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1 Introduction

Investigations of β-decay processes have played an important role in the development of
the Standard Model (SM) of particle physics. In the modern era, precision analyses of
pion, neutron, and nuclear β-decay are used to extract precise values of SM parameters
(in particular VudGF ) and to probe beyond-the-Standard-Model (BSM) physics. At the
relatively low energies associated with β-decay experiments, which involve Q-values around
an MeV, BSM physics can be described using effective-field-theory (EFT) techniques as
was already proposed by Lee and Yang [1], for recent reviews see e.g. refs. [2–7]. Within
this framework the V − A structure of the SM charged weak interaction is described by
a dimension-six operator, while deviations are captured by additional higher-dimensional
operators which are suppressed by powers of v/Λ, where v ' 246GeV is the electroweak
scale and Λ the scale of new physics. At the leading dimension-six level, the SM current
is then augmented by ten effective interactions each of which comes with an, in principle
complex, Wilson coefficient that scales as v2/Λ2.
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These charged-current interactions can be investigated both at high energies, e.g. in
pp → eν at the LHC, as well as in low-energy precision measurements. Focussing on
probes in the latter category, Falkowski, González-Alonso, and Naviliat-Cuncic recently
performed a state-of-the-art analysis of neutron and nuclear β-decay data [8] (we will refer
to this work by FGN). In addition to neutron decay and superallowed 0+ → 0+ transi-
tions, FGN included data from mirror 1/2+ → 1/2+ decays. The authors then performed a
simultaneous fit including all leading-order dimension-six Wilson coefficients (considering
only the real parts), while taking into account theory uncertainties by marginalizing over
nuisance parameters related to radiative corrections and nuclear matrix elements (NMEs).
Armed with this framework, FGN then analyzed all relevant data in several scenarios.
Assuming only SM interactions FGN obtained accurate values for Vud = 0.97370(25) and
gA = 1.27276(45), illustrating that β-decay experiments can be used to extract precise
determinations of fundamental SM parameters and hadronic matrix elements. Adding
non-standard interactions involving only left-handed neutrinos to the global fit gives an
impressive confirmation of the SM: non-standard scalar and tensor interactions are con-
strained at the per-mille level, corresponding to scales of BSM physics of several TeV (note
that pseudoscalar interactions give suppressed contributions and were not considered). As-
suming the BSM scale is well above the electroweak scale, LHC measurements can be used
to derive similar, complementary, constraints [2, 3].

This picture changes somewhat once non-standard interactions involving right-handed
neutrinos are included as well. In this case, the global fit constrains vector, axial-vector, and
scalar couplings to right-handed neutrinos at the few percent level, but prefers a nonzero
right-handed tensor coupling at the 10% level (about 3.2σ away from the SM point). This
discrepancy is driven by a single recent measurement of the “little-a” coefficient in neutron
decay [9] and is not significant enough to warrant too much excitement. In particular
it is unclear whether one can construct a viable BSM scenario, given the current LHC
constraints from pp→ eν [2, 3]. Nevertheless, in light of the FGN result, the recent hints for
BSM effects in CKM unitarity tests [10–13], and more generally in context of ongoing and
future β-decay experiments and collider measurements, it is interesting to ask what a signal
of BSM charged-currents would imply for other complementary experiments. For instance,
refs. [2, 3] demonstrated a strong complementarity between β-decay and LHC observables.

Here we focus on couplings to right-handed neutrinos and the connection to probes of
lepton number violation (LNV). The presence of right-handed neutrinos in nature would
imply the existence of fields that are neutral under the full SM gauge group.1 As a result,
nothing forbids the existence of a Majorana mass for fields like this unless additional sym-
metries are invoked. Such a mass term would imply that the mass eigenstates of neutrinos
are Majorana and the violation of Lepton Number (L) by two units. So, if β-decay or
collider experiments uncover evidence for right-handed neutrino interactions, a reasonable
follow-up question would be: in which scenarios can we expect to find correlated signals in

1They do not have be singlets under BSM gauge groups. For example, in left-right symmetric models [14–
16] the right-handed neutrinos are charged under SU(2)R and couple to right-handed gauge bosons. At low
energies, the right-handed neutrinos are sterile with respect to the SM gauge group, but interact through
higher-dimension couplings that arise from integrating out the heavy BSM fields.
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experimental probes of LNV? Here, we investigate this question in the context of searches
for neutrinoless double beta decay (0νββ), the process where two neutrons in a nucleus
transform into two protons with the emission of two electrons but zero (anti-)neutrinos.

To compare constraints from β- and 0νββ-decay experiments on couplings to right-
handed neutrinos we need to consider the mass scale of right-handed neutrinos. β decays
are insensitive to neutrino masses whenever the neutrinos are light, mi � Q, while a
0νββ signal is proportional to the Majorana masses of the neutrinos. We therefore focus
on right-handed neutrinos with masses well below the MeV scale that can be considered
approximately massless for β decay experiments (as well as at colliders). Additional con-
straints on sterile neutrinos could in principle come from cosmological and astrophysical
probes [17, 18] such as big bang nucleosynthesis [19, 20] considerations or the cosmic mi-
crowave background [21]. Such constraints however depend on the thermal history of the
universe and can be avoided in specific scenarios [22].

In what follows, we calculate the expected 0νββ decay rates of various isotopes as
a function of the non-standard couplings and the right-handed neutrino mass. Barring
significant cancelations between the contributions from the ‘standard mechanism’ and those
from sterile neutrinos, we then discuss the range of neutrino masses for which a β-decay or
collider signal could imply a measurable signal in 0νββ. We start by setting up the EFT
framework in section 2 and briefly describe the FGN analysis in section 3.1. The 0νββ
decay rates in the presence of light right-handed neutrinos with non-standard interactions
are discussed in section 3.2. We present our analysis of EFT couplings in section 4 and
consider a specific BSM model involving leptoquarks in section 5. We conclude in section 6.
Appendices are devoted to the matching relations with the neutrino-extended Standard
Model Effective Field Theory and the calculation of 0νββ decay rates.

2 The Lagrangian in the Standard Model Effective Field Theory

In this work, we focus on interactions that give rise to β decays, especially those that involve
right-handed neutrinos. We therefore consider an effective field theory that consists of the
SM supplemented by an SM gauge singlet, νR, and include higher-dimensional operators
up to dimension six. The Lagrangian of the resulting EFT, called the neutrino-extended
Standard Model EFT (νSMEFT) can then be written as

L = LSM + ν̄R i/∂νR −
[1

2 ν̄
c
R M̄RνR + L̄H̃YννR + h.c.

]
+ L(5̄)

νL
+ L(5̄)

νR
+ L(6̄)

νL
+ L(6̄)

νR
, (2.1)

where we used Ψc = CΨ̄T for a field Ψ in terms of the charge conjugation matrix C =
−C−1 = −CT = −C†. We use the definition for chiral fields Ψc

L,R = (ΨL,R)c = CΨL,R
T =

PR,LΨc, with PR,L = (1 ± γ5)/2. Furthermore, L = (νL, eL)T is the left-handed lepton
doublet and H̃ = iτ2H

∗ with H the Higgs doublet

H = v√
2
U(x)

(
0

1 + h(x)
v

)
. (2.2)
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Here v = 246GeV is the Higgs vacuum expectation value (vev), h(x) is the Higgs field, and
U(x) is an SU(2) matrix encoding the Goldstone modes. Generally, νR is a column vector
of n right-handed sterile neutrinos, making Yν a 3 × n matrix of Yukawa couplings and
M̄R a symmetric complex n×n mass matrix. We will work in the basis where the charged
leptons eiL,R and quarks uiL,R and diR are mass eigenstates (i = 1, 2, 3). After electroweak
symmetry breaking this then gives diL = V ijdj,mass

L , where V is the CKM matrix. We
discuss the mass and flavor bases for the neutrinos in the next subsection.

