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1 Introduction

Over the last decades, Machine learning (ML) techniques have developed into standard
tools for data analysis strategies in high-energy physics (HEP). Due to the requirement of
analysing vast, highly correlated data in order to exploit the full physics potential of the
LHC, it becomes more and more important to develop a fundamental understanding of the
data analysis methods applied. Jet substructure analysis is a particularly popular research
area where analytic reconstruction techniques [1–6] co-exist with numerical multivariate
analyses methods [7–11]. The combination of a large amount of available data with an
excellent theoretical understanding of the underlying physics in collider phenomenology
provides the ideal environment to explore novel reconstruction techniques and to improve
our understanding of existing approaches.

A method of increasing popularity that is rooted in quantum mechanical concepts are
tensor networks (TNs) or tensor network states [12, 13]. The amplitude of a wave function
in quantum mechanics can be represented as a matrix for the superposition of multiple
states where TNs comes into play to describe complex quantum many-body systems [14,
15]. TNs are Legor-like constructions where the connection between each Legor piece
represents the entanglement between two or more states. A one-dimensional lattice, in
this configuration, can be written as the Matrix Product States (MPS) [15–19] where more
complex entanglements can be represented with tree tensor networks [20, 21] or multi-
scale entanglement ansatz (MERA) [22, 23]. It has been shown that tensor networks can
be used to compress fully connected and convolutional networks to achieve more efficient
results [24]. This study has been further expanded by using specialised MPS training
techniques for image classification [25–28] and feature extraction [29]. MPS has also been
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used in unsupervised learning [30], for anomaly detection [31] and has been shown that it
can produce comparable results to recurrent neural networks [32].1 Beyond MPS, there
have been various ML applications with MERA [34, 35] and in the 2D case with projected
entangled pair states (PEPS) [36]. The transition to TNs also allows transferring the
knowledge developed to understand and compute quantum many-body systems to ML. A
particularly interesting feature of MPS is that the entanglement entropy of an MPS can
shed light on the query of “what the network is learning?” [37].

Despite the ever-growing interest in TNs, surprisingly little work has been dedicated
to the applications of TNs in HEP, with the exception of ref. [38]. This study will show
that MPS can be used to discriminate top jets over QCD jets with comparable precisions
to state-of-the-art classifiers and that the tensor network learns the volume and correla-
tions of the projected geometry of topological relations in the data, which is reflected by
the entanglement entropy of the network. This observation can be exploited to reduce
redundant information in the input data, thereby reducing the complexity of the network
while maintaining a high classification performance. Thus, we propose different network
pruning and optimisation techniques relying on the entanglement entropy of the system.

Traditionally the MPS has been optimized by dedicated algorithms such as Density
Matrix Renormalization Group algorithm (DMRG) [16, 39–43] or Time Evolving Block
Decimation (TEBD) [44, 45]. These algorithms are designed to reduce the degrees of free-
dom in the given wave function to find the ground state energy of the acting Hamiltonian.
Additionally, due to their construction, such algorithms allow the network to adapt to the
complexity of the problem by expanding or reducing the connections between the local
states. Common neural networks, such as convolutional neural networks (CNN), recurrent
neural networks (RNN) or deep neural networks (DNNs), are often optimised via stochas-
tic gradient descent algorithms (SGD), which are known to be very effective methods to
optimise a network. Such algorithms are designed to increase degrees of freedom in the net-
work to map the given data on a higher-dimensional manifold. We will compare these two
training methods and propose a novel way of combining the training algorithms to harness
the adaptability and physical insight related to entropy entanglement of the MPS optimi-
sation algorithm and the efficiency of SGD. We show that entanglement entropy calculated
using DMRG can be used to identify redundant information in the data feature space and
elucidate how the two training methods can be combined to one optimisation algorithm.

This study has been organised as follows; in section 2 we will give a detailed intro-
duction into tensor networks in mathematical form which will branch out into following
subsections 2.1 and 2.2 where we will further discuss MPS and optimization algorithms. In
section 3 we will introduce our case study of top tagging and discuss our results. Finally
we will conclude and summarize the study in section 4.

2 Tensor Networks

Tensors are general multidimensional objects which can describe the multilinear relation-
ship between algebraic objects within a vector space. For this study, we will use Penrose

1An extensive review on tensor networks in ML applications can be found in ref. [33].
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Scalar

Vector, vi

Matrix, Λij

Rank 3 Tensor, Γijk

A B

C

Γij = AklmBn
lmCij

kn

V V † = = 1

Figure 1. Top panel shows the Penrose representation of the basic tensor forms such as scalar,
vector, matrix and a rank tree tensor. Bottom two panels shows two examples of tensor operations
where first notation shows tensor contraction between two rank tree (Aklm and Bn

lm) and one
rank four tensor (Cij

kn) resulting a rank two tensor (Γij). The bottom equations shows a tensor
contraction of a isometric tensor V which leads to identity.

notation (or tensor diagram notation) [46] to describe tensors as briefly shown in figure 1.2

In this notation, a node without any edge describes a scalar, and each edge represents a
higher rank object, such as one edge for vectors, two for matrices, where tensors can be
rank N objects. The bottom two panels show two examples of algebraic operations with
tensor diagram notation. Here, Einstein summation between two indices represented by
connecting edges of nodes is assumed. Hence, the contraction between tensors Aklm, Bn

lm

and Cijkn has been shown by connecting edges with the same indices (for simplicity, in-
dices are not shown in the figure). Similarly, an isometric matrix, V is connected by its
conjugate V †, which leads to identity. Note that the identity tensor is often shown as a
line without any node.

Tensor networks are defined as a graph that describes the connection between several
tensors into a composite tensor as shown in figure 1 with Γij . The number of dangling
edges describes the rank of this composite tensor. The Einstein summation has been
applied to the connected edges where the leg between A and C indicates summation over
index k. These are called auxiliary (or bond) dimensions of the network. The size of these
connections indicates each tensor’s influence on each other, which will be further detailed
in the following sections. Such objects have been widely used in the theoretical description
of quantum many-body systems [48], and in the design of quantum computing algorithms.

