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1 Introduction

In recent times our understanding of strongly coupled super symmetric theories (possibly
coupled to gravity) in various dimensions has made great progress by means of geometric
methods. Those theories are generically hard to control within the framework of regular
quantum field theories. Six dimensional superconformal field theories (SCFT) for example
are genuine strongly coupled and were believed to contain massless string excitations in the
spectrum [18, 32–35]. Evidence for their existence could be made in explicit construction
made in string theory. The string construction uses of compactification geometries that
provide certain divisors that are wrapped by branes and lead to massive BPS strings in
the non-compact directions. If those divisors are collapsed to points these strings become
tensionless and support the SCFT [57]. For 6D theories with minimal supersymmetry the
most flexible tool of choice has been F-theory [49]. F-theory itself geometrizes the type IIB
axio-dilation into the complex structure of an auxiliary elliptic fiber which is put on top of
the physical compactification space. The total geometry becomes that of an elliptic Calabi-
Yau(CY) three-fold which features the consistent description e.g. of branes with large IIB
string coupling. Classifying all non-compact elliptic-threefolds that can be shrunk to a
(possibly singular) point has lead to an extensive list of 6D SCFTs [36–38] (see [39] for
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a review). This direction is also fruitful to further classify 5D SCFTs using M-theory
on the same class of geometries related to F-theory by a circle compactification [53, 54].
To access M-theory though the CY geometry must be fully resolved. This can be done
by performing birational base blow-ups until the elliptic fiber admits at most minimal
singularities. Such fiber singularities then admit a crepant resolution according to the
Tate-algorithm. This resolution strategy naturally reflects the 6D tensor branch followed
by the 5D coulomb branch upon the circle reduction. However, there is yet another way
to resolve the geometry. This resolution is crepant and hence Calabi-Yau but does not
respect the dimension of the elliptic fiber, called non-flat resolution. In such cases a non-
minimal fiber singularity in codimension two can be replaced by surfaces Ei of complex
dimension two as observed for a large class in [55]. Shrinking those surfaces back to points
reaches the respective 5D SCFT point. This point of view has proven to be very efficient to
characterize 5D SCFTs and its phase structure [2, 16, 17, 40]. In addition it also allows to
study the non-minimal singularities of elliptic three-folds and their F-theory lifts directly
without the need to change the base [3, 5, 50]. Extending this geometric approach to
4D is of course highly desirable. Related geometric approaches e.g. those pioneered by
Seiberg and Witten [41, 42] have lead to many new insights in N = 2, 3, 4 SCFTs and their
construction [43–46]. Clearly one would like to extend this program further to minimal
supersymmetric theories in 4D. This direction has been explored e.g. in [59, 61, 62], where
the 6D conformal matter theories have been compactified on punctured Riemann-surfaces.

A main complication with minimal supersymmetry though is that the moduli space is
even less protected from non-perturbative corrections which can obstruct the SCFT point.

This was also observed in [29] where it was the goal to construct non-trivial SCFTs
from F-theory on non-compact elliptic four-folds by extending the approach taken in [37].
There the SCFTs are constructed from collisions of D7 flavor branes. In the language of F-
theory, D7 flavor branes are geometrically engineered as crepant singularities of the elliptic
fibers over non-compact divisors in the base. The collisions of these divisors lead to non-
minimal singularities that are removed via blow-ups of the base locus which introduces new
Kähler moduli that parameterizes the tensor branch in 6D. In 4D however, the existence
of the SCFT point at the origin of the Kähler moduli space might be obstructed by the
aforementioned quantum corrections. The corrections originate from Euclidean D3 branes
that wrap the collapsing cycle and mix Kähler and complex structure moduli space of
the geometry.

This note wants to take a similar approach to [29] and investigate the (classical) defor-
mation space of elliptic four-folds with non-minimal singularities but in codimension two.
Opposed to [29] we do not want to focus solely on the resolution phase via a base blow-up
but also on the non-flat resolution and (partial) Higgs branches. A major difference of
elliptic four-folds as opposed to three-folds is that they can have non-trivial three-form
cohomology. As we will show in the following, these cohomology classes are naturally re-
lated to non-flat fibers in codimension two. The dimension of this moduli space is given
by the additional independent Hodge number h2,1. Due to their absence in three-folds and
the fact that their dimension is self-dual under mirror symmetry [10] makes the three-fold
cohomology interesting in their own right. Unfortunately, these contributions have not
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been given much attention in the literature apart from [8, 9]. Moreover, in the application
to 4D SCFTs, this contribution yields yet another part in the moduli space of the four-fold
which might mix with Kähler and complex structure moduli under quantum corrections.

The non-flat contributions we are considering in this work appear in codimension two
which makes them very analogous to the superconformal matter in three-folds. Indeed,
one might construct four-folds simply from a three-fold fibered over another P1 which is a
perspective we will large use in this work. Due to this analogy one might wonder weather
it is possible to characterize the geometric moduli space of those non-flat fibrations via the
6D/5D SCFT data.

Moreover, we want to show that these fibers and hence their non-perturbative contribu-
tions can dynamically be created/destroyed by studying conifold transition between four-
folds. These transitions generically change the h2,1 contribution but in fact also all other
Hodge numbers. However we will find that transition related to base changes keep the Euler
number invariant which is important in order to connecting 4D F-theory vacua [13, 14].

Another class of conifold transitions can be interpreted as a (partial) Higgs branch
that keeps the gauge group but removes the non-flat fiber from codimension two. This
transition does not fully avoid the non-flat fiber though. Instead they are pushed down to
codimension three and hence correspond to points in the base of the four-fold. Scenarios
like those were considered in [4] where they were shown to lead to non-perturbative four-
point couplings. These superpotential terms are mediated by D1 string instantons between
matter curves that meet at the respective points. Those couplings are also present in our
cases and involve matter curves that are remnants of the original E-string curve. Moreover,
since the same transition admits an origin from a 6D partial Higgs branch the involved
matter curve representations of the four-point coupling are enforced geometrically and
dictated by 6D anomaly cancellation.

This work is structured as follows: in section 2 we give an overview of the geometry
of elliptic four-folds. We infer the Hodge numbers for non-flat fibrations and link those in
section 2.1 to the 6D/5D SCFT data. Those contribute additional chiral singlets in a four-
fold which we review in section 2.2. In section 2.3 we also show how (partial) Higgs branches
of those SCFTs naturally to the prediction of non-perturbative four-point couplings. In
section 3 we present our two main examples which are families of four-folds with E-string
theories that exhibit a (E6 × U(1))/Z3 and (SO(10) × U(1)2)/Z4 gauge group. Our main
tool to study and construct these compact CY geometries is toric geometry. However we
also expect our arguments to be valid beyond those constructions and for non-compact
geometries as we. In section 4 we also give examples with higher rank SCFTs that have an
E8 × SU(3)× SU(2) gauge group to show the validity of our proposal. More details of the
toric resolutions are presented in the appendices A.

2 Geometric preliminaries and F-theory

One of the main goals of this note is to give a physical explanation to certain Hodge
numbers of elliptic Calabi-Yau four-fold X4 with non-flat fibers in the context of F/M-
theory. For this we start by reviewing the independent Hodge numbers of a Calabi-Yau
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1
0 0

0 h1,1 0
0 h2,1 h2,1 0

1 h3,1 h2,2 h3,1 1

Figure 1. The Hodge half-diamond of a CY four-fold and its non-trivial entries. h2,2 is not
independent but related to the other three entries.

four-fold. These are depicted in the upper half of the Hodge diamond in figure 1. A four-
fold X4 admits Kähler and complex structure parameters whose dimensions are counted by
h1,1(X4) and h3,1(X4) analogous to those found in three-folds. Unlike three-folds, four-folds
can also exhibit non-trivial three-form cohomology counted by h2,1(X4) which is self-dual
under mirror symmetry. The dimension of h2,2(X4) of a four-fold is not independent but
related to the other Hodge numbers as

h2,2 = 2(22 + 2h1,1 + 2h3,1 − h2,1) . (2.1)

The Euler number can be computed as

χ = 6(8 + h1,1 + h3,1 − h2,1) . (2.2)

This quantity will be important later when discussing transitions among smooth four-folds.
In addition we are interested in elliptic four-folds with non-flat fibers in codimension two.

