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ABSTRACT: Obtaining the values of the coupling constants of the low energy effective
theory corresponding to QCD, compatible with experimental data, even in the (vector)
mesonic sector from (the M-theory uplift of) a UV-complete string theory dual, has thus
far been missing in the literature. We take the first step in this direction by obtaining
the values of the coupling constants of the O(p*) YPT Lagrangian in the chiral limit
involving the NGBs and p meson (and its flavor partners) from the M-theory/type ITA
dual of large- N thermal QCD, inclusive of the O(R*) corrections. We observe that ensuring
compatibility with phenomenological/lattice results (the values) as given in [1], requires a
relationship relating the O(R?) corrections and large-N suppression. In other words, QCD
demands that the higher derivative corrections and the large-/N suppressed corrections in
its M/string theory dual, are related. As a bonus, we explicitly show that the O(R?)
corrections in the UV to the M-theory uplift of the type IIB dual of large- N thermal QCD
at low temperatures, can be consistently set to be vanishingly small.
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1 Introduction

Chiral Perturbation Theory (xPT) is an effective field theory of Quantum Chromody-
namics (QCD) which describes the low energy regime (IR) of Quantum Chromodynamics
(QCD). In xPT, the degrees of freedom are hadrons (which include mesons and baryons
and hyperons but we will study only mesonic xPT). yPT Lagrangian consists of various
terms which are invariant under chiral symmetry SU(Ny)r, x SU(Ny)g, charge conjugation
and parity symmetry of QCD. Chiral symmetry SU(Ny)r, x SU(Ny)g is spontaneously
broken to SU(Ny)y yielding (NJ% — 1) (pseudo-)Goldstone bosons where Ny is the number
of flavors. As an effective field theory, it is renormalizable order-by-order in momentum.



The p vector meson can also be incorporated by augmenting the chiral symmetry with
the inclusion of a HLS (Hidden Local Symmetry) whose gauge group is Ggiobal X Hiocal,
where Ggiobal = SU(Ny)r, x SU(Nf)r and H = SU(Ny)y is the HLS [2]. The p meson
and its flavor partners are identified with gauge boson of HLS. Chiral symmetry breaking
scale is A, ~ 4nF; ~ 1.1 GeV [3] in the chiral limit [5]. Since A, is much larger than the
p mass scale and M, < A,, therefore we can expand the generating functional of QCD
in terms of p/A, or m/A,. At scale up = A,, perturbative expansion in p/A, breaks
down. One can construct the most general form of the Lagrangian order by order in the
derivative expansion consistently with the chiral symmetry. The “universal” leading order
Lagrangian is constructed from the terms of O(p?). J. Gasser and H. Leutwyler worked out
the SU(2) [4]/SU(3) [5] chiral perturbation theory lagrangian up to O(p*) and the renor-
malization of the coupling constants at scale u = m,, [5]. At NLO, i.e. O(p?), there are 12
coupling constants “(L;—12,.10, H1, H2)”. Some of the low energy constants L4, Ls, L¢, Lg
have been calculated from Lattice simulation from the MILC collaboration [6]. In [7], the
ten low energy constants L;—i 2 .10 were evaluated at scale u = M,; [8] also contains the
low energy constants at p = M,. Updated values are given in [1].

QCD is a non-abelian gauge theory coupled to quarks. This theory can also be explored
using gauge/gravity duality which is a duality between strongly coupled gauge theory and
weakly coupled gravitational theory. Originally, it started with the AdS/CFT correspon-
dance [9] which is a duality between strongly coupled N' = 4 SU(N) supersymmetric
Yang Mills theory in large N limit and type IIB string theory on AdSs x S® background.
N = 4 SU(N) supersymmetric Yang Mills theory is a conformal field theory but QCD is
non-conformal. This correspondence has been generalised to study QCD. There are two
approaches to study holographic theories. One is the top-down approach in which one
starts with ten dimensional type IIB/ITA string theory or eleven dimensional M-theory
and then compactifies it to four dimensions with desired properties; this will be the ap-
proach followed in this work. The other is the bottom-up approach, in which one has to
first know what properties we are looking for and then construct the gravitational dual,
which usually involves an AdSs.

As regards a top-down approach, Kruczenski et al. [10] considered an interesting probe
D6-branes in a D4-brane type ITA supergravity background, which they used to explore
various aspects of low energy phenomena in QCD. An important ingredient which was still
missing from their model, however, were the massless pions as Nambu-Goldstone bosons
associated with the spontaneous breaking of the U(NNf)r xU(Ny)g chiral symmetry in QCD.
Following [10], Sakai-Sugimoto (SS) in [11, 12] considered a nice modification by looking
at a D4/D8/D8 system in type ITA supergravity background with anti-periodic boundary
condition for fermions along a circle to break supersymmetry. This model exhibited chiral
symmetry breaking with D8 — D8 pairs merging into D8-branes. This model also yields
massless pions which are identified with Nambu-Goldstone bosons associated with chiral
symmetry breaking, and the lightest vector meson (p meson). The Sakai Sugimoto model
is closely related to the HLS formalism which produces Kawarabayashi-Suzuki-Riazuddin-
Fayyazuddin-type relation among the couplings. Chern-Simons term on the probe brane
leads to the Wess-Zumino-Witten term. In [12], Sakai Sugimoto obtained few low energy



constants (L1, Lo, L3) of SU(3) chiral perturbation theory at O(p*) which were close to the
values given in [7] for suitable choice of a parameter . Although Sakai Sugimoto model
reproduces various physical quantities of low energy QCD but this model deviates from
realistic QCD above the energy scale of the vector mesons because they obtain a four-
dimensional theory by compactifying D4-branes on a circle of radius MI}}( with an infinite
tower of Kaluza-Klein modes of mass scale Mk arises. These Kaluza-Klein modes do not
appear in realistic QCD. Further, the SS model caters to the IR and is not UV complete.
This was taken care of by the (only) UV-complete D3, D5/D5, D7/D7 holographic dual of
large-N thermal QCD of the McGill group [14], its type ITA SYZ mirror and the M-theory
uplift of the same (in particular in the ‘MQGP limit’ (2.4)) as constructed in [15] (with
one of the co-authors [AM]).

In [2], the authors considered the Sakai Sugimoto model [11] as holographic QCD model
and proposed a method to integrate out infinite number of higher KK modes appearing in
the expansion of five dimensional gauge field which consists of infinite number of vector and
axial vector fields including pion as Nambu Goldstone boson arising due to spontaneous
chiral symmetry breaking. First, they truncated the spectrum at certain level so that
number of fields “integrated in” becomes finite in the theory and then integrated out
all the KK modes except pion and lowest lying vector mode (p meson and the flavor
partners). Using this method they obtained the effective lagrangian up to O(p*). However
this Lagrangian is not same as the SU(3) chiral perturbation theory Lagrangian [5]. The
authors in [13] derived relations between the SU(3) low energy coupling constants of [5]
and O(p*) couplings in [2].

The main takeaway from this paper is that QCD imposes a relationship between the
higher derivative corrections and large- N suppression when comparing our M-theory /type
ITA holographic computational results for the low energy coupling constants of xPT La-
grangian up to O(p*) and corresponding experimental values of these coupling constants.

The rest of the paper is organized as follows. In section 2, we give a quick review of
the type IIB holographic dual of large-N thermal QCD as constructed in [14], its SYZ type
ITA mirror (and its M-theory uplift) as obtained in [15] and summarize results pertaining
to the applications of the type IIA/ M-theory dual of holographic QCD phenomenology as
obtained by the group to which the authors of this paper belong. In section 3, we outline
obtaining the chiral limit of the Chiral Perturbation Theory Lagrangian up to O(p?*) involv-
ing the 7 and p mesons as well as their flavor partners, using the HLS formalism/notation
of [2]. In section 4 which forms the core of the paper with all the results, we obtain the
values of the LECs of [5] up to O(p*) as radial integrals using the type IIA SYZ mirror
of [14] inclusive of the O(R*) M-theory corrections worked out in [16]. In the process of
matching the holographic results with experimental values see that there is a deep con-
nection between the large-N suppression and the aforementioned I (O(R*)) corrections.
Section 5 has a summary of the results and the lessons learnt. There are four supporting
appendices. Appendix A is about showing that the O(R*) corrections to the M-theory up-
lift of large- IV thermal QCD-like theories at low temperatures (i.e. below the deconfinement
temperature) can consistently be made to be vanishingly small in the UV. Appendix B has
some details pertaining to the evaluation of the coupling constants appearing in the “HLS”



chiral Lagrangian as radial integrals, which is relevant to the computation of section 4.
Appendix C is a brief review of the HLS formalism and a derivation of the O(p?) SU(3)
xPT Lagrangian of [5] as well as contributions to the low energy coupling constants (LECs)
of O(p*) SU(3) xPT Lagrangian of [5] arising from integrating out the rho mesons from the
theory. Appendix D provides details of obtaining the DBI action for the type IIA flavor
Dé6-branes incorporating the O(R*) corrections to the M-theory uplift of large-N thermal
QCD-like theories.

2 Brief review of the (UV complete) type IIB/IIA SYZ mirror (and
M-theory) holographic dual of large-N thermal QCD at intermediate
coupling, and holographic QCD phenomenology

In the context of a UV-complete top-down holographic dual of large-N thermal QCD,
the following summarizes the main features of the brane construct and the gravity dual
of [14], its type IIA mirror and M-theory uplift (up to O(R*)) as well as holographic
phenomenological applications of the same.

« Brane construct of [14]: the type IIB string dual of [14] consists of N D3-branes
placed at the tip of six-dimensional conifold, with M Db5-branes wrapping the van-
ishing 52, referred to as fractional D3-branes, and M D5-branes distributed along
the resolved S? placed at antipodal points relative to the M D5-branes. Denot-
ing the average D5/D5 separation by RD5/E’ r o> T‘)’D5/ﬁ’ would be the UV.
The Ny DT7-branes, holomorphically embedded via Ouyang embedding [17] in the
resolved conifold geometry, “smeared”/delocalized along the angular directions 6 o,
are present in the UV, the IR-UV interpolating region and dip into the (confining)
IR (but do not touch the D3-branes; the shortest D3 — D7 string corresponding to
the lightest quark). In addition, Ny D7-branes are present in the UV and the UV-IR
interpolating region for the reason given below. The following table summarizes the
aforementioned brane construct wherein S?(61, ¢1) denotes the vanishing two-sphere
and (NP/SP of) S2(6a, ¢2) is the (North Pole/South Pole of the) resolved /blown-up
two-sphere — a being the radius of the blown-up S? — and ryy is the UV cut-off
and & v < 1 in table 1. Also, pouyang is the Ouyang embedding

R ps /5~ [HOuyang| 3
parameter that is defined as:

i 0 0
(7“6 + 9a2r4) 1 ez(W—d1=¢2) gipy (21> sin <22> = [Ouyang> (2.1)
effected by (3.4) for vanishingly small |ouyang|, While describing the embedding of

the flavor D7-branes in the resolved conifold geometry.

