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data is tightly constrained by employing two trajectories in the quark mass plane, enabling a
thorough investigation of U(3) large-Nc chiral perturbation theory (ChPT). The continuum
limit extrapolated data turn out to be reasonably well described by the next-to-leading
order ChPT parametrization and the respective low energy constants are determined. The
data are shown to be consistent with the singlet axial Ward identity and, for the first
time, also the matrix elements with the topological charge density are computed. We
also derive the corresponding next-to-leading order large-Nc ChPT formulae. We find
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1 Introduction

The physics of the pseudoscalar η and η′ mesons is a fascinating area at the crossroads of
many themes in hadron and particle physics. In the exact flavour SU(3) limit the η meson
is part of the flavour-octet whereas the η′ is a pure flavour-singlet state whose properties are
intimately related to the celebrated axial anomaly [1, 2]. However, it is known empirically
that the SU(3) breaking effects are large and have a non-trivial structure. These effects
are usually described in terms of a mixing scheme that considers the physical η and η′

mesons as superpositions of fundamental (e.g., flavour-singlet and -octet) fields in a low
energy effective theory. Modern phenomenological analyses of η-η′ mixing are largely based
on large-Nc chiral perturbation theory (ChPT) [3–6] which allows for a unified treatment
of the η(′)-mesons together with the pseudo-Goldstone octet of the lightest pseudoscalars.
When combined with dispersion relations, this approach provides a quantitative description
of a large variety of η(′) decays and low energy η(′) production processes, see, e.g., [7] and
references therein.

Flavour-singlet pseudoscalar mesons are a very active area of research. Chiral dynamics
has been very successful in describing low energy pion and kaon reactions and it is natural to
attempt to generalize this to include the η(′) sector. Theoretical developments as well as new
high-precision experimental measurements are needed to advance this agenda. The study of
η and η′ mesons also provides an interesting window to beyond-the-standard-model (BSM)
physics. BSM searches in η(′) decays have initially been related to flavour-conserving tests
of discrete symmetries, however, other interesting searches have been proposed [7], e.g., for
axion-like particles. Corresponding efforts are ongoing or planned in many experimental
facilities. A less well explored area is the production of η and η′ in hard processes, e.g., in
B-meson decays or in two-photon reactions γ∗γ → η(′), which constitute part of the Belle II
research programme [8]. It is not obvious whether and to what extent the approaches based
on low energy effective field theory provide an adequate description of such processes, that
are dominated by meson wave functions at small transverse separations, referred to as
light-cone distribution amplitudes (LCDAs). However, this is usually taken as a working
hypothesis in phenomenological applications, see, e.g., [9–12]. One important issue in this
context is that η(′) mesons, in contrast to the pion, can contain a significant admixture of
a two-gluon component at low scales, i.e. a comparably large two-gluon LCDA. Several
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different reactions were considered in an effort to extract or at least to constrain these
contributions, see, e.g., [10, 13, 14]. However, no definite conclusion can be drawn as yet.

Lattice simulations of properties of flavour non-singlet pseudoscalar mesons are quite
advanced. Recently, continuum limit results at physical quark masses of the first two
Gegenbauer moments of the twist-two pion and kaon LCDAs [15] were obtained, pion
transition form factors calculated [16] and exploratory studies of higher twist LCDA pa-
rameters undertaken [17]. However, only a few investigations of matrix elements involving
the η and η′ mesons exist to-date [18, 19]. These are technically demanding due to the
computationally expensive evaluation of disconnected contributions and the coupling to
the topological charge, which results in large autocorrelation times and requires long time
series to enable an adequate sampling of the topological sectors. Moreover, the extraction
of ground state properties from correlation functions with a noise over signal ratio that
increases rapidly in Euclidean time requires optimized methods.

Despite these challenges, steady progress has been made in computing the masses of
the η and η′ mesons, starting in the quenched approximation [20–22], and continuing with
Nf = 2 mass-degenerate dynamical light quarks [21, 23–30]. In the latter case only one
η meson exists, which is a pure singlet state, and no flavour mixing takes place. More
realistic simulations of nature require an additional strange quark (Nf = 2 + 1) [18, 31–33]
(see also [34] for a different attempt using correlators of the topological charge density).
More recently, Nf = 2 + 1 + 1 results [19, 35, 36] employing the twisted-mass fermion
formulation, using several ensembles and lattice spacings, enabled a physical point extrap-
olation. In [37] the η′ mass was calculated at non-zero temperature from topological charge
density correlators. In [19] also pseudoscalar matrix elements were determined. Relating
these to the four decay constants of the η/η′ system enabled the first lattice determination
to a precision that is on par with phenomenological studies. Another lattice computation
of these matrix elements was carried out in Nf = 2 + 1, in the context of a calculation of
the semileptonic decay form factors Ds → η, η′, albeit only on two ensembles at a single
lattice spacing [18].

Here, we compute the masses, decay constants and gluonic anomaly matrix elements
of the η and η′ mesons in Nf = 2 + 1 QCD. The simulations are carried out on twenty-
one ensembles generated by the CLS (Coordinated Lattice Simulations) initiative [38, 39],
employing non-perturbatively improved Sheikholeslami-Wilson fermions. Most of the en-
sembles have open boundary conditions in time, ensuring that the topological sectors are
sampled uniformly. We employ pion masses that range from the SU(3) symmetric point at
Mπ ≈ 420 MeV down to just below the physical pion mass. The corresponding kaon masses
are tuned so that the ensembles fall onto two distinct trajectories — one at a constant av-
erage quark mass and the other at an approximately constant strange quark mass. Both
lines intersect close to the physical point, aiding the chiral interpolation. The continuum
extrapolation is carried out utilizing four lattice spacings ranging from a ≈ 0.086 fm down
to a ≈ 0.050 fm.

Using a combination of all-to-all propagator methods and various interpolating oper-
ators, we obtain a correlation matrix between pairs of interpolators as a function of the
Euclidean time separation. In addition, for each of three local currents, axialvector, pseu-
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doscalar and gluonic, we compute the vector of correlators with the interpolating operators.
From these the meson masses and matrix elements are extracted via a fit, utilizing a gen-
eralized effective mass method that we introduce. A comparison is made with the result of
the usual generalized eigenvalue problem (GEVP) method. The matrix elements are renor-
malized and partially order a improved. Remaining order a terms with (as yet) unknown
coefficients as well as order a2 corrections are included in parametrizations of the lattice
spacing and quark mass dependence. Regarding the continuum limit, we are able to simul-
taneously parameterize all data in terms of the six low energy constants (LECs) of large-Nc

U(3) ChPT at next-to-leading order (NLO). Systematic errors are estimated by carrying
out a multitude of fits and also by excluding data points at large average quark masses.

The masses of the mesons are found to be in agreement with experiment and we de-
termine the two decay constants (singlet and octet) for each meson as well as the LECs of
large-Nc ChPT. Due to the axial anomaly, some LECs depend on the QCD renormaliza-
tion scale, as do the singlet decay constants, and we present our results in the MS scheme
at different scales. The gluonic matrix elements of the η and η′ mesons and the topological
susceptibility are found to be affected by sizeable lattice cut-off effects. In the continuum
limit the topological susceptibility is well described by the leading order (LO) ChPT expec-
tation. This only depends on the pion decay constant in the chiral limit, which we obtain
from our global fits to the axial matrix elements. The continuum limit η and η′ matrix
elements satisfy the flavour-octet and flavour-singlet axial Ward identities (AWIs) and the
pseudoscalar fermionic matrix elements are determined too. We address implications on
the phenomenology of hard processes for the example of the γγ∗ → η(′) transition form
factors as well as radiative decays of the J/ψ to an η(′) meson.

The conventions and main results of this article can be found in the following places.
In section 2 we detail the flavour mixing schemes and define our normalization conventions
and some of our notations. The basic ChPT formulae can be found in section 5.3, and
figure 5 illustrates the main results on the masses and decay constants. Section 6 details
the determination of the gluonic matrix elements. The continuum limit results are collected
and discussed in section 7. Our main results on the masses, decay constants and gluonic
matrix elements are summarized in section 8.

The remainder of the article is organized as follows. In section 3 we discuss the simula-
tion parameters, the lattice observables and the computational techniques used. We then
move on to introduce the generalized effective mass method, that we employ to extract the
masses in section 4. In that section we also explain the lattice evaluation of the necessary
matrix elements and our statistical analysis. In section 5 we discuss the renormalization
and improvement of the lattice results and the parametrizations of the quark mass and
lattice spacing dependence. We then determine the meson masses, decay constants and
LECs, and estimate their systematics. As mentioned above, in section 6 we determine the
quark mass dependence of the topological susceptibility and the gluonic matrix elements
of the η and η′ mesons. The results are parameterized in terms of NLO large-Nc U(3)
ChPT. In section 7, apart from discussing the continuum limit results, we also address
implications on the phenomenology of hard processes for the example of the γγ∗ → η(′)

transition form factors, see section 7.5.
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The article is augmented by several appendices: in appendix A, we present the
parametrization of the pseudoscalar loop contributions that appear at next-to-next-to-
leading order (NNLO). In appendix B we derive the dependence of the gluonic and pseu-
doscalar fermionic matrix elements on the pion and kaon masses in terms of the six NLO
large-Nc U(3) LECs. In appendix C we show the result of a LO fit to the η and η′ masses
that we omitted from the main body of the paper for brevity. In appendix D we collect the
values of the parameters accompanying the lattice spacing effects for seventeen different fit
forms. Finally, in appendix E we list our results for the decay constants and mixing angles
in different flavour bases and at different scales, both in units of the gradient flow scale t0
and in physical units. A corresponding table with gluonic matrix elements can be found
in section 6.

2 Definitions, conventions and octet/singlet mixing

The couplings between axialvector currents and pseudoscalar states, that are also known
as meson decay constants, play a crucial role in the description of low energy physics with
η and η′ mesons. Different normalization conventions are used throughout the literature.
Here we introduce the conventions for the local currents, decay constants and interpolating
operators that we employ in this article. We also briefly address what is often referred to
as η-η′ mixing or pseudoscalar octet/singlet mixing.

Everywhere we will assume Nf = 3 quark flavours with the masses mu, md and ms,
where we ignore the mass difference between the up and the down quark as well as elec-
tromagnetic effects, i.e. we set m` = mu = md. For convenience, sometimes we write out
the dependence on Nf and Nc. Formulae without these factors always refer to the case
Nf = Nc = 3.

We define the U(Nf ) generators ta with t0 = 1/
√

2Nf , where in the Nf = 3 case
ta = λa/2 for a 6= 0 and λa are the eight Gell-Mann matrices. This normalization of the
generators corresponds to tr

(
tatb

)
= 1

2δ
ab. Using ψ = (ū, d̄, s̄), we can introduce local

currents as

Ja = ψtaΓJψ, (2.1)

where the Dirac matrix structure ΓJ defines the current J , for instance Aaµ = ψtaγµγ5ψ

and P a = ψtaγ5ψ. It is also useful to define currents for individual quark flavours:

Jq = q̄ΓJq, J ` = 1√
2

(
Ju + Jd

)
, (2.2)

where q ∈ {u, d, s}. The flavour-diagonal singlet, triplet and octet currents J0, J3 and J8

can be written as linear combinations of the above flavour basis currents:

J3 = 1
2
(
Ju − Jd

)
, (2.3)

J8 = 1√
12

(
Ju + Jd − 2Js

)
= 1√

6
J ` − 1√

3
Js, (2.4)

J0 = 1√
6

(
Ju + Jd + Js

)
= 1√

3
J ` + 1√

6
Js. (2.5)
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We define the decay constants F aM of a pseudoscalar mesonM:〈
Ω
∣∣∣Aaµ∣∣∣M(p)

〉
= iF aMpµ, (2.6)

where |Ω〉 denotes the vacuum and |M(p)〉 a meson state with four-momentum p. Below
we will often refer to the latter as |n〉 where n ∈ N0 labels the η meson (n = 0), the η′
meson (n = 1) and their excitations (n ≥ 2). Note that in the above normalization, at
the physical point, F 3

π0 ≈ 92MeV. For mu = md = ms, these conventions correspond to
fπ =

√
2F 3

π0 =
√

2F 8
η8 = 2F 1

π+ = −2iF 2
π+ , where ifπpµ = 〈0|d̄γµγ5u|π+(p)〉. The usual

normalization for the analogous decay constants in the light/strange flavour basis reads:〈
Ω
∣∣∣Aqµ∣∣∣M(p)

〉
= i
√

2F qMpµ. (2.7)

Since we only consider the isospin symmetric limit, the triplet couplings F 3
M vanish

identically for the η and the η′ mesons. Note that the singlet couplings F 0
M in the standard

MS scheme acquire an anomalous dimension due to the axial U(1) anomaly [40],

µ2 d
dµ2F

0
M(µ) = −Nf

2
α2
s

π2F
0
M(µ) +O(α3

s), (2.8)

whereas the octet couplings F 8
M are scale independent. This simplifies the scale evolution

in the octet/singlet basis relative to that in the light/strange flavour basis.
We introduce pseudoscalar interpolating operators Pa~p that have the same flavour struc-

ture as the local currents P a. However, these can be non-local in space (due to quark
smearing) and are projected onto a definite spatial momentum ~p in order to destroy physi-
cal states with matching quantum numbers. For instance P3†

0 |Ω〉 gives a linear combination
of the |π0〉 and its excitations (at rest). The relation between the interpolators Pa and
their flavour basis counterparts Pq are so as to preserve the normalization of the respective
quark model wave functions, resulting in normalizations that differ by factors

√
2 from the

relations between P a and P q of eqs. (2.3)–(2.5). For the pseudoscalar singlet and octet
interpolators this means that

P8 = 1√
6

(
Pu + Pd − 2Ps

)
= 1√

3
P` −

√
2
3P

s, (2.9)

P0 = 1√
3

(
Pu + Pd + Ps

)
=
√

2
3P

` + 1√
3
Ps. (2.10)

The factor
√

2 within eq. (2.7) stems from enforcing the above relations also between the
decay constants in the octet/singlet basis and the light/strange flavour basis:(

F 8
M
F 0
M

)
= 1√

3

(
1 −

√
2√

2 1

)(
F `M
F sM

)
. (2.11)

An interesting limit, that we also simulate here, is that of exact SU(3) flavour symmetry
(ms = m`). In this limit the η meson is part of a flavour-octet, η = η8, and η′ is a flavour-
singlet, η′ = η0. This means that the interpolator P0 has no overlap with the η meson,
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i.e. 〈η(p)|P0†
~p |Ω〉 = 0, and the interpolator P8 cannot create an η′ meson. In this limit,

in terms of the decay constants, F 8
η′ = F 0

η = 0. However, SU(3) breaking corrections are
known to be large and phenomenologically significant.

In the chiral effective theory the η′ meson can be included in the framework of the 1/Nc

expansion [3–6]. In this approach the axial anomaly contributes an effective mass term to
the η-η′ system. This affects not only the flavour-singlet sector but also the flavour-diagonal
octet if SU(3) symmetry is explicitly broken by a quark mass difference. An additional
off-diagonal contribution to the kinetic term ∂µη8∂

µη0 shows up at the loop-level [6]. As a
result, the relation of the physical η and η′ states to the octet and singlet fields η8 and η0
in the chiral Lagrangian becomes more involved, see, e.g., [7, 41, 42].

In general, there are four decay constants, one octet and one singlet decay constant each
for the η and for the η′. One can always parameterize these in terms of two fundamental
decay constants F 8 and F 0 and two mixing angles θ8 and θ0:(

F 8
η F 0

η

F 8
η′ F

0
η′

)
=
(
F 8 cos θ8 −F 0 sin θ0
F 8 sin θ8 F 0 cos θ0

)
. (2.12)

An analogous parametrization can also be introduced in the flavour basis:(
F `η F sη
F `η′ F

s
η′

)
=
(
F ` cosφ` −F s sinφs
F ` sinφ` F s cosφs

)
. (2.13)

Obviously, in the SU(3) limit F 8 = F 8
η , F 0 = F 0

η′ and θ0 = θ8 = 0 while no such simplifi-
cation exists in the flavour basis. Note that in the standard MS scheme, within the right
hand sides of the above equations, only F 8, θ8 and θ0 are scale independent, whereas F 0,
F `, F s, φ` and φs all will depend on the QCD renormalization scale.

The above two choices of basis are essentially equivalent and the rationale for the pop-
ularity of the flavour scheme is that the difference between φ` and φs (which is formally
a 1/Nc effect) is small and compatible with zero in phenomenological extractions from
experimental data [41, 43]. This feature may be related to the observation that the vector
mesons ω and φ are to a very good approximation pure ūu + d̄d and s̄s states, respec-
tively, and the same holds for the tensor mesons f2(1270) and f ′2(1525). The smallness of
flavour mixing in these cases is a manifestation of the phenomenologically very successful
Okubo-Zweig-Iizuka (OZI) rule. If the axial U(1) anomaly was the only new effect in the
pseudoscalar channels, it may be natural to assume that physical states are related to the
flavour states by an orthogonal transformation with a single mixing angle φ = φ` = φs [43].
In this approximation the relation between the two schemes simplifies to [7, 41]

(F 8)2 = 1
3(F `)2 + 2

3(F s)2, (F 0)2 = 2
3(F `)2 + 1

3(F s)2, (2.14)

θ8 = φ− arctan
(√

2F s
F `

)
, θ0 = φ− arctan

(√
2F `
F s

)
. (2.15)

Within QCD, obviously, the above relations cannot hold at arbitrary renormalization
scales. Moreover, other matrix elements, e.g., 〈Ω|P `|η(′)〉 and 〈Ω|P s|η(′)〉, are not neces-
sarily related by the same angles. Our lattice QCD calculation will enable us to check the
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< 1.4

1.4 ≤ 12t0M 2

< 1.6

1.6 ≤ 12t0M
2

Figure 1. The positions of the analysed CLS ensembles in the quark mass plane. Two mass
trajectories were realized that intersect approximately at the physical point (black circle). Along
one trajectory the average quark mass is held fixed, along the other trajectory the strange quark
mass is kept approximately constant. The symbols encode the four lattice spacings while the shaded
areas indicate the values of the average squared pseudoscalar massM2, see eq. (3.4). At the physical
point, 12tph

0 M2 ≈ 1.11, where (8tph
0 )−1/2 ≈ 0.475 GeV [44].

extent of the validity of the simple mixing picture and the range of applicability of large-Nc

ChPT.

3 Lattice computation

In this section we give details of the lattice setup and gauge ensembles and outline the
construction of correlation functions, using the local currents and interpolators defined
above. We describe the methods for the efficient evaluation of the resulting connected and
disconnected quark line diagrams.

3.1 Gauge ensembles

We analyse gauge ensembles with Nf = 2+1 non-perturbatively improved Wilson fermions
on a Lüscher-Weisz gauge background that were generated within the CLS initiative [38,
39]. To avoid topological freezing at fine lattice spacings, most of the ensembles employ
open boundary conditions in time [45]. This breaks translational invariance in that direc-
tion and introduces boundary effects, such that measurements must be taken in the bulk of
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the lattice. The fermion action ensures that hadron masses are free of discretization effects
that are linear in the lattice spacing, however, the operators also need to be O(a) improved.
For the currents relevant for this study, we perform the substitutions [46] (a = 1, . . . , 8):

Aaµ 7→ Aaµ + acA∂µP
a, (3.1)

A0
µ 7→ A0

µ + acsA∂µP
0, (3.2)

P 0 7→ P 0 + agP trFµνF̃µν = P 0 + acsP∂µA
0
µ, (3.3)

where we re-expressed the last equation using the singlet AWI in the massless case.1 In
the chiral limit these replacements remove all O(a) effects. The non-singlet pseudoscalar
currents, P a, are already O(a) improved in this case. For non-vanishing quark masses,
additional mass dependent O(a) improvement terms appear. These terms and the values
of the associated improvement coefficients as well as those of cA and the (unknown) singlet
coefficient csA and csP will be addressed in sections 4.4 and 5.4 and used in the fits of
section 6.2.

We carry out our analysis on 21 distinct CLS ensembles that differ in terms of the
quark masses, volumes and lattice spacings, see table 1. This enables us to control all
sources of systematic error. In the table we give dimensionless combinations involving the
average M2 and the difference δM2 of the squared non-singlet pseudoscalar masses,

12t0M2 = 4t0
(
2M2

K +M2
π

)
, 8t0δM2 = 16t0(M2

K −M2
π), (3.4)

where t0 denotes the gradient flow scale, introduced in [48]. The combinations M2 and
δM2 will be used in the expressions for the quark mass dependence of the masses and decay
constants of the η and η′ mesons in section 5.3.

The quark masses of the ensembles considered in this study follow two distinct tra-
jectories, see figure 1: along one trajectory the average quark mass is kept constant [38],
starting from the Nf = 3 symmetric point (ms = m`), while along the other the renor-
malized strange quark mass is held close to its physical value [39]. The two trajectories
intersect close to the physical point where 12t0M2 = 12tph

0 M
ph2

= 1.11. The pion masses,
listed in table 1 along with the kaon masses, range from 422 MeV down to slightly below
the physical mass.

We employ three lattice spacings, a = 0.0859(12) fm, a = 0.0761(10) fm and a =
0.0643(9) fm, with multiple pion and kaon masses, complemented by an additional ensemble
at a finer lattice spacing a = 0.0497(7) fm [47]. Extrapolations to the physical point are
performed using dimensionless combinations with t0, determined on the same ensemble.
After extrapolation, values for t0 at the physical point (tph

0 ) and, for determinations of
LECs, in the SU(3) chiral limit (tχ0 ) are required. Using the pion and kaon decay constants
as input, [49] obtain (

8tph
0

)−1/2
= 475(6) MeV. (3.5)

1Note that csP = −16π2gP /
√

6 to leading order in g2. This replacement will also affect the definitions
of the mass dependent improvement coefficients d̄P and dP , relative to [46].
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β t∗0/a
2 a/fm a−1/GeV

3.4 2.888(8) 0.0859(12) 2.296(33)
3.46 3.686(11) 0.0761(11) 2.594(38)
3.55 5.157(15) 0.0643(9) 3.068(44)
3.7 8.617(22) 0.0497(7) 3.966(57)

Table 2. The values of t∗0/a2 and the lattice spacings employed in this study, as determined in [47].
The lattice spacings were obtained using (8tph

0 )−1/2 ≈ 0.475(6) GeV [44].

For tχ0 = 1.036(4)t∗0 [47], using (8t∗0)−1/2 = 0.478(7) GeV [49, 50], we find

(8tχ0 )−1/2 = 470(7) MeV. (3.6)

The line along which we keep the sum of the quark masses constant intersects both
the physical point and a point where ms = m`. Along this quark mass trajectory (in the
continuum limit)M2 as well as t0 are constant [51] to NLO in SU(3) ChPT. This motivates
the definition of another scale [49], t∗0, equating 12t∗0M

∗2 = 12tph
0 M

ph2
= 1.11. Naturally,

this implies that t∗0 ≈ t
ph
0 , however, determining t∗0 at each lattice spacing does not require

an extrapolation to the physical point but just a small interpolation. We extracted values
for t∗0/a2 (see table 2) from a global fit to a large number of CLS ensembles in [47] and we
use these values to set the relative scale between the different lattice spacings.

All spatial volumes are considerably larger than (2 fm)3 and for most of the ensembles
the dimensionless combination of the spatial lattice extent Ls and the mass of the pion
Mπ, LsMπ, is larger than four.2 On these ensembles only very mild finite volume effects
have been observed for the non-singlet pseudoscalar masses and decay constants [47, 49].
Given the larger errors in the η-η′ system compared to the pion, we are confident that for
our volumes such effects can be neglected.

3.2 Wick contractions

The momentum projected pseudoscalar interpolators, introduced in section 2, are obtained
by Fourier transforming spatially extended operators Pa(t, ~x) that have the same flavour
structure as the local pseudoscalar currents P a and are centred about ~x:

Pa~p (t) = a3∑
~x

e−i~p·~xPa(t, ~x). (3.7)

Any linear combination of interpolators Pa†~p and Pq†~p can be applied to the vacuum |Ω〉 to
probe the physical eigenstates. We shall label such linear combinations as B†i (−~p, t). From
these one can define matrices of correlation functions

Cij(~p, t) = 1
Ntin

∑
tin

〈
Ω
∣∣∣Bi(~p, t+ tin)B†j(−~p, tin)

∣∣∣Ω〉 , (3.8)

where Ntin denotes the number of source time slices that we average over.
2The only exceptions are H106 (LsMπ ≈ 3.79) and D150 (LsMπ ≈ 3.51).
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Performing the Wick contractions between the quark bilinears at the source and the
sink leads to both connected and disconnected quark line contributions C̃ and D̃, respec-
tively,

qf1Γ1q̄
f2 q̄f3Γ2q

f4 = δf1,f3δf2,f4C̃
Γ1Γ2
f1,f2

− δf1,f2δf3,f4D̃
Γ1Γ2
f1,f3

, (3.9)

where for brevity we only display the flavour indices fi ∈ {u, d, s} and the Dirac structures
Γi ∈ {γ5, γµγ5}. The disconnected terms only contribute when contracting flavour-diagonal
quark bilinears and are particularly challenging to compute.

3.3 Stochastic measurement of disconnected loops

The basic building blocks of disconnected correlation functions are quark loops (one-point
functions)

LΓ,f
s (~p, t) = a3 ∑

~x,~y,~z

tr
(
e−i~p·~xφs(x, y)ΓD−1

f (y, z)φs(z, x)
)
, (3.10)

where f ∈ {`, s} labels the flavour of the Dirac operator Df . After performing the Wick
contractions no distinction between the mass degenerate u and d quarks needs to be made.
The trace is taken over the spin and colour components and the space-time positions x,
y and z share the same time t, i.e. x = (t, ~x), y = (t, ~y) and z = (t, ~z). To ensure ground
state dominance, we apply the Wuppertal smearing kernel [52]

φ(x, y) = 1
1 + 6δ

δ(x, y) + δ
±3∑
j=±1

Uj(x)δ(x+ â, y)

 (3.11)

to the source and the sink of the quark propagators. Above, Uj(x) is a (spatially APE
smeared [53]) gauge link at x, pointing in the spatial direction ̂ and U−j(x) = U †j (x− â).
The number of smearing iterations s as well as the parameter δ = 0.25 determine the
smearing radius.

Since D−1
f is a very large matrix, the trace in eq. (3.10) cannot be computed exactly

but must be estimated stochastically. To do so, we start by constructing time-partitioned
(also referred to as “diluted” in the literature) sources [54]:

ρτ,i(x, α, a) =


ri(x,α,a)√

2 mod(t,∆t) = τ and b ≤ t < Lt − b,

0 otherwise
, (3.12)

where Lt is the temporal lattice extent and ri(x, α, a) ∈ Z2 × iZ2 are random numbers
drawn independently for every site x, spin α and colour component a. ∆t is the distance
between timeslices on which the source has support. On lattices with open boundary
conditions in time, we set b > 0 in order to suppress boundary effects. These random
sources span a space in the bulk of the lattice,

∆t/a−1∑
τ=0

Nstoch−1∑
i=0

|ρτ,i〉〈ρτ,i| = Nstoch diag(0, . . . , 0︸ ︷︷ ︸
b/a

, 1, . . . , 1︸ ︷︷ ︸
Lt/a−2b/a

, 0, . . . , 0︸ ︷︷ ︸
b/a

)⊗ 112V3/a3

+O(1/
√
Nstoch), (3.13)

a4〈ρτ,i|ρτ ′,j〉 = (Lt − 2b)V3 δi,jδτ,τ ′ , (3.14)
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where V3 = L3
s and Nstoch such sources are created for every dilution index τ =

0, . . . ,∆t/a− 1. The lattice Dirac equation

Dfσ
f
τ,i = ρτ,i (3.15)

is solved for each fermion flavour f and source ρτ,i, labelled by a stochastic index i and
time partition τ , to obtain the solution σfτ,i.

Summing over the dilution index τ , we obtain the estimate of the loop computed on
the i-th stochastic source,

LΓ,f
i,s (~p, t) = a3∑

~x

∆t/a−1∑
τ=0

tr
(
e−i~p·~x(ρτ,iφs)(x)Γ(σfτ,iφs)(x)

)
. (3.16)

After averaging over the stochastic estimates, we obtain an estimate of axialvector and
pseudoscalar loops of a particular flavour for a given gauge field configuration and smearing,

LΓ,f
s (~p, t) = 1

Nstoch

Nstoch−1∑
i=0

LΓ,f
i,s (~p, t) +O

( 1√
Nstoch

)
. (3.17)

This requires Nstoch×∆t/a inversions for each flavour. To extend our basis of interpolators,
we compute loops with different levels of smearing, i.e. s ∈ {0, s1, s2}. Unlike in the
connected case, this does not require any additional inversions: due to its Hermiticity the
smearing operator can be applied to the stochastic sources and solutions after the inversion,
as indicated in eq. (3.16).

The inverse of the Wilson Dirac operator Df = 1
2κf (1 − κfH) within the trace of

eq. (3.10) can be expanded for small values of the hopping parameter κf . This yields a
geometric series in terms of the nearest-neighbour hopping term H [55–57],

tr
(
ΓD−1

f

)
= 2κf

∞∑
i=0

κif tr
(
ΓH i

)
= 2κf

n−1∑
i=0

κif tr(ΓH i) + κnf tr
(
ΓHnD−1

f

)
. (3.18)

Above we restricted ourselves to the case without smearing. On the right hand side of
the equation we have split the series into the first n terms for which tr ΓH i = 0 and a
remainder. Note that the value of n depends on Γ and the fermion action employed. In
our case, in the absence of smearing, n(γ5) = 2 for pseudoscalar and n(γµγ5) = 4 for
axialvector loops. In the stochastic estimation the first sum only contributes to the noise.
Hence, we can obtain an improved estimate of the trace, by applying the Dirac operator n
times to the solution, replacing

Γσfτ,i 7→ Γ(1− 2κfDf )n(Γ)σfτ,i (3.19)

in eq. (3.16).
In summary, we apply two noise reduction techniques, time partitioning which elimi-

nates noise from neighbouring time slices at the expense of additional inversions and the
hopping parameter expansion that also reduces short-distance noise by exploiting the lo-
cality of the Dirac operator. The latter is only applied to unsmeared loops and is most
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effective for small values of the hopping parameter (corresponding to a large quark mass).
We remark that due to the use of a highly efficient multigrid solver [58–60], we do not
benefit from the truncated solver method [57] within our setup. This method involves
computing many (computationally cheap) approximate solves, each of which needs to be
contracted according to eq. (3.16), also applying smearing. The latter would dominate
the cost even though the implementation is highly optimized for the hardware available to
us. In our implementation, where we only use exact solves, the computational cost for the
smearing and the contractions still accounts for roughly a third of the total computing time.

