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1 Introduction

Soft theorems are statements about quantum scattering amplitudes when one or more of
the external particles go soft, i.e. their momenta kµ → 0. These theorems state that a
(m + n) point scattering amplitude Am+n, where m number of external particles go soft,
is proportional to An, the n point scattering amplitude involving the other hard particles.
The proportionality factor is universal at leading order, irrespective of the details of the
interactions [1, 2]. The soft factor is also divergent at leading order in the soft momenta
expansion and depends on properties of the hard particles. The theorems are valid for
any gauge invariant quantum field theory in any spacetime dimensions. In particular,
the soft photon theorem follows from the U(1) gauge invariance [3, 4] and the soft gravi-
ton theorem follows from the diffeomorphism invariance of quantum field theories [5–7].
Recent works [8–19] have extended soft theorems beyond leading orders, with results for
subleading and sub-subleading soft theorems in gravitational and U(1) gauge theories. In
four spacetime dimensions there exists an additional subtlety, in that the subleading soft
factor diverges as the logarithm of the frequency due to the existence of asymptotically
non-vanishing long range interactions. To be precise, below we write the exact statement
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of the single soft photon theorem to subleading order in four spacetime dimensions [20]:

Sflat
em = Sflat

em;leading + Sflat
em;subleading , with

Sflat
em;leading =

n∑
a=1

q(a)
εµp

µ
(a)

p(a).k
, (1.1)

Sflat
em;subleading = i

n∑
a=1

q(a)
ενkρj

ρν
(a)

p(a).k

= i lnω−1
n∑
a=1

q(a)
ενkρ

(
cρ(a)p

µ
(a) − c

µ
(a)p

ρ
(a)
)

p(a).k
+ · · · (1.2)

where kµ and εµ are respectively the momentum and polarization of the soft photon, while
q(a), p

µ
(a) and jµν(a) are the charges, asymptotic momenta and angular momenta of the n

hard particles. In going from the first to second equality of (1.2), we have an expansion in
terms of the classical trajectories of the hard particles. The individual trajectories involve
logarithmic contributions in four dimensions due to the presence of long range interactions
of the electromagnetic fields. We can expand the classical trajectories of these particles to
find the following leading order contribution in proper time

rµ(a)(τ) = η(a)
pµ(a)
m(a)

τ + cµ(a) ln |τ |+ · · · ,

where τ is the proper time along the particle trajectories, η(a) is +1 for incoming particles
and −1 for outgoing particles, m(a) are the particle masses and cµ(a) are coefficients which
depend on the long range electromagnetic force. Using this expression for rµ(a)(τ) in jµν(a) =
rµ(a)(τ)pν(a)−r

ν(τ)pµ(a) then provides the term in the second line of (1.2) on replacing τ with
ω−1. The additional terms not described in the second line of (1.2) are quantum corrections.
These terms can be ignored as long as they are much smaller than the classical scattering
contribution. This will be the case when the wavelength of the soft particles are much larger
than the impact parameter involved in the scattering and when the total radiated energy is
less than the energy of the scatterer. In such cases, we can derive the universal contributions
entirely from the low frequency limit of the (gauge invariant) classical radiative fields. This
relation is provided by the classical soft photon theorem [20–22],

lim
ω→0

εµãµ (ω , ~x) = eiωR
(

ω

2πiR

)D−2
2 1

2ωS
flat
em

= − i

4πRe
iωRSflat

em for D = 4 , (1.3)

where ãµ is the radiative component of the electromagnetic field in frequency space,
D is the spacetime dimension and R denotes the distance of the soft photon from the
scatterer. A similar analysis holds for the soft graviton theorem [20, 23–25].

An interesting question to ask is: how does the above story change when we study a
quantum field theory in an asymptotically non-flat background? Since the gauge invari-
ance remains intact even for asymptotically non-flat theories, we expect a version of soft
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theorems to be valid in this case as well. Non-asymptotically flat backgrounds, particu-
larly of the kind of asymptotically Anti-de Sitter (AdS) or de Sitter (dS) types are of great
importance in physics. AdS arises as an interesting gravity background for some exact
computations in the context of String Theory and AdS/CFT conjectures. On the other
hand dS spacetime has its importance in cosmology. Thus, understanding aspects of soft
theorems in these spacetimes are important. In this paper we shall look for classical soft
photon theorems in asymptotically AdS spacetime, where the radius of the AdS space is
considered to be large (we shall make this condition more precise in later sections). Our
results, with slight modifications, are also valid for asymptotically dS spacetimes in the
large radius limit.

AdS (dS) is a solution of Einstein’s gravity with a negative (positive) cosmological con-
stant. AdS spacetimes have an effective potential under which particles behave like being
confined in a box. The null rays bounce back from the timelike boundary an infinite number
of times. This creates the main obstacle in defining the usual “in” and “out” states for a
quantum field theory in AdS backgrounds. Thus, unlike in asymptotically flat theories, the
definition of the usual scattering amplitudes [26–29] and hence a soft theorem is not known
for quantum field theories defined in an asymptotically AdS spacetime.1 Instead we look
for a possible soft factorization on taking the classical limit of scattering amplitudes in AdS
backgrounds. This gives us the analogue of classical soft theorems known from asymptoti-
cally flat spacetime classical scattering processes. While computing the classical radiation
profile, for technical simplification, we consider the value of cosmological constant to be
small , or equivalently the radius l of AdS large and treat it as a perturbation parameter
in our computations. Our results are exact up to order 1/l2 of the AdS radius. Physically,
we think of studying a scattering process in an asymptotically flat theory modified by a
small potential (inversely proportional to the square of the AdS radius). Thus our results
provide us perturbative corrections to order 1/l2 of known results for classical photon and
graviton radiation profiles in the asymptotically flat Reissner-Nordström case [32]. The
details of the scattering process we consider will be discussed in later sections.

Finally to study the “soft limit” of the classical radiation in asymptotically AdS space-
time, we consider a double scaling limit [33]: where the frequency of radiation and cosmo-
logical constant simultaneously tend to zero, keeping their ratio finite. This is due to the
fact that a radiation mode in a theory that asymptotes to AdS spacetime has a minimum
frequency inversely proportional to the size of the AdS and hence the frequency of the
radiation cannot limit to a zero value. In other words, there is a mass gap in AdS that
restricts the usual soft limit. Physically the double scaling limit implies that we consider
the radiation limits to a strictly soft one as the space is limiting to an asymptotically flat
spacetime. By taking this limit, we find the classical soft photon theorem to leading and
sub-leading order in an asymptotically AdS theory, in the large AdS radius limit.

On asymptotically flat spacetimes, Weinberg’s soft theorems for scattering amplitudes
are known to be equivalent to Ward identities for large gauge transformations [4, 8, 34–37].
These identities represent the soft charge conservation across null infinity I . For asymp-

1A related work can be found in [30].
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totically flat spacetimes, it is well known by now that the classical soft factor provide the
same leading (quantum) soft factor in the classical limit up to the usual gauge ambiguity.
Hence we can as well recast the classical soft theorem in terms of the large gauge Ward
identity. In our present study, as the classical soft photon theorem receives a 1/l2 cor-
rection (to its flat space form) in taking the l → ∞ limit of AdS spacetimes, we expect
the equivalence to imply a 1/l2 correction of the usual large gauge Ward identity. This
physically amounts to deriving 1/l2 perturbative modifications in the Ward identity that
correctly reproduces the modified classical soft theorem.

The large gauge Ward identity on an asymptotically AdS spacetime involve two sub-
tleties related to their derivation and definition on an asymptotic surface. A formal deriva-
tion of the large gauge Ward identity in AdS spacetime is complicated by the fact that there
does not appear to be a unique large r saddle point corresponding to the low frequency
result, unlike in asymptotically flat spacetimes. As mentioned, the 1/l2 corrections to the
soft factor results from a double scaling limit on the cosmological constant and frequency,
thus receiving contributions across different length scales. We can nevertheless infer this
Ward identity from the soft photon theorem, following the procedure used in [4] to demon-
strate the equivalence. We find specific corrections of the soft photon mode and gauge
parameter that provide a Ward identity equivalent to the classical soft photon theorem up
to 1/l2 corrections. It has recently been demonstrated that conformal Ward identities are
equivalent to the Weinberg’s soft theorems defined on a flat spacetime patch resulting from
the l → ∞ limit on asymptotically AdS spacetimes [30]. Our Ward identity result has a
natural interpretation of being defined at “null infinity" on this patch near the center of
AdS [30, 31], providing the leading 1/l2 corrections.

The current paper generalizes our previous work [33] on the effect of the small AdS
potential on the classical soft graviton theorem by including an electromagnetic interaction.
We also find the effect of the small AdS potential on the classical soft photon theorem.
The paper is organised as follows: in section 2, we review basic properties of AdS Reissner-
Nordström spacetime and then study its perturbations by introducing a charged point
probe particle. In section 3, we have obtained the solution to the gauge and gravity
radiations. Next in section 4, we study the soft limit and extract the classical soft photon
factor from classical radiation profile. In taking a similar limit, in section 5 we state the
results for the classical soft graviton factor. It turns out that the charge of the central
black hole, considered as the scatterer in the classical probe scattering process, has no
explicit effect on the soft graviton factor. Finally in section 6, we find the Ward identity of
large gauge transformations, perturbatively modified to 1/l2 order using our classical soft
photon factors that we derived in section 4. We end the paper with a conclusion and some
interesting open questions in section 7. Appendix A contains the computation details for
the classical soft graviton factor.

2 Perturbations of AdS Reissner-Nordström spacetime

In this paper, we are interested in studying the classical soft photon theorem in asymp-
totically AdS backgrounds. To achieve this, we study the classical scattering of a charged
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and massive probe particle by a Reissner-Nordström black hole placed in an asymptotically
AdS spacetime in 4 spacetime dimensions. The equations of motions result from the action,
which consists of the Einstein-Hilbert term and the Maxwell term,

S = 1
16πG

∫
d4x
√
−g(R− 2Λ)− 1

16π

∫
d4x
√
−g FµνFµν . (2.1)

In (2.1) R is the Ricci scalar for metric gµν , Λ is the cosmological constant, G is Newton’s
constant and Fµν = Aν,µ−Aµ,ν is the field strength tensor of the electromagnetic field Aµ.2

We use the standard convention of denoting partial derivatives by subscripted commas and
covariant derivatives with semi-colons. Varying the action in (2.1) with respect to the
metric tensor one gets the Einstein equations

Rµν −
1
2Rgµν + Λgµν = 8πGTEMµν , (2.2)

where

TEMµν = 1
4π

(
FµαFνβg

αβ − 1
4gµνFαβFγδg

αγgβδ
)
.

Similarly for the gauge field Aµ we get the source-free Maxwell equations
√
−g

4π Fµν ;ν = 0 . (2.3)

The solutions of equations (2.2) and (2.3) for a static spherically symmetric spacetime with
mass M, charge Q and a negative cosmological constant Λ = −3/l2, provide the metric

ds2 = −f(r)dt2 + dr2

f(r) + r2(dθ2 + sin2 θdφ2), (2.4)

with a gauge potential

A0 = Q

r
. (2.5)

The lapse function f(r) in global coordinates takes the form

f(r) = 1− 2GM
r

+ GQ2

r2 − Λr
2

3 = 1− 2GM
r

+ GQ2

r2 + r2

l2
. (2.6)

Since we are interested in studying the radiation emitted by the scattering of a probe
particle moving in an unbounded trajectory on the spacetime (from the point of view of
an asymptotic observer) we introduce isotropic coordinates. We refer the reader to [33] for
further justification on choosing this particular coordinate system. In these coordinates,
the resulting radiation will be isotropic in all spatial directions. We assume that the probe
particle with mass m (� M) and charge q (� Q) has a large impact parameter from the
black hole which implies GM/r � 1 and

√
GQ/r � 1. In addition, we also truncate

2The Maxwell action is written using Heaviside units and further details can be found in the appendix E
of [38].
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our metric up to 1/l2 terms, as we consider radiative solutions in the large cosmological
constant limit. Therefore our result will be valid in the regime

√
GQ ≤ GM � r � l.3

The metric (2.4) in isotropic coordinates, expanded up to quadratic order in ρ, takes
the form

ds2 = −g00dt
2 + gijdx

idxj , (2.7)

where

g00 = −
(

1− 2GM
ρ

+ GQ2

ρ2 + ρ2

l2

)
, g0i = 0 , gij = δij

(
1 + 2GM

ρ
− GQ2

ρ2 + ρ2

2l2
)
.