 Inthe UV, one has SU(N + M) x SU(N + M) color gauge group and SU(Ny) x SU(Ny)
flavor gauge group. There occurs a partial Higgsing of SU(N + M) x SU(N + M) to
SU(N + M) x SU(N) as one goes from r > Ry 5z t0 7 < Rpy 5z. This happens
because at energies less than R /D5 (IR), the D5-branes are integrated out resulting
in the reduction of the rank of one of the product gauge groups (which is SU(N +



S. No. | Branes ‘World Volume

N D3 R (¢, 212%) x {r = 0}
M D5 RU3(t, 2122 x {r = 0} x (01, 1) X NPz (9, 4)
M D75 R1,3(t7$1,273) X {r = 0} X 52(017 ¢1) X SP52(92,¢2)

2
Ny D7 | RY3(t,2122) x Ry (r € [[touyang|, ruv]) x S2(01, ¢1,1) x NPg2(g, 4,)

Gl R o=

Nf D7 Rl’g(t,xl’Q’S) X R+(T S [’R’D5/D75 — G,TU\/]) X 53(91, ¢51,1,ZJ) X SPS§(927¢2)

Table 1. The type IIB Brane Construct of [14].

number of D5 — branes) x SU(N + number of D5 — branes)). By the same token,
the D5-branes are “integrated in” for energies more than R D5/ D5 (UV), resulting in
the conformal Klebanov-Witten-like SU(M + N) x SU(M + N) product color gauge
group.

The pair of gauge couplings, gsy(n+ar) and gsy(n) can be shown to flow oppositely.
The flux of the NS-NS B through the vanishing S? is the reason for introduction of
non-conformality which is why M D5-branes were included in [14] to cancel the net
D5-brane charge in the UV. Further, as the Ny flavor D7-branes enter the RG flow of
the gauge couplings via the dilaton, their contribution therefore needs to be canceled
by Ny D7-branes which is the reason for their inclusion in the UV.

Using UV-complete top-down type IIB holographic dual of lagre-/N thermal QCD
at finite gauge/’t Hooft coupling [14], delocalized Strominger-Yau-Zaslow (SYZ) type
ITA mirror of [14] and its M theory uplift in the ‘MQGP’ limit as worked out in [15],
our group has made the following contributions to the top-down holographic dual of
large N thermal QCD phenomenology at intermediate gauge/’t Hooft coupling.

In the IR, at the end of a Seiberg-like duality cascade, the number of colors N, gets
identified with M, which in the ‘MQGP limit’ to be discussed below, can be tuned
to equal 3 (see [18]).

Gravity dual of the brane construct of [14]: the finite temperature (> 1) on
the gauge/brane side is effected in the gravitational dual via a black hole in the latter.
Turning on of the temperature (in addition to requiring a finite separation between the
M D5-branes and M D5-branes to provide a natural scale above which one is in the
UV) corresponds in the gravitational dual to having a non-trivial resolution parameter
of the conifold. IR confinement on the brane/gauge theory side corresponds to having
a non-trivial deformation of the conifold geometry in the gravitational dual. The
gravity dual is hence given by a resolved warped deformed conifold wherein the D3-
branes and the D5-branes are replaced by fluxes in the IR, and the back-reactions
are included in the warp factor and fluxes.

Color-Flavor Enhancement of Length Scale in the IR: in the IR in the MQGP
limit (2.4), with the inclusion of terms higher order in gsN; in the RR and NS-NS
three-form fluxes and the NLO terms in N in the metric, there occurs an IR color-
flavor enhancement of the length scale as compared to a Planckian length scale in



Klebanov-Strassler (KS)’s model even for O(1) M, thereby ensuring that quantum
corrections will be suppressed. This was discussed/summarized in [19]/[18]. Essen-
tially, defining:

3 SNeff
Neg(r) = N 1+3‘(;3N <lo r+ g%f (logr)zﬂ,
3 SN M I
Mg (r) = M + 22 f logr+ 3 5" NPM™ frun(r),
m>1n>1
N]?ﬁ(r) = Nf + Z Z N}nMngmn(r)v (22)

m>1n>0

Ny eﬁw at the end of a Seiberg-like duality

wherein the type IIB axion Cy =
cascade, Neg(rg € IR) = 0 and writing the ten—dimensional warp factor h ~ {j—:, the

length scale L in the IR will be given by:

L~ VAN (Z > NPM fonn 7“0) (ZZNfMpgzp 7“0) Ls,  (2:3)

m>0n>0 [>0p>0

Lis ~ /gsM+/a'. The relation (2.3) implies that in the IR, relative to KS, there is
a color-flavor enhancement of the length scale in the MQGP limit. Hence, in the IR,
even for NI® = M = 3 and Ny = 2(u/d) + 1(s), upon inclusion of n,m > 1 terms in
Mg and N]?H in (2.2), L > Lxs(~ Lpianck) in the MQGP limit (2.4), implying that
the stringy corrections are suppressed and one can trust supergravity calculations.

o Obtaining N. = 3: as explained in [18], in the IR, at the end of a Seiberg-like
duality cascade, the number of colors N, gets identified with M, which in the ‘MQGP
limit’ (2.4) can be tuned to equal 3. This is briefly summarized now. One can identify
N, with the effective number Nog of D3-branes and the effective number Mg of D5-
branes as: Ng = Neg(r )+ Mg (). Neg(r) is defined via Fy = dCy + By A F3 =
F5 + *F5, wherein F5 = Nog x Vol(Base of Resolved Warped Deformed Conifold).
Similarly, Meg is defined via Mg = [gs 3 (the S® being dual to ey A (sin 61df A
d¢y — By sinfs A dgs), By being an ‘asymmetry factor’ defined in [14]; ey = dop +
cos 01 dp1+cos 03 dps) and [20]: F5(= F3—7Hs) o< M(r) = Mﬁ, a> 1.

a(r
As Ng varies between N > 1 in the UV and 0 in the deep IR, and Mg varies between
0 in the UV and M in the deep IR, N, varies between M in the deep IR and a large
value [ in the MQGP limit of (2.4) for a large value of N] in the UV. Therefore, at
very low energies, the number of colors IN. can be approximated by M, which in the
MQGP limit is finite and can hence be taken to be equal to three. Additionally, one
can set Ny = 2(u/d) + 1(s). Hence, in the IR, this is somewhat like the Veneziano
limit in which %—i is fixed (but, unlike [14, 15], N., Ny — oo in the Veneziano limit
in, e.g., [21]) as (in the IR) %—i ~ % in [14].
Thus, under the aforementioned Seiberg-like duality cascade, the N D3-branes
are cascaded away and there is a finite M left at the end corresponding to a strongly



coupled IR-confining SU(M) gauge theory; the finite temperature version of this
SU(M) gauge theory is what was considered in [14]. So, at the end of the Seiberg-
like duality cascade in the IR, the number of colors N, identified with M, in the
‘MQGP limit’ can be tuned to equal 3.

o The MQGP limit, type ITA Strominger-Yau-Zaslow (SYZ) mirror of [14]
and its M-theory uplift at intemediate gauge coupling:

— For constructing a holographic dual of thermal QCD-like theories, one would
be required to consider intemediate gauge coupling (as well as finite number of
colors) — dubbed as the ‘MQGP limit’ in [15]. From the perspective of gauge-
gravity duality, this would hence require looking at the strong-coupling/non-
perturbative limit of string theory — M theory. The MQGP limit in [15, 19]
was defined as:

1 gsM?
~—— M Ny=0(1), N>1
gS 0(1)7 9 f ( )7 >> 9 N

<1 (2.4)

— The M-theory uplift of the type IIB holographic dual of [14] was constructed
in [15, 19] by working out the Strominger-Yau-Zaslow (SYZ) type IIA mirror
of [14] effected via a triple T duality along a local special Lagrangian (sLag)
T3 — which could be identified with the T2-invariant sLag of [22] with a large
base B(r,61,02) (of a T3(¢1, ¢2,1)-fibration over B(r,01,62)) [19, 23].1 Let us
briefly discuss the basic idea. Consider the aforementioned N D3-branes with

0:1,2,3 at the tip of conifold. Further, assuming the

its world-volume directions x
M Db5-branes to be parallel to these D3-branes as well as wrapping the van-
ishing S%(01, ¢1), a single T-dual along 1 yields N D4-branes wrapping the v
circle and M D4-branes straddling a pair of orthogonal N .S5-branes. The world
volumes of these pair of N S5-branes correspond to the vanishing S?(6;, ¢;) and
the blown-up S?(2, ¢2) with a non-zero resolution parameter a (the radius of
the blown-up S%(62, ¢2)). Two more T-dualities along ¢; and ¢, then convert
the aforementioned pair of orthogonal N S5-branes into a pair of orthogonal
Taub-NUT spaces, the N D4-branes into N color D6-branes and the M strad-
dling D4-branes also to D6-branes. Also, in the presence of the aforementioned
Ny flavor D7-branes (embedded holomorphically via the Ouyang embedding),
oriented parallel to the D3-branes and “wrapping” a non-compact four-cycle
» (r,1,601,¢1), upon T-dualization yield Ny D6-branes “wrapping” a non-
compact three-cycle () (r,01, ¢2). An uplift to M-theory of the SYZ type ITA
mirror so obtained, converts the D6-branes to KK monopoles that are variants

! As explained in [18] also as a footnote, consider D5-branes wrapping the resolved S? of a resolved coni-
fold geometry [24], which one knows, globally, breaks SUSY. As in [25], to begin with, SYZ is implemented
wherein the pair of S%s are replaced by a pair of T2s in the delocalized limit, and the correct T-duality
coordinates are identified. Then, when uplifting the mirror to M theory, it is found that a G2-structure can
be chosen which is free of the delocalization. For the SYZ mirror of the resolved warped deformed conifold
which figures in the gravitational dual of large- N thermal QCD of [14], that gets uplifted to M-theory with
G2 structure worked out in [15], the idea is exactly the same.



of Taub-NUT spaces. Therefore, all the branes are converted to geometry and
fluxes and one ends up with M-theory on a Ga-structure manifold. Similarly,
one may perform identical three T-dualities on the gravity dual on the type IIB
side, which is a resolved warped-deformed conifold with fluxes, to obtain another
G4 structure manifold, giving us the MQGP holographic dual of [15, 19].

Hence, the type IIB model of [14] make it an ideal holographic dual of thermal
QCD because: (i) it is UV conformal (Landau poles are absent), (ii) it is IR confin-
ing, (iii) the quarks transform in the fundamental representation of flavor and color
groups, and (iv) it is defined for the full range of temperature — both low and high.

e Conceptual physics issues miscellanea

— Regime of validity of the top-down holographic model and Aqcp: a natural ques-
tion that one would like to answer is the range of scales in which the top-
down holographic model elaborated upon, is expected to match QCD. The
basic idea, using the notations introduced earlier on in this section, that an-
swers this question is that the range of variation of the radial coordinate in the
supergravity dual corresponding to the energy scale in QCD-like theories is de-
termined by: {T] Neg(r) = fM5(91,2,¢1,2,w) (F5+BaNC3) = O}H{T\ Mg = O(1)}
— M5(01,2, ¢1,2,7) being the base of the non-Kéhler resolved warped deformed
conifold — because this will ensure that the (effective) number of colors can be
set to be O(1), and in fact 3. One can show that in the IR (wherein | logr| > 1)
in the MQGP limit, Neg(r) ~ N {1 +gswj\‘?s]\&)log3 r] [28] and from (2.2),

estimating: M {1 + W} = O(1), or logr = —%Mlj)\;;m and substi-
tuting into Neg yields, e.g., for N ~ 10?2, Ny = 3, M ~ O(1) as in the MQGP
limit.

