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branes and O7-plane; the dual string theories should be particular orientifolds of AdS5×S5

superstring. Starting with the localization matrix model representation for the N = 2 par-
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1 Introduction and summary

An important problem in understanding detailed workings of AdS/CFT duality is to study
1/N corrections to superconformal gauge theory observables and their matching to string
loop corrections. BPS Wilson loop in N = 4 super Yang-Mills theory provides a remarkable
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example when its expectation value 〈W〉 as a function of N and λ = g2
YMN can be found

exactly [1]. Expanding first at large N and then at large λ one finds in the SU(N) theory

〈W〉N=4
SU(N)

= e
λ

8N (1−1/N)L
(1)
N−1

(
− λ

4N

)
= N e

√
λ
∞∑
p=0

cp
λ

6p−3
4

N2p

[
1 + O

( 1√
λ

)]

= e2π T
∞∑
p=0

c′p

(
gs√
T

)2p−1 [
1 + O

(
T−1

)]
, (1.1)

where we expressed the result in terms of the string coupling and tension of the dual
AdS5 × S5 string theory

gs = λ

4πN , T = L2

2πa′ =
√
λ

2π ,
1
N

= gs
πT 2 . (1.2)

As was argued in [2], the particular structure (1.1) of the small gs, large T expansion of 〈W〉
is indeed expected on the string-theory side and may apply also to other closely related
theories with less supersymmetry.

Indeed, the same expansion (1.1) was found recently for two special N = 2 4d super-
conformal models — SU(N) × SU(N) “orbifold” [3] and SU(N) “orientifold” [4] that are
planar-equivalent to N = 4 SYM theory. Here the localization approach [5, 6] allows one to
expresses the expectation value 〈W〉 in terms of a non-trivial matrix model integral. One
is then able to extract the large λ behaviour of the leading non-planar 1/N correction,
finding that it scales as λ3/2 relative to the planar (i.e. N = 4 SYM) term, in agreement
with (1.1).

The aim of the present paper is to consider two other (SU(N) and Sp(2N)) examples of
N = 2 “orientifold” superconformal models for which 〈W〉 can be also computed using the
localization matrix model of [5] (see also [7–9]). These models are still planar-equivalent to
N = 4 SYM but in contrast to the “orientifold” model studied in [4] (N = 2 vector multiplet
coupled to hypermultiplets in symmetric and in antisymmetric SU(N) representation) will
contain a finite (N -independent) number nF of hypermultiplets in the fundamental repre-
sentation. The later are effectively related to the presence of (a finite number of) D7-branes
in the dual string theory description and thus to a different type of the orbifold/orientifold
of AdS5 × S5 string theory than in the previous case of nF = 0 [10–13]. We shall find that
here the structure of the large N , large λ expansion of the BPS Wilson loop expectation
value 〈W〉 will be different from (1.1), raising an interesting question of how to explain this
on the dual string theory side.

1.1 Review of N = 2 models

Let us first review 4d N = 2 superconformal gauge theories we are interested in. The
condition of conformal invariance of an SU(N) model with a number of hypermultiplets
in the adjoint, fundamental, rank-2 symmetric, and rank-2 antisymmetric representations
is [14, 15]

SU(N) : β1 = 2N − 2N nAdj − nF − (N + 2)nS − (N − 2)nA = 0 . (1.3)
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The non-zero number of adjoints can only be nAdj = 1 when we find the N = 4 SYM
(nF = nA = nS = 0). For nAdj = 0 we get N = 2 superconformal models with nF =
2N − (N + 2)nS − (N − 2)nA . To have planar equivalence with N = 4 SYM (and thus
a relatively simple AdS dual) the number nF should not depend on N . This implies that
nS +nA = 2 and thus there are only two non-trivial solutions that we shall refer to as “SA”
(symmetric+antisymmetric) and “FA” (fundamental+antisymmetric) models

SU(N) : SA : (nF , nS , nA) = (0, 1, 1) , FA : (nF , nS , nA) = (4, 0, 2) .
(1.4)

Both N = 2 theories are dual to certain orbifold/orientifold projections of AdS5×S5 super-
string [13] and for that reason we shall refer to them respectively as the “SA-orientifold”
and the “FA-orientifold”. It is the SA-orientifold model that was discussed in [4] and here
we shall study the FA-orientifold model.

For completeness, let us recall that the 4d conformal anomaly a and c coefficients of
an N = 2 superconformal model are determined by the free-theory values, i.e. in terms of
the total number of the vector multiplets and hypermultiplets (counting also dimensions
of their representations): a = 5

24 nv + 1
24 nh, c = 1

6 nv + 1
12 nh. The resulting explicit values

are given below
SU(N) a c

N = 4 SYM 1
4N

2 − 1
4

1
4N

2 − 1
4

N = 2 SA 1
4N

2 − 5
24

1
4N

2 − 1
6

N = 2 FA 1
4N

2 + 1
8N −

5
24

1
4N

2 + 1
4N −

1
6

Similarly, in the case of the Sp(2N) gauge group the condition of conformal invariance of
the N = 2 model containing the adjoint, fundamental and antisymmetric hypermultiplets
reads [14] (cf. (1.3))1

Sp(2N) : β1 = 2N + 2− (2N + 2)nAdj − nF − (2N − 2)nA = 0 . (1.5)

The Sp(2N) N = 4 SYM theory corresponds to nAdj = 1, nF = nA = 0. For nAdj = 0
demanding planar equivalence to N = 4 SYM implies that nF should be independent of N
and thus the only solution is the FA-orientifold model with nF = 4, nA = 1

Sp(2N) : FA : (nF , nA) = (4, 1) . (1.6)

1In this paper we shall denote by Sp(2N) the compact symplectic group USp(2N) = U(2N)∩Sp(2N,C)
(sometimes also denoted as Sp(N)) so that Sp(2) = SU(2). The dimensions of its adjoint, fundamental
and antisymmetric representations are, respectively, dim Adj = dim[Sp(2N)] = N(2N + 1), dim F = 2N ,
dim A = N(2N − 1)− 1. Note while the groups Sp(2N) and SO(2N) and their representations are formally
related by N → −N [16], the index of a representation that enters the 1-loop beta-function is always
positive (i.e. its sign is changed at the same time with taking N → −N). Thus the conformal invariance
condition is not invariant and has different solutions for the two groups. For example, the antisymmetric
representation of Sp(2N) is mapped to the symmetric traceless representation of SO(2N) with the index
2N + 2 which is larger than the index of the adjoint SO(2N) representation 2N − 2. Thus there are no
SO(2N) conformal theories with hypermultiplets in the symmetric traceless representation [14].
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The corresponding conformal anomaly coefficients are given below:

Sp(2N) a c

N = 4 SYM 1
2N

2 + 1
4N

1
2N

2 + 1
4N

N = 2 FA 1
2N

2 + 1
2N −

1
24

1
2N

2 + 3
4N −

1
12

1.2 Summary of the results

Let us now summarise the main results of this paper starting with the SU(N) case. As
in the case of the SA-orientifold [4] the structure of the localization matrix model implies
that the leading 1/N corrections to the Wilson loop expectation value can be expressed in
terms of the corresponding corrections to the gauge theory free energy F (λ,N) = − logZ
on 4-sphere. For that reason the main effort goes into the study for the large N expansion
of F .

To recall, in the case of the SU(N) N = 4 SYM theory where the partition function Z
is given by the Gaussian matrix model [1, 5] one finds (after subtracting the “trivial” UV
divergence in a particular scheme, see also appendix A) [17]

SU(N) : FN=4(λ) = −1
2(N2 − 1) log λ . (1.7)

The large N expansion of the free energy of the N = 2 FA-orientifold model which is
planar-equivalent to the N = 4 SYM may be represented as

SU(N) : F (λ) = FN=4(λ) +N F1(λ) + F2(λ) + O

( 1
N

)
. (1.8)

The F1 term was absent in the case of the SA-orientifold in [4] (it is related to the presence
of the fundamental hypermultiplets in the spectrum of this N = 2 model). F1 admits an
explicit integral representation in terms of Bessel functions (3.14) allowing to find its strong
coupling expansion

F1
λ�1= f1λ+ f2 log λ+ f3 + f4 λ

−1 + O
(
e−
√
λ
)
, (1.9)

f1 = log 2
4π2 , f2 = −1

4 , f3 = 1
2 log π + 7

6 log 2 + 3
4 − 6 log A, f4 = −π

2

4 , (1.10)

where A is the Gleisher’s constant.2 There is just a finite number of “polynomial” in large
λ corrections and an infinite number of exponential e−(2n+1)

√
λ corrections reflecting the

asymptotic nature of the strong coupling expansion (see (6.19); here we omit the λ−1/4

prefactor of e−
√
λ).

F2 may be written as the sum of the two different contributions: a simpler one F̃2
which is related to F1 by a differential relation and a more complicated one F̄2 which turns
out to be the same as the leading 1/N2 correction to F in the SA-orientifold case in [4]

F2(λ) = F̃2(λ) + F̄2(λ) , F̃ ′2 = −λ2
[
(λF1)′′

]2
, (1.11)

2Note that log 2 in f1 originates from the Dirichlet η-function value η(1) =
∑∞

k=1
(−1)k−1

k
= log 2

(see (6.3)).
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where (. . . )′ = d
dλ(. . . ). As a result,3

F̃2
λ�1= p1λ

2 + p2 λ+ p3 log λ+ p4 + O
(
e−
√
λ
)
, (1.12)

F̄2
λ�1= k1λ

1/2 + k2 log λ+ k3 + O(λ−1/2) , (1.13)

p1 = −f2
1 , p2 = −2f1f2 , p3 = −1

2f
2
2 , . . . , k1 = 1

2π , . . . . (1.14)

where the values of fi were given in (1.10). The form of the exponential corrections in F̃2
follows from those in F1 and the relation in (1.11), and similar corrections are expected
in F̄2.

The large N expansion of the circular 1
2 -BPS Wilson loop expectation value in this

N = 2 theory can be written as

SU(N) : 〈W〉 = N W0(λ) +W1(λ) + 1
N

[W0,2(λ) +W2(λ)] + O

( 1
N2

)
, (1.15)

where W0 and W0,2 are the leading N = 4 SYM contributions following from (1.1) [1, 18]

W0 = 2√
λ
I1(
√
λ) , W0,2 = 1

48
[
−12
√
λ I1(

√
λ) + λ I2(

√
λ)
]
, (1.16)

while W1 and W2 are the genuine N = 2 corrections. As we will show, they can be
expressed in terms of the 1/N corrections F1 and F2 to the free energy (1.8) by the following
remarkable differential relations (cf. (1.11))

W ′1 = −λ4 W0 (λF1)′′ , W2 = −λ
2

4 W0 F
′
2 . (1.17)

Using (1.9)–(1.14) in (1.17) and normalizing to the leading planar value

W0
λ�1=

√
2
π
λ−3/4e

√
λ
[
1 + O

( 1√
λ

)]
, (1.18)

we then find for the strong coupling expansions of W1 and W2

W1
W0

λ�1= − f1 λ
3/2 + 3

2f1λ−
(3

8f1 + 1
2f2

)
λ1/2 + O(λ0) , (1.19)

W2
W0

λ�1= 1
2f

2
1 λ

3 + 1
2f1f2 λ

2 − 1
8k1λ

3/2 + O(λ) . (1.20)

Like F1 in (1.8), the W1 term in (1.15) was absent in the case of the SA-orientifold in [4]
(where there were no odd powers in 1/N series). Also, in the SA-orientifold case the
expansion ofW2/W0 started with the k1λ

3/2 term that originated from the F̄2 term in (1.13)
3The analysis in [4] showed that the leading large λ term in F̄2 is definitely λ1/2. The derivation of its

coefficient k1 = 1
2π was based on partially heuristic analysis of the determinant of an infinite matrix, whose

matrix elements admit an asymptotic expansion for large λ. A comparison with Padé resummation of the
determinant revealed that 1

2π may actually be a lower estimate of the exact value of k1. This issue will not
be relevant for the large λ expansion in the models considered here where F̃2 is dominant over F̄2 at large
coupling.
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in view of (1.17). The expressions (1.19), (1.20) also contain exponential corrections as
follows from (1.9), (1.12) and (1.17).

Similar results are found in the case of the Sp(2N) FA-orientifold model (1.6) which
is more tractable as the corresponding localization N = 2 matrix model is simpler than in
the SU(N) case. Here4

Sp(2N) : F = FN=4 +N F1(λ) + F2(λ) + 1
N

F3(λ) + 1
N2 F4(λ) + O

( 1
N3

)
, (1.21)

FN=4 = −1
2N(2N + 1) log λ . (1.22)

It turns out that the structure of the corresponding matrix model implies that F1, F2 and
F3 can be expressed in terms of the function F1 in (1.8) (and its integral F̃2 in (1.11)) that
appeared in the SU(N) case

F1 = 2F1 , F2 = 1
2(λF1)′ + 2 F̃2 , F̃ ′2 = −λ2

[
(λF1)′′

]2
, (1.23)

F3 = λ2

24 (λF1)′′′ − λ2

4
[
(λF1)′′

]2
+ λ3

3
[
(λF1)′′

]3
, F4 = −2λ2

4!
(
λ3 [(λF1)′′

]4)′ + . . . .

(1.24)

Similar expressions in terms of derivatives of F1 appear to exist also for higher Fn terms
in (1.21).