In order to investigate the contribution of non-flat fibers to the Kähler moduli we first
turn to smooth three-folds X3. For a smooth elliptic three-fold X3 we are able to split
up the Kähler moduli contributions into pieces that directly connect with the F-theory
interpretation. This split is due to the Shioda-Tate-Wazir theorem and given as

h1,1(X3) = 1 + rank(MW (X3)) + nfibral + h1,1(B2) . (2.3)

The first contribution is that of the Mordell-Weil group and the number of nfibral fibral
divisors that resolve some ABCDEFG type singularity. Taken together, both parts count
the rank of the full F-theory gauge group. Second there is the contribution from base
divisors that contribute the universal hypermultiplet and the 6D tensor multiplets. In [5]
it was first proposed that non-flat fibrations generally require the addition of new divisor
classes in that decomposition. In practice there can be k = 1 . . . np points in the two-fold
base B2 where the fiber decomposes into Ei,k surface components with i = 1 . . . nnon-flat,k [3,
5, 17] as we will further explain in section 2.1.

Having reviewed the three-fold case, we now turn to four-folds. Inspired from eq. (2.3)
we propose a similar type of Shioda-Tate-Wazir decomposition for four-folds given by

h1,1(X4) = 1 + rank(MW (X4)) + h1,1(B3) + nfibral + h1,1(X4)non-flat . (2.4)

The general decomposition is analogous to the three-fold case but we explicitly added
contributions from non-flat fibers. In the case of four-folds these are nc codimension two
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loci in B3 and as such irreducible Riemann surfaces Cα of genus gα with α = 1 . . . nc.
Just as for three-folds, these curves admit complex two dimensional surfaces Ei,α as their
fiber. In analogy to three-folds these non-flat fibers Ei,α can be shrunk to singular curves
Cα in the four-fold geometry controlled by a volume modulus of the surface. Hence these
surfaces contribute a additional Kähler parameters to those of the four-fold. Note that
there can be additional non-flat degenerations in codimension three on the base B3. These
types of non-flat fibers are rather generic and do not need to contribute to h1,1(X4) in the
decomposition of Equation 2.4. The degenerations in codimension three that we are going
to study here e.g. in sections 3 and throughout this paper are relatively mild and indeed
do not contribute to h1,1(X4).

In the following we want to deduce how non-flat fibers contribute to h2,1(X4). Non-flat
fibers will in general not be the only source to the three-form cohomology but the one we
want to focus on in this work. As we have just extended the non-flat surfaces Ei,α to be
fibered over a curve their total space is a divisor divisors Di,α with

Ei,α → Di,α

↓ π
Cα

. (2.5)

Note that in general there can be several divisors Di,α labeled with i = 1 . . . nnf,α that
restrict to the same α = 1 . . . nc base curves Cα. This fibration structure allows to deduce
the cohomology of (2.5) from those of fiber and base using the Leray-Hirsch theorem [9,
52]. Since the fibers Ei,α are compact and connected their Hodge numbers are trivial but
h0,0(Ei,α) = h2,2(Ei,α) = 1. This data is enough to show that the divisors Di,α support a
non-trivial one-form cohomology whose dimensions is given by

h1,0(Di,α) = h1,0(Cgα) · h0,0(Ei,α) = gα for i = 1 . . . nα . (2.6)

This non-trivial one-form cohomology embeds non-trivially into the four-fold X4 and is the
main source for the three-form cohomology. This fact has been shown in [9, 52] via the so
called Gysin isomorphism ι. For a smooth toric hypersurface X4 and under the assumption
that D is toric, the Gysin spectral sequence has been evaluated in [52]. The result is that
those divisors that admit a non-trivial one-form cohomology essentially inject a non-trivial
three-form cohomology in X4 of that same dimensions

⊕i,αH1,0(Di,α) ⊕i,αι:−−−→ H2,1(X4) . (2.7)

Putting the pieces together we deduce the contribution of non-flat fibrations to the three-
form cohomology as

h2,1
non-flat(X4) =

∑
α

gα · nα . (2.8)

The Formula (2.8) can be used in general to also construct bases B3 that exhibit themselves
non-trivial three-forms h2,1(B3) as has been done in [9]. The trick is simply to look for
bases that themselves admit divisors with non-trivial one-form cohomology. This however
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is not the focus of study for this work. Moreover, although eq. (2.7) has been proven in the
framework of toric hypersurfaces, it is plausible to be of general validity. In the end from
an intuitive point we might simply think of those three-forms to come from the sections of
the genus g surfaces twisted by the surface component.

As this work mainly focuses on the contribution of non-flat fibers we will always con-
sider bases with only trivial fibration structure in 3 and 4. Analogous to three-folds and
also arguing from a physics perspective in section 2.1 each of those surface Ei,α contributes
an additional Kähler parameter.1 We summarize the contributions of all non-flat surfaces
using (2.8) as

h1,1(X4)non-flat =
nc∑
α

nnf,α , h2,1(X4)non-flat =
nc∑
α

gα · nnf,α . (2.9)

We can now turn to implications for the physics of F-theory compactifications. The concrete
examples presented in the sections below all make use of the toric description in terms of
the Batyrev construction. For those there exists a nice way to compute the Hodge numbers
from the combinatorial data of the polytope ∆ which we review in appendix B. This allows
first to explicitly construct non-flat four-folds via toric geometry and to explicitly show the
validity of the expressions above.

2.1 (4,6,12) and non-flat resolutions

The structures of non-flat fibers appear naturally when one considers elliptic fibrations
that exhibit non-minimal singularities at codimension two (or higher). In the Weierstrass
model this amounts to loci where the functions f, g and discriminant ∆ admits a vanishing
order in the window2

(4, 6, 12) ≤ ordvan(f, g,∆) < (8, 12, 24) . (2.10)

In order to discuss those cases, we consider three-folds and the occurrence of those singu-
larities in some detail first. In a threefold X3 these singularities occur over smooth points
of the base B2 and signal the presence of non-perturbative objects that become light in the
six dimensional F-theory. The simplest example are those of E-string theories that exist at
the lowest end of the window (2.10). These theories are typically engineered by collisions
of e8 and su1 branes in a point of B2. In a threefold X3, there are three possibilities to
remove those singularities and make the geometry smooth:3

1. Performing a complex structure deformation that removes the singularity. This de-
formation corresponds to the Higgs branch of the 6D strongly coupled theory.

2. Blowing up the intersection point(s) in B2 until the fiber becomes regular. This
resolution corresponds to the tensor branch of the 6D strongly coupled theory.

1The exact identification is given again via the Gysin spectral sequence [52] that reads
⊕i,αH0,0(Di,α)

⊕i,αι:−−−−→ H1,1(X4) ..
2In codimension three [29] this window of vanishing orders is bounded to be lower than (12, 24, 36).
3We assume a resolution of all codimension one ADE type of singularities here.
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3. Resolving the fiber in a non-flat way without changing the base. In M-theory this
represents a point in the 5D Coulomb branch of the circle reduced 6D SCFT related
via the usual F/M-theory duality.

Note that the two different resolutions (2) and (3) should not be thought of largely different
theories as they collapse down to the same singularity. Instead these resolutions should
be thought of as different points in the extended Kähler cone of the resolved threefold
X3 [2, 16, 17] related by flop transitions [15]. Hence their Kähler moduli spaces are the
same and thus in 5D the dimension of the Coulomb branches are the same too. Since the
5D Coulomb branch is the sum of the 6D tensor branch plus the rank of the gauge algebra
factors we can write

h1,1
non-flat(X3) = dim(Coulomb5D) = dim(Tensor6D) + rank(G6D) . (2.11)

For the simplest case of an E-string theory the (4, 6, 12) collision can be avoided by a single
blow-up in B2 which yields dim(Tensor6D)= 1 and no gauge symmetry. In the same way the
non-flat resolution can be performed by a single surface over that point with h1,1

non-flat = 1
as expected. Other non-trivial higher rank examples are discussed in section 4.