The computations in this paper are in the low temperature limit, i.e., for
temperatures below the deconfinement temperature whereat one has bound
states of quarks such as mesons which is what we are interested in looking at.
To therefore understand the upper limit in energy on the QCD side or r in the
gravitational dual side, we therefore need to understand the non-perturbative
QCD scale, Aqcp, in terms of the geometrical data of our top-down holo-
graphic model. Let us remind ourselves that (before the Seiberg-like dualities)
the SU(M x N) and SU(N) gauge couplings gsu(a+n) and gsy(n) satisfy [14]:
47r2( (R >6¢HB(T’610’020) — 47r2< S )€¢HB(T7910,920) ~

2
9sum+n)  Isun) 9sum+n)  9Isun)

1 BUB « g Mg (r)NE (r)1o r‘ Note, every-
27ra’fS2(917¢1) 9s eff() f () & relR-UV interpolating region ’ Y

where 7, a are in fact R%, R% where RD5/§5 is taken to be v/3a (a being
D5,/D5  '~D5/D5

the resolution parameter of the blown-up S?) [28]. Hence, Aqcp = Rps /DB ™~
V/3a because near r = Rps /D5 the aforementioned gauge couplings become
very large indicating the onset of non-perturbative QCD. Recall, in the UV, i.e.,
Vr > R s 55, we obtain the conformal SU(N 4 M) x SU(N + M) Klebanov-

Witten-like (asymptotically supersymmetric as the complexified three-form type



IIB flux G5 becomes ISD for r > RD5/?5) gauge theory, and in the IR, i.e., V7 <
R ps/p5: we obtain the non-conformal non-supersymmetric SU(M+N)xSU(N)
gauge theory, which after a Seiberg-like duality cascade, is expected to yield IR
confining QCD-like gauge theory.

— Hierarchy of scales in the gravitational dual: there is an IR cut-off denoted by rg
indicative of the boundary of the deep IR. The D5 — D5 separation R D5/ D5 Pro-
vides another scale so that at energies larger than R . /D5 the D5 — D5 strings
become massive and the gauge group, as already mentioned above, becomes the
Klebanov-Witten-like UV-conformal SU(M + N) x SU(M + N), and at energies
less than R, /D5 the gauge group is Higgsed down to the Klebanov-Strassler-
like SU(M + N) x SU(N);? there is also a U(1)M for massless strings starting
and ending on the same D5-brane. For all practical purposes, r > R ps /D5 is

in the UV. As one is always working in the “near-horizon” limit in which the

ten-dimensional warp factor h(r,612) ~ % (1+ f(r;N,M,Ny)), even in the

UV (i.e., one drops the 1 that figures, e.g., in the warp factor in the Klebanov-

Witten supergravity dual: h =1 + f—:), where L = (47rg5No/)i, hence, the UV

cut-off ryy S L. So, in our holographic dual, the gravitational analog of Aqcp

and ryy are separated.

¢ Holographic QCD phenomenology

— In [26], two of the authors (VY and AM) along with K.Sil, studied the glueball
spectra and evaluated the masses of 07,07",07—, 17+, 27+ glueballs in type
IIB/type ITA /M theory supergravity backgrounds using WKB quantization and
by imposing Neumann/Dirichlet boundary conditions at the IR cut-off. It was
found that WKB quantization produces masses of 07F,0=+, 07—, 17T, 271 glue-
balls very close to the lattice results.

— In [27], two of the authors (VY and AM) along with K.Sil calculated (pseudo-)
vector and (pseudo-)scalar meson spectra at finite coupling (part of the ‘MQGP’
limit), and compared their result with PDG data. It was found that masses
of the (pseudo-)vector (p[770],al[1260], p[1450],a1[1640]) and (pseudo-)scalar
(f0[980]/a0[980], f0[1370], f0[1450]) mesons were closer to the PDG data than
previously obtained in the literature.

— In [29], two of the authors (VY and AM) studied (exotic) scalar glueball 0"
which correspond to metric fluctuations of the M theory uplift at finite coupling.
Using the same (exotic) scalar glueball OE+—meson interaction Lagrangian linear
in (exotic) scalar glueball and quartic in meson fields was derived. Decay widths

2In principle, there is another scale that exists in the type IIB holographic dual, which is provided by
the embedding of the D7-branes via the Ouyang’s embedding (2.1), where the modulus of the Ouyang
embedding parameter | ,u|% gives a measure of the radial separation of the “deepest” embedded flavor D7-
branes in the IR from the color D3-branes corresponding hence to the mass of the lightest quark. Hence,
one could have a refinement of the hierarchy and assume the IR to be given by r € [ro, | ,u|%], the IR-UV
interpolating region given by r € H,u|%,7€

ps,p5) and the UV corresponding to r € [R5 55, ruv]. However,

for simplicity of calculations, we have merged the first two in this paper.



S. No. Manifold G-Structure Non-Trivial Torsion Classes
1 Me(r, 01,02, 61, d2,7) SU(3) TSI{jA(g) =W oW dWs & Wy @ Ws: Wy~ Ws
2 My (r, 01,02, 61, ¢2,9, ') G2 T = Wiy & Wy
3. | Mg(a0,7r,01,02, 61, 2,1, 210) SU(4) Tgly = Wa @ Wz & W5
4. | Mg(2®,r, 01,0, 61,h2,9,2'%) | Spin(7) Tgnm = W1 & W2

Table 2. Summary of IR G-Structure Torsion Classes of Six-/Seven-/Eight-Folds in the type
ITA/ M-Theory Duals of Thermal QCD.

of the processess Gg — 2n,Gg — 2p,p — 27,Ggp — 47n,Gg — p + 27 as well
as indirect four 7 decay associated with Gg — p + 27 — 47 and Ggp — 2p —
47, were also obtained. By appropriate choice of combination of constants of
integration appearing in the solutions to the EOMs of the profile functions of
the m and p mesons and six metric perturbations these decay widths were shown
to match exactly with PDG data.

e O(R*)-corrected M-theory uplift and G-structure torsion classes

— In [16], two of the authors (V. Yadav and A. Misra), worked out the O(I5)
corrections to the aforementioned M-theory metric arising from terms quartic
in the eleven dimensional supergravity action.

— The SU(3)/G2/SU(4)/Spin(7)-structure torsion classes of the relevant six-, seven-
and eight-folds associated with the aforementioned M theory uplift (near ¢ =
0/2m /4w coordinare patches) were worked out which can be summarized in
table 2.

3 Obtaining [:;211[71', p] from DBI on flavor D6 branes

In this section, similar to the discussion in [2] using the “HLS formalism”, starting from
the DBI action on flavor D6-branes (obtained from the SYZ type ITA mirror of the type
IIB holographic dual of large-N thermal QCD as constructed in [14]) we review obtaining
the YPT Lagrangian for 7, p mesons and their flavor partners, up to O(p*) wherein the
coupling constants are obtained as appropriate radial integrals.

The type IIB dual corresponding to high temperatures, i.e., T" > T, will involve a
black hole with the metric given by [14]:

ds® = ; (—g(r)dt2 + (dx1)2 + (dx2>2 + (dx3>2> +/h(r,012) <;l(r:) —|-7“2ds2(9127 ®1,2, 1/))) ,

h(’l’, 9172) g(r)
(3.1)

4
where g(r) = 1 — :,—Z, and for low temperatures, i.e., T < T, is given by the thermal
gravitational dual:

ds? = \/ﬁ <—dt2 + (@) + (@2)" + ar) (d:c3>2> +1/h(r,012) (;{; +r2d32(01,2,¢>172,¢)>
T, 01,2

(3.2)
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where g(r) = 1 — :é. One notes that t — x3, 2® — ¢ in (3.1) following by a Double
Wick rotation in the new z®,t coordinates obtains (3.2); h(r,6;2) is the ten-dimensional
warp factor [14, 15]. This amounts to: —gfi(ry, — o) = gusgs 2™ (rg), B, (r), —
70) = —gi 1Ml (rg) in the results of [16, 29] (See [31] in the context of Euclidean/black
D4-branes in type IIA).

In (3.2), we will assume the spatial part of the solitonic D3 brane world volume to be

21
Mgk’

the very small Mgk = QLLQO {1 + O (gsjj\\,42 )} , To being the very small IR cut-off in the thermal

background (see also [32]) and L = (47rgsN)%. So, lim g 50 R2(21?) x S1(23) = R3(2123),
thereby recovering 4D Physics.

given by R?(x!?) x S'(23) where the period of S*(23) is given by a very large: where

As explained in [33], the T3-valued (z,v, ) (used for effecting SYZ mirror via a triple
T-dual in [15, 19]) are defined via:

xr
1 = ¢10 + T ’
Vha [h(r9,610,20)] % sin B9 7o
P2 = P20 + Y — ’
Vhy [h(r9,010,20)] % sin B9 7o
z
Y=o+ , (3.3)

T

Vhi [h(rg, 610,20)]

7o

hi2,4 defined in [14], and one works up to linear order in (z,y, z). Up to linear order in
r, i.e., in the IR, it can be shown [34] that 01020 can be promoted to global coordinates
01,2 in all the results in the paper. The meson sector in the type ITA dual background of
top-down holographic type IIB setup is given by the flavor D6-branes action. For

«
01 = 1> 92 = 705) (34)

5 N 10
i.e., restricting to the Ouyang embedding (2.1) for a vanishingly small |ouyang|, one will as-
sume that the embedding of the D6-brane will be given by ¢ : 16 <R1’3, 0y ~ 2 y) —
N 10

MY effected by: 2z = z(r). As obtained in [27] one sees that z=constant is a solution
and by choosing z = +C7, one can choose the D6/D6-branes to be at “antipodal” points
along the z coordinate. As in [27], we will be working with redefined (r, z) in terms of new
variables (Y, Z):

VY2422

r=rge

Z
= Carctan —.
z arctan o

Vector mesons are obtained by considering gauge fluctuations of a background gauge
field along the world volume of the embedded flavor D6-branes (with world volume
Yr(x0123. Z 09, 7) = Lo(02,7) x X5(x%H23,Z)). Turning on a gauge field fluctuation
F about a small background gauge field Fy and the backround i*(g + B)[i : ¥7 < Mjj,

- 11 -



M being the ten-dimensional ambient space-time|. This implies:

(o)
Y=0 N
:\/—detgz(%@ (i*(g+ B)) Str\/det25(x0,l,2,37z) (i*(g—l—B) + (Fo —|—F’))
_\/ detg2 0o, y)( (g+B \/det25 £0,1,2,3 Z)(Z g)

1 e\ — G,
Str (13— . (@) ((Fo+F))] +) 9 (92 Nm), (3.5)

where Y = 0 is the SYZ mirror of the Ouyang embedding [27].
Picking up terms quadratic in F:

Str \/det27(xo,1,2,37z’927@ (Z* (9+B)+ (Fo+ F))