(2.8)

Here (i, j) = 1, 2, 3, run over spatial directions and ρ = |~x|. The isotropic coordinate ρ is
related to the Schwarzschild coordinate ‘r’ by

ρ = r

(
1− GM

r
+ GQ2

2r2 −
r2

4l2
)

(2.9)

We now impose the assumptions discussed above to express the metric of (2.8) in
a form relevant for our calculations. We set 8πG = 1 in the following. Therefore we
will replace G by 1/8π in the remainder of the paper. The condition of a large impact
parameter amounts to considering the leading order contribution of the gravitational and
electromagnetic potential, which we will denote by φ (~x). The potential goes like r−1 and
can be defined either with respect to the mass or the charge. The analysis in this paper is
independent of either choice. We define

φ (~x) = − M

8πρ . (2.10)

The gauge potential can then be expressed as

A0(~x) = Q

ρ
= −8πQ

M
φ (~x) , (2.11)

Retaining terms up to leading order in φ and 1/l2, we then find that the metric
components in (2.8) take the form

g00 = −
(

1 + 2φ+ ρ2

l2

)
, g0i = 0 , gij = δij

(
1− 2φ+ ρ2

2l2
)
. (2.12)

Note that the spacetime metric in (2.12) provides the leading AdS correction about
an asymptotically flat spacetime and in isotropic coordinates it just behaves like the AdS-
Schwarzschild metric with a gauge potential. The metric is however equivalent to the
metric in (2.4) up to leading order in φ and 1/l2. In particular, the timelike boundary of
the full AdS spacetime is not part of the spacetime we have considered. In the remaining
sections, we shall investigate the scattering of a charged probe particle in this background
given by the metric in (2.12) and gauge field in (2.11).

3The equality of
√
GQ and GM holds in the extremal limit.
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2.1 Perturbations of Einstein-Maxwell equations

We now linearly perturb the spacetime by introducing a point probe particle with mass
‘m’ and charge ‘q’ moving along a worldline trajectory r(σ), [39–43] whose action is

SP = −m
∫
dσ

√
−gµν

drµ

dσ

drν

dσ
+ q

4π

∫
dσAµ

drµ

dσ
. (2.13)

where drµ

dσ = uµ is the tangent to the worldline of the probe and the metric is evaluated at
r. Variation of (2.13) gives the following stress tensor Tµν(P ),

4 and current Jµ(P )

Tµν(P ) = 2√
−g

δSP
δgµν

= m

∫
δ(x, r(σ))dr

µ

dσ

drν

dσ
dσ ,

Jµ(P ) = 1√
−g

δSP
δAµ

= q

4π

∫
δ(x, r(σ))dr

µ

dσ
dσ , (2.14)

where δ(x, r(σ)) is the covariant delta function. It is related to the flat spacetime delta
function δ4 (x− r(σ)) via

δ(x, r(σ))
√
−g = δ4 (x− r(σ)) = δ(t− r0(s))δ(3)(~x− ~r(σ)) . (2.15)

and normalized as ∫ √
−g δ(x, r(σ))dσ = 1. (2.16)

The stress-energy tensor and current of the point particle induces a perturbation of the
background metric and gauge potential

gµν → gµν + δgµν = gµν + 2hµν ,
Aµ → Aµ + δAµ = Aµ + aµ . (2.17)

The variations of (2.2) and (2.3) yield

δG̃µν − δT hµν − δT aµν = T (P )
µν (2.18)

δ(Fµν ;ν ) = 4πJµ(P ) , (2.19)

where
G̃µν = Rµν −

1
2Rgµν + Λgµν (2.20)

In (2.18) we have split the total perturbation of the stress-energy tensor into two compo-
nents, one part δT hµν is due to the perturbation of the metric and another part δT aµν is due
to the perturbation of the gauge potential.

4We have chosen σ to be proper time as measured in this spacetime and therefore uµ satisfies the relation
gµνu

µuν = −1.
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On simplifying δG̃µν , δT hµν , δT aµν and δ(Fµν ;ν ), we find

δG̃µν = −eµν;α
α + eµα;

α
ν + e α

να; µ +
(
Rν

δeδµ +Rµ
δeδν

)
+ 2Rανµδeδα

− gµνeαβ;
αβ + gµνR

αβeαβ −Reµν + 2Λeµν − Λgµνe

δT hµν = eTEMµν −
1

8πeµνFαβF
αβ − 1

2πg
αεgβδeεδ

(
FαµFβν −

1
4gµνFαγFβ

γ
)

δT aµν = 1
4πg

αβ
(
fαµFβν + fανFβµ −

1
2gµνg

γδfαγFβδ

)
δ(Fµν ;ν ) = −gαρgµν

[
2gβσ (eρσFνβ;α + eσν;αFβρ)− e,ρFνα − fνρ;α − 2Fανeρβ;

β
]
, (2.21)

where we have denoted the perturbed electromagnetic field strength tensor by

fµν = aν,µ − aµ,ν , (2.22)

and have introduced the trace-reversed metric perturbations eµν defined by

eµν = hµν −
1
2hgµν ; h = gµνhµν = −e = −gµνeµν . (2.23)

Substituting the first three expressions of (2.21) in (2.18), we find the following ex-
pression for the perturbed Einstein equation

−T (P )
µν = eµν;α

α − eµα;
α
ν − e α

να; µ −
(
Rν

δeδµ +Rµ
δeδν

)
− 2Rανµδeδα +Reµν − 2Λeµν + Λgµνe

− gµνRαβeαβ + gµνeαβ;
αβ + 1

4πg
αβ
(
fαµFβν + fανFβµ −

1
2gµνg

γδfαγFβδ

)
+ eTEMµν −

1
8πeµνFαβF

αβ − 1
2πg

αεgβδeεδ

(
FαµFβν −

1
4gµνFαγFβ

γ
)
. (2.24)

Similarly plugging the expression of δ(Fµν ;ν ) from (2.21) in (2.19) gives the perturbed
Maxwell equation

− 4πgµνJ (P )
ν = gαρgµν

[
2gβσ (eρσFνβ;α + eσν;αFβρ)− e,ρFνα − fνρ;α − 2Fανeρβ;

β
]
. (2.25)

We will now express (2.24) and (2.25) about the background with the metric (2.12) and
gauge potential (2.11). We will also rewrite parts of the equations in terms of the following
quantities,

kµ = eµν;
ν , b = −a0,0 + ai,i . (2.26)

The radiative components of gravitational and electromagnetic perturbations are spatial
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in isotropic coordinates. The spatial components of (2.24) are

−T (P )
ij =�

((
1 + 2φ− ρ2

2l2
)
eij

)
− ki,j − kj,i − 2

((
φ,k −

ρ2
,k

4l2
)
eki

)
,j

− 2
((

φ,k −
ρ2
,k

4l2
)
ekj

)
,i

− (k0,0 − kl,l) δij

+ 4
[
φeij,00 + φ,ie0j,0 + φ,jei0,0 + 1

2

(
φ,ij −

1
2φ,kkδij

)
(e00 + ell)

]
+ 2δij (φ,klekl − φ,kkk + 2φk0,0) + δij

4l2
(
ρ2
,klekl + ρ2

,kkk + 2ρ2k0,0
)

+ 1
2l2

[
ρ2eij,00 + ρ2

,iej0,0 + ρ2
,jei0,0 + ρ2

,ij(2e00 − ell)−
1
2δijρ

2
,kkell

+3
2(ρ2

,kiekj + ρ2
,kjeki)− ρ2

,kkeij + 3
2ρ

2
,keij,k

]
− 2Q
M

(f0iφ,j + f0jφ,i − δijf0lφ,l) ,

(2.27)

where � = −∂2
0 + ∂2

i . The spatial component of perturbed Maxwell equation (2.25) in the
AdS-Reissner-Nordström background gives,

−4πJ i(P ) = − 4π
(

1 + 2φ− ρ2

2l2

)
J

(P )
i

=�ai − b,i + 3ρ2

2l2 (ai,00 − a0,0i) +
(

4φ− ρ2

l2

)
(ai,kk − ak,ki)− 2

(
φ,k +

ρ2
,k

8l2

)
fik

+ 16πQ
M

(
ej0φ,ij + (eij,0 − ei0,j)φ,j + 1

2 (e00,0 − ekk,0)φ,i + φ,ik0

)
. (2.28)

We now need to implement gauge choices. To this end, we adopt the following choice for
kµ and b to simplify our equations (2.27) and (2.28),

kµ = −2
(
φ,k −

ρ2
,k

4l2

)
ekµ + 2Q

M
a0φ,µ (2.29)

b = −2
(
φ,k +

ρ2
,k

8l2

)
ak − 4

(
φ+ ρ2

8l2

)
ak,k. (2.30)

Using (2.29) one can simplify (2.27) as,

�

((
1 + 2φ− ρ2

2l2

)
eij

)
+ 4

[
φeij,00 + φ,ie0j,0 + φ,jei0,0 + 1

2

(
φ,ij −

1
2φ,kkδij

)
(e00 + ell)

]
+ 1

2l2
[
ρ2eij,00 + ρ2

,iej0,0 + ρ2
,jei0,0 + ρ2

,ij(2e00 − ell)−
1
2δijρ

2
,kkell

+3
2(ρ2

,kiekj + ρ2
,kjeki) + 3

2δijρ
2
,klekl − ρ2

,kkeij + 3
2ρ

2
,keij,k

]
− 2Q
M

[
ai,0φ,j + aj,0φ,i − δijal,0φ,l + 2a0

(
φ,ij −

1
2δijφ,kk

)]
= −T (P )

ij . (2.31)
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Similarly for the perturbed Maxwell equation (2.28) we use both (2.29) and (2.30) to get,

− 4π
(

1− φ+ 5ρ2

8l2

)
J

(P )
i

=�

((
1 + φ+ ρ2

8l2

)
ai

)
+ 4

[(
φ+ ρ2

8l2

)
ai,00 +

(
φ,i +

ρ2
,i

8l2

)
a0,0

]

+ 2
(
φ,ki +

ρ2
,ki

8l2

)
ak −

(
φ,kk +

ρ2
,kk

8l2

)
ai

+ 16πQ
M

[
ej0φ,ij + (eij,0 − ei0,j)φ,j + 1

2 (e00,0 − ekk,0)φ,i
]

(2.32)

Note that for both the equations (2.31) and (2.32) we keep the terms up to leading order
in φ and 1/l2. In the next section we will solve (2.31) and (2.32) for eij and ai in frequency
space using the worldline formalism. The result will involve a Green’s function for the 1/l2

correction which was previously derived in [33].

3 Solutions of the field equations

To solve (2.31) and (2.32) we first briefly review the solution for perturbed scalar field
equation. For an arbitrary source f(s), the solution of the following scalar box equation in
a curved spacetime

ψ;α
α(x) = −

∫
δ(x, r(σ))f(σ)dσ . (3.1)

can be written as,

ψ(1)(x) =ψ(0)(x) + δψ(0)(x)

= 1
4π

∫ σ0

−∞
δ (−Ω (x, r(σ))) f(σ)dσ (3.2)

+ 1
16π2

∫ √
−g(y)δ (−Ω (x, y)) d4y

∫ σ0

−∞
δ′ (−Ω (y, r(σ)))F (y, r(σ)) f(σ)dσ .

where Ω (x, r(σ)) is the Synge world function and F (x, r(σ)) is the Ricci tensor dependent
term which arises from derivatives of the world function5

Ω(x, r) = 1
2(u1 − u0)

∫ u1

u0
gαβU

αUβ du, (3.3)

F (x, r) = 1
u1 − u0

∫ u1

u0
(u− u0)2RµνU

µUνdu . (3.4)

In (3.3) and (3.4) we assume that the observer (x) and probe particle source (r) are joined
by a unique geodesic ξα with affine parameter ‘u’ and Uα = dξα

du is the tangent vector
to the geodesic. Gravitational and electromagnetic radiation follow this path from the
source to the observer. Rµν in (3.4) gets the contribution from the black hole, which in our
scattering approximation can be treated as a point particle with mass M and charge Q.