Having clarified the geometric and physics implications of non-flat fibrations in three-
folds we can move to a four-fold. The main point for geometry is that the non-flat resolution
over a codimension two locus do not depend on whether it happens over points in a three-
fold base B2 or curves in a four-fold base B3. The idea is analogous to the resolution
of ADE singularities at codimension one in an elliptic K3 and those at codimension one
in an elliptic three-fold. The general resolution procedure is exactly the same and they
contribute with the same amount of fibral divisors in the Shioda-Tate-Wazir decomposition
eq. (2.3). An important difference in a three-fold though is whether a fiber singularity is
(semi-)split or non-split. Such effects are caused by some additional monodromy effects
along the codimension one curve in B2. Their presence affects the resolution of the fiber
singularities by identifying fibral curves and effectively folds the ADE singularity by an
outer automorphism to a non-simply laced algebra. Similarly to those one might expect
monodromies to also be present in four-folds that act non-trivially on the non-flat fiber.
Such cases are not discussed in this work but left for future investigations. In the absence
of such monodromies the number of non-flat resolution surfaces in a four-fold can directly
be inferred from those of three-folds X3. From a physics perspective this makes sense
as the theories might simply be viewed as compactifications of the 6D/(5D) theories on
Riemann-surfaces Cgα similarly to [61, 62].4

This physics interpretation allows us to express the contributions of non-flat fibers to
h1,1(X4) and h2,1(X4) in terms of 6D/5D SCFT data from eq. (2.11) and eq. (2.8) as

h1,1
non-flat(X4) =

nc∑
α

dim(Coulomb5D)α , (2.12)

h2,1
non-flat(X4) =

nc∑
α

dim(Coulomb5D)αgα , (2.13)

4Cases with monodromy might directly incorporate possible twisted circle reductions [53] in the geometry.
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when summing over the nc curves Cα in the base. In section 3 we consider several examples
of four-folds with E-string curves as well as higher rank examples in section 4.

2.2 Singlets in M/F-theory duality on elliptic four-folds

In this section we review the contribution of three-form cohomology in the F/M-theory,
following [1]. In order to do so we consider M-theory on a four-fold X4 and consider the
contributions that lead to neutral chiral fields in 4D. We first focus on those contributions
that solely come from the base B3 and lift to neutral singlets in the 4D F-theory. There
are complex scalars Tκ with β = 1 . . . h1,1(B3) + 1 that come from the expansion of the
Kähler form J and RR four-form C4 of IIB string theory. In a basis of ωκ ∈ H1,1(B3) we
expand those as

J = vκωκ , C4 = Bκ2 ∧ ωκ + . . . . (2.14)

Dualizing the two-forms Bκ2 in 4d gives rise to axions ρκ that combine with vκ to com-
plexified Kähler moduli Tκ. These axions can be gauged and are important for anomaly
cancellation. Further chiral singlets originate from complex structure moduli h3,1(X4) of
the full four-fold. Our main interest though are the chiral singlets that are inherited from
h2,1(X4) that do not come from the base and in our case are given by

h2,1(Y4)− h2,1(B3) = h2,1(X4)non-flat . (2.15)

These are obtained from the expansion of the M-theory C3-form and are denoted by Nβ

with β = 1 . . . h2,1(X4)non-flat. These singlets are unfortunately not very well understood.
I.e. it is not clear whether the axion parts σ of the Nβ couple to curvature terms of the
form σF ∧ F and σR ∧ R in the 4D effective action. These singlets though appear in an
interesting way [47] in the Kähler moduli, given as

Tκ = 1
2wκ,β,γv

βvγ + 1
4dκ,β,γ(N +N)β(N +N)γ + iρκ , (2.16)

with w the base intersection form on B3 and dκ,β,γ a holomorphic function on the complex
structure moduli space. The curious observation though is that the Nβ enjoys of an
additional discrete symmetry N → −N that the other chiral singlet fields do not have.
Understanding these fields and their couplings is beyond the scope of this note. Instead
this review should serve as a motivation of why these singlets are interesting and that
non-flat fibrations naturally produce them.

2.3 Higgs branches and non-perturbative couplings

Having discussed the role of the resolutions of non-minimal singularities in three-and four-
folds in section 2.1 we now want to consider their deformations. These deformations can
be of very general type e.g. they can fully remove all singular fibers resulting in a broken
gauge group. The specific kind of deformations we want to consider here are those which
keep the gauge group G but only create/remove (4, 6, 12) loci at codimension two. For
concreteness we fix such a locus to be the vanishing of the ideal IE-string = {z, p}. For this
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we consider the inverse problem by starting with a three-fold geometry that does not posses
any (4, 6, 12) yet. This geometry should have some non-Abelian gauge algebra G localized
over z = 0 and possibly additional Abelian factors. In general these gauge group factors are
expected to lead to massless hypers in 6D that carry non-trivial representations Ri. These
matter representations are found at loci where the vanishing order of the discriminant ∆
in the Weierstrass form enhances. Such loci we denote by the vanishing ideals Imatter,i
which might be very complicated and not necessarily of complete intersection type. For
simplicity we fix one of them to be Imatter,0 = {z, p}. Then we perform a complex structure
deformation such that one polynomial factors out one power of z as

a→ z b , (2.17)

where b itself is some other polynomial. For some of the matter loci Imatter,i we now require
that these are themselves non-trivial in {a, p} which we denote as Imatter,k(a, z, p). Those
ideals we require to become reducible upon the factorization eq. (2.17) as

Imatter,k(a, z, p)
a→z b−−−→ Imatter,0 ⊕ Îmatter,k . (2.18)

The deformation eq. (2.17) forces matter ideals to be moved onto the Imatter,0 locus. Since
the loci themselves are identified with matter loci, the Weierstrass coefficients (f, g,∆) ad-
mit a non-trivial vanishing order over them before tuning. The factorization in eq. (2.18)
therefore increases the vanishing order of the Imatter,0 to the E-string loci IE-string. From
the field theory side such E-string transitions decrease the hypermultiplet sector S and
turns them into non-perturbative E-string sector. The way we have set up those transi-
tions above might seem odd and artificial at first glance. However, those transitions are
highly constrained by the 6D anomaly conditions due to the fact that all E-string points
should admit a tensor branch where the field theory anomalies are properly canceled. Hence
physics tells us that the 6D matter content must change in such a transition and hence
the requirement (2.18) is actually very natural to appear. In particular when the gauge
group G stays fixed such transitions are essentially unique [3, 56]. One obvious constraint
is given by the gravitational anomaly which fixes the dimensions of representations in S to∑
k dim(Rk) = 29 as it is the same contribution of a 6D tensor multiplet. Hence the tran-

sition can never involve a representation R with dimension larger than 28.5 Consistency
of the physics and hence the geometry allows therefore to deduce the subset of matter
ideals Imatter,k in Imatter,i that admits the correct factorization properties as dictated by
the 6D anomalies.

These structures generalize in a straight forward manner to four-folds. Indeed, the
various polynomials important in the discussion can simply be taken to be sections on
the base B3. I.e. the same kind of complex structure deformation creates (4, 6, 12) curves
specified by the very same codimension two ideals that lead to the factorization of mat-
ter curves Imatter,k. However we can use this structure in order to make an additional
observation in four-folds: the factorization property (2.18) under the deformation (2.17)

5If R is (pseudo)real this condition can be relaxed by a factor 1/2. Moreover note that the gauge group
G must be subgroup of E8 the flavor symmetry of the E-string theory.
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guarantees the matter loci Imatter,0 and Imatter,k(a, z, p) to vanish at the codimension three
point(s) z = a = p = 0 before that transition. The prescribed deformation simply ensured
that the polynomial a vanishes to first order at z = p = 0 in order to obtain the (4, 6, 12)
loci. Hence even when the (4, 6, 12) loci are absent at z = p = 0, they are present at the
codimension three locus a = z = p = 0. Indeed this effect is ensured by the reducibility of
the matter ideals Imatter,k enforced by the 6D E-string transition.

As a result we see the (4, 6, 12) curve in the four-fold base B3 was simply deformed to
one codimension lower where all curves of the ideals Imatter,k lie on. Enhanced singularities
in the elliptic fiber at codimension three are generically interpreted as Yukawa couplings in
the 4D superpotential W. In the IIB picture these are induced from intersections of three
matter curves in the respective point that is systematically been tracked by the F-theory
torus. However when the fiber becomes of (4, 6, 12) type one expects non-perturbative
effects to be present similarly to the E-string theories in 6D. Indeed codimension three
points of such non-minimal type have been studied in [4] where they were shown to lead
to gauge invariant four-point couplings in the 4D superpotential. In the IIB picture these
couplings are generated by D1 instanton strings that stretch between the involved matter
curves that meet in the (4, 6, 12) point.

The main point of our geometric construction is that it allows to interpret those codi-
mension three (4, 6, 12) points naturally in terms of the 6D E-string transition. As the 6D
anomalies have dictated the matter in the transition they also fix the very same curves in
4D that meet in the (4, 6, 12) point at codimension three. These points and the matter
curves Imatter,k that meet them are therefore naturally interpreted as the remnants of the
6D E-string transitions which lead to the non-perturbative four-point coupling of type

W 3 R1R2R3R4 , (2.19)

where representations Rk may occur multiple times. E-string transitions that preserve
the total gauge group have been classified in [3] including the respective change in the 6D
matter spectrum. Hence knowledge can be used to infer the induced 4D non-perturbative
couplings. A simple example is that of an SU(7) × U(1) 6D gauge theory. Anomalies
of the 6D tensor branch force the following change in the hypermultiplet sector ∆S =(
21− q3 ⊕ 7q ⊕ 10

)
in an E-string transition. By the arguments above, the very same repre-

sentations must be present in the four-point coupling that resembles the codimension three
(4, 6, 12) point in the four-fold. Indeed, the lowest order gauge invariant coupling [58] in
the superpotential appears at fourth order as

W 3 21− q3 · 21− q3 · 21− q3 · 7q . (2.20)

In section 3 geometry and physics of similar examples are discussed in detail.