2.1 Matrix Product States

The Matrix Product States (MPS) or Tensor-Train (TT) [12, 15, 47, 49–51] is one of the
most studied tensor network topologies, widely used to describe 1D entangled quantum
many-body systems [15, 40, 47, 52–54].

2An extended review on tensor diagram notation and tensor networks can be found in refs. [12, 47].
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physical dimensions, p

bond dimensions, χ

' = Wp1p2...pn

Figure 2. Rank seven tensor decomposed into Matrix Product States. Green lines represents the
physical (Hilbert space) dimensions and red lines represents the auxiliary (bond) dimensions.

The wave function for a general 1D lattice of N particles can be written as

|Ψ〉 =
∑

p1,...,pn=0
Wp1...pn |p1〉 ⊗ |p2〉 ⊗ . . .⊗ |pn〉 , (2.1)

where |pi〉 are particle states spanning a local Hilbert space, H⊗N , pi denoting the position
(or site) of the particles along the lattice and Wp1...pn is rank-N amplitude tensor. The
left-hand side of the equation shown in figure 2 represents a Wp1...pn tensor in tensor-
diagram notation. For simplicity, only seven out of N edges are shown. Here the green
edges represent the physical dimensions, pi. In this form,Wp1...pn has O(dN ) computational
complexity where d denoting the number of indices that physical states can take, e.g. two
for a spin state, |pi〉 ∈ {| ↑〉, | ↓〉} or for particle state |pi〉 ∈ {|0〉, |1〉}.

For a classical, non-entangled system, Wp1...pn can be factorized as A(1)
p1 ⊗A

(2)
p2 ⊗ . . .⊗

A(n)
pn where local measurements on Wp1...pn can be held independently. A locally entangled

state, on the other hand, can be factorized as sum of products of amplitudes,

Wp1...pn = Aα1
p1 A

α2
α1p2 A

α3
α2p3 · · · A

αn−1
αn−2pn−1Aαn−1pn . (2.2)

Here each tensor A is connected to the one on the right and the left (except the first and last
one). Although all the combinations are shown with A, these tensors can be independent
of each other. As before pi represents the physical states where αi shows the auxiliary
indices between each tensor where the size of αi given as χ, as shown in the right-hand side
of the equation in figure 2. Such factorisation effectively compresses the computational
complexity of the system to O(Ndχ2), assuming all the tensors, A, have the same size
of bond dimensions to the tensors on the left and the right. Note that this represents a
state with open boundary conditions due to the fact that initial and final tensors are only
connected to the tensor on the right and left, respectively. This structure ensures maximum
entanglement between neighbouring sites, and entanglement decreases for the further sites
depending on the size of the auxiliary dimensions. The entanglement between tensors is
ensured via auxiliary dimensions where a larger bond dimension indicates a deeper influence
of the node Ai in the network. However, the size of these ancilla dimensions also increases
the computational cost; hence it needs to be adjusted with respect to the necessary accuracy
required from the system. Note that in MPS, the network’s topology is restricted at one
dimension; hence the influence of a feature can only be observed on the features on their
right and left.
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The amplitude tensor can be unfolded to the form in eq. (2.2) via Singular Value
Decomposition (SVD) [55, 56]. Each physical dimension, pi can be splitted as

Wp1...pn = Uαn−1
p1...pn−1 Sαn−1β V

β
pn︸ ︷︷ ︸

Aαn−1pn

= Uαn−2
p1...pn−2 Sαn−2β V

βαn−1
pn−1︸ ︷︷ ︸

Aαn−1
αn−2pn−1

Aαn−1pn

... (2.3)
= Uα1

p1︸ ︷︷ ︸
Aα1

p1

Sα1βV
βα2

p2︸ ︷︷ ︸
Aα2

α1p2

· · · Aαn−1
αn−2pn−1Aαn−1pn ,

where U and V are isometric tensors (UU † = V V † = 1) with respect to the decomposition
index and S are diagonal tensors of singular values per for factorization of Hilbert space
dimensions. It is important to note that this decomposition is not unique. One can
immediately observe that we could start the decomposition from the right-most leg of the
W tensor and combine S tensors with V to form A. Equally, one could have started
from the left-most tensor and absorb S with U to form A, which would give the same
result after contraction as eq. (2.3). Similarly, leaving S unabsorbed would not change
the outcome either. Hence each S-tensor corresponds to gauge choices [15]. Although
SVD splits amplitude into bitesize tensors, it is still quite expensive to do algebra with
such an object for a large bond dimension. Trimming the singular values below a certain
threshold, ε, allows using significantly smaller tensors. However, one pays the price of a
reduced precision in the approximation of the full tensor. Recently, it has been shown
that a fully connected neural network can be expressed via a tensor network [57] and
even a convolutional network can be compressed into a tensor network structure [24]. A
neural network defines an affine transformation between the feature space and the output
of the layer,

f lFC(x) = σ2
(
σ1
(
W(1),m

i Φi(x(n)) + B(1),m
)m
W(2),l

m + B(2),l
)l
, (2.4)

where W and B are weight and bias tensors, respectively and Φ(x) is the feature tensor.
f lFC(x) denotes outputs of the network3 where it can be further transformed and σi are the
activation functions. Each transformation refers to a layer which aims to find a different
vector-space to represent the previous layer or input. Ref. [57] shows that compressing
weight tensor via an MPS can drastically improve the performance by increasing the ability
to represent the feature space with a single linear transformation instead of interconnected
hidden transformations. Since the MPS asserts a linear relation between the features, it
also increases the interpretability of the network.