(e:- %)
Y=0 N1o

SHA _ Tp, (2ma’)? <7TL2

- - ) Str / H dari dZ dfsdys (92 _ 2o )e‘b

10

\/ detg,y, (t*(g + B) \/detRm 72(t*g)g "”Ff,pg UFUﬂ, (3.6)

where 1 =1i(=0,1,2,3), 7

To begin with, for simplicity let us assume the absence of any external (axial-)vector
fields. Expanding A, (z",Z) = > 72, Pu ( N (2), Az (x¥, Z) = 250 7™ (2")pn(Z),
one obtains (as also earlier discussed in [11, 29, 30]):

n,m

Ve / B dZZtr(Vg (Z)ESW Fmva (2 (Z) + V1i(Z) pl™ p ™ i,

VU2 DT o — VL Z)D ™) o i — v1<z>aw<m>p<”>“¢m¢n>. (3.7)

The terms quadratic in ¢ /¢( - = %) in (3.7) are given as:

B [ (D200 2) T,

(3.8)

where:
Fu (2, 2) Z ) (@P)hn(2Z),
T (2
VZQ — W/dyd925<92 G, )7
10
and,
Vi(z) = 2Vhg* e d’\/ detp,y (t*(g + B)) \/detRm 7 (t*g),
Vo(z) = he_¢\/—det92y (t*(9+ B) \/detRLs’Z(L*g). (3.9)

- 12 —



The EOM satisfied by p,,(z*)™ is: 6MF&V)+8M log \/WQ\Z\F(% = 8MF(’:LV) = M%n)p’(’n).
After integrating by parts once, and utilizing the EOM for pﬁn), one writes:

/d3de tr( 2 (Z )./\/l wpuwpu +Wi(Z )wpuwpu) w(n) Lm)’ (3.10)

which yields the following equation of motion for wé‘m)

.
dz

The normalization condition of 9, are given as

Wy o (Vi2)0,)) + 2(2) MR, 0l = 0. (3.11)
Vs, / 4Z Vo(Z) o) = Oum
Vs, _oag2
Thus the action for vector meson part for all n > lcan be wriiten as

3 Ly o M0 ) o
—/d Y tr | G EGFOW R g ) (3.13)

To normalize the kinetic term for #(™, we impose the normalization condition for all
n corresponding to 7(™) which ranges from 0 to oo

Vs,

/ dZ Vi(Z) budm = Srm- (3.14)

From (3.12), it is seen that we can choose ¢, = M, ¢n for aln > 1. For n = 0

corresponding to ¢y we choose its form such as it is Orthogonal to ¢, for all n > 1. By
writing ¢g = %, we have

(o, bn) / 47 Cozp = 0.

Thus the cross component in (3.7) vanishes for n = 0, and the remaining cross components

(n)

can be absorbed in the p;,’ by following a specific gauge transformation given as,

(n) N p(n) +M(n1)8u7r( n)
Then the action becomes:
~ 2
/d3x tr | = lﬂT( ot (0) 4 Z (4 n n) pnwy 2np£n)p(n)u> ) (3.15)
n>1

Working in the Az(z#,Z) = 0-gauge, integrating out all higher order vector and
(1)

axial vector meson fields except keeping only the lowest vector meson field [2] V,, /' (z#) =

5 (Phtwn) Pi Kt
gpu(xt) = o ~J5(ph—wu) Ki° | and lightest pseudo-scalar meson field i.e. m =
Ku~ K30 i

~13 -



%wo-l-%ﬁs-l-%no ot Kt
7 T — 5+t 50 K° meson, the gauge field A, (2", Z) u
K~ KO *%Tis+%ﬁo
to O(m) is given by:
Aula*.2) = D00 2) ~ Vi (2), (3.16)

where o(2) = [ dZ'¢0(2"), Vi (2") = pfl’ — i 0,m V.
To introduce external vector V,, and axial Vesst)or fields A, one could use the Hidden
Local Symmetry (HLS) formalism of [2] and references therein, wherein %ﬂauﬂ — Gyl =
1 7 Oum + Ay — 7V, m] + -+ (refer to (C.3)), and one also works with &, = =V, +
Vu 572 [0y, Tr] Yo (refer to (C.4)). To obtain the low energy effective theory of QCD,
again truncating the KK spectrum at certain level because mode expansion of the gauge
field contains infinite number of vector meson fields Vu(n) (z*) and axial vector meson fields

A (a#) [2],
Au(@#, 2) = g1 (@)Po(2) + (G () + Vi (@) + Gy (27)1h1(2), (3.17)

implying therefore

F;w = - ;wd’l + Uuu(l + ¢1) + a,ulﬂ/}O - i[&MH’ du||]'¢)1(1 + Ql)l) + i[dul, &VL](l + ¢1 - @Z)(%)

—i([Qpr, o] + [y, A1 ])th17bo. (3.18)

From appendix C (based on [36]), as regards a chiral power counting, one notes that
3

M, = O(p) implying &, = O]\(}’z) = O(p), &1 = O(p). Further, V,,,a,, and vy, are of
P

O(p?). Hence, using (3.18), (F,, F*)™ is of O(p?*™), m € Z*. Therefore, one considers the
kinetic term (m = 1) at O(p?), which yields the following expansion:

Fu F* = g3V VI — 1 (14 41) Vi 0" — otpn Vi a” + i3 (1 +41) Vi [&], &)
—itp (L1 — ) Vi [@'], &1 + ivport Vi ([, aff) + [61), 61]) — 1 (1 + 1) vV
(L )20 0™ (1o — i (L4 1) v [A, 61
+i(1+91) (141 — 93w [d'], 6] — i1 (1 + 1) ([, 47 + [a el
—Poth1a,, VY + 1o (1 + 1) aumv™ + gauat — o (1 + 1) ap (a4, 6]
Fitho (1491 — ¥3)aw @], &) —idvra (&), aff] + [&f], a])
HipT (1 + 1) [Ayyp G [V = itpr (1 + 1) (G, Gy J0H
—itpotr (1 91) Gy, G Ja = 0 (L+ 1) [y, Gy ][0, G
1 (L4 90) (L1 —98) [, Quy [0, A1) = wowt (L +4) [y, duy) ([0, af] + (&), a1))
—ithy (14 1h1 — §) [Gu s, Gt [V 4 (14 1h1) (1 + 41 — 08) [ur, G s JUH
1 (L 1) (L1 =98 [Gper, (6], A — (L1 = 98) (G, dud ][04, 61
ot (141 — ) Gy, w1 ([0, af] + [af], 1))
it} ([Gu L, G| + [y, G L )V — inbotpr (1 + 1) ([, Gy] + [Gpys G ])0H
— i1 ([Gu1, ] + [y G L)) @ — Yotbd (14 1) ([Ayr s Gy ] + [y, by 1])[a]), &t
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+ot1 (141 — ¢5) (G, G + [
— 50T ([, Q] + [Ag un]) ([0, &) + (6], a1)). (3.19)

Defining parity as ° — —2, i indexing the conformally Minkowskian spatial directions and
Z — —Z, given that A,(z,Z) will be odd, a; will be even, | will be odd and V}, will be
odd implies ¥y(Z) will be odd and 1 (Z) will be even. As coupling constants are assumed
to be scalars and they are given by Z-integrals, the Z-dependent terms in the action must
be separately of even-Z parity. As 1y has odd Z-parity and 1 has even Z-parity, therefore
at O(p*), terms with (3as, 1a, or 3d s, 1dy)), are dropped as they involve coefficients of
the type wngrlq/J%”(Z ) for appropriate postive integral values of n, m. Similarly, at O(p?),
tr(ay, Ldﬁ ) accompanied by Yo (- = %) of odd-Z parity, is dropped. At O(p*), one hence
obtains [2]:

£(4) Byltr[ i Laj_]—i—ygtr[ L& Léf ]+y3tr[ ] /T@ I ﬁ]+y4tr[ N||a1/|| ﬁ V|]
+ s tr[Gy L & Gy 6] + ye tr G Gu 1 6 6]+ yr tr[Gy L G 1 66
+yg {tr[aw_anaw_ ﬁ] + tr[o?m_o?ﬁaw_aﬁ} + 9 tr[dw_dynd’id”‘]
+ 21 tr{v, V"] 4 29 trlag at] + 23 tr{v, VIY) + iz tr[V,, 64 64
+iz5 tr[VWdﬁdl’l] + izg tr{vw &' & ] +izy tr[vwall aH] izg tr [aW (d’id”l + &ﬁdi
(3.20)
where:
1 1
v = 5 (ErRuwEh +&Luwtl) and  au =3 (ErRuweh — &rLwl).  (321)

Ly = 0Ly —i[Ly, L] and Ry = 8[MR,,] i[Ry,Ry] and £, =V, — A, where R, =

im(xt)
Vu+ A, and 52(3;“) Er(zt) =e e s also, Vi = 9,V —i[Vyu, Vi .
The various couplings, using (3.19), are hence given by the following expressions [2]:

F2 = PR3
af? = V22
= = 20
m =~y ==L+ v1 o))
b = 1=~ 2GR0+ )?)

Ys = _VEz (¢8¢%>
Yo = —yr = — Vs, (1(1 + 1) (1 + ¢1 — ¥3))

ys = —yo = — Vs, (V5u7)
Vs,

2= =21+ )

~15 —



2 = 2 ()
Vs,

3= (P11 + 1))

24 = Vo, (Y1(1+ 1 — 97))

25 = =V, (VI(1+ 1))

26 = Ve, (1 +¢1)(1 + 1 — ¥5))
27 = Ve, (1 (14 ¢1)%)

25 = Vi, (Y5¢1) (3.22)

where: .
()= [ iz (3.23)

and .
(A) = /0 Va(2) AdZ. (3.24)

4 The coupling constants in E@JT(W, p) from SP§, incorporating O(R*)-
corrections from M theory

This section has the core of the main results of this paper. Inclusive of the O(R*) corrections
to the M-theory uplift of large-N thermal QCD as worked out in [16], we show how
to obtain lattice-compatible values of the coupling constants up to O(p*) of the xPT
Lagrangian of [5] in the chiral limit. The O(R?*)-corrections — indicated by a~ (e.g., the
M-theory metric: G/ = G]\M/I(}QVGP (14 fan) [16]) in (D.1) — to the D6-brane DBI action
is described in appendix D.
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where:

Sy = 19683v60f, + 664203, aj — 4060,

Global, Arg (19683\/6‘ sin® 6, + 6642 sin? 6, sin® 07 — 401/6 sin* 92) , (4.2)
C](\?N are constants of integration that figure in (4.1) after solving the EOMs for the O(3)
metric perturbations fsn, and GI\A//II%GP are the M theory metric components in the MQGP
limit at O(B°%) [29]. The explicit dependence on 39 29 of the M-theory metric components
up to O(p), using (3.4), is effected by the replacemements: oy, — N3 sin 010, g, —
N6 sin flg in (4.1). Also, see (3.3). The main Physics-related take-away is the following.
From (4.1), one notes that in the IR: r = xro, x = O(1), up to O(p):

(logro)™
riNAN

log < )
D5/D5

Planckian and large-N suppression and infra-red enhancement arising from m,n # 0
n (4.3).
Now, using the standard Witten’s prescription of reading off the type IIA metric (in-

fun~p m € {0,1,3}, ne€{0,2,5,7}, By > 0. (4.3)

As estimated in [28], ~ N %, implying there is a competition between

clusive of the O(R*) corrections):

1 2 2 2
N (—dt2+(dx1) + (da?)" + §(r) (da®) )

gplTA
ds%l =e 3

FIIB+FIIB+FIIB 2
te ;

A 11
(daz + Ay

dr?
+\/h(r,012) (g(r) + dstia (1, 01,2, ¢1,2,¢)>

(4.4)

FIlB

where AIfA1 *5 are the type IIA RR 1-forms obtained from the triple T/SYZ-dual of the
type 1I1B FE&, fluxes in the type IIB holographic dual of [14].