Computing the strong-coupling expansion of Fn we find that (cf. (1.8), (1.9), (1.12))

F = FN=4 + ∆F λ�1= ∆Fpol −
(
N2 +N − 3

16

)
log λ− π2

2
N

λ
+ O(e−

√
λ) , (1.25)

where ∆Fpol stands for the polynomial in λ part of the strong coupling expansion. Note
that log λ term in (1.25) receives contributions only at orders N2, N and N0 while the λ−1

term appears only at order N .
Remarkably, the sum of the leading large λ terms in ∆Fpol at each order in 1/N

appears to have a closed log expression (f1 = log 2
4π2 as in (1.10))

∆Fpol = N
[
2f1λ+ O(λ0)

]
+
[
2f2

1λ
2 + O(λ)

]
+ 1
N

[8
3f

3
1λ

3 + O(λ2)
]

+ O

( 1
N2

)
= N2F

(
λ

N

)
+ . . . , F

(
λ

N

)
= log

(
1 + 2f1

λ

N

)
. (1.26)

Combined with the N2 log λ term in (1.25) the leading strong-coupling expression for F
is then

F
λ�1= −N2 log λ+N2F

(
λ

N

)
+ · · · = N2 log

(
λ−1 + 2f1N

−1
)

+ · · · = N2 log
[
N−1

(
g−2

YM + 2f1
)]

+ . . . ,

(1.27)
suggesting possible role of a finite redefinition of the inverse coupling constant.

4Here we shall use the same definition for λ as in the SU(N) case, i.e. λ = g2
YMN (i.e. without extra

factor of 2 as, e.g., in [19]).
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The large N expansion of the Wilson loop expectation value here can be written as
(cf. (1.15))

Sp(2N) : 〈W〉 = 〈W〉N=4 + 〈W〉 , ∆〈W〉 = W1 + 1
N

W2 + 1
N2 W3 + O

( 1
N3

)
,

(1.28)

where the N = 4 Sp(2N) SYM contribution is [7, 19] (cf. (1.1))

〈W〉N=4 = 2 e
λ

16N

N−1∑
k=0

L2k+1

(
− λ

8N

)
= N W0 + W0,1 + 1

N
W0,2 + O

( 1
N2

)
, (1.29)

W0 = 4√
λ
I1(
√
λ) = 2W0 , W0,1 = 1

2I0(
√
λ)− 1

2 , W0,2 = λ

96 I2(
√
λ). (1.30)

As in the SU(N) case, one finds that the N = 2 corrections W1 and W2 are expressed in
terms of F1 = 2F1 and F2 as in (1.17) so that

W′1 = −λ4 W0 (λF1)′′ , W2 = −λ
2

8 W0 F′2 = −λ
2

8 W0

[1
2 (λF1)′′ − λ

[
(λF1)′′

]2]
.

(1.31)
Comparing W1 and W0 with W1 and W0 in the SU(N) case in (1.16), (1.17) we conclude
that their ratio is the same for any λ. The analog of the strong-coupling expansions
in (1.19), (1.20) is5

W1
W0

λ�1= W1
W0

= −f1 λ
3/2 + 3

2 f1 λ−
(3

8f1 + 1
2f2

)
λ1/2 + O(λ0) , (1.32)

W2
W0

λ�1= 1
2f

2
1λ

3 − 1
8f1(1− 4f2)λ2 − 1

16f2(1− 2f2)λ+ O(e−
√
λ) . (1.33)

Similar relations between higher order 1/N terms Fn in free energy (1.21) and Wn in (1.28)
are expected also in general, with the dominant large λ term in Fn determining the strong
coupling asymptotics of Wn. In particular,

W3 = −λ
3/2

4! W0
[
λ(λF1)′′

]3 + . . . ,
W3
W0

λ�1= − 1
3!f

3
1λ

9/2 + O(λ4) . (1.34)

Combining the leading terms in (1.32), (1.33) and (1.34) suggests that the dominant (at
each order in 1/N) strong coupling terms in ∆〈W〉 in (1.28) exponentiate as

〈W〉 = (NW0 + . . . ) + ∆〈W〉 λ�1= NW0 exp
[
−f1

λ3/2

N

]
+ . . . . (1.35)

This may be compared with similar exponentiation of the leading large λ terms in the
N = 4 SYM case: as one finds from (1.1) in SU(N) case [1] and from (1.29) in the Sp(2N)

5Note that the leading terms in (1.33) and (1.20) are the same but subleading terms have different
structure.
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case (see appendix C)

SU(N) : 〈W〉N=4 λ�1= NW0 exp
[
λ3/2

96N2

]
+ . . . , (1.36)

Sp(2N) : 〈W〉N=4 λ�1= 2NW0

(
1 + λ1/2

8N

)
exp

[
λ3/2

96 (2N)2

]
+ . . . , (1.37)

where W0 is given by (1.18). Note that the
(
1 + λ1/2

8N

)
prefactor that generates odd powers

of 1/N in the expansion of 〈W〉N=4 in Sp(2N) case in (1.37) can be absorbed into e
√
λ in

W0 by shifting N → N + 1
4 in the definition of λ = g2

YMN (assuming one keeps only the
leading large λ term at each order in 1/N).6

1.3 Comments on dual string theory interpretation

Let us now discuss string theory interpretation of these strong-coupling expansions derived
on the gauge theory side. The SU(N) FA-orientifold (i.e. the N = 2 SU(N) superconformal
model with nF = 4 and nA = 2) may be engineered in flat-space type IIB superstring as
a low-energy limit of the worldvolume theory on a stack of coincident N D3-branes in
the presence of four D7-branes and one O7-plane (see [13] and references there).7 Taking
the large-N near-horizon limit of the underlying brane configuration one concludes that
the dual string theory should be a projection AdS5×S′5, S′5 = S5/Gori, of the original
AdS5 × S5 type IIB theory [13]. Here Z2,orb of Gori = Z2,orb × Z2,ori acts as ϕ1 → ϕ1 + π,
ϕ2 → ϕ2 + π and Z2,ori acts as ϕ3 → ϕ3 + π on the coordinates of S5 with the metric
ds2

5 = dθ2
1 + cos2 θ1 (dθ2

2 + cos2 θ2 dϕ
2
1 + sin2 θ2 dϕ

2
2) + sin2 θ1 dϕ

2
3.

Similarly, the dual string theory for the Sp(2N) FA-orientifold (i.e. the N = 2 Sp(2N)
superconformal model with nF = 4 and nA = 1) corresponds [10, 11] to the near-horizon
limit of N D3-branes with 8 D7-branes stuck on one O7-plane, i.e. is the type IIB super-
string on AdS5×S′5, S′5 = S5/Z2,ori (D7 is wrapped on AdS5×S3 where S3 is fixed-point
locus of Z2,ori).

In both SU(N) and Sp(2N) cases, the presence of D7-branes introduces the new D3-D7
open string sector (with massless modes being related to the fundamental hypermultiplets
in the corresponding gauge theory). That means, in particular, that the dual string theory
perturbation theory will involve both closed-string and open-string world-sheet topologies,
i.e. corrections of both even and odd powers in gs, corresponding to even and odd powers
of 1/N on the gauge theory side.

While in the SU(N) N = 2 model one expects contributions from only orientable
surfaces (with topologies of 2-sphere with holes and handles) in the Sp(2N) case there
should be additional contributions with non-orientable crosscups (as is also suggested by

6We thank S. Giombi for this observation.
7This implies modding out by the orientifold group Gori = Z2,orb × Z2,ori, where Z2,orb = {1, I6789} and

Z2,ori = {1, I45 Ω (−1)FL}. The inversions In1...nr act on the R6 (with directions 4, . . . , 9) transverse to the
D3-branes as Z2,orb : x6,7,8,9→ − x6,7,8,9 and Z2,ori : x4,5→ − x4,5. The fixed-point set of Z2,ori is the
hyperplane x4,5 = 0, which corresponds to the position of the O7-plane and four D7-branes, while the fixed
set of Z2,orb is the hyperplane x6,7,8,9 = 0.
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the structure of the 1/N expansion of perturbative gauge theory diagrams, cf. [7]). In the
Sp(2N) N = 4 SYM case all odd-power 1/N contributions should come from crosscups [20],
while in the Sp(2N) N = 2 FA-orientifold model there should be additional contributions
from world sheets with boundaries introduced due to the presence of D7-branes (and related
to the presence of fundamental hypermultiplets on the gauge theory side), see also [21].

Accounting for the open string (type I, or disc) term in the dual string theory effec-
tive action that here may be interpreted as the D7-brane world-volume action allowed to
give [22, 23] the holographic interpretation of the order N term in the (super)conformal
anomalies of the Sp(2N) FA-orientifold (cf. table below eq. (1.6)).

The AdS/CFT duality suggests that the conformal gauge theory free energy F on S4

should be matched with the string partition function Zstr in AdS5 × S′5. The leading
2-sphere topology contribution to the (properly defined) Zstr is approximated by the type
IIB supergravity action (plus a′-corrections). In particular, in the maximally supersym-
metric N = 4 SU(N) SYM case one can match the leading N2 term in the free energy
F = 4a log(Λ r) + f0, a = 1

4(N2 − 1), with the leading term in the supergravity action pro-
portional to the (IR divergent) volume of AdS5 (reproducing, in particular, the conformal
anomaly [24, 25]). Here Λ is a UV cutoff, r is the radius of S4 and f0 is a regularization
scheme dependent constant (cf. (A.2)). In the particular scheme selected by the localiza-
tion matrix model representation for the gauge-theory partition function Z = e−F (with
the λ-independent measure) one finds that FN=4 = −1

2 (N2 − 1) log λ. Then the leading
N2 term in FN=4 can be matched [17] with the on-shell value of the supergravity term in
the string effective action in AdS5 × S5 (assuming particular IR cutoff in the AdS5 vol-
ume).8 The subleading 1

2 log λ term should come from the 1-loop (torus) contribution to
Zstr, which is again proportional to the regularized AdS5 volume and receives contributions
only from short multiplets, i.e. is the same as the 1-loop supergravity correction [26].

The localization matrix model result for the large N , large λ expansion of the free
energy of the SU(N) FA-orientifold model in (1.8)–(1.14) may be written as

F (λ;N) λ�1= − 1
2 N

2 log λ+N (f1 λ+ f2 log λ+ f3 + . . . )

+
(
p1 λ

2 + p2λ+ k1λ
1/2 + k′2 log λ+ k′3 + . . .

)
+ O

( 1
N

)
, (1.38)

where k′2 = k2 + p3, k
′
3 = k3 + p4. The leading 1/N terms in the Sp(2N) FA-orientifold

case are similar (see (1.25), (1.26), (1.27)).
Let us note that in the SU(N) case the −2 log λ term in (1.38) has the coefficient

1
4 N

2+ 1
8 N−

1
2k
′
2. In the Sp(2N) case the analog of this coefficient in (1.25) is 1

2N
2+ 1

2N−
3
16 .

Thus in both cases not only the N2 term (as expected from the planar equivalence)9 but
also the order N term is the same as in the a-anomaly coefficients of the two theories (see

8On the AdS5 side the IR cutoff ` is measured in units of the AdS5 radius L and is related to the product
of the radius r of S4 and UV cutoff Λ as rΛ = L`

a′ =
√
λ `
L

[17]. Then the regularized AdS5 volume (with
power `n divergences dropped) scales as log `

L
→ − log

√
λ+log(Λr), suggesting that F = 4a log(Λr)+ · · · →

−2a log λ+ . . . .
9In the case of the N = 4 SYM theory with the group Sp(2N) which may be viewed as an orientifold

projection of U(2N) theory and which is dual to type IIB string on AdS5 × RP5 [20] the presence of the
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the tables below eq. (1.4)). At the same time, the order N0 coefficient of log λ in the
Sp(2N) case does not match the one in the conformal anomaly. This is not surprising:
as discussed in appendix A below, in contrast to what happens in the N = 4 SYM case,
in the N = 2 theory cases there is no a priori reason why the log λ term in the strong-
coupling limit of the free energy derived from the localization matrix model should have
the conformal a-anomaly as its coefficient.

Rewriting (1.38) in terms of the dual string theory coupling and string tension as
defined in (1.2) we get (renaming coefficients to absorb factors of 2 and π)10

F (T, gs)
T�1= − π2T 4

g2
s

log(2πT ) + πT 2

gs

(
f ′1 T

2 + f ′2 log T + f ′3 + . . .
)

+
(
p′1 T

4 + p′2T
2 + k′1T + k′′2 log T + k′′3 + . . .

)
+ O(gs) . (1.39)

The leading (2-sphere) term in the tree-level string theory effective action 1
g2

s a′4
∫
d10x
√
g(R+

. . . ) evaluated on the AdS5 × S′5 background is expected to match the 1
g2

s
term in (1.39)

(after using, as in the N = 4 SYM case [17], the IR cutoff related to T in the AdS volume).
The 1

gs
term in (1.39) should come from the disc contribution, and, in the Sp(2N)

case, also from the crosscup topology. In particular, one may expect the T 2

gs
log T term

to originate from the curvature squared term 1
gsa′2

∫
d8x
√
g RR in the D7-brane action

(with D7-brane wrapping AdS5 and S3 from S′5). The background value of this term
is proportional to the AdS5 volume and thus after the same IR regularization it should
give the T 2

gs
log T contribution. In [23] the 1

gsa′2
∫
d8x
√
g RR term was shown to reproduce

the order N term in the conformal anomaly of the Sp(2N) FA-orientifold model. This is
consistent with the above observation that the order N term in the coefficient of the log λ
in (1.38) or log T in (1.39) is the same as in the a-anomaly coefficient of the corresponding
N = 2 superconformal model.