3 E-string transitions in three- and four-folds

One way to obtain three-folds with non-flat fibers is to perform conifold transitions [3, 5]
that originate from those that are flat. We will adopt the very same strategy here for four-
folds. Concretely, we want to perform conifold transitions among three types of (compact)
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∆χ 6= 0 ∆χ = 0
(transition 1) (transition 2)

T 2 T 2 T 2

X3,a

B2
X4,a

P1

B3

P1

B3

B2

P1

B̂3

B̂2

X3,b X3,c

X4,b X4,c

Non-flat in codim 2Non-flat in codim 3 Flat

Figure 2. Summary of a chain of conifold transitions in elliptic four-folds. The starting four-fold
X4,a is constructed from a three-fold X3,a fibered over a P1. We then perform conifolds in four-
folds inherited from the three-folds. Conifold 1 renders X4,b non-flat and conifold two removes the
non-flat fiber again by a birational base change (partially).

four-folds X4,a, X4,b and X4,c as summarized in figure 2. To stay close to the analogy of
three-folds, we actually construct the four-folds as three-fold fibrations over another P1.
This allows us to simply extract the three-fold conifold to four-folds. In this way we are
able to use the 6D anomalies of E-string transitions and to extend those to 4D. Note that
this is just an auxiliary construction for illustrational purposes i.e. the logic also works for
general four-folds.

In order to investigate the non-flat fiber structure and its underlying physics, we per-
form conifold transitions that do not change the codimension one and Mordell-Weil struc-
ture i.e the 4D gauge group. We start in X4,a which admits a non-flat fiber in codimension
three which is of course absent in the analogous three-fold X3,a. We then perform a complex
structure deformation to enhance this non-flat fiber to curves in one codimension higher.
Resolving the geometry fully leads to X4,b. These four-folds will exhibit in general a non-
trivial three-form cohomology corresponding to the non-flat surface. In this section we
consider E-strings curves only and hence the three-form contribution corresponds directly
to the genus of the base curve. The final transition corresponds to a base change via a blow-
up that removes all non-flat fibers.6 Keeping track of all Hodge numbers of both three and
four-folds allows the computation of the Euler number too. Both in three-and four-folds
we will observe how the first transition changes the Euler numbers while the second one
does not. Our main example is going to be a (E6 ×U(1))/Z3 gauge theory. Here we focus
on the details of the singular model and present details of the resolution in appendix A.
Section 3.2 concerns similar configurations with gauge group (SO(10) × U(1) × U(1))/Z4.
Besides being richer in structure which we present more technical details of the resolved
geometry directly. All four-folds of consideration are compact and all Hodge numbers are
computed via the Batyrev formulas.

6Notably, in [60] it has been shown that a codimension two non-flat fiber can always be removed by base
blow ups down to codimension three.
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3.1 Example I: (E6 × U(1))/Z3

The starting theory we want to engineer is that of an (E6 × U(1))/Z3 6D gauge theory
whose spectrum admits massless hypermultiplets in the representations

780,27 1
3
,11 . (3.1)

In order to engineer this theory in F-theory we start with the Tate-model , given as

Y 2 = X3 + a1XY Z + a2X
2Z2 + a3Y Z

3 + a4XZ
4 + a6Z

6 . (3.2)

The affine coordinates [Y,X,Z] describe the elliptic fiber in an P2
3,2,1 ambient space. The

divisor Z = 0 is the zero-section and ai are sections of line bundles of the base that are fixed
to be powers in the first Chern class of the base [ai] ∈ c1(B)i. The Weierstrass coefficients
can easily be computed by completing the square and cube in X and Y which allows a
mapping into the simpler Weierstrass form

Y 2 = X3 + fXZ4 + gZ6 , (3.3)

where Weierstrass coefficients and discriminant is related to the Tate-form as

f = 1
48(−(a2

1 + 4a2)2 + 24(a1a3 + 2a4)) ,

g = 1
864((a2

1 + 4a2)3 − 36(a2
1 + 4a2)(a1a3 + 2a4) + 216(a2

3 + 4a6)) ,

∆ = 4f3 + 27g2 .

(3.4)

We start by engineering an u1 gauge factor by setting a6 = 0 globally which leads to an
additional holomorphic section s1 of the torus fiber at

s1 : {X;Y ;Z} = {0;−a3; 1} , (3.5)

and hence a non-trivial Mordell-Weil group. Matter that is charged under this gauge factor
is found at the locus a3 = a4 = 0 where the fiber becomes of I2 type. The e6 factor is
engineered over Z : {z = 0} according to the Tate-classification (e.g. see [19]) by employing
the factorization of the Tate-coefficients

{a1, a2, a3, a4} → {za1,1, z
2a2,2, z

2a3,2, z
3a4,3} , (3.6)

which can be shown to lead to type IV split fibers and hence an e6 over z = 0. Matter in
the 27 1

3
representation7 is found at the locus z = a3,2 = 0. Up to now we have not specified

the dimension of the base B and hence the CY manifold. We start with a three-fold X3,a
where the matter loci are just points that are counted by intersecting their divisor classes
in the base cohomology. For some generic base8 this leads to the multiplicities

n27 1
3

= 6(1− g) + Z2 , n11 = [a3,2] · [a4,3] = 34(g − 1)− 11Z2 + 12c2
1 . (3.7)

7The Abelian charges are evaluated in the appendix A.
8In order not to induce more singularities in the Weierstrass model, we restrict to bases where at most

the divisor Z can admit negative self-intersections with Z2 < −2 but no other.
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where g denotes the genus of the curve Z. The resulting threefold geometry X3,a admits
only minimal singularities. Hence the geometry X3,a can be fully resolved in a flat manner
which we demonstrate in appendix A. An explicit geometry Y3,a with F4 base and e6 placed
over the −4 curve is also given in appendix A. Using (3.7) one can compute the spectrum
which admits two 27 1

3
-plets, 106 charged- and 163 uncharged singlets. The Hodge numbers

of this geometry are given as

(h1,1, h2,1)χ(Y3,a) = (10, 162)−304 . (3.8)

The Kähler parameters are exactly as expected from the Shioda-Tate-Wazir theorem and
the complex structure parameters precisely contribute the amount of neutral singlets
needed for anomaly cancellation.

Next we want to tune E-strings along the e6 gauge group by further performing the
factorization

a4,3 → z b4,4 . (3.9)

Counting the degrees of freedom we found this change to come at the cost of

∆h2,1(X) = (3c1 − 2Z)Z = 6(1− g) + Z2 , (3.10)

complex structures in X3,b. When plugging the factorization into (3.4) one finds that one
still obtains an e6 type of gauge group over {z = 0}. However now the former matter locus
z = a3,2 = 0 got enhanced from a (3, 5, 9) to a non-minimal (4, 6, 12) singularity. Hence in
X3,b, the 27 1

3
-plets got exchanged to E-string theories. Note that the tuning also involved

a change in classes of the 11 matter loci. The full charged matter spectrum of the 6D
model is given as

nE-string = 6(1− g) + Z2 , n11 = [a3,2] · [b4,4] = 40(g − 1) + 12c2
1 − 12Z2 . (3.11)

We summarize the full change in the hypermultiplet sector S in the transition as

∆S = nE-string ·
(
27 1

3
⊕ 11 ⊕ 10

)
→ nE-string · [E-string] . (3.12)

As already implicitly used in the considerations of anomalies before a well defined SUGRA
theory is only obtained when we get rid of those nE-string E-string contributions. This can
be done blowing up the base exactly nE-string times, which brings us to geometry X3,c. Since
both theories X3,a and X3,c are consistent SUGRA theories one can analyze the possible
representations that get lost in such an E-string transitions on very general grounds [3].
From the change of the 6D anomaly lattice one can derive the change of the spectrum in
an (E6 ×U(1))Z3 gauge group which in general must be given by the representations