Turning now to obtaining the EOM for the profile function of the vector mesons, we
will use (3.11). Using (3.9) and (D.2), (D.3) and (D.5), one first obtains:

V=V 4 V?(m) where :

VO(R4) B \/Ee (26 (bG'A{[OllOG TrC.F+e~ ¢HA\/ HA( f 104 10GM Q‘FTTGA;[() 10 +2G£10 10GTT ))
! B G 1o 3/QGM 2r, 2

3gsM Q)/TN]? —4Z ( 1) ( 2) — ZCéi)Z + QCé}i) log (roez) <72a2roez log (roe ) +3a% +2rde ZZ)

2 2
8may, o,

?

O(RY) where :

VQ = VQ + V
VSJ(R4) _ e*¢’HAhTr(C,}") + & 10410h0/ gHA

3952MN4/5N}02672Z(C§? — 2C(1) + 209 ) log (7'06Z> (72@27'06Z log <rer) —3a’+ 2T%62Z>

2 2
dmrgog, o,

)

(4.5)
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where VI§ are the LO terms as obtained in [29]. The equation of motion (3.11) satisfied by
the profile function of the vector meson v (z), using ideas similar to [29], can be rewritten as
a Schodinger-like equation with a potential V = VIO 4+ VORY) where (M(l) =my \/JW)
and VO is the LO potential as given in [29]. Further,

O(R* O(R* s (,0(RY)' O(R* O(R*)\"
yout e WV e W W 2 VOPT) oty ()
V2 Vi V3 27 27 21

5 <27rgs7/2 log NM%l)Nfe"lZ( b _ 2Céi)z + QCég) <72a27“062 log (rer> —3a?+ 27’0262Z>
= BN
—12\3/2
78 (€42 — 1) (gsm 4Z>

o0tV ) (72a2roez log (rer> +3a%+ 2r02622> )

Q(2)

012 01z

81rg? (e*? —1) a3 Q(Z) 2

27g,2 log NM%l)Nfe‘lZ( ,§2 octt)

+
{243(1 e 22 (3 log <roe ) (gst (8 log Nrge? + 1) +327rr()ez> —gs(log N+ 3)Ny

— 72gstrer log2 <roez> — 47r) + 162r020¢§1 (gs log NNy —3gsNylog (roez) + 47r)]

P2l Nmo2(ctY —2¢!) +2cf!)) Loz
4 (3b2 +2) (log N — 3log(ro))Z ’

where a = (b + ’ygsN (1+ logro)) 9, and,

Q(Z) = 3log (roez> (3@2 (gst (8 log Nroe? — 1) + 327rroez) — 2gstr0262Z)
+3a*(gs(log N — 3)Ny +4m) — 216a295Nfrer log? (roez> + 2122 (g5 log NNy +4m).
(4.7)
As in [29], one defines g(Z) = /Vi(Z)y1(Z), where g(Z) satisfies the following Schro-

dinger-like equation that, as mentioned above, is obtained from (3.11):

w1 + BC 1
g"(Z)+< 1 6Z61z Orx +w2+4z2> g(Z) :0’ (4.8)

wherein:

w] = 1 (mo — 3b (m02 — 2)) + 18b27’h 1Og(?“h)

4

~ 3bygsM? (mo? — 2) log(rs) n 36bygsM?rp log?(rp)
oN N ’

. 4 3 2 2 2
w2 =3 + ib (mo + 721y, — 4) — 3607y, log(rp) (4.9)
3bygs M? (mo® — 4) log(rp)  T2bygsM?rp log®(ry)

+ - 9

N N
P ot k)
01z 01z — 4 (3b2 +2) (log N — 3log(rg)) ’
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and whose solution (using arguments similar to the ones in [29]) is given in terms of
Whittaker functions:

1
9(Z) = CEZ))M
1 i(lerBsz i(ler,Bszglz 91?6)
- 2 om 0 2Von 0

(2i/@Z). (4.10)

01z 01z

) (2i/2) + DWW

We pause here and note that the effect of the inclusion of the O(R*) corrections into the
EOM for the radial profile function v (Z) for the p meson is a shift in the residue of the
simple pole in the potential of the Schrodinger-like equation satisfied by the redefined p
meson profile function g(Z).

Using arguments similar to the ones in [29], implementing Neumann boundary condi-
tion (11 (Z = 0) = 0), one sees that in the IR (i.e., near Z = 0):

0i(Z) = V28 ™ i [1 - Z (BC%%,. g, +w1)] 5 CO) R =CR = N~ Q> 0.

(4.11)
Now, as explained in section 3,
$0(Z) = N o) N7 4 9P 7%+ O(ZP). (4.12)
vi(2z)  Z 0 0 0
By requiring:
log N — 31
ap, = Iviog 31og 7o N%agl, log N > |log o,
V2y/log N + 3log g
1
b= —+e¢, (4.13)

V3

for a very tiny € to be ascertained later, one can set: qb((fl) = gb(()l) = 0 and one obtains:

81628(ctV —2cS +2¢V))
2IR 2/5 .3 _ 27 _ 2z 012 01z
™ C¢0 N @y, (logN 310g TO) <8b2g5 log N (log N+3log o) 8log(ro)

7Z) =
w2 gsMNfQTOS(IOgN+3logr0)
9(36°+1)B(CY —2¢8V 42¢(1)) X
7T2C£ORN2/50¢21 (log N —3logry) ( T 61 o10) | (;;);1;4_1;)4 2 3
- 7%+ 0(2%).
gs logro M N;?ro2(log N + 3log rg) (2°)
(4.14)

One can similarly show that one obtains the following profile functions in the UV:

Wz) = v
72
672Z
o5V (Z) = CyY T (4.15)

Let us discuss the normalization conditions on ¥1(Z) and ¢¢(Z) and the consequent
constraints on ijlv and CgOV(Z )
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 The normalization condition on ¢1(Z) (3.12): Vs, [;°dZVs (1/11(2))2‘17 . =1

. —vEte
obtains:

Vi (frg=1)fro9s> MN;2Vs, CIR 2log N (75(@? —2¢(M 4oclV)

o1»T2Cq, ) fro 27292 M4 10g2(N)+345662(fT0+1)N2)

2 337272 (frg +1)NT/5a3 — 933127
oV = “
1 24 _(frofl)g_sQMNg/‘st?sz )
52(fm+1)o¢21 log N
(4.16)
wherein, similar to [28], the IR cut-off ¢ is assumed to be given as ro = N =73 Let
us impose Cglv = 0 which is equivalent to:
186624 3%/47e%/2(f,, + 1)N"/5a,
Vs, =

VT(fro = 1) fro952log NMNCIE 2 (75(@; —2c) 1250 £y gszlogN2]W4+345662(fr0 +1)N?)
(4.17)

o The normalization condition on ¢o(Z) (3.14): V% Jo° dzZwvy (60(Z))* =1 obtains:

v _ 243/3r2C IR JeN o3/ + 1)(-BCE — 2050 +2¢80) + 2,0 +2) Lo
. 32(fr, — 12952 (log N)? MN{? '

(4.18)
Being proportional to /e and assuming € < 1 (for black-hole gravity dual, € <
77 (log rh)% N~io [16]), we will henceforth be approximating Cgov ~0,ie., PPV (2) ~
0,05V (Z) = 0.

To evaluate y; 357 and 21 g using (3.22) along with (3.23) and (3.24), one will be
splitting the radial integral into the TR and the UV, e.g., (A)[G}\] + (A)[GYy], where
using the results of appendix A, fJ%’s are vanishingly small (impling CNJ%\?\, = G\)
Using (4.11) and (4.14), one arrives at the expressions for the coupling constants y; 357
and z1,. g as explained in appendix B:

.7 zlv---vS‘NIIB Ouyang
IR Ny )z IR my./z.
=V, (C)™ (cl) ™

X (fyi 2, (ros M, N, Nyp) + B (€)= 2651) +2C00) ) H,, /2, (0 M, N, Nf)>. (4.19)

Further,

Sr
vy (2437r2ﬁ (cﬁihzcgllmcg”)cm 2 fro(foo + 1) log2(3)ad, N33
— Vs,

8192(f,, —1)3¢s3 (log N)? ]V[Nf2

4fr
+81\/§7r20g} 2e fro (fro +1)210g(3) (log(243) — 6) glNT“+%_2437rZC§,§ 2 fro(fro +1)? log?(3)0f N “+2)

2048( f, —1)3gs3 (log N)? ]V[Nf2 4096( f,, — 1)3g,3 (log N)? MNJ%
(4.20)
and
log NV (7641 — 2€51) +241)) 1,219, 2M* log? (V) + 3456(f, + 1)A2) )
gym = .

288)2a3, log N (V383/2(CLY — 2¢f1) + 2C51) )Aem3 — 12(f,, + 1)N)

O01x
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In the chiral limit, the O(p*) SU(3) xPT Lagrangian is given by [5]:
2 2 2
Ly (Te(V, U 0) )+ Ly (Te(V, U1V, 0)) + Ly T (V, U940
—iLoTr (L VUV U 4+ Ry VUV U ) 4 LagTr (UL, URM ) + HyTr (L2, 4R2, ),
(4.22)

where V,U = 0,U —iL,U +iUR,, U = e%r. For completeness, we have reviewed the
arguments of [36] to obtain (4.22)-like terms from the HLS Lagrangian by integrating out
the p mesons in appendix C. Using hence (C.20) along with results of [38], one obtains
relationships between the LECs y;, z; of (3.20) and the L;s of (4.22)—(4.29) for Ly, (4.37)
for Lg and (4.46) for L.

