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1 Introduction

Remarkable properties of black holes make them a valuable arena in different branches of
theoretical physics. Particularly, within the AdS/CFT correspondence [1–3] black holes
play central role in description of various thermodynamical phenomena that take place
in the dual CFT theory. Glimpses of deep relation between black hole entropy and its
statistical realization in terms of free fields have already been available [4], even before
they plunged into gauge/gravity mainstream [5]. Lots of investigation is focused on testing
different aspects of the famous correspondence which relates two theories in the opposite
regimes. Given one of the two sides is strongly coupled, no wonder the duality still remains
a conjecture.

Among many dual pairs there are some that relate simplest CFT vector models of N
free fields on the three dimensional boundary of AdS4 to a highly non-trivial higher-spin
(HS) theory in the bulk [6–8]. Along with graviton the latter contains interacting scalar
and gauge fields of all integer spins. As the dual CFT is supposed to be free such a duality
is of weak-weak type and therefore is testable at least in perturbations. Currently this
endeavor is mostly confined to tree level since the conventional HS action principle is still
lacking.
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Before the AdS/CFT ages, HS theory had its own pace with some notable milestones
which include the free Fronsdal Lagrangian [9], the first instance of cubic vertices found
using the light-cone approach [10], the observation of relevance of AdS background for HS
interactions [11], the full list of cubic interactions classified by Metsaev [12], and eventually
the generating Vasiliev system for any order HS equations [13] (see [14–17] for reviews).
Higher-order off-shell formulation that would make quantum analysis accessible is still not
there though there are steps in this direction (see e.g., [18–21]).

It took a while since the original HS/CFT proposal was made before some checks
carried out at the level of three point functions. In a remarkable feat of technical analysis
Giombi and Yin [22] were able to extract certain 3pt correlators from Vasiliev equations
of motion and found perfect match with the boundary expectations. With this work HS
theory gained another boost that largely clarified the status of the duality (for incomplete
list of references see [19, 23–32]).

Little is known however what happens to HS bulk theory in d + 1 ≥ 3 at non-zero
temperature T > 0. Typically of gravity theories, the CFT dual thermal states with
T < Tc are associated with planar black holes that radiate Hawking temperature TH. It
originates from a factorization that removes a deficit angle in the Euclidian version of a
black hole metric thus introducing a thermal S1. For the boundary theory on a sphere a
large spherical black hole in the bulk corresponds to a thermal state beyond a critical point
T > Tc, where a phase transition occurs.

HS theory is very much different as its spin two sector and the corresponding metric
seems to have no invariant meaning under higher-spin symmetry transformation. This
makes the very notion of horizon debatable. Even in the case of HS3/CFT2 duality [33–35]
which is much more elaborated due to its topological nature and the fact that the HS field
spectrum can be made finite, the role of HS3 black hole horizon [36] (if any) is unclear.

Besides, as Shenker and Yin pointed out in [37], for d = 3 U(N) vector model on
S2 × S1 the phase transition takes place at Plankian temperature T ∼

√
N rather than at

AdS scale T ∼ 1 in sharp contrast with a field theory in the adjoint. This fact seemingly
indicates the absence of uncharged spherically symmetric black hole in AdS4 HS theory.
This might not be too surprising after all, as generally in HS theory lower spins source
higher spins and s = 2 is not an exception. Whether it is so with a black brane or not
will be investigated in [38] at the lowest interaction order. But general expectation is that
a potential HS black hole may have infinitely many charges. This may result in smearing
off the AdS scale phase transition due to infinitely many black hole states. All in all, the
idea of associating thermal states of HS theory to its exact solutions with proper global
symmetry still seems natural.

The goal of this paper is to set the stage for perturbative analysis of static HS solu-
tions in four dimensions that in addition have planar symmetry and to find the associated
solutions at free level. In other words we are interested in HS counterparts of black branes
in perturbations. The problem is considered within the Vasiliev theory.

One of the reasons for perturbative analysis rather than the all order one is the HS
locality problem that for the time being has not been yet solved to all orders. To be more
specific it is not clear whether HS vertices for a given set of spins contain finite number
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of derivatives beyond cubic order or not [39, 40]. This problem is a daunting challenge
within the holographic approach that allows one at least in principle reconstructing bulk
interactions from the free boundary CFT correlators. This idea was proposed by Petkou
in [41] as he anticipated that the procedure of reconstructing quartic scalar interaction
would be straightforward if perhaps technical. It was solved later on in [39]. At quartic
level one encounters non-localities that somehow drives the analysis out of control [40].
Indeed, as was pointed out in [40, 42], admitting wild non-localities in field redefinition
trivializes the Noether procedure and formally reduces interacting theory to the free one.

The state of affairs with d + 1 ≥ 4 Vasiliev theory is less uncertain although the
(non)locality problem is a pressing issue too. The great advantage of the Vasiliev approach
is that the HS equations it reproduces are given in any HS background rather than on
AdS. On a practical note this renders the perturbation theory pretty peculiar being exact
in HS 1-form potentials ω while decomposable in terms of HS Weyl tensors C. It turns
out in particular that as shown in [43] a cubic vertex (quadratic in C) can not be zero
once the linear one in C is present. This implies that there are no field redefinitions that
allows one getting rid of cubic vertex for if there were, the resulting system would be either
formally inconsistent or contained no free equations. The latter option can not be realized
for cohomological reason. This seemingly leaves no room for any ambiguity in calculation of
boundary observables from the bulk. Once they are finite they can be checked against CFT
expectations. The non-admissible non-locality results into infinities for these quantities.
An urgent problem is therefore to understand a class of admissible field variables that
render obserbvables finite.

Being formulated in a certain twistor space a natural substitute for the space-time
locality in this approach is a twistor locality proposed in [44] and coined the spin-locality
which if present guarantees finiteness of classical theory. In a series of papers [44–50] the
spin-locality conjecture was confirmed1 for many non-linear Vasiliev vertices but still those
do not yet cover the full quartic vertex on AdS. It is for this reason that we confined to
perturbative analysis in our quest for planar solutions.

Despite the locality issue, there is a handful of exact solutions for Vasiliev equations
in four dimensions that were constructed over the years [51–59]. Particularly, in [53] a
static solution with spherical symmetry was found. In many respects it can be seen as a
generalization of an extremal black hole. Having infinitely many HS parameters all equal
to each other it generalizes the mass equals charge relation for usual extremal black hole.
At free level the s = 2 Weyl tensor appears to be the one of the Schwarzschild solution.
The solution preserves some amount of supersymmetries. In [60] it was considered as
embeddings in different susy HS models. In [54] the extremality condition was relaxed
such that HS parameters entering the solution become arbitrary thus presenting a new
family of black hole like solutions in HS theory (see [58] for review).

While it seems not unlikely that the form of some of the obtained exact solutions should
be reconsidered in view of the locality issue, some interesting information on their properties

1The observed structure of spin-locality turned out to have a certain Z2-graded form. While spin-local
structures can generate non-local ones in star-product commutators, in practice they do not for among
two of them within a star-product commutator at least one appears to be spin ultra-local [46] yielding no
non-localities.
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can still be gained at free level. Particularly, a remarkable boundary interpretation of the
linearized version of HS extremal black hole as a bi-local operator on the boundary was
established in [61]. The same authors have also observed that a BPS-like pattern of the
solution results in certain UV-cancellations of two interacting such black hole states at
leading order.

A powerful method for generating HS analogs of black hole like solutions at linear level
rests on the observation from [62]. It was shown there that a vast class of Petrov D-type
solutions of General Relativity in four dimensions that include Kerr, planar, etc. black holes
are generated with a single AdS global symmetry parameter.2 These naturally generalize
the double copy form to a multi copy one. From a twistor standpoint this statement is
equivalent to having some constant rank-2 dual twistor that generates solutions to free
massless equations via the Penrose transform [53] (see also [64, 65]). The resulting Weyl
tensors are of the generalized D-type. For the pure gravity case a linearized Riemann
tensor obtained this way is in fact exact. The origin of this linearization is a hidden
symmetry of D-type metrics as they admit the so called Killing-Yano tensor [66, 67]. This
property allows one naturally incorporate the s = 2 black hole solutions into the linearized
HS theory. The unfolded version of the Penrose transform well adopted for HS analysis
has been introduced in [53, 68]. It plays an important role in HS solution generating
techniques [53, 54, 56, 59] as well as in HS/CFT analysis [31, 69].

The main results of our paper are the following. Using the proper AdS4 global sym-
metry parameter3 (rank-2 dual twistor) we generate solutions for the free bosonic HS fields
s ≥ 0 on the AdS background via the unfolded Penrose transform. These solve the so
called 0-form sector (Weyl module) of the linearized HS equations. We then restore the HS
potentials corresponding to the 1-form sector of HS equations for the case of HS parity even
model (η = η̄ = 1). The obtained solutions are of D-type, static and admit spatial planar
symmetry similar to that of a black brane. Moreover, the spin s = 2 sector is exactly equal
to a black brane Weyl tensor in agreement with the well known result from gravity.