∆(27q27 + 1q1 + 10) , q2
27 = 9q2

1 , (3.13)

as it is the case in the geometry above. Note that the transition requires a neutral singlet
for each E-string it produces. This can be directly checked when considering the smooth
non-flat resolution of X3,b. The exact toric resolution is given in appendix A as well es
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e6
u1

27 1
3

1−1

e6

E-string

Figure 3. Two (E6 × U(1))/Z3 geometries and the superconformal transition where an 11 singlet
is tuned onto a 27 1

3
locus which merges the local su2 and e7 enhancement into a non-flat fiber.

for the concrete three-fold Y3,b in detail. A schematic depiction of the fiber properties is
shown in figure 3. There the non-flat surface component is highlighted as a red box as well
as its reducible components. In the example one observes these reducible components to
arrange in a closed loop that is attached to other fibral divisors [2, 16, 17]. Computing the
Hodge numbers for Y3,b we find

(h1,1, h2,1)χ(Y3,b) = (12, 160)−296 . (3.14)

These Hodge numbers are consistent with the considerations made earlier. We remember
that we have created two E-string type non-flat fibers that contribute one Kähler class
each. This tuning though came at the cost of one complex structure for each of them. To
remove the non-flat fibers/E-string points we can blow-up the −4 curve which results in
a −6 curve. In the toric setup we demonstrate this in appendix A for geometry Y3,c and
show that it admits the same Hodge numbers (3.14) as three-fold Y3,b.

The four-fold compactification. Having clarified the conifold transitions in the three-
fold geometries and their associated F-theory physics, we can exploit the same strategy
in four-folds and consider their associated 4D physics. To keep matters close to 6D we
construct the four-fold as a three-fold fibration over another P1. In general we have lots
of freedom to fiber X3 over the new P1. For simplicity we chose this fibration to be trivial
which extends to the four-fold base as

B3 = B2 × P1 . (3.15)

The matter loci of X4,a are readily obtained from X3,a. These codimension two loci become
Riemann-surfaces whose genus can be computed explicitly as

g′27 1
3

= 1 + 24(1− g) + 5Z2 , g′11 = 1 + 216(3(g − 1) + c2
1)− 203Z2 . (3.16)

These quantities are expressed in terms of the classes the B2 inherited classes Z, c1 and
their genus g. Again the explicit resolved geometry Y4,a is given in appendix A for which
we compute the Hodge numbers

(h1,1, h2,1, h3,1)χ(Y4,a) = (11, 0, 1447)8796 . (3.17)
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In comparison to Y3,a there is exactly one more Kähler class of the additional base P1.
Contributions to h2,1(Y4,a) are trivial as the fibration is flat and the base with h2,1(F4 ×
P1) = 0 does not contribute either. When moving to the matter sector we find the two
27 1

3
plets in 6D to be localized over the genus g′ = 5 curve in the B3 base and similarly

the singlets over a curve of genus g′11 = 1893.
Before performing the first conifold transition, we consider interaction terms between

the charged fields present in the 4D superpotential W. A key feature of F-theory which
makes it also relevant for phenomenological model building is the presence of Yukawa
couplings that are suppressed in perturbative IIB string theory [20–25]. An example is
that of the top quark in an su5 theory. This coupling is schematically given by couplings
of type 10 · 10 · 5. In F-theory these points lead to type IV ∗ fiber degenerations. Those
degenerations highlight local IIB string couplings of order one and hence strongly coupled
in nature. Similarly, when one further unhiggses the su5 to e6 there are couplings of type
27 · 27 · 27. Over these points the fiber enhances to a type II∗ singularity, i.e. a point of
e8.9 This fact can be readily checked when adding the term Z6z5a6,5 to the Tate-model
which breaks the u1 gauge symmetry. In the following we will call this four-fold with only
E6 gauge group X4,0. For a fully resolved model we have depicted fiber structure of the
e8 point in figure 4. Note that the exact fiber topology in a smooth model might not be
of precise e8 shape. Instead the fiber structure might only be a bouquet which misses a
couple of e8 nodes [26, 27]. This is shown for the resolution described in appendix A in
figure 4. This effect however does not to obstruct the phenomenological implications of the
Yukawa couplings in [11, 28].10

By setting the polynomial a6,5 in the Tate-model to zero restores the global u1 gauge
factor under which the 27-plets are non-trivially charged. From a field theory perspective
one therefore expects the 273 Yukawa coupling to be forbidden. Therefore one might
come to the conclusion that those intersection points should be absent in a given geometry.
However, what we actually observe is that the e8 Yukawa points enhance to (4, 6, 12) as
discussed in section 2.1. From the general discussion of section 2.1 we therefore a four-point
coupling that involves matter representation of the 6D tensor transition eq. (3.12). Indeed
in our situation the (4,6,12) singularity precisely occurs over the points z = a3,2 = a4,3 = 0
where 27 1

3
and 1−1 matter curves meet.11 The resulting four-point coupling is therefore

schematically given as

W 3 27 1
3
· 27 1

3
· 27 1

3
· 1−1 . (3.18)

From the perspective of changing the form of the generic fiber, this codimension three point
is very analogous to an E-string in which we have tuned an extra U(1) onto the e8 Yukawa
point as shown in figure 4. Note also that generically those points come with a multiplicity

9A rough way how one can infer the above coupling is by viewing the local enhancement as that of e8

and decompose the fundamentals representation into those of e6 to infer the Yukawa coupling 2483 3 273 .
10The effect on the fibers can be explained as a IIB orientifold effect that removes certain modes that

correspond to the respective nodes in the Dynkin diagram.
11This exact example has been anticipated in [4].
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e6
27

(27)3

U(1)

27 1
3

1−1
(27 1

3
)31−1

Figure 4. Two depictions of the e6 divisor in blue and its fiber structure in the four-fold X4,0 and
X4,a. In X4,0 the 273 Yukawa point leads to a (reduced) E8 fiber bouquet. Upon adding a u1 brane
the E8 fiber becomes non-flat fiber and leads to a four-point coupling.

when counting the intersection points as

NYukawa(X4,a) = Z · [a3,2] · [a4,3] = 2(48(1− g)− 7Z2) , (3.19)

that is NYukawa(Y4,a) = 152 respectively. Finally we comment on the fiber structure of the
resolved model X4,a. Here the non-flat Yukawa point is depicted in figure 4. As opposed to
the codimension one non-flat fibers, these at codimension three do not contribute additional
Kähler parameters as they simply come from the degeneration of one of the exceptional e6
resolution divisors.

Enhancing to non-flat fibers in codimension two. In the next step we want to
perform the matter-transition we did in the three-fold given by (3.9) now in the four-fold
geometry X4,b. From the four-fold perspective, this tuning pushes the codimension three
(4,6,12) singularity one codimension higher and enhances the 27 1

3
-plet curve into that of

an E-string. On the other hand, from a 6D perspective we can interpret this curve as the
compactification of 6(g−1)+Z2 E-strings points on a P1 which makes them a single curve
of genus g′E-string = 1+24(1−g)+5Z2. Similarly to the three-fold X3,b in the four-fold X4,b
this E-string curve by obtaining contributions of the 11 singlet curve. Indeed, the singlet
curve changes it genus by ∆g11 = 9(8(−8)g −Z2) to

˜g11 = 1 + 4(180(g − 1) + 54c2
1 − 53Z2) . (3.20)

In the concrete example of four-fold Y4,b that is detailed in appendix A we compute the
Hodge numbers as

(h1,1, h2,1, h3,1)χ(Y4,b) = (12, 5, 1281)7776 . (3.21)

These Hodge numbers are to be understood from the general discussion in section 2: first
there is the E-string theory whose non-flat surface which contributes a single new Kähler
class as its 6D rank is one. Note that we have started with two 6D E-string theories that
both contributed an individual Kähler class. Since both contributions are merged along
the same genus-five surface in the base, they now contribute a single Kähler class. Second
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e6 E-string

e6

E-string

Figure 5. Depiction of the fiber structure of the e6 divisor in blue. The left shows an E-string fiber
over a genus five curve resolved as a non-flat fiber. On the right a base change has deformed this
curve into six genus zero curves that are removed by additional blow-ups. All transitions change
the Hodge numbers but not the Euler number of the compact four-fold.

there is the contribution of the five h2,1 three-forms. These are inherited from the rank
one theory multiplied by the genus of its curve.

