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1 Introduction and discussion of results

The discovery of gravitational waves [1] adds urgency to the theoretical program to develop
effective field theory (EFT) methods for physics outside a black hole, particularly in the
point-particle world-line limit where the length scales of physical interest are much larger
than is the black hole’s horizon [2–15]. Black holes raise new issues for EFT descriptions for
several reasons. One is the practical difficulties that strong-gravity calculations raise for in-
tegrating the EFT equations of motion [16–18]. Another involves the proper EFT treatment
of the dissipative degrees of freedom [3, 19–22] associated with the black hole’s entropy.

A challenge for developing EFTs for systems with such novel properties is the lack of
theoretical benchmarks: well-understood solvable models that share some of these unusual
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features. Such benchmarks can be useful both as laboratories for exploring new EFTs
features in these new kinds of environments, and as comparison points for calculations
done with more realistic but harder-to-solve practical systems. It was with the view to
providing one of these benchmarks that reference [23] proposed a solvable Caldeira-Leggett
style [24, 25] model consisting of an external massless quantum field φ interacting with
many unseen gapless thermal fields in a very small spatial volume (called a ‘hotspot’).
Some implications of this model, such as for the coherence of the state of the field φ, are
explored in a companion paper [26].

The present paper explores some of the physical implications of this hotspot model
by computing the response of an Unruh-DeWitt detector [27–29] (or qubit) that sits at
rest relative to the hotspot and separated from it by a displacement xQ. The qubit only
couples locally to the exterior field φ and so only ‘learns’ about the hotspot through their
mutual interactions with φ. We use this model to study the qubit’s evolution with the
goal of determining whether (and how quickly) it eventually thermalizes to the hotspot
temperature (as does a qubit placed outside of a spacetime horizon).

Denoting the splitting between qubit energy levels by ω and its coupling to φ by the
dimensionless coupling λQ, we work for simplicity in a ‘non-degenerate’ regime where the
qubit’s generic order-λ2

Q field-driven energy shifts are smaller than ω. It is natural to treat
the field-qubit interaction strength perturbatively in this regime, with the detector’s excita-
tion rate (when prepared in its ground state) then being calculable using standard methods.

The result for the excitation rate from the ground state is given by eqs. (3.33)
and (3.29). As expected1 this vanishes in the absence of the φ-hotspot coupling g̃, and
also vanishes as the hotspot temperature tends to zero. Both of these mirror properties
that are also true for Unruh-DeWitt detectors in simple black-hole or cosmological back-
grounds.

The standard perturbative methods fail at times of order 1/λ2
Q — a special case

of a generic phenomenon wherein perturbation theory fails at late times — and this
means that these methods cannot directly access the time-scales relevant to hotspot
thermalization, leaving the question of whether the qubit eventually reaches equilibrium
beyond reach. To address this question we use open-EFT methods [30–34] to resum the
late-time behaviour, allowing a reliable calculation of the late-time evolution even for the
O(λ−2

Q ) thermalization timescales.
Although we do not completely explore all corners of parameter space, we do identify a

parameter regime — given by (3.42) and (3.48) — where the qubit does equilibrate at the
hotspot temperature and we identify the time-scales required2 to do so — cf. eqs. (3.38)
and (3.45). Among other things, equilibrium turns out to require both proximity to the
hotspot — with |xQ| � g̃/4π — and sufficiently high hotspot temperatures — T � ω.
For qubits much further from the hotspot than the hotspot’s size these conditions require
the response of the field φ to the hotspot to be itself understood in a regime beyond the

1This is expected because otherwise qubits at rest would continually be spontaneously excited by the
vacuum, even in the absence of spacetime horizons.

2Two independent and unequal time-scales arise, broadly describing both thermalization and the loss of
phase coherence.
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domain of perturbation theory in g̃; a regime for which this response is nonetheless known
(and given in [23]) because of the solvability of the model.

The qubit behaviour we find mirrors similar thermalization behaviour found earlier
for qubits in other spactimes with horizons [35–37], though with the important difference
that unbounded redshift effects near horizons for these other spacetimes generically make
thermalization more efficient near the horizon than for a hotspot. Qubit behaviour in the
hotspot model is nevertheless both very rich and yet amenable to explicit calculation, and as
such provides a useful test of tools that are applied in these other more complicated gravita-
tional settings. (For other examples of qubits used to probe black-hole systems see [38–53].)

The remainder of this paper is organized as follows. The setup of the hotspot system is
first summarized in section 2, culminating with expressions (2.12), (2.13) and (2.16) giving
explicit formulae for the late-time φ response function in position space. For comparison,
the perturbative limit of this expression is also given in eq. (2.10). This is followed in
section 3 by the definition of the qubit and its couplings to the hotspot. The response of
the qubit is also calculated in this section, both perturbatively and after resumming using
open EFT techniques. This late-time resummation hinges on a late-time limit in which
the qubit evolution becomes Markovian, and so considerable care is taken to justify the
domain of validity of this approximation.

2 Hotspot properties

This section briefly reviews the main features of the benchmark hotspot model proposed
in [23], whose interactions with the Unruh-DeWitt detector are to be studied.

2.1 Hotspot definition

The hotspot is taken to contain an observable sector, modelled by a single real scalar field,
φ(x), that lives in a spatial region, R+, that represents the exterior of the black hole. The
degrees of freedom interior to the black hole is modelled by N real massless scalar fields,
χa with a = 1, · · · , N , that reside in a different spatial region R− that is disjoint from
the region R+ everywhere except for the surface of a small sphere, Sξ, with radius ξ. In
practice this means that both R+ and R− have a small sphere excised from the origin (for
all time) and the surface of this sphere is identified in the two spaces (see figure 1).

The fields are allowed to interact with one another locally only on Sξ, but to keep the
model solvable this interaction is limited to a bilinear mixing term. Although we neglect
the external gravitational fields of the hotspot in regions R+ and R− there is no reason why
this could not also be included in more sophisticated versions of the model.3 Our interest
in this paper is in scales much larger than ξ and so we further consider the idealization4

3Without a strong gravitational field the interaction surface Sξ is generically not light-like and so is not
a local horizon, unlike for an honest-to-God black hole.

4The limit ξ → 0 is not required for the hotspot model, allowing it also to explore the opposite regime
where UV scales involve distances much smaller than ξ, such as for the near-horizon EFTs considered
in [54, 55], motivated to systematize the treatment of both conventional [56–60] or more exotic [61–71]
kinds of near-horizon physics.

– 3 –



J
H
E
P
0
8
(
2
0
2
1
)
1
3
2

Figure 1. A cartoon of the two spatial branches, R+ and R−, in which the field φ and the N
fields χa repsectively live. The two types of fields only couple to one another in the localized throat
region, which can be taken to be a small sphere of radius ξ, or effectively a point in the limit that
ξ is much smaller than all other scales of interest. (figure taken from [23].)

where the radius ξ → 0, in which case Sξ reduces to a single point of contact between R+
and R− (which we situate at the origin x = 0 of both R±). In this limit the couplings
between φ and χa are captured by an effective action localized at x = 0.

The action has the form S = S+ +S−+Sint where S± describe the free fields φ and χa

S+ = −1
2

∫
R+

d4x ∂µφ∂
µφ and S− = −1

2

∫
R−

d4x δab ∂µχ
a∂µχb , (2.1)

and the lowest-dimension interaction (mixing, really) on the interaction surface is given by

Sint = −
∫
W

dt
[
ga χ

a(t,0)φ(t,0) + λ

2 φ
2(t,0)

]
, (2.2)

where the integration is over the proper time along the hotspot world-line W, which we
take to be x = 0 in both R+ and R−. In fundamental units the couplings ga and λ and
have dimensions of length.

In what follows we imagine both of these couplings turn on suddenly at t = 0 — i.e. we
assume ga(t) = Θ(t) ga, where Θ(t) is the Heaviside step function — but remain constant
thereafter. Because our applications focus on a qubit that couples only to φ, the couplings
ga often appear only through the combination

g̃2 := δabgagb = Ng2 , (2.3)

where the second equality specializes to the case where all couplings are equal (as we
typically do). Because we solve for the evolution of φ exactly we need not assume that g̃
be particularly small.
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2.2 Time evolution and Wightman function

Ref. [23] computes the evolution of the system after the couplings λ and ga are turned on,
assuming the system’s initial state at t = 0 is initially uncorrelated

ρ0 = ρ+ ⊗ ρ− , (2.4)

with the φ sector initially in its vacuum and the χa fields initially in a thermal state:

ρ+ = |vac〉 〈vac| and ρ− = %β := e−βH−

Zβ
, (2.5)

with inverse temperature β = 1/T > 0. Here H− denotes the Hamiltonian constructed
from S− and Zβ := Tr ′ [e−βH− ] is the thermal partition function, with the prime on the
trace indicating that it is only taken over the χ sector.

Ref. [23] computes the system response by solving explicitly the field equations

(−∂2
t +∇2)φH(t,x) = δ3(x)

[
λφH(t,0) + gaχ

a
H(t,0)

]
(2.6)

and

(−∂2
t +∇2)χaH(t,x) = δ3(x) gaφH(t,0) , (2.7)

within the Heisenberg picture of time evolution. This can be done very explicitly because
the field equations are linear in all of the fields. To compute the response of the φ field the
field χa is eliminated by solving (2.7) for it as a function of φ.

Because the elimination of χa involves Coulomb-like Greens functions proportional
to 1/|x| it introduces singularities into the solution for φ at |x| = 0 that are regulated
by instead evaluating at |x| = ε for a microscopic scale ε. Ref. [23] shows that physical
predictions remain independent of ε once the singular regularization dependence is absorbed
by replacing λ→ λR with

λR := λ− g̃2

4πε , (2.8)

and this is why this particular coupling is included in addition to g̃. In what follows
we assume this replacement has been done, though we drop the subscript ‘R’ to avoid
notational clutter.

These steps allow the calculation of the φ-field Wightman function,

Wβ(t,x; t′,x′) := Tr
[
φH(t,x)φH(t′,x′)ρ0

]
= 1
Zβ

Tr
[
φH(t,x)φH(t′,x′)

(
|vac〉 〈vac|⊗e−βH−

)]
.