In order to benefit from an MPS layer, one first needs to map the feature tensor in a
tensor product form [25, 26],

Φp1···pn(x) = φp1(x1)⊗ φp2(x2)⊗ · · · ⊗ φpn(xn) ; φpi(xi) = α|0〉 ⊕ β|1〉 , (2.5)
3FC stands for fully connected network.
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= Φp1...pn(x)

l

p

χ
= W l

p1...pn
l

:= f l(x) = W l
p1...pn Φp1...pn(x)

Figure 3. Feature tensor contraction with an MPS. Red nodes represents each mapped feature,
blue nodes represent individual tensors of an MPS, the green, red and purple line represents physical
dimensions, pi, auxiliary dimensions, χ and output label, l.

where φpi(xi) shows the mapping of each feature xi up to coefficients α and β. Note that
eq. (2.4) requires a feature vector but in eq. (2.5), we have a rank-N feature tensor where
N is the number of features. There have been several proposals for feature mapping where
ref. [25] discusses a trigonometric mapping, φpi(xi) = [cos(xiπk), sin(xiπk)], and ref. [26]
discusses a polynomial mapping, φpi(xi) = [1, xik], of the feature-vector.4

After the mapping, an MPS can be connected to each of the physical dimensions
denoted by pi. Figure 3 shows the contraction between Φp1···pn(x) and the MPS where
red circles represent the outer product of the feature-tensor, and blue circles represent
the MPS. The contracted tensor results in a rank-1 tensor (vector) f l(xi) for a single
example. The Born rule dictates that the square of a wave function is the probability of
the measurement; hence for this study, we will use |f l(xi)|2 as the prediction probability
of the network. Note that the auxiliary dimensions, χ, holds the information regarding
the entanglement between each site. For MPS, the entanglement defines the correlation
of a site to the block on the left or right. As discussed before, although the size of the
bond increases the computational complexity, it also enables each site to be entangled with
further away sites rather than only the neighbouring sites. The influence of each bond can
be measured by its entanglement entropy [37].

Using an MPS for classification also allows us to use the quantum theory built around
MPS. Measuring the entanglement entropy on the MPS nodes allows us to interpret the
correlation between two neighbouring features, and using this information, one can fur-
ther adjust the network size or feature space mapping to achieve more efficient classifi-
cation [14]. Using the Schmidt decomposition, one can write a bipartite quantum state
via its orthonormal basis. The Schmidt decomposition can be achieved via SVD for the
centre-of-orthogonality tensor by separating the eigenvalues from the node,

|Ψ〉XY =
χ∑
i

λi|U〉X |V 〉Y . (2.6)

Here λi are positive definite singular values (Schmidt coefficients) in the S tensor, and as
before |U〉X , |V 〉Y is the orthonormal basis (Schmidt basis). The entanglement entropy
then can be calculated via the von Neumann entropy [58],

S = −
χ∑
i

λ2
i log λ2

i . (2.7)

4k stands for an arbitrary scaling constant.
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Cl
ij =

〈Wl|OiO†
j |Wl〉

〈Wl|Wl〉 = /

Figure 4. Two site correlation of the MPS, shown with blue nodes and |W〉, with respect to an
operator, O also represented via purple triangles. i(j) represents the location of the sites to which
the operator has been applied, and l is the label index.

The entanglement entropy indicates how strongly two sites are connected, where zero means
the two sites decouple. The entropy is bounded from above by the area law where for each
site S ≤ logχ [59]. The normalized singular value tensor, S, has all the singular values
in descending order where λ1 = 1. If there is no other singular value but λ1, the entropy
of the node will be zero, which means that it does not hold valuable information for
classification [60]. As will be demonstrated in section 3.2, if neighbouring sites have similar
entropy, only the one with largest entropy can be kept to shrink the feature-space without
loss of generality. Whilst this gives extensive interpretability of the network, it also allows
us to optimize the network by eliminating redundant features.

Beyond entanglement entropy, two site correlations of the MPS can be calculated
depending on an operator. This operator can be chosen from the particular group that
the data embedding is based on; for instance, the spin states are based on the SU(2)
group, and the generators of this group are Pauli matrices. Figure 4 shows the two-site
normalised correlator where the operator has been shown by O and i(j) represents the sites
that the operator has attached. The right-hand side of the equation shows the same in
Tensor Diagram notation, where purple triangles represent the operator and its Hermitian
conjugate. C lij = 1 (−1) denotes fully (anti-)correlated sites on a given basis, where one
can discard one or the other site without loss of generality. C lij = 0, on the other hand,
indicates no correlation, which means that both sites bring valuable information to the
process at hand. As before, l indicates the prediction label; hence the correlation can
be calculated with respect to signal or background. This property of TNs has also been
exploited in ref. [38].

MPS have been optimized using dedicated algorithms like the DMRG [16, 39–43],
TEBD [44, 45] and recently, it has been shown that usage of alternating least squares
methods in MPS minimization can be quite efficient [61]. All these methods are designed
to contract a given Hamiltonian with a 1D lattice wave-function, shown in eq. (2.1), and
find the ground state energy efficiently. Ref. [25] shows that it is possible to use DMRG-like
updating algorithms for classification tasks as well, which will be discussed in section 2.2.
However, neural networks traditionally updated using SGD-based backpropagation algo-
rithm, which can also be used for MPS type of networks [28].

For the SGD-based backpropagation, an efficient contraction method is needed. Since
all the components of the network cannot be contracted at once, one needs to use the so-
called bubbling method [12] to contract each site. Figure 5 shows the bubbling sequence for
such contraction. As before, red circles represent the training sample preprocessed in the
form of eq. (2.5), and the blue circles represent the MPS. The sequence evolves from the top
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l
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Figure 5. Schematic representation of the contraction sequence of MPS, dashed line shows the
contraction with the feature space at each step and rectangular node represents the vertical con-
tractions. The figure evolves from top to bottom.

frame to the bottom, as shown with the dashed enclosing line, where the first site on the
left contracted with the first MPS node, then in the second step the second MPS node is
contracted with the second site. In the third step, while the third site has been contracted
with the third node, two previous contractions have been merged. This sequence continues
until all the tensors are contracted, and the final f l(x) have been reached.5 Note that,
although the label edge is placed at the centre of the MPS in figure 5, the replacement
of it will not affect the result; as a matter of fact, such bubbling algorithm will be most
efficient if the label edge is placed at the rightmost tensor. This will allow the contraction
order to be constant until the last node. Once the full contraction is complete one can
calculate the loss function and each tensor can be updated via a specific SGD algorithm
such as Adam [63].

Whilst such an approach leads to a very efficient algorithm, it lacks the adaptation
features of the DMRG algorithm. It has been shown that a DMRG-like updating algorithm
allows a network to automatically adjust its bond dimension for the complexity of the
problem [25]. In section 2.2 we will discuss how such updating scheme is possible.