3.4 Measurements of connected and disconnected correlation functions

In order to estimate the disconnected two-point function appearing in eq. (3.9), we correlate
and average two of the loops, defined in eq. (3.16):

D̃Γ1Γ2
f1,f2
s1,s2

(~p, t) = 1
Nstoch(Nstoch − 1)

a

Lt

Nstoch−1∑
i,j=0
i 6=j

Lt−a∑
tin=0

〈
LΓ1,f1
i,s1

(~p, tin + t)LΓ2,f2
j,s2

(−~p, tin)
〉
. (3.20)

Note that we are only allowed to sum over products of loops that have been obtained on
different random sources, hence i 6= j. Equation (3.20) applies to periodic lattices, where
b = 0 and the correlation functions wrap around the lattice (the periodicity of the loop is
implicit, LΓ,f

i,s (~p, t+ Lt) = LΓ,f
i,s (~p, t)). It is straightforward to adapt the above equation to

lattices with open boundaries by restricting the sum over tin such that both tin and tin + t

remain in the bulk of the lattice (defined to be a distance b away from the boundaries).
We implement forward-backward averaging for the disconnected two-point functions

by simply symmetrizing with respect to the ordering of the source and sink operators:

D
Γ1Γ2
f1,f2
s1,s2

(~p, t) = 1
2

(
D̃Γ1Γ2
f1,f2
s1,s2

(~p, t) + sgn(Γ1,Γ2)D̃Γ2Γ1
f2,f1
s2,s1

(~p, t)
)
, (3.21)

where sgn(γ5, γ5) = sgn(γµγ5, γµγ5) = 1 and sgn(γµγ5, γ5) = −1. We use the same random
sources for light and strange quark inversions, preserving the correlations between light-
light, strange-strange as well as light-strange disconnected correlation functions. This is
beneficial when computing differences of disconnected correlation functions which appear
after the Wick contraction of some of the basis states.

The expression (3.9) also contains the connected correlation function matrix C̃. This
can be computed by exploiting the γ5-Hermiticity of the Dirac operator and inverting on
a smeared point source P sα,a(x) = φs(x, y)δ(y, xin)δ(α, αin)δ(a, a0). This yields the point-
to-all propagator M s

f (x) = D−1
f (x, y)P s(y), which is a matrix in Dirac and colour space

and can be used to construct connected correlation functions, starting at a fixed source
position xin:

C̃Γ1,Γ2
f1,f2
s1,s2

(~p, t) = V3a
3∑

~x

e−i~p·(~x−~xin)
〈

Γ1γ5φ
s2M s1

f1
(x)γ5Γ2φ

s2M s1
f2

(x)
〉
. (3.22)

In our case, f1 = f2. Due to the reduced error compared to the disconnected correlation
functions, it is sufficient to employ only a single source position per configuration at xin =
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(b,~0), leaving (Ls − 2b)/a timeslices for the extraction of the physical states. Unlike on
lattices with periodic boundary conditions, in the case of open boundary conditions, in this
case we do not carry out the forward-backward averaging of eq. (3.21).

Based on previous experience with the pion correlation function regarding the bound-
ary effects [47], we fix b such that these effects are smaller than the statistical error of the
pion correlation function at the corresponding timeslice b/a. This is a conservative choice,
given the comparably large errors of the disconnected contributions.

We implement three levels of smearing, s ∈ S = {0, s1, s2}, which allows us to analyse
local matrix elements as well as to extend our basis of interpolators. The ratio s2/s1 is kept
approximately constant on all ensembles and the number of smearing iterations is increased
with decreasing pion mass and lattice spacing. In the measurement of the disconnected
loops, we choose a time separation of ∆t = 4a in the stochastic dilution, except for the
finest lattice spacing where we used ∆t = 6a. These choices are listed in table 3, as well as
the number of configurations analysed and the distance between consecutive measurements
in Hybrid Monte-Carlo molecular dynamics time units.

4 Extraction of mass eigenstates and local matrix elements

The masses of the η and η′ are extracted from the matrix of correlation functions C(t),
eq. (3.8). Usually, this is done by solving a generalized eigenvalue problem (GEVP) and
fitting to the resulting eigenvalues [61, 62]. Here, we follow a different route and directly
fit to the elements of C(t) or its time-derivative, ∂tC(t). The latter reduces correlations
in the Euclidean time t. This also allows us to adjust the fit ranges for the entries Cij(t)
individually. The matrix analogue of effective masses is introduced and the statistical
precision is improved by incorporating data at non-vanishing momentum. Details of the
mass determination are given and the results are compared to those obtained by employing
the GEVP. In addition, we discuss how the decay constants of the η and η′ mesons are
obtained from combined fits including correlation functions constructed with local currents
at the sink.

4.1 Fitting to matrices of correlation functions

In the limit of infinite statistics, C (eq. (3.8)) is a real symmetric positive-definite M ×M
matrix. The spectral decomposition gives

Cij(t) =
∞∑
n=0

1
2EnV3

〈
Ω
∣∣∣Bi(t)∣∣∣n〉〈n ∣∣∣B†j(0)

∣∣∣Ω〉 , (4.1)

=
∞∑
n=0

1
2EnV3

exp(−Ent)
〈

Ω
∣∣∣Bi(0)

∣∣∣n〉〈n ∣∣∣B†j(0)
∣∣∣Ω〉 , (4.2)

where we suppress the momentum argument and only consider a single source at tin = 0.
The lowest energy states correspond to the ground states of the η/η′ system, |n = 0〉 = |η〉
and |n = 1〉 = |η′〉. Equation (4.1) can be written as

C(t) = ẐD̂(t)Ẑᵀ, (4.3)
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id Nconf ∆MDU ∆bin S b/a ∆t/a Nstoch Nsolves/103

H101 963 8 4 {0, 55, 92} 30 4 96 370
H102a 490 8 4 {0, 63, 104} 30 4 96 376
H102b 491 8 4 {0, 63, 104} 30 4 96 377
H105 899 8 4 {0, 75, 125} 30 4 96 690
C101 504 8 4 {0, 88, 146} 30 4 96 387
D150 502 4 8 {0, 125, 208} 0 4 96 386
H107 778 8 4 {0, 63, 107} 30 4 96 598
H106 754 8 4 {0, 63, 104} 30 4 96 579
C102 729 8 4 {0, 88, 146} 30 4 96 560
B450 794 8 4 {0, 68, 113} 0 4 96 305
S400 796 8 4 {0, 78, 129} 30 4 96 611
N401 500 8 4 {0, 94, 156} 34 4 96 384
B451 1000 8 4 {0, 68, 113} 0 4 96 768
B452 962 8 4 {0, 83, 129} 0 4 96 739
N202 440 8 6 {0, 98, 163} 30 4 96 169
N203 563 8 6 {0, 111, 185} 30 4 96 432
N200 853 8 6 {0, 135, 225} 30 4 96 655
D200 582 8 8 {0, 165, 275} 30 4 96 447
N204 745 8 6 {0, 111, 185} 30 4 96 572
N201 757 8 6 {0, 135, 225} 30 4 96 581
D201 535 8 8 {0, 165, 275} 34 4 96 411
N300 754 8 10 {0, 165, 275} 49 6 96 434

Table 3. Parameters related to the measurement of the correlation functions: the number of
analysed configurations Nconf , their separation in molecular dynamics units ∆MDU, the choice
of binning ∆bin to account for autocorrelation effects in the statistical analysis, the numbers of
smearing iterations s ∈ S, the distance from the temporal boundaries b (in the case of open
boundary conditions) and the time partitioning separation ∆t. In the last column we display
the total number of individual Dirac vector solves carried out on each ensemble to compute the
disconnected correlation functions. The number of solves needed for the connected part is much
smaller (72: 2 quark masses × 3 smearing levels × source spin-colour). Ensembles H102a and
H102b were generated with the same quark masses and lattice coupling but different simulation
parameters and are therefore analysed separately.

where D̂(t) = diag(exp(−Ent)) for n = 0, . . . is time dependent, while

Ẑin = 1√
2EnV3

〈Ω|Bi(0)|n〉 (4.4)

are time independent amplitudes (that depend on the smearing and momentum). In prac-
tice, we truncate the infinite sum to determine only the lowest N states, hence,

C(t) = ZD(t)Zᵀ +O(exp(−EN t)), (4.5)

where D ∈ RN×N and we assume phase conventions such that Z ∈ RM×N with positive
entries on the diagonal.
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In nature, there are a multitude of resonances with the same quantum numbers lying
just above the η′(958): the η(1295), η(1405) and η(1475) are all close-by and will, in general,
contribute as excited states to C(t). It is therefore important to include at least a third
state, N ≥ 3, in our analysis to provide an effective parametrization of the contributions
of these states. In principle, also strong decays of the η and η′ should be taken into
account. For the η′, the dominant decay is η′ → ηπ+π− (branching ratio 42.5% [63]). This
is kinematically only possible on ensemble D150, for our lightest quark mass. Its decay
width, however, is about 80 keV, which would be very difficult to resolve considering the
statistical precision we achieve. Other channels have even smaller decay rates and many,
such as η → 3π0, are forbidden in the isospin limit of QCD that we simulate.

One can use eq. (4.5) to perform a combined fit to C(t), restricting the fit range to
times large enough so that any contributions from higher excited states n ≥ N fall below
the statistical precision. TheM×N amplitudes Zin and N masses are fitted simultaneously
to the (M+1)×M/2 independent components of Cij . The bases of interpolating operators
used for each ensemble are detailed in table 4. We find fits to be most stable for N = M = 3.
These involve 12 free parameters. We deviate from this choice for the ms = m` ensembles,
for which there is no mixing between the singlet and octet sectors. In this case, the matrix
of correlation functions is block diagonal and we choose N = M = 4, such that the problem
decomposes into two independent singlet and octet N = M = 2 fits.

On the ensembles with open boundary conditions, we take boundary effects into ac-
count when computing the loops and connected correlation functions, using sources and
sinks that only have support in the bulk of the lattice, see section 3.4. This allows the
simple ansatz D(t) = diag(exp(−Ent)) for the time dependent matrix in eq. (4.5). On
lattices with (anti-)periodic boundary conditions in time, states can propagate across the
boundary and we modify D to take the backwards-propagating states into account:

D(t) = diag
[
2 exp

(
−En

Lt
2

)
cosh

(
−En

(
t− Lt

2

))]
. (4.6)

We also include data with non-vanishing momentum in the fit, assuming the continuum
dispersion relation

aEn(~p) =
√
a2M2

n + a2~p2, (4.7)

where Mn = En(~0) is the mass of the n-th eigenstate. On the lattice the momentum
components are quantized: pj = 2πakj/Ls where kj are integer multiples of a−1. We
average over the six smallest non-trivial lattice momenta (a2~k2 = 1) and carry out a
combined fit with the ~k = ~0 data, assuming the same masses Mn. In figure 2 we show
examples of these fits (see also figure 3 of [64]). In addition, we plot the naive lattice
dispersion relation for a free scalar particle,

aEn(~p) = arccosh

cosh(aMn) +
∑
j

2 sin2(apj/2)

 . (4.8)

Since within the relevant momentum range the differences between the two curves (4.7)
and (4.8) are much smaller than the errors of the data, we conclude that assuming eq. (4.7)
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Figure 2. Energies of the η (left panels) and η′ (right panels) mesons determined on ensembles
H101 (top) and H105 (bottom). The red squares display the energies with a2~k2 = 0 and a2~k2 = 1
extracted from individual fits, while the blue filled symbols show the masses determined from
a combined fit assuming the continuum dispersion relation (dark blue). The lattice dispersion
relation (light blue) obtained using the masses extracted from the combined fit is also displayed.
The data points at a2~k2 = 0 have been shifted slightly for better visibility. Note that Eη = Eπ on
the symmetric (ms = m`) ensemble H101.

will not bias our results. Moreover, we find all data to be well described by this ansatz.
The combined analysis of zero and non-zero momentum data indeed reduces the statis-
tical error, in particular, for the η′ mass. This is in part due to the fact that the zero
momentum data couple to the slowly fluctuating topological charge density and exhibit
longer autocorrelations, see [18]. In total we fit to l ×M(M + 1)/2 correlation functions
and the number of fit parameters is increased to (l ×M + 1) ×N , where l is the number
of momenta. Specifically, for M = N = 3, by setting l = 2, we increase the number of
correlation functions from 6 to 12 and the number of fit parameters from 12 to 21.

4.2 The generalized effective mass method

As suggested in [65, 66], it is advantageous to reduce the correlations between time slices
by fitting to the temporal derivative of the correlation functions. The fit form, eq. (4.3), is
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Figure 3. (Left) The moduli of Cij(t) determined on ensemble H105 at momentum a2~k2 = 1.
(Right) The elements of the generalized effective mass matrix, eq. (4.15). The shaded regions in
both panels correspond to the results of a simultaneous fit to eqs. (4.9) and (4.15). The widths of
the regions indicate the fit ranges.

modified to
∂tC(t) ∼ Z (∂tD(t))Zᵀ, (4.9)

where ∂tC(t) = (C(t+ a)− C(t− a)) /(2a) is the symmetric discretized derivative and

∂tD(t) = − diag [En exp (−Ent)] (open boundaries),

(4.10)

∂tD(t) = −2 diag
[
En exp

(
−En

LT
2

)
sinh

(
−En

(
t− LT

2

))]
(periodic boundaries).

(4.11)

We find that this modification enables fits to discriminate between the η and η′ contribu-
tions more easily, as long as higher excited states are either sufficiently well parameterized
(by including them in the fit) or suppressed by the choice of the fit window. In addition,
potential constant shifts in the correlation functions (arising from finite volume effects re-
lated to incomplete sampling of the topological sectors, see, e.g., [18, 19]) are automatically
removed. Although we do not encounter any significant shifts within our data, we observe
that utilizing eq. (4.9) leads to decreased correlations and more stable fit results.

The fit form involves a sum over N exponentials for each of the M(M + 1)/2 indepen-
dent entries of C(t). As the number of states (N) included increases, the fits become more
unstable and sensitive to the choice of the initial guesses. This motivates us to define a
matrix analogue of the effective mass (for N = M),

∂t logC(t) = (∂tC(t))C−1(t) (4.12)

=
(
Ẑ∂tD̂(t)Ẑᵀ

) (
ẐD̂(t)Ẑᵀ

)−1
(4.13)

= −Z diagN−1
n=0 (En)Z−1 +O [exp (− (EN − EN−1) t)] , (4.14)
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which is constant in time (up to excited states corrections and statistical noise).3 Since
C(t) is non-singular, (∂tC)C−1 is an unambiguous expression and can readily be computed.
One can easily repeat this procedure and take the second derivative, leading to

(∂2
tC)(∂tC)−1 = −Z diag(En)Z−1 +O [exp (− (EN − EN−1) t)] . (4.15)

This alters the contributions from higher excited states but leaves the large-time behaviour
unaffected.

Note that (∂tC)C−1 and (∂2
tC)(∂tC) are not symmetric and their M2 elements con-

verge to constant values at large times. In order to resolve N different states, N(M + 1)
parameters (Zin and En) need to be determined. The M2 asymptotic values are not suf-
ficient for this, unless N ≤ M2/(M + 1), which excludes the quadratic case N = M .4 In
this case, simultaneous fits are performed to eqs. (4.9) and (4.15), where the latter enables
the fit to unambiguously resolve the spectrum of states.

To summarize our fitting strategy: we simultaneously fit the correlation functions with
two momenta a2~k2 = 0 and a2~k2 = 1 to eqs. (4.9) and (4.15). Correlations between all
entries of (∂tC)C−1 and ∂2

tC(∂tC)−1 at each time slice are taken into account, whereas
correlations between time slices can be neglected due to fitting to derivatives of C (we have
checked that this is indeed the case). A typical fit is shown in figure 3. The resulting η
and η′ masses for all the ensembles are collected in table 4, along with the χ2/Ndf of the
fits, where in most cases we achieve χ2/Ndf ≈ 1.

4.3 Comparison to the GEVP method

A standard way to extract the masses of the η and η′ from the matrix of correlation
functions is to solve the GEVP [61, 62],

C(t)V (t, t0) = C(t0)V (t, t0)Λ(t, t0), (4.16)

where Λ = diag(λ0, . . . , λM−1) is the diagonal matrix of the eigenvalues and V is the matrix
of eigenvectors. One then fits to the eigenvalues λn ∝ e−Ent to extract the energies.

The reference timeslice t0 needs to be chosen large enough [67] so that contributions
from states with n ≥ M are sufficiently suppressed. In our setup, we found it hard to
disentangle the excited state contributions from the lowest two eigenvalues, having only a
limited number of timeslices t > t0 available before the signal of the heavier η′ vanishes
in the statistical noise. In particular at larger times, it also becomes increasingly difficult
to assign the correct physical states to the eigenvectors. We compare the GEVP with the
results obtained from the fit strategy described in the previous section in figure 4. While the
two methods generally agree, the plateau regions start earlier when using the generalized
effective mass fit method. This enables us to extract results with an increased statistical
precision compared to using the GEVP. We remark that our fit method also allows us to
extract amplitudes directly, in a straightforward manner, as is discussed below.

3We remark that this construction is easily generalizable to the case N 6= M , employing a singular value
decomposition of ZD(t)Zᵀ. It should be noted, however, that the leading truncation errors then depend
on the min(N,M) non-singular values.

4Setting M = N +1 = 4 allows to determine all the parameters, however, this choice was found to result
in larger errors than a combined fit to eqs. (4.9) and (4.15).
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id basis aMη
√

8t0Mη aMη′
√

8t0Mη′ χ2/Ndf

H101 {83, 82, 03, 02} 0.1814(6) 0.867(3) 0.404(16) 1.931(74) 1.09, 0.86
H102a {`3, s3, 82} 0.1996(44) 0.958(21) 0.413(22) 1.981(107) 0.71
H102b {`3, s3, 82} 0.1989(26) 0.955(13) 0.395(21) 1.896(99) 0.99
H105 {`3, s3, 82} 0.2249(38) 1.082(18) 0.392(14) 1.886(69) 1.21
C101 {`3, s3, 82} 0.2253(52) 1.089(25) 0.422(19) 2.038(92) 0.71
D150 {`3, s3, 82} 0.2280(183) 1.107(89) 0.382(31) 1.854(150) 1.04
H107 {`3, s3, 82} 0.2509(46) 1.170(21) 0.433(16) 2.019(73) 0.82
H106 {`3, s3, 82} 0.2511(49) 1.193(23) 0.391(14) 1.860(67) 0.85
C102 {`3, s3, 82} 0.2396(91) 1.148(44) 0.389(20) 1.864(97) 0.88
B450 {83, 82, 03, 02} 0.1611(17) 0.872(9) 0.357(12) 1.930(67) 1.84, 1.00
S400 {`3, s3, 82} 0.1837(28) 0.998(15) 0.335(10) 1.821(52) 1.46
N401 {`3, s3, 82} 0.1858(141) 1.009(77) 0.361(25) 1.959(134) 1.14
B451 {`3, s3, 82} 0.2386(29) 1.249(15) 0.370(11) 1.937(56) 1.19
B452 {`3, s3, 82} 0.2233(29) 1.186(15) 0.355(8) 1.887(42) 1.07
N202 {83, 82, 03, 02} 0.1313(17) 0.844(11) 0.331(20) 2.126(129) 0.87, 2.07
N203 {`3, s3, 82} 0.1567(29) 1.005(19) 0.282(22) 1.808(144) 0.68
N200 {`3, s3, 82} 0.1711(25) 1.099(16) 0.303(18) 1.948(117) 1.45
D200 {`3, s3, 82} 0.1768(22) 1.138(14) 0.330(13) 2.125(85) 1.43
N204 {`3, s3, s2} 0.1970(35) 1.239(22) 0.315(16) 1.983(103) 1.07
N201 {`3, s3, 82} 0.1818(67) 1.154(43) 0.306(9) 1.944(57) 1.80
D201 {`3, s3, 82} 0.1874(90) 1.201(58) 0.327(21) 2.097(133) 1.03
N300 {83, 82, 03, 02} 0.1061(11) 0.878(9) 0.247(16) 2.046(130) 1.21, 1.87

Table 4. Masses of the η and η′ mesons obtained from fits to eqs. (4.9) and (4.15) in lattice units
and in units of the gradient flow scale,

√
8t0 (determined on the same ensemble). See table 1 for

the corresponding pion and kaon masses and table 2 for the lattice spacings. We also give the
smearing bases used in the construction of the matrix of correlation functions, eq. (4.1), where
`, s, 8, 0 refer to the light, strange, octet and singlet combinations of the pseudoscalar interpolating
operators, respectively, and the superscript labels the smearing applied (element of S), see table 3.
The resulting χ2/Ndf of the partially correlated fits are also given. For the ensembles with ms = m`,
where we carry out two independent fits, we give both χ2/Ndf values for the octet (first) and singlet
(second) cases. Ensembles H102a and H102b were generated with the same quark masses and lattice
coupling but different simulation parameters and are therefore analysed separately.
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Figure 4. (Left) The η and η′ eigenvalue functions for two momenta, a2~k2 = 0 and a2~k2 = 1
determined on ensemble H105, obtained by solving the GEVP, with the reference time slice t0 =
5a. For better visibility, some points are shifted slightly and the data for the η′ are omitted for
(t− t0)/a ≥ 10 due to the large errors. (Right) Results for the masses determined by fitting to the
lowest two eigenvalues of the GEVP and from direct fits (eqs. (4.9) and (4.15)) as functions of the
starting point of the fit, tmin. The analysis is similar in both cases, employing the same basis of
interpolators and incorporating data at two momenta. The horizontal lines and grey error bands
indicate the final results. These have been obtained from a slightly different fit, employing different
tmin for different elements of the correlation matrix. For the GEVP results, t0/a = tmin/a− 1.

4.4 Decay constants and local matrix elements

The decay constants of pseudoscalar mesons are defined in eq. (2.6). The singlet (a = 0) and
octet (a = 8) decay constants of the η (n = 0) and η′ (n = 1) mesons can be obtained via〈

Ω
∣∣∣Aaµ∣∣∣n〉 = iF anpµ, (4.17)

where the local currents Aaµ = ψtaγµγ5ψ are introduced in eqs. (2.2)–(2.5). In addition to
the singlet/octet basis, one can also define decay constants in the flavour basis according to
eq. (2.7). The two sets of decay constants are related via a SO(2) rotation (see eq. (2.11)):(

F `n
F sn

)
= 1√

3

(
1
√

2
−
√

2 1

)(
F 8
n

F 0
n

)
. (4.18)

It is also useful to define the pseudoscalar matrix elements,

〈Ω|P a|n〉 = Ha
n. (4.19)

We remark that for the two-point functions one can write (in the limit of large times)

〈Ω |∂tP a(t)Bi(0)|Ω〉 = 1
2a 〈Ω |(P (t+ a)− P (t− a))Bi(0)|Ω〉

= −sinh(aEn)
a

〈Ω |P a(t)Bi(0)|Ω〉

≈ −En 〈Ω |P a(t)Bi(0)|Ω〉 , (4.20)
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where En is the energy of the lowest state with a non-vanishing overlap Zin = 〈Ω|Bi|n〉 6= 0
(as well as 〈Ω|P a|n〉 6= 0). Using appropriate linear combinations of the interpolators Bi
as described above, it is possible to project onto n = 0 (η) as well as onto n = 1 (η′). In
this sense, we can substitute 〈Ω|∂tP a|n〉 for −EnHa

n, up to order a2 corrections.
We define partially O(a) improved, unrenormalized lattice decay constants:

F̃ anEn = 〈Ω|Aa0 + acaA∂tP
a|n〉 (4.21)

with the improvement coefficients caA = cA for a 6= 0 and caA = csA for a = 0. For the moment
being, mass dependent order a terms are ignored. While the non-singlet improvement
coefficient cA has been determined non-perturbatively [68], its singlet equivalent csA is
unknown and we parameterize it as csA = cA+δcA, where δcA is of order g4. For the singlet
case we can rewrite eq. (4.21) as

F̃ 0
n = F̌ 0

n + a δcAȞ
0
n, (4.22)

F̌ 0
nEn = 〈Ω|A0

0 + acA∂tP
0|n〉, (4.23)

Ȟ0
n = 〈Ω|P 0|n〉, (4.24)

where even in the chiral limit F̌ 0
n is only partially order a-improved since we have neglected

the difference δcA between the singlet and the non-singlet improvement coefficients. We
also introduced the singlet pseudoscalar matrix element Ȟ0

n. We note that Ȟ8
n is already

order a improved in the chiral limit (Ȟ8
n = H̃8

n), however, this is not the case for the singlet
pseudoscalar current [46], see eq. (3.3), where we have to distinguish between H̃0

n and Ȟ0
n:

H̃0
n = Ȟ0

n + acsP

〈
Ω
∣∣∣∂µA0

µ

∣∣∣n〉 . (4.25)

Note that the above O(a) difference between H̃0
n and Ȟ0

n does not affect eq. (4.22), where
only the unimproved matrix element is needed.

4.5 Determination of the decay constants

In order to extract matrix elements with a local current J , we start from a vector of M
correlation functions (i = 1, . . . ,M):

CJi (t) =
〈

Ω
∣∣∣J(t)B†i (0)

∣∣∣Ω〉 , (4.26)

where Bi(0) is an interpolator with the momentum ~p inserted at the time tin = 0. For the
connected contribution we utilize the translational invariance of the expectation value to
move the momentum projection from the smeared point source to the sink, as is common
in this kind of calculation. For the disconnected two-point function, in order to increase
the statistics, we replace J(t,~0) 7→ (a3/V3)∑~x e

−i~p·~xJ(t, ~x), again exploiting translational
invariance. The two-point function is then constructed in analogy to eqs. (3.16) and (3.20),
however, without smearing at the sink and with the additional normalization factor 1/V3.
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We carry out a spectral decomposition similar to that of eq. (4.1):

CJi (t) ≈
N−1∑
n=0

1
2EnV3

exp(−Ent)
〈

Ω
∣∣∣J(0)

∣∣∣n〉〈n ∣∣∣B†i (0)
∣∣∣Ω〉

=
N−1∑
n=0

ZinDnn(t)jn, (4.27)

where
jn = 1√

2EnV3
〈Ω|J |n〉, (4.28)

Z is the overlap matrix Ẑ, defined in eq. (4.4), truncated to N columns and D(t) =
diag(exp(−Ent)) is a diagonal N ×N matrix. One can also write this in terms of matrix
multiplications, CJ(t) ≈ ZD(t)j, where CJ(t) and j are M - and N -dimensional vectors,
respectively. Using the bootstrap samples of the previously obtained elements of Z and
energies En, we carry out a fit to the above functional form, determining the matrix
elements 〈Ω|J |n〉 =

√
2EnV3 jn.

Once the axialvector and pseudoscalar matrix elements are obtained, we can construct
the partially improved, unrenormalized decay constants F̃ 8

n and F̌ 0
n for n ∈ {η, η′} as well as

the corresponding pseudoscalar matrix elements H̃8
n and Ȟ0

n. Below we will discuss the re-
maining improvement and renormalization steps and we will add any missing improvement
coefficients, e.g., δcA, as fit parameters in the continuum limit extrapolation.

5 Physical point and continuum extrapolation

In this section we motivate the parametrizations of the quark mass and lattice spacing
dependence of our data and present continuum limit results on the η and η′ meson masses
and their respective decay constants. We give the physical point values as well as the
values of the NLO large-Nc ChPT LECs, and provide a detailed study of their statistical
and systematic uncertainties.

First, in section 5.1 we detail the renormalization and O(a) improvement of the octet
and singlet decay constants. This affects the functional form of our continuum limit extrap-
olation since not all the improvement coefficients are known. Different possibilities exist
regarding the renormalization scheme for the singlet decay constants. This will be dis-
cussed in section 5.2. In the continuum limit, large-Nc U(3) ChPT will be used to describe
the mass dependence of the data. We summarize the relevant LO and NLO ChPT expec-
tations in section 5.3. We combine these continuum limit functions with a parametrization
of the remaining O(a) and O(a2) lattice spacing effects in section 5.4, while in section 5.5
we carry out several fits to our data in order to quantify the various systematic uncertain-
ties. A central fit is used to predict the values for the masses and decay constants at the
physical point and the systematic errors are estimated by varying the fit form. The results
are presented in section 5.6. The parameters that describe the continuum limit behaviour
correspond to the LECs of NLO large-Nc ChPT. Our estimates of their values are given
in section 5.7.
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id
√

8t0ZAF̃ 8
η

√
8t0ZAF̃ 8

η′
√

8t0Zs′A F̌ 0
η

√
8t0Zs′A F̌ 0

η′

H101 0.2164(30) 0 0 0.1790(97)
H102a 0.2206(58) −0.0263(104) 0.0142(100) 0.1701(314)
H102b 0.2138(32) −0.0303(54) 0.0102(37) 0.1816(97)
H105 0.2155(27) −0.0610(78) 0.0215(66) 0.1890(54)
C101 0.2098(55) −0.0744(155) 0.0299(87) 0.2046(126)
D150 0.1954(193) −0.1030(374) 0.0198(194) 0.1472(277)
H107 0.2230(42) −0.0730(84) 0.0306(79) 0.1921(47)
H106 0.2159(46) −0.0741(115) 0.0252(91) 0.1780(48)
C102 0.2092(83) −0.0928(170) 0.0502(176) 0.1906(136)
B450 0.2184(30) 0 0 0.1947(68)
S400 0.2184(32) −0.0384(46) 0.0178(80) 0.1923(74)
N401 0.2187(76) −0.0643(151) 0.0177(158) 0.1686(197)
B451 0.2317(30) −0.0668(64) 0.0298(82) 0.2132(134)
B452 0.2210(26) −0.0870(57) 0.0438(51) 0.1960(37)
N202 0.2180(37) 0 0 0.1793(60)
N203 0.2236(32) −0.0361(92) 0.0190(71) 0.2130(226)
N200 0.2238(29) −0.0457(98) 0.0189(89) 0.1961(68)
D200 0.2243(30) −0.0684(69) 0.0161(60) 0.1981(90)
N204 0.2297(53) −0.0671(114) 0.0172(110) 0.2069(149)
N201 0.2198(34) −0.0854(108) 0.0372(120) 0.1872(55)
D201 0.2299(102) −0.0753(268) 0.0184(131) 0.1753(238)
N300 0.2124(32) 0 0 0.1781(171)

Table 5. Renormalized and partially improved octet and singlet decay constants of the η and η′
mesons obtained from fits to eq. (4.27) in units of the gradient flow scale,

√
8t0 (determined on

the same ensemble). Ensembles H102a and H102b were generated with the same quark masses and
lattice coupling but different simulation parameters and are therefore analysed separately.