(2.9)
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The result computed to leading-order in g̃2 and λ turns out to be given by

Wβ(t,x;t′,x′)' 1
4π2[−(t−t′−iδ)2+|x−x′|2

]
+ λ

16π3

(Θ(t−|x|)
|x|

1
(t−t′−|x|−iδ)2−|x′|2 +Θ(t′−|x′|)

|x′|
1

(t−t′+|x′|−iδ)2−|x|2
)

− g̃2Θ(t−|x|)Θ(t′−|x′|)
64π2β2|x||x′|sinh2

[
π
β (t−|x|−t′+|x′|−iδ)

] (2.10)

+ g̃2

32π4

(
−Θ(t−|x|)

|x|
t−t′−|x|[

(t−t′−|x|−iδ)2−|x′|2
]2 +Θ(t′−|x′|)

|x′|
t−t′+|x′|[

(t−t′+|x′|−iδ)2−|x|2
]2)

+ g̃2

64π4

(
δ(t−|x|)

|x|
[
−(t′+iδ)2−|x′|2

]+ δ(t′−|x′|)
|x′|
[
−(t−iδ)2−|x|2

]) (perturbative),

where the delta functions and step functions describe the passage of the transients from
the switch-on of couplings at t = |x| = 0, followed by late-time evolution in the future light
cone of the switch-on event (i.e. for t > |x| and t′ > |x′|). In this late-time regime the
above perturbative expression becomes

Wβ(t,x;t′,x′) ' 1
4π2[−(t−t′−iδ)2+|x−x′|2

]+ λ

16π3|x||x′|

[ |x|+|x′|
(t−t′−iδ)2−(|x+|x′|)2

]

− g̃2

64π2β2|x||x′|sinh2
[
π
β (t−|x|−t′+|x′|−iδ)

] (2.11)

+ g̃2

32π4

(
− 1
|x|

t−t′−|x|[
(t−t′−|x|−iδ)2−|x′|2

]2 + 1
|x′|

t−t′+|x′|[
(t−t′+|x′|−iδ)2−|x|2

]2)
(late times, perturbative)

In these expressions δ → 0+ is a positive infinitesimal that is taken to zero at the end of
the calculation.

But the simplicity of the model allows a more general determination of the Wightman
function in the future light-cone of t = |x| = 0 that is not restricted to perturbatively small
couplings. This more exact treatment gives (for t > |x| and t′ > |x′|)

Wβ(t,x; t′,x′) = S (t,x; t,x′) + Eβ(t,x; t,x′) (2.12)
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with the temperature-independent part given by

S (t,x; t,x′) = 1
4π2 [−(t− t′ − iδ)2 + |x− x′|2]

+ 2ε2
g̃2|x||x′|

[
I−(t− t′ + |x|+ |x′|, c)− I−(t− t′ − |x|+ |x′|, c) (2.13)

−I+(t− t′ − |x|+ |x′|, c) + I+(t− t′ − |x| − |x′|, c)
]

+ ε

8π2|x||x′|

[
− 1
t− t′ + |x|+ |x′| − iδ + 1

t− t′ − |x| − |x′| − iδ

]
−

32π2ε4(1 + λ
2πε)

g̃4|x||x′|

[
I−(t− t′ − |x|+ |x′|, c) + I+(t− t′ − |x|+ |x′|, c)

]
− ε2

4π2|x||x′|(t− t′ − |x|+ |x′| − iδ)2

where
c := 16π2ε

g̃2

(
1 + λ

4πε

)
. (2.14)

and the functions I∓(τ) are defined by

I∓(τ, c) = e±cτE1
(
± c[τ − iδ]

)
= e±cτ

∫ ∞
z

du e
−u

u
, (2.15)

and the limit δ → 0+ is again understood. The temperature-dependent5 part is similarly
given by

Eβ(t,x;t,x′)= 2ε2
g̃2|x||x′|

[
Ψ
(
e
−2π(t−t′−|x|+|x′|−iδ)

β ,
cβ

2π

)
+Ψ

(
e

+ 2π(t−t′−|x|+|x′|−iδ)
β ,

cβ

2π

)]
−2π
cβ

]
(2.16)

with Ψ(z, a) := Φ(z, 1, a) where Φ(z, s, a) is the Lerch transcendent, defined by the series

Φ(z, s, a) :=
∞∑
n=0

zn

(a+ n)s (2.17)

for complex numbers in the unit disc (with |z| < 1), and by analytic continuation elsewhere
in the complex plane. A convenient integral representation for Φ(z, s, a) is given by

Φ(z, s, a) = 1
Γ(s)

∫ ∞
0

dx x
s−1e−ax

1− ze−x valid for Re[s] > 0, Re[a] > 0 & z ∈ C \ [1,∞) .

(2.18)
The full correlation function Wβ = S +Eβ obtained using (2.13) and (2.16) reduces to

the perturbative correlation function quoted in (2.11) once linearized in λ and g̃2, and seeing
how this works clarifies the domain of validity of perturbative methods. The expansion in
g̃2 in particular is captured by the asymptotic form for S in the regime cτ � 1 as well as

5Notice that although Eβ contains all of the dependence on temperature it does not vanish in the T → 0
limit.
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the expansion of Eβ in the regime cβ � 1. These can be made explicit using the asymptotic
expression

E1(z) ' e−z
[1
z
− 1
z2 +O

(
z−3

) ]
for |z| � 1 (2.19)

which implies that the functions I∓(τ, c) for |cτ | � 1 have the asymptotic expansion

I∓(τ, c) ' ± 1
c(τ − iδ) −

1
c2(τ − iδ)2 +O

(
|cτ |−3

)
for |cτ | � 1 . (2.20)

The behaviour of Ψ(z, a) for cβ � 1 is similarly given by the following asymptotic series
for the Lerch transcendent for large positive a:

Φ(z, s, a) ' a−s

1− z +
N−1∑
n=1

(−1)nΓ(s+ n)
n! Γ(s) · Li−n(z)

as+n
+O

(
a−s−N

)
for a� 1 (2.21)

which applies for fixed s ∈ C and fixed z ∈ C \ [1,∞), where Li−n(z) = (z∂z)n z
1−z are

polylogarithm functions of negative-integer order. These and some other properties are
explored in appendix A.

Besides verifying that the apparent ε-dependence cancels in Wβ in the perturbative
limit, the above expressions show that the perturbative limit arises as an expansion in
powers of

1
cτ

= g̃2

16π2ετ

(
1 + λ

4πε

)−1
� 1 and 1

cβ
= g̃2T

16π2ε

(
1 + λ

4πε

)−1
� 1 , (2.22)

which includes low temperatures (T ) and long times (τ) compared with the UV scale
g̃2/4πε. As shown in [23] the dependence of (2.22) on λ/4πε is properly captured by
renormalization-group methods in the world-line EFT for this system.

3 Response of an Unruh-DeWitt detector

This section couples a simple two-level qubit (or Unruh-DeWitt detector) that moves in
R+ near the hotspot but not on the interaction surface Sξ, coupling locally to the external
field φ. For our concrete calculation we work (as above) with a point-like hotspot relative
to which the qubit is at rest and is displaced by xQ.

We ask in particular how the qubit responds to its proximity to the thermal hotspot,
given that its interactions with the hotspot are filtered through the intermediary field
φ. Our focus is on the late-time thermalization behaviour; a time-scale that varies in-
versely with the qubit-field coupling, and so lies beyond the reach of naive perturbation
theory. Following [35–37] we use Open-EFT techniques to access this late-time limit, with
the goal of providing a point of comparison for similar calculations in more complicated
black-hole and cosmological geometries. We also explore in this simple setting how qubit
thermalization depends on an interplay between the strength of its couplings and distance
from the hotspot. For simplicity, throughout this section we take the hotspot-localized φ

self-interaction coupling to vanish: λ = 0.
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3.1 Qubit evolution equations

The free Hamiltonian for the qubit-field system is assumed to be described by the Hamil-
tonian

Htot(t) = HS(t)⊗ I + I ⊗H0 +HQ

int(t) , (3.1)

where HS(t) is the Schrödinger-picture Hamiltonian for the fields φ and χa described in
section 2, I and I are (respectively) the unit operators acting on the Hilbert space for these
fields and on the Hilbert space of the qubit. H0 denotes the free 2× 2 qubit Hamiltonian,
and is assumed (in its rest frame) to be

H0 = ω

2 σ3 = ω

2

1 0
0 −1

 , (3.2)

where ω denotes the splitting between its two levels.
HQ

int describes the Schrödinger-picture qubit-field interaction, in which the qubit cou-
ples only to the field φ evaluated at the local qubit position, taken to be at rest relative
to the hotspot and displaced from it by xQ. This interaction is chosen to drive transitions
between the qubit levels,

HQ

int(t) = λ̂Q(t) φS(xQ)⊗ I− ⊗ σ1 where σ1 =

0 1
1 0

 , (3.3)

where I− is the unit matrix in the χa sector of the Hilbert space, and the dimensionless
coupling parameter λ̂Q is assumed to be small so as to justify treating the qubit-field
interaction perturbatively.

We imagine the qubit-field coupling to be turned on suddenly at time t = t0,

λ̂Q(t) = λQ Θ(t− t0) (3.4)

with t0 > 0 so that switch-on occurs after the fields have already begun to interact. Our
focus is not on the transients associated with this turn-on, and instead on the qubit’s late-
time approach to equilibrium and on how this approach depends on the other scales of the
problem such as the distance |xQ| between the qubit and the hotspot.

To compute the qubit evolution we adopt the interaction picture, with the interaction
Hamiltonian including only HQ

int(t). In this picture the interactions between the φ and χa
fields are all regarded as being within the ‘unperturbed’ Hamiltonian. Interaction picture
evolution of the fields φ and χa is therefore the same as what was considered Heisenberg-
picture evolution in the absence of the qubit, and so is given by the same equations —
i.e. eqs. (2.6) and (2.7) — that were solved in [23].

In this interaction picture the system state evolves purely due to the qubit-field in-
teraction and so does not evolve at all until the time t = t0 when these turn on. As a
consequence the system’s density matrix at t = t0 remains unchanged from its initially
uncorrelated configuration at t = 0:

RS(t0) = RS(0) = ρ0 ⊗ %(0) , (3.5)

– 9 –
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where %(0) denotes the initial qubit state and ρ0 is the field state given in (2.4), in which
the φ sector starts in its vacuum while the χa are prepared in a thermal state.