While solving equations for the Weyl module C using the Penrose-like trick is not a
problem, to recover the corresponding HS potential sector ω which is sourced by C in a form
suitable for higher orders is not always an easy job. The problem is somewhat equivalent
to recover the metric from its Riemann tensor. The procedure is gauge dependent. Even at
free level the result can be quite complicated compared to the form of the original source
C (see e.g., [71, 72]). For the planar solutions of our primary interest we find surprisingly
simple result for fields ω in the parity even HS model with η = 1. On a technical side, one
reason why a simplification takes place is the existence of an auxiliary sp(2) flat connection
induced by the generating symmetry parameter (dual twistor) that results in a natural
ansatz for ω which otherwise might be difficult to grasp. The use of such a flat connection
is beneficial at higher orders as well [38] and plays a key role in our analysis.

Our solution is characterized by infinitely many parameters attributed to different in-
dividual fields of given spin and parameterized by an arbitrary analytic in the generating

2In fact the most general D-type Plebanski-Demianski metric can be described this way by making the
AdS symmetry parameter not hermitian conjugate [63].

3See [70] for incomplete classification of such parameters.
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spinor variables function. This function is polynomial in the case of a finite amount of
massless fields and non-polynomial otherwise, which is a feature of the linearized approxi-
mation. An interesting property of the obtained solution is the unique star-product Fock
projector that shows up as a factor for every spin s field within the Weyl module. Gener-
ally, Fock projectors play crucial role in HS bulk-boundary analysis (see [22, 30, 73, 74]).
Particularly, HS boundary-to-bulk propagators are of this form [75]. They as well play a
role of a probe data for possible non-localities within the HS equations producing infini-
ties for non-local self-interaction.4 At the nonlinear level Fock projectors tend to factorize
(twisted)-adjoint HS equations into left and right modules. It would be very interesting
to carry out higher order analysis of such solutions especially within the context of bulk-
boundary analysis of [30], where a Fock projector naturally appears. At quadratic level
the HS corrections to the planar solution will be analyzed in [38].

The layout of the paper is as follows. In section 2 we give a detailed description of
algebraic properties of AdS4 black brane. We show how its linearized nature results from
hidden symmetry attributed to a Killing-Yano tensor. It exists in the vacuum background
whether it is Minkowski or AdS and along with the Killing symmetry forms a global sym-
metry parameter that builds up geometry of a black hole. We then give a condition on
that parameter to correspond to the planar symmetry. Then we briefly review the Pen-
rose transform that treats this parameter as a rank-two twistor and allows one generating
solutions for any spin s ≥ 0. We conclude this section with the description of the brane
induced sp(2) flat connection that will play a distinguished role in our analysis of the solu-
tions of HS equations. In section 3 the linearized Vasiliev HS equations are reviewed and
the unfolded version of the Penrose transform is introduced. In section 4 we find solutions
of these equations and we conclude in section 5. The paper is supplemented with three
appendices that contain the explicit form of the generating global symmetry parameter
in the Poincare chart, the derivation of the sp(2) connection and, finally, the details on
derivation of our solution in the sector of HS potentials.

2 AdS4 black brane

The presence of negative cosmological constant affects drastically classical topology theo-
rems resulting in that black holes in asymptotically AdS space may have different horizon
topologies. Apart from the usual positive curvature horizon that Kerr solution has there
can be horizons of negative and zero curvatures. These are the hyperbolic and planar black
holes respectively. In fact, in four dimensions an arbitrary genus Riemann surface horizon
is possible as one can quotient the hyperbolic horizon over a discrete subgroup. We will be
interested in a planar black hole here the metric of which can be chosen in the following
standard form

ds2 = − dr2

Λr2 +M/r
+ (Λr2 +M/r)dt2 − Λr2(dx2 + dy2) , (2.1)

4Particularly, early analysis of HS black brane at non-linear level has revealed some pathologies within
the non-local setup [76].
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where Λ is the cosmological constant. When

Λ < 0 (2.2)

there is a horizon at

r0 =
(
−MΛ

) 1
3
, (2.3)

where M > 0 is a massive parameter of the AdS black brane. Metric (2.1) is manifestly
time independent which implies that the solution is stationary and in fact static. It as well
has no dependence on x and y meaning that there is another set of isometries that leave
the two dimensional spatial plane

dl2 = dx2 + dy2 (2.4)

invariant. These form the iso(2) algebra and along with time translation generate u(1) ⊕
iso(2) isometry algebra that can be realized using vector fields

u(1) : T = ∂

∂t
, (2.5)

iso(2) : P1 = ∂

∂x
, P2 = ∂

∂y
, L = x

∂

∂y
− y ∂

∂x
(2.6)

with the commutation relations

[T, P1,2] = [T, L] = 0 , [P1, P2] = 0 , [P1, L] = P2 , [P2, L] = −P1 . (2.7)

When M = 0, (2.1) reduces to the AdS4 Poincare chart

ds2 = 1
z2 (−dt2 + dx2 + dy2 + dz2) , z = 1√

−Λr
. (2.8)

In these coordinates the spatial planar symmetry (2.6) can be realized as the centralizer of
T = ∂

∂t ∈ so(3, 2) which fact will be useful in what follows.
Four dimensional black holes in general and solution (2.1) in particular share the

linearization property. Namely, being exact solutions to non-linear Einstein equations they
at the same time satisfy the linearized ones. Moreover, the non-linear corrections are
satisfied as a consequence of the free solutions. This property can be envisaged from the
form of a black hole Weyl tensor which is linear in M . The statement can be made precise
by means of the Kerr-Schild ansatz

gmn = g0mn + M

U
lmln , (2.9)

which decomposes black hole metric gmn in a sum of the AdS background g0mn and the
linear in M fluctuation part made of shear free geodesic congruence lm

lml
m = 0 , lmDmln = 0 (2.10)

and some scalar function U . Index contraction in (2.10) is carried out with respect to either
background or full metric. The covariant derivative Dm can be also attributed to either
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metric. Equations (2.10) as well as the linearized Einstein equations for (2.9) guarantee
that linear in M approximation is exact. This behavior can be understood as follows.
Looking at black hole metric as some deformation of the AdS space, the linearization
property suggests that certain background geometry characteristics remain undeformed
implying that the black hole curvature is made of the AdS background remnants. This
remnant appears to be a Killing-Yano tensor (see [77] for a comprehensive review) that
D-type metrics have which is present in AdS (and flat) space-time and remains unchanged
upon deformation. Since the AdS background Killing-Yano does not depend on M the
black hole Riemann tensor it provides has no any dependence on M other than through a
linear in M overall factor. The existence of the Killing-Yano tensor in black hole geometry
is often referred to as a hidden symmetry, while its description is most accessible in the
language of two-component spinors.

2.1 Hidden symmetry and linearization

A convenient way to describe black holes that well captures their algebraic properties is by
using Cartan formalism. Consider Cartan structure equations

dwab + wa
cwcb = Rab , (2.11)

Dea ≡ dea + wa
beb = 0 . (2.12)

Here fields wab = −wba and ea are the one-forms of Lorentz connection and vierbein
respectively. The two-form Rab is the Riemann curvature. Indices are contracted using the
Minkowski metric ηab.

The notion of hidden symmetry in a certain sense is a natural generalization of Killing
symmetries. Suppose one has a Lorentz vector ta. The action of covariant differential (2.12)
on it generally results in

Dta = ebsab + ebnab , (2.13)

where sab = sba and nab = −nba are some (anti)symmetric tensors that together form the
most general right hand side of (2.13). If one of those tensors is absent then the space-time
may have a (hidden) symmetry. For example, if sab = 0, then ta is a Killing vector. Indeed,
since nab is antisymmetric, equation (2.13) is equivalent to

Datb +Dbta = 0 , (2.14)

which is just the Killing equation. If only the traceless part of sab is missing in (2.13), then
the resulting condition would imply ta to be a conformal Killing vector. If instead nab = 0,
then (2.13) is equivalent to ∂[atb] = 0 which sets no restriction on geometry.

Similarly, one can consider more complicated tensor structures in place of ta, such as
an antisymmetric tensor tab = −tba for which one can write down

Dtab = ecrabc + echab, c + e[anb] , (2.15)

– 7 –



J
H
E
P
0
8
(
2
0
2
1
)
1
4
4

where the right hand side of (2.15) is decomposed in terms of irreducible so(3, 1) traceless
Young diagrams5

rabc = r[abc] , (2.16)
hab, c = h[ab], c , h[ab, c] = 0 , ηachab, c = 0 . (2.17)

tab is said to be a rank-2 Killing-Yano tensor (KY) if hab, c = 0 and na = 0 being a natural
generalization for Killing condition (2.14). Analogously, if only hab, c = 0 then such tab is a
conformal KY. If instead rabc = 0 and hab, c = 0, then tab is called a closed conformal KY.
A higher rank totally antisymmetric tensor corresponds to a higher-rank KY. There are
no such structures in four dimensions though.

