[
α̂⊥µα̂

µ
⊥
]

+ F 2
σ tr

[
α̂‖µα̂

µ
‖

]
− 1

2g2 tr [VµνV µν ] . (C.10)

C.3 Obtaining the O(p4) SU(3) χPT Lagrangian by integrating out the vector
mesons from the HLS Lagrangian

Integrating out the vector mesons in the Lagrangian of the HLS given in (C.10) we obtain
the Lagrangian for pseudoscalar mesons. The resultant Lagrangian includes O(p4) terms
of the ChPT in addition to O(p2) terms. To perform this it is convenient to introduce the
following quantities:

α⊥µ =
(
DµξR · ξ†R −DµξL · ξ†L

)
/(2i) ,

α‖µ =
(
DµξR · ξ†R +DµξL · ξ†L

)
/(2i) , (C.11)

where DµξL and DµξL are defined by

DµξL = ∂µξL + iξLLµ ,
DµξR = ∂µξR + iξRRµ . (C.12)

The relations of these α⊥µ and α‖µ with α̂⊥µ and α̂‖µ in (C.2) are given by

α̂⊥µ = α⊥µ ,

α̂‖µ = α‖µ − Vµ . (C.13)

From the Lagrangian in (C.10) the equation of motion for the vector meson is given by

F 2
σ

(
Vµ − α‖µ

)
− 1
g2 (∂νVµν − i [V ν , Vµν ]) = 0 . (C.14)

In the leading order of the derivative expansion the solution of (C.14) is given by

Vµ = α‖µ + 1
M2
ρ

O(p3) , (C.15)

consistent with (C.1). Substituting this into the field strength of the HLS gauge boson and
performing the derivative expansion one can show that one obtains [36]:

Vµν = ξR

(
Rµν + U †LµνU + i

4∇µU
† · ∇νU −

i

4∇νU
† · ∇µU

)
ξ†R + 1

M2
ρ

O(p4) , (C.16)
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where,
α̂⊥µ = i

2ξL · ∇µU · ξ†R = 1
2iξR · ∇µU † · ξ†L , (C.17)

has been used. By substituting (C.17) into the HLS Lagrangian, the first term in the HLS
Lagrangian (C.10) becomes the first term in the leading order ChPT Lagrangian:

LChPT
(2)

∣∣∣
χ=0

= F 2
π

4 tr
[
∇µU †∇µU

]
. (C.18)

In addition, the second term in (C.10) with (C.14) substituted becomes of O(p6) in the
ChPT and the third term (the kinetic term of the HLS gauge boson) with (C.16) becomes
of O(p4) in the ChPT:

LV4 = 1
32g2

(
tr
[
∇µU∇µU †

])2
+ 1

16g2 tr
[
∇µU∇νU †

]
tr
[
∇µU∇νU †

]
− 3

16g2 tr
[
∇µU∇µU †∇νU∇νU †

]
− i

4g2 tr
[
Lµν∇µU∇νU † +Rµν∇µU †∇νU

]
− 1

4g2 tr
[
LµνURµνU †

]
− 1

8g2 [LµνLµν +RµνRµν ] , (C.19)

where we fixed Nf = 3. Comparing this with the O(p4) terms of the ChPT Lagrangian
given in (4.22), we obtain the contributions of vector mesons to the low-energy parameters
of the ChPT:

LV1 = 1
32g2 , LV2 = 1

16g2 , LV3 = − 3
16g2 ,

LV9 = 1
4g2 , LV10 = − 1

4g2 .

(C.20)

D Inclusion of O(R4) corrections in the D6-brane DBI action

Inclusive of the O(R4)-corrections indicated by a ˜ (e.g., the M-theory metric: G̃MMN =
GMQGP
MN (1 + fMN ) [16]) in (D.1), one sees that

V1 = 2
√
he−φ̃IIA

√
−g̃IIA

7×7g̃
ZZ
IIA,

V2 = he−φ̃IIA
√
−g̃IIA

7×7, (D.1)

wherein using (4.4):

e−φ̃IIA O(R4) = G̃Mx10x10
− 3

4 =
(
GMx10x10 + Fx10x10

)− 3
4 ≡ e−φIIA + Ex10x10Fx10x10 ,

Ex10x10 = −3
4

1(
GMx10x10

) 7
4

G̃ZZM = e−2Z√
G̃Mx10x10GZZM r02

−
e−2Z(Fx10x10GZZM + 2FZZG̃Mx10x10)

2G̃Mx10x10
3/2GrrM

2r2
0

,

√
−g̃7×7 =

√
−g7×7 + Tr(CF). (D.2)
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where in the last line use has been made of that in the IR:

x

˜̃
F̃ IIB3


xθ2

∼ N
3
20 log r, y

˜̃
F̃ IIB3


yθ2

∼ N
1
4 log r,

z

˜̃
F̃ IIB3


zθ2

∼ N
11
20 log r,

˜̃
∗̃F IIB5


rθ2

∼ N
1
20

( log r
r0

)2
; (D.4)

the triple tildes ˜̃̃ imply a tripe T-dual of the type IIB background of [14]; x, y, z are the
delocalized T 3 coordinates using for effecting SYZ mirror symmetry via a triple T dual
in [15]. In (D.3), G ≡ 8πe−φIIB .

One hence obtains:

Ex10x10Fx10x10

=
243b10 (9b2 + 1

)4
βM

(
1
N

)5/4
eZ
(
eZ − 2

) (
−19683

√
6α6

θ1
− 6642α2

θ2
α3
θ1

+ 40
√

6α4
θ2

) (
r2

0 − 3a2) log3(r0)
16π2 (3b2− 1)5 (logN)3 α3

θ2
(6b2r0 + r0)4 ,

(D.5)
relevant to obtaining the O(R4)-corrected type IIA dilaton via (D.2).
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