The evolution of the system’s state for t > t0 is given in the interaction picture by

∂R(t)
∂t

= −i
[
Vtot(t), R(t)

]
, (3.6)

where Vtot(t) is the interaction-picture interaction Hamiltonian for the field-qubit system
coupling is defined by

Vtot(t) =
(
U∗(t, 0)⊗ e+iH0t

)
Hint(t)

(
U(t, 0)⊗ e−iH0t

)
= λ̂Q(t) φI(t,xQ)⊗m(t) (3.7)

where
U(t, s) = T exp

(
−i
∫ t

s
dτ HS(τ)

)
, (3.8)

is the evolution operator for the fields φ and χa. The second equality in eq. (3.7) uses
the time-evolution property for interaction-picture fields: φI(t,x) = U∗(t, 0)φS(xQ)U(t, 0),
where φS is the Schrödinger-picture operator. Notice that the interaction-picture field φI
appearing in (3.7) is precisely the same as what was called the Heisenberg-picture field φH in
section 2, since that section did not include the field-qubit interaction being considered here.
As a result the Wightman function for φI(t,x) is given by the expressions (2.12), (2.13)
and (2.16) computed in [23]. Finally, the matrix m(t) is similarly defined as

m(t) := e+iH0tσ1e
−iH0t =

 0 e+iωt

e−iωt 0

 . (3.9)

3.2 Tracing out the fields and late-time qubit evolution

Since our goal is to follow only the dynamics of the qubit keeping track of the entire density
matrix R(t) carries too much information. For qubit measurements it suffices instead to
follow the evolution of the qubit’s reduced interaction-picture density matrix

%(t) := Tr
fields

[R(t)] , (3.10)

since this carries the information required to predict measurements in this sector. At first
sight the evolution of this reduced density matrix is obtained simply by tracing over (3.6),
though the resulting equation has the disadvantage that its right-hand side is not expressed
purely in terms of % without reference to the field part of the system’s density matrix.

A more useful equation would compute the evolution of both %(t) and the density
matrix for the field sector, and then use the evolution equations to eliminate the field
density matrix as a function of %. Doing so is a solved problem in the theory of open
quantum systems, and the resulting self-contained equation for the evolution of %(t) is the
so-called Nakajima-Zwanzig equation [72, 73] (for a review see e.g. [30]). The logic of its
derivation is to exploit the linearity of the evolution equation (3.6) and to compute how it
commutes with a projection super-operator P{·} that maps operators acting on the full
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Hilbert space onto operators acting only within the qubit (in this case) sector, defined in
such a way as to ensure that P[R(t)] = %(t).

The idea then is to compute what (3.6) predicts for both P{R(t)} and for its comple-
ment Q{R(t)}, where Q{R(t)} = I −P{R(t)}. The result is a coupled set of linear evolu-
tion equations, which can be formally integrated to obtain Q{R} as a function of time and
of %(t). Substituting the result back into the equation for P{R(t)} provides the equation we
seek. Because of the elimination of Q{R(t)} the equation for %(t) that results is generically
nonlocal in time, making ∂t%(t) depend on %(t) but also on the entire history %(s) for s < t.

The application of this equation to qubit systems in various environments is studied
in detail in [35–37] so we here simply quote what the Nakajima-Zwanzig equation gives
for %(t) in the present instance. The result can be computed explicitly as a series in the
coupling λQ, and when evaluated for t > t0 to second order in λQ takes the form

∂t%(t) = −i
[
λ2
Q ωct

2 σ3,%(t)
]

(3.11)

+λ2
Q

∫ t

t0
ds
([

m(s)%(s),m(t)
]
W(t, s) +

[
m(t),%(s)m(s)

]
W∗(t, s)

)
where ωct of the first term is a counter-term for the qubit frequency, which is written
ω = ωphys + λ2

Qωct with ωct chosen to ensure that ωphys remains the physically measured
qubit energy to the order we work in λQ. This shift is required because corrections to the
qubit energy arise at order λ2

Q, which ωct is chosen to cancel.6 Because ωct is of order λ2
Q,

within the interaction picture it is included into the perturbing Hamiltonian by writing

Vtot(t) = λ̂Q(t) φI(t,xQ)⊗m(t) +
λ̂2
Q(t)ωct

2 I ⊗ σ3 . (3.12)

The convolution in the second line of (3.11) reveals how ∂t% depends on the previous
history of the qubit’s evolution, and the kernelW(t1, t2) appearing in this convolution is the
Wightman function for the field φI — i.e. precisely the quantity quoted above in section 2
that is calculated explicitly in [23] — evaluated at two points along the qubit world-line:

W(t1, t2) := Tr
[
φI(t1,xQ)φI(t2,xQ)ρ0

]
. (3.13)

Because (3.11) is a 2× 2 matrix equation it looks harder to solve than it really is. In
particular, the properties tr% = 1 and %† = % can be used to eliminate %22 = 1− %11 and
%21 = %∗12 from these equations, so it suffices to know how %12 and %11 evolve. Using (3.11)
to evaluate the evolution for these two components reveals that they decouple from one
another, and so evolve independently with

∂%11(t)
∂t

= 2λ2
Q

∫ t

t0
ds
(

Re[W(t, s)] cos(ω[t− s]) + Im[W(t, s)] sin(ω[t− s])
)

−4λ2
Q

∫ t

t0
ds Re[W(t, s)] cos(ω[t− s])%11(s) (3.14)

6As it happens these corrections also diverge and so ωct provides the counterterm that cancels this
divergence.
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and (for t > t0)

∂%12(t)
∂t

= −iλ2
Q ωct %12(t)− 2λ2

Q

∫ t

t0
ds Re[W(t, s)]e+iω[t−s]%12(s)

+2λ2
Qe

+2iωt
∫ t

t0
ds Re[W(t, s)]e−iω[t−s]%∗12(s) . (3.15)

The evolution equations normally used (for instance in [74]) when perturbatively treat-
ing Unruh-DeWitt detectors are obtained from (3.14) and (3.15) by replacing all appear-
ances of %ij(t) on the right-hand side with the initial condition %ij(t0). (In particular
these terms would all vanish if the intial state was the ground state, which corresponds
to %22(t0) = 1 with all others zero in the present notation.) Indeed replacing %ij(t) with
%ij(t0) seems very reasonable at first sight because the difference between %ij(t) and %(t0)ij
is higher order in λQ and so straight-up perturbation theory should drop this difference.
Eqs. (3.14) and (3.15) are nonetheless better approximations at late times and disagree with
naive perturbation theory precisely because perturbative methods break down at late times.

Our intended application of these expressions is to understand whether (and how
quickly) the qubit thermalizes due to its indirect interaction with the hotspot, and we have
no interest in the transients associated with the turn-on of couplings. This makes very late
times our focus of interest, and so we restrict our attention to qubit positions and times
that satisfy

t > t0 > |xQ| , (3.16)

where t0 is the turn-on time for the qubit interaction appearing in (3.4). The choice t0 >
|xQ| ensures that the outgoing wave caused by the t = 0 turn-on of the φ-χa field couplings
have had time to have passed the location of the qubit. In practice we choose times in the far
future for which the full correlation function (2.12) (without the step- and delta-functions)
can be used. Since in this limit W(t, s) =W(t− s) it is convenient to define W̃ by

W̃(τ) :=W(τ, 0) = S (τ,xQ; 0,xQ)|λ=0 + Eβ(τ,xQ; 0,xQ)|λ=0 , (3.17)

where S and Eβ are the functions defined in (2.13) and (2.16). Explicitly

W̃(τ) = − 1
4π2(τ−iδ)2 + 2ε2

g̃2|xQ|2
[
I−(τ+2|xQ|,c0)−I−(τ,c0)−I+(τ,c0)+I+(τ−2|xQ|,c0)

]
+ ε

8π2|xQ|2
[
− 1
τ+2|xQ|−iδ

+ 1
τ−2|xQ|−iδ

]
(3.18)

− 32π2ε4

g̃4|xQ|2
[
I−(τ,c0)+I+(τ,c0)

]
− ε2

4π2|xQ|2(τ−iδ)2

+ 2ε2
g̃2|xQ|2

[
Φ
(
e
−2π(τ−iδ)

β ,1, c0β

2π

)
+Φ

(
e

+ 2π(τ−iδ)
β ,1, c0β

2π

)
− 2π
c0β

]
with the functions Φ and I±(τ, c0) as defined in (2.15) and (2.17). The parameter c0 here
denotes

c0 := c |λ=0 = 16π2ε

g̃2 (3.19)

which arises because we set λ = 0 in this section (cf. (2.14)).
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After a change of variable s → t − s on the right-hand side of (3.14) and (3.15), and
using the symmetry W̃∗(τ) = W̃(−τ) of the Wightman functions that follows from the
hermiticity of the field φ, we get the evolution equations in the form we ultimately solve

∂%11(t)
∂t

= λ2
Q

∫ t−t0

−(t−t0)
ds W̃(s) e−iωs − 4λ2

Q

∫ t−t0

0
ds Re[W̃(s)] cos(ωs)%11(t− s) (3.20)

and
∂%12(t)
∂t

= −iλ2
Q ωct%12(t)− 2λ2

Q

∫ t−t0

0
ds Re[W̃(s)] e+iωs%12(t− s) (3.21)

+2λ2
Q e

+2iωt
∫ t−t0

0
ds Re[W̃(s)] e−iωs%∗12(t− s) .

3.3 The Markovian limit

Equations (3.20) and (3.21) are in general difficult to solve, largely due to the convolutions
appearing on their right-hand sides. We seek here approximate solutions in the special
situation where the kernel W̃(s) varies over some time-scale τc, say, that is much shorter
than the scale τρ over which %(t − s) varies. In such a case the integrands of eqs. (3.20)
and (3.21) can be usefully expanded in powers of s,

%(t− s) ' %(t)− s ∂t%(t) + . . . , (3.22)

with successive terms suppressed by powers of τc/τρ after the integration over s is per-
formed. Once derivatives of % can be neglected then equations (3.20) and (3.21) become
Markovian because they give ∂t%(t) directly in terms of %(t) (without a convolution over
earlier times) and can be integrated with little difficulty.