The integrability requirement for (2.11)–(2.12) D2 ∼ Rab, DRab = 0 severely con-
strains any symmetry, so that a generic space-time has no KY’s. The simplest example
that admits KY symmetry is AdS (or flat) space-time, where it has a straightforward
interpretation. To this end consider system (2.11)–(2.12) for AdS background

dwab + wa
cwcb = Λeaeb , (2.18)

dea + wa
beb = 0 . (2.19)

A nice feature of this system is that it has local gauge symmetry

δwab = Dκab + Λ(vaeb − vbea) , (2.20)
δea = Dva − κabeb , (2.21)

where κab = −κba and va are arbitrary space-time dependent parameters. By setting
δwab = 0 and δea = 0 one fixes the AdS global symmetry

Dva = ebκab , (2.22)
Dκab = −Λ(vaeb − vbea) . (2.23)

Here one identifies va with a Killing vector, while κab with a closed conformal KY. In AdS
the two fields go hand in hand as parts of a global symmetry parameter, which can be
naturally written as an so(3, 2) covariantly constant matrix KIJ = −KJI

D0KIJ = 0 , KIJ =
(

κab
√
−Λvc

−
√
−Λvc 0

)
, (2.24)

where
D0 = d+ wIJ , wIJ =

(
wab

√
−Λec

−
√
−Λec 0

)
. (2.25)

For metric (2.8) with xµ = (t, x, y, z) choosing vierbein ea, µ = 1
zηaµ and taking Killing

vector (2.5) vµ = (1, 0, 0, 0) and setting Λ = −1 for convenience we find from (2.22)

κab = 1
z


0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 , va = 1
z

(1, 0, 0, 0) . (2.26)

5In four dimensions rabc can be dualized to a vector va making the first and third terms on the r.h.s.
of (2.15) equivalent. But to set the nomenclature we are working in generic dimension for a while.
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Black holes in d = 4 and their D-type generalizations in higher dimensions admit a nonzero
closed conformal KY much as the AdS background does. This means that (2.23) still
applies for black hole covariant derivative D, while (2.22) should be modified because
system (2.22)–(2.23) is consistent in AdS only. A consistent deformation of that system was
studied in [62] using spinor language, where it was shown that a general global symmetry
parameter KIJ produces the Carter-Plebanski family of D-type metrics which includes all
black hole solutions. Particularly, the Riemann tensor turns out to be built out of closed
conformal KY field κab whereas the massive parameter comes out as an overall factor.
The fact that (2.23) stays the same for black holes explains their linearized nature, while
smooth deformation of (2.22)–(2.23) results in a certain integrating flow that reconstructs
black hole geometry in terms of the AdS global symmetry parameter (2.24) [62]. Different
parameters correspond to different types of black holes. The one corresponding to the
planar type has special algebraic properties that we specify using spinors.

2.1.1 Brane condition

Isomorphism so(3, 2) ∼ sp(4) allows us using the two-component spinor language. In
these terms symmetry parameter KIJ (2.24) is equivalent to a symmetric sp(4) matrix
KAB = KBA, A,B = 1, . . . , 4. Let us also set cosmological constant to a number for
convenience, such that

KAB =
(
καβ vαβ̇
vβα̇ κ̄α̇β̇

)
, καβ = κβα , κ̄α̇β̇ = κ̄β̇α̇ , (2.27)

whereas (2.22)–(2.23) reduce to

Dκαβ = eαγ̇vβγ̇ + eβγ̇vαγ̇ , (2.28)
Dvαα̇ = eαγ̇κ̄α̇γ̇ + eγα̇κγα (2.29)

or in a manifestly AdS4 covariant way

D0KAB = 0 , (2.30)

where D0 = d + Ω,

ΩAB =
(
ωαβ eαβ̇
eβα̇ ω̄α̇β̇

)
. (2.31)

Indices α, α̇ = 1, 2 are contracted with the help of sp(2) forms εαβ = −εβα and εα̇β̇ = −εβ̇α̇.
Formally, system (2.28)–(2.29) allows one generating the D-type (anti)self-dual parts of
the Weyl tensor as follows

Cαβγδ = M

r5 κ(αβκγδ) , C̄α̇β̇γ̇δ̇ = M̄

r̄5 κ̄(α̇β̇κ̄γ̇δ̇) , (2.32)

where
r2 = −1

2καβκ
αβ , r̄2 = −1

2 κ̄α̇β̇κ̄
α̇β̇ (2.33)
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and M is an arbitrary parameter. Equations (2.32) correspond in particular to AdS-Kerr
black hole and encompasses generic D-case. A consistent deformation that drives (2.28)–
(2.29) away from AdS, D̂2 6= Λee looks as follows

D̂καβ = eαγ̇vβγ̇ + eβγ̇vαγ̇ , (2.34)
D̂vαα̇ = ρ̄ eαγ̇κ̄α̇γ̇ + ρ eγα̇κγα , (2.35)

where ρ and ρ̄ are certain functions that depend on deformation parameters (mass, NUT
and electro-magnetic charges) and on r and r̄ from (2.33) (see [62]). Note that (2.34) re-
mains unchanged thus preserving καβ as a KY symmetry and providing Weyl tensors (2.32)
to be expressed in terms of background fields.

While (2.32) reproduces Weyl tensors for any KAB from (2.27), the case of a black
brane corresponds (see [70]) to real M and

KA
CKCB = 0 , detκ = 1

2καβκ
αβ < 0 (2.36)

with the following reality conditions imposed

K†AB = KAB , κ†αβ = κ̄α̇β̇ , v†
αβ̇

= vβα̇ . (2.37)

In this case (2.32) corresponds to a black brane which metric is given by (2.1). Condi-
tion (2.36) is sp(4) invariant with respect to the adjoint group action and will be referred
to as the brane condition. Let us also note the sp(4) subalgebra ε that commutes with KAB

[ε,K] = 0 (2.38)

spans planar symmetry (2.5) and (2.6), where u(1) = ∂
∂t part is generated by K itself (see

appendix). Component form of (2.36) amounts to

καγκγβ + vα
γ̇vβγ̇ = 0 , (2.39)

καγvγβ̇ = κ̄β̇
γ̇vαγ̇ , (2.40)

κ̄α̇γ̇κ̄γ̇β̇ + vγα̇vγβ̇ = 0 , (2.41)

which entails
r2 = −1

2καβκ
αβ = −1

2 κ̄α̇β̇κ̄
α̇β̇ = 1

2vαα̇v
αα̇ > 0 . (2.42)

From (2.28) we also find that
dr = 1

r
eαα̇καγvγα̇ . (2.43)

System (2.28)–(2.29) generates solutions to the free s = 2 equations. For example, the
Kerr-Schild vector that appears in (2.9) as well as function U can be expressed as

lαα̇ = 1
r2

(
vαα̇ + 1

r
καβvβα̇

)
,

1
U

= r . (2.44)

It generates massless s ≥ 0 multi copy solutions too [78]. A comprehensive reason for this
phenomenon rests on the fact that (2.28)–(2.29) is the rank-2 twistor equation. Therefore
the Penrose transform can be applied to produce a tower of massless solutions [53]. While
we are going to use the unfolded version of the Penrose transform specified to AdS in what
follows, let us now demonstrate briefly following [65] how the standard Penrose transform
results in D-type solutions in flat space-time.
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2.1.2 Flat space-time Penrose transform

Suppose we are in flat space Λ = 0 and therefore D2 = 0 and the vierbein can be chosen to
be eαβ̇ = dxαβ̇ . A pair of spinors ZA = (ξα, ξ̄α̇) is called a rank-1 twistor if the following
condition is satisfied

Dξα = −ieαα̇ξ̄α̇ . (2.45)

In the Cartesian reference frame it can be solved via

ξα = ξα0 − ixαα̇ξ̄0 α̇ , ξ̄α̇ = ξ̄0 α̇ , (2.46)

where ZA0 = (ξα0 , ξ̄0 α̇) is x-independent. The incidence relation

ξα0 = ixαα̇0 ξ̄0 α̇ (2.47)

then allows one establishing non-local correspondence between points in space-time xαα̇

and points in twistor space ZA. Similarly, one can define a dual twistor YA = (ηα, η̄α̇) via
hermitian conjugation of (2.45). Tensor product of relations (2.45) and their conjugate
results in an arbitrary rank twistor ZA1...An

B1...Bm . We can now define the Penrose trans-
form as a map from holomorphic twistor functions of ZA = (uα, ūα̇) into solutions of free
massless equations for (HS) Weyl tensors

C̄α̇1... α̇2s =
∮

Γ
dūβ̇ūβ̇ ūα̇1 . . . ūα̇2sf(Z)

∣∣∣
CP 1

, (2.48)

where the projection to CP 1 means that incidence relation (2.47) for twistor ZA is imposed.
This implies that function f(Z) depends on ū variable only

f(Z)
∣∣∣
CP 1

= f(ixαα̇ūα̇, ūβ̇) . (2.49)

The contour Γ is chosen to separate poles in such a way that the integration makes sense.
It is straightforward to check now that the free massless spin s equations hold

∂

∂xαβ̇
C̄ β̇ α̇2... α̇2s = 0 . (2.50)

To generate D-type free Weyl tensors it is sufficient to take

fs+1 = 1
(K0ABZAZB)1+s , (2.51)

where K0AB = K0BA is some constant rank-2 dual twistor. For a particular K0 corre-
sponding to Taub-NUT case6 integration (2.48) has been explicitly carried out in [65] with
the final result being in agreement with the general analysis of [62].