5For a more detailed discussion on the world function in the context of our derivation we refer the reader
to [33].
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The integration limit is chosen up to σ0 instead of infinity (∞). This ensures that rµ(σ0)
lies outside the light cone centred at xµ and the contribution to scalar pertubation ψ only
comes from the retarded part of the Green’s function.

Expanding (3.1) in terms of the d’Alembertian operator we get,

�ψ(1) + 4φ∂2
t ψ

(0) − ρ2

4l2∂
2
t ψ

(0) + 3
4l2 ρ

2
k∂kψ

(0) + 3ρ2

4l2 ∂
2
kψ

(0)

= −
∫
δ4 (x− r(σ)) f(σ)dσ +O

(
R2
)
. (3.5)

We can solve (3.5) by substituting (3.2) and performing a Fourier transformation

ψ̃(1) (ω, ~x) =
∫
dteiωtψ(1) (t, ~x) . (3.6)

The transformed field ψ̃ can be perturbatively solved about flat spacetime. The solu-
tion of ψ̃ that are leading order in φ and 1/l2 provide tail contributions to the flat spacetime
Green’s function, which arises due to the black hole potential and AdS potential. Denoting
these tail terms as GM and Gl, they have the solutions [32, 33]

GM (ω, ~x,~r) = − iM

16πω

(
eiωR0Γ (~x,~r)

R0
−
∫ ∞

0
dv
eiω(v+|~r|+ρ(v))

(v + |~r|) ρ(v)

)
(3.7)

Gl (ω, ~x,~r) = − 4i
ω
eiωR0 (~x.~r) (3.8)

where GM and Gl correspond to the contribution due to the black hole mass and AdS radius
respectively, ~R0 = ~x − ~r(σ) with magnitude R0 = |~R0|, and the following expressions for
Γ (~x,~r) and ρ(v)

Γ (~x,~r) = ln
(
|~x|R0 + ~x. ~R0

|~r|R0 + ~r. ~R0

)
, ρ(v) =

√
x2 + v2 + 2v~x.~r

|~r|
. (3.9)

The equations for the perturbed fields eij and ai have additional contributions from
the background apart from those in (3.5) due to their respective tensor and vector nature.
These additional contributions provide terms in the frequency space solutions in terms of
the derivatives of (3.7) and (3.8)

−∇i�̃GM (ω, ~x, ~r) = φ,i
eiωR0

R0
, −∇i∇k�̃GM (ω, ~x,~r) = φ,ik

eiωR0

R0
, (3.10)

and

−∇i�̃Gl (ω, ~x,~r) = ρ2
,i

eiωR0

R0
, −∇i∇k�̃Gl (ω, ~x,~r) = ρ2

,ik

eiωR0

R0
, (3.11)

where ∇i = ∂
∂xi

+ ∂
∂ri

is an operator that acts on the two spatial arguments in the Green’s
functions and �̃ = (ω2 + ∂2

i ).
We can now derive the frequency space solutions ẽij and ãi. This requires substituting

eµν and aµ in terms of their Fourier transformed fields ẽµν (ω , ~x) and ãµ (ω , ~x) in (2.31)
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and (2.32). In the case of (2.31), we find

−T (P )
ij =

∫
dω e−iωt �̃

((
1 + 2φ− ρ2

2l2
)
ẽij

)
−
∫
dω e−iωt 4

[
ω2φẽij + iω (φ,iẽj0 + φ,j ẽi0)− 1

2

(
φ,ij −

1
2φ,kkδij

)
(ẽ00 + ẽll)

]
− 1

2l2
[
ω2ρ2ẽij + iωρ2

,iẽj0 + iωρ2
,j ẽi0 − ρ2

,ij(2ẽ00 − ẽll)−
3
2δijρ

2
,klẽkl + 1

2δijρ
2
,kkẽll

−3
2(ρ2

,kiẽkj + ρ2
,kj ẽki)− ρ2

,kkẽij −
3
2ρ

2
,kẽij,k

]
+ 2Q
M

∫
dω e−iωt

[
iω (ãiφ,j + ãjφ,i − δij ãlφ,l)− 2ã0

(
φ,ij −

1
2δijφ,kk

)]
, (3.12)

where

T
(P )
ij = m

∫
δkiδlj

δ4(x− r(σ))
1 + 2φ(~r) + r2

4l2

drk

dσ

drl

dσ
dσ . (3.13)

Similar steps for the perturbed Maxwell equation (2.32) gives

−
(

1− φ+ 5ρ2

8l2

)
4πJ (P )

i

= − q
∫
δki

δ4(x− r(σ))
1 + φ (~r) + r2

8l2

drk

dσ
dσ

=
∫
dω e−iωt �̃

((
1 + φ+ ρ2

8l2

)
ãi

)

−
∫
dω e−iωt

[
4
(
ω2ãiφ+ iωã0φ,i

)
+ ãiφ,kk − 2ãkφ,ik

]
+
∫
dω e−iωt

16πQ
M

(
ẽ0jφ,ij − (iωẽij + ẽi0,j)φ,j −

1
2 (iωẽ00 − iωẽkk)φ,i

)
−
∫
dω e−iωt

[
4
(
ω2ãi

ρ2

8l2 + iωã0
ρ2
,i

8l2

)
+ ãi

ρ2
,kk

8l2 − ãk
ρ2
,ik

4l2

]
. (3.14)

We get the solution for ẽij from the scalar perturbation solution comparing ψ̃(0)
0 (ω , ~x) with(

1 + 2φ (~x)− x2

2l2
)
ẽ

(0)
ij (ω , ~x) and replacing f(σ) with 2mδkiδlj

(
1− 2φ (~r)− r2

4l2
)
drk

dσ
drl

dσ .
The zeroth order solution of ẽij(ω , ~x) in frequency space is

ẽ
(0)
ij (ω , ~x) = m

∫
eiω(r0+R0)

4πR0
vivj

dr0

dσ
dr0 , (3.15)

where we have denoted drk

dr0 as vk.
Likewise, comparing ψ̃

(0)
0 (ω , ~x) to

(
1 + φ (~x) + x2

8l2
)
ãi (ω , ~x) and replacing f(σ)

with qδki
(
1− φ (~r)− r2

8l2
)
drk

dσ , we find the following zeroth order solution ã
(0)
i (ω , ~x) in

Fourier space

ã
(0)
i (ω , ~x) = q

∫
eiω(r0+R0)

4πR0
vi dr

0 . (3.16)
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We can further compute the other components of gravitational and electromagnetic pertur-
bations from ẽij and ãi, as they are related among themselves by the gauge fixing condition.
It follows from our choice in (2.29) and (2.30) that (2.26) on flat spacetime simplifies to

eij,j − ei0,0 = 0 , e0i,i − e00,0 = 0 , (3.17)

a0,0 − ai,i = 0. (3.18)

These are simply the de Donder and Lorenz gauges in flat spacetime. By Fourier trans-
forming (3.17) and using (3.15), we can now derive the following zeroth order solutions of
ẽi0 and ẽ00,

ẽ
(0)
i0 (ω , ~x) = −m

∫
eiω(r0+R0)

4πR0
vi
dr0

dσ
dr0 +O(φ) ,

ẽ
(0)
00 (ω , ~x) = m

∫
eiω(r0+R0)

4πR0

dr0

dσ
dr0 +O(φ) . (3.19)

Using the Fourier transform of (3.18), we can similarly use (3.16) to determine the solution
for electromagnetic perturbation ã(0)

0

ã
(0)
0 (ω , ~x) = −q

∫
eiω(r0+R0)

4πR0
dr0 +O(φ) . (3.20)

Hence the gauge conditions determine all the lowest order expressions. To find the complete
solution we first substitute all zeroth order solutions (3.15), (3.19), (3.16) and (3.20) in all
terms that are coefficients of φ and 1/l2 in (3.12). We then make use of the expressions
in (3.11) and (3.10) to determine the following solution for ẽij (ω, ~x)

ẽij (ω, ~x) = m

1 + 2φ(~x)− x2

2l2

∫
dr0 dr

0

dσ

eiω(r0+R0)
4πR0

vivj

1 + 2φ(~r) + r2

4l2

−
∫
dr0 eiωr

0
∫
d3~r ′ δ(3)

(
~r ′ − ~r

(
r0
)){dr0

dσ

m

π

[
ω2vivj − iω (vi∇j + vj∇i)

−
(
1 + ~v2)

2

(
∇i∇j −

1
2δij∇k∇k

)]
+ qQ

2πM

[
iω (vi∇j + vj∇i − δijvk∇k)

+2
(
∇i∇j −

1
2δij∇k∇k

)]}
GM

(
ω, ~x, ~r ′

)
−
∫
dr0 eiωr

0
∫
d3~r ′ δ(3)

(
~r ′ − ~r

(
r0
)){dr0

dσ

m

8πl2
[
ω2vivj − iω (vi∇j + vj∇i)

−
(
2− ~v2

)
∇i∇j −

3
2δijvkvm∇k∇m −

1
2δij~v

2∇k∇k

−3
2 (vkvj∇k∇i + vkvi∇k∇j)+vivj∇k∇k+ 3

8 iω(vi∇j + vj∇i)
]}
Gl
(
ω, ~x, ~r ′

)
.

(3.21)
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Carrying out similar steps for ãi (ω, ~x), from (3.14) we get

ãi (ω, ~x) = q

1 + φ(~x) + x2

8l2

∫
dr0 e

iω(r0+R0)
4πR0

vi

1 + φ(~r) + r2

8l2

−
∫
dr0 eiωr

0
∫
d3~r ′ δ(3)

(
~r ′− ~r

(
r0
)){ q

π

[
ω2vi − iω∇i + 1

4vi∇k∇k −
1
2vk∇k∇i

]
+ dr0

dσ

4Qm
M

[
vj∇i∇j + iω

(
vivj∇j + 1

6∇i −
1
2~v

2∇i
)]}

GM
(
ω, ~x, ~r ′

)
− q

4π
1
l2

∫
dr0 eiωr

0
∫
d3~r ′ δ(3)

(
~r ′ − ~r

(
r0
))

×
{1

2ω
2vi −

1
2 iω∇i + 1

8vi∇k∇k −
1
4vk∇k∇i

}
Gl
(
ω, ~x, ~r ′

)
. (3.22)

In the next section we explicitly carry out the soft expansion of ãi following the prescription
described in [32]. We will see that the contribution to the soft photon factor due to the
AdS radius will only come from the first line of (3.22). The terms in the last line of (3.22)
give finite contributions in considering the double scaling limit of a vanishing frequency
and infinite AdS radius.

4 Classical soft photon factor

Computing the quantum soft factor of a quantum scattering amplitude in asymptotically
AdS spacetime is tricky. Asymptotic states cannot be defined in AdS as it has timelike
boundary and particle geodesics are periodic. Therefore we choose to calculate the soft
factor from a classical prescription. One can compute the soft factors for photons or gravi-
tons in asymptotically flat spacetimes by considering the classical limit of single/multiple
soft theorems arising from a quantum scattering process [22]. The same factors can also be
derived from the low frequency classical radiation produced in a classical scattering pro-
cess. The classical scattering is subject to the condition that the total energy carried by
the soft radiation is small compared to the energy carried by the scatterer. Finally in the
classical limit, the soft factor is extracted from the power spectrum of the low frequency
classical radiation.