Closer inspection of (3.18) indeed reveals its last terms, involving the function
Φ(z, s, a), to be peaked — with exponential fall-off (see appendix A.3) — about s = 0,
with a width τc ∼ β, suggesting that a Markovian limit might apply for evolution over
times much larger than β. The other terms — coming from S in (2.13) — are trickier
because they fall off more slowly (like a power-law rather than exponentially). Because
this fall-off is slower, care is required to justify the Markovian for these terms.

Our strategy for solving for qubit evolution is to assume that a Markovian regime exists,
use it to identify whether the qubit thermalizes, and then justify ex post facto that the
Markovian approximation is justified for the parameter range that gives thermalization.
This suffices for our purposes of establishing that thermalization occurs, but does not
exclude the Markovian regime having a broader domain of validity than we identify here.

Keeping only the leading term of the expansion (3.22) in (3.20) and (3.21) gives the
following approximate evolution equations,

∂%11(t)
∂t

' λ2
Q

∫ t−t0

−(t−t0)
ds W̃(s) e−iωs − 4λ2

Q %11(t)
∫ t−t0

0
ds Re[W̃(s)] cos(ωs) (3.23)

and
∂%12(t)
∂t

' −iλ2
Qωct%12(t)− 2λ2

Q %12(t)
∫ t−t0

0
ds Re[W̃(s)] e+iωs (3.24)

+2λ2
Q e

+2iωt%∗12(t)
∫ t−t0

0
ds Re[W̃(s)] e−iωs ,
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and these can be simplified even further if we focus on times t− t0 � β , ω−1, since we can
then with small error replace t− t0 →∞ in the limits of integration. For the thermal part
of the Wightman function the error made with this replacement is exponentially small due
to the exponential falloff of the Eβ term in W̃. The slower fall-off of S implies the error
in doing so can instead in principle involve inverse powers of ω(t− t0).

Under the above circumstances the evolution equations take the form we shall integrate

∂%11(t)
∂t

' λ2
QR− 2λ2

Q C %11(t) (3.25)

and
∂%12(t)
∂t

' −λ2
Q

[
C + i(ωct +D)

]
%12(t) + λ2

Q e
+2iωt C %∗12(t) . (3.26)

Here the coefficients C, D and R are defined by

C = 2
∫ ∞

0
ds Re[W̃(s)] cos(ωs) , D = 2

∫ ∞
0

ds Re[W̃(s)] sin(ωs) (3.27)

and
R =

∫ ∞
−∞

ds W̃(s) e−iωs . (3.28)

These integrals are evaluated explicitly in appendix B using the form of W̃ given in
eq. (3.18). For instance, the result for R when ω > 0 is given by

R = g̃2ω

32π3|xQ|2
[( g̃2ω

16π2ε

)2 + 1
]

(eβω − 1)
. (3.29)

Notice that this expression vanishes in the zero-temperature limit, and also vanishes as
g̃2 → 0 despite the presence of terms independent of g̃2 in expression (2.13) for S . As
discussed some time ago [74] this is a consequence of having ω > 0 because it relies on the
vacuum spectral density having no support for positive frequencies. It is what prevents the
vacuum from spontaneously exciting a static qubit initially prepared in its ground state.

The expressions for C and D are equally explicit, though slightly more complicated:

C = ω

4π

1− g̃2

16π2|xQ|2

1− cos
(
2ω|xQ|

)
− g̃2ω2

16π2 + g̃2ω
16π2ε sin

(
2ω|xQ|

)
− coth

(βω
2
)( g̃2ω

16π2ε

)2 + 1

 ,
(3.30)

and

D = ω

2π2

[
1 + ε2

|xQ|2
]

log
(
ω

Λ

)
− ωε2

2π2|xQ|2
· 1

(ω/c0)2 + 1 log
(
ω

c0

)
− g̃2ω

32π4|xQ|2
· (ω/c0)

(ω/c0)2 + 1 ·
[
Ci
(
2|xQ|ω

)
sin(2|xQ|ω)− Si

(
2|xQ|ω

)
cos(2|xQ|ω)

]
(3.31)

+ g̃2ω

32π4|xQ|2
· 1

(ω/c0)2 + 1 ·
{

Ci
(
2|xQ|ω

)
cos(2|xQ|ω) + Si

(
2|xQ|ω

)
sin(2|xQ|ω)

−e−2|xQ|c0Ei
(
2|xQ|c0

)
− log

(
ω

c0

)
− ψ(0)

(
βc0
2π

)
+ Re

[
ψ(0)

(
i
βω

2π

)]
− π

βc0

}
.
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where

Si(z) :=
∫ z

0
dt sin t

t
, Ci(z) := −

∫ ∞
z

dt cos t
t

and Ei(z) := −
∫ ∞
−z

dt e
−t

t
(3.32)

are standard functions and ψ(0)(z) := Γ′(z)/Γ(z) is the digamma function.
Before exploring the late-time qubit evolution we pause to remark on several notewor-

thy features of these expressions.

• As mentioned earlier, for qubits started in their ground state the initial conditions
are %11(t0) = %12(t0) = 0 and so if %11(t) were replaced by its initial condition %11(t0)
on the right-hand side of (3.25) the evolution equation would reduce to the result
obtained by straightforward application of perturbation theory:

∂%11(t)
∂t

' λ2
QR (perturbative evolution from ground state) . (3.33)

This agrees with early calculations for Unruh-DeWitt detectors [74], which identi-
fied R as the qubit’s excitation rate. As we see below, this rate differs from the
thermalization rate calculated at late times (these rates also differ for Unruh-DeWitt
detectors in nontrivial spacetimes [35–37]).

• The parameter Λ appearing in (3.31) is an ultraviolet regulator whose presence shows
that the function D diverges. It does so because of the singular behaviour of Wβ(τ)
as τ → 0. As is usual for UV divergences, this is renormalized into the value of a
parameter, in this case the counter-term ωct, as can be seen from the fact that ωct
and D only appear in eq. (3.26) and only do so there together as the sum ωct + D,
and so ωct can be chosen to cancel any xQ-independent part of D.
At face value the requirement of xQ-independence might appear to be a problem be-
cause (3.31) contains a xQ-dependent divergence. However this xQ-dependence drops
out in the regime where the qubit is macroscopically far from the hotspot, ε � xQ,
and in this regime xQ-independence of the divergence is guaranteed by the Hadamard
property of the Wightman function in the coincidence limit (see appendix A.1).

3.4 Equilibrium and its approach

Eqs. (3.25) and (3.26) are relatively straightforward to integrate, and for simplicity we
choose parameters to be in the ‘non-degenerate’ regime, for which the initial qubit splitting
ω is much larger than any of the O(λ2

Q) corrections to this splitting; or, in practice:∣∣∣∣∣λ2
QC
ω

∣∣∣∣∣� 1 and
∣∣∣∣∣λ2

QD
ω

∣∣∣∣∣� 1 . (3.34)

3.4.1 Solutions

The explicit solutions to (3.25) and (3.26) in this regime are

%11(t) = R2C +
[
%11(t0)− R2C

]
e−2λ2

QC(t−t0) (3.35)
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and

%12(t) '
[
%12(t0) + i%∗12(t0)

λ2
QC

2ω (e2iωt0 − e2iωt)
]
e−λ

2
QC(t−t0) ' %12(t0)e−λ

2
QC(t−t0) , (3.36)

where the approximate equality uses (3.34) to neglect the rapidly oscillating term.7 These
solutions describe an exponential relaxation towards a static late-time configuration

lim
t→∞

%(t) = %? =

R2C 0
0 1− R2C

 , (3.37)

with a relaxation time that differs for the diagonal and the off-diagonal elements,

τdiag = 1
2λ2

QC
and τoff−diag = 1

λ2
QC

. (3.38)

The nonzero diagonal elements of the late-time state %? evaluate to %∗11 = R/(2C)
where eqs. (3.29) and (3.30) imply

R
2C= 1

(eβω−1)
{16π2|xQ|2

g̃2

[( g̃2ω
16π2ε

)2+1
]
+ g̃2ω2

16π2 +cos
(
2ω|xQ|

)
−1− g̃2ω

16π2εsin
(
2|xQ|ω

)
+coth

(βω
2
)} .

(3.39)
This describes a thermal distribution8

R
2C '

1
(eβω − 1) coth

(βω
2
) = e−βω/2

eβω/2 + e−βω/2
= 1
eβω + 1 , (3.40)

at the hotspot temperature T = 1/β provided all of the terms save for the last one can
be neglected in the curly braces of the denominator of (3.39). A parameter regime that is
sufficient to ensure this (and so also to ensure late-time thermality) therefore jointly asks

16π2|xQ|2

g̃2 � 1 , g̃2ω2|xQ|2

16π2ε2
� 1 , g̃2ω2

16π2 � 1 , ω|xQ| � 1 , g̃2ω2|xQ|
16π2ε

� 1 . (3.41)

These are equivalent to the two independent assumptions

|xQ| �
g̃

4π and g̃ω

4π �
ε

|xQ|
� 1 . (3.42)

where the last inequality follows because a qubit being well-separated from the hotspot
means that it satisfies |xQ| � ε. The first of the conditions in (3.42) is inconsistent with
the requirement |xQ| � ε unless the hotspot coupling also satisfies

g̃

4πε � 1 . (3.43)

7Equivalently, (3.34) justifies neglecting the second term on the right-hand side of (3.26) relative to the
first term.

8This is thermal inasmuch as it is diagonal, normalized and the ratio of probabilities for the two qubit
states is given by the Boltzmann relation %11/%22 = e−βω.

– 16 –



J
H
E
P
0
8
(
2
0
2
1
)
1
3
2

Notice that these conditions do not yet impose a hierarchy on the size of ω/c0 =
g̃2ω/(16π2ε), since (3.42) only implies this must satisfy ω/c0 � g̃/(4πε) (which is not
very informative given (3.43)).

In the regime defined by (3.42) expressions (3.29), (3.30) and (3.31) for R, C and D
become, approximately,

R ' g̃2ω

32π3|xQ|2
[
(ω/c0)2 + 1

]
(eβω − 1)

, (3.44)

C ' ω

4π

[
1 +

g̃2coth
(βω

2
)

16π2|xQ|2
[
(ω/c0)2 + 1

]] , (3.45)

and

D ' ω

2π2

[
log

(
ω

Λ

)
− ε2

|xQ|2
· 1

(ω/c0)2 + 1 · log
( ω
c0

)
(3.46)

+ g̃2

16π2|xQ|2
· 1

(ω/c0)2 + 1 ·
{

Re
[
ψ(0)

(
i
βω

2π

)]
− ψ(0)

(
βc0
2π

)
− π

βc0

}]
.