5.1 Renormalization and O(a) improvement

The O(a) improvement of quark bilinears has been worked out for Wilson fermions in [46].
It turns out (see eq. (15) of this reference) that even for the improvement of the octet
axialvector current, singlet currents are required. The renormalized O(a) improved octet
decay constant reads

F 8
η(′) = ZA

[
(1 + 3ab̃Am)F̃ 8

η(′) + a√
3
bA
(
m`F̌

`
η(′) −

√
2msF̌

s
η(′)
)

−
√

2afAδmF̌ 0
η(′)

]
+O(a2), (5.1)
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where ZA is the renormalization factor for non-singlet currents and b̃A,5 bA and fA are
coefficients of mass dependent improvement terms. Note that within the O(a) improvement
terms we can replace any unimproved lattice decay constant by either F̃ or F̌ since the
difference will only have anO(a2) effect on the result. These replacements are convenient for
performing the continuum extrapolation, as will be discussed in section 5.4. Subsequently,
F̌ `
η(′) and F̌ s

η(′) are obtained from F̌ 0
η(′) and F̌ 8

η(′) via the rotation (4.18). The bare quark
masses (f = `, s) and their average and difference are given by

amf = 1
2

(
1
κf
− 1
κcr

)
, am = a

3 (2m` +ms) , aδm = ams − am`. (5.2)

The critical hopping parameter κcr was determined for our action and lattice spacings
in [39, 47].

We use the non-perturbatively determined values of ZA that can be found in the Z lA,sub
column of table 6 of [71]. The improvement coefficients bA and b̃A have been determined
non-perturbatively in [69, 70]. The sea quark coefficients, b̃A for our β values are

b̃A(β = 3.4) = −0.11(13), b̃A(β = 3.46) = 0.10(11),
b̃A(β = 3.55) = −0.04(12), b̃A(β = 3.70) = −0.05(8). (5.3)

For the valence quark coefficient bA we use the parametrization [70]

bA(g2) = 1 + 0.0881CF g2 + b g4, where b = 0.0113(44) (5.4)

and g2 = 6/β and CF = 4/3. The improvement term in eq. (5.1) that is proportional to the
difference of the quark masses is only present in flavour diagonal currents. Its coefficient,
fA, is unknown and formally it is of O(g6) [46, 72]. This is the only unknown parameter
needed to achieve full O(a) improvement of the octet decay constants and we incorporate
it into the functional form of the continuum extrapolation, see section 5.4.

Regarding the improvement of the singlet decay constants, utilizing eq. (23) of [46],
we obtain

F 0
η(′) = ZsA

[(
1 + 3ad̃Am

)
F̃ 0
η(′) + 1√

3
adA

(√
2mlF̌

`
η(′) +msF̌

s
η(′)

)]
. (5.5)

Again, we replaced the lattice decay constants within the O(a) terms by partially improved
ones. The renormalization factor ZsA 6= ZA is discussed in the next subsection. Unfortu-
nately, both improvement coefficients dA = bA +O(g4) and d̃A = O(g4) are only known to
O(g2) in perturbation theory. In analogy to fA, we will include these parameters in the
continuum extrapolation formulae (along with δcA, see eqs. (4.22)–(4.24)). The results for
the renormalized but only partially improved η and η′ singlet and octet decay constants
(derived from the fits presented in section 4.5) are given in table 5.

5We simulate at constant values of the unimproved lattice coupling parameter g2. The difference with
respect to keeping the O(a) improved coupling fixed amounts to replacing the improvement coefficients b̄J
and d̄J of [46] by b̃J and d̃J . The relation between these sets of parameters is detailed in [69] and the
differences turn out to be tiny at our lattice spacings [70].
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5.2 Renormalization of the singlet axialvector current

The renormalization factor of the singlet axialvector current ZsA in the standard MS
scheme [40, 73] depends on the renormalization scale. For definiteness, we detail our
conventions for the QCD β-function and the anomalous dimension of a current J :

β(as) = µ2 das
dµ2 = −

∑
n≥0

βna
n+2
s , (5.6)

γJ(as) = µ2 d ln J(as, µ)
µ2 = µ2 dZJ

dµ2 = −
∑
n≥0

γna
n+1
s , (5.7)

where as = αs/π = g2
s/(4π2) and the renormalized and bare currents Ĵ and J0, respec-

tively, are related by Ĵ(µ) = ZJ(µ)J0. Using these normalizations, the first two β-function
coefficients read

β0 = 1
4

(11
3 CA −

2
3Nf

)
, (5.8)

β1 = 1
16

[34
3 C

2
A −

(10
3 CA −

5
2CF

)
Nf

]
, (5.9)

while the first three γ-function coefficients for the singlet axialvector current are [40, 73]6

γsA0 = 0, (5.10)

γsA1 = 3
8CFNf , (5.11)

γsA2 = 1
64

[(142
3 CFCA − 18C2

F

)
Nf −

4
3CFN

2
f

]
. (5.12)

In QCD CA = 3 and CF = 4/3. Note that γsA vanishes for Nf = 0 since the anomalous
dimension is a sea quark effect.

From the β- and γ-functions one can easily derive the scale evolution of local currents:

ZJ (as(µ1), µ1) = ZJ (as(µ0), µ0) exp
(∫ as(µ1)

as(µ0)
da γJ(a)

β(a)

)
. (5.13)

Normally, to leading non-trivial order, the evolution factor is given by (as(µ1)/as(µ0))γJ0/β0 ,
which diverges if one of the scales is sent to infinity. In our case, however, γsA0 = 0, leading
to a finite renormalization group evolution

ZsA (as(µ1), µ1)
ZsA (as(µ0), µ0) = exp

{
γsA1
β0

[
(as(µ1)− as(µ0))

+ 1
2

(
γsA2
γsA1
− β1
β0

)(
a2
s(µ1)− a2

s(µ0)
)

+ . . .

]}
. (5.14)

This suggests a modified scheme (see, e.g., [75]), where the renormalization group running
is absorbed into the renormalization constant:

Â′µ = [ZsA(∞)/ZsA(µ)] Âµ = Zs′AA0µ, (5.15)
6Recently, γsA3 has been computed too [74].

– 26 –



J
H
E
P
0
8
(
2
0
2
1
)
1
3
7

µ ZsA(µ)/Zs′A
RG running 2-loop 2-loop 3-loop 3-loop
β-function 2-loop 5-loop 3-loop 5-loop
1GeV 1.0881(28

27) 1.0913(29
28) 1.1387(68

63) 1.1383(70
64)

2GeV 1.0565(10
10) 1.0590(10

10) 1.0754(16
16) 1.0752(16

16)
10GeV 1.0329(3

3) 1.0341(3
3) 1.0390(4

4) 1.0389(4
4)

Table 6. Conversion factors ZsA(µ)/Zs′A = ZsA(µ)/ZsA(∞), computed according to eq. (5.14) for
Nf = 3, combining different orders of the renormalization group running with different orders of the
running of the coupling. The errors reflect the uncertainty in the Λ-parameter of Nf = 3 QCD [44].

and

Zs′A = ZsA(µ =∞) =
[
1− γsA1

β0
as(µ) + γsA1

2β0

(
γsA1
β0

+ β1
β0
− γsA2
γsA1

)
a2
s(µ) + · · ·

]
ZsA(µ).

(5.16)
Similar to the renormalization group invariant (RGI) scheme, in the above MS′ scheme
the current is scale independent and the corresponding γ-function is trivial: γs′A = 0.
However, there are two differences: it remains a variant of the MS scheme and there is
no multiplicative ambiguity in the definition of Zs′A . Renormalizing the singlet axialvector
current in this way corresponds to the usual convention, setting µ =∞.

At present, the difference Zs′A − ZA has only been computed in perturbation theory.
Setting cSW to its leading order value cSW = 1 within eq. (32) of [76], we obtain for
our action

ZsA(µ) = ZA − a2
s(a−1)

[
γA1 ln(µ2a2) + 2.834(11)

]
, (5.17)

where again we use the non-perturbative ZA values of [71]. Note that we have replaced
g2 7→ 4π2as(a−1), which is valid to this order in perturbation theory. Within the above
conversion to the MS scheme we vary the scale µ ∈ [1

2a
−1, 2a−1] in order to estimate the

systematics of omitting higher perturbative orders and take µ = a−1 as our central value.
The results are then run via eq. (5.14) (not eq. (5.16)) to µ = ∞ to obtain the scale
independent MS′ result. This is carried out using the three-loop γsA-function and, for the
running of as(µ), starting from the value determined in [50], the five-loop β-function [77] (as
implemented in version 3 of the RunDec package for Mathematica [78, 79]). For convenience
we also quote results in the more commonly used scale dependent prescription at the scales
µ = 10 GeV, µ = 2 GeV and µ = 1 GeV in QCD with Nf = 3 active quark flavours. The
corresponding conversion factors are listed in table 6.

5.3 Fit form for the chiral extrapolation

We summarize the results of large-Nc ChPT that will be used to parameterize the quark
mass dependence of the η and η′ masses and decay constants when performing the extrap-
olation to the physical point. We first present the general framework, before giving explicit
expressions to LO and NLO in the following subsections.
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Conventional SU(3) ChPT entails expansions in the masses of the octet mesons (the
pions, the kaons and the octet η) — the Goldstone bosons of the spontaneous breaking of
SU(3)A in the QCD vacuum. To include the singlet η, one extends the symmetry group to
U(3) and expands simultaneously around the limit Nc → ∞, in which the axial anomaly
vanishes. At finite Nc, the singlet state acquires its anomalous mass. Therefore, in U(3)
large-Nc ChPT, the expansion is organized in powers of δ [42, 80], where the power counting
is as follows:

p = O(
√
δ), m = O(δ), 1/Nc = O(δ) (5.18)

with p being the momentum and m a quark mass.
The chiral Lagrangian at O(δ0) corresponds to massless QCD with an infinite number

of colours. At LO, i.e. O(δ1), without the anomaly, the squared pseudoscalar masses µ2
a

are related to the quark mass matrix in the adjoint representation via the Gell-Mann-
Oakes-Renner (GMOR) relations, µ2

ab = 2B0 tr[ta diag(m`,m`,ms)tb] = δabµ2
a, where B0 =

−〈uu〉/F 2 is the ratio of the chiral condensate 〈uu〉 < 0 over the (squared) pion decay
constant in the SU(3) chiral limit, F . However, at this order in δ one also has to add the
O(1/Nc) Witten-Veneziano contribution [1, 2] to the singlet mass, M2

0 = 2Nfτ0/F
2, where

τ0 denotes the quenched topological susceptibility. Moreover, for non-degenerate quark
masses, the singlet (a = 0) and the octet (a = 8) pseudoscalar mesons will mix and the
corresponding non-diagonal part of the pseudoscalar mass matrix reads, see, e.g., [42, 80]:

µ2 =
(
µ2

8 µ2
80

µ2
80 µ2

0

)
. (5.19)

Its eigenvalues correspond to the (squared) η and η′ masses:

Rµ2Rᵀ =
(
M2
η 0

0 M2
η′

)
. (5.20)

R is an orthogonal transformation

R =
(

cos θ − sin θ
sin θ cos θ

)
, (5.21)

which defines the so-called mass mixing angle θ. One can easily read off the relations

µ2
8 = M2

η cos2 θ +M2
η′ sin2 θ, (5.22)

µ2
0 = M2

η sin2 θ +M2
η′ cos2 θ, (5.23)

µ2
80 = (M2

η′ −M2
η ) sin θ cos θ, (5.24)

θ = 1
2 arcsin

 2µ2
80√

(µ2
8 − µ2

0)2 + 4µ4
80

 = 1
2 arcsin

(
2µ2

80
M2
−

)
, (5.25)

where

M2
− = M2

η′ −M2
η =

√
(µ2

8 − µ2
0)2 + 4µ4

80, (5.26)

M2
+ = M2

η′ +M2
η = µ2

8 + µ2
0. (5.27)
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The above relations apply to all orders in ChPT, however, the dependencies of the mass
matrix parameters µ8, µ0 and µ80 on the masses of the η and η′ mesons and the chiral
anomaly vary with the order of the expansion. Also the GMOR relations between these
parameters and the quark masses are subject to NLO corrections. We will utilize the
combinations

Mη =
√

1
2
(
M2

+ −M2
−
)

and Mη′ =
√

1
2
(
M2

+ +M2
−
)

(5.28)

when performing the extrapolation of the η and η′ masses to the physical point.
The functions µ8, µ0 and µ80 depend on low energy parameters and quark masses,

with the latter typically being replaced by combinations of the pion and kaon masses via
the GMOR relations. We simulate with quark masses chosen to follow two distinct quark
mass trajectories to the physical point, along one of which the average quark mass is held
constant. A more convenient parametrization is in terms of the average and difference of
the squared pion and kaon masses,

M2 = 1
3
(
2M2

K +M2
π

)
≈ 2B0m, (5.29)

δM2 = 2(M2
K −M2

π) ≈ 2B0δm. (5.30)

The computation of the decay constants is more involved. A common parametriza-
tion is that of the two-angle mixing scheme, where the four physical decay constants are
expressed in terms of two angles θ0 and θ8 and two constants F 0 and F 8 [41, 42] (see
eq. (2.12)), (

F 8
η F 0

η

F 8
η′ F

0
η′

)
=
(
F 8 cos θ8 −F 0 sin θ0
F 8 sin θ8 F 0 cos θ0

)
, (5.31)

leading to

F 8 =
√

(F 8
η )2 + (F 8

η′)2, F 0 =
√

(F 0
η )2 + (F 0

η′)2, (5.32)

tan θ8 =
F 8
η′

F 8
η

, tan θ0 = −
F 0
η

F 0
η′
. (5.33)

The decay constants in the flavour basis can be expressed in the same way,

F s =
√

(F sη )2 + (F sη′)2, F ` =
√

(F `η)2 + (F `η′)2, (5.34)

tanφs = −
F sη′

F sη
, tanφ` =

F `η
F `η′

. (5.35)

The latter is a popular choice in phenomenological studies due to the fact that φ` ≈ φs at
the physical point, which allows one to express all four decay constants in terms of only
three parameters [41].

5.3.1 LO large-Nc ChPT

As explained above, at leading order the elements of the pseudoscalar mass matrix are linear
in the quark masses and can be related to combinations of the non-singlet pseudoscalar
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meson masses via the LO GMOR relations

(µLO
8 )2 = 2

3B0 (m` + 2ms) = M2 + 1
3δM

2, (5.36)

(µLO
0 )2 = 2

3B0 (2m` +ms) +M2
0 = M2 +M2

0 , (5.37)

(µLO
80 )2 = −2

√
2

3 B0 (ms −m`) = −
√

2
3 δM2, (5.38)

where the anomalous contributionM2
0 = 6τ0/F

2 is proportional to the quenched topological
susceptibility τ0 [1, 2] and contributes at O(N−1

c ) to µ2
0, while M2 is the O(m) value of

the squared singlet mass.
To this order, all singlet and octet decay constants can be expressed in terms of the

pion decay constant F (in the chiral limit) and the angle θ, defined in eq. (5.25):

F 8
η = F 0

η′ = F cos θ, −F 0
η = F 8

η′ = F sin θ, (5.39)

i.e. F 8 = F 0 = F and θ8 = θ0 = θ. Note that to this order θ only depends onM2
0 and δM2.

A single mixing angle in the octet/singlet basis is not consistent with phenomenological
investigations [41, 42] and also the results of the present study clearly show F 8

η 6= F 0
η′ and

F 0
η 6= −F 0

η′ .

5.3.2 NLO large-Nc ChPT

The large-Nc ChPT expansion for the masses and decay constants has been worked out to
NNLO in [81]. Here, we use the results of [42] and truncate these at NLO. To this order,
only four additional LECs, L5, L8, Λ1(µ) and Λ2(µ) appear. The elements of the squared
mass matrix are given by

(µNLO
8 )2 = (µLO

8 )2 + 8
3F 2 (2L8 − L5) δM4, (5.40)

(µNLO
0 )2 = (µLO

0 )2 + 4
3F 2 (2L8 − L5) δM4 − 8

F 2L5M
2M2

0 − Λ̃M2 − Λ1M
2
0 , (5.41)

(µNLO
80 )2 = (µLO

80 )2 − 4
√

2
3F 2 (2L8 − L5) δM4 + 4

√
2

3F 2 L5M
2
0 δM

2 +
√

2
6 Λ̃δM2, (5.42)

where we substituted Λ̃ = Λ1−2Λ2. To NLO of the chiral expansion the latter combination
does not depend on the QCD renormalization scale µ [42]. In general the LECs can depend
both on the QCD scale, due to the anomalous dimension of the singlet decay constants,
and the ChPT renormalization scale, due to loop corrections. However, in large-Nc ChPT
loop corrections are suppressed by a factor of δ2 and, hence, the LECs are independent of
the ChPT scale at NLO.
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The decay constants are given by

F 8
η = F

[
cos θ + 4L5

3F 2

(
3 cos θM2 + (

√
2 sin θ + cos θ)δM2

)]
, (5.43)

F 8
η′ = F

[
sin θ + 4L5

3F 2

(
3 sin θM2 + (sin θ −

√
2 cos θ)δM2

)]
, (5.44)

F 0
η = −F

[
sin θ

(
1 + Λ1

2

)
+ 4L5

3F 2

(
3 sin θM2 +

√
2 cos θδM2

)]
, (5.45)

F 0
η′ = F

[
cos θ

(
1 + Λ1

2

)
+ 4L5

3F 2

(
3 cos θM2 −

√
2 sin θδM2

)]
, (5.46)

where θ is the mass mixing angle defined in eq. (5.25), evaluated with the entries of the
NLO mass matrix, eqs. (5.40)–(5.42). Note that in the standard MS scheme Λ1 as well as
F 0
η and F 0

η′ depend on µ. In general, θ8 6= θ0 6= θ to this order.

5.3.3 Impact of the mass dependence of t0 on the NLO parametrization

In order to eliminate some of the lattice spacing effects, in section 5.5 we carry out our fits
after forming dimensionless combinations

√
8t0MM and

√
8t0F aM. However, t0 depends

on the pseudoscalar masses too. In the continuum limit, to leading order, this can be
parameterized as [51]

t0(M, δM) = tχ0

(
1 + k 8t0M2

)
, (5.47)

where k = −0.0466(62) [47]. This dependence somewhat alters the functional form of the
ChPT expectations for the rescaled quantities. Within the NLO parametrization of the
squared mass matrix eqs. (5.40)–(5.42), only the element µ2

0 is affected. In this case one has
to add a term −kM2

0M
28t0 to the parametrization, which we do. This is due to the fact that

M2
0 , which is defined in the chiral limit, appears at leading order and 8tχ0M2

0 = 8t0M2
0 (1−

k 8t0M2). Regarding the decay constants, rewriting
√

8tχ0F =
√

8t0F (1− k
2 8t0M2) means

that the term −(k/2)F cos θM28t0 needs to be added to eqs. (5.43) and (5.46) while the
term −(k/2)F sin θM28t0 has to be added to eq. (5.44) and subtracted from eq. (5.45).

The impact of k 6= 0 on the physical point masses and decay constants turns out to
be marginal. Regarding the LECs, the biggest effect is on F , L5 and L8, which decrease
by 2.9(4) MeV, by 7.7(1.0) · 10−5 and by 6.2(8) · 10−5, respectively, which is well below the
total errors that we find for these parameters: 4.8 MeV, 2.1 · 10−4 and 1.4 · 10−4.

Note that the parametrizations of the anomalous matrix elements eqs. (B.9) and (B.11)
contain leading order terms ∝ FM2

0 , ∝ FM
2 and ∝ FδM2. This amounts to adding terms

∝ −(3k/2)FM2
0M

28t0, ∝ −(k/2)FM48t0 and ∝ −(k/2)FδM2M28t0 in our analysis of
section 6.2.

5.4 Parameterizing lattice spacing effects

The lattice data do not only depend on the quark masses but also on the lattice spacing.
Here we outline our continuum limit extrapolation procedure. We shall label the ChPT
functional forms given above as f cont

O (M2, δM2| . . .) where the ellipses represent the fit
parameters (i.e. the LECs) and O can be either of the two masses or four decay constants.
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We remind the reader that for the decay constants not all the O(a) improvement coefficients
are known. Therefore, we start from the following ansatz

fO(a,M2, δM2) = f cont
O (M2, δM2| . . .)h(1)

O (a, am`, ams| . . .)h(2)
O (a2, a2M2, a2δM2| . . .),

(5.48)

where h(1)
O contains the linear lattice spacing effects with known or unknown coefficients

and h(2)
O is a quadratic function of a. The input data for the fits to the decay constants are

the partially improved combinations F̃ 8
n and F̌ 0

n (see eqs. (4.21) and (4.23), respectively)
with n = η, η′. In terms of the linear lattice spacing effects, for O = Mη,Mη′ , h(1)

O = 1,
while for the octet decay constants these functions contain the known parameters bA, b̃A
and the free parameter fA. In the case of the singlet decay constants, within h

(1)
O the

unknown parameters dA, d̃A and δcA appear, the latter multiplying the term EnȞ
0
n (see

eqs. (4.22) and (4.24)). For h(2)
O we make a generic quadratic ansatz. Explicit formulae

will be given below.
Our input data are transformed into dimensionless units: Mn 7→

√
8t0Mn, F̌ 0

n 7→√
8t0F̌ 0

n and F̃ 8
n 7→

√
8t0F̃ 8

n , where the scale t0 is obtained on the same ensemble. Moreover,
the parametrizations for the unrenormalized decay constants need to be divided by ZA and
ZsA, respectively. The lattice spacing is given in units of t∗0: a 7→ a/

√
8t∗0 (see section 3.1

and table 2). The six parametrizations share the LECs and some of the improvement
coefficients. Hence, we carry out simultaneous fits to all these data. Results at the physical
point can be obtained by evaluating the continuum limit functions at

12tph
0 M

ph2
= 1.110 and 8tph

0 δMph2 = 1.902, (5.49)

see section 3.1. For the linear lattice effects on the octet and singlet decay constants, we
combine the results of eqs. (5.1), (5.5) and (4.22)–(4.24), to obtain the functions

h
(1)
F 8
n
(a|f lA) = 1− 3ab̃Am− abA

ZA√
3
m`F̌

`
n −
√

2msF̌
s
n

f cont
F 8
n

(M2, δM2)
+
√

2afAZA
δmF̌ 0

n

f cont
F 8
n

(M2, δM2)
,

(5.50)

h
(1)
F 0
n
(a|dlA, d̃lA, δclA) = 1− 3ad̃Am− adA

ZsA√
3

√
2m`F̌

`
n +msF̌

s
n

f cont
F 0
n

(M2, δM2)
− aδcAZsA

Ȟ0
n

f cont
F 0
n

(M2, δM2)
,

(5.51)

where n = η, η′. We have substituted the data on the decay constants F̃ 8
n and F̌ 0

n by
the fitted continuum limit parametrizations f cont

Fan
(M2, δM2), which enables us to include

data points where the denominator is small and hence carries a large relative error. This
replacement is admissible since the difference is of O(a2). Note that in ansatz (5.48) h(1)

O is
multiplied by f cont

Fan
(M2, δM2). Above, we suppressed the dependence of the improvement

coefficients on g2. The only unknown functions are fA(g2), dA(g2), d̃A(g2) and δcA(g2) and
we parameterize these as follows

fA(g2) = f lAg
6, dA(g2) = bA(g2) + dlAg

4, d̃A(g2) = d̃lAg
4, δcA(g2) = δclAg

4, (5.52)
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such that only f lA, dlA, d̃lA and clA appear as free parameters on the left hand sides of
eqs. (5.50) and (5.51). The above powers of g2 correspond to the first non-trivial orders of
the perturbative expansions.

Turning to the quadratic lattice effects and the functions h(2)
O , we allow for three more

fit parameters per observable O:

h
(2)
O (a2, t0M

2, t0δM
2|lO,mO, nO) = 1 + a2

(
lO +mOM

2 + nOδM
2
)
. (5.53)

The terms multiplied by lO, mO and nO correspond to lattice spacing effects proportional
to a2Λ2, a2Λ(2m` +ms) and a2Λ(ms−m`), respectively, where Λ� ms ≥ m` is the QCD
scale. Due to this hierarchy of scales, other quadratic lattice spacing effects depending
solely on the quark masses like, for example, a2m2

` ≈ a2M4
π/(4B2

0), are neglected. We
remark that for the non-singlet pseudoscalar decay constants significant O(a2) effects have
been reported in lattice results determined using our action [49].

In summary, in the simultaneous fits of the two masses and four decay constants a total
of four parameters are needed to account for the linear cutoff effects and 6× 3 = 18 more
coefficients to parameterize the a2-effects. These are in addition to the LECs M0, F0, L5,
L8, Λ1 and Λ̃ that appear in the continuum expressions. As will be discussed in the next
subsection, most of the lattice spacing terms cannot be resolved in our data and the corre-
sponding coefficients will be set to zero in the fits that we use to determine the final results.

5.5 Continuum and chiral extrapolation: fits and error estimates

We describe how we determine which fit parameters are most relevant and how we estimate
the systematic uncertainty associated with the chosen set of fit forms. Each fit is performed
simultaneously to the six observables determined on ensembles which lie on two trajectories
in the quark mass plane and span four lattice spacings. Correlations between the η and η′
masses and the decay constants as well as the arguments of the fit function (8t0M2, 8t0δM2)
on each ensemble are taken into account, the latter by employing Orear’s method [82]. The
fits are performed on the ensemble averages of the data and the statistical uncertainties
in the fit parameters are obtained by repeating the fit on 500 bootstrap samples. The
statistical uncertainty is taken to be the interval that contains the central 68.3% of the
500 bootstrap values of each parameter.

The systematics associated with the continuum and quark mass extrapolations need to
be quantified. Since lattice spatial extents of LsMπ & 4 are realized, finite volume effects
can safely be neglected. In terms of the lattice spacing effects, in a first step we establish
which terms in the fit forms presented in the previous subsection can be resolved. We start
with fits to all data employing the NLO large-Nc ChPT continuum limit parametrization
and only include O(a) terms with non-perturbatively determined coefficients, i.e. those
involving bA, b̃A and cA. All O(a2) coefficients are omitted. For this reference fit we obtain
χ2/Ndf ≈ 220/126 ≈ 1.75. Additional discretization terms are subsequently included and
those fits for which the coefficients can be resolved with reasonable precision are given in
table 7. The reference fit has the id “1” in the table. The LECs extracted from these fits
are collected in table 8 and the results for the masses and decay constants at the physical
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id f lA dlA d̃A δlcA lF 8
η

nF 8
η

lF 8
η′

mF 8
η′

nF 8
η′

lF 0
η

mF 0
η

nF 0
η

lF 0
η′

mF 0
η′

nF 0
η′

1 — — — — — — — — — — — — — — —
2 × × × × — — — — — — — — — — —
3 × × × — — — — — — — — — — — —
4 × × — — — — — — — — — — — — —
5 × × — — × — × — — — — — — — —
6 × × — — — — — × — — — — — — —
7 × × — — — × — — × — — — — — —
8 × × — — × × — — — — — — — — —
9 × × — — — — × — × — — — — — —
10 × × — — — — — — — × × — — — —
11 × × — — — — — — — — — × — × ×
12 × × — — — — — — — — — — × — —
13 × × — — × × — — × — — — — — —
14 × × — — × × — — × — — — — — ×
15 × × — — × — — — × — — — — — ×
16 × × — — — × — — × — — — — — ×
17 × × — — × — — — × — — — — — —

Table 7. Fit forms employed to estimate the systematic uncertainty associated with performing
the continuum limit extrapolation. A cross indicates the corresponding term is included in the fit
form (see section 5.4) and the coefficient is reasonably well determined. fA, dA, d̃A and δcA are the
unknown O improvement coefficients and the coefficients of O(a2) corrections lO, mO and nO are
defined in eq. (5.53). The values of these coefficients can be found in appendix D. In all the cases,
the NLO large-Nc expressions are used for the continuum part of the fit function.

point are detailed in table 9. The coefficients of the discretization terms are provided in
appendix D.