Considering that the observer is far away from the probe, i.e. ~x� ~r(σ) and taking the
frequency ω → 0 limit in 4 spacetime dimensions on asymptotically flat backgrounds, the
classical radiative field for the photon can be written in terms of the soft factors as [21, 22]

εα ãα(ω, ~x) = N ′ Sem(ε, k) , (4.1)

where εα is an arbitrary polarization vector of the photon, Sem is the soft photon factor
and ‘k’ denotes the momentum of soft photon. Similarly for the soft graviton factor one
can write

εαβ ẽαβ(ω, ~x) = N ′ Sgr(ε, k) . (4.2)

In (4.2), εαβ is an arbitrary rank two polarization tensor of the graviton, Sgr is the soft
graviton factor and ‘k’ denotes the momentum of the soft graviton [22]. For both (4.1)
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and (4.2)

R ≡ |~x| , N ′ ≡ − i

4π
eiωR

R
, k ≡ −ω(1, n̂) , n̂ = ~x

R
. (4.3)

The soft factors Sem and Sgr have a term proportional to ω−1 at leading order in fre-
quency and another term proportional to lnω−1 at subleading order.6 Equations (4.1)
and (4.2) can be considered as an alternate definition for the soft factor which can be eas-
ily computed from considering the soft limit of classical electromagnetic and gravitational
radiation profiles.

In the case of asymptotically flat backgrounds, to calculate the soft factor one needs
to consider the large |t| limit and a suitable parametrization of ~r(t), where ~r(t) is the
position of the scattered probe particle at time t. As shown in [33], for computing the soft
factor up to 1/l2 in an asymptotically AdS spacetime, we can still consider the particle to
follow an approximately straight line geodesic for large values of t. In particular due to
long range interactions caused by black hole potential and AdS potential, the trajectory
receives following contribution

~r(t) ∼ c1 ln |t| − c2
l2
t2 . (4.4)

The second term in the RHS of (4.4) will effectively contribute 1/(ω2l2) in frequency
space. This is a constant contribution in the limit that we will be interested in, which
will be further elaborated in this section. As the contribution from the AdS potential to
the soft factor is beyond the lnω−1 subleading order in frequency, we do not require its
correction to the particle trajectory for computing the soft factor up to this order in 1/l2.

We hence parametrize ~r(t) for asymptotic trajectories at large |t| in four spacetime
dimensions similar to the flat spacetime case as [22],

~r(t) = ~β±t− C± ~β± ln |t|+ finite terms, ~v = ~β±

(
1− C±

t

)
. (4.5)

where C± are constants and t denotes the proper time. The ln |t| terms are the contributions
from long range interaction forces which only exist in 4 spacetime dimensions. (4.5) can be
written in the following covariant form

rµ(a)(τ) = η(a)
1

m(a)
pµ(a)τ + cµ(a) ln |τ | , (4.6)

where η(a) is positive (negative) for incoming (outgoing) particles and m(a) is the mass of
the a-th particle. We will consider the proper time as negative for incoming particles and
positive for outgoing particles. Using the parametrization (4.5), we will retain terms up to
1/t as these are relevant in the soft expansion of ẽij and ãi. Using suitable integrals given
in [22] one can easily find the soft factors following the relation (4.1) and (4.2).

For asymptotic AdS spacetimes, soft limits cannot merely imply a vanishing frequency
limit. Since there is no notion of null infinity in asymptotic AdS spacetimes and any

6A detailed description of how to derive Sgr is given in [21, 22, 24, 25].
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massless radiation gets bounced off an infinite number of times from spatial infinity, the
radiation frequency can never strictly go to zero. To define a “soft limit” in this case one
needs to consider a double scaling limit. In [33] the soft limit for AdS was defined as
simultaneously taking the frequency of the radiation in AdS space to zero and the radius
of AdS space to infinity i.e. ω → 0 and l → ∞, keeping ωl fixed. Another interesting
feature of the metric (2.12) is that the effect of long range interactions are the same as
in asymptotically flat spacetimes [33]. This happens because the perturbed fields already
contain terms up to 1/l2 and we are interested in results up to this order only. As will be
further explained in Sec. 6, the large ‘l’ limit of an asymptotically AdS spacetime defines
an asymptotically flat spacetime patch near the center of the spacetime. Our 1

l2 correction
results concern scattering processes at short times, with asymptotic states defined on the
boundaries of this embedded patch.

To calculate the soft photon factor, we set r0 = t and simplify the tail terms in the
Green’s function for ~x� ~r (σ)7

G̃M (ω, ~x, ~r) = lim
~x�~r

GM (ω, ~x, ~r) = iM

16πω

[
ln
( |~r|+ n̂.~r

R

)
+
∫ ∞
|~r|+n̂.~r

du

u
eiωu

]
eiω(R−n̂.~r)

R
,

(4.7)

G̃l (ω, ~x, ~r) = lim
~x�~r

Gl (ω, ~x,~r) = −4i
ω
eiω(R−n̂.~r)n̂.~r (4.8)

We can then rewrite ãi(ω, ~x) in the large |t| limit as

ãi(ω, ~x) = ã
(1)
i (ω, ~x) + ã

(2)
i (ω, ~x) + ã

(3)
i (ω, ~x) + ã

(4)
i (ω, ~x) + ã

(5)
i (ω, ~x)

+ ã
(6)
i (ω, ~x) + ã

(7)
i (ω, ~x) + ã

(8)
i (ω, ~x) + ã

(9)
i (ω, ~x) + ã

(10)
i (ω, ~x)

+ ã
(11)
i (ω, ~x) + ã

(12)
i (ω, ~x) + ã

(13)
i (ω, ~x) , (4.9)

where the individual terms present in the above equation are defined as below:

ã
(1)
i (ω, ~x) = q

1 + x2

8l2

eiωR

4πR

∫
dt eiω(t−n̂.~r) vi

1 + φ(~r) + r2

8l2
, (4.10)

ã
(2)
i (ω , ~x) = q

2π

∫
dt eiωt vk∇k∇iG̃M (ω, ~x, ~r) , (4.11)

ã
(3)
i (ω , ~x) = iq

π
ω

∫
dt eiωt∇iG̃M (ω, ~x, ~r) , (4.12)

ã
(4)
i (ω , ~x) = − iMq

16π2
eiωR

R
ω

∫
dtvi

{
ln |~r

′|+ n̂.~r ′

R
eiω(t−n̂.~r ′)

+
∫ ∞
|~r ′|+n̂.~r ′

du

u
eiω(t−n̂.~r ′+u)

}
, (4.13)

ã
(5)
i (ω , ~x) = − q

4π

∫
dt eiωt vi∇k∇kG̃M (ω, ~x, ~r) , (4.14)

7In considering the ~x� ~r (σ) limit, we strictly get R0 = |~R0| = R− n̂.~r+O(R−1) + · · · . As in the case
of asymptotically flat spacetimes, the contributions of these O(R−1) terms from eiωR0 do not contribute to
the leading or subleading soft factor expressions derived in the presence of 1/l2 corrections.
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ã
(6)
i (ω , ~x) = 4Qm

M

∫
dt
dt

dσ
eiωt vk∇k∇iG̃M (ω, ~x, ~r) , (4.15)

ã
(7)
i (ω , ~x) = − i4Qm

M
ω

∫
dt
dt

dσ
eiωt vivk∇kG̃M (ω, ~x, ~r) , (4.16)

ã
(8)
i (ω , ~x) = − i2Qm3M ω

∫
dt
dt

dσ
eiωt∇iG̃M (ω, ~x,~r) , (4.17)

ã
(9)
i (ω , ~x) = i2Qm

M
ω

∫
dt
dt

dσ
eiωt ~v2∇iG̃M (ω, ~x,~r) , (4.18)

ã
(10)
i (ω , ~x) = − q

8πl2ω
2
∫
dt eiωtviG̃l (ω, ~x, ~r) , (4.19)

ã
(11)
i (ω , ~x) = iq

8πl2ω
∫
dt eiωt∇iG̃l (ω, ~x, ~r) , (4.20)

ã
(12)
i (ω , ~x) = − q

32πl2
∫
dt eiωtvi∇k∇kG̃l (ω, ~x, ~r) , (4.21)

ã
(13)
i (ω , ~x) = q

16πl2
∫
dt eiωtvk∇k∇iG̃l (ω, ~x, ~r) . (4.22)

We can think of ã(2)
i to ã(5)

i as contributions due to the scatterer black hole’s mass, ã(6)
i

to ã(9)
i arising due to the black hole’s charge and ã

(10)
i to ã(13)

i due to the AdS potential.
The soft limit evaluation of ã(2)

i to ã(9)
i has been previously derived in [32]. Here we will

evaluate ã(1)
i in the soft limit. This term will give us the leading 1/l2 correction to the soft

photon factor of asymptotically flat spacetimes due to the AdS spacetime.
To evaluate the soft limit of ã(1)

i we will be using the following relation,

eiω(t−n̂.~r(t)) = 1
iω

1
∂t(t− n̂.~r(t))

d

dt
eiω(t−n̂.~r(t)) = 1

iω

1
(1− n̂.~v(t))

d

dt
eiω(t−n̂.~r(t)) . (4.23)

Using (4.23) and carrying out an integration by parts, we have

ã
(1)
i (ω, ~x) = − q

1 + x2

8l2

eiωR

4πR
1
iω

∫
dt eiω(t−n̂.~r) d

dt

[
vi

(1− n̂.~v(t))
1

1 + φ(~r) + r2

8l2

]
. (4.24)

Since we assume r2

l2 � 1 throughout our calculation, this implies that we have the following
approximation

1
1 + φ(~r) + r2

8l2
= 1

1 + φ(~r)

(
1− r2

8l2
)
.

Hence (4.24) simplifies to

ã
(1)
i (ω, ~x) = − q

1 + x2

8l2

eiωR

4πR
1
iω

∫
dt eiω(t−n̂.~r) d

dt

[
vi

(1− n̂.~v(t))
1

1 + φ(~r)

]

+ q

8l2
eiωR

4πR
1
iω

∫
dt eiω(t−n̂.~r) d

dt

[
vi

(1− n̂.~v(t))r
2
]

=A1 +A2 +A3 +O(1/l3, φ2) , (4.25)
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where

A1 = −q e
iωR

4πR
1
iω

∫
dt eiω(t−n̂.~r) d

dt

[
vi

(1− n̂.~v(t))
1

1 + φ(~r)

]
, (4.26)

A2 = q
x2

8l2
eiωR

4πR
1
iω

∫
dt eiω(t−n̂.~r) d

dt

[
vi

(1− n̂.~v(t))

]
, (4.27)

A3 = q

8l2
eiωR

4πR
1
iω

∫
dt eiω(t−n̂.~r) d

dt

[
vi

(1− n̂.~v(t))r
2
]
. (4.28)

Note that we are keeping terms up to leading order in φ and 1/l2. In the asymptotic
expansion φ will take the form of

φ(~r(t)) = − M

8π|~r(t)| = ∓ M

8π|~β±|t
+O

(
t−2
)
, (4.29)

where we have used the parametrization of r from (4.5). A1 is the contribution on asymp-
totically flat spacetimes and has been evaluated in [32]. Therefore we will concentrate on
the other two integrals. To evaluate A2, we will substitute ~v from (4.5) and perform the
following expansion

vi (1− n̂.~v)−1 =
(
1− n̂.~β±

)−1
β±i

[
1− C±

t

1
1− n̂.~β±

]
+O

(
t−2
)
. (4.30)

Therefore (4.27) reduces to

A2 = q
x2

8l2
eiωR

4πR
1
iω

∫
dt e−iωg̃(t)

d

dt

 β±i(
1− n̂.~β±

) (1− C±
t

1
1− n̂.~β±

) , (4.31)

with g̃(t) = −(1− n̂.~β±)t− C±n̂.~β ln t . (4.32)

In the ω → 0 limit, we have the following integral [22]

I1 = 1
ω

∫ +∞

−∞
dte−iωg(t) d

dt
f(t) = 1

ω
(f+ − f−) + i (a+k+ − a−k−) lnω−1 + finite , (4.33)

where

f(t)→ f± + k±
t
, g(t)→ a±t+ b± ln |t| . (4.34)

Using (4.33), we find that the integral A2 in (4.31) evaluates to

A2 =− i

ω

qx2

8l2
eiωR

4πR

[
β+i

1− n̂.~β+
− β−i

1− n̂.~β−

]

+ qx2

8l2
eiωR

4πR lnω−1
[

β+i

1− n̂.~β+
C+ −

β−i

1− n̂.~β−
C−

]
. (4.35)

To consider the soft limit, we will need to take the simultaneous limits ω → 0 and l→∞,
while keeping ωl fixed. Therefore, by defining ωl = γ, we find that (4.35) can be written as

A2 =− i qx
2

8γ2
eiωR

4πRω
[

β+i

1− n̂.~β+
− β−i

1− n̂.~β−

]

+ qx2

8γ2
eiωR

4πRω
2 lnω−1

[
β+i

1− n̂.~β+
C+ −

β−i

1− n̂.~β−
C−

]
. (4.36)
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We thus note that in the ω → 0 limit, the A2 term is a finite contribution and does not
provide the divergent terms in the soft factor. It follows that divergent contributions due to
1
l2 corrections in the soft factor will arise from those integrals which at least fall off like ω−3.