6In classification of [70] this corresponds to KA
CKC

B = δA
B .
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2.2 Brane induced flat connection

Getting back to Λ < 0 case, most symmetric black holes of spherical, planar or hyperbolic
horizons are singled out by a specific symmetry parameter K that satisfies

KA
CKC

B = ε δA
B , (2.52)

where ε = −1, 0, 1 correspondingly [70]. Quite remarkably, in each case there exists an
sp(2) flat connection that originates from mixing Lorentz components of AdS4 connection
Ω (2.31) and K (2.27). In the planar case ε = 0 the form of such a connection is especially
simple.7 One can make sure using (2.28)–(2.29) and (2.36) (for more detail see appendix)
that the following connection is sp(2) flat

wαβ = ωαβ + 1
2(eαγ̇kβγ̇ + eβγ̇kαγ̇) , (2.53)

where
kαα̇ = − 1

r2κα
βvβα̇ , kα

γ̇kβγ̇ = εαβ , kγα̇kγβ̇ = εα̇β̇ (2.54)

and ωαβ is the holomorphic part of the AdS Lorentz connection. Similarly, one defines the
dual connection

w̄α̇β̇ = ω̄α̇β̇ + 1
2(eγα̇kγβ̇ + eγβ̇kγα̇) . (2.55)

This makes the following differential

∇Aαα̇ = dAαα̇ − wαβAβα̇ − w̄α̇β̇Aαβ̇ (2.56)

indeed nilpotent
∇2 = 0 , (2.57)

implying the sp(2) flatness condition

dwαβ − wαγwβγ = 0 . (2.58)

An advantage of this connection is that it makes the properly rescaled components of (2.27)
covariantly constant with respect to ∇

∇
(καβ

r

)
= 0 , ∇

(vαβ̇
r

)
= 0 , ∇

(
κ̄α̇β̇
r

)
= 0 . (2.59)

From (2.54) and (2.59) it follows then

∇kαβ̇ = 0 . (2.60)

Having two types of indices and being ∇-constant we can look at kαα̇ as a metric that
converts dotted indices into undotted ones and vise versa. Indeed, for any Aα̇ we can
define

Aα := kα
β̇Aβ̇ , (2.61)

7For the planar case the existence of sp(2) flat connection was independently confirmed by M.A. Vasiliev.
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which entails from (2.54)

Aα̇ = kγα̇Aγ . (2.62)

One should be cautious with signs though as this rule implies

Aα̇Bα̇ = −AαBα . (2.63)

Components of (2.27) get unified under k-transformation in a sense that they transform
into each other upon index conversion

kγα̇κγα = vαα̇ , kγα̇vγβ̇ = κ̄α̇β̇ , kα
γ̇vβγ̇ = καβ . (2.64)

This suggests once one has metric kαα̇ the only independent brane structure is, say, καβ ,
while the rest result from it via index conversion. This fact is a mere consequence of the
more general constraint (2.52).

Another observation is an analog of the vierbein postulate for ∇. One can check out
the following identity

∇Eα, β = 0 , (2.65)

where we have introduced the one-form

Eα, β := 1
r
kβ

γ̇eαγ̇ . (2.66)

It will be convenient to decompose Eα, β into its symmetric and tracefull part

Eα, β = Eαβ + 1
2εαβ E , Eαβ = Eβα . (2.67)

Both components are therefore covariantly constant

∇Eαβ = ∇E = 0 . (2.68)

In terms of these fields the new connection reduces to

wαβ = ωαβ − rEαβ , w̄α̇β̇ = ω̄α̇β̇ − rEα̇β̇ . (2.69)

In view of (2.59) 1
rKAB is covariantly constant with respect to connection ∇. The only

Lorentz scalar r that system (2.28)–(2.29) has in this case is not a constant as follows
from (2.43)

d1
r

= E . (2.70)

Properties (2.59) as well as (2.69) play an important role in solving HS equations within
the black brane ansatz especially greatly facilitating analysis at non-linear level [38].
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3 Higher-spin equations

In this section we consider free bosonic HS equations using the Vasiliev approach. The main
reason for choosing this formalism is that it makes higher-order analysis readily accessible
on one hand and quite user friendly in four dimensions due to spinorial language on the
other. The price for that simplicity is an extra set of fields that one has to deal with on top
of the Fronsdal ones. Speaking of exact solution this amounts to calculation of auxiliary
fields starting from free level.

HS equations of motion naturally group into the sector of gauge fields and the sector
of HS curvatures (Weyl tensors). The latter admits an analog of the Penrose transform
that gives a tool for constructing solutions, while the former has a HS gauge freedom that
one should make use of properly. In practice, the analysis of the gauge sector is most
challenging.

In this approach fields are valued in higher-spin algebra, which in d = 4 is given by
the Weyl algebra spanned by all polynomials of the generating YA = (yα, ȳα̇) modulo the
relations

[yα, yβ ]∗ = 2iεαβ , [yα, ȳβ̇ ]∗ = 0 , [ȳα̇, ȳβ̇ ]∗ = 2iεα̇β̇ , (3.1)

where star-product ∗ can be chosen to be the Moyal one

f(Y ) ∗ g(Y ) = f(Y )eiεAB
←−
∂ A
−→
∂ Bg(Y ) . (3.2)

In practice one uses the integral representation form for exponential formula (3.2)

f ∗ g = 1
(2π)4

∫
d2ud2ū d2vd2v̄ eiuαv

α+iūα̇v̄α̇f(y + u, ȳ + ū)g(y + v, ȳ + v̄) . (3.3)

Vacuum of the theory satisfies the HS zero-curvature condition

dW +W ∗W = 0 , (3.4)

where W = W (Y |x) is the one-form. The only polynomial solution of that equation
different from zero is the AdS vacuum

W0 = − i4(ωαβyαyβ + ω̄α̇β̇ ȳα̇ȳβ̇ + 2eαβ̇yαȳβ̇) , (3.5)

which upon feeding in (3.4) results in Cartan structure equations for AdS4

dωαβ − ωαγωγβ − eαγ̇eβγ̇ = 0 , (3.6)

deαα̇ − ωαβeβα̇ − ω̄α̇β̇eαβ̇ = 0 . (3.7)

Any other W satisfying (3.4) inevitably contains fields of any spin s ≥ 1.
Gauge invariant sector describing HS Weyl tensors along with matter fields (s = 0

and s = 1
2) is encoded in the zero-form C(Y |x) that satisfies the so-called twisted-adjoint

covariant constancy condition

dC +W0 ∗ C − C ∗ π(W0) = 0 , (3.8)
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where π(W0) flips the sign of yȳ part in W0 (3.5) and more generally

πf(y, ȳ) = f(−y, ȳ) . (3.9)

Self-dual part of HS Weyl tensors is stored in C(y, 0), such that the spin s ≥ 0 component is

Cα1...α2s = ∂

∂yα1
. . .