The interpretation of the T 4

gs
term in (1.39) is not immediately clear. Naively, such

term could come from the D7-brane tension, i.e. 1
gsa′4

∫
d8x
√
g but this term should cancel

against the orientifold (crosscup) contribution (cf. [27]), so that the leading term in the
D7-brane action should be the above curvature-squared term. The order g0

s terms in (1.39)
should come from the closed-string (torus) and open-string (annulus or disc with crosscup)

O3-plane (carrying RR charge of 1
4 ) leads to the effective shift of N by 1

4 and thus to the expression
L4 = 4πgs

(
2N + 1

2

)
a′2 for the AdS radius. As a result, one reproduces both leading N2 and N terms

in the conformal anomaly from the on-shell value of the 10d supergravity action [19, 23]. For example,
the N = 4 Sp(2N) SYM free energy in (1.22) may be written as F = −N2 log λ − 1

2N log λ or as F =
− 1

4

[(
2N + 1

2

)2 − 1
4

]
log λ. From the flat space perspective, the shift N → N + 1

4 may be equivalently
attributed to the crosscup contributions (cf. [23]). One may also interpret the odd-power 1/N terms in
the Wilson loop expectation value of the N = 4 Sp(2N) theory [7] (see (7.36), (7.37)) as coming from
the crosscup contributions, but they can also be formally generated (at least in the large λ expansion) by
shifting N → N+ 1

4 in the semiclassical string tension prefactor e2πT (2πT =
√
λ = L2

a′ with g2
YM = 2×4πgs,

λ = g2
YMN) of the even-power 1/N terms in (1.37) (we thank S. Giombi for a discussion of this issue).

10In contrast to the N = 4 SYM case, in the N = 2 Sp(2N) case we shall assume that N is not shifted in
the definition of AdS5 radius and string tension and will also ignore possible extra factor of 2 in the relation
between gs and g2

YM .
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1-loop corrections. Since the compact S′5 part of the background is not smooth (orbifold
action has fixed points) they may originate from “localized” contributions (rather than
“extensive” contributions proportional to the volume of AdS5 × S′5 like terms in the local
part of the string effective action).

The resummed expression for leading strong coupling terms in the free energy of the
Sp(2N) theory (1.25), (1.26) written in terms of the string coupling and string tension
in (1.2) is (we use that f1 = log 2

4π2 )

F
T�1= π2T 4

g2
s

[
log

(
1 + 2 log 2

π
gs

)
+ . . .

]
−
(
π2T 4

g2
s

+ πT 2

gs
− 3

16

)
log(2πT )− π

8gs
+O(e−2πT ) .

(1.40)
Remarkably, the leading log term (dots stand for terms that are subleading in 1/T at
each order in gs) has non-trivial dependence only on the string coupling. The special − π

8gs
term (that also depends only on gs) should be a particular crosscup contribution. The
exponential corrections should have a world-sheet instanton interpretation, i.e. should be
related to world sheets wrapping compact S2 parts of S′5 that are non-contractable and
thus stable due to orbifolding (see also discussion in section 6.3).

The large N , large λ expansion of the Wilson loop expectation values in the SU(N)
and Sp(2N) FA-orientifold models may be written as (see (1.15), (1.19), (1.20), (1.18)
and (1.28), (1.32), (1.33))

〈W〉 λ�1= e
√
λ
[
N(b0λ−3/4 + b01λ

−1/4 + . . . ) + (b1λ3/4 + b12λ
1/4 + . . . )

+ 1
N

(b2λ9/4 + b21λ
5/4 + . . . ) + O

( 1
N2

)]
. (1.41)

Expressed in terms of the string coupling and tension in (1.2) the leading strong coupling
terms in (1.41) become

〈W〉 T�1= e2πT
(
b′0
T 1/2

gs
+ b′1T

3/2 + b′2gsT
5/2 + . . .

)
= T 1/2

gs
e2πT

(
b′0 + b′1gsT + b′2g

2
sT

2 + . . .
)
.

(1.42)
The computation of 〈W〉 on the string side should proceed in a similar way as for the circular
loop in the AdS5× S5 case [2, 28] (the minimal surface ending on a circle at the boundary
of AdS5 is the same AdS2 one). The crucial difference is the presence of a new open-string
sector and thus extra “disc with holes” and also (in the Sp(2N) case) “disc with crosscups”
diagrams, in addition to the “disc with handles” ones. In the SU(N) case the structure of
subleading terms in (1.41), (1.42) is different compared to the N = 4 SYM case in (1.1).
In particular, the order g0

s term in (1.42) should correspond to the annulus contribution
(with one boundary with Dirichlet and one — with Neumann boundary conditions).

The prediction (1.35) for the resummation of the leading large λ terms in the Sp(2N)
theory is the following specification of (1.42)

〈W〉 T�1= T 1/2

π gs
e2πT e−8π2f1gsT + · · · = T 1/2

π gs
exp

[
2πT

(
1− log 2

π
gs

)]
+ . . . , (1.43)
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where we used (1.18) and f1 = log 2
4π2 from (1.10). Note that the structure in the exponent

that involves a function of 1 + c gs is similar to the one of the first log term in the free
energy in (1.40). The expression (1.43) may be compared with the leading-order one in
the case of, e.g., SU(N) N = 4 SYM theory (1.36) (the Sp(2N) result (1.37) is similar, cf.
footnote 9)

〈W〉 T�1= T 1/2

2π gs
exp

[
2πT + π

12
g2

s
T

]
+ . . . , (1.44)

that should represent the sum of handle insertions on the disc [2]. Similarly, (1.43) should
be summing up the leading crosscup insertions.

Finally, let us note that the exact in λ differential relations like (1.17), (1.31) between
the 1/N corrections to the free energy and the Wilson loop expectation value that we find
from the localization matrix model representation on the gauge theory side appear to be
very non-trivial on the dual string theory side where F and 〈W〉 are computed using quite
different procedures. It would be interesting to uncover their string theory interpretation.

The rest of this paper is organized as follows. We shall first discuss the SU(N) case. In
section 2 we shall review the structure of the matrix model representation for the partition
function of the N = 2 superconformal FA-orientifold theory. In section 3 we shall find the
explicit representations for the leading non-planar corrections F1 and F2 to its free energy.

In section 4 we shall discuss the matrix model representation for the Wilson loop
expectation value 〈W〉 and in section 5 find the general relations between the 1/N terms
in 〈W〉 and the free energy F . Section 6 will contain the results of the strong-coupling
expansion of the 1/N terms in 〈W〉 and F . In particular, in section 6.3 we shall discuss
the structure of exponentially small e−n

√
λ corrections to the leading non-planar term in

F , their resurgence properties and comment on their possible string theory interpretation.
Section 7 will be devoted to a similar analysis in the Sp(2N) FA-orientifold model:

matrix model representation, structure of 1/N corrections to the free energy and 〈W〉 and
strong-coupling expansions. This case turns out be much simpler than the SU(N) one and
we are able to determine the structure of the large λ asymptotics of free energy in rather
explicit way.

In aection A we will review the general structure of the partition function of N = 2
models as described by the localization matrix model and explain how it encodes the
information about the value of the conformal anomaly a-coefficient of the N = 2 model.
Appendix B will contain some details of derivation of the strong-coupling expansion of
F1 using Mellin transform. In appendix C we will discuss the relation between the 1/N
coefficients in the Wilson loop and in the free energy in the case of the Sp(2N) theory and
their large λ asymptotics.

2 Matrix model representation for N = 2 SU(N) theory

Using supersymmetric localization, the partition function of an N = 2 gauge theory on a
sphere S4 of unit radius may be written as a matrix integral over the eigenvalues {m}Nr=1
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of a N ×N hermitian traceless matrix m [5] (see also appendix A)

Ẑ ≡ e−F = N
∫

Dme−S0(m)−Sint(m) , S0(m) = 8π2N

λ
trm2, λ = g2

YM N ,

(2.1)

Dm ≡
N∏
r=1

dmr δ

(
N∑
s=1

ms

)
[∆(m)]2 , ∆(m) =

∏
1≤r<s≤N

(ms −ms). (2.2)

The “interacting action” Sint(m) that vanishes in the N = 4 theory is non-trivial for
the N = 2 theories. We will neglect the instanton contribution since we are going to
consider the 1/N expansion. In the case of the N = 2 model containing hypermultiplets in
the fundamental, symmetric and antisymmetric representations of SU(N) (with numbers
subject to the conformal invariance condition (1.3)) one finds (see e.g. [29])

Sint(m) =
N∑
r=1

[nF logH(mr) + nS logH(2mr)]

+
N∑

r<s=1
[(nS + nA) logH(mr +ms)− 2 logH(mr −ms)] , (2.3)

where H is given in terms of the Barnes G-function11

H(x) =
∞∏
n=1

(
1 + x2

n2

)n
e−

x2
n = e−(1+γE)x2 G(1 + ix) G(1− ix) . (2.4)

We will normalize the N = 2 partition function (2.1) to its N = 4 SYM value. After scaling
the matrix m→ a according to

a =

√
8π2N

λ
m , (2.5)

the normalized partition function of the FA-orientifold in (1.4) (nF = 4, nS = 0, nA = 2)
may be written as

Z = 〈e−Sint(a)〉 =
∫
Dae− tr a2

e−Sint(a) ,

∫
Dae− tr a2 = 1 , (2.6)

Sint(a) ≡ S1 + S2 =
∞∑
i=1

Bi(λ) tr
(

a√
N

)2i+2
+
∞∑

i,j=1
Cij(λ) tr

(
a√
N

)2i+1
tr
(

a√
N

)2j+1
,

(2.7)

Bi(λ) = 4
(
λ

8π2

)i+1 (−1)i

i+ 1 ζ2i+1(1− 22i) , (2.8)

Cij(λ) = 4
(
λ

8π2

)i+j+1
(−1)i+j ζ2i+2j+1

Γ(2i+ 2j + 2)
Γ(2i+ 2) Γ(2j + 2) , (2.9)

where ζ2i+1 ≡ ζ(2i+ 1) are the Riemann ζ-function values.
11Note that the exponential prefactor in the r.h.s. of (2.4) cancels in Sint in superconformal models (with

nF satisfying (1.3)).
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Z in (2.6) is related to the free energy as

Z = e−∆F , ∆F = FN=2 − FN=4 , FN=4 = −1
2(N2 − 1) log λ . (2.10)

Expanding ∆F at large N we find that the leading N2 term cancels due to planar equiva-
lence12 so that

∆F (λ) = N F1(λ) + F2(λ) + O

( 1
N

)
. (2.11)

The order N term was absent in the case of the SA-orientifold [4] where nF = 0.
The weak coupling expansions of F1 and F2 are readily computed by doing the matrix

model integrals in (2.6) (here we set λ̂ = λ
8π2 )

F1 =3ζ3λ̂
2− 25

2 ζ5λ̂
3 + 441

8 ζ7λ̂
4− 1071

4 ζ9λ̂
5 + 11253

8 ζ11λ̂
6− 250965

32 ζ13λ̂
7

+ 11713845
256 ζ15λ̂

8− 53105195
192 ζ17λ̂

9 + 1100738457
640 ζ19λ̂

10 + · · · , (2.12)

F2 =5ζ5λ̂
3−
(

81
2 ζ

2
3 + 105

2 ζ7

)
λ̂4 +(540ζ3ζ5 +441ζ9)λ̂5−

(
1900ζ2

5 + 6615
2 ζ3ζ7 +3465ζ11

)
λ̂6

+
(

24150ζ5ζ7 +20655ζ3ζ9 + 212355
8 ζ13

)
λ̂7−

(
5044305

64 ζ2
7 + 1238895

8 ζ5ζ9 + 2126817
16 ζ3ζ11

+6441435
32 ζ15

)
λ̂8 +

(
500
3 ζ3

5 + 4125555
4 ζ7ζ9 +1016400ζ5ζ11 + 1756755

2 ζ3ζ13 + 12167155
8 ζ17

)
λ̂9

−
(

5250ζ2
5ζ7 + 54846477

16 ζ2
9 + 110007513

16 ζ7ζ11 + 13635765
2 ζ5ζ13

+189764289
32 ζ3ζ15 + 91869921

8 ζ19

)
λ̂10 + · · · . (2.13)

We shall see that as in the case of the SA-orientifold in [4], the large N expansion of the
BPS Wilson loop expectation value can be expressed in terms of F , so it is important to
study the latter first.