The integrand in A3 involves the term vi
(1−n̂.~v(t))r

2, which has the following expan-
sion in t

vi
(1− n̂.~v(t))r

2 = β±i

1− n̂.~β±
~β2
±

[
t2 − 2C± t ln |t| − C±

1− n̂.~β±
t+

2C2
±

1− n̂.~β±
ln |t|

]

+ β±i(
1− n̂.~β±

)3C2
±
~β2
±n̂.

~β±

[
1− C±n̂.~β±

1− n̂.~β±
1
t

]
+ · · · , (4.37)

where · · · in (4.37) refer to subleading terms that are O
(

1
t2

)
and O

(
ln |t|
t

)
, which will

always lead to finite terms in the soft factor and are hence ignored. The terms in the second
line of (4.37) can be directly substituted into (4.28) to provide the following contribution,
which we denote as A(0)

3

A(0)
3 = − iq

8γ2
eiωR

4πR ω

∫
dt e−iωg̃(t)

d

dt

C2
±
~β2
±n̂.

~β±β±i(
1− n̂.~β±

)3

[
1− C±n̂.~β±

1− n̂.~β±
1
t

] . (4.38)

In taking the simultaneous limits ω → 0 and l → ∞ of the A(0)
3 integral in (4.38),

the overall coefficient ensures that we will have a non-divergent contribution in ω to the
soft factor.

To determine the other possible contributions of A3, we need to differentiate (4.37)
with respect to t and retain terms up to 1/t. This gives us

d

dt

[
vi

(1− n̂.~v(t))r
2
]

= β±i

1− n̂.~β±
~β2
±

[
2t− 2C± ln |t| − C±

3− 2n̂.~β±
1− n̂.~β±

+
2C2
±

1− n̂.~β±
1
t

]
.

(4.39)

To apply the integral (4.33) we have to perform another integration by parts us-
ing (4.23) until we get the form of (4.34). By using the expression in (4.39) and sub-
sequently performing the integration by parts, we find

A3 = − q

8l2
eiωR

4πR

( 1
iω

)2 ∫
dt e−iωg̃(t)

d

dt

[
1

(1− n̂.~v(t))
β±i

1− n̂.~β±
~β2
±

×
(

2t− 2C± ln |t| − C±
3− 2n̂.~β±
1− n̂.~β±

+
2C2
±

1− n̂.~β±
1
t

)]

= − q

8l2
eiωR

4πR

( 1
iω

)2 ∫
dt e−iωg̃(t)

d

dt

[
β±i

(1− n̂.~β±)2
~β2
±

(
2t− 2C± ln |t|

+ 1
t

(
C±

1− n̂.~β±

)2 (
2 + n̂.~β±

)
− 3 C±

1− n̂.~β±

)]
. (4.40)

We will now separate the A3 integral above into terms which can be evaluated us-
ing (4.33) and those which require an additional integration by parts. The terms in the
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parenthesis of (4.40) which are constant and proportional to 1
t provide the following con-

tribution which we denote as A(1)
3

A(1)
3 = − q

8γ2
eiωR

4πR

∫
dt e−iωg̃(t)

β±i

(1− n̂.~β±)2

× d

dt

[
3 C±

1− n̂.~β±
− 1
t

(
C±

1− n̂.~β±

)2 (
2 + n̂.~β±

) ]
. (4.41)

Evaluating this integral in the soft limit using (4.33), we find a finite contribution that
is irrelevant to the soft photon factor. The remaining terms in the integrand of (4.40)
require another differentiation followed by an integration by parts. This contribution,
which we denote by A(2)

3 , takes the form

A(2)
3 = − q

8l2
eiωR

4πR

( 1
iω

)2 ∫
dt e−iωg̃(t)

β±i

(1− n̂.~β±)2

(
2~β2
± − 2~β2

±
C±
t

)

= iq

8γ2
eiωR

4πR
1
ω

∫
dt e−iωg̃(t)

β±i

(1− n̂.~β±)3
d

dt

(
2~β2
± − 2~β2

±
C±
t

1
1− n̂.~β±

)
. (4.42)

This integral in the soft limit evaluates to

A(2)
3 = 1

γ2

[
iq

4ω
eiωR

4πR

{
β+i

(1− n̂.~β+)3
~β2

+ −
β−i

(1− n̂.~β−)3
~β2
−

}

−q4 lnω−1 eiωR

4πR

{
β+i

(1− n̂.~β+)3
C+~β

2
+ −

β−i

(1− n̂.~β−)3
C−~β

2
−

}]
. (4.43)

The divergent terms in this result contribute to the soft photon factor. From (4.43) we can
write the soft factor following (4.1).

The other radiative field terms, those from ã
(10)
i to ã(13)

i , are either finite in the soft limit
or are proportional to ki. Gauge invariance can be used to show that terms which go like
ki do not contribute to the soft factor. The invariance of Sem in (4.1) under εµ → εµ + kµ

imposes the constraint kµãµ = 0. This implies that ã0 can be determined from ãi and
allows us to set ε0 = 0. In addition, the expressions for ãµ are determined only up to
a choice in gauge. Denoting the arbitrary gauge parameters by λ, we have the following
gauge transformations

δãµ = λkµ . (4.44)

Using (4.44) in (4.1), we thus have kµεµ = 0. This provides the condition on the polarization
vector as kiεi = 0.

Therefore the 1/l2 contribution to the soft photon factor arises only from (4.43). On
substituting in (4.1) we find

Slem = q

4γ2 ε
i

[
− 1
ω

{
β+i

(1− n̂.~β+)3
~β2

+ −
β−i

(1− n̂.~β−)3
~β2
−

}

−i lnω−1
{

C+β+i

(1− n̂.~β+)3
~β2

+ −
C−β−i

(1− n̂.~β−)3
~β2
−

}]
. (4.45)
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We can describe the above result in terms of the momentum and angular momentum of the
probe particle, and the momentum of the soft photon. From (4.5) we find the asymptotic
momenta (as t→∞) to have the expressions

p(1) = m√
1− ~β2

−

(
1, ~β−

)
, p(2) = − m√

1− ~β2
+

(
1, ~β+

)
. (4.46)

The overall negative sign in p(2) reflects the convention for outgoing momenta. Using (4.5)
we also have for the position four vector

r(1) =
(
t, ~β−t− C−~β− ln |t|

)
, r(2) =

(
t, ~β+t− C+~β+ ln |t|

)
, (4.47)

with the coefficients of the logarithmic terms in the position vector, cµ(a), taking the form

c(1) =
(
1,−C−~β−

)
, c(2) =

(
1,−C+~β+

)
(4.48)

Here for simplicity we are ignoring an overall constant term in the position vector, which
will not contribute to the soft factor result (as it is a finite contribution in the t→∞ limit).

The angular momentum of the probe particle can be written as

jµν(a) = rµ(a)p
ν
(a) − r

ν
(a)p

µ
(a) + spin = (cµapνa − cνapµa) ln |t|+ · · · , (4.49)

and thus has the following non-vanishing components

j0i
(1) = m√

1− ~β2
−

C−~β− ln |t| , j0i
(2) = − m√

1− ~β2
+

C+~β+ ln |t| . (4.50)

Lastly, the outgoing soft photon has the momentum k = −ω(1, n̂). Using this along
with the expressions in (4.46) and (4.50), and replacing ln |t| by lnω−1, we determine
that (4.45) can be written as the following sum

Slem = Sl (0)
em + Sl (1)

em , (4.51)

where Sl (0)
em and Sl (1)

em are the universal leading and subleading contributions respectively
on AdS spacetimes, with the expressions

Sl (0)
em = q

4l2
2∑

a=1
(−1)a−1 εµp

µ
(a)

p(a).k

~p2
(a)(

p(a).k
)2 , (4.52)

S (1)
em = i

q

4l2
2∑

a=1
(−1)a−1 ενkρj

ρν
(a)

p(a).k

~p2
(a)(

p(a).k
)2

= i
q

4l2 lnω−1
2∑

a=1
(−1)a−1 ενkρ(cρapνa − cνapρa)

p(a).k

~p2
(a)(

p(a).k
)2 . (4.53)

Apart from the factor
~p2

(a)

(p(a).k)2 appearing in each of the above sums, the expressions are
those for the universal leading and subleading soft factors on asymptotically flat spacetimes,
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in the case of the scattering of a single probe particle. The summation index values a = 1
and a = 2 correspond to the outgoing and incoming configuration of the probe, respectively.

It can be noted that the momentum soft factor expression is not covariant, due to the
involvement of ~p2

(a). This is a consequence of working in the ‘static gauge’ choice for the
polarization vector of the electromagnetic field. We would always be required to adopt some
gauge in the probe scattering calculations on a fixed curved spacetime, which is needed to
derive the AdS result. Furthermore, we see from the dependence of additional momenta
factors that the above result on AdS spacetimes cannot be represented as an overall phase
of the asymptotically flat spacetime result.

We can also note that the gauge transformation εµ → εµ + kµ in (4.52) does not
lead to the manifest vanishing of these factors unlike on asymptotically flat spacetimes.
Rather, the requirement of the resulting sums over the momenta becomes a statement of
momentum conservation for scattering processes up to 1/l2 corrections on asymptotically
AdS spacetimes. Hence the 1/l2 corrected soft factor results are gauge invariant for all
viable scattering processes on the spacetime.

For completeness, we note that soft photon factor can be derived on asymptotically
flat backgrounds arising from contributions in A1, ã(3)

i , ã(4)
i and ã(5)

i is [32]

Sflat
em = − q

ω

(
~ε.~β+

1− n̂.~β+
− ~ε.~β−

1− n̂.~β−

)
− iq lnω−1

(
C+

1− n̂.~β+
~ε.~β+ −

C−

1− n̂.~β−
~ε.~β−

)

− iqM4π ln (ωR)
(

~ε.~β+

1− n̂.~β+
− ~ε.~β−

1− n̂.~β−

)
. (4.54)

In this case, the soft factor can be expressed in covariant form as given in [22].