∂

∂yα2s
C(y, ȳ)

∣∣∣
ȳ=0

. (3.10)

Substituting (3.5) into (3.8) results in

DC − ieαα̇
(
yαȳα̇ −

∂

∂yα
∂

∂ȳα̇

)
C = 0 , (3.11)

where D is the Lorentz covariant derivative

D = d + ωαβyα
∂

∂yβ
+ ω̄α̇β̇ ȳα̇

∂

∂ȳβ̇
. (3.12)

Gauge fields are generated by one-form w(y, ȳ|x) that contains spin s HS potential stored
in ωα1...αs−1, α̇1...α̇s−1 component of w or, equivalently, in the one singled out by

yα
∂

∂yα
w = ȳα̇

∂

∂ȳα̇
w = (s− 1)w , (3.13)

while other components are auxiliary. w is sourced by the Weyl module C. Its equation of
motion can be obtained from the Vasiliev system in the form8 [79]

D0w = iη

4 eαγ̇eβγ̇
∂2

∂yα∂yβ
C(y, 0|x) + iη̄

4 eγα̇eγβ̇
∂2

∂ȳα̇∂ȳβ̇
C(0, ȳ|x) , (3.14)

where

D0 = d + [W0, •]∗ = d + ωαβyα
∂

∂yβ
+ ω̄α̇β̇ ȳα̇

∂

∂ȳβ̇
+ eαβ̇

(
yα

∂

∂ȳβ̇
+ ȳβ̇

∂

∂yα

)
(3.15)

is the AdS4 covariant derivative (cf. (2.31)). Parameter η is an arbitrary complex constant
which unless η = 1 or η = i breaks parity of the theory. Since D2

0 = 0, (3.4) solutions
to (3.14) are defined up to a gauge freedom

w ∼ w +D0ε . (3.16)

A particular solution of (3.8) w and (3.14) C breaks local gauge symmetry down to the
leftover global one, which is parameterized by ε0(y, ȳ|x)

D0ε0 = 0 , ε0 ∗ C − C ∗ π(ε0) = 0 . (3.17)
8Note the (anti)holomorphic dependence within C on the right hand side of (3.14). This is the feature

of ultra-locality that persists on any HS background (3.4) as well as at least at next interaction order.
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3.1 Unfolded Penrose transform

Let us now establish the AdS HS analog of the flat Penrose transform (2.48) introduced
in [53, 68]. Similar transformation has also been given in [80] and further elaborated
in context of relation between adjoint and twisted-adjoint HS modules in [81]. Its various
aspects in context of solution generating technique as well as in HS holography were detailed
and studied in recent years [54–56, 58, 59, 69, 82–84].

To this end we define twistor9 TA as an object that covariantizes (3.1) on AdS back-
ground

D0TA = 0 , [TA, TB]∗ = 2iεAB , (3.18)

where D0 is given by (3.15). Equation (3.18) can be solved as

TA = ΛABYB , (3.19)

where since TA preserves commutation relations, Λ(x) should be an Sp(4) group element
equal to identity at some locus point x0, Λ(x0) = 1.

The Penrose transform is supposed to solve Weyl sector (3.8) of HS fields. In order
to see this let us introduce distributions κy = 2πδ2(y) and κ̄ȳ = 2πδ2(ȳ) which properties
mimic (3.9). Using (3.3) one can show that

F (y, ȳ) ∗ κy = κy ∗ F (−y, ȳ) , F (y, ȳ) ∗ κ̄ȳ = κ̄ȳ ∗ F (y,−ȳ) , (3.20)

where F (y, ȳ) is an arbitrary function. Unlike standard distributions that can not be
squared, the product of δ-functions on non-abelian algebra (3.1) makes perfect sense

κy ∗ κy = κ̄ȳ ∗ κ̄ȳ = 1 . (3.21)

To reveal the meaning of the introduced distributions one can find using (3.3)

F (y, ȳ) ∗ κy =
∫

d2uF (u, ȳ)eiuαyα , (3.22)

which shows that what κy does to a function is just the half Fourier transform. This trick
allows us solving (3.8) in terms of an arbitrary twistor function with constant coefficients
F (T ). Indeed, since from (3.18) it follows that

D0F (T ) = dF +W0 ∗ F − F ∗W0 = 0 , (3.23)

and therefore to solve (3.8) one needs an extra twist which can be arranged using either
κy or κ̄ȳ. This gives us, in particular,

C = F (T ) ∗ κy (3.24)

as a solution of the twisted-adjoint flatness condition (3.8). Equation (3.24) and the similar
conjugate one with κ̄ȳ in place of κy will be referred to as the unfolded Penrose transform.
Explicitly, from (3.22) it follows

C(y, ȳ|x) =
∫

d2uF (Λαβuβ + Λαβ̇ ȳβ̇ ,Λα̇
βuβ + Λα̇β̇ ȳβ̇)eiuαyα . (3.25)

9Having sp(4) form εAB we no longer distinguish between twistors and dual twistors.
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The holomorphic part of spin s Weyl tensor can be extracted by setting ȳ = 0 via

Cα1... α2s ∼
∫

d2 uuα1 . . . uα2sF (Λαβuβ ,Λα̇βuβ) . (3.26)

Equation (3.26) is an AdS analog of the flat Penrose transform (2.48) and has much in
common. There is however some difference. The flat one is written down in the Cartesian
coordinates that allows one imposing explicit incidence relation (2.47) which enters the
final result, while in AdS we stayed covariant implying that the x-dependence of twistor T
is implicit and stored in (3.19). Another difference is while integration in (2.48) is carried
out along a closed contour, in (3.26) it goes across the two-dimensional plane. Formally,
one can rewrite (3.26) in the form of a contour integral by means of Stokes’ formula∫

d2u ∂αg
α(u) =

∮
Γ

duαuαg(u) . (3.27)

We prefer to keep integration over a plane for a reason. While the contour presentation
is convenient when dealing with functions that have poles (see e.g. [65]) which in addi-
tion allows one cropping a particular spin out by adjusting the pole degree, we stay with
functions that are formally expandable in Y ’s in order to have control over star-product
calculation. As a result the unfolded Penrose transform (3.24) gives us a solution for all
spins at once rather than for a given one in particular. Nevertheless, we effectively find
solutions for any fixed spin doing this way, as we make advantage of in what follows.

More importantly, as opposed to (2.48), its HS counterpart (3.24) restores not only
spin s Weyl tensors but the whole module C that contains all on-shell derivatives of the
former. It allows us reaching global symmetries of the resulting solution in a straightforward
manner. Indeed, from (3.17), (3.24) it follows that the leftover symmetries are those that
star commute with F (T )

[ε, F (T )]∗ = 0 . (3.28)

For example, for solutions generated by some constant rank-2 field KAB
0 = KAB(x0) one

picks
F = F (KAB(x0)TATB) = f(KAB(x)YAYB) , (3.29)

where upon substitution (3.19)

KAB(x) = ΛCAKCD(x0) ΛDB (3.30)

depends on x via Sp(4) group adjoint action that spreads K(x0) across the AdS. Func-
tion (3.29) generates HS Weyl tensors via (3.26) which have a certain space-time global
symmetry ε(Y |x) spanned by billinears in Y . To find this symmetry one can take ε =
ξAB(x0)TATB = ξAB(x)YAYB, which manifestly satisfies D0ε = 0 provided ξAB(x0) are
some constants. Plugging it in (3.17) and using (3.28) results in

[ξAB(x0)TATB,KCD(x0)TCTD]∗ = 0 , (3.31)

which using (3.18) boils down to
[ξ,K]AB = 0 . (3.32)
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As expected, the global symmetry represented by parameter ξ comes from the centralizer
of K. In Particular, there are at least two Killing vectors associated with ξ1AB = KAB

and ξ2AB = K−1
AB for generic K. This fact is in agreement with the presence of the KY

tensor in this case which generates two Killing vectors [62, 77].
That global symmetries are easy to grasp within this approach is thanks to the fact

that the unfolded Penrose transform reproduces the whole Weyl module C(Y |x), where the
symmetry action is naturally realized via (3.17). The standard Penrose transform (2.48)
seemingly lacks direct access to global symmetries of the solution it generates.10 Let us
also point out that black hole like fields generated with the aid of the unfolded Penrose
transform in [53] fall into a double copy class of solutions on AdS. Their flat cousins were
considered from double copy perspective in e.g. [85].

4 Solutions

In this section we construct free static solutions with planar symmetry for any spin s ≥ 0.
For s = 2 the corresponding Weyl tensor is given by (2.32), provided brane condition (2.36)
is imposed. Our strategy is to first generate Weyl module C (3.8) and then solve (3.14)
that it sources. Let us note that the Fronsdal fields result readily from the Kerr-Schild
ansatz. Indeed, as was shown in [78] a spin s ≥ 0 can be solved by

φm1...ms = ms

U
lm1 . . . lms , (4.1)

where ms are arbitrary constants, while lm and U are the Kerr-Schild vector and the scalar
function that KAB generates via (2.44). While (4.1) looks neat and naturally generalizes
black hole metric (2.9) still it is not most suitable for higher order analysis since the
auxiliary fields that govern HS interaction have quite complicated form within the Kerr-
Schild setup. For parity even model with η = 1 we find different still simple form of the
solution to (3.14).