Finally, the relevant dimension-five operators can be written as,

L(5̄)
νL

= εklεmn(LTk C(5)CLm)HlHn , L(5̄)
νR

= −ν̄cR M̄
(5)
R νRH

†H , (2.3)

while the needed dimension-six operators involving left- and right-handed neutrinos are
collected in tables 3 and 4 of appendix A, respectively.

2.1 The Lagrangian below the electroweak scale

Below the electroweak scale the Lagrangian of eq. (2.1) induces the following mass terms
for the neutrinos,

Lm = −1
2N̄

cMνN + h.c. , Mν =
(
ML M∗D
M †D M †R

)
, (2.4)

where ML = −v2C(5), MD = v√
2

[
Yν − v2

2 C
(6)
LνH

]
, and MR = M̄R + v2M̄

(5)
R . Furthermore,

N = (νL, νcR)T and Mν is a N ×N symmetric matrix, with N = 3 + n. This matrix can
be diagonalized by an N ×N unitary matrix, U ,

UTMνU = mν = diag(m1, . . . ,m3+n) , N = UNm . (2.5)

This allows us to write the kinetic and mass terms of the neutrinos in the simple form

Lν = 1
2 ν̄i

/∂ν − 1
2 ν̄mνν , (2.6)

in terms of the Majorana mass eigenstates ν = Nm + N c
m = νc. These eigenstates are

related to the flavor basis by

νL = PL(PU)ν , νcL = PR(PU∗)ν ,
νR = PR(PsU∗)ν , νcR = PL(PsU)ν , (2.7)

where P and Ps are 3×N and n×N projector matrices

P =
(
I3×3 03×n

)
, Ps =

(
0n×3 In×n

)
, (2.8)

which project onto the active and sterile states, respectively.
We can use the above to write the charged-current interactions, which are induced by

the dimension-six operators in eq. (2.1) below the electroweak scale, in the mass basis of
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the neutrinos. In the notation of ref. [23], this gives, at the scale µ ' 2GeV,

L(6) = 2GF√
2

{
ūLγ

µdL
[
ēRγµC

(6)
VLR ν+ ēLγµC

(6)
VLL ν

]
+ ūRγ

µdR
[
ēR γµC

(6)
VRR ν+ ēL γµC

(6)
VRL ν

]
+ ūLdR

[
ēLC

(6)
SRRν+ ēRC

(6)
SRLν

]
+ ūRdL

[
ēLC

(6)
SLRν+ ēRC

(6)
SLLν

]
+ ūLσ

µνdR ēLσµνC
(6)
TRR ν+ ūRσ

µνdL ēRσµνC
(6)
TLL ν

}
+h.c. (2.9)

The matching of the above coefficients to those in eq. (2.1) is described in appendix A. In
the SM, only the C(6)

VLL coefficient is nonzero. In the limit of vanishing neutrinos masses,
the couplings C(6)

ΓAL, with Γ = {V, S, T} and A = {L,R}, are induced by the dimension-
six interactions involving left-handed neutrinos in L(6̄)

νL , while C
(6)
ΓAR are induced by the

operators involving right-handed neutrinos in L(6̄)
νR .2

Eq. (2.9) provides the interactions that are relevant for both single- and double-β
decays. As such, the above Lagrangian has been studied extensively in the literature in
the context of β decays, although usually using a different convention. We provide the
translation to the notation of ref. [8] in table 1. Since β decays are low-energy observables,
they are commonly described in terms of the interactions involving nucleons instead of the
quark-level interactions given above. The Lagrangian, often used in studies of β decays, is
then written in the following form:3

LLee−Yang = −p̄γµn
(
ēLγµC

+
V ν + ēRγµC

−
V ν
)
− p̄γµγ5n

(
ēLγµC

+
Aν − ēRγµC

−
Aν
)

− p̄n
(
ēRC

+
S ν + ēLC

−
S ν
)
− 1

2 p̄σ
µνn

(
ēRσµνC

+
T ν + ēLσµνC

−
T ν
)

+ p̄γ5n
(
ēRC

+
P ν − ēLC

−
P ν
)

+ h.c. (2.10)

In our analysis, we will focus on the couplings to neutrinos with right-handed chirality,
corresponding to the couplings, C−V,A,S,P,T in the above Lagrangian, or C(6)

ΓAR of eq. (2.9).
Given the matching discussed in appendix A, the relevant couplings are all induced by
interactions that involve sterile neutrinos.4

From the above Lagrangian one can already see the form of the contributions to single-β
decay and 0νββ. The contributions to β decay take the form Γβ ∼

∑
α,β

∑N
i=1 [Cα]ei [Cβ ]∗ei

Γαβ(mi), where Γαβ(mi) depends on the Wilson coefficients, Cα,β , under consideration and
is nearly independent of mi for small neutrino masses, mi � Q. In this case, the contri-
butions through the SM charged current reduce to ΓSM

β ∼
∑N
i=1

∣∣Uei∣∣2Γ(mi) ' Γ(0) and
2As can be seen from the matching in appendix A, this is no longer true for nonzero MD,R as these

terms allow for chirality flips of the neutrino fields.
3The C±

α couplings of ref. [8] are defined in the flavor basis and thus related to those used here by the
change of basis in eq. (2.7). In our numerical analyses, we will often focus on the case with n = 1 and
U4α = δ4α for simplicity. In this scenario the C−

α couplings used here coincide with those of FGN.
4Note that these interactions can also be induced by operators involving left-handed neutrinos once one

considers operators of dimension seven, since νcL is right handed. However, such operators violate lepton
number by two units and are already stringently constrained by 0νββ, leading to Λ > 10TeV [24]. This
implies their effects are unlikely to be measured in β experiments, given the sensitivity to the C−

i couplings.
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C
(6)
VLL = −2Vud(1 + εL) C

(6)
VLR = −2Vud ε̃L

C
(6)
VRL = −2Vud εR C

(6)
VRR = −2Vud ε̃R

C
(6)
SLL = −Vud(εS + εP ) C

(6)
SLR = −Vud(ε̃S + ε̃P )

C
(6)
SRL = −Vud(εS − εP ) C

(6)
SRR = −Vud(ε̃S − ε̃P )

C
(6)
TLL = −1

2Vud εT C
(6)
TRR = −1

2Vud ε̃T

Table 1. Translation to the notation of [8].

are independent of neutrinos masses and mixings. For large mi the partial rates Γαβ(mi)
depend more sensitively on the neutrino masses until they vanish for mi > Q, as the decay
to νi becomes energetically disallowed. This effect can be searched for experimentally by
looking for kinks in the electron spectrum [25, 26].

Instead, the 0νββ decay rate is an LNV observable and therefore requires an explicit
insertion of the neutrino mass leading to, Γ0νββ ∼

∣∣∑
α,β

∑N
i=1 [Cα]eimi [Cβ ]eiAαβ(mi)

∣∣2.
Similar to β decay, the amplitudes Aαβ(mi) depend on the Wilson coefficients under con-
sideration and are nearly independent of mi for small neutrino masses, mi � mπ. For
large neutrino masses, the amplitudes scale as Aαβ(mi) ∼ 1/m2

i , with a more complicated
dependence in between, see section 3.2 and ref. [23] for more details.