5 Classical soft graviton factor

In this section, we will simply present the results on the contribution of the charge and
mass of the scatterer black hole to the soft graviton factor. For a detailed calculation we
refer the reader to appendix (A). The soft graviton factor can be split in two parts as

Sgr(ε, k) = Sflat
gr (ε, k) + Slgr(ε, k), (5.1)

where Sflat
gr (ε, k) is the contribution due to the black hole mass and charge, which was

derived in [32]. The result in its covariant form can be expressed as [22]

Sflat
gr (ε, k) =

2∑
a=1

εµνp
µ
(a)p

ν
(a)

p(a).k
+ i

2∑
a=1

εµνp
µ
(a)kρ

p(a).k
jρν(a) . (5.2)

In (5.2), p(1) and p(2) are the momenta of the probe particle before and after the scattering,
while j(1) and j(2) are the angular momenta of the probe before and after the scattering. As
in the previous section, we choose the convention that all momenta and angular momenta
are positive for ingoing and negative for outgoing particles. The indices µ, ν, · · · run over
all space-time coordinates in (5.2). The covariant expression has an implicit dependence on
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the masses and charges in the scattering process. The explicit form of the above equation
on replacing the momenta and angular momenta has been provided in (A).

Further in [33], we derived the leading order contribution of the cosmological constant
to the soft graviton factor on the AdS Schwarzschild black hole spacetime. Since to our
order of approximation, the metric in the isotropic coordinates does not receive any correc-
tion from the charge of the black hole, the results for the soft factor remains the same. Here
we present this result in covariant form, in terms of the incoming and outgoing momenta
of the probe particle

Slgr = Sl (0)
gr + Sl (1)

gr , with

Sl (0)
gr = 1

2l2
2∑

a=1

εµνp
µ
(a)p

ν
(a)

p(a).k

~p2
(a)(

p(a).k
)2

(
3 +

~p2
(a)
p2

(a)

)
,

Sl (1)
gr = i

1
2l2

2∑
a=1

εµνp
µ
(a)kρj

ρν
(a)

p(a).k

~p2
(a)(

p(a).k
)2

(
3 +

~p2
(a)
p2

(a)

)
, (5.3)

where Sl (0)
gr and Sl (1)

gr are respectively the universal leading and subleading contributions
to the soft graviton factor on AdS spacetimes. Note that for the four momentum we
have p2

(a) = −m2. The leading and subleading soft factor sums are, as in the soft photon
results in (4.52) and (4.53), expressed in terms of a product of the flat spacetime result and
other momentum dependent terms. The gauge invariance follows for all physical scattering
process, as discussed in the last section.

6 Ward identities from soft photon factors

In the previous sections we derived classical soft photon and graviton factors in an asymp-
totically AdS theory, to leading order 1/l2 in the large AdS radius limit. Considering the
large AdS radius limit is important for computational simplifications as well as for defining
a proper soft limit in AdS space. Our analysis can be interpreted as 1/l2 corrections of
classical soft theorems in asymptotically flat spacetime in large AdS radius limit. Thus
we expect these AdS corrected soft factors derived in (4.52) and (5.3) to satisfy similar
relations as the usual flat spacetime classical soft factors. By now, it is a known fact that
classical soft factors partially reproduce the quantum soft factors. These results hold ex-
actly at the level of tree and all loop scattering amplitudes for the leading soft factor 8. On
the other hand, it is also known that soft theorems with the leading quantum soft factor
contribution manifest as certain Ward identities arising from large gauge transformations
on asymptotically flat spacetimes. We can thus anticipate that soft theorems involving
leading soft factor terms, with AdS corrections, should have a corresponding realization in
a Ward identity.

In this section, we concern ourselves with the soft photon case. We will more specif-
ically be interested in the equivalence of large gauge Ward identity with the soft photon

8for subleading and sub-subleading parts, the quantum soft factor reduces to the classical one in the
classical limit [19]
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theorem in the case of a massless scattering process. While the soft factor expressions
derived in previous sections resulted from a massive probe particle scattering process, the
universality of the tree level soft photon factor enables us to consider its expression in any
scattering process involving soft particles. The analysis in particular involves the derivation
of an expression for the soft photon number mode from a saddle point approximation. To
maintain a flow of the paper and to establish notations and definitions, we first review the
correspondence between the large gauge Ward identity and leading soft factor for a theory
on asymptotically flat spacetimes [4, 34, 44] to the leading order and then derive the same
for our case 9.

For a residual gauge parameter ε(z , z̄) at null infinity which satisfies the antipodal
boundary condition

ε(z , z̄)|I +
−

= ε(z , z̄)|I−+ , (6.1)

we can define the total charge for the Maxwell field on I + and I − in terms of boundary
contributions on asymptotically flat spacetimes

Q+
ε =

∫
I +
−

ε ∗ F , Q−ε =
∫

I−+

ε ∗ F . (6.2)

here (z, z̄) are coordinates on the Celestial 2-sphere. The above charges satisfy the following
conservation equation

Q+
ε −Q−ε = 0. (6.3)

We can now consider Maxwell’s equations in the presence of a source to re-express the
charges in (6.2) as the following integrals over I + and I −

Q+
ε = −

∫
I +

dud2z
(
∂zεF

(0)
uz̄ + ∂z̄εF

(0)
uz

)
+
∫

I +
dud2zεγzz̄j

(2)
u , (6.4)

Q−ε = −
∫

I−
dvd2z

(
∂zεF

(0)
vz̄ + ∂z̄εF

(0)
vz

)
+
∫

I−
dvd2zεγzz̄j

(2)
v . (6.5)

In the above expressions γzz̄ is the metric on the 2-sphere and the superscripts on the
field strength tensors and currents represent the order of the coefficient in their correspond-
ing r−1 expansions in asymptotically flat spacetimes. The first integrals in Q+

ε and Q−ε
are known as the soft charges. The field strength tensors involved in the soft charges can
be expressed in terms of their soft modes. Further in the absence of asymptotic magnetic
fields and magnetic monopoles, we have the following condition

Fzz̄|I±± = 0 . (6.6)

In this case, it can be shown that we can define the soft modes of the field strength
tensors in terms of the following real scalars N± that satisfy

∂zN+(z , z̄) =
∫

I +
duF (0)

uz , ∂z̄N+(z , z̄) =
∫

I +
duF

(0)
uz̄

∂zN−(z , z̄) =
∫

I−
dvF (0)

vz , ∂z̄N−(z , z̄) =
∫

I−
dvF

(0)
vz̄ . (6.7)

9Experts may skip this section and directly go to section 6.1
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Using (6.7) in (6.4) and (6.5) then gives us the total charge expressions

Q+
ε = 2

∫
d2zN+∂z∂z̄ε+

∫
I +

dud2zεγzz̄j
(2)
u , (6.8)

Q−ε = 2
∫
d2zN−∂z∂z̄ε+

∫
I−

dvd2zεγzz̄j
(2)
v . (6.9)

With these classical results, we can now describe the Ward identity. Given a scattering
process going from an incoming state |in〉 on I − to a state |out〉 on I + governed by an
S-matrix S, the charge conservation in (6.3) now takes the form

〈out|Q̂+
ε S − SQ̂−ε |in〉 = 0 , (6.10)

where Q̂±ε are operator versions of the expressions in (6.8) and (6.9). The integrated hard
charges can be expressed as the following sum over hard charges in the incoming and
outgoing states ∫

I +
dud2zεγzz̄j

(2)
u =

∑
k=out

Qkε (zk , z̄k) , (6.11)∫
I−

dvd2zεγzz̄j
(2)
v =

∑
k=in

Qkε (zk , z̄k) . (6.12)

The index ‘k’ run over incoming and outgoing hard particles in the respective sums,
while the coordinates {zk , z̄k} denote their asymptotic positions on the Celestial 2-sphere.
Using the above expressions in (6.8) and (6.9), we find that the operators Q̂±ε take the form

〈out|Q̂+
ε = 2

∫
d2z∂z∂z̄ε〈out|N+ +

∑
k=out

Qkε (zk , z̄k) 〈out| , (6.13)

Q̂−ε |in〉 = 2
∫
d2z∂z∂z̄εN−|in〉+

∑
k=in

Qkε (zk , z̄k) |in〉 . (6.14)

00Substituting (6.13) and (6.14) in (6.10) then gives us the following Ward identity [4]

2
∫
d2z∂z∂z̄ε〈out|N+ (z , z̄)S − SN− (z , z̄) |in〉

=
[ ∑
k=in

Qkε (zk , z̄k)−
∑
k=out

Qkε (zk , z̄k)
]
〈out|S|in〉 (6.15)

We can express the left hand side of (6.15) entirely in terms of either the soft photon
mode N+ or N−. This follows from the CPT invariance of matrix elements involving the
in and out soft photons. This implies in particular that

〈out|N+ (z , z̄)S|in〉 = −〈out|SN− (z , z̄) |in〉

Hence (6.15) can be expressed as

4
∫
d2z∂z∂z̄ε〈out|N+ (z , z̄)S|in〉

=
[ ∑
k=in

Qkε (zk , z̄k)−
∑
k=out

Qkε (zk , z̄k)
]
〈out|S|in〉 (6.16)
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To simplify the notation going forward, we will refer to the soft photon mode N+ as
N and its associated outgoing operators aout+ (ωx̂) and aout− (ωx̂)† as aflat+ (ωx̂) and aflat− (ωx̂)†

respectively. An expression for ∂zN can be formally derived from a mode expansion of the
gauge fields and a saddle point approximation [44]

∂zN = − 1
8π

√
2

1 + zz̄
lim
ω→0

[
ωaflat+ (ωx̂) + ωaflat− (ωx̂)†

]
(6.17)

We next consider the gauge parameter. A particularly convenient choice as considered
in [44] for ε (z , z̄) is the following

ε (z , z̄) = 1
w − z

(6.18)

In particular, the derivative of (6.18) satisfies

∂w̄ε(z , z̄) = 2πδ(2) (z − w) (6.19)

By substituting (6.19) and (6.17) in (6.16), we find

lim
ω→0
〈out|ωaflat+ (ωx̂)S|in〉 = (1 + zz̄)√

2

[ ∑
k=out

Qk
z − zk

−
∑
k=in

Qk
z − zk

]
〈out|S|in〉 (6.20)

The large gauge Ward identity is formally derived as a property satisfied by quantized
fields of a given theory. However, we may also derive the Ward identity using the soft
photon theorem. We recall that the soft photon theorem relates a scattering process with
a soft photon insertion to the scattering process without the soft photon by a soft factor.
Assuming for simplicity the insertion of the soft photon in the ‘out’ state, the theorem
provides the relation

〈out|aflat+ (ωx̂)S|in〉 = Sflat
em 〈out|S|in〉 , (6.21)

where aflat+ denotes the creation operator in the outgoing state with helicity ‘+’, Sflat
em

is taken to be the leading contribution to the soft photon factor

Sflat (0)
em =

[ ∑
k=out

p(k).ε+

p(k).q
Qk −

∑
k=in

p(k).ε+

p(k).q
Qk

]
, (6.22)

and S is a generic scattering process in flat spacetime. Our analysis in previous sections
considered a single probe particle with charge q. Thus in this case, we set Qk = q in (6.22).