3 Explicit representation for free energy corrections F1 and F2

Following the same strategy as in [4] we can find the explicit representations of the leading
and next-to-leading terms in the 1/N expansion of the free energy (2.11). To this aim, let
us introduce the generating function

X(η, χ) =
∫
Dae− tr a2

eV (η,χ,a) ≡ 〈eV 〉 , (3.1)

V (η, χ, a) =
∞∑
i=1

ηi tr
(

a√
N

)2i+1
+
∞∑
i=1

χi tr
(

a√
N

)2i+2
. (3.2)

12Note, in particular, that at large N the number of hypers in 2 antisymmetric representations 2 ×
N(N−1)

2 ≈ N2 is the same as in the adjoint representation N2 − 1 ≈ N2.
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Expanding in powers of the “sources” ηi, χi and evaluating the integrals over a gives

logX(η, χ) = N

(1
2χ1 + 5

8χ2 + · · ·
)

+
( 3

16η
2
1 + 15

16η1η2 + 5
4η

2
2 + 63

32η1η3 + 175
32 η2η3 + 1575

256 η
2
3 + · · ·

)
+
(9

8χ
2
1 + 9

2χ1χ2 + 75
16χ

2
2 + · · ·

)
+O

( 1
N

)
= N Riχi +Qijηiηj + Q̃ijχiχj +O

( 1
N

)
,

(3.3)
where we assume summation over i, j = 1, . . . ,∞. The linear in χ terms in (3.3) have the
following general form

Riχi = N−1
∞∑
i=1

χi

〈
tr
(

a√
N

)2i+2
〉

=
∞∑
i=1

χi
1

2i+1(i+ 2)

(
2i+ 2
i+ 1

)
, (3.4)

where the coefficient Ri may be written as

Ri =
2i+1 Γ

(
i+ 3

2

)
√
π Γ(i+ 3) . (3.5)

The infinite-dimensional matrices Q and Q̃ in (3.3) can be expressed in terms of the con-
nected correlators of tr an (see e.g. [30]; here 〈AB〉c ≡ 〈AB〉 − 〈A〉〈B〉)

〈tr a2k1+1 tr a2k2+1〉 = Nk1+k2+1
2k1+k2+1 k1 k2Γ

(
k1 + 3

2

)
Γ
(
k2 + 3

2

)
π (k1 + k2 + 1)Γ(k1 + 2)Γ(k2 + 2) , (3.6)

〈tr a2k1 tr a2k2〉c = Nk1+k2
2k1+k2Γ

(
k1 + 1

2

)
Γ
(
k2 + 1

2

)
π (k1 + k2)Γ(k1)Γ(k2) . (3.7)

The matrix Qij is same as the one that appeared in the case of the SA-orientifold in [4]

Qij = 1
π

2i+j i j Γ
(
i+ 3

2

)
Γ
(
j + 3

2

)
(i+ j + 1) Γ(i+ 2) Γ(j + 2) , (3.8)

while for Q̃ij we find

Q̃ij = 1
π

2i+j+1Γ
(
i+ 3

2

)
Γ
(
j + 3

2

)
(i+ j + 2) Γ(i+ 1)Γ(j + 1) = 2 (i+ 1)(j + 1)(i+ j + 1)

i j (i+ j + 2) Qij . (3.9)

Using (2.7), the leading terms in the large N expansion of the free energy ∆F in (2.11)
may then be represented as

e−NF1−F2 = e
−Cij ∂

∂ηi

∂
∂ηj
−Bi ∂

∂χi X(η, χ)
∣∣∣
η=χ=0

= e
−Cij ∂

∂ηi

∂
∂ηj
−Bi ∂

∂χi eN Riχi+Qijηiηj+Q̃ijχiχj
∣∣∣
η=χ=0

, (3.10)

where Bi(λ) and Cij(λ) were defined in (2.8), (2.9). To compute (3.10) we may use that

e−Bi∂if(χi) = f(χi −Bi) , e−Cij∂i∂j =
∫
dy e−

1
4C
−1
ij yiyj+yi∂i . (3.11)
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This leads to an explicit weak coupling expansion of the leading large N correction to the
free energy:

F1 =
∞∑
i=1

RiBi = − 1√
π

∞∑
i=1

(−1)i

(i+ 1)
Γ
(
i+ 3

2

)
Γ(i+ 3) (1− 2−2i) ζ2i+1

(
λ

π2

)i+1
. (3.12)

This weak coupling expansion is clearly convergent, with radius of convergence π2. It can
be summed up into an integral representation using the identity:

(1− 2−2i) ζ2i+1 = 1
Γ(2i+ 1)

∫ ∞
0

dt
t2i

et + 1 . (3.13)

This leads to the compact expression

F1(λ) = 2√
λ

∫ ∞
0

dt
e2πt

(e2πt + 1)2

[
J1(2t

√
λ)− t

√
λ+ 1

2(t
√
λ)3

t2

]
. (3.14)

It is straightforward to check that the expansion of the Bessel J1 function, combined with
the identity (3.13), leads to the weak coupling expansion in (2.12) and (3.12). However, the
integral representation (3.14) can also be used to analyze the strong coupling expansion,
which is an asymptotic expansion, in contrast to the convergent weak coupling expan-
sion (3.12). The strong coupling expansion is discussed below in section 6.

The next subleading correction to the free energy, the O(N0) term F2 in (2.11), may
be naturally split as

F2(λ) = F̄2(λ) + F̃2(λ) , (3.15)

where F̄2 comes from the Qijηiηj part of (3.10) (i.e. depends on Cij and Qij). This F̄2
part is identical to the one for the SA-orientifold found in [4] and can be written as

F̄2(λ) = 1
2 log det(1 + 4CQ) = 1

2 log det(1 +M) , (3.16)

Mij = 8
√

2i+ 1
√

2j + 1
∞∑
k=0

(−1)k cijk ζ2i+2j+2k+1

(
λ

16π2

)i+j+k+1
, (3.17)

cijk =
k∑

m=0

Γ(2i+ 2j + 2k + 2)
Γ(m+ 1) Γ(2i+m+ 2) Γ(k −m+ 1) Γ(2j + k −m+ 2) . (3.18)

The properties of the weak coupling and strong coupling expansions of F̄2(λ) have been
studied in detail in [4].

The second term in (3.15), denoted F̃2(λ), comes from the Q̃ijχiχj part of (3.10)
(cf. (3.11)) e−Bi

∂
∂χi eQ̃ijχiχj

∣∣
χ=0 = eQ̃ijBiBj . It can therefore be written as a double sum:

F̃2(λ) = −
∞∑

i,j=1
Q̃ijBiBj , (3.19)

where the function Bi(λ) was defined in (2.8) and the coefficients Q̃ij in (3.9) and we
explicitly indicated summation over i, j. Thus, the weak coupling series representation for
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F̃2(λ) is (cf. (3.12))

F̃2(λ) = 1
π

∞∑
i,j=1

(−1)i+j+1 (1− 2−2i)(1− 2−2j)Γ
(
i+ 3

2

)
Γ
(
j + 3

2

)
(i+ j + 2)Γ(i+ 2)Γ(j + 2) ζ2i+1ζ2j+1

(
λ

π2

)i+j+2
.

(3.20)

Note that F̃2(λ) is simpler than F̄2(λ), being only quadratic in the zeta factors ζ2k+1, while
F̄2(λ) involves sums over products of zetas to all orders. The weak-coupling expansion of
the total F2(λ) (3.15) of course agrees with the direct expansion of F2(λ) at weak coupling
in (2.13).

Remarkably, there is a direct differential relation between F̃2(λ) and F1(λ). Indeed,
differentiating F̃2(λ) in (3.20) with respect to λ we observe that the double sum factorizes
in terms of the second derivative of the product λF1(λ) with respect to λ, implying that

d

dλ
F̃2 = −λ2

[
d2

dλ2 (λF1)
]2

. (3.21)

Thus the form of F̃2(λ) is determined by that of F1(λ). Using (3.14) we then get also

d

dλ
F̃2 = 2

(∫ ∞
0

dt
e2πt

(e2πt + 1)2

[
J1(2t

√
λ)− t

√
λ
])2

. (3.22)

This integral representation also permits a direct access to the strong coupling expansion
of F̃2(λ).

4 Wilson loop expectation value

The N = 2 vector multiplet of the N = 2 theories contains the gauge vector Aµ, a complex
scalar ϕ, and two Weyl fermions. The 1

2 -BPS Wilson loop depends only on the fields of
the vector multiplet and is defined as

W = trP exp
∮ [

i Aµ(x)dxµ + 1√
2

(
ϕ(x) + ϕ+(x)

)
ds

]
, (4.1)

where the contour xµ(s) represents a circle of unit radius and the trace is taken in the
fundamental representation. The expectation value of W may be computed in the matrix
model as (cf. (2.6))

〈W〉 = 〈tr e2πm〉 =
〈

tr e
√

λ
2N a

〉
. (4.2)

Its large N expansion may be written as

〈W〉 = N W0(λ) +W1(λ) + 1
N

(W0,2(λ) +W2(λ)) + O

( 1
N2

)
, (4.3)

where we separated the N = 4 SYM parts

W0 ≡ 〈W〉N=4
0 = 2√

λ
I1(
√
λ), W0,2 ≡ 〈W〉N=4

2 = 1
48
[
−12
√
λ I1(

√
λ) + λ I2(

√
λ)
]
.

(4.4)
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The leading terms in the weak-coupling expansions of the N = 2 parts W1 and W2 are
found to be

W1 ≡ 〈W〉N=2
1 , W2 ≡ 〈W〉N=2

2 , (4.5)

W1 = −ζ3
3λ3

2 (8π2)2

(
1 + 3λ

32 + λ2

320 + λ3

18432 + λ4

1720320 + λ5

235929600 + λ6

44590694400 + · · ·
)

+ ζ5
75λ4

8 (8π2)3

(
1 + λ

10 + λ2

288 + λ3

16128 + λ4

1474560 + λ5

199065600 + λ6

37158912000 + · · ·
)

− ζ7
441λ5

8 (8π2)4

(
1 + 5λ

48 + 5λ2

1344 + 5λ 3

73728 + λ4

1327104 + λ5

176947200 + · · ·
)

+ · · · , (4.6)

W2

π2W0
= −30ζ5λ̂

4 + (324ζ2
3 + 420ζ7)λ̂5− (5400ζ3ζ5 + 4410ζ9)λ̂6

+ (22800ζ2
5 + 39690ζ3ζ7 + 41580ζ11)λ̂7−

(
338100ζ5ζ7 + 289170ζ3ζ9 + 1486485

4 ζ13

)
λ̂8

+
(

5044305
4 ζ2

7 + 2477790ζ5ζ9 + 2126817ζ3ζ11 + 6441435
2 ζ15

)
λ̂9 + · · · . (4.7)

Let us find the closed form of the series for the simpler W1 term that is linear in ζ2n+1. W1
gets contributions from the single-trace term in (2.7) that were absent in the case of the
SA-orientifold in [4]. If we write Sint in (2.7) as S1+S2 where S1 =

∑∞
i=1Bi(λ) tr

(
a√
N

)2i+2

and S2 is the double-trace term, then expanding (4.2) to linear order in S1 we get

〈W〉 =
∫
Dae− tr a2

e−S1−S2 tr e
√

λ
2N a∫

Dae− tr a2 e−S1−S2
→

〈
(1− S1) tr e

√
λ

2N a
〉

〈1− S1〉
. (4.8)

Picking up the part linear in S1 gives

W1 =−
〈

tr S1 e
√

λ
2N a

〉
+ 〈S1〉

〈
tr e
√

λ
2N a

〉
=−

〈
S1 tr e

√
λ

2N a
〉
c

=−
∞∑
p=0

1
(2p)!

(
λ

2N

)p
〈tr a2p S1〉c=−

∞∑
p=0

1
(2p)!

(
λ

2N

)p ∞∑
i=1

Bi

〈
tr a2p tr

(
a√
N

)2i+2
〉
c

=−4
∞∑
p=0

1
(2p)!

(
λ

2N

)p ∞∑
n=1

(
λ

8π2N

)n+1 (−1)n

n+ 1 ζ2n+1(1− 22n)
〈

tr a2p tr a2n+2
〉
c
.

(4.9)

Using (3.6), we then find

W1 = 4
π

∞∑
n=1

∞∑
p=0

(4π2)p

(2p)!
(−1)n

n+ 1 ζ2n+1(22n − 1)
Γ
(
p+ 1

2

)
Γ
(
n+ 3

2

)
(p+ n+ 1)Γ(p)Γ(n+ 1)

(
λ

4π2

)n+p+1
,

(4.10)

which agrees with (4.6).13

13Let us note that doing the sum over p for each n we obtain the exact form of the coefficients of all
ζ2n+1 terms

W1 = −ζ3
6λ2

2 (8π2)2 [2I2(
√
λ) + I4(

√
λ)] + ζ5

15λ3

(8π2)3

[
5I2(
√
λ) + 4I4(

√
λ) + I6(

√
λ)
]

+ · · ·

matching eq. (3.29) of [29].
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Using the identity (3.13) we can resum this double series expansion into an explicit
integral representation

W1(λ) = 2
√
λI2(
√
λ)
∫ ∞

0
dt

e2πt

(e2πt + 1)2

[
J1(2t

√
λ)

4t2 + 1 − t
√
λ

]

+ 4
√
λI1(
√
λ)
∫ ∞

0
dt

e2πt

(e2πt + 1)2
t J2(2t

√
λ)

4t2 + 1 . (4.11)

It is straightforward to verify that the expansion of the Bessel functions, combined with
the identity (3.13), leads to the weak coupling expansion in (4.6).

A closed expression for W2(λ) in (4.3) will be given in the next section after relating
it to the corresponding terms in the free energy.

5 General relations between the 1/N terms in 〈W〉 and F

The coefficients W1 and W2 in the large N expansion (4.3) of the Wilson loop expectation
value turn out to have close relation with the F1 and F2 in the free energy expansion (2.11)
(see also appendix C).

To relate W1 to F1 let us first write (4.10) as

W1 = − 1
π

∞∑
p=0

λp

(2p)!
Γ
(
p+ 1

2

)
Γ(p) Yp(λ) = − 1√

π

∞∑
p=0

λp

4p Γ(p)Γ(p+ 1) Yp(λ) , (5.1)

Yp(λ) =
∞∑
i=1

(−1)i+1

i+ 1 (1− 2−2i)
Γ
(
i+ 3

2

)
(p+ i+ 1)Γ(i+ 1)ζ2i+1

(
λ

π2

)i+1
. (5.2)

We notice that differentiating (5.1) over λ leads to the expression where the double sum
factorizes. Using the expression for F1 in (3.12) we then obtain

d

dλ
W1 =

− 1√
π

∞∑
p=0

λp

4p Γ(p)Γ(p+ 1)

×√π d2

dλ2 (λF1) . (5.3)

This relation may be written as

d

dλ
W1 = −1

2
√
λ I1(

√
λ) d2

dλ2 (λF1) . (5.4)

Using also the expression for W0 in (4.4) we conclude that

d

dλ
W1 = −λ4 W0

d2

dλ2 (λF1) . (5.5)

The term W2 in (4.3) turns out to be related to F2 in (2.11), (3.15) by

W2 = −λ
2

4 W0
d

dλ
F2 . (5.6)
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This can be proved in the same way as in [4]14 by expanding the Wilson loop factor to
leading order, using the large N factorization of correlators and observing that the insertion
of tr a2 is the same as the insertion of the Gaussian “action” which, in turn, can be obtained
by differentiating the matrix model integral over λ.