Among the linear improvement terms (see eqs. (5.50) and (5.51)) those involving f lA and
dlA have the largest effect, shifting both the singlet and octet decay constants considerably
when they are included. We find the difference between the octet and the singlet quark
mass independent improvement coefficients, δclA, is zero within errors and d̃lA is very small
and only weakly constrained by the data. We were unable to resolve discretization effects on
the masses. All fits require the f lA and the dlA terms. The fits with the ids 7, 9 and 13–17 in
table 7 have the lowest and very similar χ2 values, see table 9. All these fits have in common
that an O(a2) effect proportional to δM2 was added to the octet decay constant of the η′
meson (nF 8

η′
6= 0 in eq. (5.53)). In what follows we take fit 7 with χ2/Ndf ≈ 179/122 ≈ 1.47

as our main fit. This was selected from the fits with 1.46 ≤ χ2/Ndf ≤ 1.49 since the
resulting parameter values are in the centre of the scatter between the different fit forms,
see tables 10–12. We remark again that all correlations between observables determined
on the same ensemble are taken into account in the fits. Performing an uncorrelated fit
with fit form 7 leads to χ2/Ndf ≈ 155/122 ≈ 1.27. The systematic uncertainty associated
with the continuum extrapolation is assigned to be the 68.3% interval of the scatter of the
central values of the continuum limit fits performed with fit forms 2 to 17. Fit 1 is excluded
as important O(a) terms in the parametrization of the octet and singlet decay constants
were omitted in this case.
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id
√

8tχ0F 8tχ0M2
0 L5 · 103 L8 · 103 Λ1 Λ̃

1 0.1909 (14
13) 2.52 (6

9) 1.426 (25
32) 1.047 (23

37) −0.28 (1
2) −0.16 (3

5)
2 0.1913 (20

25) 2.81 (10
18) 1.362 (87

54) 0.797 (133
50 ) −0.23 (5

5) −0.01 ( 5
14)

3 0.1918 (25
23) 2.72 (12

21) 1.345 (73
48) 0.798 (137

52 ) −0.27 ( 3
11) 0.03 ( 5

11)
4 0.1922 (17

25) 2.80 ( 5
17) 1.336 (80

49) 0.826 (122
52 ) −0.22 (1

4) −0.01 ( 5
11)

5 0.1936 (32
39) 2.74 ( 4

18) 1.461 (107
79 ) 0.884 (110

55 ) −0.25 (1
5) −0.06 (10

15)
6 0.1898 (27

30) 2.77 ( 6
19) 1.462 (117

115) 0.900 (133
67 ) −0.22 (1

4) −0.14 (10
14)

7 0.1890 (23
31) 2.79 ( 6

17) 1.576 (139
59 ) 0.955 (127

46 ) −0.22 (1
4) −0.20 ( 4

13)
8 0.1961 (32

30) 2.73 ( 6
17) 1.436 (114

83 ) 0.845 (109
64 ) −0.26 (2

4) 0.00 ( 6
11)

9 0.1884 (14
35) 2.80 ( 5

17) 1.531 (134
58 ) 0.947 (136

42 ) −0.21 (1
4) −0.19 ( 5

14)
10 0.1914 (19

26) 2.77 ( 6
16) 1.358 (83

51) 0.802 (124
57 ) −0.24 (1

4) 0.00 ( 5
10)

11 0.1918 (31
27) 2.85 ( 5

20) 1.353 (72
57) 0.812 (127

52 ) −0.21 (3
7) −0.02 ( 9

12)
12 0.1922 (27

24) 2.92 ( 8
28) 1.337 (75

47) 0.825 (120
51 ) −0.17 (3

9) −0.05 ( 9
10)

13 0.1920 (27
44) 2.74 ( 9

17) 1.548 (147
68 ) 0.943 (123

57 ) −0.24 (1
4) −0.13 ( 5

16)
14 0.1919 (31

45) 2.73 ( 8
17) 1.548 (148

71 ) 0.942 (123
54 ) −0.24 (2

5) −0.13 ( 5
17)

15 0.1925 (29
47) 2.72 (10

16) 1.523 (111
70 ) 0.935 (115

53 ) −0.25 (1
4) −0.11 ( 6

17)
16 0.1890 (19

32) 2.77 ( 8
16) 1.574 (144

51 ) 0.954 (127
33 ) −0.22 (1

4) −0.19 ( 4
14)

17 0.1927 (27
52) 2.73 (10

17) 1.523 (115
71 ) 0.936 (133

57 ) −0.24 (1
4) −0.11 ( 6

17)

Table 8. Results for the LECs obtained when employing the fit forms detailed in table 7. The
dimensionful LECs are given in units of the gradient flow scale in the chiral limit.

The χ2/Ndf for our best fits are somewhat larger than one: either have we underesti-
mated the errors of our masses and decay constants by about 20% on average or the func-
tional forms employed do not describe the data sufficiently well. Since the lattice spacing
effects seem to be relatively mild, this suggests that NLO large-Nc ChPT does not perfectly
describe the data over the range of quark masses available and higher order contributions
in the chiral expansion have to be taken into account. The main parameter that determines
the convergence of the chiral expansion is the average pseudoscalar meson mass. To inves-
tigate the systematics of the chiral extrapolation, we restrict the mass ranges of the data
entering the fit, introducing the cutoffs 12t0M2 < c, where c = 1.6, 1.4, 1.2. These values
correspond toM ≈ 493 MeV, 462 MeV and 427 MeV, respectively. Note that 12t0M2 = 1.11
corresponds to the physical point and our data cover the range 1.07 . 12t0M2 . 1.68, see
table 1 and figure 1. Applying the cuts (successively decreasing c) leads to data points
being removed along the trajectory where the strange quark mass is kept constant. For
c = 1.2 only one ensemble (D201) remains on this trajectory. We perform a fit for each
cut using fit form 7. The results are listed in tables 13 and 14. The χ2/Ndf of these fits
decrease down to a value of 1.25 as the data are restricted to smaller values of M2. This
trend suggests that higher order effects should be considered. However, the results are
all fairly independent of the cut-off. Only the central value of Mη′ moves upwards and Λ̃
downwards by two statistical standard deviations.
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id χ2/Ndf

√
8tph

0 Mη

√
8tph

0 Mη′

√
8tph

0 F 8
η

√
8tph

0 F 8
η′

√
8tph

0 F 0
η

√
8tph

0 F 0
η′

1 1.75 1.162 ( 8
10) 1.982 (17

13) 0.2149 (10
14) −0.1015 (25

25) 0.0337 (22
18) 0.1884 ( 7

20)
2 1.63 1.169 ( 8

12) 1.950 (21
11) 0.2202 (12

27) −0.0847 (38
86) 0.0230 (62

33) 0.1943 (44
53)

3 1.64 1.170 (17
13) 1.952 (53

11) 0.2200 (17
28) −0.0849 (57

93) 0.0231 (64
45) 0.1907 (24

93)
4 1.64 1.169 ( 8

12) 1.958 (22
11) 0.2195 ( 9

25) −0.0864 (34
84) 0.0260 (44

24) 0.1949 ( 7
42)

5 1.52 1.167 ( 7
11) 1.956 (21

12) 0.2234 (21
43) −0.0901 (31

80) 0.0242 (49
16) 0.1960 ( 9

42)
6 1.58 1.164 ( 9

10) 1.959 (21
13) 0.2196 ( 8

28) −0.0918 (41
82) 0.0252 (47

16) 0.1957 ( 6
44)

7 1.47 1.168 ( 7
12) 1.958 (22

10) 0.2219 (15
31) −0.0939 (23

83) 0.0224 (44
25) 0.1974 (12

40)
8 1.56 1.168 ( 6

12) 1.952 (21
12) 0.2256 (16

42) −0.0877 (29
76) 0.0233 (46

26) 0.1962 (13
37)

9 1.49 1.168 (9
9) 1.960 (23

9 ) 0.2201 ( 7
28) −0.0935 (21

90) 0.0238 (42
17) 0.1968 (12

39)
10 1.63 1.169 ( 6

12) 1.952 (21
12) 0.2201 (10

27) −0.0851 (42
84) 0.0232 (53

38) 0.1930 (12
37)

11 1.65 1.169 ( 9
11) 1.955 (23

13) 0.2200 (13
25) −0.0855 (34

78) 0.0247 (62
36) 0.1965 (24

58)
12 1.64 1.168 ( 9

10) 1.957 (23
17) 0.2194 (16

25) −0.0866 (31
82) 0.0274 (41

32) 0.1998 (22
86)

13 1.47 1.168 ( 9
10) 1.957 (23

10) 0.2237 (17
36) −0.0931 (24

87) 0.0232 (45
29) 0.1969 (12

38)
14 1.48 1.168 (8

9) 1.957 (23
10) 0.2237 (18

35) −0.0930 (21
88) 0.0230 (47

26) 0.1966 (15
42)

15 1.47 1.169 (11
10) 1.957 (23

9 ) 0.2235 (17
35) −0.0927 (20

85) 0.0237 (47
32) 0.1961 (14

38)
16 1.48 1.168 (11

9 ) 1.958 (22
9 ) 0.2219 (13

28) −0.0938 (23
84) 0.0222 (41

24) 0.1968 (17
42)

17 1.46 1.169 (10
10) 1.958 (23

9 ) 0.2236 (17
38) −0.0927 (22

86) 0.0240 (42
29) 0.1965 (10

39)

Table 9. Results for the masses and decay constants of the η and η′ at the physical point in units
of the gradient flow scale obtained when employing the fit forms detailed in table 7.

In principle, large-Nc ChPT expressions for the masses and decay constants to NNLO
are available [42, 81], however, the large number of additional LECs cannot be resolved
when fitting our data. Instead, we perform a partial NNLO fit, only including the loop
terms which appear at this order. These do not involve any additional LECs, see ap-
pendix A for details on the parametrization and the resulting LECs. However, fits to
this functional form did not improve the description of the data and our best fit gives a
χ2/Ndf = 2.56, indicating that a consistent full NNLO parametrization is required.

Utilizing the available data we cannot resolve additional NNLO LECs. The impact on
our results from imposing different cut-offs on M2 was marginal and hence, we take as our
central values the results of fit 7 to all our ensembles, where χ2/Ndf ≈ 179/122 ≈ 1.47.
To account for the somewhat inferior quality of this fit, we inflate our statistical errors by
the factor

√
χ2/Ndf = 1.21. We also add the NLO truncation error of large-Nc ChPT as a

further systematic error (with subscript χ). This corresponds to the range of central values
resulting from the fits with different cut-offs.

5.6 Fit results for the masses and decay constants

LO. For completeness, we perform a fit to the η and η′ masses employing the LO large-
Nc ChPT expressions (see section 5.3.1). The decay constants are not included in the
analysis as our data clearly contradict the LO ChPT expectation that, e.g., F 0

η = −F 8
η′ .

The parametrization of the lattice spacing effects was explored in a similar way to the
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id
√

8tph
0 Mη

√
8tph

0 Mη′

1

1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19

1.162 ( 8
10)

1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

1.982 (17
13)

2 1.169 ( 8
12) 1.950 (21

11)
3 1.170 (17

13) 1.952 (53
11)

4 1.169 ( 8
12) 1.958 (22

11)
5 1.167 ( 7

11) 1.956 (21
12)

6 1.164 ( 9
10) 1.959 (21

13)
7 1.168 ( 7

12) 1.958 (22
10)

8 1.168 ( 6
12) 1.952 (21

12)
9 1.168 (9

9) 1.960 (23
9 )

10 1.169 ( 6
12) 1.952 (21

12)
11 1.169 ( 9

11) 1.955 (23
13)

12 1.168 ( 9
10) 1.957 (23

17)
13 1.168 ( 9

10) 1.957 (23
10)

14 1.168 (8
9) 1.957 (23

10)
15 1.169 (11

10) 1.957 (23
9 )

16 1.168 (11
9 ) 1.958 (22

9 )
17 1.169 (10

10) 1.958 (23
9 )

Table 10. Results for the masses of the η and η′ at the physical point in units of the gradient flow
scale. The black line marks the experimental result converted using (8tph

0 )−1/2 = 475(6)MeV [49]
and the grey shaded region marks the uncertainty due to the error on tph

0 . The red line indicates the
central values predicted by fit 7 (see table 7). The red shaded region represents the total uncertainty
of our final results where all errors are added in quadrature (see section 5.6). The first fit does not
sufficiently parameterize the lattice spacing effects and is not included in the determination of the
associated systematic error.

id
√

8tph
0 F 8

η

√
8tph

0 F 8
η′

1

0.215 0.22 0.225

0.2149 (10
14)

−0.12 −0.11 −0.1 −0.09 −0.08 −0.07

−0.1015 (25
25)

2 0.2202 (12
27) −0.0847 (38

86)
3 0.2200 (17

28) −0.0849 (57
93)

4 0.2195 ( 9
25) −0.0864 (34

84)
5 0.2234 (21

43) −0.0901 (31
80)

6 0.2196 ( 8
28) −0.0918 (41

82)
7 0.2219 (15

31) −0.0939 (23
83)

8 0.2256 (16
42) −0.0877 (29

76)
9 0.2201 ( 7

28) −0.0935 (21
90)

10 0.2201 (10
27) −0.0851 (42

84)
11 0.2200 (13

25) −0.0855 (34
78)

12 0.2194 (16
25) −0.0866 (31

82)
13 0.2237 (17

36) −0.0931 (24
87)

14 0.2237 (18
35) −0.0930 (21

88)
15 0.2235 (17

35) −0.0927 (20
85)

16 0.2219 (13
28) −0.0938 (23

84)
17 0.2236 (17

38) −0.0927 (22
86)

Table 11. Octet decay constants of the η and η′ at the physical point in units of the gradient flow
scale, displayed as in table 10.
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id
√

8tph
0 F 0

η

√
8tph

0 F 0
η′

1

0.02 0.03 0.03 0.04

0.0337 (22
18)

0.18 0.185 0.19 0.195 0.2

0.1884 ( 7
20)

2 0.0230 (62
33) 0.1943 (44

53)
3 0.0231 (64

45) 0.1907 (24
93)

4 0.0260 (44
24) 0.1949 ( 7

42)
5 0.0242 (49

16) 0.1960 ( 9
42)

6 0.0252 (47
16) 0.1957 ( 6

44)
7 0.0224 (44

25) 0.1974 (12
40)

8 0.0233 (46
26) 0.1962 (13

37)
9 0.0238 (42

17) 0.1968 (12
39)

10 0.0232 (53
38) 0.1930 (12

37)
11 0.0247 (62

36) 0.1965 (24
58)

12 0.0274 (41
32) 0.1998 (22

86)
13 0.0232 (45

29) 0.1969 (12
38)

14 0.0230 (47
26) 0.1966 (15

42)
15 0.0237 (47

32) 0.1961 (14
38)

16 0.0222 (41
24) 0.1968 (17

42)
17 0.0240 (42

29) 0.1965 (10
39)

Table 12. Singlet decay constants of the η and η′ at the physical point in units of the gradient
flow scale, displayed as in table 10.

c χ2/Ndf

√
8tph

0 Mη

√
8tph

0 Mη′

√
8tph

0 F 8
η

√
8tph

0 F 8
η′

√
8tph

0 F 0
η

√
8tph

0 F 0
η′

— 1.47 1.168 ( 7
12) 1.958 (22

10) 0.2219 (15
31) −0.0939 (23

83) 0.0224 (44
25) 0.1974 (12

40)
1.6 1.49 1.163 ( 7

11) 1.954 (20
11) 0.2217 (15

31) −0.0937 (18
82) 0.0229 (42

21) 0.1967 (10
38)

1.4 1.38 1.173 ( 8
12) 1.961 (25

14) 0.2230 (19
30) −0.0881 (36

82) 0.0206 (41
31) 0.1947 (11

34)
1.2 1.25 1.162 (10

12) 2.006 (23
20) 0.2225 (24

35) −0.1021 (75
99) 0.0203 (42

37) 0.1978 (18
31)

Table 13. Results for masses and decay constants of the η and η′ at the physical point in units of
the gradient flow scale obtained when employing fit 7 of table 7 and imposing cut-offs 12t0M2 < c,
as well as including all the data (first row).

c
√

8tχ0F 8tχ0M2
0 L5 · 103 L8 · 103 Λ1 Λ̃

— 0.1890 (23
31) 2.79 ( 6

17) 1.576 (139
59 ) 0.955 (127

46 ) −0.22 (1
4) −0.20 ( 4

13)
1.6 0.1894 (20

33) 2.75 ( 5
16) 1.559 (131

62 ) 0.930 (126
35 ) −0.23 (1

4) −0.19 ( 4
14)

1.4 0.1911 (20
32) 2.78 ( 6

15) 1.487 (130
74 ) 0.882 (125

67 ) −0.25 (2
3) −0.08 ( 6

16)
1.2 0.1852 (37

45) 2.79 ( 8
13) 1.777 (132

150) 1.111 (141
131) −0.23 (2

3) −0.49 (17
24)

Table 14. LECs obtained for the fits detailed in table 13. The dimensionful LECs are given in
units of the gradient flow scale.
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µ0 χ2/Ndf 8tχ0M2
0 Λ1 Λ̃

√
8tph

0 F 0
η

√
8tph

0 F 0
η′

a−1/2 1.51 2.68 ( 6
15) −0.27 (1

3) −0.15 ( 3
14) 0.0204 (43

24) 0.1922 (13
35)

a−1 1.47 2.79 ( 6
17) −0.22 (1

4) −0.20 ( 4
13) 0.0224 (44

25) 0.1974 (12
40)

2 a−1 1.46 2.84 ( 6
18) −0.19 (1

4) −0.22 ( 4
18) 0.0232 (44

24) 0.2000 (10
43)

Table 15. Results that depend on ZsA, varying the scale at which we match to perturbation theory.

procedure described in the previous subsection. Our best fit gives χ2/Ndf ≈ 91/41 ≈ 2.35
and includes the two quark mass dependent discretization terms nMη and nMη′ . This
fit is displayed in figure 17 in appendix C. The masses extracted at the physical point
read: Mη = 1.024(8tph

0 )−1/2 = 487 MeV and Mη′ = 1.970(8tph
0 )−1/2 = 936 MeV, where

we do not quote any errors since the fit does not describe the data sufficiently well. The
above numbers, in particular the one for the η meson, are significantly lower than the
corresponding experimental masses, Mη ≈ 548 MeV and Mη′ ≈ 958 MeV. To this order,
the continuum parametrization depends only on one LEC, the (squared) anomalous mass
contribution in the chiral limit: we find M2

0 = 2.787(8tχ0 )−1 = (785 MeV)2. Since the LO
fit does not describe our data well, this value of M0 should also be treated with caution.

NLO. Our final results are obtained employing the NLO continuum limit parametrization
within simultaneous fits to all data on the two masses and four decay constants. This
involves a total of six LECs. Lattice spacing effects are also accounted for as discussed in
section 5.5. The central values are taken from the results of fit 7, which gave χ2/Ndf ≈
179/122 ≈ 1.47. This fit is displayed in figure 5. We obtain for the masses at the physical
point, in the continuum limit√

8tph
0 Mη = 1.168 ( 8

14)stat (1
0)a (5

6)χ and
√

8tph
0 Mη′ = 1.958 (27

13)stat (0
6)a (48

3 )χ , (5.54)

where the first error is statistical (inflated by
√

1.47), and the rest are systematic errors:
the second error is taken from the spread of results when varying the parametrization of
lattice spacing effects and the third represents the uncertainty due to the (continuum)
quark mass dependence, see section 5.5 for details. The results are converted to physical
units in section 7. In this section we keep all the results in units of 8tph

0 .
The final results for the octet and singlet decay constants read√

8tph
0 F 8

η = 0.2219 (18
37)stat (17

24)a (10
2 )χ ,√

8tph
0 F 8

η′ = −0.0939 ( 28
100)stat (84

0 )a (58
82)χ ,√

8tph
0 F 0

η (µ =∞) = 0.0224 (53
30)stat (28

0 )a ( 5
21)χ (20

8 )renorm ,√
8tph

0 F 0
η′(µ =∞) = 0.1974 (14

48)stat ( 0
31)a ( 4

27)χ (52
26)renorm . (5.55)

The singlet decay constants depend on the QCD scale. As detailed in section 5.2, prior to
the fits we run our results from a scale µ0 = a−1 up to µ =∞. To quantify the systematic

– 39 –



J
H
E
P
0
8
(
2
0
2
1
)
1
3
7

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
300

400

500

600

700

800

900

1000

1352 2002 2802 3502 4202
8t

0
M

η
(
′)

M
η
(
′)
[M

eV
]

8t0M
2
π

M2
π [MeV]

Mη, trM = const
Mη, m̃s ≈ const

Mη′ , trM = const
Mη′ , m̃s ≈ const

phys

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

−50

−25

0

25

50

75

100

125

1352 2002 2802 3502 4202

F 8
η

F 8
η′

F 0
η

F 0
η′

√
8t

0
F

a η
(
′)

F
a η
(
′)
[M

eV
]

8t0M
2
π

M2
π [MeV]

F 8
η , trM = const

F 8
η , m̃s ≈ const

F 0
η , trM = const

F 0
η , m̃s ≈ const

F 8
η′ , trM = const

F 8
η′ , m̃s ≈ const

F 0
η′ , trM = const

F 0
η′ , m̃s ≈ const

Figure 5. Simultaneous fit to the masses (top) and four decay constants (bottom) of the η and
η′. The fit form incorporates the NLO large-Nc ChPT expressions and the discretization terms
corresponding to fit 7 in table 7. The points have been shifted to compensate for lattice spacing
effects and lie along two trajectories leading to the physical point. The continuum fit functions
are indicated by the lines and shaded regions (statistical errors only), where the darker and lighter
colours correspond to the trajectories where the flavour average quark mass is held constant and
the strange quark mass is kept constant, respectively. The grey and black error bars (shifted to
the left of the physical pion mass for better visibility) are our final results, without priors (grey)
and including the experimental η and η′ masses (black stars) as priors (black, see section 5.7). All
errors are added in quadrature.
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error from the matching to the MS scheme, we repeat the fits, setting µ0 = a−1/2 and
µ0 = 2a−1, and add the range of results (see table 15) as an additional systematic error.7
As one may expect, this error is dominated by the fit where we set µ = a−1/2, see table 15.
The results for the decay constants can also be converted to the strange/light flavour basis
(eq. (2.11)) and/or given in terms of two angles and two dimensionful decay constants, see
eqs. (2.12) and (2.13). All the results in the different conventions and for the additional
QCD scales µ ∈ {1 GeV, 2 GeV, 10 GeV} are collected in table 24 in appendix E. We discuss
the results and their scale dependence in detail in section 7.2.

5.7 Results for the large-Nc low energy constants

Our results from the fits detailed above for the large-Nc LECs read

L5 = 1.58 (17
7 )stat ( 0

22)a (20
9 )χ · 10−3,

L8 = 0.96 (15
6 )stat ( 0

14)a (16
7 )χ · 10−3,

M0(µ =∞) = 1.67 (2
6)stat (1

2)a (0
1)χ (3

2)renorm (8tχ0 )−1/2
,

F = 0.1890 (27
37)stat (36

0 )a (21
38)χ (8tχ0 )−1/2

,

Λ1(µ =∞) = −0.22 (1
5)stat (0

3)a (0
3)χ (6

3)renorm ,

Λ̃ = −0.20 ( 5
16)stat (19

0 )a (12
29)χ (3

5)renorm . (5.56)

The combination Λ̃ = Λ1 − 2Λ2 is scale invariant to this order in ChPT [42, 83], however,
since its central value varies when changing µ0, see table 15, we also assign a renormalization
error in this case. The above results give

Λ2(µ =∞) = −0.1 (8
4)stat ( 0

10)a (14
8 )χ (5

3)renorm . (5.57)

The fits on which these results are based give η and η′ masses that are compatible,
within errors, with experiment, see above and section 7.1. Nevertheless, incorporating prior
knowledge of the experimental masses helps to constrain the fit and reduces the errors on
the LECs. To this end, we modify our χ2 function to penalize fits that give masses, that
are incompatible with experiment:

χ2
priors = χ2+


√

8tph
0 Mph

η − fMη(a = 0, 12t0M2, 8t0δM2)

σ

(√
8tph

0 Mph
η

)


2

+


√

8tph
0 Mph

η′ − fMη′ (a = 0, 12t0M2, 8t0δM2)

σ

(√
8tph

0 Mph
η′

)


2

, (5.58)

where we use the physical values from the Particle Data Group (PDG) [63] for Mη and
Mη′ , see eq. (7.3). These are converted to dimensionless numbers, using (8tph

0 )−1/2 =
7We remark that slightly different results are also obtained for the scale independent quantities. However,

the differences are well below any other systematic error, with the exception of those for Λ̃.
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475(6) MeV [49]. Note that the errors are dominated by the scale and are thus highly
correlated. This is taken into account by sampling Gaussian distributed values for (8tph

0 )1/2,
rather than independently sampling the two dimensionless combinations (8tph

0 )1/2Mph
η and

(8tph
0 )1/2Mph

η′ . If a more precise determination of tph
0 became available, the priors could be

further constrained and the uncertainties reduced.
Repeating the whole fitting analysis, now including the priors, we obtain results that

are very similar to those of eqs. (5.56) and (5.57):

L5 = 1.66 (12
9 )stat ( 0

26)a (13
8 )χ · 10−3,

L8 = 1.08 (11
6 )stat ( 0

12)a ( 3
10)χ · 10−3,

M0(µ =∞) = 1.62 (2
4)stat (3

1)a (3
0)χ (2

1)renorm (8tχ0 )−1/2
,

F = 0.1866 (26
29)stat (54

0 )a (19
16)χ (8tχ0 )−1/2

,

Λ1(µ =∞) = −0.25 (1
4)stat (3

1)a (1
1)χ (5

2)renorm ,

Λ̃ = −0.46 ( 8
10)stat (21

0 )a ( 9
10)χ (1

2)renorm ,

Λ2(µ =∞) = 0.11 (5
5)stat (0

9)a (6
5)χ (3

2)renorm . (5.59)

In section 7.3 we will convert the above results into physical units and discuss them.
In general, the large-Nc LECs will differ from their SU(3) ChPT equivalents, see also

the discussion in [42] and in section 7.3. In particular, the above LECs do not depend on
the ChPT scale since chiral logarithms only appear starting at NNLO in large-Nc ChPT.
As mentioned above, we checked whether such contributions improved the description of
the data by adding the NNLO loop terms to the NLO parametrization. However, this
decreased the quality of the fits, with the best fit giving χ2/Ndf ≈ 312/122 ≈ 2.56. The
functional form and the resulting LECs are detailed in appendix A.

6 Gluonic matrix elements and axial Ward identities

The AWIs are discussed and the octet AWI is tested against our data. We then proceed
to construct the gluonic matrix elements of the η and η′, using fermionic currents via the
singlet AWI. After addressing the renormalization of pseudoscalar gluonic matrix elements,
we compare the results obtained via the singlet AWI with a direct determination. The quark
mass dependence of the topological susceptibility is also determined.

6.1 The axial Ward identities

The AWIs between renormalized operators (indicated by a hat) read

∂µÂ
a
µ = ̂(

ψγ5{M, ta}ψ
)

+
√

2Nfδ
a0ω̂, (6.1)

where M = diag(m`,m`,ms) is the quark mass matrix, a ∈ {0, 1, . . . , 8}, and the topolog-
ical charge density is defined as

ω(x) = − 1
16π2 tr

[
Fµν(x)F̃µν(x)

]
= − 1

32π2F
a
µν(x)F̃ aµν(x) = − 1

64π2 εµνρσF
a
µν(x)F aρσ(x).

(6.2)
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Since different conventions are used in the literature, for clarity we have written the right
hand side in three different ways. Regarding the octet and singlet AWIs, eq. (6.1) corre-
sponds to

∂µÂ
8
µ = 2

3 (m̂` + 2m̂s) P̂ 8 − 2
√

2
3 δm̂P̂ 0, (6.3)

and

∂µÂ
0
µ = 2

3 (2m̂` + m̂s) P̂ 0 − 2
√

2
3 δm̂P̂ 8 +

√
6 ω̂, (6.4)

respectively. In the octet/singlet basis only the singlet AWI receives a contribution from
the anomaly. The corresponding AWIs in the flavour basis read

∂µÂ
s
µ = 2m̂sP̂

s + 2 ω̂, ∂µÂ
`
µ = 2m̂`P̂

` + 2
√

2 ω̂. (6.5)

These are somewhat simpler because the quark flavours decouple, up to the anomaly con-
tribution which now enters both AWIs.

We determine our quark masses, using the AWIs for a = 1 and a = 4 in the lattice
scheme:8

∂µ〈Ω|d̄γµγ5u|π+〉 = 2m̃`〈Ω|d̄γ5u|π+〉, (6.6)
∂µ〈Ω|s̄γµγ5u|K+〉 = (m̃` + m̃s)〈Ω|s̄γ5u|K+〉. (6.7)

We carry out the complete O(a) improvement of the currents, so that the above relations
hold up to O(a2) corrections. For this the (combinations of) improvement coefficients cA,
bA − bP and b̃A − b̃P are required, all of which are known non-perturbatively. The lattice
AWI quark masses are related to the continuum masses via

m̂q(µ) = ZA
ZP (µ)m̃q. (6.8)

Again ZA/ZP is known non-perturbatively in the RGI scheme [84] and can be related to the
MS scheme at a scale µ perturbatively at the five-loop level [77] whenever this is needed.

The octet AWI between lattice matrix elements reads

∂µ
〈

Ω
∣∣∣A8

µ

∣∣∣M〉
= 2

3 (m̃` + 2m̃s)
〈

Ω
∣∣∣P 8

∣∣∣M〉
− 2
√

2
3 δm̃ rP

〈
Ω
∣∣∣P 0

∣∣∣M〉
, (6.9)

where δm̃ = m̃s − m̃` denotes the difference between the lattice AWI quark masses. This
expression is only non-trivial for η and η′ states. The (scale independent) ratio rP =
ZsP /ZP appears since the renormalization of the singlet relative to that of the non-singlet
pseudoscalar current can differ at O(g6) for Wilson fermions. In addition to the known
improvement coefficients, also csP (which is equivalent to gP , see eq. (3.3)), dP and d̃P
contribute, while for ms 6= m`, fA and fP appear too. For ms = m`, the Ward identity

8The same results can be obtained in the first case for a = 2 and the π− or for a = 3 and the π0 (where
the disconnected quark contractions cancel due to isospin symmetry), while the combination m̃` + m̃s can
also be extracted using a = 5, 6, 7 with the appropriate kaon states.
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Figure 6. Check of the octet AWI (6.9) for the η and η′ states. Light points correspond to the
case when the singlet contribution to the octet AWI is neglected.

is trivial if applied to the η′ = η0 state. Note that the left hand side of eq. (6.9) can be
replaced with

∂µ
〈

Ω
∣∣∣A8

µ

∣∣∣M〉
= Z−1

A ∂µ
〈

Ω
∣∣∣Â8

µ

∣∣∣M〉
= Z−1

A M2
MF

8
M. (6.10)

Hence, the combination on the right hand side of eq. (6.9) does not depend on the momen-
tum of the mesonM.

In figure 6 we check the octet AWI (6.9) at zero momentum directly against our data,
utilizing the quark masses computed according to eqs. (6.6) and (6.7). Note that the
equality should hold without any renormalization, up to the ratio rP . For the comparison,
we set rP = 1, csP = dP = d̃P = fP = 0 and fA = −0.689 g6. The value of the latter
coefficient is taken from the central fit of section 5.5 (fit 7). Throughout, we find reasonable
agreement between the left and right hand sides of the Ward identity, as shown in figure 6.
Only the pseudoscalar combination for the η′ tends to result in slightly smaller values than
those of the derivative of the axialvector current. Within our precision, we conclude that
indeed rP = 1 to a good approximation and that the effect of the three (for ms = m`)
or four (for ms 6= m`) unknown improvement terms is moderate, even for our coarsest
lattice spacing.