The parameters L; and H; are renormalized at one-loop level with all vertices in one-
loop diagrams arising from the O(p?) terms. Using dimensional regularization and per-
forming renormalizations of the parameters via [5]:

Li= L)+ Ti\(u),  Hi= HI (1) + A1), (4.23)

where p is the renormalization point, and I'; and A; are certain numbers given later; (1)
is the divergent part given by

1 1
where

2
= e +hdr, (4.25)

d being the non-radial non-compact space-time dimensionality to be set to four. The
constants I'; and A; for SU(3) xPT theory were worked out in [5]:

m\v—l

3 3 1 3
Iy=—, Ty=—, T Ty==, Dy==
1 327 2 167 3 07 4 87 5 87
11 5 1 1
= — T I's=—., Tg=-. T'yo=—-: 4.26
6= Ta1’ 17 0, 8= 15> 19=7> Tw 1 (4.26)
1 5
Ay == -2
1 g’ 2= oy

The analog of the 1-loop renormalization in xyPT can be understood on the gravity dual
side by noting that the latter requires holographic renormalization. This can be seen as
follows. It can be shown [39] that the bulk on-shell D = 11 supergravity action inclusive
of O(R*)-corrections is given by:

nshe 117 8.J
St 5“—2{ §S+ 250y + ( Sen g5 [, V90RO +25am — 1 [ \=o0af e M(’Nﬂ

J M1

(4 27)
The UV divergences of the various terms in (4.27) are summarized below:
vV—gR , V—hK ~ gy log ruy,
Mz UV —divergent OMi1 UV —divergent
6Jo rd
V—gg"N ~ OV (4.28)
/Mll 6gMN UV —divergent log ruv
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LECs | GL 1985 [5] | NLO 2014 | NNLO free fit | NNLO BE14 [35]
103 Lt 0.7(3) 1.0(1) 0.64)06 0.53(06)
103 L} 1.3(7) 1.6(2) 0.59(04) 0.81(04)
103 L} —4.4(2.5) —3.8(3) —2.80(20) —3.07(20)
103 L}, —0.3(5) 0.0(3) 0.76(18) 0.3
103 LL 1.4(5) 1.2(1) 0.50(07) 1.01(06)
103 Lk —0.2(3) 0.0(4) 0.49(25) 0.14(05)
10% L% —0.4(2) —0.3(2) —0.19(08) —0.34(09)
103 L% 0.9(3) 0.5(2) 0.17(11) 0.47(10)
Table 3. Various fits for NLO LECs LI (i = 1,2,...,8).

i | LT(M,) 103 Source

1 04 +£0.3 Key, mm — 7m0

2 1.4 + 0.3 Key, 7m = 10

3| -35+1.1 Keyq, 7m — 10

4 | —-03+£05 Zweig rule

S 1.4 +£0.5 Fy  Fr

6 | —0.2+0.3 Zweig rule

7| —044+0.2 Gell-Mann-Okubo, Ls, Lg

8 0.9+ 0.3 | Mgo— Mg, Ls, (ms — ) : (mg — my,)

9 | 6.9+0.7 (r3)7,

10 | —=5.5 £ 0.7 ™ — evy

Table 4. Phenomenological Values of the 1-loop renormalised couplings L (M),) of (4.22) [7]. Last
column shows the source to extract this information.

It can be shown [39] that an appropriate linear combination of the boundary terms:
/ / 0J,
faMll _hK R and faMll —hhmn 8h7‘¥?ﬂ
to cancel the UV divergences (4.28).3
We will now discuss how to match our results with the experimental values of the 1-

serves as the appropriate counter terms
r=ruv

loop renormalized coupling constants LY 5 3 10 in (4.22) and F? and ¢%,; the experimental
value of H; apparently is unavailable. Table 3 contains the values of the 1-loop renormalized
values of the coupling constants in (4.22) [1].

Table 4 elaborates upon the column titled GL 1985 [5].

We will now show how, in five steps, it is possible to match the phenomenological
values of the O(p*) SU(3) xPT Lagrangian [5] one-loop renormalized LECs L} 4 14 as well
as F2, gym(Aqep = 0.4 GeV, A = 1.1Gev, p = M,) where A is the “HLS-QCD” matching
scale [36] and p is the renormalization scale, as well as the order of magnitude and signs
of Lj .

3For consistency, one needs to impose the following relationship between the UV-valued effective number

15
of flavor D7-branes of the parent type IIB dual, NfV and logryv: NV = %,
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e Step 1: matching L11“,2,3-
Using (4.17), (4.21), (B.2), (B.3) and y» = —y; one obtains:

Ly Ly 1
[T==2__28__- 4.2
1=5 6 2y Z4+ Y2 (4.29)
= 1 37(fro +1)NT/®
= 0
1433607 (fro — 1) frogs® log NMANf i CIF 2Q

4822335+/2 /3 V7B (cﬁ? —2ci) + 2c§1’z> CIR 24 f, (fro +1)gs M2 NEad CIR N2ro+3
>< J—
(fro —1)3 (log N)?

430080+/218 (cé? —2c) 1 2cM) ) € (fro — 1) frogs® log NM*mo2N*/>Naj CIF 2

012 01z
+
m(fro +1)
2fr 2fr
64/ F (o = 1)%0: logroMNGCY 2N 720 | 26880V T(fry —1)g5" logroM* NFCl] *N 5" #0
(fro +1)? (fro +1)°
2fr
~ 8960VT(fro = 1) fro9s” log NM*N§a3 CIF 2N~5" 30
fro+1
 132269760v2/3Y/Tr CIR 26 7/ £, (fro +1)%95 M2 Njaf, CIR N0t 5
(fro = 1) (log N)?
_ 5160960v/7€*(fry — 1) frogs® log NM*N*/°Niag €t °
m
195259926456 /31 CIR 4e'3/2 £, (fro + 1) af° Nt s (4.30)
(fro = 1) (log N)’ ’ '

where:

Q= (78 (c) - 205, + 2041 ) 11,2979, (log N)* M* + 3456 (f,, + 1)N?) .
(4.31)
Now, as we are working up to O(f) and further due to the smallness of € assuming
working up to O(e?), one sees that (4.29) gets simplified to read:

1
14336077 (fr, — 1) fr958log NMAN§ad,

Ly

64\/2(1;0 —1)29,0 log ro M N8N 52~ %

x { 37(fry +1)NT/

(fro +1)?
fr fr
+%%MWﬂfdm%%mM%@W¥%_@%wﬂmﬁnﬂM%%NMM@@Nitg
(Fry +1)2 fro i
5160960v/7( fro — 1) fro gs& log NMAN3/5 N8a2 2
B VT(fro = 1) frogs® log Fag, (;) (452)
s

As will be shown below (4.39) and (4.40), to match the experimental value of Lg, one
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needs to set f,, =1 —K,0 < k < 1. Hence:
26880v/7gs” log ro M N§
3n(fyy + NP C e
(fro +1)

89607 fryg.° log NM*NFa3 516096037 frog" log NM*N3N§oj, (g))}

1
143360/ £, 9.8 log NM*Nfaj,

Ly

fro +1 m Q

(4.33)

Further, as the logry in (4.33) is in fact log <R o ) — Rps/ps > To being the

D5/D5

D5-D5 separation — one sees from (4.33) that in order to obtain a positive value (as
required from phenomenological value of L), Q < 0. Note, as shown below in (4.36),
matching with the experimental value of the pion decay constant F; requires an N-
suppression in ag, , implying the N enhancement in the last term in (4.33) is artificial.
So, to ensure one does not pick up an O (%) contribution in L; from % in (4.33) and
also to ensure that the third term in (4.33) required to partly compensate the first
two negative terms in the same (as explained above) to produce a positive term, is
not vanishingly small, from (4.31), one needs to set:

p
¢ — AE‘]C. (4.34)
Finally, combining the above observations with the requirement to match the experi-

mental value L™ = 0.64 x 1073, one requires to implement the following constraint:

(1)) o 493.7(6 + 1)(fr +1)AZ
b Fro272g52 (log N)* M4’

(e —2cf) +2¢

zz

_%_1

~ 0.053aj, N~ 73
= .

We hence see from (4.34) that € provides an expansion parameter connecting the

(4.35)

% and [ expansions. Also, together with (4.35), this is the first connection between

large-N and higher derivative corrections in the context of M-theory dual of large-N
thermal QCD-like theories.

From (4.29) upon comparison with experimental values of L5 5, we see that one
can obtain a match with their order of magnitude and sign, but not the exact nu-
merical value.

e Step 2: matching F:
Now, using (4.35) and (4.17), one can show that the difference of (4.20) and the

2frg 1
0.0037TN_ "3 " 4

7 ,* vanishes for:
S

experimental value of F2 =

frog 13

0.03 §/Bg, /% WA, (log N> YNNG /eI (1 f,, )N =53

(4.36)

o,

4F2 can be made to match the experimental value of 92.3 MeV wherein from 07 F-glueball mass [18], one
identifies: %M@V == .
4mwgs N
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e Step 3: matching Lg.
Using (C.20) and [38], one can show that:

1 2
Lg = g (gQYM — 223 — 24 — 26> . (4.37)

By using (4.35), (4.17) and (B.3) one obtains:

0.0031(f,, — 1)gsN 5 +4
L= ro — 95 _ (4.38)
(fTO + 1)0[91
Now, assuming;:
fro =1—waj,, (4.39)
where ot
46N~3 7%
w=-— (4.40)
9s

one sees one gets a match with the phenomenological/experimental value Lg™® =

6.9 x 1073, Substituting (4.39)—(4.40) into (4.35), one obtains:

) 987.4)\2

c) —2c§) + 20 .
( 1292 (log N)? M*

2z O1x

(4.41)

Consistency of (4.39), (4.40) and (4.36), setting X/B ~ 8°%4 to unity (because of the
very small exponent of /3), requires:

11.33 §/CIR NP5/36
g5 NN/ DMINS3 3/C TR log’ (N)
« Step 4: matching g%,;(Aqcp = 0.4 GeV, A = 1.1 GeV, pu = M,).
Similarly, g%M can be chosen to match the experimental value 36 (at Aqcp = 0.4 GeV

and the HLS-QCD matching scale “A” = 1.1 GeV [36]) and renormalization scale
i = M, by imposing:

g, = (4.42)

120N

9 ([ 855. 11/3’3/2(6+1))\3m0
@6, ( fro?7?9s2(log N)* M4 + 12N)

— 36, (4.43)

which can be effected by:

10603 %m0 83/ g, /34 + 1)

y = (4.44)

frogs (log N) M\/N (3.27 x 1096 — 1.18 x 10110431)

By requiring the argument of the square root in the denominator of (4.44) to be
positive, one hence obtains an upper bound on Cgo{ from (4.44):
_ _3f _T3
CIR 1.04 x 1073Y/B(fry — 1)%g>VAMNFCJ N =30~ 20 logQ(N)‘
(o) fro +1

(4.45)
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e Step 5: matching L7,.
Now, using (4.17), (4.35), (B.3) and [37, 38] (which provides also the UV-finite part
of the p — m one-loop correction via an “a(M,)” factor taken to be equal to 2) one
can show that (for Ny = 3):

1 1 11Nfa(M,)
lo=-—-—5—+223—-2 2 — TP
10 1 ( Q%M + 223 29 + Z1> + 96(47‘1’)2
fr
0,4795]\]270“ 8640.gsN*/3a} "
= — — +4.4x107°.
o, gsIN3/3 — 1831.63cr,
(4.46)
Now, using L7, = —5.5x 1073, one obtains the following value of the #; delocalization
parameter oy, :
i os 421076 -29 x 10- 112N 7
ag, = —2.8x 107 "gsNs + . (4.47)

2

For g5 = 0.1, this implies N < 140. For numerical computation we set N = 102, g5 =
0.1, M = Ny = 3, and from (4.42) and (4.47) we obtain the following non-linear
relation between Cfﬁ, Ae and Cg;‘ (assumed to be also satisfying (4.45)):

1.6 ¢/CIR

— = =10"". (4.48)

A2 S/CIPI”
The key results of this section are summarized below.