2.2 Learning through density matrix renormalization group algorithm

A DMRG-like MPS updating algorithm for classification purposes was first proposed in
ref. [25]. In this algorithm, tensors are updated two-by-two for the reasons that will be
shown below. Originally, the DMRG algorithm is used to find the ground state energy of
a Hamiltonian acting on a 1D lattice where the algorithm sweeps the lattice from one side
to the other and optimizes the energy by updating the site its currently on. It iteratively
reduces effective degrees of freedom to emphasize the most prominent features. The same
principle can be applied to classification tasks.

5Similar contraction methods have been adapted in refs. [28, 62].
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p1p2

I.

II.

l

= = Γlp1p2
s2

III.

Bs2
p1p2

= Bs2
p1p2Γlp1p2

s2 = f l(x(n))→ p(l,x) =
∣∣∣f l(x(n))

∣∣∣
2

L = L
(
p(l,x), ltruth

)

IV. B̃s2
p1p2 = Bs2

p1p2 − η ∂L
∂B

s2
p1p2

V.

B̃s2
p1p2

−→
SijU j

p1 V ik
p2

V I. Sweep direction to the right:

SijU j
p1 V ik

p2

Node I Node II

Sweep direction to the left:

SijU j
p1 V ik

p2

Node I Node II

Figure 6. Schematic representation of two-site DMRG-like algorithm used for updating tensor
network. I–III shows the forward-pass where the loss function is calculated and IV - VI shows the
backpropagation where two nodes of the MPS has been updated using gradient decent and splitted
back into its original two node structure via SVD.

Figure 6 shows the step-by-step evolution of a DMRG-like updating algorithm where
I–III represents the forward pass, and IV–VI represents the backpropagation portion of the
algorithm. First, let us assume that we have a network in the form of figure 3. In order
to update two nodes, one needs to calculate the gradient of the loss function with respect
to the contraction of these two nodes. In step I, we calculate the contraction of these two
tensors resulting in a rank-3 tensor, Bs2

p1p2 . For the sake of simplicity, this procedure has
only been shown for first two tensors. Here, s2 represents the auxiliary leg between the
second node and the rest of the MPS. Then, in step II, we contract the rest of the MPS
with Φp3···pn(x(i)) via the bubbling algorithm shown in figure 5 and take the outer product
with the two sites that are not connected to the MPS, resulting in a rank-4 tensor, Γls2

p1p2 .
Here, i represents a particular training example, where each training example goes through
the same process. Finally, on step III, the prediction, p(l,x), is calculated by contracting
Γls2
p1p2 with Bs2

p1p2 and the objective function, L, can be calculated using the entire training
batch, which completes the forward pass of the algorithm. It is important to note that,
in this study, we will use the tensor network as a Born Machine, where the square of the
state, i.e. the wave-function, corresponds to the probability of the prediction.

For the backpropagation portion, one first needs to calculate the gradient of the loss
function with respect to Bs2

p1p2 and the contracted tensor can be updated via gradient
descend, shown in figure 6 panel IV. Here η stands for the learning rate, which controls the
step size of the gradient descent. Choosing a small learning rate may cause a prolonged
convergence to the desired outcome; a large learning rate, on the other hand, may lead to
fast convergence but can skip over the global minima. Hence, its value needs to be adjusted
throughout the training.
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In the following, the updated tensor, B̃s2
p1p2 , is decomposed using SVD to replace the

initial two nodes. This procedure continues step by step until the last tensor on the right
is updated. Then, the algorithm starts this time from the right side and applies the same
algorithm until it reaches the starting position. As discussed earlier for eq. (2.3), there
is not a unique way of contracting the singular values, S, with the eigenvector tensors.
As shown in figure 6 panel VI, we choose to contract S to the tensor on the right while
sweeping is done towards the right direction, and S are contracted with the tensor on the
left for the left sweeping direction.

As a virtue of SVD, the size of the auxiliary dimensions is modified during each update.
This allows the network to increase the reach of the entanglement of each site, effectively
increasing the entanglement entropy. Hence, the network grows automatically without
the need to explicitly determining the size of each bond. However, an upper limit to the
number of allowed singular values is necessary; otherwise, the network will grow to an
unmanageable scope for the computer’s memory storage device. Alongside the maximum
limit for the number of singular values, the maximum truncation error can be used to
limit the growth of the network where the truncation error is determined by comparing the
Frobenius norm6 [64] of the initial and final tensors. This will allow the network to shrink
by discarding the small singular values to satisfy the maximum error condition. One can
also achieve a similar effect by explicitly imposing a threshold for the value that singular
values can take.

Whilst the DMRG-like updating algorithm reduces the need for hyperparameter op-
timization, it does not allow an update via SGD algorithms [25]. Hence in this study, we
propose a combined updating scheme where each epoch starts with the DMRG-like algo-
rithm on a batch and optimizes the network for a limited number of sweeps. This will allow
the network to expand with respect to the complexity of the classification problem. Then
for other batches, the network is updated using the SGD with the bubbling algorithm,
shown in figure 5.

3 Top tagging through matrix product states

The energy deposits of particles in the electromagnetic and hadronic calorimeters in AT-
LAS and CMS experiments have long been used to reconstruct the underlying event to
understand the physical system better. It has been repeatedly shown that mapping these
energy deposits on a modified η − φ-plane and analyzing them with a CNN can efficiently
discriminate top quark signal over QCD background. In such mapping, each pixel on
η − φ-plane corresponds to one or more particles depending on their distribution through
the detector geometry. A CNN algorithm can pick up the transitionally invariant features
of the underlying physics. Due to different particle clusters occurring on the η − φ-plane,
each pixel is only closely correlated with the close-by pixels. The η − φ-plane can be

6Frobenius norm is defined as

||M || =
√∑
∀i

|Mi1···in |2 ,

where M is a rank-N tensor with indices i1···n.
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Figure 7. The left panel shows the top-signal image on the modified η − φ plane, and the right
panel shows the same for the QCD background. The image has been cropped and downsampled
from the original by averaging four square pixels; hence the colour of each pixel represents the
average transverse momentum of the original four pixels. Each image consists of an average of
5, 000 events.