The relation between the parameters in eq. (2.10) and those in table 1 is given by [5]

C+
V = Vud

v2 gV

√
1 + ∆V

R

(
1 + εL + εR

)
, C−V = Vud

v2 gV

√
1 + ∆V

R

(
ε̃L + ε̃R

)
,

C+
A = −Vud

v2 gA

√
1 + ∆A

R

(
1 + εL − εR

)
, C−A = Vud

v2 gA

√
1 + ∆A

R

(
ε̃L − ε̃R

)
,

C+
T = Vud

v2 gT εT , C−T = Vud
v2 gT ε̃T ,

C+
S = Vud

v2 gSεS , C−S = Vud
v2 gS ε̃S ,

C+
P = Vud

v2 gP εP , C−P = −Vud
v2 gP ε̃P , (2.11)

where gV,A,S,P,T are the vector, axial, scalar, pseudoscalar, and tensor charges of the nu-
cleon [5], which can be determined using lattice calculations. Here, gV = 1 up to (neg-
ligible) quadratic corrections in isospin-symmetry breaking [27] and we use the FLAG’19
averages [28] for the axial, scalar and tensor charges: gA = 1.251(33), gS = 1.022(100) and
gT = 0.989(33) [29, 30] (see also ref. [31]). Although the pseudoscalar charge is enhanced by
the pion pole, namely gP = 349(9) [31], the suppression of the pseudoscalar contributions
to single β-decay is larger such that β-decay experiments do not significantly constrain C−P .

The matching in eq. (2.11) includes the short-distance (inner) radiative corrections ∆V
R

and ∆A
R. Especially the former is important, because it is necessary to extract Vud from

nuclear data. Four recent calculations of this quantity are available [32–35], which all agree
within 1σ. In this analysis we use the Seng et al. evaluation, ∆V

R = 0.02467(22) [32], which
has the smallest uncertainty. Given the assumption about the reality of εX and ε̃X , all C±X
are then also real.

– 6 –
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3 Single- and neutrinoless double-β decay observables

3.1 Single β-decay

As mentioned the interactions in eq. (2.10) give tree-level corrections to the SM charged
current which can be probed in β decays. We will follow the analysis of ref. [8] to constrain
the couplings in eq. (2.10).5 Here we briefly summarize this analysis by FGN and discuss
some of the details, related to theory uncertainties, of the fit.

Since the observables considered by FGN include the β decays of the neutron as well as
nuclei, the theoretical expressions depend of the NMEs in addition to the hadronic matrix
elements appearing in eq. (2.11). At leading order, nuclear effects are encapsulated in
the so-called Fermi (F) and Gamow-Teller (GT) matrix elements, MF,GT . Leading-order
expressions for beta decay observables in terms of the Lee-Yang Wilson coefficients C±X can
be found in refs. [36, 37]. However, given the experimental precision, subleading effects
such as weak-magnetism and long-distance electromagnetic corrections have to be included
in the SM terms. These small contributions can be calculated with high accuracy for the
transitions that are included in this work [3, 38–40].

Apart from the corrections that can be accurately determined, there are several places
where theoretical uncertainties are sizable. In particular, the “polluted” mixing parameters,
ρ̃i, of [8] involve ratios of GT to F matrix elements which have not been calculated to
sufficient precision. They are therefore treated as nuisance parameters and are marginalized
over in the fit. Furthermore, theoretical uncertainties related to the nuclei-dependent parts
of the radiative corrections is taken into account by including two additional nuisance
parameters, η2,3 [8].

In ref. [8], the best-fit results are obtained by marginalizing over nuisance parameters
and other Wilson coefficients. In this study, depending on the scenario under consideration,
we do not always marginalize over all the Wilson coefficients. In some cases we keep certain
Wilson coefficients fixed, in order to be able to compare directly with the 0νββ limits. As
a result, the β limits we present are not always identical to those presented in ref. [8]. We
do always marginalize over all the nuisance parameters, even when only turning on one or
two Wilson coefficients at a time.

Finally, although FGN neglected all neutrino masses, a complete analysis would in
principle include the effects that the neutrino masses, mi, have on single-β observables.
Instead of taking into account the full mi dependence of all β-decay observables in the fit,
we will restrict ourselves to a range of mi for which the FGN analysis is still applicable.
We estimate an upper bound on this range by considering the ways in which β observables
will receive corrections due to nonzero mi. First, the contributions induced by the SM
charged current are proportional to

∑N
i=1 |Uei|2 = 1 for negligible neutrino masses, with

corrections of the form6 ∑N
i=1 |Uei|2

m2
i

Q2 . Here, the Q values of the isotopes that appear
in the fit are in the MeV range, Q & 0.7MeV. Combining this with the upper limit
on the mixing parameter Ue4, roughly |Ue4|2 < 10−3 for m4 = 100 keV from the β-decay

5We thank Adam Falkowski and Martín González-Alonso for providing us with the χ2 function used in
the analysis of ref. [8].

6An explicit calculation of the β decay rate confirms this scaling.
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spectrum of 35S [18, 25, 41], the corrections to the β decay rates due to a fourth neutrino are
expected to be below the O(10−4) level, for m4 . 100 keV. In addition, the contributions of
dimension-six operators will receive corrections ∼ m2

i
Q2 |v2C−α |2, or, allowing for interference,

∼ mi
Q |Ue4 v

2C−α |. Since the higher-dimensional operators will be suppressed compared to
the SM, v2C−α . 0.1, we expect these corrections to contribute at most at the O(10−4)
level. The observables in the FGN analysis, such as phase-space corrected lifetimes (Ft
values) and β-decay asymmetries, have O(10−3) uncertainties and are thus not sensitive to
neutrino-mass corrections for m4 . 100 keV.

3.2 Neutrinoless double beta decay

We now turn to the calculation of 0νββ decay rates of various nuclear isotopes. We closely
follow the framework of ref. [23]. Our starting point is the following effective Lagrangian
of eq. (2.9)

L(6) = 2GF√
2

{
ūLγ

µdL
[
ēLγµC

(6)
VLL ν + ēRγµC

(6)
VLR ν

]
+ ūRγ

µdR
[
ēR γµC

(6)
VRR ν

]

+ ūLdR
[
ēLC

(6)
SRRν

]
+ ūRdL

[
ēLC

(6)
SLRν

]
+ ūLσ

µνdR ēLσµνC
(6)
TRR ν

}
+ h.c. (3.1)

This Lagrangian is written in the neutrino mass basis where ν denotes a 3+n column vector
of neutrino mass eigenstates. The Lagrangian is defined at a scale µ = 2GeV and consists
of operators that can be induced by operators of the dimension-six νSMEFT Lagrangian
involving one νR field. The only exception is the C(6)

VLL term which also includes the SM
charged weak interaction of the active neutrinos.

We consider a simplified scenario where n = 1 implying a single sterile neutrino with
arbitrary mass m4. While a pure 3 + 1 model (without dimension-five operators) would
lead to two massless neutrinos, we assume some mass mechanism for the active neutrinos
for instance through additional decoupled sterile neutrinos. As discussed above, we focus
on m4 masses well below the MeV scale when comparing to single-β experiments, where
(in most cases) such neutrinos can be treated as massless,7 while we consider larger masses
when investigating the reach of 0νββ experiments.

Under these assumptions it is possible to write down a relatively simple expression for
the 0νββ decay rate(

T 0ν
1/2

)−1
= g4

A

{
G01

(
|AL|2 + |AR|2

)
− 2(G01 −G04)ReA∗LAR

+G09 |AM |2 +G06 Re [(AL −AR)A∗M ]
}
, (3.2)

in terms of electron phase-space factors, G0i, and three so-called subamplitudes AL,R,M .
The G0i phase space factors are defined in ref. [24] and have been calculated in the liter-
ature [45–47]. They include Coulomb corrections between the outgoing electrons and the
nucleus and the (partial) screening effect of the nuclear charge by the surrounding electron
cloud. Numerical values are given in table 2.

7Exceptions are experiments, such as KATRIN, aiming to directly measure the neutrino mass [42–44].
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[47] 76Ge 82Se 130Te 136Xe
G01 0.22 1. 1.4 1.5
G04 0.19 0.86 1.1 1.2
G06 0.33 1.1 1.7 1.8
G09 0.48 2. 2.8 2.8

Q/MeV [48] 2.04 3.0 2.5 2.5

Table 2. Phase space factors in units of 10−14 yr−1 obtained in ref. [47]. The last row shows the
Q value of 0νββ for various isotopes, where Q = Mi −Mf − 2me.