4.1 Twisted-adjoint sector

To find planar solutions for C we use the unfolded Penrose transform with twistor func-
tion (3.29). This has to be supplemented with brane condition (2.36) that guarantees the
required global symmetry (2.7) in accordance with (3.32). Let us take

F = s exp
(
is

2 KABY
AY B

)
(4.2)

for (3.29), where s is an arbitrary constant and KAB is the AdS4 global symmetry param-
eter (2.27). Simple Gaussian integration in (3.24) and the use of (2.39)–(2.41) gives the
following result

F ∗ κy = s

∫
d2u′ e

is
2 καβu′αu′β exp

(
i

2sr2καβy
αyβ − i

r2κα
βvβα̇y

αȳα̇
)
∼

∼ 1
r

exp
(

i

2sr2καβy
αyβ − i

r2κα
βvβα̇y

αȳα̇
)
, (4.3)

10We are grateful to C. White for the discussion on this point.
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where r is given in (2.42) and ∼means the equality up to an irrelevant at this stage complex
phase factor attributed to the fact that the gaussian integration in (4.3) is carried out with
the complex quadratic form and therefore should be completed via analytic continuation.
Note the absence of billinears in ȳ in (4.3) as they cancel out due to brane condition (2.36)
being present otherwise. Similarly,

F ∗ κ̄ȳ ∼
1
r

exp
(
− 1

2sr2 κ̄α̇β̇ ȳ
α̇ȳβ̇ − i

r2κα
βvβα̇y

αȳα̇
)
. (4.4)

Now, since s is arbitrary one can integrate (4.3) and (4.4) over s with any measure11 ρ(s)
still producing solutions for C which can be written down in the following form

C(y, ȳ|x) = 1
r
f

( 1
2r2καβy

αyβ
)
e−

i
r2 καβvβα̇yαȳα̇ + 1

r
f̄

( 1
2r2 κ̄α̇β̇ ȳ

α̇ȳβ̇
)
e−

i
r2 καβvβα̇yαȳα̇ ,

(4.5)
where f is an arbitrary (complex) analytic in y function. Since r is real (2.42), solution (4.5)
clearly satisfies usual HS reality condition (see eq. (3.9) for the definition of π)

C† = π(C) . (4.6)

Let us stress that the procedure of obtaining (4.5) via Penrose transform (3.24) should be
viewed as a guiding principle at best. We are not going to use function F (Y ) anywhere
in what follows as it can well happen to be nonanalytic in Y ’s (see for example the analo-
gous (2.51)). Indeed, it is f(y) rather than F (Y ) should be analytic in order to correspond
to HS fields. Moreover, f(y) is polynomial for finite amount of spins. In this case however
the corresponding F (Y ) is not analytic which makes it problematic to work with within
the HS algebra.12 The fact that (4.5) satisfies (3.11) for any f(y) can be checked directly
without any reference to the Penrose transform.

The Weyl tensors (4.5) generates are of D-type

Cα1... α2s = ms

r2s+1κ(α1α2 . . .κα2s−1α2s) , (4.7)

C̄α̇1... α̇2s = m̄s

r2s+1 κ̄(α̇1α̇2 . . . κ̄α̇2s−1α̇2s) , (4.8)

where the mass-like parameters ms are

ms =
(
∂

∂x

)s
f

(
x

2

) ∣∣∣
x=0

. (4.9)

Particularly, the scalar s = 0 corresponds to ∆ = 1 boundary behavior

C∆=1 = m0
r
. (4.10)

11For example, a spin m field can be extracted via residue
∮

dss2m−1F ∗ κy around zero. Note that the
contour integration can not be interchanged with the star product one in this case.

12This is a general phenomenon immanent to the unfolded Penrose transform for it relates an infinite
dimensional twisted-adjoint HS module to a finite-dimensional adjoint one. In practice it transforms poly-
nomials into distributions and vice versa. An infinite tower of spins is necessary to have regular functions
on both sides of the Penrose transform.
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While ms>0 can be complex corresponding to both the magnetic- and electric- like HS
parameters, we restrict ourselves to the case of realms = m̄s which implies f = f̄ . For s = 2
the respective Weyl tensors are of AdS4 black brane (2.1) of mass M = m2. Note, that f
which reproduces a single given spin s is just f(x) = mxs. Being no more than polynomial,
all information on the Weyl tensor on-shell derivatives is stored in the exponential of (4.5),
which turns out to be the same for any spin thanks to the degenerate brane condition (2.36).
This exponential has a remarkable projector property which becomes crucial at non-linear
level [38].

Before going into the details let us first make use of the convention introduced in (2.61)–
(2.62). We note that what appears in the exponential of (4.5) is exactly (2.54). This leads
us to define

ȳα := kα
β̇ ȳβ̇ . (4.11)

Having this notation, solution (4.5) takes the form

C = 1
r

(f(x) + f(x̄))eiyαȳα , x = 1
2r2καβy

αyβ , x̄ = 1
2r2καβ ȳ

αȳβ . (4.12)

Now, one recognizes the Fock projector

eiyαȳ
α ∗ eiyαȳα = eiyαȳ

α
, eiyαȳ

α ∗ π(eiyαȳα) = δ(2)(0) , (4.13)

which forms a Fock vacuum state for the following creation and annihilation operators

a± = y ± ȳ , a− ∗ eiyαȳα = eiyαȳ
α ∗ a+ = 0 . (4.14)

In this respect let us note that projectors greatly facilitate non-linear HS analysis and
for this reason are often introduced for solving the non-linear Vasiliev equations. In [53],
where spherically symmetric solution was considered, the mass-like HS parameters for
infinitely many HS fields were fine tuned to form a projector. This is in sharp contrast
with our planar case, where the Fock projector shows up for each spin s field right away.

Bearing in mind that Fock projector tends to self-reproduce at nonlinear level (see [73]
where it was noted at quadratic level in the AdS/CFT context) we rewrite (3.11) so as to
separate the projector dependence. To this end we decompose Lorentz covariant deriva-
tive (3.12) by separating part that contains sp(2) flat connection (2.69) the oscillator rep-
resentation of which reads

∇ = D + wαβyα
∂

∂yβ
+ w̄α̇β̇ ȳα̇

∂

∂yβ̇
= D − rEαβ

(
yα

∂

∂yβ
− ȳα

∂

∂ȳβ

)
, (4.15)

where we used
∂

∂ȳα̇
= −kβα̇

∂

∂ȳβ
. (4.16)

This way twisted-adjoint equation (3.11) reduces to

∇C + irEαβ(y + i∂̄)α(ȳ − i∂)βC + ir

2 E(yαȳα + ∂α∂̄
α)C = 0 . (4.17)
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We can now define a current module13 T (y, ȳ) by separating the Fock projector

C(y, ȳ) = T (y, ȳ)eiyαȳα . (4.18)

Using that ∇eiyαȳα = 0 we find from (4.17)

∇T + irEαβ ∂̄α∂βT −
r

2E(yα∂α + ȳα∂̄α − i∂α∂̄α + 2)T = 0 . (4.19)

It is straightforward to check that T = 1
r (f(x) + f(x̄)) solves (4.19) for any function f .

There is however another solution with planar symmetry which is not on the list (4.12).
Indeed,

T∆=2 = 1
r2 (1 + iyαȳ

α) (4.20)

corresponding to a scalar field with the alternative boundary condition ∆ = 2 does sat-
isfy (4.17). It was not captured by the unfolded Penrose transform (4.3) and we can add
it to (4.12) if necessary for the nonlinear analysis

C∆=2 = m′0
r2 . (4.21)

4.2 Adjoint sector

Solutions to (3.14) is much harder to find. The unfolded Penrose transform does not
act in this sector, while equation (3.14) is not homogeneous being sourced by primary
components of the Weyl module C. Therefore, the solution procedure is a reconstruction
of HS potentials in terms of curvatures. The result is gauge dependent as is seen from (3.16)
and can be quite complicated even for plane wave- like solutions, [71, 72]. In addition, what
one needs is not only Fronsdal components of w(y, ȳ), which form is quite simple in the
Kerr-Schild representation (4.1), but the whole adjoint module that contains auxiliary
fields related to the Fronsdal ones via derivatives. These auxiliary fields contribute to
interactions within the unfolded approach. In principle one can start from the physical
components given by (4.1) and restore all auxiliary fields one by one. While doable in
principle the result turns out to be not particularly encouraging. Instead, inspired by
flat connection (2.69) we provide an ansatz that works in HS A-model corresponding to
η = η̄ = 1 in (3.14) and brings us to the solution for the whole module w in a simple form.

Our strategy is as follows. Since the only variable which is not constant with respect
to connection ∇ is r (2.70) we can rewrite (3.14) in terms of ∇ and then propose an ansatz
for w(y, ȳ|x) that depends on ∇- covariantly constant fields (2.59), (2.68) as well as on r
thus reducing the space-time partial differential equation to the ordinary one with respect
to r.

Proceeding this way we first rewrite (3.14) in ∇- covariant way by expressing (3.15) as

D0 = ∇+ rEαβ(y − ȳ)α(∂ + ∂̄)β −
r

2E(yα∂̄α + ȳα∂α) . (4.22)

13A very similar decomposition was used in [30] for HS bulk-boundary analysis, where the corresponding
T appears to describe 3d boundary currents. We expect the analogy to be far reaching and hence borrow
the terminology.
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This leads us to the following form14 of (3.14)(
∇+ rEαβ(y− ȳ)α(∂+ ∂̄)β −

r

2E(yα∂̄α + ȳα∂α)
)
w= (4.23)

= ir2

4 EαγEγ
β
(
η̄∂̄α∂̄βC(0, ȳ)− η∂α∂βC(y, 0)

)
+ ir2

4 EαβE
(
η∂α∂βC(y, 0) + η̄∂̄α∂̄βC(0, ȳ)

)
.