In the singlet case, due to the anomaly contribution to eq. (6.4), we would expect that

∂µ
〈

Ω
∣∣∣A0

µ

∣∣∣M〉
6= 2m̃ rP

〈
Ω
∣∣∣P 0

∣∣∣M〉
− 2
√

2
3 δm̃

〈
Ω
∣∣∣P 8

∣∣∣M〉
, (6.11)

where m̃ denotes the average lattice AWI quark mass. Again we set rP = 1 and ignore any
unknown improvement terms. The comparison at zero momentum is shown in figure 7. The
difference is large for both states and does not significantly depend on the lattice spacing
but mostly on the quark masses. This rules out the incomplete singlet O(a) improvement
as a major cause for the disagreement. Interestingly, in the case of the η, the singlet
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Figure 7. Fermionic contributions to the singlet AWI for the η and η′ states. Light points
correspond to only the singlet contribution whereas the darker points correspond to all pseudoscalar
terms in eq. (6.4), but the anomalous contribution is neglected.

pseudoscalar contribution coincides with the left hand side of eq. (6.4): the (in this case)
large octet pseudoscalar matrix element approximately cancels against the anomaly term.
For the η′ the octet contribution is much smaller and no such effect can be seen. In both
cases, contributions from the anomalous matrix elements 〈Ω|ω|η(′)〉 are large in comparison
to the terms involving pseudoscalar matrix elements and it is clear that the anomalous term
must be included. The gluonic matrix element can be determined simply from the difference
observed in these plots, a procedure that does not involve any additional renormalization.
We follow this strategy in the next subsection.

6.2 Fermionic determination of 〈Ω|2ω|η〉 and 〈Ω|2ω|η′〉

Rather than determining the renormalized matrix elements

aM = 2〈Ω|ω̂|M〉 (6.12)

directly using gluonic correlators, we first compute them via the renormalized singlet
AWI (6.4):

aM(µ) =
√

2
3Z

s
A(µ)∂µ

〈
Ω
∣∣∣A0

µ

∣∣∣M〉
+ 2
√

2√
3
ZA

[√
2

3 δm̃
〈

Ω
∣∣∣P 8

∣∣∣M〉
− rP m̃

〈
Ω
∣∣∣P 0

∣∣∣M〉]

=
√

2
3M

2
MF

0
M(µ) + 4

3
√

3
ZA
ZP

δm̃H8
M −

2
√

2√
3
rP
ZA
ZP

m̃H0
M, (6.13)

where Ha
M are the renormalized and O(a) improved pseudoscalar matrix elements, in anal-

ogy to eqs. (5.1) and (5.5). This fermionic definition has the advantage that no knowledge
of the renormalization factors ZωA and Zω is needed (see section 6.3 below). Note that
aM depends on the renormalization scale µ and only in the modified scheme, discussed
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in section 5.2 (which corresponds to µ → ∞), do the gluonic matrix elements become
scale independent.

The improvement coefficients that enter the computation of the singlet decay constants
are taken from section 5.5 and we set dA = bA + 1.84 g4, fA = −0.689 g6 and d̃A = δcA = 0
(as determined using fit 7). Six improvement coefficients are needed for the pseudoscalar
currents: bP , b̃P , dP , d̃P , fP and csP . The latter was defined in eq. (3.3) and persists in
the chiral limit. We remark that by replacing agP trFµνF̃µν 7→ acsP∂µA

0
µ, the definition of

the coefficients dP and d̄P (and therefore of d̃P ) with respect to [46] is somewhat altered.
Some of the above coefficients will be free parameters within a combined fit, incorporating
the NLO large-Nc ChPT continuum prediction eqs. (B.9) and (B.11), that we derive in
appendix B.

We start by defining partially improved matrix elements at µ =∞:

ǎη(′) =
√

2
3M

2
η(′)F

0
η(′)(µ) + 4

3
√

3
ZAδm̃Ȟ

8
η(′) −

2
√

2√
3
rPZAm̃Ȟ

0
η(′) , (6.14)

where Ȟa
η(′) = 〈Ω|P a|η(′)〉 are unimproved pseudoscalar lattice matrix elements and we

assume rP = 1. We then carry out a fit according to

ǎη(′)(a,M2, δM2) = aη(′)(M2, δM2| · · · ) (6.15)

− 2
√

2ZA√
3

m̃

[
3ad̃PmȞ0

η(′) + adP
1√
3

(√
2m`Ȟ

`
η(′) +msȞ

s
η(′)

)
+ acsPM

2
η(′)F

0
η(′)

]
+ 4ZA

3
√

3
δm̃

[
3ab̃PmȞ8

η(′) + abP
1√
3

(
m`Ȟ

`
η(′) −

√
2msȞ

s
η(′)

)
+
√

2afP δmȞ0
η(′)

]
,

where the continuum parametrizations aη(′)(M2, δM2| · · · ) correspond to eqs. (B.9)–(B.11)
and the ellipses represent the six NLO LECs. In keeping with the rest of our analysis, all
dimensionful quantities appearing within this fit are multiplied by the appropriate powers of√

8t0. We parameterize the coefficients dP , d̃P , fP and csP (that are functions of g2) similarly
to eq. (5.52) with one parameter each, while bP and b̃P are known non-perturbatively [70]:

bP (β = 3.4) = 1.622(74), bP (β = 3.46) = 1.592(213),
bP (β = 3.55) = 1.560(165), bP (β = 3.7) = 1.696(78), (6.16)
b̃P (β = 3.4) = 0.39(27), b̃P (β = 3.46) = 0.32(20),
b̃P (β = 3.55) = 0.40(23), b̃P (β = 3.7) = 0.16(13). (6.17)

The resulting 10-parameter fit is only weakly constrained, however, at NLO in large-Nc

ChPT the LECs should be identical to those that we already determined in section 5.7.
Therefore, in analogy to eq. (5.58), we add these results, given in eq. (5.59), as priors to
the χ2 function. The widths σ are set to the statistical and systematic errors, added in
quadrature. It turns out that we are still unable to resolve d̃P and fix d̃P = b̃P instead.

The fit, shown in figure 8, gives a valid description of the data, with a fully correlated
χ2/Ndf ≈ 34/31 ≈ 1.09. We obtain

dP (g2) = bP (g2) + 6.6(6)g4, csP (g2) = −2.4(3)g4 and fP (g2) = −26(6)g6 (6.18)
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Figure 8. The anomalous gluonic matrix element aη (left) and aη′ (right) determined via the
singlet AWI from fermionic matrix elements, eq. (6.14). The coloured points have been adjusted for
lattice spacing effects, while the grey points indicate the unshifted data. The two curves correspond
to the NLO large-Nc ChPT parametrization eqs. (B.9) and (B.11) for trajectories with a constant
average quark mass and a constant strange quark mass. The black error bars indicate the final
results at the physical point including statistical and systematic errors.

for the additional improvement coefficients, setting d̃P = b̃P . The corresponding LECs
read

L5 = 1.95 (7
3)stat · 10−3, L8 = 0.97 (4

6)stat · 10−3, M0 = 1.59 (1
6)stat (8tχ0 )−1/2

,

F = 0.1881 ( 9
24)stat (8tχ0 )−1/2

, Λ1 = −0.10 (1
1)stat , Λ̃ = −0.21 (3

4)stat , (6.19)

where the errors given are purely statistical and generally small, due to the priors. In
particular, Λ1 is by 2.8 standard deviations larger than its input value (5.59), obtained from
the fit to the masses and decay constants, and Λ̃ moves up accordingly. Also L5 is larger
by about 1.3σ. This indicates some tension between the data and the NLO expressions.

At the physical point and µ =∞, the fit gives

(8tph
0 )3/2aη = 0.1564 (37

63) and (8tph
0 )3/2aη′ = 0.308 (16

17) . (6.20)

The NLO prediction eqs. (B.9) and (B.11), using the LECs of eq. (5.59), reads

(8tph
0 )3/2aη = 0.1609 (17

27) and (8tph
0 )3/2aη′ = 0.383 (11

17) . (6.21)

Note that the latter values are based exclusively on the meson masses and their decay
constants, with no input from the data on aη(′) . The predictions and fit results are close to
each other. However, within the relatively small errors stated, the two results on aη′ differ
by several standard deviations, which indicates the limitations of the NLO continuum
parametrization within our range of quark masses. Therefore, we assign the difference
between eqs. (6.20) and (6.21) as the systematic error associated with taking the physical
limit. We discuss the results and quote values in physical units in section 7.4.
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6.3 Renormalization of the anomaly term and the topological susceptibility

The singlet AWI has received a lot of attention, also in different settings, e.g., regarding
the spin structure of the nucleon [85]. It would be desirable to validate the singlet AWI
in our lattice study, also in view of confirming a consistent continuum limit extrapolation
of the lattice data. Therefore, we will attempt to compute aη(′) directly, destroying η(′)

states by the topological charge density operator. This however requires an analysis of the
renormalization of the anomaly term and its mixing with the derivative of the axialvector
current. We start from the singlet AWI in the massless case

∂µÂ
0
µ =

√
2Nf ω̂. (6.22)

Since ω(x) can be written as the divergence of a topological current, the associated Pon-
tryagin index

Q =
∫

d4xω(x) (6.23)

is integer-valued on R4 in the continuum limit and scale independent such that ω(x) itself
will not acquire an anomalous dimension.9 ∂µA

0
µ can and will mix into ω:10

ω̂ = Zωω + ZωA∂µA
0
µ, (6.24)

up to gradient flow time dependent O(a) corrections. We remark that the anomalous di-
mensions of A0

µ and of ω differ from each other in lattice regularization as well as in naive
dimensional regularization. The singlet AWI holds exactly when defining the topological
charge density using overlap fermions [86], without any factor Zω and the term contain-
ing ZωA cancels when computing the topological susceptibility τ , defined in eq. (6.25),
with periodic boundary conditions. Since the topological susceptibility obtained from em-
ploying the overlap definition and the field theoretical definition after cooling (which is
equivalent to the gradient flow) appear to agree in the continuum limit [87], it is likely that
actually Zω = 1.

Note that the running of ZωA with the scale is the same as that of ZsA, which is
consistent with eq. (6.22).11 An alternative scheme of renormalizing the singlet axialvector

9In our conventions the kinetic term of the Lagrangian reads 1
4g2
s
F aµνF

a
µν . In perturbative QCD the

coupling is usually not absorbed into the field and then this term amounts to − 1
4G

a
µνG

aµν instead. This
would have introduced a factor of g2

s in front of ω(x) within eq. (6.22) and an additional scale dependence
of ω̂, governed by the QCD β-function.

10On the lattice with Wilson fermions, in principle ω can also mix with a−1P 0. However, such power
divergent terms are removed if we define ω after a gradient flow time t that we keep fixed in physical units
as the continuum limit is approached [48]. Likewise, 〈Q2〉 will contain a contact term 〈ω(0)ω(0)〉, which
diverges in the continuum limit. This divergence is in fact required to reproduce the correct topological
susceptibility. However, this term could in principle also mix with lower dimensional operators. The latter
possibility is eliminated too, by virtue of the gradient flow.

Also note that ω = ∂µKµ will not mix into lower dimensional operators and neither does the gauge
non-invariant Chern-Simons current Kµ interfere with the renormalization of A0

µ.
11In [73] somewhat different conventions are used that correspond to 4π2asGG̃ = F aµνF

a
µν , where as =

αs/π = g2
s/(4π2). Therefore, in that case the γ-function for GG̃ reads −β(as)/as, while our Zω does

not carry any anomalous dimension. Likewise, in that article the anomalous dimension of the off-diagonal
element is proportional to γsA/as, while here γωA = γsA.
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Figure 9. Topological susceptibility for many of the CLS ensembles described in [47]. Filled
symbols mark ensembles that are simulated with a constant sum of quark masses (solid lines), open
symbols correspond to ensembles with the strange quark mass fixed to approximately the physical
value (dashed lines). Lines and shaded regions are the result of a fit to eq. (6.27). The continuum
limit result (black lines) is very close to both the fit result at β = 3.85 as well as the leading order
expectation (grey lines), when using

√
8t0F = 0.1866, see eq. (5.59), and setting Zω = 1.

current is discussed in section 5.2. In that case, both ZsA and ZωA have no anomalous
dimension. We remark that the ZωA∂µA0

µ term will not affect the topological susceptibility

τ̂ =
∑
x

〈ω̂(0)ω̂(x)〉 = 1
V

∑
x,y

〈ω̂(x)ω̂(y)〉 = 〈Q̂
2〉
V

(6.25)

since this term does not contribute to the volume sum, due to translational invariance.12

Within the numerical computations, we use the field-theoretical definition of ω ex-
tracted after evolving the gauge fields to the gradient flow time

√
8t =

√
8t∗0 ≈ 0.413 fm.

For ensembles with open boundary conditions we keep the same distance b & 1.9 fm to the
boundaries when computing eq. (6.25) as we did in the computation of the fermion loops,
cf. section 3.3.

12This also holds approximately for open boundary conditions in time, provided Lt−2b is much larger than
the relevant correlation lengths:

∑Lt/2−b
x0=−Lt/2+b

∑
~x
∂µA

0
µ(x) = 1

2a
∑

~x

[
A0

0(Lt/2− b)−A0
0(−Lt/2 + b)

]
→ 0

for Lt →∞.
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As a first sanity check, we plot the topological susceptibility in figure 9, where we in-
clude most of the CLS ensembles analysed in [47], which adds additional points at finer and
coarser lattice spacings. We find large cut-off effects with our definition of the susceptibility,
shifting points considerably away from the Nf = 3 continuum expectation [3, 88],

τ̂ = F 2

2

(
1

2M2
K −M2

π

+ 2
M2
π

)−1

. (6.26)

Indeed, large cut-off effects have been reported in unquenched simulations previously [89–
95]. To confirm Zω = 1 numerically, we attempt a simple fit to

(8t0)2τ = (8t0)2F 2

2Z2
ω

(
1

2M2
K −M2

π

+ 2
M2
π

)−1

+ l(2)
τ

a2

t∗0
+ l(3)

τ

a3

(t∗0)3/2 + l(4)
τ

a4

(t∗0)2 . (6.27)

From this four parameter fit with χ2/Ndf ≈ 35.3/33 ≈ 1.07, we obtain in the continuum
limit √

8tχ0F
Zω

= 0.190(13). (6.28)

When assuming Zω = 1, this value agrees with our previous result
√

8tχ0F = 0.1866(48)
(see eq. (5.59) of section 5.7). The coefficients of the terms parameterizing the lattice
spacing dependence are

l(2)
τ = −0.072(10), l(3)

τ = 0.355(34) and l(4)
τ = −0.324(30), (6.29)

resulting in the non-monotonous behaviour observed in figure 9. The alternating sign also
explains how the susceptibilities at our finest lattice spacing a ≈ 0.039 fm (β = 3.85) can
agree with the continuum limit expectation. We also tried to add mass-dependent terms
to our parametrization of lattice artefacts, however, the resulting coefficients turned out to
be small and the quality of the fit did not improve. Equation (6.27) with four parameters
turned out to be the minimal ansatz that resulted in a valid description of all our 37 data
points. Interestingly, the leading order continuum limit expectation for the dependence of
τ̂ on the pion and kaon masses already gives a very adequate description of the data.

6.4 Direct determination of the gluonic matrix elements

We wish to check if the fermionic results that were obtained in section 6.2 from employing
the singlet AWI are consistent with a direct determination of the gluonic matrix elements.
The renormalized matrix elements are given as

aM(µ) = 2Zω〈Ω|ω|M〉+ 2ZωA
ZsA

M2
MF

0
M(µ), (6.30)

see eq. (6.24). In the previous section, we have found Zω = 1 from a fit to the topological
susceptibility. As an additional cross check, we also simultaneously solve the above equation
forM = η andM = η′ to obtain ZωA and Zω. We plot the resulting values for Zω in the
left panel of figure 10. Qualitatively these are in agreement with Zω = 1 and we suspect
that the two outliers are due to lattice artefacts.
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Based on the evidence presented above, we assume Zω = 1, however, ZωA is not known
and therefore comparing the direct determination (6.30) of the anomaly terms with the
corresponding predictions from the singlet AWI eq. (6.13) cannot be entirely independent.
Fortunately, the ratio ZωA/ZsA only depends on the inverse lattice coupling, β, but not on
the pion and kaon masses. Moreover, the renormalization is independent of the meson.
Rearranging eq. (6.30), we can isolate the renormalization scale independent ratio

ZωA
ZsA

= aM − 2Zω〈Ω|ω|M〉
2M2
MF

0
M

. (6.31)

Since F 0
η in the denominator is close to zero and has large relative errors, we only use the

η′ matrix elements. We plot this ratio for Zω = 1 in the right panel of figure 10. Indeed,
the data for each β-value are compatible with a constant. Taking a weighted average over
all points at each of our four lattice spacing, we obtain

(ZωA/ZsA) (β = 3.4) = −0.036(13), (ZωA/ZsA) (β = 3.46) = −0.065(14),
(ZωA/ZsA) (β = 3.55) = −0.043(16), (ZωA/ZsA) (β = 3.7) = −0.10(18). (6.32)

Using these values (and Zω = 1), we evaluate eq. (6.30) with the anomalous matrix ele-
ments computed at the gradient flow time t ≈ t∗0 on the individual ensembles. We compare
our results on every ensemble with the fermionic determination of section 6.2 in the scatter
plot figure 11. Our gluonic results agree qualitatively with the fermionic determination.
The mixing with the axialvector current is non-negligible, i.e. ZωA 6= 0. Had we ignored this
mixing, the gluonic determinations would have undershot the fermionic ones by roughly
30% both for the η and the η′. We stress that agreement can only be expected in the
continuum limit since both definitions are subject to different discretization effects. We
have observed considerable lattice spacing effects both for the topological susceptibility in
section 6.3 and the singlet pseudoscalar matrix elements in section 6.2. The qualitative
agreement suggests that some of the discretization effects may be similar for both defini-
tions.

7 Summary and comparison to other results

In this section we summarize our results and compare them to other determinations from
lattice or phenomenological studies. The meson masses, decay constants, large-Nc U(3)
ChPT LECs (and their relation to their SU(3) equivalents) and pseudoscalar gluonic and
fermionic matrix elements are presented. In addition, we study the implications of our
findings on the photoproduction transition form factors of the η and η′ mesons.

The results are converted into physical units, using (8tph
0 )−1/2 = 475(6) MeV [49] and

(8tχ0 )−1/2 = 470(7), see eqs. (3.5) and (3.6). For some of our results the uncertainty of
this scale significantly contributes to the total error. Since improved determinations may
become available in the future, we quote this uncertainty separately to the statistical and
other systematic errors.
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7.1 The η and η′ meson masses

Our final results for the masses of the η and η′ mesons are (see section 5.6 and eq. (5.54))

Mη = 554.7 (4.0
6.6)stat (2.4

2.7)syst (7.0)t0 , MeV and (7.1)

Mη′ = 929.9 (12.9
6.0 )stat (22.9

3.3 )syst (11.7)t0 MeV, (7.2)

where we added the systematic errors associated with the continuum and physical quark
mass point extrapolations in quadrature. We find reasonably good agreement when com-
paring these results of Nf = 2 + 1 QCD with the known experimental masses,

PDG [63] : Mph
η = 547.862(17) MeV and Mph

η′ = 957.78(6) MeV. (7.3)

The masses are 0.7 standard errors above and one standard error below the experimental
values for the η and η′, respectively. For Mη, the combined relative error is 1.7% with the
statistical and scale setting uncertainties forming the biggest contributions. Our value for
Mη′ has a total uncertainty of 2.3%, where in this case the statistical error and the uncer-
tainty from the quark mass extrapolation dominate. In both cases, lattice spacing effects
are less significant. This reflects the fact that we are not able to resolve any such effects
in the masses, see section 5.5. For Mη′ this is not so surprising considering the relatively
large statistical error obtained on the individual ensembles. We remark that the precision
of the final results was achieved by utilizing NLO large-Nc ChPT to simultaneously fit the
two masses and four decay constants (summarized in the next subsection) determined on
twenty-one ensembles lying along two trajectories in the quark mass plane and comprising
four lattice spacings.

Our results at unphysical quark masses as well as in the physical limit are displayed
in figure 12, together with Nf = 2 + 1(+1) results of other groups that we are aware of.
The η mass is sensitive to the masses of the light and strange quarks and the data points
clearly fall along two lines which converge at the physical point, reflecting the two sets of
ensembles employed: for one set the physical strange quark mass is kept approximately
constant while for the other the flavour average of the strange and light quark masses is
held fixed. The singlet contribution to the mass of the η′ is significant and no clear quark
mass dependence is observed.

Overall, the results for the η′ are consistent across different collaborations and ac-
tions (also at larger quark masses), whereas for the η some scatter is visible. The latter
may be due to mistuning of the strange quark mass and/or lattice spacing effects. In
particular, a previous exploratory study of our group [18] is affected by mistuning. The
ETMC [19] and JLQCD [34] collaborations employ pion masses reaching down to approx-
imately 220 MeV. In this work, we obtain results close to the physical point for the first
time. While the errors are relatively large for our Mπ ≈ 126 MeV ensemble, the results are
in good agreement with the quark mass extrapolation.

To our knowledge the only other studies which attempt a physical limit extrapolation
are those of ETMC [19, 35, 36] and JLQCD [34]. The latter Nf = 2 + 1 work utilizes
gluonic correlation functions to determine the η′ mass. A simple linear extrapolation is
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Figure 12. RecentNf = 2+1(+1) lattice results for the masses of the η and η′ mesons. Most points
have been simulated at approximately physical strange quark masses (open symbols), whereas in
this work we also include an additional trajectory along which the average of the quark masses is
kept constant (filled symbols). The three sets of points in the shaded regions left of the physical
point (dashed line) correspond to the continuum and chirally extrapolated results of JLQCD [34]
(who do not give an estimate of Mη), ETMC [19] and this work.

performed which is justified in view of the large statistical errors. ETMC [19] employ
the twisted mass fermion formulation and simulate Nf = 2 + 1 + 1 QCD. The physical
point is approached keeping the strange quark mass approximately equal to its physical
value, although some mistuning is visible in the results for Mη. This is compensated for by
including terms proportional to ms in the quark mass extrapolation, in addition to terms
proportional to m` and a2. This leading order ansatz yields an effective parametrization of
the data, however, the η and η′ masses are assumed to be independent of each other and
are fitted separately, ignoring potential correlations in the data. The final errors for Mη

andMη′ at the physical point are larger than ours, in particular for the latter, although the
uncertainties on the individual ensembles are similar and at the percent and few-percent
level, for the η and η′, respectively. We achieve smaller final errors by simultaneously
fitting the quark mass and lattice spacing dependence of six observables (two masses and
four decay constants), which have been determined on ensembles following two trajectories
to the physical point. This, together with including ensembles with small quark masses,
enables the quark mass extrapolation to be tightly constrained. The results from ETMC at
the physical point are in agreement with our estimates and the experimental values within
the quoted errors.
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7.2 Decay constants

We carry out two sets of fits to extract the four decay constants, one where we simulta-
neously fit to our lattice results for the masses and decay constants from which the values
of the masses at the physical point (presented in the previous subsection) are taken and
another set where we constrain the masses to reproduce the physical values by adding
prior terms to the χ2 function. The latter fits enable the LECs to be better constrained,
see section 5.7. The two sets of results, detailed in tables 24 and 25 in appendix E, are
consistent within errors. In the following, we will only discuss the second set of results.
Since the singlet axialvector current has an anomalous dimension in the MS scheme, some
of the results depend on the QCD scale, see section 5.2. Although the fits were performed
setting µ =∞ in Nf = 3 QCD, in this section we will mostly quote results at µ = 2 GeV.
This simplifies a comparison to literature values, as discussed below. The results obtained
for a range of scales are listed in tables 24 and 25.

Summary of the results. The decay constants, converted to the angle representation
of the octet/singlet basis, read at µ = 2 GeV in Nf = 3 QCD

F 8 = 115.0 (1.1
1.2)stat (1.6

2.4)syst (1.5)t0 MeV, (7.4)

θ8 = −25.8 (1.2
2.1)stat (2.2

0.3)
◦
syst , (7.5)

F 0(µ = 2 GeV) = 100.1 ( 7
1.9)stat (2.0

2.7)syst (1.3)t0 MeV, (7.6)

θ0 = −8.1 (1.0
1.1)stat (1.5

1.5)
◦
syst , (7.7)

where we added the systematic errors arising from the continuum and chiral extrapolation
in quadrature. This representation has the advantage that only F 0 depends on the scale,
however, often the flavour basis in the angle representation is employed in the literature.
We find

F `(µ = 2 GeV) = 88.28 (1.20
2.02)stat (3.00

1.74)syst (1.12)t0 MeV, (7.8)

φ`(µ = 2 GeV) = 36.2 (1.1
2.0)stat (1.3

0.4)
◦
syst , (7.9)

F s(µ = 2 GeV) = 124.3 (1.7
1.6)stat (2.7

4.3)syst (1.6)t0 MeV, (7.10)

φs(µ = 2 GeV) = 37.9 (1.0
1.3)stat (1.4

0.8)
◦
syst , (7.11)

where all quantities depend non-trivially on the scale. The popularity of the flavour rep-
resentation is due to the similarity of the two angles which suggests that the four (inde-
pendent) decay constants can be described by only three parameters, setting φ` = φs = φ.
This approximation is made in the Feldmann-Kroll-Stech (FKS) scheme [41, 96, 97] and
to NLO in large-Nc ChPT it is equivalent to neglecting OZI-rule violating terms, specifi-
cally those involving Λ1. At NLO the latter parameter is related to the angles and decay
constants via [6, 41] √

2
3 F 2

πΛ1 = F `F s sin(φ` − φs). (7.12)

Thus, if Λ1 is set to zero, then within this approximation φ` = φs.
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Figure 13. Scale dependence of the decay constants and their mixing angles in the flavour basis.
The approximation φ` ≈ φs ≈ φ is only valid for µ inbetween about 1 GeV and 2 GeV. In the same
region the decay constants vary considerably with the scale. The (asymmetric) errors indicated by
the coloured bands are statistical only.

Dependence on the QCD scale. In effect, the assumption Λ1 = 0 renders the singlet
decay constant independent of the scale since [6, 98]

µ
d

dµ
F0(µ)√

1 + Λ1(µ)
= 0. (7.13)

The results in eqs. (7.8)–(7.11) show that at µ = 2 GeV the angles almost agree within
errors. However, our estimate for Λ1 = −0.25(5) (see section 5.7) determined at µ = ∞,
suggests that this approximation cannot hold at high scales. We display the scale dependent
decay constants and angles as a function of µ in figure 13. The two angles are significantly
different at large scales where the combination 2(φs − φ`)/(φs + φ`) approaches 16%.
However, this difference decreases towards lower µ and in the range 0.9 GeV . µ . 2 GeV
then φ` ≈ φs. This is due to Λ1(µ) crossing zero around 1 GeV as shown in figure 14, where
we display both OZI violating LECs [99],

Λ1(µ) =
(
ZsA(µ)
Zs′A

)2

(1 + Λ1(µ =∞))− 1, Λ2(µ) = ZsA(µ)
Zs′A

(1 + Λ2(µ =∞))− 1. (7.14)

The LEC Λ2, which mostly impacts on the masses, becomes small at high scales but should
not be neglected at µ < 4 GeV. This provides an explanation for the observation of some
ChPT studies that Λ2 plays a more important role than Λ1 in terms of reproducing the
physical η and η′ masses [81, 100].