Notice that the divergent part of D no longer depends on |xQ| as a consequence of dropping
terms suppressed by ε/|xQ|. As mentioned earlier, the divergent part of the correlation
function is guaranteed to be xQ-independent for |xQ| � ε as a general consequence of its
Hadamard-type singularity structure, as argued in appendix A.1.

3.4.2 Validity of the Markovian approximation

We close by circling back to check the validity of the Markovian approximation used in
transforming eqs. (3.20) and (3.21) into (3.25) and (3.26). This can be done by evaluating
the size of the leading subdominant term in the expansion of (3.22), and demanding that
it be parametrically smaller than the dominant term.

As shown in detail in [35–37] the conditions for this to be true can be expressed in
terms of the integrals C and D defined in (3.27), with the Markovian approximation being
valid when the following four quantities are all small:∣∣∣∣λ2

Q

dC
dω

∣∣∣∣� 1 ,

∣∣∣∣λ2
Q

dD
dω

∣∣∣∣� 1 ,

∣∣∣∣ωC dC
dω

∣∣∣∣� 1 and
∣∣∣∣ωC dD

dω

∣∣∣∣� 1 . (3.47)

The implications of these four conditions — and of conditions (3.34) — are worked out in
detail in appendix C for different parts of parameter space consistent with the asymptotic
expressions (3.45) and (3.46).

The resulting constraints on the parameters are listed in tables 1, 2 and 3, where
different rows correspond to different assumptions for the relative sizes of the parameters
βω and βc0. Although the first two conditions of (3.47) can be satisfied simply by making
λQ sufficiently small, the same is not so for the second two. Taken together these tables
show that validity of the Markovian approximation requires the additional three conditions

λ2
Q

4π � 1 , ω � c0 = 16π2ε

g̃2 and βω � 1 , (3.48)

above and beyond those of (3.42).
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In particular, it happens that the requirement βω � 1 — that follows from the
conditions listed in table 3 — is quite powerful and restrictive. In particular, the high-
temperature condition βω � 1 ensures that Markovian relaxation leads to a largely β-
independent and maximally mixed qubit distribution, with

%11 ' %22 '
1
2 . (3.49)
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A Asymptotic forms and perturbative limits

In this appendix we reproduce various limits of the Wightman function given in the main
text in eq. (2.12) with (2.13) and (2.16), following the discussion of [23]. The main limits
we explore are the coincident limit relevant to studying its Hadamard properties, and the
large-separation limit relevant to the Markovian approximation used in the main text. This
last limit also controls the perturbative limit as g̃2 → 0, and so the formulae we derive also
confirm expression (2.11) of the main text as correctly describing the perturbative limit.

A.1 Coincidence limit and Hadamard form

We first study the Wightman function’s coincident limit, doing so by comparing two space-
time points that are coincident in space, x = x′ at a distance r := |x| = |x′| from the
hotspot, but are separated in time by τ := t−t′. Both t and t′ are taken to be larger than r
to avoid the transients being emitted from the point |x| = t = 0, but are otherwise arbitrary.

The correlation function (3.18) evaluated at such a configuration reduces to

W̃(τ,r) = − 1
4π2(τ−iδ)2 + 2ε2

g̃2r2

[
I−(τ+2r,c)−I−(τ,c)−I+(τ,c)+I+(τ−2r,c)

]
(A.1)

+ ε

8π2r2

[ 1
τ−2r−iδ−

1
τ+2r−iδ

]
−32π2ε4

g̃4r2

[
I−(τ,c)+I+(τ,c)

]
− ε2

4π2r2(τ−iδ)2

+ 2ε2
g̃2r2

[
Φ
(
e
−2π(τ−iδ)

β ,1, cβ2π

)
+Φ

(
e

+ 2π(τ−iδ)
β ,1, cβ2π

)
−2π
cβ

]
with the functions Φ and I∓(τ, c) as defined in the main text — cf. eqs. (2.15) and (2.17)
— and the limit δ → 0+ understood to be taken at the end. The couplings are contained
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within the parameter

c = 16π2ε

g̃2

(
1 + λ

4πε

)
, (A.2)

and so c→∞ is the perturbative g̃2 → 0 limit.
With these variables the coincident limit is τ → 0; a limit controlled by the cτ � 1

limit of I± and by the τ/β � 1 of Φ. We start first with Φ, for which the integral
representation (2.18) is more useful than is the series definition of (2.17) because τ/β �
1 requires the behaviour of Φ(z, s, a) as |z| → 1. Straightforward evaluation gives the
asymptotic form

Φ
(
e
−2π(τ−iδ)

β , 1, cβ2π

)
+ Φ

(
e

+ 2π(τ−iδ)
β , 1, cβ2π

)
− 2π
cβ

(A.3)

' − log
(

2π
β

[τ − iδ]
)
− log

(
−2π
β

[τ − iδ]
)
− 2γ − 2ψ(0)

(
cβ

2π

)
− 2π
cβ

+ O
(
τ

β

)
,

where γ is the Euler-Mascheroni constant and ψ(0)(z) = Γ′(z)/Γ(z) is the digamma function
(as defined in the main text).

The cτ � 1 limit for I± is similarly found using the series expansion (that applies for
z ∈ C with |Arg(z)| < π and so not directly on the branch cut)

E1(z) ' −γ − log(z)−
∞∑
k=1

(−z)k
k · k! (A.4)

which is a convergent sum for any z ∈ C but is particularly useful when |z| � 1. This
means that for |cτ | � 1 we have

I∓(τ, c) ' −γ − log
[
c(τ − iδ)

]
+O(cτ) |cτ | � 1 , (A.5)

and so the combinations appearing in the Wightman function are given by

I−(τ, c) + I+(τ, c) ' − log (c[τ − iδ])− log (−c[τ − iδ])− 2γ + O (cτ) , (A.6)

as well as

I−(τ + 2r, c) + I+(τ − 2r, c) ' e2crE1
[
2c(r − iδ)

]
+ e2crE1

[
2c(r + iδ)

]
+ O (cτ)

' 2e2crE1
(
2cr
)

+ O (cτ) (A.7)

where in the last line we can safely take δ → 0+. The final ingredient notes that for τ � r

we have
− 1
τ + 2r − iδ + 1

τ − 2r − iδ ' −
1
r

[
1 + O

(
τ2

r2

) ]
. (A.8)

Using these expression in eq. (A.1) for the correlator W̃ (τ, r) and grouping terms
reveals the coincident behaviour

W̃(τ, t) ' − 1 + (ε2/r2)
4π2(τ − iδ)2 + 32π2ε4

g̃4r2

[
log (c[τ − iδ]) + log (−c[τ − iδ])

]
(A.9)

− ε

8π2r3 + 4ε2
g̃2r2

[
log

(
cβ

2π

)
− ψ(0)

(
cβ

2π

)
− π

cβ
+ e2crE1

(
2cr
)]

+ 64π2γε4

g̃4r2

up to terms that vanish as τ → 0.
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This result is to be compared with the general Hadamard property [75] for Wightman
functions in arbitrary curved spacetimes, which states that the light-like (and coincident)
limit is given by

〈Ω|φ(x)φ(x′)|Ω〉 ' 1
8π2

{∆1/2(x, x′)
σ(x, x′) + V (x, x′) log

∣∣∣∣σ(x, x′)
L2

∣∣∣∣+WΩ(x, x′)
}

(A.10)

where σ(x, x′) = 1
2∆s2(x, x′) is half the square of the geodesic separation between x and

x′, L is a reference length scale introduced on dimensional grounds and the iδ-prescription
is omitted for brevity.9 The power of this expression is lies in the fact that the functions
∆, V and WΩ are all regular as x→ x′, with ∆ (the van Vleck determinant) and V being
universal functions only of the local spacetime geometry (and independent of the state
|Ω〉). In particular ∆(x, x) = 1 and V (x, x) = 0 for massless fields in a flat geometry.
The robustness of this form relies on decoupling of scales, since quantum fluctuations of
sufficiently short scales ‘forget’ that they actually live in a curved spacetime.

For the situation at hand, with time-like separation ∆s2 = −τ2, Hadamard form
becomes

W̃Had(τ, r) ' − 1
4π2(τ − iδ)2 + (finite) , (A.11)

and so expression (A.9) is not Hadamard, but becomes so in the limit ε/r → 0. Because
ε is a UV scale associated with near-hotspot resolution in the effective theory for which
it cannot be resolved from a point, (A.9) correctly expresses how vacuum fluctuations of
long-wavelength modes behave as they would in the absence of a hotspot but only do so if
the coincident point is itself far from the hotspot. A coincident limit taken microscopically
close to the hotspot in general can (and does) differ from a vanilla vacuum form, precisely
because it is close enough to the hotspot for UV degrees of freedom to become relevant.

A.2 Perturbative and large-separation limit of S

In this section we provide an asymptotic expression for S that applies both in the limit
of large separations and in the perturbative limit where g̃ → 0. These limits are related
because for S they both correspond to taking

cτ = 16π2ετ

g̃2

(
1 + λ

4πε

)
� 1 (A.12)

in the functions I±(τ, c).
To find the asymptotic form in this limit we start with the following large-argument

expression for the function E1(z), asymptotes to the series

E1(z) ' e−z
[1
z
− 1
z2 +O(z−3)

]
for |z| � 1 . (A.13)

Used in (2.15) this implies that the functions I∓(τ, c) have the following asymptotic form
for |cτ | � 1

I∓(τ, c) ' ± 1
c(τ − iδ) −

1
c2(τ − iδ)2 +O

(
|cτ |−3

)
for |cτ | � 1 . (A.14)

9Including it would mean replacing σ → σδ in the above formula, where σδ(x, x′) := σ(x, x′)+2iδ[T (x)−
T (x′)] + δ2 for any future-increasing function of time T .
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With these expressions the temperature-independent part of the Wightman function, S ,
becomes — after dropping O(|cτ |−3) contributions, grouping terms and using c = (16π2ε+
4πλ)/g̃2,

S (t,x;t′,x′) ' 1
4π2 [−(t−t′−iδ)2+|x−x′|2] (A.15)

+ 1
16π3|x||x′|

· λ

1+ λ
4πε
· |x|+|x′|
(t−t′−iδ)2−(|x|+|x′|)2

+ g̃2

32π4(1+ λ
4πε
)2 [− 1

|x|
t−t′−|x|[

(t−t′−|x|−iδ)2−|x′|2
]2 + 1
|x′|

t−t′+|x′|[
(t−t′+|x′|−iδ)2−|x|2

]2
]

− 1
64π4|x||x′| ·

λ2(
1+ λ

4πε
)2 · 1

(t−t′−|x|+|x′|−iδ)2 .