Using that in F2 = F̃2 + F̄2 and (3.21) we may represent (5.6) as

W2 = λ3

8 W0

[
d2

dλ2 (λF1)
]2

− λ2

4 W0
d

dλ
F̄2 . (5.7)

In view of (5.5) the first term here is thus related to the square of dW1
dλ .

6 Strong coupling expansions of the N = 2 SU(N) free energy and Wil-
son loop

In this section we present results for the large λ expansions of the terms F1(λ) and F2(λ)
in the large N expansion (2.11) of the free energy. Using the relations (5.5), (5.6) these will
also determine the expansion of the terms W1(λ) andW2(λ) in the large N expansion (4.3)
of the Wilson loop.

6.1 Large λ expansion of F1 and F2

The large λ expansion of the first subleading large N correction F1(λ) in (2.11) for the free
energy can be derived in several different but complementary ways. The simplest way is
to use the representation

(1− 2−2i) ζ2i+1 = −
∞∑
k=1

(−1)k

k2i+1 ≡ η(2i+ 1) . (6.1)

where η(2i+ 1) is the value of the Dirichlet η-function. Then the expansion (3.12) for F1
yields

F1(λ) =
∞∑
k=1

(−1)k

4k

− λ

π2 + 8k4π2

λ

√1 + λ

π2k2 − 1

− 4k2 + 8k2 log

1
2 + 1

2

√
1 + λ

π2k2

 .
(6.2)

Expanding at large λ gives an expansion that can be evaluated using ζ-function regular-
ization

F1
λ�1=

∞∑
k=1

(−1)k+1
(

λ

4π2k
+ k [1 + 2 log(2πk)− log λ]− 4πk2

√
λ

+ 2π2k3

λ
+ · · ·

)
. (6.3)

Using the η-function values

η(1) = log 2 , η(−1) = 1
4 , η′(−1) = −1

4−
log(2)

3 +3 logA , η(−2) = 0, η(−3) = −1
8 ,

(6.4)
14In [4] we used the notation W2

W0
= ∆q and F2 = ∆F .
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where A is Glaisher’s constant, we thus obtain the strong coupling expansion

F1(λ) λ�1= f1λ+ f2 log λ+ f3 + f4 λ
−1 + O

(
λ−1/4 e−

√
λ
)
, (6.5)

f1 = log 2
4π2 , f2 = −1

4 , f3 = 3
4 + 7

6 log 2 + 1
2 log π − 6 log A , f4 = −π

2

4 .

(6.6)

Here we indicated that there is only a finite number of power-law corrections: as will
be discussed below in section 6.3 and appendix B, all further corrections turn out to be
exponentially small as λ → +∞. An indication of this is that all higher order corrections
in (6.3) have coefficients that are expressed in terms of η-function values that vanish.

The strong coupling expansion (6.5)–(6.6) for F1(λ) can be also obtained from the
integral representation (3.14) using the Mellin transform method (see appendix B), or
by expanding the e2πt

(e2πt+1)2 =
∑∞
n=1(−1)n+1n e−(2n−1)πt factor in the integral representa-

tion (3.14) and integrating.
The F̄2 part (3.16) of F2 in (3.15) is same as in the SA-orientifold and thus [4]

F̄2
λ�1= k1λ

1/2 + k2 log λ+ k3 +O(λ−1/2) , k1 = 1
2π , . . . . (6.7)

The strong coupling expansion of F̃2 in (3.20) may be derived directly from (3.21) us-
ing (6.5)15

F̃2
λ�1= p1λ

2 + p2 λ+ p3 log λ+ p4 + O
(
λ5/4 e−

√
λ
)
, (6.8)

p1 = −f2
1 , p2 = −2f1f2 , p3 = −1

2f
2
2 , . . . , (6.9)

where fi have the values listed in (6.6). Notice that, as for F1(λ) in (6.5), there is only a
finite number of power law corrections, followed by exponentially suppressed terms, whose
origin is discussed below in section 6.3.

6.2 Large λ expansion of W1 and W2

Using the relations (5.5), (5.6), (5.7) allows us to find the strong coupling expansions of
W1 and W2 from those of F1 and F2. In particular, from (6.5) and the expansion of W0
in (4.4)

W0
λ�1=

√
2
π
λ−3/4e

√
λ
(

1− 3
8
√
λ
− 15

128λ + . . .

)
− i
√

2
π
λ−3/4e−

√
λ
(

1 + 3
8
√
λ
− 15

128λ + . . .

)
,

(6.10)
we find (dropping exponentially suppressed parts, cf. (6.5))

W1
W0

= −f1 λ
3/2 + 3

2f1λ−
1
8(3f1 + 4f2)λ1/2 + O(λ0) . (6.11)

15Note that the value of the constant term p4 can not be deduced from the differential relation (3.21)
and requires separate derivation using the method of appendix B that gives p4 = 1

16 + log 2
12 + logπ

16 −
3
4 log A.
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Comparing (6.7) and (6.8) we observe that F̃2 dominates over F̄2 at the first two leading
orders of expansion in λ � 1. As a result, the dominant contribution to W2 comes from
the first term in (5.7)

[
W2
W0

]
1
≡ λ3

8

[
d2

dλ2 (λF1)
]2

λ�1= 1
2f

2
1λ

3 + 1
2f1f2λ

2 + O(λ) , (6.12)

where we used (6.5). The contribution to (6.12) coming from F̄2 term in (5.7) is[
W2
W0

]
2
≡ −λ

2

4
d

dλ
F̄2

λ�1= −1
8k1λ

3/2 − 1
4k2λ+ O(λ1/2) , (6.13)

so that in total
W2
W0

=
[
W2
W0

]
1

+
[
W2
W0

]
2

λ�1= 1
2f

2
1 λ

3 + 1
2f1f2 λ

2 − 1
8k1λ

3/2 + O(λ) , (6.14)

where the values of f1, f2 and k1 are given in (6.6), (6.7).

6.3 Exponentially suppressed corrections at large λ

The leading large N correction to the free energy F1(λ) has, in addition to the “perturba-
tive” terms in (6.5), also exponentially suppressed corrections in the large λ limit. These
can be computed directly from the integral representation (3.14). It is actually slightly
simpler to begin with the combination d2

dλ2 (λF1) which appears in the relation to W1 as
in (5.4). From the integral representation (3.14) we deduce that

d2

dλ2 (λF1) = − 2√
λ

∫ ∞
0

dt
e2πt

(e2πt + 1)2

[
J1(2t

√
λ)− t

√
λ
]

= log 2
2π2 −

1
4λ + 2

π2

∞∑
n=0

K0
(
(2n+ 1)

√
λ
)

+
K1

(
(2n+ 1)

√
λ
)

(2n+ 1)
√
λ

 . (6.15)

Both these expressions are exact, but the first expression in terms of Bessel J-functions
is well suited to a small λ expansion, while the second expression in terms of Bessel K-
functions is well suited to a large λ expansion. As λ→ +∞ each BesselK-function in (6.15)
is given by the exponentially small factor e−(2n+1)

√
λ, multiplied by an asymptotic series in

1√
λ
. Thus we obtain an expansion in the form of an “instanton sum”, with each exponential

multiplied by a “fluctuation expansion” in inverse powers of
√
λ:

d2

dλ2 (λF1) λ�1= log 2
2π2 −

1
4λ +

√
2

π5/2

∞∑
n=0

e−(2n+1)
√
λ√

(2n+ 1)
√
λ

∞∑
k=0

(−1)k
(
k2 + 3

4

)
Γ
(
k+ 1

2

)
Γ
(
k− 3

2

)
2k Γ(k+ 1)

[
(2n+ 1)

√
λ
]k .

(6.16)
The reconstruction of F1(λ) from this expansion requires two integrations, and the inte-
gration constants are easily fixed by the comparison with (6.5), (6.6). As a result, we find
that F1 in (6.5) may be represented as

F1
λ�1= F pol

1 + F exp
1 , F pol

1 = f1λ+ f2 log λ+ f3 + f4 λ
−1 , (6.17)
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Here F pol
1 is the “polynomial” in λ � 1 part, with a finite number of nonzero coefficients

fj as in (6.5)–(6.6), and F exp
1 is the exponentially small contribution given by

F exp
1 (λ) λ�1= − 1

π

( 2
π

)3/2 ∞∑
n=0

1
(2n+ 1)2

∞∑
k=0

(−1)k
(
k2 + 3

4

)
Γ
(
k + 1

2

)
Γ
(
k − 3

2

)
2k Γ(k + 1)

×

Γ
(3

2 − k, (2n+ 1)
√
λ

)
−

Γ
(

7
2 − k, (2n+ 1)

√
λ
)

(2n+ 1)2λ

 . (6.18)

Here the sum over n looks like an “instanton” expansion: for each n and k the incomplete
Γ-function terms in (6.18) are proportional to e−(2n+1)

√
λ when λ → +∞. Using the

expansions of these Γ-functions we find explicitly that

F exp
1 (λ) λ�1= 2

( 2
π

)3/2
λ−1/4

∞∑
n=0

e−(2n+1)
√
λ

(2n+ 1)5/2

∞∑
l=0

(−1)l [4l(l + 4) + 3] Γ
(
l + 1

2

)
Γ
(
l − 3

2

)
π 2l+2 Γ(l + 1)

[
(2n+ 1)

√
λ
]l .

(6.19)

For each n, the fluctuation series is factorially divergent, but it is resurgent in the sense
that the large l behaviour is encoded in the low l terms. To see this explicitly, let us define
the “fluctuation” coefficients from (6.19):

cl =
(−1)l [4l(l + 4) + 3] Γ

(
l + 1

2

)
Γ
(
l − 3

2

)
π 2l+2 Γ(l + 1) . (6.20)

The first few low-order values of cl are given by

cl =
{

1, 23
8 ,

153
128 ,−

435
1024 ,

13755
32768 ,−

172935
262144 ,

5893965
4194304 ,−

126080955
33554432 , . . .

}
. (6.21)

At large order, l → ∞, these coefficients are alternating in sign and factorially divergent,
and including the subleading corrections the large order behaviour can be written as:

cl
l→∞= (−1)l

π

Γ(l)
2l

1 +
2 · 23

8
(l − 1) +

22 · 153
128

(l − 1)(l − 2) +
23 ·

(
− 435

1024

)
(l − 1)(l − 2)(l − 3) + . . .

 . (6.22)

Notice that the numerators of the subleading corrections correspond precisely to the low
order coefficients in (6.21). The powers of 2 correspond to the difference between the two
Bessel function saddles (e−x vs. e+x) whose ratio is e−2x. Thus we see that the subleading
corrections to the large-order growth of the fluctuation coefficients are directly encoded in
the low-order fluctuation coefficients.

This behaviour in (6.22) is the typical low-order/large-order resurgence relation [31–
33]. These resurgence properties are inherited from the large argument expansion of the
Bessel function term in square brackets in the r.h.s. of (6.15). Furthermore, this resurgent
behaviour of F1(λ) is inherited by the exponentially small corrections to the Wilson loop
ratio W1(λ)/W0(λ) in (6.11), due to the expression (5.5) relating W1(λ) to F1(λ). Similar

– 23 –



J
H
E
P
0
8
(
2
0
2
1
)
1
0
2

exponential terms will appear in the strong coupling expansion of F2 and W2 and also in
the corresponding terms in the Sp(2N) theory case discussed in the next section.

The exponential e−c
√
λ corrections found here in the 1/N term in N = 2 free energy

are generally expected in observables in conformal gauge theory with an AdS string dual.
The perturbative expansion (in inverse string tension) in 2d string sigma model is expected
to be asymptotic and such corrections may have a world-sheet theory origin (which may
be different in different observables). Similar terms appear, e.g., in the N = 4 SYM theory
in the large λ expansion of the cusp anomalous dimension (see [34, 35] and also [36, 37] for
their relation to resurgence).

One may conjecture that the e−(2k+1)
√
λ terms in F1 have a string instanton interpre-

tation in terms of world sheets wrapping part of the compact internal space S′5 that has
fixed points under the orientifold/orbifold action on S5 (see discussion in the Introduction).

It is useful to compare this with what happens in the case of the Wilson loop expecta-
tion in N = 4 SYM theory (see (1.1), (4.3), (4.4)). The large λ expansion of the Bessel I1
function in W0 in (4.4) leads to just two exponential terms in (6.10), with the subleading
one being imaginary (the same pattern is found also for higher 1/N terms in 〈W〉 in (1.1)).
While the leading e

√
λ term in (6.10) represents the expansion near the minimal AdS2 sur-

face embedded in AdS5, the second term may be interpreted16 [38, 39] as the contribution
of an unstable surface wrapping S2 of S5.17 Note that higher order terms ∼ e−n

√
λ do not

appear, as multiple wrappings would correspond to multiply wrapped Wilson loop.
In contrast, in the case of F1(λ) in the N = 2 theory we get an infinite series of expo-

nential terms as here multiple wrappings should be allowed18 and they have real coefficients
as the corresponding world-sheet solutions should be stable due to orbifolding of S5.

Note that the appearance of the imaginary term in the formal large λ expansion of
W0 is related to fact that the asymptotic expansion of the Bessel I1 function about the
dominant e

√
λ term is non Borel summable: the coefficients of the expansion about e

√
λ

are factorially divergent and non-alternating in sign and then the naive Borel summation
integral has an imaginary contribution, and this must be cancelled against the ie−

√
λ term

as total W0 should be real. At the same time, the exponentially small factors e−(2k+1)
√
λ in

F1 are multiplied by asymptotic series that are Borel summable (note that the cl coefficients
in (6.20) are factorially divergent but alternate in sign) and therefore, one finds only real
exponentially suppressed contributions.