The scale dependence of some observables complicates direct comparisons to phe-
nomenology in many studies employing ChPT, where the relevant QCD scale depends
on the processes that are considered to fix the LECs and on the order of ChPT. Typi-
cally, the LECs are determined using experimental input from, e.g., the η and η′ masses
and the widths of radiative decays. This implies a low QCD renormalization scale. Λ1
varies rapidly in this region which means that if this LEC is determined using physical
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Figure 14. Scale dependence of the large-Nc ChPT LECs Λ1 and Λ2.

processes dominated by different physical scales, the predictions for, e.g., F 0 will be af-
fected. Clearly, results obtained using the FKS scheme should be compared at the scale
where Λ1 vanishes. One possibility to mitigate this problem is to compare results in the
octet/singlet basis (where only F 0 depends on µ) and form the scale independent combi-
nation F 0/

√
1 + Λ1 [6]. Our result for the latter reads

F 0/
√

1 + Λ1 = 107.3 (1.5
7 )stat (1.3

1.3)syst (1.4)t0 MeV. (7.15)

Comparison with phenomenological results. A comparison with a variety of results
for the decay constants in the light/strange flavour and octet/singlet bases is shown in
tables 16 and 17, respectively. Most of the results rely on large-Nc ChPT using experi-
mental input to fix the LECs. One of the first such computations was undertaken at NLO
by Leutwyler [6], using predominantly pseudoscalar meson masses and non-singlet decay
constants to fix the LECs. Only scale independent combinations are quoted and a result
for the singlet decay constant is not given. Feldmann [97] then employed the FKS scheme
discussed above to give values also for the scale dependent decay constants and the single
flavour mixing angle (in this scheme). This approximate scheme is also used on the lattice
by ETMC [19, 36] to relate the pseudoscalar matrix elements to the (axial) decay constants,
which will be discussed further below. In the first NNLO large-Nc ChPT calculation, Guo
et al. [81] take lattice input for Mη,Mη′ and the non-singlet pseudoscalar masses and decay
constants at unphysical quark masses from the literature. This allows them to constrain
the LECs to NLO, but further assumptions are needed for the many NNLO coefficients.
Subsequently, Gu et al. [107] extended the analysis by also utilizing the decay constant
results from ETMC [19]. However, additional constraints on the parameters still seem to
be necessary in order to obtain stable NNLO results. Bickert et al. [42] also perform an
NNLO analysis, in this case combining LECs obtained from the literature and derived from
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ref F `/MeV F s/MeV
Benayoun et al. [101]

85 90 95 100105110

—

110120130140150160

—
Escribano and Frere [102] 100.4(2.8) 152.8(5.5)
Escribano et al. [103] 97.6(1.0) 144(20)
Chen et al. [104] 105.9(3.7) 143.6(5.5)
Escribano et al. [105] 98.7(9) 128(13)
Escribano et al. [98] 94.9(3.7) 125.3(3.7)
Leutwyler [6] — —
Feldmann [97] 98.5(1.8) 123.4(5.5)
Guo et al. [81] NLO-A 94.1(2.5) 122.3(5.2)
Guo et al. [81] NNLO-B 92.7(1.4) 139(15)
Bickert et al. [42] NLO-I — —
[42] NNLO w/o Ci (µEFT = 1GeV) — —
[42] NNLO w/ Ci (µEFT = 1GeV) — —
Ding et al. [106] 101 138
ETMC [19] 88.4(5.4) 125.6(2.6)
Gu et al. [107] NNLO-A9p(Fπ) 89.8(4.7) 126.3(2.9)
this work (µ = 1GeV) 91.7(3.3) 126.7(4.3)
this work (µ = 2 GeV) 88.3(3.2) 124.3(4.2)
this work (µ =∞) 84.4(3.0) 121.5(4.1)

ref φ` φs

Benayoun et al. [101]

32 34 36 38 40 42 44 46

—

32 34 36 38 40 42 44

—
Escribano and Frere [102] 39.9(1.3)◦ 41.4(1.4)◦
Escribano et al. [103] 40.3(1.8)◦ 40.3(1.8)◦
Chen et al. [104] 34.5(1.8)◦ 36.0(1.4)◦
Escribano et al. [105] 39.3(1.2)◦ 39.2(1.2)◦
Escribano et al. [98] 39.6(2.3)◦ 40.8(1.8)◦
Leutwyler [6] — —
Feldmann [97] 39.3(1.0)◦ 39.3(1.0)◦
Guo et al. [81] NLO-A 40.4(4.8)◦ 39.9(2.8)◦
Guo et al. [81] NNLO-B 35.8(1.2)◦ 37.1(1.4)◦
Bickert et al. [42] NLO-I — —
[42] NNLO w/o Ci (µEFT = 1GeV) — —
[42] NNLO w/ Ci (µEFT = 1GeV) — —
Ding et al. [106] 42.8◦ 42.8◦
ETMC [19] 38.8(3.3)◦ 38.8(3.3)◦
Gu et al. [107] NNLO-A9p(Fπ) 39.6(2.6)◦ 36.7(2.3)◦
this work (µ = 1GeV) 38.3(1.8)◦ 36.8(1.6)◦
this work (µ = 2 GeV) 36.2(1.9)◦ 37.9(1.6)◦
this work (µ =∞) 33.3(2.0)◦ 39.3(1.7)◦

Table 16. Comparison of recent phenomenological and lattice results for the (scale dependent)
decay constants in the angle representation for the light/strange flavour basis. The results from
this work are presented at three different scales.
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ref F 8/MeV F 0/MeV
Benayoun et al. [101]

110 120 130 140

125.2(9)

90 100 110 120

121.5(2.8)
Escribano and Frere [102] 139.0(4.6) 118.8(3.7)
Escribano et al. [103] — —
Chen et al. [104] 133.5(3.7) 117.8(5.5)
Escribano et al. [105] 112.4(9.2) 105.9(5.5)
Escribano et al. [98] 117.0(1.8) 105.0(4.6)
Leutwyler [6] 118 —
Feldmann [97] 116.0(3.7) 107.8(2.8)
Guo et al. [81] NLO-A 113.2(4.4) 104.9(2.9)
Guo et al. [81] NNLO-B 126(12) 109.1(6.0)
Bickert et al. [42] NLO-I 116.0(9) —
[42] NNLO w/o Ci (µEFT = 1GeV) 117.9(1.8) —
[42] NNLO w/ Ci (µEFT = 1GeV) 109(7) —
Ding et al. [106] 123.4 116.0
ETMC [19] — —
Gu et al. [107] NNLO-A9p(Fπ) 113.1(2.1) 106.0(4.4)
eq. (7.16) 115.2(1.2) —
this work (µ = 1GeV) 115.0(2.8) 106.0(3.2)
this work (µ = 2 GeV) 115.0(2.8) 100.1(3.0)
this work (µ =∞) 115.0(2.8) 93.1(2.7)

ref θ8 θ0

Benayoun et al. [101]

−30 −20 −10

−20.4(1.0)◦

−30 −20 −10 0

−0.1(1.0)◦

Escribano and Frere [102] −23.8(1.4)◦ −2.4(1.9)◦

Escribano et al. [103] — —
Chen et al. [104] −26.7(1.8)◦ −11.0(1.0)◦

Escribano et al. [105] −21.3(3.5)◦ −11.3(3.9)◦

Escribano et al. [98] −21.2(1.9)◦ −6.9(2.4)◦

Leutwyler [6] −20◦ −4◦

Feldmann [97] −21.2(1.9)◦ −9.2(1.7)◦

Guo et al. [81] NLO-A −21.5(4.5)◦ −7.2(2.5)◦

Guo et al. [81] NNLO-B −27.9(1.7)◦ −6.8(3.8)◦

Bickert et al. [42] NLO-I −21.7(7)◦ −0.5(7)◦

[42] NNLO w/o Ci (µEFT = 1GeV) −12.6(6.1)◦ −6.3(6.5)◦

[42] NNLO w/ Ci (µEFT = 1GeV) −34(22)◦ −33(24)◦

Ding et al. [106] −21◦ −2.8◦

ETMC [19] — —
Gu et al. [107] NNLO-A9p(Fπ) −26.1(2.5)◦ −7.0(2.1)◦

eq. (7.16) — —
this work (µ = 1GeV) −25.8(2.3)◦ −8.1(1.8)◦

this work (µ = 2 GeV) −25.8(2.3)◦ −8.1(1.8)◦

this work (µ =∞) −25.8(2.3)◦ −8.1(1.8)◦

Table 17. Comparison of recent phenomenological and lattice results for the decay constants in
the angle representation for the octet/singlet basis, where only F 0 depends on the scale. We use
Fπ+ = 92.1 MeV [63] to convert decay constants given as a multiple of Fπ and eq. (7.16) refers
to the NLO result from literature pion and kaon decay constants. The results from this work are
presented at three different scales.
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ref Λ1 F 0/
√

1 + Λ1/MeV
Benayoun et al. [101]

−0.2 0 0.2 0.4 0.6

0.20(4)

80 90 100 110 120

110.9(4.8)
Escribano and Frere [102] 0.34(10) 102.6(8.2)
Escribano et al. [103] 0 —
Chen et al. [104] — —
Escribano et al. [105] 0 —
Escribano et al. [98] 0.01(13) 105(11)
Leutwyler [6] — 101
Feldmann [97] 0.0(3) 107.8(2.8)
Guo et al. [81] NLO-A 0.02(8) 102.8(7.0)
Guo et al. [81] NNLO-B −0.04(14) 111(14)
Bickert et al. [42] NLO-I — 104.1(0)
[42] NNLO w/o Ci (µEFT = 1GeV) 0 79.2(9)
[42] NNLO w/ Ci (µEFT = 1GeV) 0 76.4(9)
Ding et al. [106] — —
ETMC [19] 0 —
Gu et al. [107] NNLO-A9p(Fπ) 0.24(21) 95(20)
eq. (7.16) — 104.3(1.1)
this work (µ = 1GeV) −0.03(5) 107.3(2.2)
this work (µ = 2 GeV) −0.13(5) 107.3(2.2)
this work (µ =∞) −0.25(5) 107.3(2.2)

Table 18. Comparison of determinations of the (scale dependent) large-Nc ChPT LEC Λ1 and
the scale independent combination of Λ1 and F 0, where eq. (7.16) refers to the NLO result from
literature pion and kaon decay constants. The values indicated in Italics have been computed by
us from F0 and Λ1 with naive error propagation. The results from this work are presented at three
different scales.

experimental input for the masses and non-singlet decay constants. Again only QCD scale
independent combinations are given.

There exist a number of other studies, some of which are based on models, for in-
stance, Benayoun [101, 108] employs vector meson dominance, while others involve more
phenomenologically driven extractions, for example, Escribano et al. [98, 102, 103, 105], use
experimental data on, e.g., the transition form factors γγ∗ → η and γγ∗ → η′. However, a
connection to NLO large-Nc ChPT is made and allows to predict some of the LECs. Chen
et al. [104] couple large-Nc ChPT at NLO to vector resonances and extract the LECs,
including these additional couplings, by simultaneously analysing in this framework radia-
tive decay form factors of light vector mesons and charmonia into pseudoscalar final states.
Finally, in their calculation Ding et al. [106] employ coupled gap and Bethe-Salpeter equa-
tions.

We also include the values F 8 = 115.2(1.3)MeV and F 0/
√

1 + Λ1 = 104.3(1.1)MeV in
tables 17 and 18 (labelled as “eq. (7.16)”). These are obtained from the identities

(F 8)2 = 4F 2
K − F 2

π

3 and (F 0)2 = 2F 2
K + F 2

π

3 (1 + Λ1) , (7.16)
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which hold at NLO in large-Nc ChPT [6], using the values FK+/Fπ+ = 1.193(2) [109]
and Fπ+ = 92.1(8)MeV [63, 109] as input, neglecting electromagnetic and isospin break-
ing effects. The perfect agreement with our lattice QCD determination of F 8 and the
agreement on the 1.3σ level for F 0/

√
1 + Λ1 indicates that NLO large-Nc ChPT is a good

approximation for these quantities, at least near the physical quark mass point.
Overall, we find reasonable agreement between our results and phenomenological NLO

large-Nc ChPT determinations. However, in the latter case the errors are often not easily
quantifiable. For quantities that depend on the scale, the comparison should be made
with our values determined at low scales (for which Λ1 vanishes). Note that the mixing
angles and fundamental decay constants F q in the flavour basis all depend on the QCD
scale, unless the FKS approximation is used. The other determinations, which rely on
more complicated experimental analyses (incorporating processes at various scales), differ
more significantly, in particular, for the scale independent octet decay constant and the
octet mixing angle. The theoretical effort involved in working out the higher orders not
withstanding, in general, it seems that the data available (lattice or experimental) are not
sufficient to constrain the many parameters of NNLO large-Nc ChPT. Hence, these studies
tend to have larger errors while still relying on assumptions, such as setting individual
parameters to zero [42, 81]. The lattice can help, for example, by determining the (QCD
renormalization scale dependent) OZI violating parameters Λ1 and Λ2.

Relation to other lattice results. Matrix elements of the η and η′ have previously been
computed on the lattice in the context of an exploratory study of Ds → η, η′ semileptonic
decays [18]. However, only two ensembles were utilized, with pion masses far away from
the physical point. ETMC calculated the decay constants utilizing an indirect approach
in [36]. This study was updated in [19] to include a continuum extrapolation, employing
seventeen Nf = 2 + 1 + 1 gauge ensembles at three different lattice spacings. Their results
for the masses were discussed in section 7.1. Due to the level of noise in the axialvector
channels, they utilize the FKS scheme to access the decay constants via the pseudoscalar
matrix elements of the η and η′ states [97]. Before summarizing their results, we will discuss
the assumptions they make.

The FKS approximation neglects all OZI violating terms. This amounts to setting
Λ1 = 0. Rotating eq. (7.16) into the flavour basis results in

(F `)2 = F 2
π + 2

3Λ1(2F 2
K + F 2

π ) and (F s)2 = 2F 2
K − F 2

π −
1
3Λ1(2F 2

K + F 2
π ). (7.17)

Setting Λ1 = 0 and plugging the experimental ratio FK+/Fπ+ = 1.193(2) [109] into
eq. (7.17) gives

F `/Fπ = 1 and F s/FK =

√√√√2−
F 2
π+

F 2
K+

= 1.139(2). (7.18)

In the FKS model the flavour basis AWIs (6.5) factorize into anomalous and non-anomalous
contributions and one obtains the relations [96, 97]

2m`H
` = M2

πF
` and 2msH

s = (2M2
K −M2

π)F s, (7.19)
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where Hq =
√

(Hq
η)2 + (Hq

η′)2 for q = `, s and the Hq

η(′) are defined in eq. (4.19). Therefore,
in this approximation, in the flavour basis the mass mixing angle φSU(3), the mixing angles
φ` and φs and the mixing angles for pseudoscalar matrix elements are all equal: φSU(3) =
φ = φs = φ` = φPS, where [110]

φSU(3) = arcsin

√√√√√
(
M2
η′ − (2M2

K −M2
π)
)

(M2
η −Mπ)

(M2
η′ −M2

η )(2M2
K − 2M2

π) = 42.4◦. (7.20)

ETMC [19] compute the mixing angle from the averaged ratios of their pseudoscalar
matrix elements:

tanφPS =
√

tanφ`PS tanφsPS with tanφ`PS =
H`
η′

H`
η

and tanφsPS = −
Hs
η

Hs
η′
. (7.21)

The decay constants are obtained, using eq. (7.19). Subsequently, the ratios F `/Fπ, F s/FK
and the angle φ are extrapolated, using a fit that is linear in the quark masses and quadratic
in the lattice spacing. At the physical point ETMC obtain

ETMC [19]: F `/Fπ = 0.960(59), F s/FK = 1.143(24) and φ = 38.8(3.3)◦, (7.22)

which within errors agrees with the values computed within the FKS model in eqs. (7.18)
and (7.20) from the experimental kaon and pion decay constants and the experimental me-
son masses, respectively. The ETMC results also agree well with our results, that are ob-
tained directly from the axialvector matrix elements, at the scale µ = 1 GeV (see table 16),
where we find Λ1 ≈ 0, whereas at higher scales the two sets of results differ somewhat.

Test of the FKS approximation, away from the physical point. The results in
tables 16, 17 and 18 (see also eqs. (7.18) and (7.20)) show that our ab-initio values deter-
mined at µ = 1 GeV agree well with those derived by employing the FKS scheme. We can
go further and directly check the relations (7.19), (7.21) and (7.17), also away from the
physical point. Figure 15 displays the two decay constants and two angles in the flavour
basis determined from the pseudoscalar matrix elements against the direct results for a
range of ensembles at µ = 1 GeV. The values for F ` and F s obtained from the pion and
kaon decay constants are also shown. Modulo the large errors for some ensembles, there is
reasonable agreement between the direct results for the angles and the FKS expectation,
with φSU(3) ≈ φPS. Qualitative agreement is also found for the decay constants, however,
some scatter in the results is visible, which may be due to discretization effects and/or
the limitations of the FKS approximation. This is less significant for F s and it is striking
how well this quantity is reproduced by the combination

√
2F 2

K − F 2
π . However, at higher

scales, where Λ1 can no longer be neglected, scale dependent quantities cannot be reliably
extracted with any precision using the FKS method, as indicated in the comparison tables.
In particular, for the singlet decay constant we observe the difference between the results
at high and low scales 2(F 0(1 GeV)−F 0(∞))/(F 0(1 GeV) +F 0(∞)) = 12.9 %. We remark
that previously it was unclear at what scale the FKS approximation holds and this led to
an additional unquantifiable uncertainty in phenomenological analyses.
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Figure 15. Light and strange decay constants (top) and angles (bottom) determined on each
ensemble at the QCD scale µ = 1 GeV. The central values and errors in the x-direction indicate
the results obtained directly from the axialvector matrix elements, while the position and error
in the y-direction indicates the values constructed from the pseudoscalar matrix elements (red,
eqs. (7.19) and (7.21)). For the decay constants, the expectations derived from combinations of
the pion and kaon masses and decay constants (blue, eq. (7.17)) are also displayed, while for the
angles φSU(3) (eq. (7.20)) is also shown. The blue points have been shifted slightly to the right for
better visibility.
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Our direct QCD results can be used as input to theory calculations and we consider
one important example in section 7.5, namely the light-cone sum rule computation of the
γγ∗ → η(′) transition form factors.

7.3 Large-Nc low energy constants

As part of our analysis we are able to extract the large-Nc ChPT LECs up to NLO. The
singlet mass in the chiral limit M0 and the two OZI-rule violating parameters Λ1 and Λ2
are all O(1/Nc) in the power counting. Besides these large-Nc specific LECs, L5, L8 and
the decay constant in the chiral limit, F , also appear. These are present in ordinary SU(3)
ChPT, although, their values can differ. In particular, L5 and L8 depend on the ChPT
renormalization scale in the SU(3) theory, however, such scale dependence only arises at
NNLO in large-Nc ChPT.

The O(1/Nc) LECs extracted from our NLO fits at µ =∞ for Nf = 3 read:

M0 = 761 (13
21)stat (18

11)syst (11)t0 MeV, (7.23)

Λ1 = −0.25 (1
4)stat (6

2)syst , (7.24)

Λ2 = 0.11 (5
5)stat ( 7

10)syst , (7.25)

where the ChPT and lattice spacing errors have been combined into a single systematic
uncertainty. The dependence of these quantities on the QCD renormalization scale is
discussed in section 7.2. To aid comparison with literature values we consider the scale
independent combinations [6]:

M0/
√

1 + Λ1 = 877 (12
10)stat (21

8 )syst (13)t0 MeV and Λ̃ = Λ1 − 2Λ2 = −0.46(19). (7.26)

Previous determinations of these quantities include:

Leutwyler [6]: M0/
√

1 + Λ1 ≈ 899 MeV and Λ̃ = −0.31, (7.27)
Benayoun et al. [101]: Λ̃ = −0.42(6), (7.28)
Guo et al. [81]: M0/

√
1 + Λ1 = 804(80) MeV and Λ̃ = −0.37(17), (7.29)

Bickert et al. [42]: M0/
√

1 + Λ1 = 950(7) MeV and Λ̃ = −0.34(5), (7.30)

where except for [42], we have constructed these scale independent quantities from the
individual results quoted in the publications. Our central value for M0/

√
1 + Λ1 is larger

than the result of [81], which utilizes lattice data, however, considering the large uncertainty
quoted in this reference, there is no significant disagreement. The determination from [42]
lies roughly two standard deviations higher, where the LECs in this study are determined
from experimental input which includes the singlet and non-singlet meson masses and
non-singlet decay constants. We also find some disagreement with [42] when comparing
predictions for the decay constants and angles, cf. table 17. Interestingly, our value for the
combination of OZI-violating LECs Λ̃ is in good agreement with the above determinations.

For the decay constant in the chiral limit, we obtain

F = 87.71 (1.44
1.57)stat (2.69

81 )syst (1.31)t0 MeV. (7.31)
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This result agrees within errors with the NLO values presented in [81] and [42]:

Guo et al. [81]: F = 92.1(6) MeV, Bickert et al. [42]: F = 90.73(11) MeV. (7.32)

However, the corresponding NNLO analyses give somewhat lower values of F ,

Guo et al. [81]: F = 80.8(6.3) MeV, Bickert et al. [42]: F = 79.46(6.59) MeV, (7.33)

which within errors still agree with our result (7.31). In the simulations of [111] withNf = 4
sea quarks, the number of colours Nc ∈ {2, 3, 4, 5, 6} is varied. The pion decay constant and
its mass are then fitted to the NNLO large-Nc U(4) ChPT prediction. From the expected
dependence on Nf/Nc and 1/N2

c (neglecting N2
f /N

2
c terms), the even lower value

Hernandez et al. [111]: F (Nf = 3, Nc = 3) = 68(7) MeV (7.34)

is inferred for Nf = Nc = 3 at the lattice spacing a ≈ 0.075 fm.
The additional terms appearing at NNLO comprise chiral logs and expressions which

include the LECs L4, L6, L7, L18 and L25. In particular, in [112], it is argued that L4 is
anti-correlated with the decay constant in the chiral limit as seen, e.g., in fits to experi-
mental data in [113]. Thus, neglecting NNLO contributions including L4-terms may lead
to larger values of F . However, also our fits in appendix A, including only the NNLO loop
contributions (see the discussion of section 5.5 as well as below), gives F = 79.0(3.8) MeV.
In conclusion, both these effects may account for the reduction of the value of F within
NNLO analyses, in comparison to results from NLO parametrizations.

For the LECs L5 and L8, we find

L5 = 1.66 (11)stat (20)syst · 10−3 and L8 = 1.08 (9)stat (9)syst · 10−3. (7.35)

These values agree reasonably well with those obtained from other NLO large-Nc ChPT
studies, e.g.,

Leutwyler [6]: L5 = 2.2 · 10−3 and L8 = 1.0 · 10−3, (7.36)
Guo et al. [81]: L5 = 1.47(29) · 10−3 and L8 = 1.08(6) · 10−3, (7.37)
Bickert et al. [42]: L5 = 1.86(6) · 10−3 and L8 = 0.78(5) · 10−3. (7.38)

A comparison can also be made with the LECs obtained using SU(3) ChPT. The LECs in
the SU(3) and large-Nc theories are related via [42, 83, 114]

L5(µEFT) = L
SU(3)
5 (µSU(3)) + 3

8
1

16π2 ln
(
µSU(3)
µEFT

)
(7.39)

L8(µEFT) = L
SU(3)
8 (µSU(3)) + 5

48
1

16π2 ln
(
µSU(3)
µEFT

)
+ 1

12
1

16π2 ln
(
µmatch
µEFT

)
, (7.40)

where µSU(3) is the SU(3) ChPT scale, µEFT is the scale of large-Nc ChPT (which is ill-
defined at NLO) and µmatch is the scale at which the two theories are matched. We set
µEFT = µSU(3) = µmatch = 0.770 GeV such that L5,8(µEFT) = L

SU(3)
5,8 (µSU(3)). A direct

comparison can then be made with the SU(3) values obtained in [115] from a Nf = 2 + 1
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aη aη′

µ = 1 GeV 0.01720 (40
69)stat (48)syst (67)t0 GeV3 0.0424 (19

17)stat (80)syst (19)t0 GeV3

µ = 2 GeV 0.01700 (40
69)stat (48)syst (66)t0 GeV3 0.0381 (18

17)stat (80)syst (17)t0 GeV3

µ = 10 GeV 0.01688 (40
69)stat (48)syst (66)t0 GeV3 0.0356 (18

17)stat (80)syst (17)t0 GeV3

µ =∞ 0.01676 (40
67)stat (48)syst (65)t0 GeV3 0.0330 (18

17)stat (80)syst (16)t0 GeV3

θy a2
η′/a

2
η

µ = 1 GeV −22.1 (3
5)stat (2.8)◦syst 6.09 (27

53)stat (2.05)syst

µ = 2 GeV −24.0 ( 4
1.0)stat (3.2)◦syst 5.03 (19

45)stat (1.94)syst

µ = 10 GeV −25.3 ( 4
1.1)stat (3.6)◦syst 4.46 (16

41)stat (1.86)syst

µ =∞ −26.9 ( 4
1.2)stat (4.1)◦syst 3.88 (14

38)stat (1.78)syst

Table 19. Gluonic matrix elements of the η and η′ and combinations thereof at various scales.

lattice study of the pion and kaon masses and decay constants. Here, we quote the values
presented in the FLAG review [109] for µSU(3) = 0.770 GeV

MILC [115]: L
SU(3)
5 = 0.98(38) · 10−3 and L

SU(3)
8 = 0.42(27) · 10−3. (7.41)

The agreement with our (scale independent) results improves for µEFT < 0.770 GeV and
µmatch > 0.770 GeV.

Overall, our results for the large-Nc ChPT LECs are reasonably consistent with lit-
erature values. A direct comparison of NLO and NNLO results is difficult due to the
scale dependence which arises at NNLO. Results from our fits including the NNLO loop
contributions can be found in appendix A. The inferior χ2/Ndf = 2.56 indicates that this
parametrization does not describe our data well and additional NNLO terms are required
for a consistent description of the data. Note that this analysis gives values for the LECs
L5 and L8 (see eq. (A.9)) that are slightly smaller and larger than our NLO values quoted
in eq. (7.35), respectively. As also observed in our analysis, it appears difficult to reliably
pin down the many NNLO LECs, and usually priors or assumptions are needed to carry
out such fits, giving rise to additional uncertainties, see for example the scatter of NNLO
results in [42, 81].

7.4 Pseudoscalar gluonic and fermionic matrix elements

We determined the anomaly matrix elements aη and aη′ in section 6.2 from a fit to combi-
nations of axialvector and pseudoscalar matrix elements, eq. (6.13). The fit is performed
for data at the QCD renormalization scale µ = ∞ and we carry out the conversion to
lower scales, using the fact that the combinations mfH

f
n are scale independent. We first

determine these combinations by plugging our physical point results on the masses, decay
constants and the gluonic matrix elements into the AWIs in the flavour basis, eq. (6.5).
Following this, we reconstruct aη(′) at different scales using the known running of the singlet
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axialvector current. With Nf = 3 active quark flavours, at 2 GeV we obtain:

aη(µ = 2 GeV) = 0.01700 (40
69)stat (48)syst (66)t0 GeV3, (7.42)

aη′(µ = 2 GeV) = 0.0381 (18
17)stat (80)syst (17)t0 GeV3. (7.43)

The systematic error is computed as the difference between our results from a direct NLO fit
to the aη(′) data (see eq. (6.20)), that included lattice correction terms, and the continuum
NLO large-Nc ChPT prediction (see eq. (6.21)), based on the set of LECs that we obtained
from our simultaneous fits to the masses and decay constants. We list our results at various
scales in table 19 and compare to literature values in table 20, where the scale is not
specified. These analyses are based on, e.g., QCD sum rule calculations [116, 117], large-
Nc ChPT [9, 97] and related state mixing models that include a pseudoscalar glueball [118,
119]. We find agreement with the references that give error estimates, with the exception
of [9].

Combining our physical point results on aη(′) , the η(′) masses and their decay constants
with eq. (6.5) gives the following predictions

m`H
`
η = 0.0021 (3

2)stat (13)syst(0)t0 GeV3, msH
s
η = −0.0173 (3

2)stat (17)syst(7)t0 GeV3,

m`H
`
η′ = 0.0045 (10

8 )stat (40)syst(0)t0 GeV3, msH
s
η′ = 0.0309 (15

5 )stat (50)syst(10)t0 GeV3

(7.44)

for the pseudoscalar fermionic matrix elements, where again the systematic error is the
difference with respect to the NLO ChPT predictions eqs. (B.5)–(B.8), obtained using our
set of LECs. Since the values of the above combinations are smaller in the light quark
sector than for strange quarks, and the absolute error on aη(′) is the major contribution to
their uncertainty, the relative precision that we can achieve is limited for the light quark
combinations. Note that this is a statement about the physical mass continuum limit;
on individual ensembles also the light quark matrix elements can be quite precise. While
there is some tension for the combination msH

s
η , most of our results agree with the estimate

in the FKS approximation, where the pseudoscalar matrix element is taken in the SU(2)
isospin limit,

Feldmann [96]: m`H
`
η = 0.0010 GeV3, msH

s
η = −0.026 GeV3,

m`H
`
η′ = 0.0008 GeV3, msH

s
η′ = 0.032 GeV3, (7.45)

and the very similar numbers of a QCD sum rule calculation,

Singh [117]: m`H
`
η = 0.00105(14) GeV3, msH

s
η = −0.0284(55) GeV3,

m`H
`
η′ = 0.000782(250) GeV3, msH

s
η′ = 0.0379(71) GeV3. (7.46)

We again emphasize that the above combinations are renormalization group invariants.
It is particularly interesting to inspect the ratio of the gluonic matrix elements that

can be used to define a mixing angle in the gluonic sector [97],

θy(µ = 2 GeV) = − arctan
(
aη(2 GeV)
aη′(2 GeV)

)
= −24.0 ( 4

1.0)stat (3.2)◦syst . (7.47)
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ref aη/GeV3 aη′/GeV3

Novikov et al. [116]

0.00 0.01 0.02 0.03

0.021

0.00 0.02 0.04 0.06 0.08

0.035
Feldmann [97] 0.023 0.058
Beneke and Neubert [9] 0.022(2) 0.057(2)
Cheng et al. [118] 0.026(28) 0.054(57)
Singh [117] 0.0220(50) 0.037(10)
Qin et al. [119] 0.016 0.051
Ding et al. [106] 0.024 0.051
this work at µ = 1GeV 0.0172(10) 0.0424(84)
this work at µ = 2GeV 0.0170(10) 0.0381(84)
this work at µ =∞ 0.0168(10) 0.0330(83)

Table 20. Literature values for the anomaly matrix elements in comparison with our results at
various scales. Note that the error bars of [118] are cut off at both ends.

The squared ratio (aη′/aη)2 = (cot θy)2 is closely related to the ratio of decay widths of
J/ψ → η(′)γ when assuming that the anomaly dominates [116, 120],

R(J/ψ) = Γ[J/ψ → η′γ]
Γ[J/ψ → ηγ] =

a2
η′

a2
η

(
kη′

kη

)3

, (7.48)

where kM = 1
2
M2
J/ψ
−M2

M
2MJ/ψ

is the momentum of the mesonM in the rest frame of the J/ψ.
Using the experimental masses of [63], we obtain (kη′/kη)3 ≈ 0.8137. Our result for the
ratio a2

η′/a
2
η, listed in table 19, gives at µ = 2 GeV

R(J/ψ, µ = 2 GeV) = 5.03 (19
45)stat (1.94)syst . (7.49)

Note that aη′ depends strongly on the scale, see table 19, and the most relevant scale for
this decay is probably below 2 GeV, which would somewhat increase the prediction. The
most recent PDG averages for the partial widths Γ(J/ψ → ηγ)/Γtotal = 1.108(27) · 10−3

and Γ(J/ψ → η′γ)/Γtotal = 5.25(7) · 10−3 result in

PDG [63]: R(J/ψ) = 4.74(13), (7.50)

which is very close to our value with Nf = 3 at µ = 2 GeV. Clearly, a more precise
comparison should take O(αs) corrections into account.

7.5 Transition form factors Fγγ∗→η(Q2) and Fγγ∗→η′(Q2)

Photoproduction is the simplest hard process involving η(′) mesons. The corresponding
transition form factors Fγγ∗→η(Q2) and Fγγ∗→η′(Q2) at large photon virtualities Q2 =
|q2| have been studied, e.g., in [10, 12, 106] and assessed phenomenologically for instance
in [98, 105]. The special role of the transition form factors as “gold plated” observables
for the study of meson light-cone distribution amplitudes (LCDAs) is widely recognized.
The corresponding theory is similar to that for the more easily accessible pion transition
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Figure 16. Predictions for the transition form factor Fγγ∗→η(Q2) (left) and Fγγ∗→η′(Q2) (right)
following the approach in [12], using the decay constants determined in our work as input parame-
ters.

form factor Fγγ∗→π0(Q2) but the non-perturbative input encoded in the LCDAs is more
complicated. The two outstanding issues are, first, whether the η and η′ LCDAs follow
the same mixing pattern as the decay constants at a low scale, and, second, whether η′
contains a significant two-gluon component, see, e.g., [10, 12] for a discussion.

In what follows we briefly discuss the impact of our results on predictions of these
transition form factors. One has to keep in mind that such predictions are affected by
higher-twist and end-point (“Feynman”) contributions that are formally suppressed by
a power of the photon virtuality Q2. However, at the virtualities covered by present
day experiments these corrections are still significant. In figure 16 we show the QCD
prediction for the form factors, complemented by taking into account power-suppressed
contributions, using dispersion techniques and quark-hadron duality (light-cone sum rules,
LCSRs), see [12] for details. The results are compared to the experimental data for the
space-like form factors by the CLEO [121] and BaBar [122] collaborations, and we also
include BaBar’s time-like data points at q2 = 112GeV2 [123] as stars.