The subamplitudes depend on the underlying LNV mechanism (in our case, the Majo-
rana mass terms and the non-standard neutrino couplings) as well as hadronic and nuclear
matrix elements. Each subamplitude is written as a sum over neutrino mass eigenstates

AL,R,M =
3+n∑
i=1
AL,R,M (mi) . (3.3)

Strictly speaking this description is only valid if mi < 1GeV or so. Heavier neutrinos must
be integrated out leading to effective dimension-nine interactions which give additional
contributions in eq. (3.3). In what follows we capture these effects by demanding that
the mi-dependent nuclear and hadronic matrix elements have the correct mi behavior to
reproduce the amplitudes that would result from integrating out the neutrinos at the quark
level, in the mi � 1GeV region. As we focus on neutrino masses smaller than a GeV or so,
we relegate a discussion of the procedure to appendix B and refer to ref. [23] for more details.

The first subamplitude is given by

AL(mi) = − mi

4me

{
[MV (mi) +MA(mi)]

(
C

(6)
VLL

)2

ei

+MPS(mi)
[
B2

m2
π

(
C

(6)
SRR − C

(6)
SLR

)
ei
− 2 B

mi

(
C

(6)
VLL

)
ei

] (
C

(6)
SRR − C

(6)
SLR

)
ei

+MS(mi)
(
C

(6)
SRR + C

(6)
SLR

)2

ei
−MT (mi)

(
C

(6)
TRR

)2

ei

+ mN

mi
MTV (mi)

(
C

(6)
VLL

)
ei

(
C

(6)
TRR

)
ei

}
+A(ν)

L (mi) , (3.4)

in terms of the low-energy constant (LEC) B ' 2.7GeV, mN and mπ the nucleon and pion
mass, respectively, and various combinations of neutrino-mass-dependent NMEs MI(mi)
which are discussed below. Most terms in the expression for AL(mi) have an explicit
mi dependence accounting for the required lepton number violation. Two interference
terms, linear in

(
C

(6)
VLL

)
ei
, seem to violate this scaling. However, in order for the product

with
(
C

(6)
SRR − C

(6)
SLR

)
ei

or
(
C

(6)
TRR

)
ei

to be non-vanishing, C(6)
VLL requires an insertion of

MR, see the last term in eq. (A.1), so that the relevant terms
(
C

(6)
VLL

)
ei
∼ miv/Λ2 scale
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linearly in the Majorana mass. These interference terms are then effectively suppressed by
B/v ∼ mN/v = O(10−2) and can be neglected.

The term A(ν)
L (mi) describes contributions from the exchange of hard neutrinos, virtual

neutrinos with momenta &GeV. Such contributions lead to O(1) corrections to the am-
plitudes, but in most cases depend on QCD matrix elements that are not well known. For
our numerical analysis we have used lattice QCD determinations [49] when possible, while
the remaining matrix elements are estimated using naive dimensional analysis (NDA), see
appendix B and ref. [23] for more details.

Similarly

AR(mi) = − mi

4me

{
MV (mi)

(
C

(6)
VRR + C

(6)
VLR

)2

ei
+MA(mi)

(
C

(6)
VRR − C

(6)
VLR

)2

ei

}

+A(ν)
R (mi) , (3.5)

while the final subamplitude contains only interference terms

AM (mi) = − mi

2me

{
mN

mi
MV A(mi)

(
C

(6)
VLL

)
ei

(
C

(6)
VLR

)
ei

+ 1
2MS(mi)

gV
gS

(
C

(6)
VRR + C

(6)
VLR

)
ei

(
C

(6)
SRR + C

(6)
SLR

)
ei

+MTA(mi)
(
C

(6)
VRR − C

(6)
VLR

)
ei

(
C

(6)
TRR

)
ei

}
+A(ν)

M (mi) . (3.6)

Here the A(ν)
R,M (mi) subamplitudes are again due to the exchange of hard neutrinos, which

we discuss in appendix B.
As mentioned, the MI(mi) are linear combinations of different NMEs which are dis-

cussed in appendix B. These elements in principle depend on the mass of the neutrino
that is being exchanged. However, for neutrino masses below a few MeV, this mass depen-
dence can be safely neglected. The mass-independent NMEs,MI(0), have been calculated
with various nuclear methods. A collection of results is given in appendix B, table 5 for
several isotopes. The differences between nuclear calculations lead to an additional O(1)
uncertainty on the 0νββ decay results [50].

For heavier neutrino masses, the mass dependence of the NMEs and hadronic low-
energy constants cannot be neglected. We follow the approach of ref. [23] which interpolates
between regions where mi � kF ∼ mπ where kF is the typical Fermi momentum in
nuclei and mi > Λχ ∼ 1GeV where neutrinos can be integrated out at the quark level
leading to local LNV operators. In the small-mass regime, NMEs and LECs are essentially
mass independent and the amplitude scales linearly with mi. In the large-mass regime,
the neutrino mass-dependence is captured by the Wilson coefficients of dimension-nine
operators, ∼ (ūd)2ēec, that are generated after integrating out the neutrinos. The Wilson
coefficients then have the form C

(6)
α C

(6)
β /mi so that the amplitude scales as 1/mi, while the

NMEs and LECs are again mass independent. The mass dependence in the intermediate
regime arises from two sources: 1) the neutrino propagator scales as mi/(q2 +m2

i ) instead
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of the Coulomb-like mi/|q|, 2) LECs associated to the exchange of hard virtual neutrinos
pick up an intrinsic mi dependence. Here we will apply the formulae that were constructed
in ref. [23] by matching to results in the low- and high-mass regimes and interpolating in
between. These formulae thus have the largest uncertainty in the mi ∼ Λχ regime where
the chiral and perturbative-QCD descriptions cannot be trusted, see appendix B for explicit
expressions.

4 Results

We now turn to the calculation of 0νββ constraints on the various effective interactions.
We begin our analysis by considering a single C−X coupling, while setting the remaining
Wilson coefficients to their SM values. We compare the constraints from 0νββ decay against
single-β limits [8]. The former are only valid for Majorana neutrinos. The latter are strictly
speaking only valid in the limit of massless neutrinos but we will consider neutrino masses
mνR < 100 keV, where this is a reasonable approximation, see the discussion in section 3.1.

To derive the contributions of the scenarios considered below to 0νββ we make several
assumptions. We will consider a case with one additional neutrino, n = 1, and assume that
the non-standard interactions only couple to the sterile state, i = 4 (this is equivalent to
assuming there is no mixing between sterile and active neutrinos, U4i ∝ δ4i). In addition,
we will not consider the ‘usual’ mechanism for inducing 0νββ proportional tomββ = miU

2
ei.

Both simplifications neglect additional contributions to 0νββ; while the neglected mixing
effects can only contribute through interference terms and will tend to be suppressed (see
section 3.2), the ∼ mββ terms can in principle be sizable. The reason we nevertheless make
these simplifications is that these effects depend on the details of the neutrino masses and
mixings, determined by ML,D,R in eq. (2.4), which can only be assessed in a full model of
neutrino masses. Barring cancelations, these additional contributions will tend to increase
the predicted 0νββ rate, thereby strengthening the limits presented here. Our approach is
thus conservative.