For perturbatively small λ — i.e. when λ/(4πε)� 1 — the leading part of this expression
becomes

S (t,x; t′,x′) ' 1
4π2 [−(t− t′− iδ)2 + |x−x′|2] (A.16)

+ λ

16π3|x||x′| ·
|x|+ |x′|

(t− t′− iδ)2−(|x|+ |x′|)2

+ g̃2

32π4

[
− 1
|x|

t− t′−|x|[
(t− t′−|x|− iδ)2−|x′|2

]2 + 1
|x′|

t− t′+ |x′|[
(t− t′+ |x′|− iδ)2−|x|2

]2 ]

and so agrees with the temperature-independent part of expression (2.11) used in the main
text.

A.3 Perturbative limit of Eβ

The large-τ and small g̃2 limits are not equivalent for the temperature-dependent part of
the correlator. The perturbative limit of Eβ corresponds to the regime

cβ

2π � 1 , (A.17)

for which the relevant large-a asymptotic representation of the Lerch transcendent is (for
a > 0)

Φ(z, s, a) ' 1
1− z

( 1
as

)
+
N−1∑
n=1

(−1)nΓ(s+ n)
n! Γ(s) · Li−n(z)

as+n
+O(a−s−N ) for a� 1 (A.18)

for fixed s ∈ C and fixed z ∈ C \ [1,∞), where

Li−n(z) = (z∂z)n
z

1− z (A.19)

are polylogarithm functions of negative integer order, of which the required particular cases
are

Li−1(z) = z

(1− z)2 , Li−2(z) = z + z2

(1− z)3 (A.20)
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Collecting terms, we find that for cβ � 2π we have

Φ
(
z, 1, cβ2π

)
' 1

1− z

(2π
cβ

)
− z

(1− z)2

(2π
cβ

)2
+ z + z2

(1− z)3

(2π
cβ

)3
+O

[
(cβ)−4

]
(A.21)

Φ
(

1
z
, 1, cβ2π

)
'
[
1− 1

1− z

]2π
cβ
− z

(1− z)2

(2π
cβ

)2
− z + z2

(1− z)3

(2π
cβ

)3
+O

[
(cβ)−4

]
and so

1
2Φ

(
z, 1, cβ2π

)
+ 1

2Φ
(

1
z
, 1, cβ2π

)
' π

cβ
− z

(1− z)2

(2π
cβ

)2
+O

[
(cβ)−4

]
. (A.22)

This allows the perturbative expression for Eβ to be written

Eβ(t,x; t′,x′) ' − g̃2

64π2β2|x||x′|
(
1 + λ

4πε

)2 csch2
[
π[t− t′ − |x|+ |x′| − iδ]

β

]
+ . . . (A.23)

the first term of which exactly captures the temperature-dependent terms in the pertur-
bative result quoted in formula (2.11) in the main text. When evaluated with |x| = |x′|
these reveal the exponential fall-off described in the main text when τ � β.

B Qubit integrals

This appendix evaluates the integrals appearing in the expressions for C, D and R in the
main text.

B.1 Exact integrals

The Wightman function has here the form given in (3.18)

W̃(τ) := S (τ,xQ; 0,xQ)|λ=0 + Eβ(τ,xQ; 0,xQ)|λ=0 (B.1)

with the functions S and E defined in (2.13) and (2.16). To simplify the calculation of
the required integrals we split apart the Wightman function into three pieces such that

W̃(τ) := W̃1(τ) + W̃2(τ) + W̃3(τ) (B.2)

where we define

W̃1(τ) := − 1
4π2(τ − iδ)2 , W̃2(τ) := S (τ,xQ; 0,xQ)|λ=0 − W̃1(τ) (B.3)

and W̃3(τ) := Eβ(τ,xQ; 0,xQ)|λ=0 .

It turns out that the momentum space representation of the above functions are most
useful here, where

W̃1(τ) = 1
4π2

∫ ∞
0

dp pe−ipτ , (B.4)

and W̃2(τ) and W̃3(τ) can be written in momentum space as (see [23])

W̃2(τ) = ε

4π2|xQ|2
∫ ∞

0
dp e−ipτ

(
sin(|xQ|p) · 2Re

[
e−ip|xQ|

−ip
c0 + ip

]
+ εp3

c2
0 + p2

)
(B.5)
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and
W̃3(τ) = 4ε2

g̃2|xQ|2
∫ ∞

0
dp p

p2 + c2
0

[
e−ipτ + 2 cos(pτ)

eβp − 1

]
, (B.6)

which we write in terms of the parameter

c0 := c |λ=0 = 16π2ε

g̃2 (B.7)

as in the main text. Notice that each of these functions can be written in the form

W̃j(τ) =
∫ ∞

0
dp
[

cos(pτ)Fj(p)− i sin(pτ)Gj(p)
]
, (B.8)

where Fj and Gj are the real-valued functions

F1(p) = G1(p) := p

4π2

F2(p) = G2(p) := ε

4π2|xQ|2
(

sin(|xQ|p) · 2Re
[
e−ip|xQ|

−ip
c0 + ip

]
+ εp3

c2
0 + p2

)
(B.9)

F3(p) := 4ε2
g̃2|xQ|2

p

p2 + c2
0

coth
(
βp

2

)
and G3(p) := 4ε2

g̃2|xQ|2
p

p2 + c2
0
.

We now compute the integrals for j ∈ {1, 2, 3},

Cj := 2
∫ ∞

0
ds Re[W̃j(s)] cos(ωs)

Sj := 2
∫ ∞

0
ds Im[W̃j(s)] sin(ωs) (B.10)

Dj := 2
∫ ∞

0
ds Re[W̃j(s)] sin(ωs)

where C = ∑
j Cj , R = ∑

j(Cj+Sj) as well as D = ∑
j Dj give the functions (3.27) and (3.28)

defined in the main text. Recall that we assume ω > 0. To compute the functions Cj we find

Cj = 2
∫ ∞

0
ds cos(ωs)

∫ ∞
0

dp cos(ps)Fj(p) (B.11)

=
∫ ∞

0
dp Fj(p)

∫ ∞
0

ds
(

cos([p− ω]s) + cos([p− ω]s)
)

= π

∫ ∞
0

dp Fj(p)
(
δ(p− ω) + δ(p− ω)

)
= πFj(ω) .

Similarly for the functions Sj we find

Sj = −2
∫ ∞

0
ds sin(ωs)

∫ ∞
0

dp sin(ps)Gj(p) (B.12)

= −
∫ ∞

0
dp Gj(p)

∫ ∞
0

ds
(

cos([p− ω]s)− cos([p− ω]s)
)

= −π
∫ ∞

0
dp Gj(p)

(
δ(p− ω)− δ(p− ω)

)
= −πGj(ω) .
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Summing the above functions to get C gives the quoted answer in (3.30)

C =
3∑
j=1
Cj = π

3∑
j=1

Fj(ω) = ω

4π

(
1 +

g̃2[ g̃2ω2

16π2 + cos
(
2ω|xQ|

)
− 1− g̃2ω

16π2ε
sin
(
2ω|xQ|

)
+ coth

(βω
2
)]

16π2|xQ|2
[
( g̃2ω

16π2ε)2 + 1]

)
(B.13)

after some simplification, as well as the quoted answer (3.29)

R =
3∑
j=1

(Cj + Sj) = π
[
F3(ω)−G3(ω)

]
= g̃2ω

32π3|xQ|2
[
( g̃2ω

16π2ε)2 + 1
]
(eβω − 1)

. (B.14)

For the functions Dj we must compute

Dj = 2
∫ ∞

0
ds sin(ωs)

∫ ∞
0

dp cos(ps)Fj(p) (B.15)

= −
∫ ∞

0
dp Fj(p)

∫ ∞
0

dp
(

sin
(
[p− ω]s

)
− sin

(
[p+ ω]s

))
= −PV

∫ ∞
0

dp Fj(p)
( 1
p− ω

− 1
p+ ω

)
where the integral over the singularity at p = ω is a Cauchy Principal value (which follows
from taking the imaginary part of

∫∞
−∞ dx e−iyxΘ(x) = −i

y−iδ ). The function D = ∑
j Dj

also turns out to be ultraviolet divergent, and so we impose a momentum cutoff Λ on the
integrals here so that

Dj = 2ω · PV
∫ Λ

0
dp Fj(p)

ω2 − p2 . (B.16)

First we compute D1 to find

D1 = ω

2π2 · PV
∫ Λ

0
dp p

ω2 − p2 = ω

2π2 log
(

ω√
Λ2 − ω2

)
' ω

2π2

[
log

(
ω

Λ

)
+O

(
ω2

Λ2

)]
.

(B.17)
where we have taken the limit Λ� ω in the last equality. For the next function D2 we have

D2 = ωε

2π2|xQ|2
·PV

∫ Λ

0
dp 1
ω2−p2

(
sin(|xQ|p)·2Re

[
e−ip|xQ|

−ip
c0+ip

]
+ εp3

c2
0+p2

)
(B.18)

= − ωε

2π2|xQ|2
·PV

∫ Λ

0

dp
ω2−p2 ·

p2sin
(
2p|xQ|

)
p2+c2

0
− ωεc0

2π2|xQ|2
·PV

∫ Λ

0

dp
ω2−p2 ·

p
[
1−cos

(
2p|xQ|

)]
p2+c2

0

+ ωε2

2π2|xQ|2
·PV

∫ Λ

0

dp
ω2−p2 ·

p3

p2+c2
0
.