Substituting (4.12) into (4.23) one arrives at(
∇+ rEαβ(y − ȳ)α(∂ + ∂̄)β −

r

2E(yα∂̄α + ȳα∂α)
)
w = (4.24)

= ir

4 EαγEγ
β
(
η̄∂̄α∂̄βf(ȳ)− η∂α∂βf(y)

)
+ ir

4 EαβE
(
η∂α∂βf(y) + η̄∂̄α∂̄βf(ȳ)

)
.

To solve this equation we propose the following ansatz

w = Eαβ
∫ 1

0
dτρ(τ)∂α∂βg(τy + (1− τ)ȳ) , (4.25)

where ∂ differentiates the argument of g,

∂αg(ξ) := ∂

∂ξα
g(ξ) (4.26)

and ρ(τ) is an unspecified function. The idea behind (4.25) is that upon substitution
into (4.24) the result may acquire a form of a total derivative with respect to τ , such that
at τ = 1 it leads to ∂α∂βf(y), and to ∂̄α∂̄βf(ȳ) at τ = 0 correspondingly, thus matching
the right hand side. The particular dependence on frame fields Eαβ and E is also a part of
our ansatz motivated by the presence of second derivatives on the right hand side of (4.24).

Let us check if (4.25) works. When acting on w, the left hand side of (4.24) splits
into two two-form sectors EαγEγ

β and EαβE. The first one that has contribution from the
second term on the l.h.s. of (4.24) only reads

Eαβ(y − ȳ)α
(
∂

∂y
+ ∂

∂ȳ

)
β

Eγδ
∫ 1

0
dτρ(τ)∂γ∂δg = EαβEγδ(y − ȳ)α

∫ 1

0
dτρ(τ)∂β∂γ∂δg .

(4.27)
With the aid of the Schouten identities

EαβEγδ = 1
4(εαγHβδ + εβγHαδ + εαδHβγ + εβδHαγ) , Hαβ = −EαγEγ

β (4.28)

(4.27) is further reduced to

− 1
2Hβγ(y − ȳ)α∂α

∫ 1

0
dτρ(τ)∂β∂γg = −1

2Hαβ
∫ 1

0
dτρ(τ) ∂

∂τ
∂α∂βg , (4.29)

where in the last line we made use of the following identity

(y − ȳ)α∂αg(τy + (1− τ)ȳ) = ∂

∂τ
g(τy + (1− τ)ȳ) . (4.30)

14By introducing a± = y ± ȳ, equation (4.23) takes a form very similar to the one that arises in bulk-
boundary analysis of [30].
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We see that the result indeed acquires a form of a total derivative. Partial integration
results in∫ 1

0
dτρ(τ) ∂

∂τ
∂β∂βg = ρ(1)∂β∂βg(y)− ρ(0)∂̄β ∂̄βg(ȳ)−

∫ 1

0
dτρ′(τ)∂β∂βg . (4.31)

In order to match the right hand side of (4.24) one sets g = f , ρ = −1 and η = η̄ = 1 thus
having

w = − i2Eαβ
∫ 1

0
dτ∂α∂βf(τy + (1− τ)ȳ) . (4.32)

Sector EαγEγ
β is perfectly satisfied by our ansatz, provided η = η̄ which corresponds to

the HS A-model case. On the other hand we have no freedom left within (4.25), which
suggests that the remaining sector EαβE is either satisfied by default or the ansatz does
not go through.

To check out if (4.32) solves EαβE sector is less trivial. In fact it does not for generic
f(ξ), but in the case of

f(ξ) = f

( 1
2r2καβξ

αξβ
)
, (4.33)

which precisely corresponds to Weyl module (4.12), it does go through. Being somewhat
technical we leave this verification for appendix, still noting here that a reason other than
just a mere coincidence for why (4.32) satisfies another constraint from sector EαβE is not
entirely clear to us.

As a result, the adjoint module is solved by simple formula (4.32). It corresponds to
the gauge where y and ȳ enter in a totally symmetric way. Indeed, from (4.32) and (4.33)
one can obtain the following component form for w

wα(m),β(n) = 1
r2+m+nTα(m)β(n)γδEγδ , (4.34)

where Tα1... α2k ∼ κ(α1α2 . . .κα2k−1α2k) is totally symmetric. Hence, of gauge that results in
such w we can refer to as of the symmetric one.

Summarizing here our findings, the HS potentials that corresponds to Weyl mod-
ule (4.12) have the following form

w = − i2Eαβ
∫ 1

0
dτ∂α∂βf

( 1
2r2κγδ(τy + (1− τ)ȳ)γ(τy + (1− τ)ȳ)δ

)
, (4.35)

where we recall that here ∂ differentiates with respect to τy + (1 − τ)ȳ. To get back to
original variables (2.27) one substitutes

ȳα = − 1
r2κα

βvβ
α̇ȳα̇ , Eαβ = − 1

2r3 (καγvγγ̇eβγ̇ + κβγvγγ̇eαγ̇) . (4.36)

Let us stress that the form of the final result for w is hard to anticipate without being
guided by the auxiliary sp(2) flat connection (2.53). It plays an important role in our
derivation of w and remains so at the interaction level considered in [38].
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5 Conclusion

We have initiated a search for static solutions in d = 4 higher-spin gauge theory that
have planar symmetry. Owing to the standard gravity examples we expect such solutions
may correspond to a thermal state of a boundary theory. The pursuit was encouraged
by the solution generating technique of [53, 62] that produces black hole- like solutions
from the AdS global symmetry parameter KAB for all spins at once. From the twistors
standpoint this parameter is a rank-2 twistor and therefore can be fed into the Penrose
transform yielding the Petrov D-type solutions. Since HS equations are based on the
Vasiliev unfolded approach the Penrose transform gets modified accordingly and we call
such a modification introduced in [53, 68] the unfolded Penrose transform. We provide
details on that modification and compare it with the standard one. A major difference is
the unfolded transform not only reproduces solutions to free HS Weyl tensors but as well
to their all descendants which are on-shell derivatives thereof. This gives us, in particular,
the access to the leftover global symmetries of the solutions it generates. In the planar case
of our interest this implies the generating parameter should be degenerate satisfying (2.36).

Property (2.52) gives rise a certain sp(2) flat connection that makes the properly
rescaled Lorentz components of parameter KAB covariantly constant tensors with respect
to this connection. That made us use the sp(2) covariant formalism in our analysis. Using
the unfolded Penrose transform we have found a class of solutions of the HS Weyl module
parameterized by a single arbitrary analytic in y’s function that encodes an infinite set of
HS mass-like parameters. These include a free scalar with ∆ = 1 boundary condition and
s ≥ 1 gauge fields that have the double copy origin. The function is of homogeneity degree
s for a single spin s field. While the solution for s = 0 with ∆ = 2 boundary condition
was not captured by our Penrose transform, it nevertheless naturally exists. For s = 2 our
solution corresponds to the AdS4 black brane.

Remarkable property of the obtained solution is that it contains one and the same
Fock-type projector for any spin s ≥ 0. Projectors are known to appear in the AdS/CFT
context as bulk-to-boundary propagators [22, 31, 75]. It is conceivable that at the full
non-linear level it may play a role of some thermal state. The nonlinear analysis gets
especially interesting in the presence of projectors as they tend to survive in interactions
and eventually decouple from HS equations [73]. This is especially relevant in context of
(non)locality of HS interactions. Indeed, the decoupling of the projector leaves one with
HS equations that contain no more than polynomial interactions for the states bounded
in spin.

While the obtained solutions are by construction of D Petrov type, it is also interesting
to check whether they stay so in interaction. It would be also interesting to see whether
the pure s = 2 field corresponding to AdS black brane at leading order induces higher
spins in interaction. In order to be able to answer these kind of questions one has to have
complete solution at free level that includes both the sector of gauge invariant curvatures
and the one of gauge fields. While the former comes about from the Penrose transform,
the latter can be difficult to find. One of the main result of this paper is a simple formula
for HS gauge fields (4.32) that we were able to derive in parity even HS theory η = η̄ = 1.
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It makes a further quadratic analysis readily accessible [38]. It would be also interesting
to know if there is as simple generalization of formula (4.32) available for parity broken
theory.