4.1 Single coupling analysis

Our results are shown in figures 1 and 2 for the 5 different couplings. The plots depict the
m4− v2C−i plane, where the blue (red) shaded areas show the parameter space allowed by
the single-β (double-β) constraints. To obtain the latter we assume there are no significant
cancelations between the νR contributions and those proportional to mββ . The width of
the 0νββ bands show the variation induced by using shell-model [51] or quasi-particle
random phase approximation (QRPA) [52] NMEs, illustrating the impact of the nuclear
theory uncertainties. The panels do not show the effect of changes in the LECs discussed
in appendix B.2, significant uncertainties of which would lead to additional errors at the
O(1) level. For reference we also show the LHC limits and, for C−P , the constraint from
Γ(π → eν)/Γ(π → µν) in green [2, 30]. The collider limits were derived from pp →
e+ MET +X based on 20(36) fm−1 data recorded at

√
s = 8(13)TeV for the C−V,A (C−S,T )

couplings. In all cases the present KAMLAND-Zen limit are sensitive to couplings v2C−i <

1 for sterile masses larger than about 1 eV. The 0νββ constraints become competitive
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Figure 1. 90% C.L. limits from the 0νββ decay of 136Xe (red) compared to a fit of β decays (blue)
in the scenario where only one of the v2C−

i has been turned on. The width of the 0νββ bands
indicate the variation induced by using shell-model [51] or QRPA [52] NMEs.

with those from single-β decay for masses larger than {180, 460, 610, 60} eV in the case of
{C−V , C

−
A , C

−
S , C

−
T }, respectively. Thus, if a nonzero value of v2C−T at the O(0.01) level

would be confirmed in β-decay experiments,8 the present 0νββ limits imply that neutrinos
are either Dirac particles or that m4 < 60 eV.

The 0νββ decay bounds follow a slope (C−i )2 ∼ 1/m4 for m4 < O(100)MeV. This
scaling changes to (C−i )2 ∼ m4 for m4 > O(2)GeV, with a more complicated mass de-
pendence in between. The exact location of the peak sensitivity depends on the coupling
under consideration because of non-trivial mass dependence of nuclear and QCD matrix

8The one-coupling fit roughly prefers nonzero values |v2C−
T | ∈ [0.01, 0.03] at 1σ. The significance grows

when allowing all Wilson coefficients to be nonzero, see figure 4.
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T1/2
0 ν2β

(136Xe)>1.07·1026 yr

T1/2
0 ν2β

(136Xe)>1·1028 yr
Γ(π→eν)/Γ(π→μν)

Figure 2. Same as figure 1 but for C−
P .

elements. To get an idea of the sensitivity to BSM scales that are probed we can assume
a typical scaling C−i = 1/Λ2. The constraints on C−V then imply a BSM scale between
Λ > 0.7TeV for m4 = 10 eV to a maximum sensitivity of Λ > 47TeV for m4 = 0.5GeV.
These sensitivities should be compared to Λ > 1.5TeV in the case of single-β decay. The
dips that appear around m4 ∼GeV for C−A and C−S arise from the fact that the 0νββ decay
rate vanishes. In these cases, for our particular choice of hadronic and nuclear matrix
elements, the long-distance contributions cancel the short-distance terms. At this point,
higher-order corrections should be included and our calculations are not reliable. Consid-
ering that this happens only for a tiny range of neutrino masses we do not pursue this
further. Finally, we denote the prospective limit, T 0νββ

1/2 > 1028yr from EXO-200 [53] by
the dashed red lines. As this limit is a factor ∼ 100 stronger than the current constraint,
it leads to an improvement of ∼

√
10 on the C−i constraints.

The collider limits shown in figures 1 and 2 tend to be stronger than the single-β
constraints by a factor of a few to an order of magnitude. However, the LHC limits
from pp → eν only apply as long as the BSM physics responsible for the dimension-six
interactions can still be treated as a contact interaction at high energies, i.e. as long as,
Λ�

√
s ∼TeV. Instead, the limits from single- and double-β decay are subject to a milder

assumption, Λ�GeV. In any case, if future LHC analyses find hints for interactions with
light right-handed neutrinos, future 0νββ experiments should see a signal if the neutrinos
are Majorana and have masses above roughly 1 keV.

Additional constraints on C−X arise from a careful analysis of the electron spectrum
in neutrinoful double-β decay [54, 55]. In particular, the angular distribution of outgoing
electrons in 100Mo double-β decay [56], limits v2

2

∣∣∣∣C−
V
gV

+ C−
A
gA

∣∣∣∣ ≤ 0.03 for mνR < 0.1MeV
comparable to the single-β decay bounds. Future experiments are expected to improve
this to the 0.01 level [54]. We have not indicated these bounds in the plot.
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Figure 3. Exclusion plots showing ∆χ2 = 2.706 contours in the v2C−
V -v2C−

A and v2C−
A -v2C−

T

planes in the left and right panels, respectively. The blue (red) regions are those allowed by single-
(double-)β decay constraints. In both cases we turned on only two Wilson coefficients at a time,
setting the rest to their SM values.

As seen from figure 2, single-β decay experiments are not sensitive to C−P because of
a Q2/m2

π suppression of the amplitude where Q denotes the Q-value of the experiment.
However, the ratio Γ(π → eν)/Γ(π → µν) is rather sensitive to this coupling, leading to a
stringent constraint that is overtaken by the 0νββ limit for m4 & 30 keV.

4.2 Multi-coupling analysis

We now turn to a scenario where two couplings are turned on simultaneously, again setting
the remaining couplings to their SM values. We focus on a comparison of single-β and 0νββ
decay experiments. We show contours in the v2C−V -v2C−A plane in the left panel of figure 3,
corresponding to a case in which right-handed neutrinos couple to quarks through (axial)
vector currents. The single-β bounds are depicted in blue and indicate good agreement with
the SM expectation, which is represented by the origin. The blue contour resides within
a square with boundaries −0.03 < v2C−A,V < 0.03. In the case of Majorana neutrinos, the
(future) 0νββ constraints are shown by the (dashed) red contours, We again assumed there
are no cancelations between the ∼ mββ and non-standard contributions, while we used the
NMEs of ref. [52] and neglected the O(1) hadronic and nuclear uncertainties. The bounds
span an oval that can roughly be described by

(
v2C−A

)2
+ 2.2

(
v2C−V

)2
. 0.05 × 120 eV

m4
.

The current 0νββ constraints are thus competitive with single-β probes for m4 > 200 eV
or so. Next-generation experiments will push this to m4 > 20 eV.

The right panel of figure 3 instead shows the v2C−A -v2C−T plane where the (not too
significant) discrepancy found in ref. [8] is visible. If this anomaly would be confirmed,
the complementary nature of 0νββ could prove useful in identifying the nature and mass
of right-handed neutrinos. With the current experimental 0νββ limits a nonzero value
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Figure 4. Similar to figure 3, however, here the single-β contours have been obtained by marginal-
izing over the other Wilson coefficients.

of C−A,T , consistent with the β-decay data, require neutrinos to be either Dirac or have
masses below 300 eV. Next-generation 0νββ experiments will bring this down to 30 eV.
Complementary constraints on neutrino masses in the eV range come from oscillation ex-
periments [57, 58], while searches for kinks in the electron spectrum of single-β decay
experiments [18, 25] are sensitive to masses up to the MeV range.

Finally, we use the same machinery to perform a fit of the β-decay data, where the
single-β data is marginalized over all 5 couplings, while we only consider the C−A,T contri-
butions to 0νββ. The resulting contour is shown in figure 4, which more clearly shows a
preference for nonzero C−T . In this case, the preferred fit values of the Wilson coefficients
are only consistent with Majorana neutrinos if the sterile neutrino has a mass below 30 eV.
Next-generation experiments will push this 3 eV, covering essentially the entire possible
mass range.

5 A leptoquark model

So far our analysis was performed purely in an EFT framework and we constrained effec-
tive couplings of the massive sterile neutrino. While this is convenient to demonstrate the
complementarity between single-β and 0νββ experiments, it might also lead to oversimpli-
fications. To get a sense of more realistic BSM scenarios that induce multiple dimension-six
operators at the same time, we consider a toy model with several leptoquarks (LQs) that
have interactions with right-handed neutrinos. Integrating out the leptoquarks leads to
dimension-six νSMEFT operators [6].