We can now readily derive the Ward identity in (6.16) from (6.21). For this derivation,
we only need to use the expressions for the momenta of all the particles (hard and soft)
and the polarization vector for the soft particle. For the soft particle and its polarization,
we have the following conditions

qµq
µ = 0 , qµε

±µ(~q) = 0 , εµαε
∗
βµ = δαβ , (6.23)

where the indices α , β represent the polarization directions ±. A natural choice for
the null vector qµ is the following

qµ = ω

(
1 , ~x
r

)
= ω

1 + zz̄
(1 + zz̄ , z + z̄ ,−i(z − z̄) , 1− zz̄) , (6.24)
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with ω the frequency of the soft particle. From this choice of qµ one can determine the
polarization vectors

ε+µ = 1√
2

(z̄ , 1 ,−i ,−z̄) , ε−µ = 1√
2

(z , 1 , i ,−z) . (6.25)

Since the hard particles are also massless, but of finite energy, using (6.24) we can
choose

pµk =
E~p

1 + zz̄
(1 + zz̄ , z + z̄ ,−i(z − z̄) , 1− zz̄) . (6.26)

If we now substitute (6.24), (6.25) and (6.26) in (6.22), we find

Sflat (0)
em =

[ ∑
k=out

p(k).ε+

p(k).q
Qk −

∑
k=in

p(k).ε+

p(k).q
Qk

]

= 1 + zz̄√
2ω

[ ∑
k=out

1
z − zk

Qk −
∑
k=in

1
z − zk

Qk

]
. (6.27)

Thus on substituting (6.27) in (6.21), we get

lim
ω→0

√
2

1 + zz̄
〈out|ωaflat+ (ωx̂)S|in〉 =

[ ∑
k=out

1
z − zk

Qk −
∑
k=in

1
z − zk

Qk

]
〈out|S|in〉 . (6.28)

This result agrees with the Ward identity in (6.20).
In the presence of AdS corrections of asymptotically flat spacetimes, we can determine

the tree level soft theorem which involves the soft factor derived from our classical scattering
analysis. However, a first principles derivation of the Ward identity using quantized fields
is not particularly clear. As previously described, the reason for this is that the γ−2

correction to the asymptotically flat spacetime soft factor arises from a double scaling
limit. This implies that unlike asymptotically flat spacetimes, the γ−2 correction cannot
result from a unique saddle point approximation of the gauge fields. Rather, there can
exist several contributions to γ = lω as we simultaneously take l → ∞ and ω → 0. Thus,
while the saddle point approximation determines the soft mode N in terms of creation and
annihilation operators on asymptotically flat spacetimes, this does not extend to possible
1/l2 corrections arising from the nearly flat limit of asymptotically AdS spacetimes. These
corrections could be determined by assuming that the equivalence of tree level soft theorems
and large gauge Ward identities on asymptotically flat spacetimes continues to hold under
small corrections. As we will show in the following, this is highly constraining on the
expressions for the 1/l2 corrections of the soft photon mode and residual gauge parameter.

6.1 1/l2 correction of the large gauge Ward identity

We derived the leading soft photon factor correction Sl (0)
em from a classical scattering anal-

ysis on an AdS spacetime in (4.52). To interpret the corresponding soft theorem for a
massless scattering process in terms of an associated Ward identity, we must define the
asymptotic surface on which it is defined. Our scattering process with the assumptions
on a large impact parameter is well approximated by the large l limit of a global AdS
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Figure 1. The Ward identity is defined across the null surfaces of the asymptotically flat spacetime
patch embedded within a larger AdS spacetime. The black dot at the center represents the black
hole treated as a point particle in our scattering approximation. The effect of 1/l2 corrections is to
perturb the asymptotically flat spacetime Ward identity defined on the surface of the patch.

spacetime, with the black hole as a point particle source located at the origin. The global
AdS4 metric is described by the metric

ds2 = l2

cos2 ρ

[
−dτ2 + dρ2 + sin2 ρdΩ2

2

]
. (6.29)

In the limit of l → ∞, we can identify an asymptotically flat patch close to the origin of
the AdS spacetime [45] that has recently been used to demonstrate the equivalence of the
asymptotically flat spacetime large gauge Ward identity with a CFT Ward identity [30].
In our case, the effect of 1/l2 corrections will be shown to affect the soft photon mode.
Hence the effect of 1/l2 corrections in the soft photon case has a natural interpretation as
a perturbation of the asymptotically flat spacetime large gauge Ward identity, evaluated
across null infinity of the patch embedded in the larger AdS spacetime. This is represented
in figure 1.

As noted through the expression in (4.4), the 1/l2 corrections do not affect the flat
spacetime asymptotic trajectories of particles in any scattering process that provide the soft
factor expressions up to subleading order. Hence the parametrizations for the momenta of
the hard (and soft) massless particles and the polarization can be taken to be the same as
those on asymptotically flat spacetime given in (6.24), (6.25) and (6.26).

Using these expressions in (4.52), we have the the following result for the soft factor
correction in terms of the asymptotic coordinates of the particles (z , z̄), (zk , z̄k) and the
soft photon frequency

Sl (0)
em = 1

4l2

[ ∑
k=out

p(k).ε+

p(k).q

~p2
(k)

(p(k).q)2Qk −
∑
k=in

p(k).ε+

p(k).q

~p2
(k)

(p(k).q)2Qk

]
(6.30)

= (1 + zz̄)3

16
√

2γ2ω

[ ∑
k=out

(1 + zkz̄k)2

(z̄ − z̄k)2
1

(z − zk)3Qk −
∑
k=in

(1 + zkz̄k)2

(z̄ − z̄k)2
1

(z − zk)3Qk

]
,

where we have denoted l2ω2 as γ2.
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A consistent deformation of the soft photon theorem given in (6.21) on asymptotically
flat spacetimes requires 1/l2 corrections on either side of the equation. This leads to the
following identity for scattering processes

〈out|aflat+ (ωx̂)S|in〉+ 〈out|ã+(ωx̂)S|in〉 =
(
Sflat (0)
em + Sl (0)

em

)
〈out|S|in〉 , (6.31)

with a separate theorem satisfied by the corrected components

〈out|ã+(ωx̂)S|in〉 = Sl (0)
em 〈out|S|in〉 . (6.32)

In (6.31), Sflat (0)
em and Sl (0)

em are the universal leading contributions without and with
1/l2 corrections respectively, and ã+ denotes a creation operator in the out state corre-
sponding to the 1/l2 correction. Note that the ã+ operator must be distinct from the flat
space soft photon operator and in particular has a different dimension. We will make this
point clear by defining ã+ = 1

l2a
AdS
+ later on.

The way to interpret (6.31) is that there exists a scattering process in flat spacetime,
and we insert a soft photon mode which involves a 1/l2 contribution. This leads to a
corresponding 1/l2 correction of the soft factor. This result informs us that there must
be 1/l2 corrections of both ∂wN and the gauge parameter ε appearing in the usual flat
spacetime Ward identity given in (6.16). The reason for 1/l2 corrections in ∂wN also
follows from 1/l2 corrections of the soft photon operator.

On the other hand, the soft factor informs us on the 1/l2 correction of the gauge
parameter ε(zk , z̄k). This must involve the terms appearing in the parenthesis of (6.30).
However, we desire that the gauge parameter have some of the properties of the asymtoti-
cally flat spacetime gauge parameter given in (6.18). We accordingly define the total gauge
parameter to be

ε(z , z̄) = εflat(z , z̄) + 1
l2
εAdS(z , z̄) ;

εflat(z , z̄) = 1
w − z

,

εAdS(z , z̄) = (1 + zz̄)2

(w̄ − z̄)2
(1 + ww̄)2

(w − z)3

= εflat(z , z̄)(1 + zz̄)2

(w̄ − z̄)2
(1 + ww̄)2

(w − z)2 . (6.33)

We thus have defined εAdS = Ωεflat, where Ω = (1+zz̄)2

(w̄−z̄)2
(1+ww̄)2

(w−z)2 is a factor invariant
under the interchange of w ↔ z and w̄ ↔ z̄. We note that this property ensures that
εAdS does change sign under the interchange of w with z, as in the case of εflat. This
requirement led us to include the factor (1 +ww̄)2 in the definition of εAdS apart from the
term appearing in the parenthesis of (6.30).

As noted above, we also have 1/l2 corrections of the soft photon creation and annihi-
lation operators. We accordingly have a correction of ∂wN

∂wN = ∂wN flat + 1
l2
∂wNAdS ; (6.34)

∂wN flat = −
√

2
8π

1
1 + ww̄

lim
ω→0

[
ωaflat+ (ωx̂) + ωaflat− (ωx̂)†

]
. (6.35)
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The goal is to determine the form of ∂zNAdS such that the Ward identity for large
gauge transformations in (6.16) gives the soft photon theorem in (6.31), with the factor
given in (6.30). By using the expressions from (6.33) and (6.34) in (6.16), and collecting
the 1/l2 coefficient, we find

4
∫
d2w

[
∂w̄ε

flat〈out|∂wNAdS(w , w̄)S|in〉

+ ∂w̄ε
AdS〈out|∂wN flat(w , w̄)S|in〉

]
=
[ ∑
k=in

(1 + zkz̄k)2

(z̄ − z̄k)2
(1 + zz̄)2

(z − zk)3Qk −
∑
k=out

(1 + zkz̄k)2

(z̄ − z̄k)2
(1 + zz̄)2

(z − zk)3Qk

]
〈out|S|in〉 .

(6.36)

Eq. (6.36) will agree with the correction to the soft photon theorem given in (6.32) if

4
l2

∫
d2w

[
∂w̄ε

flat〈out|∂wNAdS(w , w̄)S|in〉

+ ∂w̄ε
AdS〈out|∂wN flat(w , w̄)S|in〉

]
= − 16

√
2

(1 + zz̄) lim
ω→0
〈out|ω3ã+(ωx̂)S|in〉 . (6.37)

This can only be true if ∂wNAdS involves a sum of two parts — a term ∂wNAdS
1 which

provides the ã+ contribution and another term ∂wNAdS
2 which only involves aflat+ . We hence

assume
∂wNAdS = ∂wNAdS

1 + ∂wNAdS
2 , (6.38)

with

∂wNAdS
1 = h(w , w̄) lim

ω→0

[
ω3aAdS+ (ωx̂) + ω3aAdS− (ωx̂)†

]
(6.39)

∂wNAdS
2 = g(w , w̄) lim

ω→0

[
ωaflat+ (ωx̂) + ωaflat− (ωx̂)†

]
, (6.40)

where
ã±(ωx̂) = 1

l2
aAdS± (ωx̂) , ã±(ωx̂)† = 1

l2
aAdS± (ωx̂)† . (6.41)

We can now determine the expressions for h(w , w̄) and g(w , w̄) from the l.h.s. of (6.36),
which can be expressed as

4
∫
d2w

[
∂w̄ε

flat〈out|∂wNAdS
1 S|in〉+ ∂w̄ε

flat〈out|∂wNAdS
2 S|in〉

+ ∂w̄ε
AdS〈out|∂wN flatS|in〉

]
= 4

∫
d2w∂w̄ε

flat〈out|∂wNAdS
1 S|in〉

− 4
∫
d2w

[
εflat〈out|∂w̄∂wNAdS

2 S|in〉+ εAdS〈out|∂w̄∂wN flatS|in〉
]
. (6.42)

Hence the first term in the r.h.s. of (6.42) gives us

4
∫
d2w∂w̄ε

flat〈out|∂wNAdS
1 S|in〉 = 8π〈out|∂zNAdS

1 (z , z̄)S|in〉 . (6.43)
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Using the expression from (6.39), we then find

h(z , z̄) = − 16
√

2
8π(1 + zz̄) ,

⇒ ∂zNAdS
1 (z , z̄) = − 16

√
2

8π(1 + zz̄) lim
ω→0

[
ω3aAdS+ (ωx̂) + ω3aAdS− (ωx̂)†

]
. (6.44)

We now also require that the last two terms in the r.h.s. of (6.42) cancel, which
determines the ∂zNAdS

2 contribution. From taking the w̄ derivative of ∂wN flat in (6.35)
we have

∂w̄∂wN flat =
√

2
8π

w

(1 + ww̄)2 lim
ω→0

[
ωaflat+ (ωx̂) + ωaflat− (ωx̂)†

]
. (6.45)

Using (6.45) and the expressions for εAdS(w , w̄) and ∂wNAdS
2 from (6.33) and (6.40)

respectively, we then find that the terms in the last line of (6.42) to be∫
d2w

[
εflat〈out|∂w̄∂wNAdS

2 S|in〉+ εAdS〈out|∂w̄∂wN flatS|in〉
]

=
∫
d2wεflat

[
∂w̄g(w , w̄) +

√
2

8π
(1 + zz̄)2

(w̄ − z̄)2
w

(w − z)2

]
〈out|ωaflat+ (ωx̂)S|in〉 . (6.46)

Thus (6.46) vanishes if

g(w , w̄) = −
∫
dw̄

√
2

8π
(1 + zz̄)2

(w̄ − z̄)2
w

(w − z)2 =
√

2
8π

(1 + zz̄)2

(w̄ − z̄)
w

(w − z)2 (6.47)

Hence from (6.40) the result for ∂wNAdS
2 takes the form

∂wNAdS
2 =

√
2

8π
(1 + zz̄)2

(w̄ − z̄)
w

(w − z)2 lim
ω→0

[
ωaflat+ (ωx̂) + ωaflat− (ωx̂)†

]
(6.48)

Thus the equation for the 1/l2 corrected Ward identity on asymptotically flat space-
times is

4
∫
d2w

[
∂w̄ε

flat〈out|∂wNAdS(w , w̄)S|in〉

+ ∂w̄ε
AdS〈out|∂wN flat(w , w̄)S|in〉

]
=
[∑
k=in

Qkε
AdS(zk , z̄k)−

∑
k=out

Qkε
AdS(zk , z̄k)

]
〈out|S|in〉 , (6.49)

which agrees with the corrected soft photon theorem in (6.32) by choosing ε(z , z̄) as
in (6.33), and ∂wN (w , w̄) as in (6.38).