The difference with respect to the original calculation is that in figure 16 the lattice
values of the decay constants determined in this work are used as an input, whereas in [12]
the decay constants were taken from [96] under the (ad hoc) assumption that they corre-
spond to the scale 1 GeV. Using lattice results removes this scale uncertainty. In view of
the experimentally available range of Q2, employing Nf = 4 appears reasonable. There-
fore, we run our Nf = 3 values for F 0

η(′) (see table 25) down to µ0 = 1.51 GeV [124] (see
section 5.2), where we match to the Nf = 4 theory. This value is then taken as an input
for the LCSR calculation.

The LCSR technique involves a certain model dependence in the calculation of the
power-suppressed contributions to the form factors. This is indicated by the dark blue
shaded regions in figure 16 and can be regarded as an (at present) irreducible uncertainty
of such calculations. The total uncertainty including that of the lattice values for the decay
constants is shown in light blue (added in quadrature). Starting around Q2 ∼ 10 GeV2 this
uncertainty dominates over the model dependence.
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The calculation is carried out assuming that the shapes of the LCDAs of the η and
the η′ at low scales are the same as that of the pion. In our calculation, following [12],
the corresponding parameters are chosen from the fit to the pion transition form factor in
the same approach [125]. Moreover, the two-gluon LCDA at the low scale is set to zero.
Under these assumptions the only additional non-perturbative input at the leading-twist
level are the decay constants that we computed here. The comparison of figure 16 between
the predictions for Fγγ∗→η(Q2) and Fγγ∗→η′(Q2) and experimental data shows that the
above approximation appears to works relatively well, although there is some tension with
the available data. In the asymptotic limit Q2 → ∞ the dependence on the shape of the
LCDAs is removed and the decay constants provide the only necessary input:

lim
Q2→∞

Q2Fγγ∗→η(′) = 2√
3

(
F 8
η(′) + 2

√
2F 0

η(′)(µ =∞, Nf = 4)
)
. (7.51)

We obtain for Nf = 4:

lim
Q2→∞

Q2Fγγ∗→η(Q2) = 160.5(10.0) MeV,

lim
Q2→∞

Q2Fγγ∗→η′(Q2) = 230.5(10.1) MeV. (7.52)

These asymptotic values are shown as dashed lines in figure 16. Regarding the latter
form factor, it is particularly important to take the scale dependence of the singlet decay
constant into account. This explains the relatively large values obtained for Q2Fγγ∗→η′(Q2)
when neglecting the scale evolution, see, e.g., the predictions in [19]. Also the matching to
the Nf = 4 theory somewhat reduces the value. As already emphasized in [12], the effect
due to the scale dependence is enhanced for the η′ form factor because in this case the two
terms in eq. (7.51) have opposite signs.

The current experimental accuracy is not yet sufficient to draw definite conclusions.
In the future, due to an increase of the statistics by a large factor and improved particle
identification, the Belle II collaboration will be able to measure the pseudoscalar meson
transition form factors with much higher precision [8]. A disagreement with QCD calcula-
tions using lattice input for the decay constants would either indicate qualitative differences
between the shapes of the LCDAs for different pseudoscalar mesons or the presence of a
large two-gluon contribution. Both would have important consequences for other hard
processes involving η and η′ mesons, e.g., in weak B-decays.

8 Conclusions

In this study we determined the η and η′ masses, their singlet and octet decay constants
and gluonic matrix elements without model assumptions in Nf = 2 + 1 QCD as well as the
LECs of large-Nc ChPT at NLO. This was achieved by analysing several gauge ensembles,
employing non-perturbatively improved Sheikholeslami-Wilson fermions. The twenty-one
large volume CLS ensembles that were used are distributed across four lattice spacings
0.050 fm . a . 0.086 fm, along two distinct quark mass trajectories that both lead down
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to and include the physical point, which enables a controlled continuum extrapolation of
the quark mass dependence of all the observables.

The main results on the masses and decay constants are shown in figure 5 and sum-
marized in sections 7.1–7.2. For the masses we agree with experiment within about one
standard deviation and achieve a precision that has considerably improved with respect to
previous lattice studies, while fully controlling all systematic errors. Adding all errors in
quadrature, we obtain in the continuum limit

Mη = 554.7(9.2)MeV and Mη′ = 930(21)MeV. (8.1)

Our results for the decay constants are the first to be directly determined from the ax-
ialvector matrix elements and they are at a similar level of accuracy in terms of the quoted
errors as existing results from the literature that rely on model assumptions and experi-
mental data. The reasonable agreement found with many of these values confirms some of
the approximations made and sheds light on their range of validity. In the octet/singlet
mixing scheme, defined in eq. (2.12), the η and η′ decay constants can be parameterized
as follows:

F 8 = 115.0(2.8)MeV, θ8 = −25.8(2.3)◦,
F 0(µ = 2 GeV) = 100.1(3.0)MeV, θ0 = −8.1(1.8)◦, (8.2)

where Fπ ≈ 92MeV and the value of the scale dependent singlet decay constant is given in
the MS scheme for Nf = 3. The corresponding results in different parametrizations and at
various renormalization scales are given in table 25 of appendix E. Computing for the first
time a value for F 0 at a definite QCD scale, enabled us to improve on the prediction [12]
of the transition form factors γγ∗ → η(′), which is presented in section 7.5.

The continuum extrapolation and physical mass point interpolation benefit from the
large parameter space explored. We carry out simultaneous NLO large-Nc ChPT fits to
the two masses and four decay constants, while including all possible correlations among
these. A number of different fits are performed in order to quantify the systematic errors
and the parametrization employed yields a consistent set of low energy constants (LECs),
see section 7.3. By taking the renormalization group running of the singlet axialvector
current into account, we can for the first time determine the OZI-rule violating LECs Λ1
and Λ2 at well-defined scales and find that Λ1 is small only around µ = 1 GeV, while Λ2
cannot be neglected at any scale, see figure 14. The NLO large-Nc ChPT LECs read:

M0(µ = 2 GeV) = 818(27) MeV, F = 87.7(2.8) MeV,
Λ1(µ = 2 GeV) = −0.13(5), L5 = 1.66(23) · 10−3,

Λ2(µ = 2 GeV) = 0.19(10), L8 = 1.08(13) · 10−3. (8.3)

Note that M0, Λ1 and Λ2 depend on the QCD scale. Meson loops do not contribute at
NLO and, therefore, the above LECs are independent of the ChPT renormalization scale.

Using the axialvector and pseudoscalar matrix elements of the η and η′ mesons, we
were able to test the octet and singlet AWIs and to determine the gluonic matrix elements
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aη(′) = 〈Ω|2ω|η(′)〉. The results are discussed in section 7.4. We found consistency with the
prediction from large-Nc ChPT (derived in appendix B), see figure 8, and we successfully
checked our computation against the same matrix elements determined directly from the
gluonic correlation functions, after carrying out the appropriate renormalization. As a
by-product we also confirmed for the first time in Nf = 2 + 1 QCD that the topological
susceptibility, while significantly affected by lattice corrections, is well described by the
leading order ChPT expectation with only one LEC, F , see figure 9. Our first ab-initio
calculation of the anomaly matrix elements gives at the physical point in the continuum
limit, in the MS scheme for Nf = 3,

aη(µ = 2 GeV) = 0.0170(10) GeV3 and aη′(µ = 2 GeV) = 0.0381(84) GeV3, (8.4)

where the mixing angle

θy(µ = 2 GeV) = − arctan
(
aη
aη′

)
= −24.0(3.3)◦ (8.5)

at this scale is close to θ8 as expected in the FKS state mixing model [96, 110]. While θ8 is
scale independent, the value of −θy increases with the renormalization scale, see table 19.
Using the above result, we find excellent agreement with the ratio of the experimental
decay rates for J/ψ → η′γ and J/ψ → ηγ.

In general, we find NLO large-Nc U(3) ChPT to describe our data reasonably well,
however, there is some tension regarding the LECs between the gluonic and fermionic
matrix elements, in particular regarding Λ1. In view of this, a NNLO description may
be desirable, also with respect to a matching to SU(3) ChPT, where meson loops already
contribute at NLO. Simply adding the meson loop contributions that enter at NNLO in
large-Nc ChPT to the NLO parametrization gives a less satisfactory description of the
data. Therefore, ideally, one would carry out a full NNLO analysis. Constraining the
additional LECs in this case will require data on additional ensembles, in particular along
the ms = m` line in the quark mass plane, and a simultaneous analysis of the masses and
decay constants of the whole nonet of light mesons.

Many phenomenological descriptions of experimental data give numbers for the matrix
elements that agree with or are close to those of our QCD calculation. For the first time,
we presented results at an unambiguous QCD renormalization scale with a reliable quan-
tification of the systematic uncertainties. The values of the decay constants and anomaly
matrix elements calculated here, therefore, constitute very valuable input to theory pre-
dictions that are related to upcoming experiments, e.g., at Belle II [8].
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A NNLO loop corrections: parametrization and fit results

Unlike in SU(3) ChPT, in large-Nc U(3) ChPT meson loops only enter at NNLO in the
power counting because formally these contributions are of O(δ2). Therefore, the ex-
pressions in section 5.3.2 do not contain chiral logarithms or a dependence on the EFT
renormalization scale µEFT. We define the loop functions

A0(M2) = −M2 log
(
M2

µ2
EFT

)
. (A.1)

The octet and singlet decay constants of eqs. (5.43)–(5.46) receive the additional contribu-
tions [42, 81]

F 8
η

NLO+loops = F 8
η

NLO + 3
32π2F

cos(θ)A0(M2
K), (A.2)

F 8
η′

NLO+loops = F 8
η′

NLO + 3
32π2F

sin(θ)A0(M2
K), (A.3)

F 0
η

NLO+loops = F 0
η

NLO − 1
32π2F

sin(θ)A0(M2
π), (A.4)

F 0
η′

NLO+loops = F 0
η′

NLO + 1
32π2F

cos(θ)A0(M2
π). (A.5)

Moreover, the quark mass dependence of the mass mixing angle θ, defined in eq. (5.25),
changes as the entries of the square mass matrix eq. (5.19) also receive additional contri-
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butions. Specifically, we have to add to eqs. (5.40)–(5.42) [42]:13

(µNLO+loops
8 )2 = (µNLO

8 )2 + 1
48π2F 2

[(3
2M

2− 1
2δM

2
)
A0(M2

π)

−
(

4M2 + 2
3δM

2
)
A0(M2

K)

+
(5

4M
2 + 7

12δM
2
)(

A0(M̃2
η )+A0(M̃2

η′)
)

+ 2
√

2sin(2θLO)+cos(2θLO)
4

(
M

2 +δM2
)(
A0(M̃2

η )−A0(M̃2
η′)
)]
, (A.6)

(µNLO+loops
0 )2 = (µNLO

0 )2 + 1
48π2F 2

[(
3M2−δM2

)
A0(M2

π)

+
(

4M2 + 2
3δM

2
)
A0(M2

K)

+
(
M

2 + 1
6δM

2
)(

A0(M̃2
η )+A0(M̃2

η′)
)

+ 2
√

2sin(2θLO)+cos(2θLO)
6 δM2

(
A0(M̃2

η )−A0(M̃2
η′)
)]
, (A.7)

(µNLO+loops
80 )2 = (µNLO

80 )2 +
√

2
48π2F 2

[(3
2M

2− 1
2δM

2
)
A0(M2

π)

−
(
M

2 + 1
6δM

2
)
A0(M2

K)

−
(1

4M
2 + 5

12δM
2
)(

A0(M̃2
η )+A0(M̃2

η′)
)

− 2
√

2sin(2θLO)+cos(2θLO)
4

(
M

2 + 1
3δM

2
)(

A0(M̃2
η )−A0(M̃2

η′)
)]
.

(A.8)

θLO corresponds to the mass mixing angle eq. (5.25), evaluated at LO, eqs. (5.36)–(5.38).
M̃η and M̃η′ denote the η and η′ masses, computed at LO via eqs. (5.26)–(5.28) and (5.36)–
(5.38).

Carrying out the analysis of our masses and decay constants, including the NNLO
loops, we obtain for the LECs at µEFT = 0.770 GeV in the Nf = 3 MS scheme at µ =∞:

L5 = 1.97 (16
11)stat ( 0

19)a ( 0
23)χ × 10−3,

L8 = 0.848 (126
109)stat ( 0

124)a ( 0
113)χ × 10−3,

M0 = 1.78 (3
5)stat (2

2)a (0
0)χ (1

1)renorm (8tχ0 )−1/2

= 837 (13
23)stat (11

11)syst (12)t0 MeV,

F = 0.1680 (38
66)stat (69

0 )a (39
0 )χ (4

1)renorm (8tχ0 )−1/2

= 78.97 (1.78
3.10)stat (3.71

17 )syst (1.18)t0 MeV,
13Note that there are misprints within the normalizations of eqs. (C11)–(C13) in [42].
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Λ1 = −0.10 (2
4)stat (5

4)a (0
2)χ (4

2)renorm ,

Λ̃ = −1.0 (2
3)stat (4

0)a (2
0)χ (0

1)renorm ,

Λ2 = 0.45 (16
12)stat ( 1

19)a ( 0
12)χ (6

3)renorm (A.9)

with χ2/Ndf ≈ 312/122 ≈ 2.56. Note that onlyM0, Λ1 and Λ2 depend on the QCD scale µ.

B NLO expressions for pseudoscalar and gluonic matrix elements

We start from the octet and singlet AWIs eqs. (6.3) and (6.4). We apply these to states
|n〉 ∈ {|η〉, |η′〉} (see eq. (6.9) for the octet case) and replace 〈Ω|∂µAaµ|n〉 = M2

nF
a
n , where

a ∈ {8, 0}. This gives

F 8
nM

2
n = 2√

3
m`H

`
n − 2

√
2
3msH

s
n, (B.1)

F 0
nM

2
n = 2

√
2
3m`H

`
n + 2√

3
msH

s
n +

√
2
3an, (B.2)

where Hq
n = 〈Ω|P q|n〉 are the pseudoscalar matrix elements and H`

n = (Hu
n +Hd

n)/
√

2. The
anomaly terms an = 2〈Ω|ω|n〉 are the matrix elements of the topological charge density
ω. The left hand sides of the above equations are functions of M2 and δM2 and can be
parameterized in terms of the six LECs F , M2

0 , L5, L8, Λ1 and Λ2.
In terms of the large-Nc ChPT power counting, one finds {L5, L8} ∼ δ−1, F ∼ δ−1/2,

{sin θ, cos θ,B0} ∼ δ0 and {mq,M
2,M2

0 ,Λ1,Λ2} ∼ δ1. This counting is consistent with
the LO GMOR relation M2

π = 2B0m`, where 〈S〉 = 〈q̄q〉 ∼ Nc = O(δ−1) and B0 =
−〈q̄q〉/F 2 = O(δ0). Using the AWIs, P ∼ δ−1 implies that Aµ ∼ δ−1/2 and ω ∼ δ0. The
latter is consistent with the topological susceptibility τ ∼ δ0 as one would expect from
the Witten-Veneziano relation M2

0 = 6τ0/F
2, where M2

0 ∼ δ1 and F 2 ∼ δ−1. Finally, the
parametrization of the axial matrix elements 〈Ω|Aaµ|n〉 = ipµF

a
n ∼ δ0 means that |n〉 ∼ δ1/2.

Note that for the meson masses and the matrix elements the above counting applies to the
LO expressions and there will be higher order corrections in δ.

Using these counting rules, eqs. (B.1) and (B.2) start at O(δ1/2) and should be ex-
panded up to O(δ3/2) to obtain predictions at NLO. We carried out the matching, first
at LO and then at NLO. The NLO results are presented below. The decay constants
can be expressed in terms of the LECs and meson masses at O(δ−1/2) and O(δ1/2) (LO
and NLO) via eqs. (5.43)–(5.46) while M2

η and M2
η′ can be parameterized in terms of the

squared mass matrix (with elements eqs. (5.40)–(5.42)) via the rotation (5.20)–(5.21) with
the angle defined in eq. (5.25) at O(δ1) and O(δ2). We truncate the product at O(δ3/2).
Accordingly, we replace the quark masses on the right hand sides by combinations of M2

and δM2 via the NLO large-Nc GMOR relations

2m`B0 = M2
π

(
1− 82L8 − L5

F 2 M2
π

)
, (B.3)

(m` +ms)B0 = M2
K

(
1− 82L8 − L5

F 2 M2
K

)
. (B.4)
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Then both sides are polynomials in δM2 and M2 of degree one and two at LO and at
NLO, respectively. The pion masses also enter through sin θ and cos θ. Since we carry out
the matching in terms of powers of δ, we keep the sine and the cosine (that are of O(δ0))
in the coefficient functions. Note that at LO θ only depends on δM2 (as well as on the
LEC M2

0 ).

Equations (B.1)–(B.2) amount to four identities (n ∈ {η, η′} and a ∈ {8, 0}) but we
have six unknown functions on the right hand sides (four Hq

n and two an). Nevertheless,
we are able to determine these unambiguously since the relations should hold for any
combination of δM2 and M2 > 3δM2. It is instructive first to inspect the special case
δM = 0, where sin θ = 0. Then the substitution of the meson masses simplifies: M2

η =
µ2

8 = M2 + δM2/3 + . . ., M2
η′ = µ2

0 = M
2 + M2

0 + . . .. Moreover, in this limit there exist
only two non-trivial relations (for F 8

η and F 0
η′) since Hs

η +
√

2H`
η = 0, H`

η′ −
√

2Hs
η = 0 and

aη = 0. These three equalities are also obvious from the respective Wick contractions. In
the vicinity of this limit, to leading order, these combinations must be proportional to sin θ
or to δM2, where sin θ ∝ δM2 for small θ. One can easily see that in the limit δM = 0, to
leading order also Hs

η = −(
√

2/3)B0F = −
√

2Hs
η′ holds and therefore, aη′ =

√
2/3FM2

η′ =√
2/3F (M2

0 + M
2). Starting from these identifications and sorting all terms accordingly,

where in the end we substitute back the GMOR relations and eliminate B0, gives

m`H
`
η = cosθF

{(
M2− δM

2

3

)√
3

12

[
(1−2Λ1+4Λ2)

(
1− 1

cos(2θ)

)
+2
]

+M2
0

(
1− 3M2

δM2

)√
3

12 (1−Λ1)
(

1− 1
cos(2θ)

)

+M2δM2

3

[
5
√

3
3

(
22L8−L5

F 2 + L5
F 2

)(
1+ 1

5cos(2θ)

)
+
√

6L5
F 2 tanθ

(
1− 1

3cos(2θ)

)]
+M2M2

0

[
2L8−L5
F 2

(
5
√

3
3 +2

√
3 M

2

δM2

)

−
(√

6
3 tanθ+

√
3
)
L5
F 2

](
1− 1

cos(2θ)

)

− δM
2M2

0
3

[
7
√

3
3

2L8−L5
F 2 −

(
√

3+
√

6
3 tanθ

)
L5
F 2

](
1− 1

cos(2θ)

)
−2
√

3M4 2L8−L5
F 2

(
1− 1

3cos(2θ)

)
−δM4

[
4
√

3
27

2L8−L5
F 2

(
1+ 1

cos(2θ)

)
+
√

3
27

L5
F 2

(
5+ 1

cos(2θ)

)

+
√

6
9 tanθ L5

F 2

(
1− 1

3cos(2θ)

)]}
,

(B.5)
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msH
s
η = cos θF

{
−
√

6
8

(
M2 + 2

3δM
2
) [(

1− Λ1

3 + 2Λ2

3

)(
1− 1

cos (2θ)

)
+ 4

3 cos (2θ)

]
−
√

6
12 M

2
0 (1− Λ1)

(
1 + 3M2

2δM2

)(
1− 1

cos (2θ)

)
+ M2δM2

3

[
5
√

6
3

2L8 − L5

F 2

(
1 + 1

5 cos (θ)

)
− L5

F 2

(
2
√

6
3

(
1 + 1

2 cos (2θ)

)

+
√

3 tan θ
(

1 + 1
3 cos (2θ)

))]
+

+M2M2
0

[(
5
√

6
6 +

√
6 M2

δM2

)
2L8 − L5

F 2 −
√

3
3
L5

F 2 tan θ
](

1− 1
cos (2θ)

)
− δM2M2

0

(
7
√

6
18

2L8 − L5

F 2 + 2
√

3
9

L5

F 2 tan θ
)(

1− 1
cos (2θ)

)
+
√

6M4 2L8 − L5

F 2

(
1 + 1

3 cos (2θ)

)
− δM4

9

[√
6

6
2L8 − L5

F 2

(
31 + 13

cos (2θ)

)
+ 2
√

6
3

L5

F 2

(
2 + 1

cos (2θ)

)

+ 2
√

3 tan θ L5

F 2

(
1 + 1

3 cos (2θ)

)]}
, (B.6)

m`H
`
η′ = sin θF

{(
M2 − δM2

3

) √
3

12

[
(1− 2Λ1 + 4Λ2)

(
1 + 1

cos (2θ)

)
+ 2

]
+M2

0

(
1− 3M2

δM2

) √
3

12 (1− Λ1)
(

1 + 1
cos (2θ)

)
+ M2δM2

3

[
5
√

3
3

(
22L8 − L5

F 2 + L5

F 2

)(
1− 1

5 cos (2θ)

)

−
√

6L5

F 2 cot θ
(

1 + 1
3 cos (2θ)

)]

+M2M2
0

[
2L8 − L5

F 2

(
5
√

3
3 + 2

√
3 M2

δM2

)
+
(√

6
3 cot θ −

√
3
)
L5

F 2

](
1 + 1

cos (2θ)

)
− δM2M2

0
3

[
7
√

3
3

2L8 − L5

F 2 +
(
−
√

3 +
√

6
3 cot θ

)
L5

F 2

](
1 + 1

cos (2θ)

)
− 2
√

3M4 2L8 − L5

F 2

(
1 + 1

3 cos (2θ)

)
−
√

3
27 δM

4
[
42L8 − L5

F 2

(
1− 1

cos (2θ)

)
+
(

5− 1
cos (2θ)

)
L5

F 2

−3
√

2 cot θ L5

F 2

(
1 + 1

3 cos (2θ)

)]}
,

(B.7)
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msH
s
η′ = sin θF

{
−
√

6
8

(
M2 + 2

3δM
2
)[(

1− Λ1
3 + 2Λ2

3

)(
1 + 1

cos (2θ)

)
− 4

3 cos (2θ)

]
−
√

6
12 M

2
0 (1− Λ1)

(
1 + 3M2

2δM2

)(
1 + 1

cos (2θ)

)

+ M2δM2

3

[
5
√

6
3

2L8 − L5
F 2

(
1− 1

5 cos (θ)

)

− L5
F 2

(
2
√

6
3

(
1− 1

2 cos (2θ)

)
−
√

3 cot θ
(

1− 1
3 cos (2θ)

))]

+M2M2
0

[(
5
√

6
6 +

√
6 M

2

δM2

)
2L8 − L5

F 2 +
√

3
3
L5
F 2 cot θ

](
1 + 1

cos (2θ)

)

− δM2M2
0

(
7
√

6
18

2L8 − L5
F 2 − 2

√
3

9
L5
F 2 cot θ

)(
1 + 1

cos (2θ)

)
+
√

6M4 2L8 − L5
F 2

(
1− 1

3 cos (2θ)

)
− δM4

9

[√
6

6
2L8 − L5

F 2

(
31− 13

cos (2θ)

)
+ 4
√

6
6

L5
F 2

(
2− 1

cos (2θ)

)

−2
√

3L5
F 2 cot θ

(
1− 1

3 cos (2θ)

)]}
. (B.8)

The NLO expressions containM4 terms because the left hand sides are already proportional
to quark masses. One remark is in order: the η′ matrix elements all start with sin θ. This
does not mean that they vanish in the limit δM = 0 (where sin θ = 0). For small δM2 one
can expand sin θ = −

√
2δM2/(3M2

0 ) + . . ., which cancels against a term ∝ M2M2
0 /δM

2,
resulting in the limiting case discussed above.

Finally, the gluonic matrix elements can be obtained via the singlet AWI:

aη = cos θF
{√

3
6 M2

(
−1 + Λ1 − 2Λ2 + 3 M

2
0

δM2 (1− Λ1)
)(

1− 1
cos (2θ)

)

+
√

3
9 δM2

[
(−Λ1 + 2Λ2)

(
1− 1

cos (2θ)

)
+ 2

]
− 4
√

3
9 M2δM2

[2L8 − L5
F 2

(
5 + 1

cos (2θ)

)
+ 3L5

F 2

]
− 2
√

3
3 M2M2

0

(
52L8 − L5

F 2 − 2L5
F 2

)(
1− 1

cos (2θ)

)
+ 2
√

3
9 δM2M2

0

(
72L8 − L5

F 2 − 4L5
F 2

)(
1− 1

cos (2θ)

)
+ 4
√

3
3 M4

(
1− 3 M

2
0

δM2

)
2L8 − L5

F 2

(
1− 1

cos (2θ)

)

+
√

3
27 δM

4
[2L8 − L5

F 2

(
26 + 14

cos (2θ)

)
+ 8L5

F 2

]}
+

(B.9)
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+ sin θF
{
−
√

6
3 M2

[
1 + Λ1

2 cos (2θ) + Λ2

(
1− 1

cos (2θ)

)]
−
√

6
18 δM

2
(

1 + Λ1
2

)(
1 + 1

cos (2θ)

)
−
√

6
6 M2

0

(
1− Λ1

2

)(
1− 1

cos (2θ)

)
− 4
√

6
9

L5
F 2M

2δM2 + 4
√

6
3 M2M2

0
L5
F 2

(
1− 1

cos (2θ)

)
− 4
√

6
3

L5
F 2M

4

− 2
√

6
3 δM4

[(
1 + 1

3 cos (2θ)

) 2L8 − L5
F 2 − 4

9
L5
F 2

]}
,

aη′ = cos θF
{√

6
3 M2

[
1− Λ1

2 cos (2θ) + Λ2

(
1 + 1

cos (2θ)

)]
+
√

6
18 δM

2
(

1 + Λ1
2

)(
1− 1

cos (2θ)

)
+
√

6
6 M2

0

(
1− Λ1

2

)(
1 + 1

cos (2θ)

)
+ 4
√

6
9 M2δM2 L5

F 2 −
4
√

6
3 M2M2

0
L5
F 2

(
1 + 1

cos (2θ)

)
+ 4
√

6
3 M4 L5

F 2

+ 2
√

6
3 δM4

[2L8 − L5
F 2

(
1− 1

3 cos (2θ)

)
− 4

9
L5
F 2

]}

(B.10)

+ sin θF
{
−
√

3
6 M2

(
1− Λ1 + 2Λ2 − 3M02

δM2 (1− Λ1)
)(

1 + 1
cos (2θ)

)
+ 2
√

3
9 δM2

[
1 +

(
−Λ1

2 + Λ2

)(
1 + 1

cos (2θ)

)]
− 4
√

3
9 M2δM2

[2L8 − L5
F 2

(
5− 1

cos (2θ)

)
+ 3L5

F 2

]
− 2
√

3
3 M2M2

0

(
52L8 − L5

F 2 − 2L5
F 2

)(
1 + 1

cos (2θ)

)
+ 2
√

3
9 δM2M2

0

(
72L8 − L5

F 2 − 4L5
F 2

)(
1 + 1

cos (2θ)

)
+ 4
√

3
3 M4 2L8 − L5

F 2

(
1− 3 M

2
0

δM2

)(
1 + 1

cos (2θ)

)

+ 2
√

3
27 δM4

[2L8 − L5
F 2

(
13− 7

cos (2θ)

)
+ 4L5

F 2

]}
.

(B.11)

Note that aη vanishes for θ = 0, as it should.
The LO results can easily be obtained, setting L5 = L8 = Λ1 = Λ2 = 0. These only

depend on the LECs F and M0. The mass mixing angle θ at LO is given in eqs. (5.25)
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Figure 17. LO parametrization of the masses of the η and the η′ mesons for our two trajectories
in the quark mass plane. The data are corrected for lattice spacing effects according to the fit.

and (5.36)–(5.38) as a function of the δM2 and M2
0 . Above, we use the NLO expression

for θ, eqs. (5.25) and (5.40)–(5.42).

C The leading order fit

We show in figure 17 the analogue of figure 5 for our fit to the LO parametrization
eqs. (5.26)–(5.28) and (5.36)–(5.38). No simultaneous fit of the masses and the decay
constants can be carried out since F 8

η 6= F 0
η and F 0

η 6= −F 8
η′ , which is why only the masses

are included. The continuum parametrization shown depend on a single parameter, the
LEC M0 ≈ 785 MeV, as detailed in section 5.6. Although the raw lattice data fall onto
continuous curves (see the upper panel of figure 5), lattice correction terms ∝ a2δM2 had
to be added for each particle to obtain χ2/Ndf ≈ 91/41. In figure 17 the shifted data
are shown, along with the continuum limit curves that depend only on the parameter M0.
Since in our NLO fits no lattice spacing dependent terms had to be added for the masses,
we suspect that in the LO case the a2δM2 terms mostly compensate for a shortcoming of
the continuum parametrization.