In view of the relation (5.5) between W1 and F1 and the expansion of W0 in (6.10) the
resulting expression for the 1/N correction W1 to the Wilson loop in the N = 2 theory will
thus contain two different sources of the subleading exponential corrections since

d

dλ
W1 = −1

4λW0
d2

dλ2 (λF1) ∼
[
w(
√
λ) e

√
λ + iw(−

√
λ) e−

√
λ
] ∞∑
k=0

uk(
√
λ) e−(2k+1)

√
λ .

(6.23)
16An instanton interpretation of this second term was originally conjectured in [1].
17This may be viewed as a limit of the result found in the case of 1

4 -BPS “latitude” Wilson loop where
there are two solutions of disc topology covering (in addition to AdS2) the smaller or bigger part of S2

in S5.
18To recall, the 1/N correction F1 should be given by string path integral over surfaces of disc topology

with free boundary.
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Thus, d
dλW1 has a trans-series expansion involving an overall e

√
λ factor, multiplied by even

powers of e−
√
λ. These alternate between being real and imaginary,19 in such a way that the

full trans-series is well-defined and real (as W1 should be when λ is real and positive). The
same structure also survives the λ- integration that gives W1. The resurgence properties
of this final trans-series for W1 would be interesting to study in more detail.20

7 N = 2 superconformal Sp(2N) theory

Let us now repeat similar analysis in the case of the FA-orientifold model (1.6) with the
gauge group Sp(2N).

7.1 Matrix model formulation

The structure of the matrix model here is the same as in (2.1). For the model with nAdj , nA

and nF expressed in terms of them using the finiteness condition (1.5) the interacting action
in (2.1) reads [9] (cf. (2.7) and also appendix A)

Sint(a) =
∞∑
i=1

(
λ

8π2

)i+1 (−1)i

i+ 1 ζ2i+1

{
2 (22i − 1)(nAdj − nA − 1) tr

(
a√
N

)2i+2

+1
2 (nAdj + nA − 1)

i∑
k=1

(
2i+ 2

2k

)
tr
(

a√
N

)2i−2k+2
tr
(

a√
N

)2k
}
,

(7.1)

where the matrix a is in the 2N -dimensional fundamental representation of Sp(2N). The
expression (7.1) greatly simplifies for the FA-orientifold where nAdj = 0, nA = 1 (and
nF = 4): only the single-trace term survives so that (cf. (2.7))21

Sint(a) =
∞∑
i=1

Bi(λ) tr
(

a√
N

)2i+2
, (7.2)

where Bi is same as in (2.8).
Perturbative calculations are most efficiently performed by the same methods as in [40]

in the SU(N) case. The matrix model variable is written in a basis of sp(2N) generators
in the fundamental representation with the following normalization

a =
N(2N+1)∑
r=1

ar T rF , tr (T rFT sF ) = 1
2δ

rs . (7.3)

19From the string theory point of view, W1 comes from contributions of world sheets with annulus
topology (with one boundary being fixed by the Wilson loop circle and the other being free). Then the
argument about stability of all wrappings of subspace in S′

5 (given above for F1 case) should no longer
apply.

20An alternative approach is to start directly with the integral representation forW1 in (4.11) and perform
the large λ expansion, getting both perturbative and non-perturbative contributions.

21There is no similar simplification with no double-trace terms in Sint in the SU(N) case (2.3) (apart
from “trivial” N = 4 SYM case where Sint = 0).
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Then the matrix model measure is simply

Da = N

N(2N+1)∏
r=1

dar . (7.4)

Integration is done with respect to the Gaussian weight e− tr a2 (cf. (2.6)), i.e. it reduces
to repeated Wick contractions using 〈aras〉 = δrs and the Sp(2N) fusion/fission rela-
tions [41, 42]

tr(T aM1 T
aM2) = 1

4 trM1 trM2 + 1
4(−1)n2 tr(M1M2), (7.5)

tr(T aM1) tr(T aM2) = 1
4 tr(M1M2)− 1

4(−1)n2 tr(M1M2), (7.6)

where M1 and M2 are products of generators, n2 is the number of factors in M2, and M2
is the product in reverse order. In particular, one finds the following useful correlators22

〈tr a2n〉 = Nn+1 21+nΓ
(

1
2 +n

)
√
π Γ(2 +n)

×
[

1 + n+ 1
4N + n(n2− 1)

48N2 + n(n2− 1)(n− 2)
192N3 + · · ·

]
, (7.7)

〈tr a2n tr a2m〉c = Nn+m 2n+m+1Γ
(
n+ 1

2

)
Γ
(
m+ 1

2

)
π (n+m) Γ(n)Γ(m)

×
[

1 + n+m

4N + (n+m)(1− 2n− 2m+n2 +nm+m2)
48N2 + · · ·

]
,

(7.8)

〈tr a2n tr a2m tr a2k〉c = Nn+m+k−1 2n+m+k+1Γ
(
n+ 1

2

)
Γ
(
m+ 1

2

)
Γ
(
k+ 1

2

)
π3/2 Γ(n)Γ(m)Γ(k)

×
(

1 + n+m+ k− 1
4N + · · ·

)
, (7.9)

〈tr a2n tr a2m tr a2k tr a2`〉c = Nn+m+k+`−2 2n+m+k+`+1Γ
(
n+ 1

2

)
Γ
(
m+ 1

2

)
Γ
(
k+ 1

2

)
Γ
(
`+ 1

2

)
π2 Γ(n)Γ(m)Γ(k)Γ(`)

× (n+m+ k+ `− 1) + · · · , (7.10)

〈tr a2n tr a2m tr a2k tr a2` tr a2s〉c = Nn+m+k+`+s−3

×
2n+m+k+`+s+1Γ

(
n+ 1

2

)
Γ
(
m+ 1

2

)
Γ
(
k+ 1

2

)
Γ
(
`+ 1

2

)
Γ
(
s+ 1

2

)
π2 Γ(n)Γ(m)Γ(k)Γ(`)Γ(s)

× (n+m+ k+ `+ s− 1)(n+m+ k+ `+ s− 2) + · · · . (7.11)

7.2 Free energy

The free energy of the Sp(2N) FA-orientifold has the same structure of the 1/N expansion
as in (2.11), i.e. after the subtraction of the N = 4 SYM free energy we have (see (1.22))

∆F (λ) = N F1(λ) + F2(λ) + 1
N

F3(λ) + 1
N2 F4(λ) + 1

N3 F5(λ) + O

( 1
N4

)
, (7.12)

22Note that 〈ABC〉c = 〈ABC〉 − 〈A〉 〈BC〉 − 〈B〉 〈AC〉 − 〈C〉 〈AB〉+ 2〈A〉 〈B〉 〈C〉, etc.
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where we included two more terms, compared to (2.11). To get the explicit expressions
for the terms F1(λ),F2(λ), and F3(λ) we repeat the analysis in section 3 (the computation
of F4 follows similar steps). In this case we need to consider the analog of the generating
function (3.2) containing only χ-part

X(χ) =
∫
Dae− tr a2

eV (χ,a) , V (χ, a) =
∞∑
i=1

χi tr
(

a√
N

)2i+2
. (7.13)

Evaluating the integrals gives

logX(χ) =
∞∑
i=1

〈
tr
(

a√
N

)2i+2
〉
χi + 1

2

∞∑
i,j=1

〈
tr
(

a√
N

)2i+2
tr
(

a√
N

)2j+2
〉
c

χiχj

+ 1
3!

∞∑
i,j,k=1

〈
tr
(

a√
N

)2i+2
tr
(

a√
N

)2j+2 ( a√
N

)2k+2
〉
c

χiχjχk + · · · . (7.14)

Using (7.7)–(7.11), this may be written as

logX(χ) = Riχi + Uijχiχj + Tijkχiχjχk +O

( 1
N2

)
, (7.15)

where

Ri = N R(0)
i + R(1)

i + 1
N

R(2)
i + O

( 1
N2

)
, Uij = U(0)

ij + 1
N

U(1)
ij + O

( 1
N2

)
,

Tijk = 1
N

T(0)
ijk + O

( 1
N2

)
, (7.16)

and

R(0)
i =

2i+2Γ
(
i+ 3

2

)
√
π Γ(i+ 3) = 2Ri, R(1)

i = i+ 2
2 Ri, R(2)

i = i(i+ 1)(i+ 2)
24 Ri,

U(0)
ij =

2i+j+2 Γ
(
i+ 3

2

)
Γ
(
j + 3

2

)
π(i+ j + 2) Γ(i+ 1) Γ(j + 1) = 2 Q̃ij , U(1)

ij = i+ j + 2
2 Q̃ij , (7.17)

T(0)
ijk =

2i+j+k+4Γ
(
i+ 3

2

)
Γ
(
j + 3

2

)
Γ
(
k + 3

2

)
6π3/2 Γ(i+ 1)Γ(j + 1)Γ(k + 1)

= 1
3(i+ 1)(i+ 2)(j + 1)(j + 2)(k + 1)(k + 2)RiRjRk,

with Ri and Q̃ij being the same as in (3.5) and (3.9).
The free energy ∆F in (7.12) is then obtained by acting on − logX with the operator

exp
(
−Bi ∂

∂χi

)
and setting χi → 0.23 This replaces χi → −Bi (cf. (3.11)) and thus

∆F (λ) =
∞∑
i=1

RiBi −
∞∑

i,j=1
Uij BiBj +

∞∑
i,j,k=1

Tijk BiBjBk +O

( 1
N2

)
. (7.18)

23Equivalently, we just start with exp
[
−
∑∞

i=1 Bi(λ) tr
(

a√
N

)2i+2
]
(cf. (7.2)), compute its expectation

value expanding in powers of Bi terms using the connected correlators in (7.7)–(7.11) and then rewrite the
result as e−∆F .
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The F1 term in (7.12) is then simply

F1(λ) =
∞∑
i=1

R(0)
i Bi = 2

∞∑
i=1

RiBi = 2F1(λ), (7.19)

where F1(λ) is the corresponding SU(N) term in (3.12). Thus, F1(λ) for the Sp(2N) model
also has an exact integral representation of the form in (3.14) multiplied by factor of 2.

For the F2 term we obtain

F2(λ) =
∞∑
i=1

R(1)
i Bi −

∞∑
i,j=1

U(0)
ij BiBj = 1

2

∞∑
i=1

(i+ 2)RiBi − 2
∞∑

i,j=1
Q̃ijBiBj

= 1
2
d

dλ
[λF1(λ)] + 2 F̃2(λ) , d

dλ
F̃2 = −λ2

[
d2

dλ2 (λF1)
]2

, (7.20)

where F̃2(λ) is the same as in (3.19), (3.20), (3.21).
We conclude that in this Sp(2N) model the F2 term is much simpler than in the SU(N)

case in (3.15) — it does not contain the analog of the F̄2 term (3.16). In (7.20), the first
term is linear in the ζ2n+1-values, while the second is quadratic. The presence of this first
term is related to the different structure of the large N expansion in (7.7) that contains
the 1/N term which was absent in the SU(N) case.24

Furthermore, since F1(λ) has a simple integral representation (3.14), and F̃2(λ) is di-
rectly related to F1(λ) as in (3.21), we see from (7.19) and (7.20) that in the Sp(2N) model
both F1(λ) and F2(λ) have explicit integral representations that permit precise analysis of
both the convergent weak coupling expansion and the asymptotic strong coupling expan-
sion. This carries over to the Wilson loop corrections, as discussed in the next subsections.

Finally, from (7.18) we conclude that the 1/N term F3(λ) in (7.12) is given by

F3(λ) =
∞∑
i=1

R(2)
i Bi −

∞∑
i,j=1

U(1)
ij BiBj +

∞∑
i,j,k=1

T(0)
ijk BiBjBk

= 1
24

∞∑
i=1

i(i+ 1)(i+ 2)RiBi−
1
2

∞∑
i,j=1

(i+ j+ 2) Q̃ijBiBj + 1
3

[ ∞∑
i=1

(i+ 1)(i+ 2)RiBi

]3

.

(7.21)
Using that according to (2.8) we have Bi ∼ λi+1 and also the relation in (3.21), the
expression for F3 may be written as (cf. (7.20))

F3(λ) = λ2

24 [λF1(λ)]′′′ + λ

2 F̃
′
2(λ) + λ3

3
(
[λF1(λ)]′′

)3

= λ2

24 (λF1)′′′ − λ2

4
[
(λF1)′′

]2
+ 2λ3

3!
[
(λF1)′′

]3
, (7.22)

where f ′(λ) ≡ d
dλf(λ).

24Note, for example, that

〈tr a6〉 =

{
5

8N2 (N2 − 1)(3− 3N2 +N4) = 5N4

8 + 0×N3 − 5N2

2 + · · · , SU(N)
5
32N(1 + 2N)(1 + 2N + 4N2) = 5N4

4 + 5N3

4 + 5N2

8 + · · · , Sp(2N) .
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It is possible to generalize the above computation of F3 to the case of the next terms
F4 and F5 in (7.12). The analog of the last term in (7.22) with highest number of powers
of derivatives over λ or of highest power in (λF1)′′ turns out to be (cf. (7.21), (7.10),
(7.11), (7.17))

F4(λ)=− 1
4!

∞∑
i,j,k,`=1

cijk`RiRjRkR`BiBjBkB`+ · · ·=−2λ2

4!
(
λ3 [(λF1)′′

]4)′+ . . . , (7.23)

F5(λ)= 1
5!

∞∑
i,j,k,`,s=1

cijk`sRiRjRkR`RsBiBjBkB`Bs+ · · ·= 2λ2

5!