1. Fixing (eight non-zero) parameters:

(a) a linear combination of constants of integration appearing in the solutions of the
EOMs of the O(R*) M-theory uplift’s metric components G?;,91Z791I;5

(b) constants of integration Cgi ¢0,6 appearing in the solutions of the EOMs in the
IR of respectively the p and m mesons;

(c) € (or equivalently A, as in € = )\eﬁ),v as in b = % + € in the relationship

between the resolution parameter a (i.e., the radius of the blown-up S?) and the
2
IR cut-off ro: a = (b +~0 (%)) ro;

(d) 6; delocalization parameter ay,;

5In principle, there are other costants of integration appearing in other O(R4) M-theory metric compo-

nents (4.1), but it turns out that there is a specific combination of only three that appears while matching

xPT LECs up to O(p4). Even though it is unclear why a specific combination, but it is intuitively evident

that it involves G

M

2z.012,0,= as these essentially correspond to the 53, part of the non-compact four-cycle

wrapped by the flavor D7-branes in the type IIB dual of [14]; these D7-flavor branes are (triple) T dualized to
the type ITA D6 flavor branes. This, in fact, is an extremely non-trivial signature of the four-cycle wrapped
by the type IIB D7-branes, that manifests itself as O(R*)-corrections to the MQGP background [15]/ M-
theory uplift of thermal QCD-like theories.

GCEX% can be self-consistently set to zero — see 2. and 3.
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S. No. Quantities whose Parameters of the holographic dual Equation numbers

experimental values used for fitting
are fitted to
Ly, Specific linear combination of (4.35)
constants of integration appearing in [using (4.34)]

solutions to O(R*) corrections
to M-theory metric components
G0 Froi i Ae
O(R*) — % connection: (4.34)

a — ro relation must have

3 _—
an € ~ % contribution

gsM2\°
a0 (1)

F% Ly f7.0;a91;C£;Cgf;)\€ (4.36), (4.38)—(4.42)[consistency
check]
9su(3) ~; upper bound on Cgo{ (4.44), (4.45)
Ly, ag,; Cit O (4.47)—(4.48) [even though

specific values of N, M, Ny, gs
chosen, but can find analog of
(4.48) VN < 140 (4.47)
respecting (2.4)]

Table 5. Summary of Matching of Parameters of the M-theory uplift and Experimental values of
1-Loop renormalized yPT LECs, Fﬁ,ggU(?’).

(e) D6-brane tension or equivalently o/;
_Jfro

(f) froasinrg=N""3
[all for given values of N, M,N; in the MQGP limit (2.4)] of the top-down holo-
graphic dual by matching with experimental values of one-loop renormalized yPT
Lagrangian’s LECs L7 5 3 9 10, F2 gsu(3): table 5 lists out the same.

Using the values of the parameters of our M-theory dual of thermal QCD-like
theories, one can also obtain the values of the LEC H; of (4.22), and in principle,
the LECs of the YPT Lagrangian at O(p®) [40]. We defer the latter in particular for
later exploration.

. Further, the normalization condition of the p-meson profile function ¥1(Z) (n = 1
mode) is used to determine the constant of integration Cglv appearing in the solution
to 11(Z) in the UV, in terms of C}E, fros7s €, Ae and Tpg or equivalently o (via “Vs,”);
it was shown that one could self-consistently set Cglv =0.7

. Substituting the expression for Tpg/a’/Vs, obtained above from the normalization
condition of 1;(Z) into the normalization condition for the profile function ¢o(Z2),
one could self-consistently set Cgov =0.

"The p-meson mass parameter mg can be fixed by imposing Dirichlet boundary condition on P1(2) at
Z =0 [29].
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5 Summary

In this paper, we have shown that O (%)—corrections of the M-theory uplift of holographic
thermal QCD of [14] as worked out in [15, 19] in conjunction with the O(R*)-corrections to
the same as worked out in [16], can be used to match the experimental values of the coupling
constants up to O(p*) appearing in the SU(3) Chiral Perturbation theory Lagrangian for
the pion and rho vector mesons as well as their flavor partners, in the chiral limit.

The following are the key lessons learnt in this paper:

e There is a particular combination of the constants of integration appearing in the
solutions to the O(R*) corrections to the M-theory dual of thermal QCD that will
appear in all the coupling constants of xYPT at least up to O(p*). As an example,
in working in the ¥ = 0,27, 47 patches close to the type IIB Ouyang embedding
effected by working near small 6; 2 the aforementioned combination is cé? — 2C(§3 +

ZCE(&L, where CJ(\}I)NS are the constants of integration appearing in the solutions to
the EOMs for the O(R*)-corrections Gﬁ]’\(,l) = Gﬁ]’\(jo) (1+ fumn), being the MQGP
metric of [14, 19]. This dependence is expected to change in the 1) # 2nm,n =0, 1, 2-

patches.

« Matching the result obtained from our M-theory O(R*)-corrected holographic com-
putation with the experimental values of one-loop renormalized L7 , 3, one sees one

that one is required to do two things. One, the O (%) correction to the leading
order (in N) result in expressing the resolution parameter in terms of the IR cut-off,

3
also must involve a term proportional to IN”, ie., a= (b + ’y% (1+log ro)) rg —

~ 3
(b + )\lﬁ” + ’y#(l + log T0)> ro. The second, the value of the aforementioned linear

combination of integration constants figuring in the solutions to the O(R?*) correc-
tions to the MQGP metric of [15, 19], gets fixed in terms of A,~y, M, gs and N. This
is the first evidence of the relationship between the O (%) and O(f) corrections.

« Matching the experimental values of F? and the one-loop renormalized L} and in-
ternal consistency, determine the angular delocalization in the polar angles 6 2 (3.4)
consistent with the type IIB Ouyang embedding of the flavor D7-branes in the type
IIB holographic dual and its SYZ type ITA mirror [27]. Note, similar to as explained
in [25], the SYZ type ITA mirror (and hence its M theory uplift) is independent of the
angular delocalization. In the context of obtaining the values of the xPT Lagrangian’s
coupling constants this is encoded in the fact even though the aforementioned an-
gular delocalization parameters ag, , would change depending on the values of 619 20
of (3.3), the corresponding values of ag, , can always be found.

 Matching the experimental value of g%,; at Aqcp = 0.4 GeV, the HLS-QCD match-

ing scale A = 1.1GeV and renormalization scale ; = M, with the value obtained

from our setup, provide the following pair of results. One, the O (gsf\\f 2) correction

appearing in the resolution parameter — IR cut-off relation turns out to also have
9

an I} dependence apart from dependence on gs, N, M, N 7, as well as the constants
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of integration appearing in the solutions to the radial profile functions of the 7 and
p mesons (and their flavor partners) in the IR. Second, one obtains an upper bound
on the constant of integration appearing in the expression for the profile function of
the m meson (and its flavor partners) in the IR.

o Upon matching with the experimental value of the one-loop renormalized L7, one
obtains a non-linear relation between the constants of integration appearing in the
radial profile functions for the m and p mesons in the IR, as well as the coefficient of the

% term required to exist in the resolution-parameter-IR-cut-off relation (discussed

in the second bullet above) upon matching with the experimental values of Lf o 5.

For numerical clarity, we explicitly wrote down the same for N = 102, g, = 0.1,

M = Nj =3.
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wherein Myy = Meg(r > RD5/ﬁ5) and similarly N}W = N]‘?H(r > Rps/p5)- We should
keep in mind that near the ¢ = ¢y # 2nm,n = 0,1, 2-patch, some G%,M # r and
GQ{‘O N # z'% components are non-zero, making this exercise much more non-trivial. As
shown in [16], the contributions from FEjg is sub-dominant as compared to the contributions
from Jy terms.

As the EOMs are too long, they have not been explicitly typed but their forms have
been written out. The explicit forms of Fjsn have been given.

Using (A.1), one obtains the following EOMs in the UV:

EOMyn :

210

2
Z Z H‘;\\/[/l]]\\]/ (p) <T7 To, a, N7 MUV) N}Jv7gsv O‘91,2> f}\l/?/\[(r) +/8]:]WN (Ta To, @, N7 Ma Nf7gS7 ()[9172) = 07
MN=0p=0
(A.2)

where M, N run over the D = 11 coordinates, f](\%\, = d”j%N ,p=20,1,2.
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B Coupling constants y; 357 and 21,8

In this appendix, we work out the IR and UV contributions to the coupling constants
Y1357 and z12 g. In the following, ¢o(Z) = fOZ ¢o(Z)dZ. In the following, we will be
splitting [ dZ into [iz + [;v- Now, one can argue that [y, ~ (Cgov)m (Cgf)n,m,n e,
and as argued in section 4, we can self-consistently set Cgov = C}/flv = 0, and one can hence
argue that one can disregard [(;y. In the following calculations, one will need the value of
Vs in the IR, which can be shown to be given by:

3 (3b? — 2) gs2MN*/5N%log(ro)(log N — 3log(ro))

2mlog Nayg, ozg

W(Z €IR) = —

3(2— 3b2)599210g7"0MN4/5N 2z —2¢!) +2¢)) <9b2gSQMN4/5Nf2log(ro)(logN310g(r0))

2
4oy, a92 mlog Nayg, ag,

(B.1)

fr
Therefore, using (3.22) and using b = % + € [16] and setting ro = N~ 3" [28], one obtains
the following results for y; 35 7:

oy = /v2<z> (1+41(2) —43(2))?

5 14
17714778 BCIR 468 fry (fro +1)% logroal, N4 ot 5 <c§2 2050 + cg;z)
8192(fr, —1)%gs* (log N)" M2N}

4782969377 Cyy € fro (fro +1)'a 9 N4rots
20480( fr, — 1)7g:6 (log N)” MSN;?

.y = / A2V Z) (14 1(2))?

B 219> log roM N*/°> N;*Cl}t *(log N — 3log o)
87 log Na91a§2

+39/873/4(4fg 2logro MN*/° N *Cov ®(log N — 3log o)
2v/27log Nag, o,

2/3
eous V3 G0, (o ) s rad NN el (e 2l 26l

6561 %\ﬁWSng 265/2fro (fro + 1) CIR 2N2fr0+ i
256( fro — 1)*gs2 (log N)B MNJ%aez

.y = / 4ZVsUR(Z) (61(2))* =

633V Bl ? /2 f0 (fro +1)ad, CIR 2N?Fr0=3 (c,gp 20V

012

32768(fr, — 1)3g:2 (log N)* MN?

+20(2),) (6N + frg. log NA2)

01x

.y = / AZVo1 (Z)(1 4+ 1(2)) (1 + 4 (Z) — o(2)*)?

4782969[\/?#76111 4 9/2fr0(f7“0+1) CV(.)ICIR 2N4f"0+11
40960( fr, —1)7gs6 (log N)” M3N?