Following the notation of ref. [59] we consider a BSM model with two scalar LQs, S1
and R̃2. S1 has mass M1 and transforms under SU(3)c as an anti-triplet, under SU(2)L
as a singlet, and carries nonzero hypercharge: S1

(
3̄, 1, 1/3

)
, while R̃2 has mass M2 and

transforms under SU(3)c as a triplet, under SU(2)L as a doublet, and also carries nonzero
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hypercharge: R̃2 (3, 2, 1/6). The relevant couplings to fermions can be written as

LLQs =
[
Q̄c iL y

LLεijLjL + d̄cRy
RRνR

]
S1

+
[
Q̄iLy

LRνR − d̄RεijyRLLjL
]
R̃i + h.c. , (5.1)

where yLL,RL and yRR,LR are 3× 3 and 3× n Yukawa matrices, respectively, while i, j are
SU(2)L indices. Integrating out the two LQs at tree level gives rise to dim-6 operators and
at low energies the effective interactions between neutrinos and the first-generation quarks
and charged-leptons become

L(6) ⊃ 2GF√
2

[
c

(6)
VL
eα

(ūLγµdL)(ēLγµνLα) + c̄
(6)
SR
ea

(ūLdR)(ēLνRa) + c̄
(6)
T
ea

(ūLσµνdR)(ēLσµννRa)
]
,

(5.2)

where we neglected neutral-current operators that are not relevant for single- and double-β
decays. Furthermore, α = 1, . . . 3 and a = 1, . . . n indicate the active and sterile neutrinos
and the Wilson coefficients are given by

c
(6)
VL
eα

= −2Vudδeα −
v2

2M2
1
yLL∗1e yLL1α ,

c̄
(6)
SR
ea

= v2

2

(
yLR1a yRL∗1e
M2

2
− yRR1a yLL∗1e

M2
1

)
,

c̄
(6)
T
ea

= v2

8

(
yLR1a yRL∗1e
M2

2
+ yRR1a yLL∗1e

M2
1

)
. (5.3)

In the mass basis the matching coefficients become

(
C

(6)
VLL

)
ei

=
3∑

α=1
c

(6)
VL
eα

Uαi ,

(
C

(6)
SRR

)
ei

=
n∑
a=1

c̄
(6)
SR
ea

U∗3+a,i ,

(
C

(6)
TRR

)
ei

=
n∑
a=1

c̄
(6)
T
ea

U∗3+a,i . (5.4)

A simplification is made possible by the fact that, as pointed out in ref. [5], the Wilson
coefficient C(6)

VLL cannot be independently determined by the nuclear data alone. In partic-
ularly, in eq. (2.11), it is not possible to distinguish the pure CKM element Vud from the
new physics contamination parameterized by Vud (1+ εL+ εR).9 We therefore absorb C(6)

VLL
into the CKM element Vud, and only consider two Wilson coefficients C(6)

SRR and C(6)
TRR in

this simple LQ model.
9The data only constrain four Wilson coefficients C+

V,A,S,T , which depend on five parameters: Vud and
εL,R,S,T , leaving one flat direction.
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Figure 5. The red (dashed) line shows the current (future) limit from 0νββ for mνR
= 10 eV. The

blue regions denote the ∆χ2 = 1, 2, 3 contours from the single-β decay fit.

We show the resulting allowed regions in the M1 −M2 plane in figure 5, where we set
yLR11 yRL∗1e = yRR11 yLL∗1e = 1 for simplicity. Here the red (dashed) contours show the (future)
0νββ limits for m4 = 10 eV, while the blue regions denote the ∆χ2 = 1, 2, 3 contours
from single-β decays. These 0νββ limits were obtained assuming there are no significant
cancelations between the ∼ mββ and non-standard contributions. In addition, we used the
NMEs from ref. [52] and do not show the theoretical uncertainties due to the nuclear and
hadronic matrix elements. The figure clearly shows the preference of the single-β fit for
a nonzero tensor coupling, C−T , represented by the closed contours at ∆χ2 = 1, 2, while
for ∆χ2 = 3 the fit allows for C−T → 0 and for the LQ masses to decouple. By assuming
that neutrinos are Majorana one can again compare to the current 0νββ limits. From the
figure, one can see that these constraints are already cutting into the region preferred by
single-β decay at ∆χ2 = 1, for mνR = 10 eV. The prospective EXO-200 measurements
would allow one the completely exclude the ∆χ2 = 1 region and large parts of the ∆χ2 = 2
parameter space.

It should be mentioned that the considered scenario does not provide a complete
description of neutrino masses or attempt to reconcile with direct collider observables
which typically exclude LQs with masses below 1–2TeV [60, 61]. A realistic model would
therefore require more involved model building beyond the relatively simple extension of
the SM considered here. We nevertheless consider the above scenario as a toy model as
it clearly shows the complementary information on the nature and size of neutrino masses
0νββ could provide once a signal of nonzero BSM couplings would be found in probes of
single β.
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6 Conclusions

Sterile neutrinos play a role in numerous promising extensions of the SM and are strongly
motivated by the necessity to generate neutrino masses. If sterile neutrinos exist, it is
very possible that neutrinos are Majorana particles as no SM symmetries forbid sterile
Majorana masses. In broad classes of SM extensions, sterile neutrinos only appear sterile
at low energies, but interact through the exchange of heavy beyond-the-Standard-Model
particles. Such SM extensions include left-right symmetric models, GUTs, leptoquark,
and Z ′ models. In this work we studied how such interactions can be probed in β- and
0νββ-decay experiments and in particular how these experiments complement each other
in determining the mass and nature, Dirac or Majorana, of neutrinos.

To do so we employed the analysis of ref. [8] which performed a comprehensive analysis
of non-standard neutrino interactions in β-decay experiments. They demonstrated that
precision β-decay experiments probe non-standard couplings to sterile neutrinos at the
O(10−1 − 10−2) level, corresponding to BSM scales of a few TeV. They also found a
slight hint for a nonzero tensor coupling to sterile neutrinos. We addressed what these
results imply for the search of sterile neutrinos with 0νββ decay experiments. On the
0νββ side, we calculated the decay rates as a function of sterile neutrino masses and non-
standard couplings at the dimension-six level of the neutrino-extended Standard Model
Effective Field Theory. We focussed on rather light sterile neutrinos as only these can
be produced in neutron and nuclear β-decay processes. It is worthwhile to mention that
the KATRIN experiment, which measures the tritium β-decay spectrum, may also provide
competitive constraints on the non-standard couplings of the sterile neutrino within our
mass range. Given the current limits, the non-standard couplings could induce relative
distortions of the spectrum at the per mille level [62]. As was shown for a benchmark
calculation with mνR ∼ 5 keV, these effects could allow for improved constraints assuming
that the whole electron energy spectrum of KATRIN is accessible and theoretical and
systematical uncertainties can be reduced below the per mille level.

For sufficiently small masses, β-decay constraints are neutrino-mass independent
whereas 0νββ decay rates scale quadratically with the Majorana mass. We showed that,
barring cancelations between ∼ mββ and non-standard contributions, 0νββ measurements
start to become competitive for right-handed neutrino masses larger than about 100 eV
with a mild dependence on the particular interaction under consideration. Under the same
assumptions, we also discussed the range of neutrino masses for which one would expect a
measurable signal in 0νββ, assuming couplings of right-handed neutrinos were to be con-
firmed in either single β decays or at the LHC. For right-handed neutrino couplings of the
size indicated by the hint in the recent β-decay results, we show that next-generation 0νββ
experiments would be able to determine the Dirac or Majorana nature of neutrinos for
mνR & 3 eV. Finally, we discussed the implications of the hints in single-β and the 0νββ
limits in the context of a specific (toy) model of BSM physics involving two leptoquarks.
Such a model with TeV leptoquark masses can account for the discrepancy and imply a
measurable signal in next-generation 0νββ experiments unless neutrinos are Dirac particles.