Finally, we can discuss the removal of these non-flat surfaces by changing the B3 base
analogous to the 6D case. We take two equivalent ways by either blowing up the base B2
to get X3,c and then compactify this configuration over another P1 or by blowing up the
four-fold base in X4,b in the B2 direction to get X4,c. In both cases we end up with a base
B̂3 = (BLB2)× P1. Notably X3,c admits no E-string points anymore which might not the
case for the four-fold X4,c. This can be seen from realizing that the E-string curve class in
the four-fold is given by

Z · [a3,2] = 3c1(B2) · Z − 2Z2 + 6H1 · Z . (3.22)

When we pullback 3c1(B2) · Z ∼ 2Z2 from B2 this is enough to require absence of E-string
points in a three-fold but not sufficient for the four-fold anymore. In order to do so we
also need to require the relation H1 · Z ∼ 0 by e.g. performing additional blow-ups in the
base. Hence even when started with a non-higgsable cluster in 6D, i.e. E6 on a −6 curve
that admits neither matter and is fully flat, the new P1 direction in the base introduces
such fibers. The same is true for the explicit non-flat resolution in Y4,c where we have
performed a base change solely in the B2 direction. Performing this resolution has split
the respective genus five in B3 into six genus-zero curves as depicted in figure 5. The full
four-fold geometry is given in appendix A and admits the Hodge numbers

(h1,1, h2,1, h3,1)χ(Y4,c) = (19, 0, 1269)7776 . (3.23)

The Hodge numbers make sense as we have introduced two more resolution divisors to
B2. This change in the base has split up the single non-flat surface into six disconnected
genus zero curves. As all of them host a non-flat fiber, they all contribute additional Kähler
parameters to Y4,c. None of the non-flat surfaces contribute to h2,1(Y4,c) anymore. In order
to obtain the fully flat four-fold, six more base blowups are required to split to remove all
genus-zero curves. The exact polytope of Y ′4,c is again given in the appendix and it is fully
flat. Moreover it admits exactly the same Hodge numbers as Y4,c given in (3.23).
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Finally we are in the position to compare the transition between three-folds and those
between four-folds. While removing non-flat fibers of Y3,b via a base blow-up to Y3,c has
not changed the Hodge numbers at all, this was not the case in the analogous transition
of four-folds. Here in fact virtually all Hodge numbers where involved in the transition.
However an important observations is that all those transitions left the Euler number
invariant. This observation is particularly important when it comes to the inclusion of G4
flux which we have not addressed in this work. The relevant point is that it makes it easier
to satisfy the change in the tadpole cancellation conditions eq. (5.1) when a consistent G4
flux configuration has been found in either phase. We will comment on this point again in
the conclusion.

3.2 Example II: (SO(10) × U(1)2)/Z4

The second example works similarly as the one before but admits a more rich matter
structure. Moreover we use the chance to directly give more attention to the explicit toric
resolution of the geometry. Again we use E-string transitions in 6D to understand four-
point Yukawa couplings and the general change of the matter spectrum in 4D. The model
at hand admits two u1 gauge factors that are engineered with the most general elliptic
model with three sections [30]. This model is given by the elliptic curve in an dP2 which
we parametrize by the coordinates {u, v, w} and the two exceptional coordinates e1, e2. An
additional so10 singularity over Z : x0 = 0 can be engineered via a toric top [5, 6] which
we resolve directly via the exceptional coordinates f2, f3, f4, g1, g2 and f0 being the affine
node. The resolved hypersurface12 is given as

p = d1e
2
1e

2
2f0f

2
2 f4g1u

3 + d2e1e
2
2f

2
0 f

2
2 f3f4g

2
1g2u

2v + d3e
2
2f

2
0 f2f3g1uv

2

+ d5e
2
1e2f2f4u

2w + d6e1e2f0f2f3f4g1g2uvw + d7e2f0f3v
2w

+ d8e
2
1f2f3f

2
4 g1g

2
2uw

2 + d9e1f3f4g2vw
2 . (3.24)

The di are to be interpreted as generalized Tate-coefficients that are sections of the base.
This form of the elliptic curve can be mapped into Weierstrass form by blowing down all
exceptional divisors and use the Arten-Tate algorithm. The Stanley-Reisner ideal for the
chosen fiber triangulation is given by

SRI : {e2w, e1e2, e2v, e2f0, e2f3, e2g1, e2g2, uw, uv, f0u, f3u, f4u, g1u,

g2u, f2w, f2v, f2f3, f2g2, f4w, e1f4, f4v, f0f4, f3f4,

e1w, f0w, g1w, g1v, g2v, e1f3, e1g2, f0g2, e1g1} . (3.25)

This model has been analyzed in detail in [5] where more details of the exact spectrum
computation are given. We choose a simple two-fold base as B2 = F0 and a fibration with

12One can return to the singular model by setting all exceptional coordinates to one and replaces f0

with x0.
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G SO(10)×U(1)2

T 1
10 43

I1 : x0 = d5 = 0 16−1/4,−1/2 : 2
I2 : x0 = d7 = 0 16−1/4,1/2 : 2

I3 : x0 = (d3d5 − d1d7) = 0 101/2,0 : 4
I4 : x0 = d9 = 0 101/2,1 : 2
I5 : d3 = d7 = 0 11,−1 6
I6 : d8 = d9 = 0 1−1,−2 8
I7 : d9 = d7 = 0 10,2 6

I8/{I2, I4, I5, I6, I7} : 10,1 56
I9 : 11,0 22

I10/{I4, I6} : 1−1,−1 26

Table 1. Summary of the 6D matter spectrum. We also give the respective codimension two loci
and their multiplicities using eq. (3.26). The longer (quotient) ideals I8,9,10 are given in eq. (3.27).

bundle choice of the base sections di:

Z : (Dx0) : H1 , [d6] : H1 + 2H2 ,

[d1] : H1 + 2H2 , [d7] : H1 + 2H2 ,

[d2] : 2H2 , [d8] : 2H1 + 2H2 ,

[d3] : 2H2 , [d9] : 2H1 + 2H2 ,

[d5] : 2H1 + 2H2 ,

(3.26)

where again Z is the so10 divisor and H1 and H2 the two classes of F0. With the help
of the Weierstrass model one can find the reducible fiber components which give rise to
the 6D matter. In table 1 we have summarized multiplicity and matter representations. Ii
singlet loci that are given as:

I8 : {(d5d
3
7d8d

2
9 − d5d6d

2
7d

3
9 + d3d5d7d

4
9 + d1d

2
7d

4
9 + d4

7d
3
8x0 − 2d6d

3
7d

2
8d9x0

+ d2
6d

2
7d8d

2
9x0 + 2d3d

2
7d

2
8d

2
9x0 − 2d3d6d7d8d

3
9x0 + d2

3d8d
4
9x0),

(−d5d
3
7d

2
9 − d4

7d
2
8x0 + d6d

3
7d8d9x0 − d3d6d7d

3
9x0 + d2d

2
7d

3
9x0 + d2

3d
4
9x0)} ,

I9 : {(−d3d6d7 + d2d
2
7 + d2

3d9),−(−d3d5d7 + d1d
2
7 + d2

3d8x0)} ,

I10 : {(d1d
2
9 + d3d

2
8x0 − d2d8d9x0), d5d

2
9 + d7d

2
8x0 − d6d8d9x0} ,

(3.27)

The multiplicities can be computed by using the choices of classes (3.26) and the basic
intersections on F0, H1 ·H2 = 1 and H2

i = 0.13 This is enough to show 6D gauge anomaly

13For the quotient ideals, the contained loci have to be subtracted with multiplicities that are determined
using the resultant.
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cancellation. The toric realization of this model is given via the polytope

Generic Fiber
e2 (1,0,0,0)
w (0,1,0,0)
u (1,−1,0,0)
e1 (0,−1,0,0)
v (−1,0,0,0)

F0 base
y1 (0,0,0,1)
y0 (0,0,0,-1)
x1 (0,0,−1,0)

so10 top
f0 (0,0,1,0)
f2 (1,0,1,0)
f3 (0,1,1,0)
f4 (1,1,1,0)
g1 (1,1,2,0)
g2 (1,2,2,0)

,
∆ = {Fiber, Base, Top} :
(h1,1, h2,1)χ(Y3,a) = (10, 42)−64 .