[
λ2
(
λ3 [(λF1)′′

]5)′]′+ . . . ,

(7.24)

where we used that, as follows from (7.10), (7.11),

cijk` ≡ 2(i+ j+ k+ `+ 3)(i+ 1)(i+ 2)(j+ 1)(j+ 2)(k+ 1)(k+ 2)(`+ 1)(`+ 2) ,
cijk`s ≡ 2(i+ j+ k+ `+ 3)(i+ j+ k+ `+ s+ 4)(i+ 1)(i+ 2)(j+ 1)(j+ 2)(k+ 1)(k+ 2)(`+ 1)(`+ 2) .

(7.25)
These terms provide the dominant contributions in F4 and F5 at strong coupling: F4 ∼ λ4,
F5 ∼ λ5 (see below). Comparing the last term in (7.22) with (7.23) and (7.24) we observe
a definite pattern for generalization.

Thus it is natural to expect that all higher order 1/N corrections in the free energy
in (7.12) will be expressed in terms of derivatives of F1(λ). The integral representation for
F1 (3.14) will then imply a similar representation not only for F2 (cf. (7.20), (3.22)) and
F3 (7.22) but also for all Fn.

7.3 Strong coupling expansion of free energy

Given the relations (7.19), (7.20) and (7.22) the strong coupling expansions of the free en-
ergy terms F1, F2 and F3 in (7.12) follow from the SU(N) results for F1 and F̃2 in (6.5), (6.6)
and (6.8) and the leading terms in F4 and F5 from (7.23), (7.24)

F1 = 2f1λ+ 2f2 log λ+ 2f3 + 2f4λ
−1 + O(e−

√
λ)

= log 2
2π2 λ− 1

2 log λ+ const.− π2

2λ + O(e−
√
λ) , (7.26)

F2 = −2f2
1λ

2 + f1(1− 4f2)λ+ 1
2f2(1− 2f2) log λ+ 1

2(f2 + f3 + 4p4) + O(e−
√
λ) , (7.27)

F3 = 8
3f

3
1λ

3 − f2
1 (1− 4f2)λ2 − f1f2(1− 2f2)λ− 1

24f2(1 + 6f2 − 8f2
2 ) + O(e−

√
λ) , (7.28)

F4 = −4f4
1λ

4 + O(λ3) , (7.29)

F5 = 32
5 f

5
1λ

5 + O(λ4) , (7.30)

Here O(e−
√
λ) stands for the corresponding exponentially suppressed corrections

∼ λ−k/4e−n
√
λ that follow from the ones in F1 in (6.17), (6.19).25

25While F1 has exponentials that are odd powers of e−
√
λ, F2 (that contains squares of derivatives of F1

and cross-terms, cf. (7.20)) has both even and odd powers of e−
√
λ. Similarly, for F3 in (7.22) one also finds

both odd and even powers of e−
√
λ.
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We observe that the leading large λ asymptotics of Fn appears to be λn. Note also that
F3 has no log λ term while the order λ−1 term appears only in F1. Assuming that all higher
Fn terms are expressed in terms of derivatives of λF1 as in (7.20), (7.22), (7.23), (7.24) the
only log λ corrections will come from F1 and F2, i.e. the coefficient of the log λ term in F
receives contributions only from the N2, N and N0 orders in the 1/N expansion while the
λ−1 term in F is exactly captured by (7.26).

Including also the N = 4 SYM contribution in (1.22) the full expression for the free
energy expanded at large λ may be written as

F = FN=4 + ∆F λ�1= ∆Fpol −
(
N2 +N − 3

16

)
log λ− π2

2
N

λ
+ O(e−

√
λ) , (7.31)

∆Fpol = Nλ
[
2f1 + O(λ−1)

]
+ λ2

[
2f2

1 + O(λ−1)
]

+ 1
N
λ3
[8

3f
3
1 + O(λ−1)

]
+ O

( 1
N2

)
= N2F

(
λ

N

)
+ . . . , (7.32)

F

(
λ

N

)
= 2f1

λ

N
+ 2f2

1

(
λ

N

)2
+ 8

3f
3
1

(
λ

N

)3
− 4f4

1

(
λ

N

)4
+ 32

5 f
5
1

(
λ

N

)5
+ . . . , (7.33)

where ∆Fpol represents the polynomial in λ� 1 contributions with F
(
λ
N

)
being the sum

of the leading λn terms at each order in 1/N .
Remarkably, the coefficients in (7.33) suggest that F has the following exact form

F

(
λ

N

)
= log

(
1 + 2f1

λ

N

)
. (7.34)

Using that according to (1.2) we have λ
N = 4πgs we conclude that this leading order

term expressed in terms of string parameters non-trivially depends just on string coupling
(8πf1 = 2

π log 2)

F = N2F

(
λ

N

)
+ · · · = π2T 4

g2
s

log (1 + 8πf1gs) + . . . . (7.35)

This term should be summing the leading large string tension contributions from each order
in string topological expansion

The term −π2

2
N
λ = −π

8
1
gs

in (7.31) should also have a special origin on the string side,
coming from a particular crosscup or disc contribution not involving (in contrast to the 1

gs
term in (7.35)) extra powers of string tension (and thus subleading compared to (7.35) at
large T ).

7.4 Wilson loop

The 1
2 -BPS Wilson loop is again defined as in (4.1). In the Sp(2N) N = 4 SYM theory its

expectation value (exact in N and λ defined still as λ = Ng2
YM) is given by the sum of the

– 30 –



J
H
E
P
0
8
(
2
0
2
1
)
1
0
2

Laguerre polynomials [7] (cf. (1.1)26)

〈W〉N=4 = 2 e
λ

16N

N−1∑
k=0

L2k+1

(
− λ

8N

)
. (7.36)

The resulting 1/N expansion is

〈W〉N=4 = N
4√
λ
I1(
√
λ) + 1

2
[
I0(
√
λ)− 1

]
+ 1
N

λ

96 I2(
√
λ) + O

( 1
N2

)
. (7.37)

Then the N = 2 expectation value may be written as in (1.28)27

〈W〉 = N W0(λ) + W0,1(λ) + W1(λ) + 1
N

[W0,2(λ) + W2(λ)] + O

( 1
N2

)
, (7.38)

where the N = 4 parts W0,n are given by (7.37)

W0 ≡ 〈W〉N=4
0 = 4√

λ
I1(
√
λ) = 2W0, W0,1 ≡ 〈W〉N=4

1 = 1
2
[
I0(
√
λ)− 1

]
, (7.39)

W0,2 ≡ 〈W〉N=4
2 = λ

96 I2(
√
λ) . (7.40)

The relation between the genuine N = 2 parts W1 and W2 in (7.38) and the free energy
terms in (7.12) is the same (up to factor of 1/2) as in SU(N) case in (5.5), (5.6) (see
appendix C)

W′1 = −λ8 W0 (λF1)′′ , W2 = −λ
2

8 W0 F′2 . (7.41)

We thus find using (5.5) and (7.20) (cf. (5.7))

W1(λ) = 2W1(λ) , W2(λ) = −λ
2

8 W0

(1
2(λF1)′′ − λ

[
(λF1)′′

]2)
. (7.42)

Like for the free energy in (7.22)–(7.24), these relations can be extended also to higher 1/N
orders.

Using (7.41), (7.42) we find for the strong-coupling expansion of the coefficients in (7.38)

W1
W0

= W1
W0

= −f1 λ
3/2 + 3

2 f1 λ−
(3

8f1 + 1
2f2

)
λ1/2 + O(λ0) = − log 2

4π2 λ
3/2 + O(λ) ,

(7.43)

W2
W0

= 1
2f

2
1λ

3 − 1
8f1(1− 4f2)λ2 − 1

16f2(1− 2f2)λ+ O(e−
√
λ) = − log2 2

32π4 λ3 + O(λ2) .

(7.44)

26The Laguerre polynomials in (7.36) are the basic ones, while in the SU(N) case in (1.1) we have the
associated Laguerre polynomial arising from the sum in (7.36) without parity restriction on the index, i.e.
from the identity L(1)

N (x) =
∑N

k=0 Lk(x).
27To recall, we define 〈W〉 so that 〈1〉 = 1, i.e. we divide over the matrix model partition function Z = e−F .
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Note that like Fn in free energy the Wilson loop coefficients Wn have additional exponen-
tially suppressed corrections ∼ e−

√
λ at strong coupling, which are resurgent, and which

follow directly from the exponentially suppressed corrections to F1(λ) derived in section 6.3.
Similar relations between higher order 1/N terms Fn in free energy (1.21) and Wn

in (1.28) are expected also in general, with the dominant large λ term in Fn determining
the strong coupling asymptotics of Wn (see appendix C). In particular,

W3 = −λ
3/2

4! W0
[
λ(λF1)′′

]3 + . . . ,
W3
W0

λ�1= −1
6f

3
1λ

9/2 + O(λ4) . (7.45)

Comparing to (7.43), (7.44) thus suggests that the leading (at each order in 1/N) strong
coupling terms in ∆〈W〉 in (1.28) exponentiate as

〈W〉 = (NW0 + . . . ) + ∆〈W〉 λ�1= NW0 exp
[
−f1

λ3/2

N

]
+ . . . . (7.46)

This may be compared with similar exponentiation [1] of the leading large λ terms in the
N = 4 SYM case in (1.36), (1.37) that on string side may be interpreted as representing
sum of separated handle insertions into the disc diagram [2]. Similarly, (7.46) may be
interpreted as a sum of crosscup insertions into the disc.
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A Partition function of N = 2 matrix model and conformal anomaly

Let us first recall that the conformal anomaly coefficients a and c in N = 2 superconfor-
mal models are not renormalized, i.e. are given just by their free-theory values found by
summing up contributions of particular fields (see, e.g., [43]). In a model with nv vector
multiplets and nh hypermultiplets one finds

a = 5
24nv + 1

24nh . (A.1)

In particular, in the N = 4 SYM theory (nv = nh) with group G we get a = 1
4 dimG. The

free energy of a massless superconformal model on S4 of radius r may be written as

F̂ = − log Ẑ = 4a log(Λ r) + Ffin(λ,N) , (A.2)

where Λ is a UV cutoff, i.e. the r dependence is controlled by the a-coefficient. The free
energy thus depends on a subtraction scheme and below we shall denote by F its regularized
value.
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The localization matrix model expression for the partition function Z of N = 2 gauge
theory on S4 is [5]

Z = e−F =
∫
Dae−

8π2N r2
λ

tr a2
Z1-loop(a) , Z1-loop(a) = e−Sint(a) . (A.3)

In N = 4 SYM case Z1-loop(a) = 1 and doing the Gaussian integral we get

ZN=4 = C

(
Nr2

λ

)− 1
2 dimG

, FN=4 = 4a log r−2a log λ+const , a = 1
4 dimG . (A.4)

Setting r = 1 we conclude that in the subtraction scheme assumed in the localization
approach FN=4 = −2a log λ (up to a constant). In particular, in the SU(N) case FN=4 =
−1

2(N2 − 1) log λ. This was noted in [17] and an AdS/CFT interpretation of this result
was suggested.

One may wonder what happens in other N = 2 superconformal models, in particular, if
the conformal anomaly a-coefficient is also encoded the log λ term of the large λ expansion
of the free energy F on S4. For the models that are planar-equivalent to N = 4 SYM this
is certainly the case at the leading N2 order but as we shall see below this does not need
to be true at subleading orders in 1/N .

For an N = 2 model with a collection of hypermultiplets in representation R = ⊕Ri of
a group G with algebra g one finds [5]28

Ẑ1-loop(a, r) =
∞∏
n=1

( ∏
α∈roots(g)

[
r−2n2 + (α · a)2]∏

w∈weights(R) [r−2n2 + (w · a)2]

)n
. (A.5)

Ẑ1-loop coming from the ratio of 1-loop determinants on S4 in a constant scalar a background
does not depend on λ but does depend on r. Note that the product over roots here includes
also the “massless” contributions of the zero roots corresponding to Cartan directions for
which α · a = 0 (same also applies to the product over weights in the case of the adjoint
representation).

The regularized value of Ẑ in (A.5) used in [5] was

Z1-loop(a r) =
∏
α∈roots(g) H(i α · a r)∏

w∈weights(R) H(i w · a r) , (A.6)

where H(x) ≡ G(1 + x) G(1 − x) is the product of the Barnes G-functions. Notice that
here the contribution of the “massless” terms present in (A.5) is trivial as H(0) = 1. As
a result, the contribution of (A.6) to the log r term in F or to the conformal anomaly is
trivial — the r dependence can be absorbed into the rescaling of the integration variable a
in (A.3) and this the resulting Z will depend on r in the same way (A.4) as in the N = 4
SYM case.

28We ignore the instanton contribution since it is exponentially suppressed in the 1/N expansion we are
interested in here.
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To properly account for the conformal anomaly of the N = 2 model we need to go back
to the original unregularized expression (A.5) and compute its dependence on the radius
r. Rearranging (A.5) using that

∞∏
n=1

(
r−2n2 + µ2

)n
=
∞∏
n=1

r−2n
∞∏
n=1

(
n2 + r2µ2

)n
, (A.7)

where µ stands for α · a or w · a, we conclude that the non-trivial dependence on r (that
cannot be absorbed into a) is captured by the infinite product factor that can be defined
using the standard Riemann ζ-function regularization as

∞∏
n=1

r−2n = e−2ζ(−1) log r = e
1
6 log r . (A.8)

As a result, we find from (A.5)29

Ẑ1-loop(a, r) → e
1
6 (dimG−dimR) log r Z1-loop(a r) . (A.9)

Redefining ra → a to account for the dependence on r in the free action in (A.3) and in
Z1-loop(a r) we need also to include the contribution of the Gaussian measure or the N = 4
term in (A.4), so that the total r dependence of the N = 2 free energy is (cf. (A.2))

F =
[
dimG− 1

6(dimG− dimR)
]

log r+ · · · = 4a log r+ . . . , a = 5
24 dimG+ 1

24 dimR ,

(A.10)
in agreement with the general expression for the a-anomaly in (A.1).