D Continuum limit fit parameters

The parametrizations of lattice artefacts within our simultaneous fits to the masses and
decay constants are defined in section 5.4. In section 5.5 we explain how 17 different
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id χ2/Ndf dlA d̃lA δclA f lA

1 1.75 — — — —
2 1.63 1.2 ( 7

1.0) −0.33 (77
54) 0.047 (46

31) −0.511 (241
99 )

3 1.64 1.68 (22
94) −0.65 ( 45

1.25) — −0.498 (483
68 )

4 1.64 1.30 (29
57) — — −0.456 (217

78 )
5 1.52 1.58 (16

60) — — −0.833 (366
60 )

6 1.58 1.49 (15
56) — — −0.714 (397

48 )
7 1.47 1.84 (27

51) — — −0.689 (229
63 )

8 1.56 1.66 (40
52) — — −0.429 (202

87 )
9 1.49 1.66 (17

57) — — −0.782 (336
35 )

10 1.63 0.82 (30
52) — — −0.500 (239

95 )
11 1.65 1.11 (30

57) — — −0.478 (259
89 )

12 1.64 1.13 (37
49) — — −0.452 (227

81 )
13 1.47 1.72 (32

57) — — −0.696 (208
60 )

14 1.48 1.76 (27
57) — — −0.702 (220

51 )
15 1.47 1.67 (16

57) — — −0.734 (242
43 )

16 1.48 1.88 (25
55) — — −0.698 (223

45 )
17 1.46 1.62 (19

52) — — −0.728 (224
47 )

Table 21. Fit results for the unknown O(a) improvement coefficients, see eqs. (5.50), (5.51)
and (5.52). The fit ids are defined in table 7.

id χ2/Ndf lF 8
η

mF 8
η

nF 8
η

lF 8
η′

mF 8
η′

nF 8
η′

1 1.75 — — — — — —
2 1.63 — — — — — —
3 1.64 — — — — — —
4 1.64 — — — — — —
5 1.52 −0.051 (49

37) — — −0.58 (29
15) — —

6 1.58 — — — — −0.54 (54
14) —

7 1.47 — — −0.029 (17
17) — — −0.367 (99

93)
8 1.56 −0.057 (36

42) — −0.038 (20
22) — — —

9 1.49 — — — −0.039 (557
192) — −0.40 (12

25)
10 1.63 — — — — — —
11 1.65 — — — — — —
12 1.64 — — — — — —
13 1.47 −0.047 (32

43) — −0.015 (20
19) — — −0.360 (100

95 )
14 1.48 −0.046 (33

44) — −0.015 (21
21) — — −0.363 (108

98 )
15 1.47 −0.059 (28

37) — — — — −0.382 (110
90 )

16 1.48 — — −0.028 (16
17) — — −0.371 (104

82 )
17 1.46 −0.061 (24

33) — — — — −0.379 (98
96)

Table 22. Fit parameters, accompanying quadratic lattice effects for the octet decay constants,
see eq. (5.53). The fit ids are defined in table 7.
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id χ2/Ndf lF 0
η

mF 0
η

nF 0
η

lF 0
η′

mF 0
η′

nF 0
η′

1 1.75 — — — — — —
2 1.63 — — — — — —
3 1.64 — — — — — —
4 1.64 — — — — — —
5 1.52 — — — — — —
6 1.58 — — — — — —
7 1.47 — — — — — —
8 1.56 — — — — — —
9 1.49 — — — — — —
10 1.63 0.062 (1.304

983 ) 0.90 (1.11
1.12) — — — —

11 1.65 — — 0.25 (26
25) — −0.14 (18

12) 0.065 (44
52)

12 1.64 — — — −0.106 (106
41 ) — —

13 1.47 — — — — — —
14 1.48 — — — — — 0.0085 (219

355)
15 1.47 — — — — — 0.011 (21

37)
16 1.48 — — — — — 0.013 (21

36)
17 1.46 — — — — — —

Table 23. Fit parameters, accompanying quadratic lattice effects for the singlet decay constants,
see eq. (5.53). The fit ids are defined in table 7.

parametrizations were selected. These are enumerated and defined in table 7. The six
continuum limit fit parameters (LECs) for each of these fits are given in table 8. Here, in
table 21 we list the results for the unknown O(a) improvement coefficients within eqs. (5.50)
and (5.51). Their parametrizations are given in eq. (5.52). In tables 22 and 23 we list the
O(a2) coefficients, defined in eq. (5.53) for both octet and both singlet decay constants, re-
spectively.

E Decay constants in various representations

We list the four decay constants, in units of (8tph
0 )−1/2 and in MeV. In table 24 we collect the

results of our simultaneous fits to the masses and decay constants, including the statistical
and systematic errors, while in table 25 the corresponding results are shown, using the
experimental masses of the η and the η′ mesons as an additional input (priors).

In each table we list the decay constants in both the octet/singlet and the light/strange
flavour bases. The conversion is given in eq. (2.11). In addition, we give the parameters
of the corresponding two-angle representations eqs. (2.12) and (2.13). All these results are
given at four distinct renormalization scales: µ = 1 GeV, µ = 2 GeV, µ = 10 GeV and
µ = ∞, where all the values refer to the MS scheme for Nf = 3 active flavours. Only the
octet decay constants F 8

η , F 8
η′ and F 8 as well as the angles θ8 and θ0 are scale independent.

We remark that in the latter case the scale dependence cancels since tan(θ0) = −F 0
η /F

0
η′ .
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Table 24. Decay constants in various representations and at several renormalization scales.

octet/singlet basis, state representation
F8
η 0.2219

(
18
37

)
stat

(
17
24

)
a

(
10
2

)
χ

(8tph
0 )−1/2 105.4

(
9

1.8

)
stat

(
9

1.1

)
syst

(1.3)t0 MeV

F8
η′ −0.0939

(
28

100

)
stat

(
84
0

)
a

(
58
82

)
χ

(8tph
0 )−1/2 −44.6

(
1.3
4.8

)
stat

(
4.9
3.9

)
syst

(6)t0 MeV

F0
η µ = ∞ 0.0224

(
53
30

)
stat

(
28
0

)
a

(
5

21

)
χ

(
20
8

)
renorm

(8tph
0 )−1/2 10.6

(
2.5
1.4

)
stat

(
1.4
1.4

)
syst

(1)t0 MeV

1 GeV 0.0255
(

60
35

)
stat

(
32
0

)
a

(
5

24

)
χ

(
23
9

)
renorm

(8tph
0 )−1/2 12.1

(
2.9
1.6

)
stat

(
1.6
1.6

)
syst

(2)t0 MeV

2 GeV 0.0241
(

57
33

)
stat

(
30
0

)
a

(
5

23

)
χ

(
22
9

)
renorm

(8tph
0 )−1/2 11.4

(
2.7
1.5

)
stat

(
1.5
1.5

)
syst

(1)t0 MeV

10 GeV 0.0233
(

55
32

)
stat

(
29
0

)
a

(
5

22

)
χ

(
21
8

)
renorm

(8tph
0 )−1/2 11.1

(
2.6
1.5

)
stat

(
1.5
1.5

)
syst

(1)t0 MeV

F0
η′ µ = ∞ 0.1974

(
14
48

)
stat

(
0

31

)
a

(
4

27

)
χ

(
52
26

)
renorm

(8tph
0 )−1/2 93.77

(
67

2.29

)
stat

(
1.24
3.18

)
syst

(1.18)t0 MeV

1 GeV 0.2247
(

16
55

)
stat

(
0

36

)
a

(
5

31

)
χ

(
60
29

)
renorm

(8tph
0 )−1/2 106.7

(
8

2.6

)
stat

(
1.4
3.6

)
syst

(1.3)t0 MeV

2 GeV 0.2122
(

15
52

)
stat

(
0

34

)
a

(
5

29

)
χ

(
56
28

)
renorm

(8tph
0 )−1/2 100.8

(
7

2.5

)
stat

(
1.3
3.4

)
syst

(1.3)t0 MeV

10 GeV 0.2051
(

15
50

)
stat

(
0

33

)
a

(
5

28

)
χ

(
54
27

)
renorm

(8tph
0 )−1/2 97.41

(
69

2.38

)
stat

(
1.29
3.30

)
syst

(1.23)t0 MeV

octet/singlet basis, angle representation
F8 0.2410

(
23
16

)
stat

(
11
50

)
a

(
38
12

)
χ

(8tph
0 )−1/2 114.5

(
1.1

8

)
stat

(
1.9
2.5

)
syst

(1.4)t0 MeV

θ8 −0.400
(

9
45

)
stat

(
30
0

)
a

(
24
30

)
χ

−22.9
(

5
2.6

)
stat

(
2.2
1.7

)◦
syst

F0 µ = ∞ 0.1987
(

12
42

)
stat

(
0

31

)
a

(
2

29

)
χ

(
54
27

)
renorm

(8tph
0 )−1/2 94.37

(
57

2.01

)
stat

(
1.26
3.26

)
syst

(1.19)t0 MeV

1 GeV 0.2262
(

14
48

)
stat

(
0

35

)
a

(
2

33

)
χ

(
62
30

)
renorm

(8tph
0 )−1/2 107.4

(
6

2.3

)
stat

(
1.4
3.7

)
syst

(1.4)t0 MeV

2 GeV 0.2136
(

13
46

)
stat

(
0

33

)
a

(
2

31

)
χ

(
58
29

)
renorm

(8tph
0 )−1/2 101.5

(
6

2.2

)
stat

(
1.4
3.5

)
syst

(1.3)t0 MeV

10 GeV 0.2064
(

12
44

)
stat

(
0

32

)
a

(
2

30

)
χ

(
56
28

)
renorm

(8tph
0 )−1/2 98.04

(
59

2.09

)
stat

(
1.31
3.39

)
syst

(1.24)t0 MeV

θ0 −0.113
(

15
29

)
stat

(
0

15

)
a

(
11
3

)
χ

−6.5
(

9
1.7

)
stat

(
6
9

)◦
syst

light/strange basis, state representation
F `η µ = ∞ 0.1464

(
27
21

)
stat

(
23
2

)
a

(
3

14

)
χ

(
17
7

)
renorm

(8tph
0 )−1/2 69.56

(
1.28
1.01

)
stat

(
1.13
1.05

)
syst

(88)t0 MeV

1 GeV 0.1490
(

34
23

)
stat

(
25
2

)
a

(
3

17

)
χ

(
19
8

)
renorm

(8tph
0 )−1/2 70.76

(
1.60
1.10

)
stat

(
1.24
1.21

)
syst

(89)t0 MeV

2 GeV 0.1478
(

31
23

)
stat

(
24
2

)
a

(
3

16

)
χ

(
18
7

)
renorm

(8tph
0 )−1/2 70.21

(
1.46
1.10

)
stat

(
1.19
1.13

)
syst

(89)t0 MeV

10 GeV 0.1471
(

29
22

)
stat

(
23
2

)
a

(
3

15

)
χ

(
17
7

)
renorm

(8tph
0 )−1/2 69.89

(
1.37
1.05

)
stat

(
1.16
1.09

)
syst

(88)t0 MeV

F `
η′ µ = ∞ 0.1070

(
24
88

)
stat

(
26
3

)
a

(
11
44

)
χ

(
37
20

)
renorm

(8tph
0 )−1/2 50.82

(
1.16
4.18

)
stat

(
1.65
2.75

)
syst

(64)t0 MeV

1 GeV 0.1293
(

24
92

)
stat

(
23
5

)
a

(
8

43

)
χ

(
43
22

)
renorm

(8tph
0 )−1/2 61.41

(
1.15
4.36

)
stat

(
1.59
2.93

)
syst

(78)t0 MeV

2 GeV 0.1191
(

24
89

)
stat

(
25
4

)
a

(
10
44

)
χ

(
41
21

)
renorm

(8tph
0 )−1/2 56.57

(
1.16
4.23

)
stat

(
1.62
2.84

)
syst

(71)t0 MeV

10 GeV 0.1132
(

24
88

)
stat

(
26
4

)
a

(
10
44

)
χ

(
39
20

)
renorm

(8tph
0 )−1/2 53.79

(
1.16
4.16

)
stat

(
1.64
2.80

)
syst

(68)t0 MeV

Fsη µ = ∞ (−0.1683
(

59
30

)
stat

(
36
5

)
a

(
4

19

)
χ

(
12
4

)
renorm

8tph
0 )−1/2 −79.93

(
2.78
1.43

)
stat

(
1.72
1.09

)
syst

(1.01)t0 MeV

1 GeV −0.1665
(

63
32

)
stat

(
38
4

)
a

(
5

20

)
χ

(
13
5

)
renorm

(8tph
0 )−1/2 −79.08

(
3.01
1.50

)
stat

(
1.83
1.17

)
syst

(100)t0 MeV

2 GeV −0.1673
(

61
31

)
stat

(
37
5

)
a

(
5

20

)
χ

(
13
5

)
renorm

(8tph
0 )−1/2 −79.46

(
2.91
1.47

)
stat

(
1.78
1.13

)
syst

(1.00)t0 MeV

10 GeV −0.1678
(

60
30

)
stat

(
36
5

)
a

(
4

19

)
χ

(
12
4

)
renorm

(8tph
0 )−1/2 −79.69

(
2.85
1.45

)
stat

(
1.75
1.11

)
syst

(1.01)t0 MeV

Fs
η′ µ = ∞ 0.1906

(
71
31

)
stat

(
0

75

)
a

(
70
63

)
χ

(
38
17

)
renorm

(8tph
0 )−1/2 90.55

(
3.37
1.48

)
stat

(
3.41
5.00

)
syst

(1.14)t0 MeV

1 GeV 0.2064
(

68
32

)
stat

(
0

77

)
a

(
70
65

)
χ

(
42
19

)
renorm

(8tph
0 )−1/2 98.04

(
3.21
1.53

)
stat

(
3.45
5.20

)
syst

(1.24)t0 MeV

2 GeV 0.1992
(

70
33

)
stat

(
0

76

)
a

(
70
64

)
χ

(
40
18

)
renorm

(8tph
0 )−1/2 94.62

(
3.30
1.58

)
stat

(
3.43
5.11

)
syst

(1.20)t0 MeV

10 GeV 0.1951
(

70
33

)
stat

(
0

76

)
a

(
70
64

)
χ

(
39
18

)
renorm

(8tph
0 )−1/2 92.65

(
3.34
1.55

)
stat

(
3.42
5.05

)
syst

(1.17)t0 MeV

light/strange basis, angle representation
F ` µ = ∞ 0.1814

(
12
49

)
stat

(
25
1

)
a

(
0

37

)
χ

(
35
17

)
renorm

(8tph
0 )−1/2 86.14

(
59

2.32

)
stat

(
1.45
2.45

)
syst

(1.09)t0 MeV

1 GeV 0.1972
(

12
56

)
stat

(
27
0

)
a

(
0

41

)
χ

(
43
21

)
renorm

(8tph
0 )−1/2 93.69

(
59

2.67

)
stat

(
1.62
2.81

)
syst

(1.18)t0 MeV

2 GeV 0.1898
(

13
53

)
stat

(
27
1

)
a

(
0

39

)
χ

(
39
19

)
renorm

(8tph
0 )−1/2 90.16

(
62

2.52

)
stat

(
1.55
2.65

)
syst

(1.14)t0 MeV

10 GeV 0.1857
(

13
51

)
stat

(
26
1

)
a

(
0

38

)
χ

(
37
18

)
renorm

(8tph
0 )−1/2 88.20

(
61

2.42

)
stat

(
1.50
2.55

)
syst

(1.11)t0 MeV

φ` µ =∞ 0.631
(

12
44

)
stat

(
8
6

)
a

(
8

15

)
χ

(
11
6

)
renorm

36.2
(

7
2.5

)
stat

(
9

1.0

)◦
syst

1 GeV 0.715
(

12
42

)
stat

(
5
6

)
a

(
7

11

)
χ

(
11
6

)
renorm

41.0
(

7
2.4

)
stat

(
8
8

)◦
syst

2 GeV 0.678
(

12
43

)
stat

(
6
6

)
a

(
7

13

)
χ

(
11
6

)
renorm

38.8
(

7
2.5

)
stat

(
8
9

)◦
syst

10 GeV 0.656
(

12
44

)
stat

(
7
6

)
a

(
7

14

)
χ

(
11
6

)
renorm

37.6
(

7
2.5

)
stat

(
8
9

)◦
syst
Continued on next page
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Table 24 (continued): Decay constants at various scales.
Fs µ = ∞ 0.2543

(
40
28

)
stat

(
0

81

)
a

(
64
34

)
χ

(
20
10

)
renorm

(8tph
0 )−1/2 120.8

(
1.9
1.3

)
stat

(
3.1
4.3

)
syst

(1.5)t0 MeV

1 GeV 0.2652
(

40
30

)
stat

(
0

85

)
a

(
66
38

)
χ

(
24
12

)
renorm

(8tph
0 )−1/2 126.0

(
1.9
1.4

)
stat

(
3.2
4.6

)
syst

(1.6)t0 MeV

2 GeV 0.2601
(

40
29

)
stat

(
0

83

)
a

(
65
36

)
χ

(
22
11

)
renorm

(8tph
0 )−1/2 123.6

(
1.9
1.4

)
stat

(
3.1
4.4

)
syst

(1.6)t0 MeV

10 GeV 0.2573
(

40
29

)
stat

(
0

82

)
a

(
64
35

)
χ

(
21
11

)
renorm

(8tph
0 )−1/2 122.2

(
1.9
1.4

)
stat

(
3.1
4.4

)
syst

(1.5)t0 MeV

φs µ = ∞ 0.723
(

13
30

)
stat

(
20
3

)
a

(
22
13

)
χ

(
6

13

)
renorm

41.4
(

7
1.7

)
stat

(
1.7
1.1

)◦
syst

1 GeV 0.679
(

12
29

)
stat

(
18
4

)
a

(
22
11

)
χ

(
6

14

)
renorm

38.9
(

7
1.7

)
stat

(
1.7
1.0

)◦
syst

2 GeV 0.699
(

12
29

)
stat

(
19
4

)
a

(
22
12

)
χ

(
6

14

)
renorm

40.0
(

7
1.7

)
stat

(
1.7
1.1

)◦
syst

10 GeV 0.710
(

12
30

)
stat

(
19
3

)
a

(
22
12

)
χ

(
6

14

)
renorm

40.7
(

7
1.7

)
stat

(
1.7
1.1

)◦
syst

Table 25. Decay constants, using the experimental η and η′ masses as additional input (priors,
see section 5.7) in various representations and at several renormalization scales.

octet/singlet basis, state representation
F8
η 0.2180

(
25
32

)
stat

(
15
22

)
a

(
33
0

)
χ

(8tph
0 )−1/2 103.5

(
1.2
1.5

)
stat

(
1.7
1.1

)
syst

(1.3)t0 MeV

F8
η′ −0.105

(
5
9

)
stat

(
7
0

)
a

(
7
0

)
χ

(8tph
0 )−1/2 −50.0

(
2.2
4.2

)
stat

(
4.8

3

)
syst

(6)t0 MeV

F0
η µ = ∞ 0.0276

(
34
36

)
stat

(
52
0

)
a

(
0

50

)
χ

(
26
11

)
renorm

(8tph
0 )−1/2 13.1

(
1.6
1.7

)
stat

(
2.5
2.7

)
syst

(2)t0 MeV

1 GeV 0.0314
(

39
41

)
stat

(
60
0

)
a

(
0

56

)
χ

(
30
12

)
renorm

(8tph
0 )−1/2 14.9

(
1.9
2.0

)
stat

(
2.9
3.0

)
syst

(2)t0 MeV

2 GeV 0.0297
(

37
39

)
stat

(
56
0

)
a

(
0

53

)
χ

(
28
11

)
renorm

(8tph
0 )−1/2 14.1

(
1.7
1.8

)
stat

(
2.7
2.9

)
syst

(2)t0 MeV

10 GeV 0.0287
(

36
38

)
stat

(
54
0

)
a

(
0

51

)
χ

(
27
11

)
renorm

(8tph
0 )−1/2 13.6

(
1.7
1.8

)
stat

(
2.6
2.8

)
syst

(2)t0 MeV

F0
η′ µ = ∞ 0.1941

(
15
39

)
stat

(
4

10

)
a

(
34
4

)
χ

(
44
23

)
renorm

(8tph
0 )−1/2 92.21

(
69

1.85

)
stat

(
1.96
2.14

)
syst

(1.16)t0 MeV

1 GeV 0.2210
(

17
44

)
stat

(
5

34

)
a

(
39
4

)
χ

(
50
26

)
renorm

(8tph
0 )−1/2 105.0

(
8

2.1

)
stat

(
2.2
2.9

)
syst

(1.3)t0 MeV

2 GeV 0.2087
(

16
42

)
stat

(
4

32

)
a

(
37
4

)
χ

(
47
24

)
renorm

(8tph
0 )−1/2 99.14

(
74

1.99

)
stat

(
2.11
2.70

)
syst

(1.25)t0 MeV

10 GeV 0.2017
(

15
40

)
stat

(
4

31

)
a

(
36
4

)
χ

(
45
24

)
renorm

(8tph
0 )−1/2 95.79

(
72

1.92

)
stat

(
2.04
2.61

)
syst

(1.21)t0 MeV

octet/singlet basis, angle representation
F8 0.2421

(
22
26

)
stat

(
8

50

)
a

(
32
12

)
χ

(8tph
0 )−1/2 115.0

(
1.1
1.2

)
stat

(
1.6
2.4

)
syst

(1.5)t0 MeV

θ8 −0.450
(

21
36

)
stat

(
24
0

)
a

(
29
0

)
χ

(
1
5

)
renorm

−25.8
(

1.2
2.1

)
stat

(
2.2
0.3

)◦
syst

F0 µ = ∞ 0.1961
(

13
37

)
stat

(
12
6

)
a

(
28
7

)
χ

(
47
24

)
renorm

(8tph
0 )−1/2 93.14

(
62

1.75

)
stat

(
1.83
2.27

)
syst

(1.18)t0 MeV

1 GeV 0.2232
(

15
42

)
stat

(
13
26

)
a

(
32
8

)
χ

(
53
27

)
renorm

(8tph
0 )−1/2 106.0

(
7

2.0

)
stat

(
2.1
2.9

)
syst

(1.3)t0 MeV

2 GeV 0.2108
(

14
40

)
stat

(
12
25

)
a

(
30
8

)
χ

(
50
26

)
renorm

(8tph
0 )−1/2 100.1

(
7

1.9

)
stat

(
2.0
2.7

)
syst

(1.3)t0 MeV

10 GeV 0.2037
(

14
38

)
stat

(
12
24

)
a

(
29
7

)
χ

(
49
25

)
renorm

(8tph
0 )−1/2 96.76

(
65

1.82

)
stat

(
1.90
2.60

)
syst

(1.22)t0 MeV

θ0 −0.141
(

18
20

)
stat

(
0

27

)
a

(
27
0

)
χ

−8.1
(

1.0
1.1

)
stat

(
1.5
1.5

)◦
syst

light/strange basis, state representation
F `η µ = ∞ 0.1484

(
20
21

)
stat

(
31
0

)
a

(
0

21

)
χ

(
21
9

)
renorm

(8tph
0 )−1/2 70.48

(
93
99

)
stat

(
1.53
1.42

)
syst

(89)t0 MeV

1 GeV 0.1515
(

23
26

)
stat

(
37
0

)
a

(
0

27

)
χ

(
24
10

)
renorm

(8tph
0 )−1/2 71.96

(
1.11
1.22

)
stat

(
1.81
1.71

)
syst

(91)t0 MeV

2 GeV 0.1501
(

22
23

)
stat

(
34
0

)
a

(
0

24

)
χ

(
22
9

)
renorm

(8tph
0 )−1/2 71.29

(
1.03
1.10

)
stat

(
1.68
1.58

)
syst

(90)t0 MeV

10 GeV 0.1493
(

21
22

)
stat

(
33
0

)
a

(
0

23

)
χ

(
22
9

)
renorm

(8tph
0 )−1/2 70.90

(
98

1.04

)
stat

(
1.61
1.50

)
syst

(90)t0 MeV

F `
η′ µ = ∞ 0.09773

(
362
686

)
stat

(
441
12

)
a

(
364

0

)
χ

(
285
164

)
renorm

(8tph
0 )−1/2 46.42

(
1.72
3.26

)
stat

(
2.83
1.35

)
syst

(59)t0 MeV

1 GeV 0.1197
(

40
71

)
stat

(
44
2

)
a

(
36
0

)
χ

(
33
19

)
renorm

(8tph
0 )−1/2 56.84

(
1.88
3.38

)
stat

(
2.86
1.59

)
syst

(72)t0 MeV

2 GeV 0.1096
(

40
70

)
stat

(
44
1

)
a

(
36
0

)
χ

(
31
18

)
renorm

(8tph
0 )−1/2 52.08

(
1.90
3.32

)
stat

(
2.84
1.48

)
syst

(66)t0 MeV

10 GeV 0.1039
(

38
69

)
stat

(
44
1

)
a

(
36
0

)
χ

(
30
17

)
renorm

(8tph
0 )−1/2 49.35

(
1.82
3.29

)
stat

(
2.83
1.42

)
syst

(62)t0 MeV

Fsη µ = ∞ −0.1620
(

44
40

)
stat

(
48
7

)
a

(
0

56

)
χ

(
16
6

)
renorm

(8tph
0 )−1/2 −76.97

(
2.07
1.91

)
stat

(
2.29
2.76

)
syst

(97)t0 MeV

1 GeV −0.1598
(

46
42

)
stat

(
52
6

)
a

(
0

60

)
χ

(
18
7

)
renorm

(8tph
0 )−1/2 −75.93

(
2.20
2.00

)
stat

(
2.49
2.97

)
syst

(96)t0 MeV

2 GeV −0.1609
(

45
41

)
stat

(
50
6

)
a

(
0

58

)
χ

(
17
7

)
renorm

(8tph
0 )−1/2 −76.41

(
2.14
1.96

)
stat

(
2.40
2.87

)
syst

(97)t0 MeV

10 GeV −0.1614
(

44
41

)
stat

(
49
7

)
a

(
0

57

)
χ

(
16
7

)
renorm

(8tph
0 )−1/2 −76.68

(
2.11
1.93

)
stat

(
2.35
2.82

)
syst

(97)t0 MeV

Continued on next page
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Table 25 (continued): Decay constants at various scales.
Fs
η′ µ = ∞ 0.1980

(
59
44

)
stat

(
0

74

)
a

(
24
58

)
χ

(
35
16

)
renorm

(8tph
0 )−1/2 94.06

(
2.80
2.08

)
stat

(
1.37
4.77

)
syst

(1.19)t0 MeV

1 GeV 0.2135
(

58
47

)
stat

(
0

76

)
a

(
27
58

)
χ

(
39
18

)
renorm

(8tph
0 )−1/2 101.4

(
2.8
2.2

)
stat

(
1.5
4.9

)
syst

(1.3)t0 MeV

2 GeV 0.2064
(

58
45

)
stat

(
0

75

)
a

(
25
58

)
χ

(
37
17

)
renorm

(8tph
0 )−1/2 98.06

(
2.78
2.15

)
stat

(
1.45
4.85

)
syst

(1.24)t0 MeV

10 GeV 0.2024
(

59
45

)
stat

(
0

74

)
a

(
25
58

)
χ

(
36
17

)
renorm

(8tph
0 )−1/2 96.13

(
2.79
2.12

)
stat

(
1.41
4.81

)
syst

(1.21)t0 MeV

light/strange basis, angle representation
F ` µ = ∞ 0.1777

(
25
40

)
stat

(
55
0

)
a

(
12
4

)
χ

(
33
16

)
renorm

(8tph
0 )−1/2 84.40

(
1.17
1.91

)
stat

(
2.78
1.58

)
syst

(1.07)t0 MeV

1 GeV 0.1931
(

26
44

)
stat

(
63
0

)
a

(
13
3

)
χ

(
39
19

)
renorm

(8tph
0 )−1/2 91.70

(
1.22
2.08

)
stat

(
3.17
1.87

)
syst

(1.16)t0 MeV

2 GeV 0.1859
(

25
43

)
stat

(
59
0

)
a

(
13
3

)
χ

(
36
18

)
renorm

(8tph
0 )−1/2 88.28

(
1.20
2.02

)
stat

(
3.00
1.74

)
syst

(1.12)t0 MeV

10 GeV 0.1819
(

25
42

)
stat

(
57
0

)
a

(
13
3

)
χ

(
35
17

)
renorm

(8tph
0 )−1/2 86.38

(
1.19
1.99

)
stat

(
2.90
1.66

)
syst

(1.09)t0 MeV

φ` µ = ∞ 0.582
(

19
36

)
stat

(
11
4

)
a

(
20
0

)
χ

(
7
5

)
renorm

33.3
(

1.1
2.1

)
stat

(
1.3
0.4

)◦
syst

1 GeV 0.669
(

19
34

)
stat

(
6
5

)
a

(
21
0

)
χ

(
6
5

)
renorm

38.3
(

1.1
1.9

)
stat

(
1.3
0.4

)◦
syst

2 GeV 0.631
(

19
35

)
stat

(
8
4

)
a

(
20
0

)
χ

(
7
5

)
renorm

36.2
(

1.1
2.0

)
stat

(
1.3
0.4

)◦
syst

10 GeV 0.608
(

19
35

)
stat

(
9
4

)
a

(
19
0

)
χ

(
7
5

)
renorm

34.8
(

1.1
2.0

)
stat

(
1.3
0.4

)◦
syst

Fs µ = ∞ 0.2559
(

35
34

)
stat

(
0

83

)
a

(
54
25

)
χ

(
17
9

)
renorm

(8tph
0 )−1/2 121.5

(
1.7
1.6

)
stat

(
2.6
4.2

)
syst

(1.5)t0 MeV

1 GeV 0.2667
(

37
35

)
stat

(
0

86

)
a

(
57
27

)
χ

(
20
10

)
renorm

(8tph
0 )−1/2 126.7

(
1.8
1.7

)
stat

(
2.8
4.4

)
syst

(1.6)t0 MeV

2 GeV 0.2617
(

37
34

)
stat

(
0

85

)
a

(
56
26

)
χ

(
19
9

)
renorm

(8tph
0 )−1/2 124.3

(
1.7
1.6

)
stat

(
2.7
4.3

)
syst

(1.6)t0 MeV

10 GeV 0.2589
(

36
34

)
stat

(
0

84

)
a

(
55
26

)
χ

(
18
9

)
renorm

(8tph
0 )−1/2 123.0

(
1.7
1.6

)
stat

(
2.6
4.3

)
syst

(1.6)t0 MeV

φs µ = ∞ 0.686
(

17
23

)
stat

(
6
4

)
a

(
24
0

)
χ

(
6

14

)
renorm

39.3
(

1.0
1.3

)
stat

(
1.5
0.8

)◦
syst

1 GeV 0.643
(

16
22

)
stat

(
6
4

)
a

(
23
0

)
χ

(
6

14

)
renorm

36.8
(

0.9
1.3

)
stat

(
1.4
0.8

)◦
syst

2 GeV 0.662
(

17
23

)
stat

(
6
4

)
a

(
23
0

)
χ

(
6

14

)
renorm

37.9
(

1.0
1.3

)
stat

(
1.4
0.8

)◦
syst

10 GeV 0.673
(

17
23

)
stat

(
6
4

)
a

(
23
0

)
χ

(
6

14

)
renorm

38.6
(

1.0
1.3

)
stat

(
1.4
0.8

)◦
syst
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