mapped onto an entangled 1D lattice. Since each pixel is only closely correlated with the
neighbouring pixels, an MPS can efficiently classify such images. For this study, we will
use the preprocessing prescription used in ref. [65] and demonstrate the usage of MPS for
top versus QCD jet discrimination. The implementation of this study can be found at
this link.7

3.1 Dataset & preprocessing

In order to demonstrate the usage of the MPS-classifier, we will use the dataset provided
in [10, 66]. This dataset consists of top signal and QCD background generated at 14TeV
centre-of-mass energy. The parton level events have been showered in Pythia 8 [67] and
the detector simulation has been obtained via Delphes 3 package [68] using the default
ATLAS detector card. The so-called fat-jets are reconstructed via anti-kT algorithm [69]
with R = 0.8 which is employed in FastJet [70] package. The transverse momentum of
these jets are limited to [550, 650]GeV range with |η| < 2. In order to label the dataset,
a parton matching with truth level tops have been applied where ∆R(j, ttruth) < 0.8 have
been required from each event to be considered as signal. The complete dataset includes
1.2 million training, 400,000 validation and test events respectively.

Following the prescription presented in ref. [65], the training images are generated by
further preprocessing the dataset where each image includes the leading fat-jet (recon-
structed as described above). The constituents of the leading fat-jet have been centered
with respect to pT weighted centroid where the jet vector shifted to the centre of η − φ-
plane. The coordinate system has been shifted to align with the direction of the positive η.
Furthermore, all the partonic activity has been collected into a 37 × 37 pixelated frame
where both η and φ spaning within [−1.5, 1.5] range. The lower half of each pixellated

7https://gitlab.com/jackaraz/tn_classifier
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Figure 8. The reshaping procedure has been shown to map the image on the 1D lattice. For
simplicity, only 5× 5 portion of the image has been displayed.

image has been flipped to the top if the total pT of the lower half is greater than the upper
half. The same process applied to the left half of the image to ensure that the first quad-
rant always has the highest pT . In order to simplify the problem, eight pixels from each
side of the image have been cropped, and the resulting image has been downsampled by
averaging each four-square pixels. Figure 7 shows the downsampled image where the left
panel shows the top signal and the right panel shows the QCD background. Each image
has been averaged from 5,000 events.

In order to make use of the MPS-classifier, the image data was reshaped to a 1D
lattice with an S-shaped mapping, as shown in figure 8 where the MPS sites follow the
red line where the left panel shows a η-based ordering, the right panel shows a φ-based
ordering. Note that this representative figure is shrunk to 5 × 5 just for visual simplicity.
This S-shaped reshaping ensures that the alternating edges of the image are in proximity
to maximize the entanglement.8 After normalizing images by 650GeV, each pixel has been
mapped onto a hypersphere via

φpi(p̃iT ) =

√√√√(D − 1
pi − 1

)
cosD−pi

(
p̃iT
π

2

)
sinpi−1

(
p̃iT
π

2

)
, pi ∈ 1, . . . , D , (3.1)

where in two dimensions (D = 2) φpi(p̃iT ) reduces to [cos(p̃iTπ/2), sin(p̃iTπ/2)]. Here p̃iT
corresponds to the modified transverse momentum within the pixel i.

3.2 Network architecture & training

To capture the MPS-classifier’s capability, we will demonstrate our results for different
training procedures and compare the outcomes to the state-of-the-art CNN results. Our
MPS classifier relies on TensorFlow version 2.4.1 [71, 72] and TensorNetwork version
0.4.3 [73] and the CNN relies on Keras package [74] embeded in TensorFlow.

8Ref. [27] discusses other possible preprocessing methods which might improve the classification by
reordering the lattice to make sure all the neighbouring pixels are at maximally proximity.
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As a baseline, we choose to use a CNN architecture presented in ref. [65]. The ar-
chitecture takes in 10 × 10 image pixels with a batch size of 128. The images are then
passed through a convolutional layer with eight features and four stride pixels, including
zero padding. After a batch normalization layer, the latent image is passed through a
max-pooling layer where the size of the image is dropped to 5 × 5 pixels. Then the re-
sulting latent image has been flattened and passed through a fully connected layer with
sixteen nodes. For each layer ReLU activation function has been used. The network has
been trained for 500 epochs and learning rate has been decayed from 0.01 every 20 epochs
if validation loss has not been improved. In all the networks presented below, we used the
cross-entropy loss function,

L = − 1
N

∑
x∈xN

ytruth log (ŷ) ,

where N represents the number of events in a batch.
In order to compare with the CNN, we first mapped our η-based ordered images onto a

10D hypersphere as shown in eq. (3.1). Then the network has been trained via the DMRG
algorithm. We initially assumed no entanglement between the lattice nodes within the
quantum state, and allowed it to expand up to 20 auxiliary dimensions. In order to avoid
getting stuck in a local minimum, the growth of the network has been done gradually where
in the first epoch the network has been allowed to expand up to 10 auxiliary dimensions and
then each epoch this value increased by 1.5 times its size, eventually reaching 20. Without
such gradual growth, we observed that the network could not reach the presented stage
within a limited amount of epochs. The MPS-classifier has been trained for 200 epochs with
a batch size of 10,000 events. The learning rate was chosen to be 0.0001 and decayed to its
half every 20 epochs if no improvement has been observed in the validation loss. Upper left
panel of figure 9 shows the receiver operating characteristic (ROC) curve for MPS-classifier
(blue) versus CNN (green). The statistical uncertainty has been calculated by splitting the
test set into batches of 50,000 events, where shaded area around each curve represents one
standard deviation. Similarly the right panel of figure 9 shows the classification output
of both networks where the blue solid (dashed) line represents the background for MPS-
classifier (CNN) and the red solid (dashed) line represents the signal. Despite the large
batch size, the MPS-classifier has achieved very similar prediction accuracy compared to
the CNN classifier, where their corresponding AUC values differ by only 0.62%.