This can be rewritten as (recall that c0 = 16π2ε/g̃2)

D2 = ωε2

2π2|xQ|2
·PV

∫ Λ

0

dp
ω2−p2 ·

p3

p2+c2
0
− ωε

2π2|xQ|2
·PV

∫ Λ

0

dp
ω2−p2 ·

p2sin
(
2p|xQ|

)
p2+c2

0

+ 8ωε2
g̃2|xQ|2

·PV
∫ Λ

0

dp
ω2−p2 ·

pcos
(
2p|xQ|

)
p2+c2

0
− 8ωε2
g̃2|xQ|2

·PV
∫ Λ

0

dp
ω2−p2 ·

p

p2+c2
0

(B.19)
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and for D3 we have

D3 = 8ωε2
g̃2|xQ|2

· PV
∫ Λ

0
dp 1

ω2 − p2 ·
p

p2 + c2
0

coth
(
βp

2

)
. (B.20)

Summing D2 + D3 (and grouping the last term of D2 with D3 by using
coth(x/2)− 1 = 2(ex − 1)−1), we find that we need to compute four separate integrals

D2 +D3 = ωε2

2π2|xQ|2
I

(div)
1 − ωε

2π2|xQ|2
I2 + 8ωε2

g̃2|xQ|2
[
I3 + 2I4

]
(B.21)

with the four integrals defined by

I
(div)
1 := PV

∫ Λ

0

dp
ω2 − p2 ·

p3

p2 + c2
0

(B.22)

I2 := PV
∫ ∞

0

dp
ω2 − p2 ·

p2 sin
(
2p|xQ|

)
p2 + c2

0

I3 := PV
∫ ∞

0

dp
ω2 − p2 ·

p cos
(
2p|xQ|

)
p2 + c2

0

I4 := PV
∫ ∞

0
dp 1

ω2 − p2 ·
p

p2 + c2
0
· 1
eβp − 1 .

Only the first integral is divergent for large Λ and happens to be elementary, where

I
(div)
1 = PV

∫ Λ

0
dp p

ω2 − p2 − c2
0 · PV

∫ Λ

0

dp
ω2 − p2 ·

p

p2 + c2
0

(B.23)

= log
(

ω√
Λ2 − ω2

)
− c2

0
2(c2

0 + ω2) log
(

(Λ/c0)2 + 1
(Λ/ω)2 + 1

)
.

Assuming that Λ� ω (as above) yields

I
(div)
1 ' log

(
ω

Λ

)
− c2

0
2(c2

0 + ω2) log
(

(Λ/c0)2 + 1
(Λ/ω)2

)
(B.24)

From here we notice that the second term is actually UV-finite if one assumes Λ� c0 (as
can also be seen by power-counting the second integral in (B.23)) where10

I
(div)
1 ' log

(
ω

Λ

)
− c2

0
c2

0 + ω2 log
(
ω

c0

)
. (B.25)

It turns out that the remaining three integral I2, I3 and I4 defined in (B.22) are all UV
finite, and so they can safely have their upper limits taken to ' ∞. To compute I2 we write

I2 = ω

2(c2
0 + ω2)

[ ∫ ∞
0

dp sin
(
2|xQ|p

)
p+ ω

− PV
∫ ∞

0
dp sin

(
2|xQ|p

)
p− ω

]
− c2

0
c2

0 + ω2

∫ ∞
0

dp sin
(
2|xQ|p

)
p2 + c2

0
(B.26)

10Note that in the perturbative limit, one needs instead Λ � c0 to be true (see [23]). In this limit it is
easy to see that I(div)

1 ' 0, which shows how the cutoff dependence matches the Hadamard structure of the
perturbative limit of W̃(τ) — i.e. the divergent part of D has no |xQ|-dependence in the perturbative limit.
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Note that only one of these integrals is a principal value integral after the partial fraction
decomposition. Using formulae (3.722.1), (3.722.5) and (3.723.1) from [76] the above is
easily seen to evaluate to

I2 = ω

c2
0 + ω2

[
Ci
(
2|xQ|ω

)
sin(2|xQ|ω)− Si

(
2|xQ|ω

)
cos(2|xQ|ω)

]
(B.27)

−c0e
−2c0|xQ|

2(c2
0 + ω2) Ei

(
2|xQ|c0

)
+ c0e

2|xQ|c0

2(c2
0 + ω2) Ei

(
− 2|xQ|c0

)
where Si(z) :=

∫ z
0 dt sin(t)

t is the sine integral function, Ci(z) := −
∫∞
z dt cos(t)

t is the cosine
integral function and Ei(z) = −

∫∞
−z dt e

−t

t is the exponential integral function.
In a very similar computation, we use formulae (3.722.3), (3.722.7) and (3.723.5)

from [76] to compute I3 where

I3 = 1
c2

0 + ω2

[
Ci
(
2|xQ|ω

)
cos(2|xQ|ω) + Si

(
2|xQ|ω

)
sin(2|xQ|ω)

]
(B.28)

− e−2|xQ|c0

2(c2
0 + ω2) Ei

(
2|xQ|c0

)
− e2|xQ|c0

2(c2
0 + ω2) Ei

(
− 2|xQ|c0

)
And finally we compute I4 where

I4 = 1
c2

0 + ω2

[ ∫ ∞
0

dp p

p2 + c2
0
· 1
eβp − 1 − PV

∫ ∞
0

dp p

p2 − ω2 ·
1

eβp − 1

]
(B.29)

To compute this integral we note the integral representation (see formula (5.9.15) in [77])
of the digamma function, defined by ψ(0)(z) := Γ′(z)/Γ(z), where

ψ(0)(z) = log(z)− 1
2z − 2

∫ ∞
0

dt t

t2 + z2 ·
1

e2πt − 1 (B.30)

for any z ∈ C with Re[z] > 0. It is easily seen from this expression that

∫ ∞
0

dp p

p2 + c2
0
· 1
eβp − 1 = 1

2 log
(
βc0
2π

)
− 1

2ψ
(0)
(
βc0
2π

)
− π

2βc0
. (B.31)

The other (principal value) integral also follows from the above integral representation —
fixing z = δ + iω and taking the limit δ → 0+ (and then taking the real part of both sides
of the expression) yields

PV
∫ ∞

0
dp p

p2 − ω2 ·
1

eβp − 1 = 1
2 log

(
βω

2π

)
+ 1

2Re
[
ψ(0)

(
i
βω

2π

)]
, (B.32)

giving

I4 = 1
2(c2

0 + ω2)

[
log

(
c0
ω

)
− ψ(0)

(
βc0
2π

)
− Re

[
ψ(0)

(
i
βω

2π

)]
− π

βc0

]
. (B.33)
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Putting this all together into the sum D = ∑
j=1Dj and simplifying (using c0 = 16π2ε/g̃2

where necessary) leaves us with the function quoted in (3.31) in the main text:

D = ω

2π2

[
1 + ε2

|xQ|2
]

log
(
ω

Λ

)
− ωε2

2π2|xQ|2
· 1

(ω/c0)2 + 1 log
(
ω

c0

)
− g̃2ω

32π4|xQ|2
· (ω/c0)

(ω/c0)2 + 1 ·
[
Ci
(
2|xQ|ω

)
sin(2|xQ|ω)− Si

(
2|xQ|ω

)
cos(2|xQ|ω)

]
(B.34)

+ g̃2ω

32π4|xQ|2
· 1

(ω/c0)2 + 1 ·
{

Ci
(
2|xQ|ω

)
cos(2|xQ|ω) + Si

(
2|xQ|ω

)
sin(2|xQ|ω)

−e−2|xQ|c0Ei
(
2|xQ|c0

)
− log

(
ω

c0

)
− ψ(0)

(
βc0
2π

)
+ Re

[
ψ(0)

(
i
βω

2π

)]
− π

βc0

}
.

C Control over the Markovian approximation

In this appendix we fill in the details of the identification of the region of parameter space
in which the Markovian approximation applies. We assume the parameter regime (3.41) —
or, more usefully, (3.42) — required to obtain thermalization at the hotspot temperature,
which imply

g̃ω

4π ,
4πε
g̃
� 4π|xQ|

g̃
� 1 and ω|xQ| �

4πε
g̃
. (C.1)

In this parameter regime, the function C given in (3.30) has the approximate form

C ' ω

4π

[
1 +

g̃2coth
(βω

2
)

16π2|xQ|2 [(ω/c0)2 + 1]

]
, (C.2)

while its ω-derivative becomes
dC
dω '

1
4π

[
1 + g̃2

16π2|xQ|2
(coth

(βω
2
)
− βω

2 csch2(βω
2
)

(ω/c0)2 + 1 −
2(ω/c0)2 coth

(βω
2
)

[(ω/c0)2 + 1]

)]
. (C.3)

In the same parameter regime the function D takes the approximate form11

D ' ω

2π2

[
log

(
ω

Λ

)
− ε2

|xQ|2
· 1

(ω/c0)2 + 1 · log
(
ω

c0

)
(C.4)

+ g̃2

16π2|xQ|2
· 1

(ω/c0)2 + 1 ·
{

Re
[
ψ(0)

(
i
βω

2π

)]
− ψ(0)

(
βc0
2π

)
− π

βc0

}]
,

and its ω-derivative becomes
dD
dω '

1
2π2

[
log

(
ω

Λe
1
)
− ε2

|xQ|2
·

2(ω/c0)2 +
[
1− (ω/c0)2] log

(
ω
c0

)
[(ω/c0)2 + 1]2

(C.5)

+ g̃2

16π2|xQ|2
· 1

(ω/c0)2 + 1 ·
{
βω

2π Im
[
ψ(1)

(
i
βω

2π

)]
+3(ω/c0)2 + 1

(ω/c0)2 + 1

(
Re
[
ψ(0)

(
i
βω

2π

)]
− ψ(0)

(
βc0
2π

)
− π

βc0

)}]
.

where ψ(1)(z) := d
dzψ

(0)(z) = d2

dz2 log Γ(z).
11We use here Ci(z) ' log(eγz) +O(z2), Si(z) ' z +O(z3) and Ei(±z) ' log(eγz) +O(z) for 0 < z � 1.