(3.28)

Note that the elliptic fibration structure is inherited from a dP2 fibration of the ambient
spaces. This allows also to directly obtain the projection π from the ambient variety given
via a projection onto the two last coordinates in ∆. Using the 42 + 1 neutral singlets also
allows to show cancellation of the gravitational anomaly. Next we want to perform an
E-string transition which we do by factorizing another power of the so10 divisor x0 out of
the base section d1. This tuning effectively merges two 101/2,0-plets and two 16−1/4,−1/2
as well as two 11,1 and 10,1-plets as one can explicitly see from table (1) and eq. (3.27).
After this transition we have two non-minimal singularities over d5 = x0 = 0. Let’s again
summarize the total change in the spectrum S

∆S = 2 ·
(
16−1/4,−1/2 ⊕ 101/2,0 ⊕ 1−1,−1 ⊕ 10,1 ⊕ 10,0

)
→ 2 · [E-strings] . (3.29)

This transition is fully consistent with the expectation of a tensor-matter transitions de-
rived in [3] The geometry that admits the two (4, 6, 12) points can be resolved using toric
geometry. This is done by simply adding the vertex f1 = (0, 2, 1, 0) to the polytope (3.28).
The addition of the vertex respects the fibration and does not change the base while also
leaving the new polytope reflexive. Hence the anti-canonical hypersurface is still Calabi-
Yau, which we denote by Y3,b with Hodge numbers:

(h1,1, h2,1)χ(Y3,b) = (12, 40)−72 . (3.30)

In comparison to Y3,a we find the expected loss of two complex structure parameters that
are traded for the two Kähler parameters that come fro the non-flat fibers. In the toric
realization, those are given by the ambient divisor f3 = 0 that intersect the base twice.
This can be seen from the new hypersurface which is explicitly given as

p = d1e
2
1e

2
2f

2
0 f

3
1 f3f

2
4 g

3
1g

2
2u

3 + d2e1e
2
2f

2
0 f

2
1 f3f4g

2
1g2u

2v + d3e
2
2f

2
0 f1f3g1uv

2

+ d5e
2
1e2f1f4u

2w + d6e1e2f0f1f2f3f4g1g2uvw + d7e2f0f2f3v
2w

+ d8e
2
1f1f

2
2 f3f

2
4 g1g

2
2uw

2 + d9e1f
2
2 f3f4g2vw

2 .

A comment from the perspective of the toric geometry is in order. Here the generic fiber
structure parametrized by u, v, w, e1, e2 has not changed at all but the modification appears
only at codimension two over d5 = 0. There the f3 coordinate factors out globally and
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so10
16− 1

4 ,−
1
2

10 1
2 ,0

11,1

10,1

so10 E-string

Figure 6. The fiber structure of the (SO(10)×U(1)2)/Z4 model. On the left a complex structure
deformation tunes four matter representations onto the same point while keeping codimension one
fibers inert. Over this point the resulting fiber becomes non-flat which is shown via the red surface
on the right.

contributes a non-flat surface. Intersections of the non-flat surface can be computed via a
triangulation that leads to the Stanley-Reisner ideal

SRI : {e2w, e1e2, e2v, e2f0, e2f2, e2f4, e2g1, uw, uv, f0u, f2u, f3u, f4u,

g1u, f1w, f1v, f1f2, f1g1, f3w, e1f3, f3v, f0f3, f2f3, e1w,

f0w, f4w, f4v, g1v, e1f2, e1g1, f0g1, e1f4} . (3.31)

The tuning process and the resulting fiber structures are summarized in figure 6. From
the perspective of the 6D F-theory compactification, the E-string points can be avoided
by going to the tensor branch. The blow-up of the ambient variety can be done explicitly
by adding the vertices xb1 : (0, 1, 1, 1), xb2 : (0, 1, 1, 1) to the polytope which gives a new
three-fold Y3,c with Hodge numbers

(h1,1, h2,1)(Y3,c) = (12, 40) . (3.32)

These Hodge numbers are identical to those of the non-flat model as expected. The resulting
fibration has been made fully flat and anomalies can be shown to cancel as expected.

The four-fold compactification. We follow the same strategy as in section 3.1 and
fiber the three-fold over another P1 to obtain the four-fold Y4,a. Torically this is done
by simply adding a fifth direction in the polytope (3.28) and by adding the vertices z0 :
(0, 0, 0, 0, 1), z1 : (0, 0, 0, 0,−1) to fill out the full lattice Z5. The fibration structure is
still inherited from the ambient variety, where the projection is given onto the last three
columns resulting in the base B3 = (P1)3. Again we do not expect to find any three-form
cohomology in Y4,a as the fibration is flat in codimension two and the base B3 too simple
to admit h2,1 contributions. This is readily checked by computing the Hodge numbers via
the Batyrev prescription

(h1,1, h2,1, h3,1)χ(X4,a) = (11, 0, 141)960. (3.33)
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We focus again on the structure of the so10 divisor x0 = 0 and the 16− 1
4 ,−

1
2
curve over

d5 = 0 which will become the (4, 6, 12) curve upon deformation.14 Since d5 ∈ c1(B3) we
find the 16− 1

4 ,−
1
2
matter curve to be of genus

g16− 1
4 ,

1
2

= 1 + 1
2[x0] · [d5] · ([x0] + [d5]−K−1

b ) = 1 . (3.34)

For convenience we also give the leading order coefficients of the Weierstrass model in
x0 = 0 as

f = x3
0(d1(2d2

7d8 − d6d7d9 + 2d3d
2
9) + x0R2) +O(x4

0) ,

g = x4
0(d2

1d
2
7d

2
9 + d1x0R3) + x0d1) +O(x6

0) ,

∆ = x8
0(d4

1d
4
7d

4
9 + x0d

3
1Ri + x2

0d
2
1) + d1O(x11

0 ) ,

(3.35)

with Ri being some residual polynomials. The discriminant can be used to find the per-
turbative Yukawa and non-perturbative four-point couplings. E.g. there are (3, 5, 9) points
when d7 = 0 and d9 = 0 which give rise to the expected trilinear Yukawa couplings of
the type

{x0 = d5 = d9 = 0} Y1 : 16−1/4,−1/2 · 16−1/4,−1/2 · 101/2,1 , (3.36)

{x0 = d5 = d7 = 0} Y2 : 16−1/4,−1/2 · 16−1/4,1/2 · 101/2,0 . (3.37)

These couplings are all fully consistent the expected gauge symmetry. In the following we
want to focus on the non-perturbative couplings that involve the 16− 1

4 ,−
1
2
matter curve.

The only point that involve this curve is localized at x0 = d1 = d5 = 0. From comparing
with the general classes of the matter loci in table 1 and (3.27) we find the matter curves

{x0 = d1 = d5 = 0} 3 16−1/4,−1/2 ,101/2,0 ,10,1 ,1−1,−1 ,

to intersect at this point. As in the sections before, these loci are to be interpreted as
non-perturbative four-point coupling points [4] generated by D1 instantons. Interestingly,
this locus allows for two independent four-point couplings that are possible via the involved
representations. The two possible coupling are schematically depicted as

W 316−1/4,−1/2 · 16−1/4,−1/2 · 101/2,0 · 10,1

+ 16−1/4,−1/2 · 16−1/4,−1/2 · 10−1/2,0 · 1−1,−1 . (3.38)

From the perspective of the smooth geometry, given via (3.24), one finds that it is the
f3 = 0 fibral divisor that splits into a non-flat component over d1 = d5 = 0. This comes
as no surprise as it is going to be the same (ambient divisor) that is pushed to a non-flat
surface at codimension two, when performing the conifold transition.

14From the direct product structure of the base, we simply add to all base sections di in eq. (3.26) a
contribution of 2H3.

– 22 –



J
H
E
P
0
8
(
2
0
2
1
)
0
9
7

Enhancing to non-flat fibers in codimension two. Now we perform the four-fold
analog of the 6D tensor transition which enhances the 16−1/4,−1/2 curve over x0 = d5 = 0
to a (4,6,12) curve via the factorization d1 → d1x0, resulting in the four-fold Y4,b This
transition again simply merges parts of the 10-plet and singlet matter curves into that of
16-over which the fiber attains a non-minimal singularity. In the smooth geometry the
non-minimal singularity over that curve is resolved by the f3 non-flat surface, analogous
to the three-fold case. In this regard it makes again sense to interpret the non-flat matter
curve as the compactification of 6D E-string theories.