Our study demonstrates the complementary nature of different neutrino probes, and
the various aspects of the theory space they individually are sensitive to. In case of a
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future discovery of a deviation from the Standard Model predictions in one of the experi-
ments, looking at other probes in a global approach provides valuable information to better
understand the nature of neutrinos.
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A νSMEFT operators and matching

Here we briefly discuss the dimension-six operators making up the νSMEFT Lagrangian
in eq. (2.1) and give the matching of these operators onto the low-energy Lagrangian of
eq. (2.9). The dimension-six Lagrangian involving left- and right-handed neutrinos, L(6̄)

νL,R ,
is given by the sum of the operators (and their hermitian conjugates) in table 3 and table 4,
respectively, where each operator is multiplied by a corresponding Wilson coefficient. The
matching contributions of these Wilson coefficients to the couplings to left-handed neutrinos
can then be written as,

C
(6)
VLL =

[
− 2Vud1 + 2v2

[
C

(6)
LQ 3 − C

(6)
HL 3 − C

(6)
HQ 3 1

]
− 4
√

2v
g

Me

(
C

(6)
eW

)†
− 4
√

2v
g

C
(6)
νWM

†
D

]
PU − 4

√
2v
g

C
(6)
νWM

†
R PsU ,

C
(6)
VRL = −v2C

(6)
Hud PU,

C
(6)
SRL = v2

(
C

(6)
LedQ

)†
PU ,

C
(6)
SLL = v2

(
C

(6)
LeQu 1

)†
PU ,

C
(6)
TLL = v2

(
C

(6)
LeQu 3

)†
PU , (A.1)

where the first contribution to C(6)
VLL is the SM contribution.

The Wilson coefficient of the operators involving right-handed chiralities are,

C
(6)
VLR =

[
−v2C

(6)
Hνe −

4
√

2v
g

(
C

(6)
νW

)†
Me −

4
√

2v
g

M †DC
(6)
eW

]†
PsU

∗ ,

C
(6)
VRR = v2

(
C

(6)
duνe

)†
PsU

∗ ,

C
(6)
SRR =

[
−v2C

(6)
LνQd + v2

2 C
(6)
LdQν

]
PsU

∗ ,

C
(6)
SLR = v2

(
C

(6)
QuνL

)†
PsU

∗ ,

C
(6)
TRR = v2

8 C
(6)
LdQν PsU

∗ . (A.2)
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Class 1 ψ2HX Class 2 ψ2H2D Class 3 ψ4

O(6)
eW (L̄σµνe)τ IHW I

µν O(6)
HL 3 (H†i←→D I

µH)(L̄τ IγµL) O(6)
LeQu 1 (L̄je)εjk(Q̄ku)

O(6)
uW (Q̄σµνu)τ IH̃ W I

µν O(6)
HQ 3 (H†i←→D I

µH)(Q̄τ IγµQ) O(6)
LeQu 3 (L̄jσµνe)εjk(Q̄kσµνu)

O(6)
dW (Q̄σµνd)τ IHW I

µν O(6)
Hud i(H̃†DµH)(ūγµd) O(6)

LQ 3 (L̄γµτ IL)(Q̄γµτ IQ)

O(6)
LedQ (L̄je)(d̄Qj)

Table 3. LNC dim-6 operators [63] involving active neutrinos that affect 0νββ at tree level.

Class 1 ψ2H3 Class 4 ψ4

O(6)
LνH (L̄νR)H̃(H†H) O(6)

duνe (d̄γµu)(ν̄Rγµe)
Class 2 ψ2H2D O(6)

QuνL (Q̄u)(ν̄RL)

O(6)
Hνe (ν̄Rγµe)(H̃†iDµH) O(6)

LνQd (L̄νR)ε(Q̄d))

Class 3 ψ2H3D O(6)
LdQν (L̄d)ε(Q̄νR)

O(6)
νW (L̄σµννR)τ IH̃W Iµν

Table 4. LNC dim-6 operators [64] involving a sterile neutrino that affect 0νββ at tree level.

B Details of the 0νββ calculation

Here we briefly discuss the ingredients involved in the calculation of 0νββ decay rates that
were not fully explained in section 3.2. We start with the definition of the nuclear matrix
elements (NMEs), after which we discuss the subamplitudes, A(ν)

L,R,M (mi), that are induced
by the exchange of hard neutrinos.

B.1 Nuclear matrix elements

The NMEs used in section 3.2 are defined as follows,

MV (mi) = −g
2
V

g2
A

MF (mi) +MMM
GT (mi) +MMM

T (mi) ,

MA(mi) = MAA
GT (mi) +MAP

GT (mi) +MPP
GT (mi) +MAP

T (mi) +MPP
T (mi) ,

MPS(mi) = 1
2M

AP
GT (mi) +MPP

GT (mi) + 1
2M

AP
T (mi) +MPP

T (mi) ,

MPS,sd = 1
2M

AP
GT, sd(0) +MPP

GT, sd(0) + 1
2M

AP
T, sd(0) +MPP

T, sd(0) ,

MS(mi) = g2
S

g2
A

MF (mi) ,

MT (mi) = 16g
2
T

g2
A

MAA
GT (mi) ,

MT V (mi) = −4g
′
T gV
g2
A

m2
π

m2
N

MF, sd(mi) + 16gT
gM

[
MMM
GT (mi) +MMM

T (mi)
]
,

MV A(mi) = 2 gA
gM

[
MMM
GT (mi) +MMM

T (mi)
]
,

MT A(mi) = gT
gA

[
2MAA

GT (mi) +MAP
GT (mi) +MAP

T (mi)
]
, (B.1)
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NMEs 76Ge 82Se 130Te 136Xe
[52] [51] [66, 67] [52] [51] [52] [51] [52] [51]

MF −1.74 −0.59 −0.68 −1.29 −0.55 −1.52 −0.67 −0.89 −0.54
MAA
GT 5.48 3.15 5.06 3.87 2.97 4.28 2.97 3.16 2.45

MAP
GT −2.02 −0.94 −0.92 −1.46 −0.89 −1.74 −0.97 −1.19 −0.79

MPP
GT 0.66 0.30 0.24 0.48 0.28 0.59 0.31 0.39 0.25

MMM
GT 0.51 0.22 0.17 0.37 0.20 0.45 0.23 0.31 0.19

MAA
T — — — — — — — — —

MAP
T −0.35 −0.01 −0.31 −0.27 −0.01 −0.50 0.01 −0.28 0.01

MPP
T 0.10 0.00 0.09 0.08 0.00 0.16 −0.01 0.09 −0.01

MMM
T −0.04 0.00 −0.04 −0.03 0.00 −0.06 0.00 −0.03 0.00

MF, sd −3.46 −1.46 −1.1 −2.53 −1.37 −2.97 −1.61 −1.53 −1.28
MAA
GT, sd 11.1 4.87 3.62 7.98 4.54 10.1 5.31 5.71 4.25

MAP
GT, sd −5.35 −2.26 −1.37 −3.82 −2.09 −4.94 −2.51 −2.80 −1.99

MPP
GT, sd 1.99 0.82 0.42 1.42 0.77 1.86 0.92 1.06 0.74

MAP
T, sd −0.85 −0.05 −0.97 −0.65 −0.05 −1.50 0.07 −0.92 0.05

MPP
T, sd 0.32 0.02 0.38 0.24 0.02 0.58 −0.02 0.36 −0.02

Table 5. Comparison of NMEs computed in the quasi-particle random phase approximation [52],
shell model [51], and interacting boson model [66, 67] for several isotopes of experimental interest.
See e.g. [68] for a more recent calculation in the interacting boson model which, however, uses
slightly differently defined matrix elements.

in terms of a set of NMEs and the low-energy constants gT = 0.99 ± 0.03, gM = 4.7,
and the unknown g′T = O(1) which we set to 1 in this work. The small mi limits of the
NMEs have been calculated in the literature. We show the numerical values of Ma

K(0)
and Ma

K, sd(0), with K = F,GT, T and a = AA,AP, PP,MM , for several calculations and
different isotopes in table 5.