The bottom left panel of figure 9 shows the entanglement entropy of the MPS classifier
and the right panel shows the Schmidt coefficient values, calculated as shown in eqs. (2.6)
and (2.7). One can immediately observe that the entanglement entropy follows the pixel
unfolding procedure shown in the left panel of the figure 8. Additionally, entropy follows a
grouped pattern where instead of a sharp increase or decrease, it preserves similar entropy
among around 10 pixels before changing the entropy value. This shows that not all pixels
are equally valuable, where one can avoid using the pixels with the same entropy values
hence shows a path for feature compression. One can observe that the network takes
the same entropy value mainly on the left or right side of the image and changes at the
centre. This is because most of the information is at the centre of the image and sides are
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MPS classifiers correspond to green and blue curves, respectively, and the left panel shows the
corresponding classifier output. The statistical uncertainty has been measured by dividing the test
set into batches of 50,000 events. The dashed black curve corresponds to random choice. The
bottom left panel shows the entanglement entropy mapped on φ − η frame, and the right bottom
panel shows the respective Schmidt coefficient distribution for each MPS site.

generally empty; hence information has been propagated through the pixels that do not
posses additional information. Note that the bottom-left pixel is empty simply because
each node is entangled with the node to its right (or left); due to non-periodic boundaries
in MPS the last node does not have any connection on its right. In the right panel, we
present the Schmidt value distribution in each node, used to calculate the entanglement
entropy. In this particular example, we observe that Schmidt values can be smaller than
10−14. As can be seen from the plot, the number of Schmidt coefficients decreases towards
the edges of the MPS. This is due to the canonical structure of the MPS with non-periodic
boundaries, where the number of auxiliary dimensions increases towards the centre. Each
auxiliary dimension would be the same for an MPS with periodic boundaries, assuming no
Schmidt value trimming has been imposed.
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Figure 10. Three types of network compression after training have been presented. The top left
panel shows the ROC curve after introducing certain thresholds on the Schmidt values, the top
right panel shows the same for entropy change based network compression (see the text for details),
and the bottom panel shows the ROC curve for the compressed network with entropy thresholds.

3.2.1 Feature space and network compression

Whilst a large number of trainable parameters gives the network chance to sample various
possibilities to achieve the optimisation task at hand, it also leads to a vast loss hypersurface
to explore. It can be challenging to explore and find a global minimum in such an ample
parameter space, even with advanced optimisation algorithms. Hence, it is vital to optimise
a given hypothesis’s hyperparameters to achieve faster, if not better, convergence to a
global minimum. Beyond the convergence, this will also lead to a quicker inference after
the training.

The entanglement entropy and the Schmidt coefficients are especially valuable to pro-
vide a path towards network compression. One can use them to design a compressed
feature space or limit the network size to achieve faster predictions. Figure 10 shows three
different methodologies that we adapted to reduce the size of the network while quantify-
ing the effects of the compression on the precision of its network output. On the upper
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left panel, we show the effect of applying the minimum Schmidt value threshold (λmin) on
the network after the training. Following the bottom right panel of figure 9, we applied
λmin = 10−3, 3× 10−3, 5× 10−3 and 10−2 shown with dashed red, cyan, green and purple
ROC curves respectively. Each step number of trainable parameters dropped from 390500
to 204310, 91690, 32990 and 18020, respectively. Although there is a considerable 76%
drop in the number of trainable parameters, we do not observe a significant change in the
precision until we reach λmin = 3× 10−3.

On the top right panel of figure 10, we applied an entanglement entropy-based com-
pression of the network. The change in entanglement entropy signals the contribution of
information that can be used for the classification task. If ∆S does not change along the
different sites, one can eliminate the features with the same entanglement entropy while
maintaining a similar precision. Hence we binned the entanglement entropy values with
respect to the change in entropy denoted by ∆S where the entropy change between the
first and last element in the bin corresponds to given ∆S value. Among these bins, we
chose the nodes with the most significant entanglement and formed a new network. We
present the ROC curves with ∆S = 0.025%, 0.05%, 0.1% and 0.2% following red, cyan,
green and purple ROC curves which reduced the network size to 83, 75, 64 and 54 nodes.

Finally, at the bottom panel of figure 10 we adopted an entropy-threshold-based com-
pression where only the nodes with entropy greater than indicated have remained in the
new network. We present the results from the network with S ≥ 0.055 and 0.056 pre-
sented with red and cyan ROC curves. These thresholds dropped the number of sites in
the network to 95 and 94, respectively.

Comparing all three compression methods presented reveals the nature of the DMRG
training algorithm. This method spans the geometrical structure of the feature space and
attempts to understand the entanglement in the 1D lattice wave function. The number of
auxiliary dimensions shows the length of entanglement in each node when it is reduced,
as shown in the upper left panel of figure 10, the sites becomes less entangled, and the
outcome becomes less precise. Entanglement based restriction shows the location of the
stored information where the information regarding the 3-prong structure of top has been
spread towards the outskirts of the MPS; hence removing these nodes degrades the precision
of the network at high tagging efficiency region. The information regarding the dipole
structure, on the other hand, has been preserved at the centre of the network, where the
entanglement entropy is at its largest. While removing the nodes with low entanglement on
the edges does not affect the dipole substructure information, the ∆S method effectively
removes the nodes in each region, including the region with the highest entropy, which
effectively reduces the precision in low top tagging efficiency. This exercise reveals that the
DMRG algorithm is capable of learning the geometrical structure of the given data.

Combining the compression methods of ∆S and λmin, we formed a new network and
retrained it from scratch. Figure 11 shows the ROC comparison between the original net-
work, compressed version and the retrained version. Initially, the original network (shown
with the solid blue curve) compressed by imposing ∆S = 0.2% and limiting the Schmidt
coefficient values above 3 × 10−3 (shown with the dashed red curve). This compression
limited the network to only 54 sites (or pixels) and 43410 parameters. Then we trained
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Figure 11. ROC curves to compare the original network (solid blue), compressed network (dashed
red) and the compressed network after 50 epochs (dashed green). The dashed black curve shows
the random choice.

this network for another 50 epochs with a learning rate starting at 10−4 and decaying as
before. During the training, we set a rigit Schmidt threshold at 3× 10−3. This resulted in
further compression of the network to 34160 trainable parameters — the ROC curve after
50 epochs presented with the dashed green curve. Although the number of parameters of
the new network is only 8% of the original one, it managed to achieve very similar precision.
This shows that the entanglement entropy holds the crucial information behind what the
network learns.