To summarize our main result in this section, we argued that 1/l2 corrections in the soft
photon factor arise due to a perturbation of the soft photon theorem on asymptotically flat
spacetimes. The perturbed soft theorem was given in (6.32). Using the known equivalence
between soft theorems and large gauge Ward identities on asymptotically flat spacetimes,
we could then derive a perturbed Ward identity which is given in (6.49). In the process
of demonstrating this equivalence up to 1/l2, we determined the corrections of the gauge
parameter in (6.33) and the soft photon mode in (6.44) and (6.48). Our results are defined
across null infinity on the asymptotically flat patch that arises in the large l limit of
asymptotically AdS spacetimes, as indicated in figure 1.
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7 Conclusion and open questions

Defining a quantum soft theorem in asymptotically AdS spaces is not only a technically
involved problem but also is an unclear issue as the notion of asymptotic in and out
states are not well defined in AdS spacetime. Thus an alternative way to look for a
possible soft factorization is required. The analysis of [21, 22] for asymptotically flat
theories showed that the soft factorization is also evident in classical radiation profiles. For
asymptotically flat spacetimes, the radiative parts of the electromagnetic and gravitational
fields produced in a classical scattering process provide the same leading quantum soft
factor obtained from S-matrix, up to the usual gauge ambiguity. Therefore, we looked
for a similar behaviour in asymptotically AdS systems with a small cosmological constant
and found a similar factorization by assuming the cosmological constant as a perturbation
parameter over asymptotically flat gravity. By considering the large impact parameter
scattering of a probe particle with a black hole in AdS spacetime, we derived the 1/l2

corrections due to the AdS potential to the known leading ω−1 and subleading lnω−1 soft
photon and soft graviton factors of four dimensional asymptotically flat spacetimes.

In [30] and [45], asymptotically flat spacetime scattering amplitudes were shown to
result from the l → ∞ limit of AdS boundary correlation functions. The scattering am-
plitudes resulting from this limit are defined on the boundary of an asymptotically flat
spacetime patch around the center of AdS. A description of bulk fields in terms of bound-
ary operators, determined by using the HKLL formalism [46], can identify photon operators
in the flat spacetime patch in terms of a U(1) current. Additionally, the large gauge Ward
identity for the soft photon theorem on asymptotically flat spacetimes was shown to be
equivalent to a conformal Ward identity in taking the limit of l → ∞ and ω → 0 simul-
taneously while keeping ωl fixed [30]. This precisely corresponds to the double scaling
limit considered in this paper, and in a previous derivation of the soft graviton factor from
classical scattering processes on asymptotically AdS spacetimes [33].

Our analysis reveals that up to 1/l2 corrections, the double scaling limit does not affect
hard particle trajectories from their flat spacetime expressions, while soft factors do involve
corrections due to the consideration of an asymptotically AdS spacetime. This suggests that
asymptotically flat spacetime large gauge Ward identities should be perturbed from 1/l2

corrections of the soft particles, while being defined on the same asymptotic boundaries for
hard particles in the l→∞ of asymptotically AdS spacetimes, i.e the flat spacetime patch
around the center. In Section 6, we made use of the universality of the leading soft photon
factor to investigate 1/l2 corrections to the flat spacetime large gauge Ward identity in a
massless scattering process. We determined that the perturbed identity results from 1/l2

corrections of the asymptotically flat spacetime soft photon mode and gauge parameter,
which we derived up to an overall factor. This derivation only assumed that large gauge
Ward identities and soft theorems on asymptotically flat spacetimes continue to remain
equivalent under small perturbations of the soft particles.

It will be interesting to relate the 1/l2 corrected soft photon Ward identity with a CFT
Ward identity on asymptotically AdS spacetimes. These results can be derived using the
formalism in [30] and [45], while now retaining 1/l2 terms in the large AdS radius limit.
The derivation lies outside the scope of this paper and will be presented in future work.
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A Classical soft graviton theorem

In this section we will consider the contribution of the scatterer black hole charge to the
gravitational soft factor. For a detailed calculation of the gravitation soft factor as a
contribution of potential due to the black hole mass and AdS radius we refer the reader
to [32] and [33] respectively.

Sgr in D = 4 dimensions can be computed using,

Sgr = i
4πR
eiωR

εij ẽij(ω, ~x) , (A.1)

Similar to the electromagnetic case, we let r0 = t, assume x � r(t) and we will
write (3.21) as,

ẽij(ω, ~x) = ẽ
(1)
ij (ω, ~x) + ẽ

(2)
ij (ω, ~x) + ẽ

(3)
ij (ω, ~x) + ẽ

(4)
ij (ω, ~x) + ẽ

(5)
ij (ω, ~x)

+ ẽ
(6)
ij (ω, ~x) + ẽ

(7)
ij (ω, ~x) + ẽ

(8)
ij (ω, ~x) + ẽ

(9)
ij (ω, ~x) + ẽ

(10)
ij (ω, ~x) , (A.2)

where

ẽ
(1)
ij (ω, ~x) = m eiωR

4π R
1

1− x2

2l2

∫
dt(

1 + 2Φ(~r(t)) + r2

4l2
) dt
dσ

vivj e
iω(t−n̂.~r(t))

+ boundary terms , (A.3)

ẽ
(2)
ij (ω, ~x) = m

2π

∫
dt
dt

dσ
eiωt(1 + ~v2)

(
∇i∇j −

1
2δij ∇k∇k

)
G̃M (ω, ~x, ~r) , (A.4)

ẽ
(3)
ij (ω, ~x) = −i Mm

16π2 ω
eiωR

R

∫
dt
dt

dσ
vi vj

×
{

ln |~r
′|+ n̂.~r ′

R
eiω(t−n̂.~r ′) +

∫ ∞
|~r ′|+n̂.~r ′

du

u
eiω(t−n̂.~r ′+u)

}
, (A.5)

ẽ
(4)
ij (ω, ~x) = iωm

π

∫
dt
dt

dσ
eiωt (vi∇j + vj∇i) G̃M (ω, ~x,~r) , (A.6)

ẽ
(5)
ij (ω, ~x) = −iω qQ

2πM

∫
dteiωtδijvk∇kG̃M (ω, ~x,~r) , (A.7)

ẽ
(6)
ij (ω, ~x) = i

qQ

πM

∫
dteiωt

(
∇i∇j −

1
2δij ∇k∇k

)
G̃M (ω, ~x,~r) , (A.8)

ẽ
(7)
ij (ω, ~x) = iω

qQ

2πM

∫
dteiωt (vi∇j + vj∇i) G̃M (ω, ~x, ~r) (A.9)

ẽ
(8)
ij (ω, ~x) =− m

8πl2
∫
dt
dt

dσ

[
−
(
2− ~v2

)
∇i∇j −

3
2δijvkvm∇k∇m −

1
2δijv

2∇k∇k

− 3
2 (vkvj∇k∇i + vkvi∇k∇j) + vivj∇k∇k

]
G̃l (ω, ~x, ~r) , (A.10)
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ẽ
(9)
ij (ω, ~x) =− m

8πl2ω
2
∫
dt
dt

dσ
eiωtvivjG̃l (ω, ~x,~r) , (A.11)

ẽ
(10)
ij (ω, ~x) = m

8πl2
∫
dt
dt

dσ

5
8e

iωt(vi∇j + vj∇i)G̃l (ω, ~x,~r) , (A.12)

ẽ
(1)
ij (ω, ~x) to ẽ

(4)
ij (ω, ~x) are contributions of the black hole mass. ẽ

(5)
ij (ω, ~x) to ẽ

(7)
ij (ω, ~x)

arises due to the charge of the black hole. ẽ(8)
ij (ω, ~x) to ẽ(10)

ij (ω, ~x) can be treated as the
contribution from the AdS radius.

The contribution of black hole mass and charge to the soft factor for gravitation was
explicitly derived in [32],

Sflat
gr = i

4πR
eiωR

εij ẽij(ω, ~x)

= −m
ω
εij

 1
1− n̂.~β+

1√
1− ~β2

+

β+iβ+j −
1

1− n̂.~β−
1√

1− ~β2
−

β−iβ−j


− im lnω−1εij

 1√
1− ~β2

+

{
C+

(
1

1−n̂.~β+
+ 1

1−~β2
+

)
− M

8π |~β+|3
3~β2

+ − 1
1− ~β2

+

}
β+iβ+j

− 1√
1− ~β2

−

{
C−

(
1

1− n̂.~β−
+ 1

1− ~β2
−

)
+ M

8π |~β−|3
3~β2
− − 1

1− ~β2
−

}
β−iβ−j


− imM

4π ln (Rω) εij
 1

1− n̂.~β+

1√
1− ~β2

+

β+iβ+j −
1

1− n̂.~β−
1√

1− ~β2
−

β−iβ−j


− iqQ4π lnω−1εij

[
β+iβ+j

|~β+|3
+ β−iβ−j

|~β−|3

]
+ finite (A.13)

To complete the analysis we need the expression for C±, which can be determined from
considering the energy conservation equation. The energy of the probe particle can be
written from the point particle action in (2.13) as,

E = m|g00|
dt

dσ
− q

4πA0 (A.14)

Expanding this expression in powers of t, we then find from the 1
t coefficient the following

relation of C± with M and Q [32]

C± = ∓ M

8π |~β±|3
(1− 3~β2

±)∓ qQ

4πm|~β±|3
(1− ~β2

±)3/2 . (A.15)

Substituting for M and Q in (A.13) using (A.15) gives

Sflat
gr =− m

ω
εij

 1
1− n̂.~β+

1√
1− ~β2

+

β+iβ+j −
1

1− n̂.~β−
1√

1− ~β2
−

β−iβ−j


− im lnω−1εij

C+
1

1− n̂.~β+

1√
1− ~β2

+

β+iβ+j − C−
1

1− n̂.~β−
1√

1− ~β2
−

β−iβ−j
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− imM

4π ln (Rω) εij
 1

1− n̂.~β+

1√
1− ~β2

+

β+iβ+j −
1

1− n̂.~β−
1√

1− ~β2
−

β−iβ−j

 .
(A.16)

This result agrees with the classical limit of the soft graviton factor, up to the sublead-
ing logarithmic contribution, in asymptotically flat spacetimes. In [33], the leading order
contribution of cosmological constant to the soft factor was derived with the following
expression

Slgr = − m

2γ2 ω
−1 εij

 1
(1− n̂.~β)3

β+iβ+j
~β2

+(3− 2~β2
+)

(1− ~β2
+)

3
2
− 1

(1− n̂.~β)3
β−iβ−j

~β2
−(3− 2~β2

−)

(1− ~β
3
2
−)


− i m2γ2 lnω−1 εij

 β+iβ+j

(1− n̂.~β+)3

C+~β
2
+(3− 2~β2

+)(
1− ~β2

+

) 3
2
− β−iβ−j

(1− n̂.~β−)3

C−~β
2
−(3− 2~β2

−)(
1− ~β2

−

) 3
2

 .
(A.17)
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