A great deal of simplification in our derivation of HS gauge fields results from the
emergent sp(2) flat connection. On a practical side this implied that the space-time partial
derivative equations of motion get reduced to the ordinary one along the radial variable r.
Our result for the field components of HS connections wα(m), β̇(n) from w(y, ȳ) turns out to
be totally symmetric with respect to permutations in both group of indices. Finally, let us
note that the flat connection trick can be also useful in different context. In particular, the
bulk-to-boundary propagator for gauge fields written in [73, 86] can be found using similar
trick.
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A Explicit form of the generating parameter

The AdS global symmetry parameter that generates planar solutions have particular con-
venient form in Poincare coordinates (2.8). Its so(3, 1) tensor components originating from
Killing vector ∂

∂t are given in (2.26). The sp(4, R) spinor realization is easy to obtain by
introducing the so(3, 2) γ-matrices {γI , γJ} = 2ηIJ , which can be taken to be the following
γI = (γa, γ5)

γ0 =
(
−iσ2 0

0 iσ2

)
, γ1 =

(
σ1 0
0 σ1

)
, γ2 =

(
σ3 0
0 σ3

)
, γ3 =

(
0 iσ2

−iσ2 0

)
, (A.1)

γ5 = γ0γ1γ2γ3 =
(

0 iσ2

iσ2 0

)
. (A.2)

We can now define
KAB = 1

2KIJ(γIγJ)AB . (A.3)

Simple computation with γ-matrices and (2.26) gives us the following final result for K

K = 1
z
γ0(γ1 + γ5) . (A.4)

Clearly, K2 = 0 while the radial scalar defined in (2.42) is

r = 1
z
. (A.5)

– 25 –



J
H
E
P
0
8
(
2
0
2
1
)
1
4
4

The explicit sp(4) form of the planar subalgebra (2.7) that commutes with K is also easy
to find

T = K = 1
2γ0(γ1 + γ5) , (A.6)

P1 = 1
2γ2(γ1 + γ5) , (A.7)

P2 = 1
2γ3(γ1 + γ5) , (A.8)

L = 1
2γ2γ3 (A.9)

with the commutation relations

[T, P1,2] = [T, L] = 0 , [P1, P2] = 0 , [P1, L] = P2 , [P2, L] = −P1 (A.10)

that fulfill u(1)⊕ iso(2) algebra.

B Derivation of sp(2) connection

To proceed with the first order correction in the one-form sector we have used flat connec-
tion wαβ , w̄α̇β̇ defined by (2.53). It was claimed to be flat which is synonymous to

dwαβ − wαγwγβ = 0. (B.1)

To check this fact one should use defining relations for AdS4 geometry (3.6), (3.7) and differ-
ential conditions on isometry parameters (2.28), (2.29). Differential of k defined by (2.54)
is given by

dkαα̇ = 2
(
eσσ̇kσσ̇

)
kαα̇+ωα

γkγα̇+ 2eαα̇+ 1
r2 eβγ̇vαγ̇vβα̇+ ω̄α̇

γ̇kαγ̇ −
1
r2κα

βeβγ̇κ̄α̇γ̇ . (B.2)

Now one is in a position to compute differential of wαβ and product wαγwγβ . Straightfor-
ward computation by virtue of Fierz identity yields

dwαβ = ωα
γωγβ −

1
2ωα

σeσγ̇kβγ̇ −
1
2ωβ

σeσγ̇kαγ̇ −
1
2eαγ̇ωβσkσγ̇ −

1
2eβγ̇ωασkσγ̇−

− H̄γ̇σ̇kα
σ̇kβ

γ̇ + 1
2Hαβ + 1

2r2 H̄γ̇σ̇vβ
σ̇vα

γ̇ − 1
2r2 H̄γ̇σ̇καβκ̄γ̇σ̇ (B.3)

and

wα
γwγβ = ωα

γωγβ −
1
2ωα

γeγγ̇kβγ̇ −
1
2ωβ

σeσγ̇kαγ̇ + 1
2ωα

σeβγ̇kσγ̇ −
1
2eαγ̇ωβγkγγ̇+

+ 1
2Hαβ −

1
2H̄γ̇σ̇kα

γ̇kβ
σ̇. (B.4)

Here Hαβ and H̄α̇β̇ are basic two-form defined as

Hαβ = eαγ̇eβγ̇ , H̄α̇β̇ = eγα̇eγβ̇ . (B.5)
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After several simple cancellations one finds

dwαβ − wαγwγβ = −1
2H̄γ̇σ̇kα

γ̇kβ
σ̇ + 1

2r2 H̄γ̇σ̇vβ
σ̇vα

γ̇ − 1
2r2 H̄γ̇σ̇καβκ̄γ̇σ̇. (B.6)

Using definition of k, r (given by (2.42)) and identity (2.40) one can show that

kα
γ̇kβ

σ̇ =
(
− 1
r2κα

σvσ
γ̇
)(
− 1
r2κβ

ξvξ
σ̇
)

= − 1
r4
(
κασvσγ̇

)(
vβ
ξ̇κ̄ξ̇

σ̇) =

= − 1
r4

[(
vσ
γ̇vβ

ξ̇ − vβγ̇vσξ̇
)
κασκ̄ξ̇

σ̇ + vβ
γ̇vσ

ξ̇κασκ̄ξ̇
σ̇
]

= − 1
r4

[
r2εσβ ε̄

γ̇ξ̇κασκ̄ξ̇
σ̇ + vβ

γ̇vσ
ξ̇κασκ̄ξ̇

σ̇
]
.

(B.7)
Previous identity allows one to bring (B.6) to the form

dwαβ − wαγwγβ = 1
2r4 H̄γ̇σ̇vβ

γ̇vα
ξ̇κασκ̄ξ̇

σ̇ + 1
2r2 H̄γ̇σ̇vβ

σ̇vα
γ̇ . (B.8)

To simplify the remaining terms on the r.h.s. one should once again apply identity (2.40),
hence one has

dwαβ − wαγwγβ = − 1
2r4 H̄γ̇σ̇vβ

γ̇vα
ρ̇κ̄ρ̇ξ̇κ̄ξ̇

σ̇ + 1
2r2 H̄γ̇σ̇vβ

σ̇vα
γ̇ =

= − 1
2r4 H̄γ̇σ̇vβ

γ̇vα
ρ̇r2δσ̇ρ̇ + 1

2r2 H̄γ̇σ̇vβ
σ̇vα

γ̇ = 0. (B.9)

Flatness of w̄α̇β̇ can be checked analogously.

C Checking the adjoint module

In solving (4.24) the two conditions should be satisfied separately. Indeed, being a differ-
ential two-form, (4.24) splits into the part proportional to EαγEγ

β and to EαβE. Each of
these should be equal to zero. We have checked that (4.25) passes through EαγEγ

β-part
and fixes the form of solution (4.32) unambiguously. It is therefore win or lose for the
remaining EαβE. Let us check here that (4.32) satisfies it too.

Sector EαβE is contributed by the first and third terms of (4.24). Consider those in
detail. The first term is

∇
(

Eββ
∫ 1

0
dτ∂β∂βf

( 1
2r2καα(τy + (1− τ)ȳ)α(2)

))
= (C.1)

= −EββE ∂β∂β

∫ 1

0
dτ f

′

2rκαα(τy + (1− τ)ȳ)α(2) ,

where f ′(x) = d
dxf(x). Let us now note that for f(τy + (1 − τ)ȳ) the differentiation over

the argument can be rewritten as

∂f =
(
∂

∂y
+ ∂

∂ȳ

)
f (C.2)

and thus (C.1) boils down to

−EββE
(
∂

∂y
+ ∂

∂ȳ

)2

β(2)

∫ 1

0
dτ f

′

2rκαα(τy + (1− τ)ȳ)α(2) . (C.3)
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To calculate the third term in (4.24) we use that(
yα

∂

∂ȳα
+ ȳα

∂

∂yα

)(
∂

∂y
+ ∂

∂ȳ

)2

β(2)
=
(
∂

∂y
+ ∂

∂ȳ

)2

β(2)

(
yα

∂

∂ȳα
+ ȳα

∂

∂yα

)
− 2

(
∂

∂y
+ ∂

∂ȳ

)2

β(2)
.

(C.4)
Now, evaluating(

yα
∂

∂ȳα
+ ȳα

∂

∂yα

)
f = f ′

r2καα(τy + (1− τ)ȳ)α(τ ȳ + (1− τ)y)α (C.5)

and using that
f ′

r2καα(τy + (1− τ)ȳ)α(y − ȳ)α = ∂

∂τ
f (C.6)

we have[
∇− r

2E
(
yα

∂

∂ȳα
+ ȳα

∂

∂yα

)]
Eββ

∫ 1

0
dτ∂β∂βf(τy + (1− τ)ȳ) = (C.7)

= r

2EββE
∫ 1

0
dτ(1− 2τ) ∂

∂τ
∂β∂βf(τy + (1− τ)ȳ)− rEββE

∫ 1

0
dτ∂β∂βf(τy + (1− τ)ȳ).

Integrating by parts we finally obtain[
∇− r

2E
(
yα

∂

∂ȳα
+ ȳα

∂

∂yα

)]
Eββ

∫ 1

0
dτ∂β∂βf(τy + (1− τ)ȳ) = (C.8)

= −r2EββE(∂β∂βf(y) + ∂̄β ∂̄βf(ȳ))

and so we conclude that (4.32) is the solution.
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