To obtain the mi dependence of these matrix elements we follow refs. [23, 65] and
interpolate between the low- and high-mass regimes, where the relevant matrix elements
are available. This is possible since Ma

K(0) have been determined in the literature, while
the large-mass limits are in most cases are related to the short-distance matrix elements,
Ma
K, sd(0). For example, for the Fermi matrix element we use

MF int(mi) = MF, sd
m2
π

m2
i +m2

π
MF, sd

MF

, (B.2)

which has the correct mi → 0 and mi →∞ behavior. We construct analogous expressions
for MAA

GT,T int(mi), MAP
GT,T int(mi), and MPP

GT,T int(mi). The mi dependence of the remaining
matrix elements in table 5 can be related to the previously discussed NMEs. For the
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magnetic GT matrix element we have,

MMM
GT (mi) = g2

M

6g2
A

[
m2
π

m2
N

MAA
GT, sd −

m2
i

m2
N

MAA
GT (mi)

]
, (B.3)

and the for short-distance NMEs

MF, sd(mi) = MF, sd −
m2
i

m2
π

MF (mi) ,

Mab
GT, sd(mi) = Mab

GT, sd −
m2
i

m2
π

Mab
GT (mi) ,

Mab
T, sd(mi) = Mab

T, sd −
m2
i

m2
π

Mab
T (mi) . (B.4)

B.2 Hard neutrino exchange

The contributions due to hard neutrinos can be written as,

A(ν)
L (mi) = m2

π

mev

[(
CππiL
m2
π

+ C ′ππiL

)
MPS,sd + CπNiL − C ′ππiL

2
(
MAP
GT, sd +MAP

T, sd

)

− 2
g2
A

CNNiL MF, sd

]
,

A(ν)
M = m2

π

mev

[
− 2
g2
A

CNNiV MF, sd + 1
2C

πN
i V

(
MAP
GT, sd +MAP

T, sd

)]
, (B.5)

in terms of the effective ππ, πN , and NN interactions, Cππi , CπNi , and CNNi . A(ν)
R (mi)

can be obtained by replacing CαiL → CαiR. In the case of the dimension-six couplings under
consideration here, together with the approximation in which we drop the interference
terms with the SM weak current as discussed in section 3.2, several of the above terms
vanish. It turns out that the derivative pion terms as well as the pion-nucleon couplings
go to zero with the above approximations, so that we have C ′ππiL = CπNiL = CπNi V = 0. The
remaining Cππα couplings are given by,

CππiL,R = miv

F 2
π

cνππiL,R ,

cνππiL = 2gππLR(mi)
(
C

(6)
VLL

)
ei

(
C

(6)
VRL

)
ei
− 2gππS1 (mi)

[(
C

(6)
SLR

)2

ei
+
(
C

(6)
SRR

)2

ei

]
+ 4gππS2 (mi)

(
C

(6)
SLR

)
ei

(
C

(6)
SRR

)
ei
− 2gππTT(mi)

(
C

(6)
TRR

)2

ei
. (B.6)

Here, all LECs scale as gππi = O(F 2
π ) and the right-handed coupling cνππiR can be obtained

from cνππiL by interchanging the L,R labels on the Wilson coefficients, L↔ R, while leaving
those on the LECs unchanged.
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The relevant NN couplings can be written as,

CNN
i L,R,V = mi

Λχ
cνNN
i L,R,V ,

cνNNiL

vΛχ
= gNN

ν (mi)
4

[(
C

(6)
VLL

)2

ei
+
(
C

(6)
VRL

)2

ei

]
+ gNN

LR (mi)
2

(
C

(6)
VLL

)
ei

(
C

(6)
VRL

)
ei

+ gNN
S1 (mi)

4

[(
C

(6)
SRR

)2

ei
+
(
C

(6)
SLR

)2

ei

]
− gNN

S2 (mi)
2

(
C

(6)
SRR

)
ei

(
C

(6)
SLR

)
ei

+ gNN
TT (mi)

4
(
C

(6)
TRR

)2

ei
,

cνNN
i V

vΛχ
= gNN

SLL,VLL(mi)
[(
C

(6)
SLL + C

(6)
SRL

)
ei

(
C

(6)
VLL + C

(6)
VRL

)
ei
− (L↔ R)

]
+ gNN

TLL,VLL(mi)
[(
C

(6)
TLL

)
ei

(
C

(6)
VLL − C

(6)
VRL

)
ei
− (L↔ R)

]
. (B.7)

The right-handed couplings cNN,νNN
i R can again be obtained from cNN,νNN

i L by interchang-
ing the L,R labels on the Wilson coefficients, L ↔ R, while leaving those on the LECs
unchanged. Note that some of the terms in eqs. (B.5) and (B.7) can be neglected given
our assumptions, but can play a role in the right-handed couplings after the above replace-
ment. Using naive-dimensional analysis would lead one to suspect that the gNNα scale as
1/Λ2

χ, where Λχ ∼ 1GeV is the breakdown scale of chiral perturbation theory. However, it
turns out that these LECs need to be enhanced by Λ2

χ/F
2
π in order to obtain renormalized

amplitudes, so that gNNα ∼ 1/F 2
π , see ref. [23] for more details.

Similar to the mi dependence of the NMEs, we use the low- and high-mass limits of
the LECs to construct interpolation formulae for these hadronic matrix elements. The
interpolation we use is of the form

gα(mi)
∣∣
naive = gα(0)

1 + gα(0)
[
m2

0
m2
i
ḡα(m0)

]−1 , (B.8)

where m0 ' 2GeV is a scale at which the procedure of integrating out the heavy neutrino
becomes reliable. The ḡα(m) are effective LECs, scaling as 1/m2, which are needed in
the mi ≥ m0 region to ensure the amplitude reproduces the result from integrating out
the neutrino at the quark level. The above expression reduces to gα(0) for mi � mπ

and m2
0

m2
i
ḡα(m0) for mi → ∞. The required input to these interpolation formulae are thus

gα(0) and ḡα(mi), where the latter depends on the matrix elements of the dimension-nine
operators, ∼ (ūd)2ēec, that arise after integrating out neutrinos at the quark level. For
simplicity we neglect the QCD evolution of these matrix elements, which can in principle
be captured by eq. (B.8).

Performing the matching to the amplitudes that result from integrating out neutrinos
with mi & 2GeV gives rise to the following expressions for the ππ LECs

gππLR(mi) = gππLR(0) 1
1− 4m

2
i

F 2
π
gππLR(0) [gππ4 (m0)]−1

,

gππS1 (mi) = gππS1 (0) 1
1 + 8m

2
i

F 2
π
gππS1 (0) [gππ2 (m0)−B2]−1

,
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gππS2 (mi) = gππS2 (0) 1
1− 8m

2
i

F 2
π
gππS2 (0) [gππ5 (m0)/2−B2]−1

,

gππTT(mi) = gππTT(0) 1
1 + m2

i
F 2
π
gππTT(0) [4gππ3 (m0) + 2gππ2 (m0)]−1

. (B.9)

Similar expressions can in principle be derived for the NN LECs [23], currently, however,
none of the needed LECs are known in the NN sector. The techniques of refs. [69, 70]
where the short-distance LECs for the LL case were calculated can in principle be applied
to non-standard interactions as well, but this has not been done so far. In our numerical
analysis we therefore estimate the hard-neutrino contributions by considering the ππ terms,
while neglecting the NN pieces. We take the following values for the needed LECs,

gππLR(0) = gππTT(0) = −gππS1 (0) = −gππS2 (0) = F 2
π , gNNα (0) = 0 ,

gππ2 = 2.0 GeV2 , gππ3 = −0.62 GeV2 ,

gππ4 = −1.9 GeV2 , gππ5 = −8.0 GeV2 . (B.10)

Here the values for gππα (0) are consistent with NDA estimates, while we use the lattice
QCD results of ref. [49] for gππ2,3,4,5 evaluated at µ = 2GeV.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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