01

3720087f VI BCIR A2 £, (fro +1)%ag, CIR 2NYrot s (cgp -2, +2c“>)

(B.2)
262144( fr, — 1)7g+5 (log N)” M3N?
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C  Ggiobal X Higca HLS formalism and obtaining GL’s mesonic xPT La-
grangian up to (’)(p4) after integrating out the vector mesons from
the HLS Lagrangian [36]

In this appendix, we summarize the HLS formalism and the arguments of how to obtain
the SU(3) xPT Lagrangian of [5] up to (NLO in momentum below the chiral symmetry
breaking scale) O(p*) by integrating out the vector mesons from the HLS Lagrangian (both
as discussed in detail in [36])

C.1 HLS formalism

The HLS formalism describes a model based on Ggiohal X Hiocal symmetry, where G =
SU(Ny),, x SU(Ny)y is the global chiral symmetry and H = SU(Ny),, is the H(idden)
L(ocal) S(ymmetry). The building blocks of this model are SU(Ny)-matrix valued variables
&1, and £ which are introduced by splitting U in the ChPT as

U=E¢leg.

Now, under Ggiobal X Hiocal, £1R () transform as follows:
SLr(r) = Gp(2) = h(z) - bLr(e) gl
where h(z) € Hiocal, 9L,R € Gglobal- These variables are parameterized as
LR = ¢/ Fo gFim/Fr (7 =7T,, 0 = o"Ty],

where the matrix-valued 7 denotes the Nambu-Goldstone (NG) bosons associated with
the spontaneous breaking of G chiral symmetry and o denotes the NG bosons absorbed
into the gauge bosons. Further, F; and F, denote the relevant decay constants, and the

¢ From &1, and &R the following are constructed:

parameter a is defined via: a = 3%
™

aty = (Outm - &k~ Oue - ) /(20),
o = (Oubr - €+ 0u1. - €]) /(20),
which transform under Hjgca as

Qg — h(JJ) AN hT(x) s
| = h(x) - agy, - hi(x) —id,h(z) - hi(z).

The covariant derivatives of &1, and £r can be obtained from the transformation prop-
erties of &, g () as:
D, éur = 0uéLr — iVELR »

where V, = V;Ta are the gauge fields corresponding to Hjgcal. Now, V), transforms under
Hiocal as:
Vi, — h(z) -V, - hi(z) —id,h(z) - bl (x).
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The “covariantized 1-forms” defined as

N 1

G1y = o (Dubr - €k — Dube-€) = aLy,

. 1

A = 55 (DMER ' 5%{ + DL - G:) =ajy = Vi,

transform homogeneously under Hjgcal:
ziad A T
ay = h(z) -al o h (x).
Thus, one can construct the following two invariants:
LA = Fg tr [ama‘i] ,

aly = Fg tr [&”#aﬂ = Fg2 tr [(VH — a“)? .

Therefore, the most general Lagrangian made out of {, g and D,&,r with the lowest
number of derivatives, i.e., at O(p?) (see [4, 5, 36] for power counting arguments), is
given by:

L=LAr+aly.

Using the EOM for V,, at O(p?), one obtains:
Vie = -
Further, with the relation
- 1 i
Gru= 5L U & = 50U ¢
substituted into (C.1), one obtains the following O(p?) term in the yPT Lagrangian:
F2
L=Ly="Ttr |90 0]
4
In the unitary gauge, o = 0,% two SU(N ¢)-matrix valued variables £, and &g are related via:

l=trn=¢=emF.

8This unitary gauge is not preserved though under the Gglobal transformation, which in general has the

following form

=& =6 gh=g-¢
exp [ia’(ﬂ,gR,gL)/Fg] exp [iTI‘//Fﬂ-}
exp [iﬂ//Fﬂ] exp [—ia'(ﬂ',gR,gL)/Fa} .

However, exp [ic’ (7, gr, g1)/F-] can be eliminated if we simultaneously perform the Hiocal gauge transfor-
mation:
h = exp [ia/(ﬂ,gﬁ,gL)/FU] = h(m, gr,9L) -
Therefore there is a global symmetry G = SU(Ny);, x SU(Ny), under the following combined transfor-
mation:
G:&—h(mgr,gn) & gh =90 &R (m,gr,00).
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C.2 Obtaining the O(p?) SU(3) xPT Lagrangian by integrating out the vector
mesons from the HLS Lagrangian

First, we introduce the external gauge fields £, and R,, which include W boson, Z-boson
and photon fields. This is done by gauging the Ggiohar symmetry. The transformation
properties of £, and R, £,, — gL/JHgE —iﬁﬂgL.gz and R, — gRR#gTR —2‘8#93.912 are used

to define covariant derivatives of &1, r:

DugL = 8u§L - ivugL + ifLEua
D, &r = 0uér — iVu€r + €rRy (C.1)

It should be noticed that in the HLS these external gauge fields are included without
assuming the vector dominance. It is outstanding feature of the HLS model that &, g have
two independent source charges and hence two independent gauge bosons are automatically
introduced in the HLS model. Both the vector meson fields and external gauge fields are
simultaneously incorporated into the Lagrangian fully consistent with the chiral symmetry.
By using the above covariant derivatives two Maurer-Cartan 1-forms are constructed as

Giu = (Dutr - & — Dude-€) /(20).

Gy = (Dutn €k + Dt - ) /20). (C:2)
These 1-forms upon expansion in a power series in 7 yield:
~ 1 ? 1
aL”:F—ﬂ,ﬂr—i—AM—E[VM,ﬂ]—@[[@m,ﬂ],ﬂ—i—~-, (C.3)
~ 1 ? i
allu:Eaua_vu+vu_ﬁ[auﬂ,ﬂ]—E[A;MW“‘”'7 (C4)

where V, = (R, + L,) /2 and Ay, = (R, — L) /2.
The covariantized 1-forms in egs. (C.2) transform homogeneously:

ar

(L= h(x)-aff - hl(@). (C.5)

Then we can construct two independent terms with lowest derivatives which are invariant
under the full Gglopal X Hiocal Symmetry as
L = F2tr[a,,64] = tr[0,moFn] + -, (C.6)

oLy = F2tr [ay,af] = tr[(@ua — F,V,) (00 — F,Vi) | + - (C.7)

where the expansions of the covariantized 1-forms in (C.3) and (C.4) were substituted to
obtain the second expressions. These expansions imply that £ 4 generates the kinetic term
of pseudoscalar meson, while Ly generates the kinetic term of the would-be NG boson o
in addition to the mass term of the vector meson.

The HLS gauge boson field strength defined by V,, = 0,V, — 9, V,, — i[V,, V,], which

also transforms homogeneously:

Vi = h(x) - Vi - A (), (C.8)
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is another building block of the xPT Lagrangian. Then the simplest term with V,,, is the
kinetic term of the gauge boson:

1
Liin(Vy) = T2 tr [V, V], (C.9)

where g is the HLS gauge coupling constant.
Now the Lagrangian with lowest derivatives is given by:

L=Lp+alv+ ﬁkin(vﬂ)
1
= F2tr[ag,af] + P2 tr [ay.af] - 57 ViV, (C.10)

C.3 Obtaining the O(p*) SU(3) xPT Lagrangian by integrating out the vector
mesons from the HLS Lagrangian

Integrating out the vector mesons in the Lagrangian of the HLS given in (C.10) we obtain
the Lagrangian for pseudoscalar mesons. The resultant Lagrangian includes O(p*) terms
of the ChPT in addition to O(p?) terms. To perform this it is convenient to introduce the
following quantities:

aiy = (Dubn-&h — Dute - &) /(20),
oy = (Dutr - &+ Dutr - &) /(24), (C.11)

where D,&;, and D&, are defined by

DuéL = 0l +i6LLy
'DugR = 8M§R + iﬁRRu . (0.12)

The relations of these oy, and o, with a,, and @), in (C.2) are given by

Al = gy,
aHM = Oé”u — VM . (0.13)

From the Lagrangian in (C.10) the equation of motion for the vector meson is given by
2 1 v . v
F2 (Vi — o) — 7 @V —ilV" Vu]) 0. (C.14)
In the leading order of the derivative expansion the solution of (C.14) is given by

Lo, (C.15)

Vi=o.+ 35
p

consistent with (C.1). Substituting this into the field strength of the HLS gauge boson and
performing the derivative expansion one can show that one obtains [36]:

) 1 1
Vi = &r (RW + UL, U + ZvMUT -V, U — Zv,,UT : VMU) &+ MEO@‘*) ., (C.16)
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where,

" i i 1 b et

ALy =58L - Vul - Lp = 5-8r - VU - &1 (C.17)
has been used. By substituting (C.17) into the HLS Lagrangian, the first term in the HLS
Lagrangian (C.10) becomes the first term in the leading order ChPT Lagrangian:

L£EhPT —Fit v, UIVrU C.18
@ o= 2 TV : (C.18)

In addition, the second term in (C.10) with (C.14) substituted becomes of O(p%) in the
ChPT and the third term (the kinetic term of the HLS gauge boson) with (C.16) becomes
of O(p*) in the ChPT:

cy = 321 ; (e [Voorot]) + : 6192 tr [V, 00, U] e [vrU v U]

3 .
_ iyl vrrt H vrrt wrrtov
169 {V UVFU'V,UV U} 4g [EWV UVU"+ R, VIU'V U}
1 1
_ uvyrt o pv nv
12 tr {[,WUR U ] 542 [ﬁwﬁ +RuwR !, (C.19)

where we fixed Ny = 3. Comparing this with the O(p*) terms of the ChPT Lagrangian
given in (4.22), we obtain the contributions of vector mesons to the low-energy parameters
of the ChPT:

1 1
LY=—., LYy=—, LY = i,
247 1642 1642
: (C.20)
v _ v
Ly = 12 10 12

D Inclusion of O(R*) corrections in the D6-brane DBI action

Inclusive of the O(R*)-corrections indicated by a ~ (e.g., the M-theory metric: G4}y =
GMOCP (1 4+ farv) [16]) in (D.1), one sees that

Vi = 2vhe s [—gHA GEZ.
Vy = he %A, /—glA (D.1)

wherein using (4.4):

w

3 4 ~ _3 - _
e~ %A O(RY) _ Gi\f%w 1= (Gé\flomm —|—]-"x10$10) t = %ua + E 10510 F 410410,

3 1
Ep10410 = ~1 7
(Gﬁflox1o> !
é/Z\/[Z _ e 2% _ 6_2Z(.7:x1~ox10G§/lZ + szzéé\f%m)
ERnGis | kb G
V=G1x7 = V/=g7x7 + Tr(CF). (D.2)
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where in the last line use has been made of that in the IR:

—_~— —_—~—
— —
—_—~— —_—~—

T F3HB ~ N3 log r, Y F3IIB ~ Ni logr,
02 y02
% u IIB 1 (logr\?
z | F3 ~ N7z logr, *Fy ~ N20 . ; (D.4)
0
292 T02

the triple tﬂdes:imply a tripe T-dual of the type IIB background of [14]; x,y, z are the
delocalized T coordinates using for effecting SYZ mirror symmetry via a triple T dual
in [15]. In (D.3), G = 8me %" .

One hence obtains:

E 10410 F 410,410

5/4 .
24310 (982 1 1)* B %) .z (ez _ 2) (49683\/60431 — 664203 o}, +40\/6a32> (r2 — 3a2) log®(ro)
B 1672 (3b2 — 1)° (log N)? ag2 (6b2rg +10)"

)

(D.5)
relevant to obtaining the O(R*)-corrected type IIA dilaton via (D.2).
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