Note also that the combination c0|xQ| = 16π2ε|xQ|
g̃2 = 4πε

g̃
· 4π|xQ|

g̃
� 1 is small in the considered parameter

regime.
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∣∣∣∣λ2
QC
ω

∣∣∣∣�1
∣∣∣∣λ2

QD
ω

∣∣∣∣�1

βω�βc0�1
λ2
Q

4π

∣∣∣1+ g̃2

16π2|xQ|2
· 2
βω

∣∣∣ � 1
λ2
Q

2π2

∣∣∣log
(
ω
Λ

)
− ε2

|xQ|2
log
(
ω
c0

)
+ g̃2

16π2|xQ|2
· π
βc0

∣∣∣ � 1

H
ig
h
Te

m
p

(β
ω
�

1)

βω�1�βc0
λ2
Q

4π

∣∣∣1+ g̃2

16π2|xQ|2
· 2
βω

∣∣∣ � 1
λ2
Q

2π2

∣∣∣log
(
ω
Λ

)
− ε2

|xQ|2
log
(
ω
c0

)
− g̃2

16π2|xQ|2
log
(
c0β
2π e

γ
)∣∣∣ � 1

βω'βc0�1
λ2
Q

4π

∣∣∣1+ g̃2

16π2|xQ|2
· 1
βω

∣∣∣ � 1
λ2
Q

2π2

∣∣∣log
(
ω
Λ

)
+ g̃2

16π2|xQ|2
· π2βω

∣∣∣ � 1

βc0�βω�1
λ2
Q

4π

∣∣∣1+ g̃2

16π2|xQ|2
· 2c2

0
βω3

∣∣∣ � 1
λ2
Q

2π2

∣∣∣log
(
ω
Λ

)
− g̃2

16π2|xQ|2
· c

2
0
ω2 ·log

(
c0β
2π e

γ
)∣∣∣ � 1

1�βω�βc0
λ2
Q

4π

∣∣∣1+ g̃2

16π2|xQ|2

∣∣∣ � 1
λ2
Q

2π2

∣∣∣log
(
ω
Λ

)
− ε2

|xQ|2
log
(
ω
c0

)
+ g̃2

16π2|xQ|2
log
(
ω
c0

)∣∣∣ � 1

Lo
w

Te
m
p

(β
ω
�

1)

1�βω'βc0
λ2
Q

4π

∣∣∣1+ g̃2

16π2|xQ|2
· 12
∣∣∣ � 1

λ2
Q

2π2

∣∣∣log
(
ω
Λ

)
+ g̃2

16π2|xQ|2
· π2

3β2ω2

∣∣∣ � 1

1�βc0�βω
λ2
Q

4π

∣∣∣1+ g̃2

16π2|xQ|2
· c

2
0
ω2

∣∣∣ � 1
λ2
Q

2π2

∣∣∣log
(
ω
Λ

)
− g̃2

16π2|xQ|2
· c

2
0
ω2 ·log

(
ω
c0

)∣∣∣ � 1

βc0�1�βω
λ2
Q

4π

∣∣∣1+ g̃2

16π2|xQ|2
· c

2
0
ω2

∣∣∣ � 1
λ2
Q

2π2

∣∣∣log
(
ω
Λ

)
− g̃2

16π2|xQ|2
· c

2
0
ω2 ·
[
π
βc0

+log
(
βω
2π e

γ
)]∣∣∣ � 1

Table 1. The asymptotic forms for various relative sizes of βω and βc0 the two quantities that must
be small as in (3.34) to work with nondegenerate perturbation theory (see [35]) (these functions are
explicitly written in (C.6) in the parameter regime (3.41) of interest).

C.1 Non-degenerate limit

We first identify the parameter range that satisfies the conditions
∣∣λ2
QC/ω

∣∣ � 1 and∣∣λ2
QD/ω

∣∣ � 1 given in (3.34), that were imposed when deriving (3.36) in the ‘non-
degenerate’ limit (which is done out of convenience rather than absolute necessity).

To this end we record the following approximate forms for the expressions for λ2
QC/ω

and λ2
QD/ω,

λ2
QC
ω
'
λ2
Q

4π

[
1 +

g̃2coth
(βω

2
)

16π2|xQ|2 [(ω/c0)2 + 1]

]
(C.6)

λ2
QD
ω
'

λ2
Q

2π2

[
log

(
ω

Λ

)
− ε2

|xQ|2
· 1

(ω/c0)2 + 1 · log
(
ω

c0

)
+ g̃2

16π2|xQ|2
· 1

(ω/c0)2 + 1 ·
{

Re
[
ψ(0)

(
i
βω

2π

)]
− ψ(0)

(
βc0
2π

)
− π

βc0

}]
.

Notice that these functions are nontrivial functions of the dimensionless variables βω,
βc0 (and so also ω/c0), whose absolute sizes are not determined solely using the condi-
tions (3.42). Table 1 explores the limiting form of these functions in various parametric
regimes for which ω/c0 is small, O(1) and large, with βω either small or large.

For each choice of parameter regime (or row in the table) the nondegeneracy condi-
tion (3.34) requires the entries in each column to be much smaller than unity. Inspection
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0
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Table 2. The asymptotic forms for the conditions λ2
Q

dC
dω � 1 and λ2

Q

dD
dω � 1 required in the

Markovian limit (see [35]).

of the table shows that this is often automatically satisfied by the condition λ2
Q/4π � 1

that is in any case required for use of perturbative methods.

C.2 Markovian regime — part I

Next we need to determine the regime of parameter space in which the Markovian approxi-
mation is valid. Recalling that (3.22) keeps only the leading-order term of the Taylor series
%(t−s) ' %(t)−s%̇(t)+. . ., we ask here when the first nominally sub-leading terms are small.

As shown in detail in [35–37] these sub-leading terms are small (and so the Markovian
approximation applies) only when the following four conditions are satisfied:∣∣∣∣λ2

Q

dC
dω

∣∣∣∣� 1 ,

∣∣∣∣λ2
Q

dD
dω

∣∣∣∣� 1 ,

∣∣∣∣ωC · dCdω
∣∣∣∣� 1 and

∣∣∣∣ωC · dDdω
∣∣∣∣� 1 . (C.7)

Explicit forms for the first two of these functions — λ2
Q

dC
dω and λ2

Q
dD
dω — are given for the pa-

rameter regime (3.41) are given in (C.3) and (C.5), and their approximate form for various
choices for the sizes of ω/c0 and βω are given in table 2. As this table shows, these quanti-
ties are again often automatically small in the perturbative regime, for which λ2

Q/4π � 1.
Controlling the Markovian approximation is subtle, and conditions (C.7) are important

when understanding why. For instance, the sharp-eyed reader may have noticed that
formulae like (3.26) appear to be missing terms that would naively be there if one keeps
only the s-independent terms of the Taylor expansions for %ij(t − s) in (3.21). The naive
result would instead have looked like

∂%12(t)
∂t

' −λ2
Q

[
C + i(ωct +D)

]
%12(t) + λ2

Q e
+2iωt (C − iD) %∗12(t) , (C.8)
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with solution (in the non-degenerate limit of (3.34), and after picking the counter-term
ωct = −D)

%12(t) '
[
%12(t0) + %∗12(t0)

(
λ2
QD
2ω + i

λ2
QC

2ω

)
(e2iωt0 − e2iωt)

]
e−λ

2
QC(t−t0) . (C.9)

What would be bothersome about this result is that it explicitly depends on the divergent
function D, but does not do so always together with the associated counterterm ωct. How-
ever, as we now show, this D-dependence is actually subdominant (and so can be dropped)
in the regime for which the Markovian approximation applies.

As can be seen from table 1 and 2, |D/ω| ∼
∣∣ d
dωD

∣∣ in the various regimes of βω and
βc0 considered, and this implies that∣∣∣∣∣λ2

QD
ω

∣∣∣∣∣ '
∣∣∣∣λ2
Q

dD
dω

∣∣∣∣ =
∣∣∣∣∣λ2

QC
ω

∣∣∣∣∣×
∣∣∣∣ωC dDdω

∣∣∣∣ �
∣∣∣∣∣λ2

QC
ω

∣∣∣∣∣ , (C.10)

is doubly suppressed within the Markovian regime. Consequently |λ2
QD/ω| � |λ2

QC/ω| � 1
and so any D-dependence not accompanied by ωct in the equations of motion drops out
(i.e. the factor |λ2

QD/ω| is negligibly small). In this case our earlier solution (C.9) becomes
instead

%12(t) '
[
%12(t0) + i%∗12(t0)

λ2
QC

2ω (e2iωt0 − e2iωt)
]
e−λ

2
QC(t−t0) , (C.11)

as quoted in (3.36).

C.3 Markovian regime — part II

Finally we extract the parameter information that is hidden in the conditions
∣∣ω
C ·

d
dωC

∣∣� 1
and

∣∣ω
C ·

d
dωD

∣∣ � 1 of (C.7). These particular conditions tend to be the most restrictive
because in them all factors of λ2

Q/4π cancel out, so the burden of making these terms small
falls on the other parameters.

In the parameter regime (3.42) these particular functions take the following approxi-
mate form

ω

C
· dC

dω '

coth
(βω

2
)
− βω

2 csch2(βω
2
)

(ω/c0)2 + 1 −
2(ω/c0)2 coth

(βω
2
)

[(ω/c0)2 + 1]
coth

(βω
2
)

(ω/c0)2 + 1

, (C.12)

and

ω

C
· dD

dω '
π

2 ·
1

(ω/c0)2+1 ·
{
βω
2π Im

[
ψ(1) (iβω2π

)]
+ 3(ω/c0)2+1

(ω/c0)2+1

(
Re
[
ψ(0) (iβω2π

)]
− ψ(0) (βc0

2π
)
− π

βc0

)}
coth

(βω
2
)

(ω/c0)2 + 1
(C.13)

which both drop powers of 16π2|xQ|2/g̃2 � 1.
The size of these functions for various choices of βω and βc0 are shown in table 3. In

particular this Table shows that the Markovian approximation can only be attained in the
high temperature limit where βω � 1 with ω � c0 (although βc0 need not be either large
or small).
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2 log
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Table 3. The asymptotic forms for the conditions ω
C ·

dC
dω � 1 and ω

C ·
dD
dω � 1 (see the func-

tions (C.12) and (C.13) above) required in the Markovian limit (see [35]). The cells coloured in
pink belong to the regime in which the conditions are impossible to satisfy (notice only βω � 1 is
possible here, and also we need ω � c0 as well).
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