3.2.2 Training algorithm comparison

The MPS-classifier’s prediction can also be calculated using the SGD algorithm. Note that,
although we also use a mini-batch SGD type backpropagation in the DMRG algorithm,
henceforth SGD acronym will only refer to a neural network type of backpropagation
where all the parameters are updated simultaneously using a sophisticated algorithm such
as Adam [63]. In order to compare these algorithms in a more straightforward framework, we
reduced the hypersphere mapping to 2D and investigated the effects of both η and φ based
ordering for sake of completeness. Although η-based ordering has been shown to have
a significant impact on the classification results, the pixels do not possess a correlation
in the vertical axis, which might introduce different properties. Whilst DMRG training
has been done as before, SGD training has been achieved by the Adam algorithm [63].
After the contraction of the MPS-classifier, the gradients of each node in the MPS has
been calculated with respect to the objective function. We observed that the normalised
gradient tensors lead to more stable results. Since the SGD algorithm cannot adapt the
network with respect to the complexity of the problem, we initialised the network with ten
bond dimensions per node, and the network has been canonicalised to limit the number of
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Figure 12. The left panel shows ROC curves for convolutional and MPS network classifiers with
η-based ordering, and the right panel shows the same for φ-based ordering. The green, red, blue
and orange curves represent CNN, MPS-classifier trained with DMRG+SGD algorithm, DMRG
algorithm, and SGD algorithm. The shaded area shows the statistical uncertainty defined same as
figure 9. The dashed black curve represents the random choice.

trainable parameters prior to the training, in agreement with the DMRG construction. The
rest of the training hyperparameters are set equal to the DMRG algorithm. Furthermore,
to harvest the ability of both algorithms, we set up a DMRG+SGD algorithm where each
epoch applied the DMRG algorithm to the first batch for tree sweeps, and the rest of the
batches are trained with SGD. This combination gave the network the ability to adjust its
size with respect to the complexity of the problem. Hence, we assumed no entanglement
in the network prior to the training, i.e. the network can grow without restrictions except
from an upper limit on the bond dimensions.

Figure 12 shows the ROC curve for all the networks and training algorithms presented
above, where blue, red and orange curves represent DMRG, DMRG+SGD and SGD algo-
rithms. The left panel shows results for η-based ordered MPS, and the right panel shows
the same for φ-based ordered MPS. Compared to the 10D hypersphere, we observe a slight
decrease in the generality of MPS classification results; however, we only observe slight
differences between the results of the different training algorithms. All algorithms seem to
be able to discriminate the dipole type substructure with equal performance, and the dif-
ference seems to be more towards discriminating 3-prong substructure. This directly shows
the effect of the local entanglement in MPS which is directly linked to the lattice order.

Although there is no significant difference in the classification results, we observe large
variations in what the training algorithm captures. Figure 13 shows the entanglement
entropy per site for each algorithm following the same colour scheme as before, and the left
(right) panel shows the entropy for η(φ)-based ordered image. As observed in figure 9, the
DMRG algorithm is trying to set seemingly similar entropy distribution for each site where
its peaking at the centre of the image, the area corresponding to the most hadronic activity.
Compared to η-based ordering, φ-based ordering seems to capture two prongs in the vertical
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Figure 13. The left panel shows the entanglement entropy for η-based ordered MPS where blue,
red, and orange curves correspond to the MPS trained by DMRG, DMRG+SGD and SGD algo-
rithms, respectively. The right panel shows the same for φ-based ordered MPS.

axis, hence the increased entropy between sites 40 and 60. Compared to the DMRG, on the
other hand, the SGD algorithm seems to capture much more information which also reflects
to the DMRG+SGD algorithm. This approach can capture larger entropy since SGD
attempts to increase the degrees of freedom of the network, it does not capture irrelevant
pixels. Although this is a desirable feature in terms of classification performance, it limits
the interpretability of the network. The SGD algorithm is susceptible to the rare energy
fluctuations on the edges of the image; however, the DMRG algorithm seems to learn not
to rely on non-frequent data. Whilst this does not affect the performance between DMRG
and SGD algorithms significantly in this particular example, the SGD algorithm might be
superior to DMRG for the cases with large fluctuations in the data. This effect is also
captured in Schmidt coefficients observed in two algorithms; upper and bottom part of
the figure 14 shows the Schmidt coefficient distribution for η and φ-based ordering. The
left panel of both images shows it for the DMRG algorithm, where the right panel shows
for the SGD algorithm. For both orderings, the SGD algorithm seems to have similar
Schmidt coefficient distribution where all the singular values agregate above ∼ 10−2. The
DMRG algorithm, on the other hand, seems to preserve the information embedded by the
geometrical structure of the ordering where the singular values are peaking at the centre
of the image, and the nodes are less and less expressive at the beginning and the end of
the network. This vital information holds the key towards compressing the network and
eliminating the less expressive connections between nodes as shown before. The DMRG
algorithm not only learns data to achieve the best possible minimum for the loss function
but also captures the physical properties of the data reflected in the entanglement entropy
and Schmidt distribution. This also shows that in a less correlated feature space SGD
would be expected to perform better than DMRG.

Comparing ordering schemes shows a couple of main differences between them. Whilst
the entanglement entropy captured by the DMRG algorithm is more or less the same for
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MPS where the left panel used for MPS trained by DMRG and the right panel for SGD algorithms.
The bottom two panels show the same for φ-based ordered MPS.

both orderings, the entropy change (∆S) in φ-ordering is mostly effective between sites
40−60. This allows for more significant feature space compression with respect to η-based
ordering. Similarly, Schmidt values for DMRG, presented in figure 14, shows that φ-based
ordering requires less precision to achieve the same accuracy as η-based ordering. This is
due to the alignment of the image where most of the hadronic activity is happening between
0− 6 η′ pixels, see figure 7, which is captured by the DMRG algorithm by decreasing the
Schmidt values after the 50th site. Hence φ-based ordering can be used to achieve more
extensive compression of both feature space and network without loss of generality.