We have thus shown that it is the “bare” expression for the matrix model integral (A.3)
using (A.5) that correctly includes the conformal a-anomaly term in free energy. It is clear
that the direct correlation between the dependence on r and on λ is a feature of only the
Gaussian part of the integral in (A.3). In particular, the dependence of the N = 2 free
energy on log λ beyond the leading planar limit need not be controlled by the a-anomaly
coefficient as that happened in the N = 4 SYM case in (A.4).

Nevertheless, we have found (see discussion below (1.38)) that not only the order N2

but also the order N coefficient of the log λ term in the large λ limit of the free energies of
the SU(N) and Sp(2N) FA-orientifold theories computed in this paper do agree with the
corresponding terms in the conformal a-anomalies. We suspect that the matching of the
order N term should be also related to the fact that these models are planar-equivalent to
N = 4 SYM theory.

B Derivation of large λ expansion of F1 using Mellin transform

In the main text, we computed the large λ expansion of F1 using the approach described
in (6.1)–(6.3). Here we shall compute the large λ expansion of F1 given by the integral

29Here we use that the total number of roots counting also the trivial Cartan ones is the same as dimG.
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representation (3.14) by applying the Mellin transform method (see e.g. [44, 45]). The first
step is to rewrite (3.14) in the form of a Mellin convolution

h(x) ≡ (f ? g)(x) =
∫ ∞

0
dt f(t x) g(t) , x =

√
λ . (B.1)

The Mellin transform is h̃(s) = M[h](s) =
∫∞

0 dxxs−1 h(x) = f̃(s) g̃(1− s). If α < s < β is
the fundamental strip of analyticity of h̃(s), the asymptotic expansion of h(x) for x →∞
is obtained from the poles of its Mellin transform in the region s ≥ β. In particular, the
pole 1

(s−s0)n gives a term (−1)n
(n−1)!

1
xs0 logn−1 x in the asymptotic expansion of h(x).

Explicitly, let us first put (3.14) in the equivalent form30

F1(λ) = 2√
λ

∫ ∞
0

dt
e2πt

(e2πt − 1)2
3t
√
λ− 8J1(t

√
λ) + J1(2t

√
λ)

t2

= 2
√
λ

∫ ∞
0

dt f(t
√
λ) g(t) = 2

√
λ (f ? g)(

√
λ) , (B.2)

where
f(t) = 3t− 8J1(t) + J1(2t)

t2
, g(t) = e2πt

(e2πt − 1)2 . (B.3)

The Mellin transform of g(t) is

M

[
e2πt

(e2πt − 1)2

]
(s) = − 1

2πM
[
d

dt

1
e2πt − 1

]
(s) = 1

2π (s− 1)M
[ 1
e2πt − 1

]
(s− 1)

= (2π)−s Γ(s) ζ(s− 1) . (B.4)

Computing the Mellin transform of f , then using f̃ ? g = f̃(s) g̃(1−s), and finally evaluating
the residues gives

F1
λ�1= log 2

4
λ

π2 −
1
4 log λ

π2 +
(7

6 log 2 + 3
4 − 6 log A

)
− π2

4

(
λ

π2

)−1
+ . . . , (B.5)

where A is Glaisher’s constant. There are no additional pole contributions beyond those
giving (B.5). This implies that dots in (B.5) stand for the exponentially suppressed cor-
rections (discussed in section 6.3).

C Strong coupling expansion of Wilson loop in Sp(2N) theory

Let us first consider the expectation value of the BPS Wilson loop (defined in fundamental
representation) in the N = 4 Sp(2N) SYM theory [7] (see also [19])

〈W〉N=4 = 2 e
λ

16N

N−1∑
i=0

L2i+1

(
− λ

8N

)
. (C.1)

30For an odd function f̂(t), we have the identity
∫∞

0 dt e2πt

(e2πt+1)2 f̂(t) =
∫∞

0 dt e2πt

(e2πt−1)2 f(t) with f(t) =
f̂(t)− 2f̂

(
t
2

)
and the inversion relation f̂(t) =

∑∞
k=0 2kf(2−kt).
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Using the integral representation of Laguerre polynomials Ln(x) = 1
2πi
∮ dt
tn+1 (t + x)ne−t,

we can write

〈W〉N=4 = 1
2πi

∮
dt

8N e−t+
λ

16N
(
1− λ

8tN

)
λ
(
1− λ

16tN

) [
1−

(
1− λ

8Nt

)2N]
. (C.2)

Expanding at large N and observing that

1
2πi

∫
du

un
e−x(u+u−1) = (−1)n−1 In−1(2x) , (C.3)

we obtain for the leading terms [19]

〈W〉N=4 = 4N I1(
√
λ)√
λ

+ 1
2
[
I0(
√
λ)− 1

]
+ λI2(

√
λ)

96N + 1
N2

[
−λI0(

√
λ)

192 +
√
λ(λ+ 8)I1(

√
λ)

768

]
+ · · · .

(C.4)
Let us denote the leading large N term here as 〈W〉0 =NW0 =4N I1(

√
λ)√
λ

(cf. (1.29), (1.30)).
Expanding at large λ and keeping only the dominant term at each order in 1/N we find

〈W〉N=4

〈W〉0
λ�1= 1 + λ1/2

8N + λ3/2

384N2 + λ2

3072N3 + λ3

294912N4 + λ7/2

2359296N5

+ λ9/2

339738624N6 + λ5

2717908992N7 + · · · . (C.5)

A natural guess for the sum of this expansion is

〈W〉N=4

〈W〉0
λ�1=

(
1 + λ1/2

8N

)
exp

(
λ3/2

384N2

)
. (C.6)

This expression can be proved rigorously starting from the exact relations between 〈W〉N=4

in U(N) and Sp(2N) theories given in [7]

〈W〉N=4
Sp(2N)

(λ) = 〈W〉N=4
U(2N)

(λ) + 1
16N

∫ λ

0
dλ′ 〈W〉N=4

U(2N)
(λ′) , (C.7)

and taking the large λ limit.31

Let us now turn to the Wilson loop expectation value in the N = 2 Sp(2N) theory given
by the matrix model expectation value as in (2.6), (4.2) with the single-trace interaction
action in (7.2)

Sint = Bi(λ) tr â2i+2 , â ≡ a√
N
, (C.8)

where here and below we assume summation over i = 1, . . . ,∞ and Bi(λ) is given by (2.8).
Denoting as in (2.6) by 〈. . .〉 the normalized expectation value in the Gaussian theory (i.e.

31The Wilson loop in the N = 4 U(N) theory is given by 〈W〉N=4
U(N) (λ) = e

λ
8N L

(1)
N−1

(
− λ

4N

)
(cf. (1.1)).
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in N = 4 SYM case) then

〈W〉 = 〈tr e
√

λ
2 â e−Bi tr â2i+2〉
〈e−Bi tr â2i+2〉

=
∞∑
k=0

1
(2k)!

(
λ

2

)k 〈tr â2k e−Bi tr â2i+2〉
〈e−Bi tr â2i+2〉

= 2N + λ

4
〈tr â2 e−Bi tr â2i+2〉
〈e−Bi tr â2i+2〉

+
∞∑
k=1

1
(2k + 2)!

(
λ

2

)k+1 〈tr â2k+2 e−Bi tr â2i+2〉
〈e−Bi tr â2i+2〉

= 2N − 1
4N ∂λ−1 log Ẑ +

∞∑
k=1

1
(2k + 2)!

(
λ

2

)k+1 〈tr â2k+2 e−Bi tr â2i+2〉
〈e−Bi tr â2i+2〉

= 2N − λ2

4N ∂λ∆F + λ
N(2N + 1)

8N +
∞∑
k=1

1
(2k + 2)!

(
λ

2

)k+1
∂Bk∆F . (C.9)

Here Ẑ = e−F =
∫
Da′ e−

1
λ

tr a′2−Sint(a′) is the total partition function as in (2.1) before
rescaling of integration variable by λ1/2 in (2.5) and the total free energy F = FN=4 + ∆F
as in (2.10) with FN=4 given by (1.22). We used that differentiating Ẑ over λ puts down
the factor ∼ tr a2. The third term in (C.9) comes from

log Ẑ = −∆F + log
∫
Da′ e−

1
λ

tr a′2 = −∆F + 1
2N(2N + 1) log λ+ const. (C.10)

We also used the formal notation ∂Bk∆F for the normalized ∂Bk〈e−Bi tr â2i+2〉 =
〈tr â2k+2 e−Bi tr â2i+2〉. Here (see (7.19), (7.20))

∆F = NF1 + F2 + 1
N

F3 + O

( 1
N2

)
, (C.11)

F1 = 2
∑
i

RiBi , F2 = 1
2

∞∑
i=1

(i+ 2)RiBi − 2
∞∑

i,j=1
Q̃ijBiBj . (C.12)

where numerical Ri and Q̃ are given by (3.5), (3.9) and λ-dependence is contained in Bi.
Defining Wn corrections to the N = 4 SYM value 〈W〉N=4 = 〈tr e

√
λ
2 â〉 as in (7.38), i.e.

〈W〉 = 〈W〉N=4 + W1 + 1
N

W2 + 1
N2 W3 + O

( 1
N3

)
, (C.13)

we see that derivatives of both Fn and Fn+1 terms in ∆F in (C.9) contribute to Wn. In
particular, ∂BkF1 = 2Rk contributes to the order N (planar) part of 〈W〉 while for W1
we find

W1 = −λ
2

4 F′1 +
∞∑
k=1

1
(2k+ 2)!

(
λ

2

)k+1
∂BkF2(B) = −λ

2

4 F′1− 4
∞∑

j,k=1

1
(2k+ 2)!

(
λ

2

)k+1
Q̃kjBj ,

(C.14)
where (. . . )′ ≡ ∂λ(. . . ). Since Bj ∼ λj+1, differentiating W1 over λ gives

W′1 = −1
4(λ2F′1)′ −

∞∑
j,k=1

2(j + k + 2)
(2k + 2)!

(
λ

2

)k
Q̃kjBj

= −1
4(λ2F′1)′ −

∞∑
j,k=1

2
(2k + 2)!

(
λ

2

)k 2j+k+1Γ
(
j + 3

2

)
Γ
(
k + 3

2

)
πΓ(j + 1)Γ(k + 1) Bj
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= −1
4(λ2F′1)′ +

√
π

2
√
λ

(
√
λ− 2I1(

√
λ))

∞∑
j=1

1
π

2j+1Γ
(
j + 3

2

)
Γ(j + 1) Bj

= −1
4(λ2F′1)′ + 1

2
√
λ

(
√
λ− 2I1(

√
λ))

∞∑
j=1

(j + 1)(j + 2)RjBj

= −1
4 W0

∞∑
j=1

(j + 1)(j + 2)RjBj = −λ8 W0(λF1)′′ , (C.15)

where W0 = 4√
λ
I1(
√
λ) as in (7.39). This demonstrates the relation in (7.41). Similarly

one can show also that W2 = −λ2

8 W0F′2.
The example of W2 suggests that the dominant at large λ term in Wn comes from the

dominant term in the corresponding Fn. Indeed, from (C.9) and the expression for the
dominant term in F3 in (7.21) we get for the leading order large λ contribution

W2
λ�1=

∞∑
k=1

1
(2k + 2)!

(
λ

2

)k+1
∂Bk

1
3

[ ∞∑
i=1

(i+ 1)(i+ 2)RiBi

]3

+ . . .

=
∞∑
k=1

1
(2k + 2)!

(
λ

2

)k+1
(k + 1)(k + 2)Rk

[ ∞∑
i=1

(i+ 1)(i+ 2)RiBi

]2

+ . . .

= − 1
16λ

[
1− 2√

λ
I1(
√
λ)
] [
λ(λF1)′′

]2 + · · · = W0
λ

32[λ(λF1)′′]2 + . . . . (C.16)

This is indeed the leading at large λ term in the exact expression for W2 in terms of
F1 = 2F1 in (7.42).

Applying the same logic to find the large λ contribution in W3 we use the expression
for the dominant term in F4 in (7.23)

W3
λ�1=

∞∑
m=1

1
(2m+ 2)!

(
λ

2

)m+1
∂Bm

− 1
4!

∞∑
i,j,k,`=1

cijk`RiRjRkR`BiBjBkB`

+ . . .

= − 1
3!

∞∑
m=1

1
(2m+ 2)!

(
λ

2

)m+1
Rm

∞∑
i,j,k=1

cijkmRiRjRkBiBjBk + . . . , (C.17)

where cijkm is given in (7.25). Summing over m and keeping only leading e
√
λ terms (i.e.

terms proportional to W0 = 2
√

2
2λ
−3/4e

√
λ + . . . ) we get

W3
λ�1= − 1

3!
λ3/2

8 W0

∞∑
ijk

(i+ 1)(i+ 2)(j + 1)(j + 2)(k + 1)(k + 2)RiRjRkBiBjBk + . . .

= − 1
3!
λ3/2

8 W0

[ ∞∑
i=1

(i+ 1)(i+ 2)RiBi

]3

+ · · · = − 1
3!
λ3/2

64 W0
[
λ(λF1)′′

]3 + . . . .

(C.18)

Then F1
λ�1= 2f1λ+ . . . (see (7.26)) gives

W3
W0

λ�1= −1
6f

3
1λ

9/2 + . . . . (C.19)
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