As mentioned before, two-site correlations of the sites can be helpful to unfold the
properties of these algorithms even further. Figure 15 shows the normalised correlations
of the MPS sites that trained with the DMRG algorithm (on the left) and SGD algorithm
(on the right) with respect to the third Pauli matrix, σz. Due to the nature of the DMRG
algorithm, we observe many (anti-)correlated pixels, which essentially coincides with the
entanglement entropy distribution. As shown in ref. [38], this information can be used
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Figure 15. The left panel shows the correlation matrix, with respect to σz, of the MPS sites which
has trained via the DMRG algorithm, and the right panel shows the same for the MPS trained
with SGD.

alongside entanglement entropy to further compress the network. However, the network
that is trained via SGD hasn’t shown any significant correlation between pixels compared
to DMRG-based training, where the largest (anti-)correlation reaching up to ±0.8. This
shows further support for the claim of the nature of these algorithms; as mentioned before,
the DMRG algorithm is actively decreasing the degrees of freedom by iteratively selecting
the most prominent features by correlating them while the SGD algorithm is trying to
actively increase the expressibility of the network. Although this renders the results of
the SGD algorithm hard to interpret, it might be beneficial in challenging optimisation
problems.

During the training, we did not observe overtraining due to the large batch size. The
overtraining has only been observed when the batch size reduced below 500. The SGD
algorithm, seems to reach a well-trained level at around 200 epochs; however, the DMRG
algorithm requires more extended training time to reach that level. Hence, the results
presented for the DMRG algorithm are all somewhat undertrained. On the other hand,
the DMRG algorithm reaches a good discrimination level within couple epochs, and during
the rest of the training it only slightly decreases the loss value which has also been captured
in other studies [25, 28]. Hence, the DMRG algorithm is suitable to achieve decent results
with little training time, but it requires a longer training time to reach its full potential.

Despite the interpretability, TN based applications can come with a significant toll on
computation time. To assess the timing, we measured the elapsed time for bond dimensions
10 and 20 with 2D data embedding. As above, batch size of 10, 000 events has been used
for each training algorithm. The benchmarks have been collected for NVIDIA Tesla V100
16GB GPU, where the algorithms are parallelized only with respect to the training samples.
A complete sweep (starting from the left node and ending at the left node) for the DMRG
algorithm with 10 (20) bond dimensions and 100 sites have been measured to take 6 (6.02)
seconds on average after complete compilation of the algorithm. The calculation of a
single batch on the SGD algorithm, on the other hand, took 0.46 (0.47) seconds for a
maximum bond dimension of 10 (20). Note that although these benchmarks are from fully
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parallelized algorithms, it is possible to make them more efficient. For instance, the DMRG
algorithm presented in this study has been optimized to preserve the canonical form of the
MPS throughout the training, which means that each update has only been applied to the
centre-of-orthogonality tensor. However, it is possible to write a much faster algorithm by
contracting adjacent tensor pairs and updating them simultaneously. This will allow more
NN-like backpropagation but will not preserve the canonical form of the network. Similarly,
the SGD algorithm presented in this study does not use the efficient Keras integration in
order to manipulate network structure and use normalized gradients to update the network.
More efficient Keras-based TN classifiers can be found in TensorNetwork [73] library.9

4 Conclusion

Tensor Networks are non-trivial representations of high-dimensional tensors. They have
developed into powerful numerical tools to perform highly sophisticated calculations of
complex quantum systems. In the context of machine learning Tensor Networks have been
shown to be ideal vehicles to connect quantum mechanical concepts to machine learning
techniques, thereby facilitating an improved interpretability of neural networks.

In this study, we applied specific TNs, i.e. Matrix Product States, to classify LHC
pseudo-data as top quark or QCD-induced processes. We compared state-of-the-art con-
volutional network-based tagging algorithms to such MPS and showed that it is possible
to achieve similar results to the CNN, while gaining a deeper insight into how and what
the network learns.

The DMRG algorithm has been designed to automatically adapt the network archi-
tecture depending on the complexity of the problem at hand, which reduces the need for
hyperparameter optimization. We showed that whilst SGD can extract more information
from the network in terms of entanglement entropy and two-site correlations of the pixels,
DMRG learns the geometrical structure of the data and the correlations between the sites
on the 1D lattice. Whereas no significant performance difference has been observed be-
tween the two optimization algorithm, DMRG led to more interpretable results. Despite
the fact that the MPS only captures one dimensional correlations between pixels it can
achieve similar precision as the state-of-the-art CNN classifier.

We also proposed an adaptable algorithm for training MPS by merging DMRG and
SGD algorithms within one training sequence. This allowed us to harvest the adaptability
of DMRG and the efficiency of the SGD algorithm. However, we observed that since the
goal of these algorithms is entirely different, one needs to be mindful while training the
network. While the SGD algorithm aims to increase the individual expressivity of each node
by increasing the degrees of freedom to achieve high-performance classification, DMRG is
trying to reduce the degrees of freedom of the neighbouring nodes to construct a locally
entangled network. Hence, the fraction of DMRG sweeps during the training becomes a
crucial hyper-parameter where if not adjusted correctly, the network performance can be
less than the network separately trained by DMRG or SGD.

9For similar implementations also see refs. [62, 75–78].
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Further, using entanglement entropy, one can devise algorithms to effectively compress
the network to reduce the decision making time during prediction, which can be beneficial
for experimental analyses [38]. Additionally, since the MPS only expresses local entan-
glement, different pixel reordering schemes are very effective to increase the classification
power [27]. It has also been shown that MPS can be used to pre-train the Quantum
Machine Learning (QML) networks to boost the convergence of the algorithm [79]. One
shortcoming of the MPS approach is that it cannot fully represent the data contained in
the event image, as the pixel have to be represented as a 1D latticised chain. However,
such limitation can be mitigated by using 2D tensor networks such as Projected Entan-
gled Pair States (PEPS) to exploit more information from an image [36] or tree tensor
network structure can be used to embed non-trivial connections between the features [38].
Such classical methods based on TNs can also be used to estimate the limitations of the
algorithms in QML applications [80, 81].

The development of novel, yet explainable, data analysis methods is of crucial im-
portance for upcoming LHC runs, in particular during its high-luminosity phase. In the
context of high-energy physics, Tensor Networks are rather unexplored techniques that
show promising properties which can complement or even replace existing machine learn-
ing approaches.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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