From the perspective of toric geometry the four-fold Y4,b is simply obtained by adding
the same toric vertex f1 = (0, 2, 1, 0, 0) to the 5d polytope with CY hypersurface X4,b which
admits the Hodge numbers

(h1,1, h2,1, h3,1)χ(Y4,b) = (12, 1, 133)912 . (3.39)

The above data is exactly as expected: first there is the new class that contributes that
non-flat surface at f3 = 0 over the genus-one curve x0 = d5 = 0 which also contributes
in h2,1(Y4,b). Finally we want to get rid of this non-flat fiber again by performing a base
change of B3 = (P1)3. In the first step we want to deform the curve x0 = d5 = 0 by
performing a complex structure deformation in the d5 followed by a blow-up. For this we
remember that [d5] ∼ c1(B3). Hence by a complex structure deformation we enforce first
the factorization

d5 → y0y1z0z1d̂5 , (3.40)

with [d̂5] ∼ [2x0] and hence [x0] · [d̂5] ∼ 0. Therefore the only non-trivial curve classes are
when x0 = 0 intersects the other four components yi = 0 and zi = 0. By performing the
first blow-up in the base that is inherited from the three-fold Y3,c we are adding the rays

xb1 : (0, 1, 1,−1, 0) , xb2 : (0, 1, 1, 1, 0) , (3.41)

to the full 5D polytope. Note that the base has become B3 = (BL2F0)× P1 and admits a
triangulation with Stanley-Reisner ideal:

SRI : {x0x1, x0y0, x0y1, z0z1, x1xb1, y1xb1, xb1xb2, x1xb2, y0xb2, y0y1} . (3.42)

This base change has turned the genus one curve x0 = d5 = 0 into two P1s over x0 = z0 = 0
and x0 = z1 = 0 that do not intersect and host a non-flat surface each. The resulting
fourfold Y4,c admits the Hodge numbers

(h1,1, h2,1, h3,1)χ(Y4,c) = (15, 0, 129)912 . (3.43)

The change in the Hodge numbers is explained as before: first there are two more classes
from the two blow-ups which has removed all h2,1 contributions. This genus one curve has
split into two P1 with a non-flat fiber over each of them. Both of these fibers contribute an
independent non-flat fiber, which is responsible for the third additional Kähler parameter.
If we want to also get rid of those we need a base that forbids the intersections x0 = zi = 0
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as well which can be done with yet two more blow-ups. The two additional rays that are
to be added to the polytope that do the job are given as

xb3 : (1, 0, 1, 0, 1) , xb4 : (1, 0, 1, 0,−1) . (3.44)

The resulting four-fold Y ′4,c is finally fully flat and admits the very same Hodge numbers
as Y4,c

(h1,1, h2,1, h3,1)χ(Y ′4,c) = (h1,1, h2,1, h3,1)χ(Y4,c) = (15, 0, 129)912 , (3.45)

We find no change in the Hodge numbers at all, which can be explained by the fact that
the non-flat fibers are simply exchanged for the two new base classes. The blown-up base
admits a regular start triangulation with the following SRI

SRIB3 : {x0y0, x0y1, x0z0, x0z1, x0x1, , x1xb3, y0xb3, y1xb3, z1xb3, xb3xb4, x1xb1,

y1xb1, xb1xb2, x1xb4, y0xb4, y1xb4, z0xb4, x1xb2, y0xb2, y0y1, z0z1} . (3.46)

In the above ideal we have underlined the components that forbid the non-flat curve classes
when compared to the blow-down. We conclude by making the same important observation
as in the example from section 3.1: in the transition from Y4,b to Y ′4,c all Hodge numbers
and in particular h2,1 change. However the change is always such that the Euler numbers
stay inert. This observation is again important when including G4 fluxes and to satisfy the
condition in eq. (5.1) which we will comment on in section 5.

4 High rank cases: E8 × SU(2) × SU(3)

In this section we want to consider more complicated examples that admit multiple curves
with different superconformal matter curves over each to demonstrate the validity of
eq. (2.12). For this we engineer a generalized Tate model with an e8, an su2 and an
su3 divisor via

p = b1Y
2 + b2X

3 + a1XY Z + a2Z
2X2 + a3Z

3Y + a4Z
4X + a6Z

6 . (4.1)

Here, the Arten Tate-algorithm can be used to bring the above model into Weierstrass form
which makes it easier to read off the singularity structure. The Weierstrass coefficients are
given as

f =− 1
48(a2

1 − 4a2b1)2 + 1
2b1(−a1a3 + 2a4b1)b2 ,

g = 1
864((a2

1 − 4a2b1)3 + 36b1(a2
1 − 4a2b1)(a1a3 − 2a4b1)b2 + 216b2

1(a2
3 − 4a6b1)b2

2) .
(4.2)

The zero-section is given by Z = 0 in the generalized Tate-model is not a trivial section
of B3 anymore. This results in the pre-factors b1 and b2 to be non-trivial divisors of the
base whose zero-locus gives the additional su3 and su2 singularities respectively. The base
classes of b1 and b2 parametrize two new line bundle classes denoted by Zsu3 and Zsu2.
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Engineering the additional e8 singularity over Ze8 : z = 0 in Tate form is standard and can
be taken from the literature (e.g. [19]) by factorizing

{a1, a2, a3, a4, a6} → {za1,1, z
2a2,2, z

3a3,3, z
4a4,4, z

5a6,5} . (4.3)

The option to allow for Zsu2 and Zsu3 shifts the classes ai such that one ends up with

[b1] ∼ Zsu3 , [b2] ∼ Zsu2 ,

[a1,1] ∼ c1 −Ze8 ,

[a2,2] ∼ 2c1 −Zsu3 − 2Ze8 , [a3,3] ∼ 3c1 −Zsu2 −Zsu3 − 3Ze8 ,

[a4,4] ∼ 4c1 −Zsu2 − 2Zsu3 − 4Ze8 , [a6,5] ∼ 6c1 − 2Zsu2 − 3Zsu3 − 5Ze8 .

(4.4)

The model above admits three types of superconformal matter collisions at codimension
two which can be read off from eq. (4.2) at

[E-string] : z = a6,5 = 0 ,
[e8su2] : z = b2 = 0 ,
[e8su3] : z = b1 = 0 ,

(4.5)

as e.g. discussed in [2, 16]. In general [e8sun] conformal matter gives rise to a
ordvan(f, g,∆) = (4, 6, 12 + n) collisions in the Weierstrass model. The tensor branches
of those models have been analyzed in detail in [37]. They are given via a linear chain of
P1’s with self-intersection (−n) given as

e8 sun

su1 su2 sun-1

-1 -2 -2 -2. . . .
(4.6)

The superscript denotes additional suk gauge algebra factors hat are enforced in the Weier-
strass model upon the base change. Note that bi fundamental matter lies in between these
nodes. These codimension two collisions can be resolved by a non-flat fiber. From the
n-dimensional 6D tensor branch and upon collecting the contributions of the gauge algebra
factors the full 5D coulomb branch dimension is given as

dim (Coulomb5D ([e8sun])) = 1 + 1
2n(n− 1) . (4.7)

As argued in section 2.1 the non-flat fiber resolution must include the same amount of
surface contributions with their own Kähler classes. In order to compute the contribution
to h2,1 as well requires the computation of the genus of those curves in B3, given as

gE-string = 1 + 1
2(6c1 − 2Zsu2 − 3Zsu3 − 5Ze8) · (5c1 − 2Zsu2 − 3Zsu3 − 4Ze8) · Ze8 ,

ge8su2 = 1 + 1
2Zsu2 · Ze8 · (Zsu2 + Ze8 − c1) ,

ge8su3 = 1 + 1
2Zsu3 · Ze8 · (Zsu3 + Ze8 − c1) .

(4.8)
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fiber ray
Z (−2, −1, 0, 0, 0)
X (1, −1, 0, 0, 0)
Y (0, 1, 0, 0, 0)
e1 (0, −1, 0, 0, 0)
e2 (−1, −1, 0, 0, 0)
e3 (−1, 0, 0, 0, 0)

E8 -coord ray
m1 (−2, −1, 0, 6, 0)
l1 (−2, −1, 0, 5, 0)
k1 (−2, −1, 0, 4, 0)
k2 (−1, −1, 0, 4, 0)
h1 (−2, −1, 0, 3, 0)
h2 (−1, 0, 0, 3, 0)
g1 (−2, −1, 0, 2, 0)
g2 (0, −1, 0, 2, 0)
f1 (−2, −1, 0, 1, 0)

surface ray
h3 (−1, −1, 0, 3, 0)
f2 (−1, −1, 0, 1, 0)
f3 (0, −1, 0, 1, 0)
g4 (−1, −1, 0, 2, 0)
f4 (−1, 0, 0, 1, 0)
g3 (−1, 0, 0, 2, 0)
f5 (0, 0, 0, 1, 0)

Base ray
x0 (nsu2+nsu3−2, nsu3−1, −1, −1, −1)
x1 (−2, −1, 1, 0, 0)
x3 (−2, −1, 0, 0, 1)

h1,1 h2,1 h3,1 χ nsu2 nsu3

11 153 1982 11088 0 0
17 105 1300 7320 0 1
17 66 801 4560 0 2
17 40 459 2664 0 3
17 27 250 1488 0 4
17 27 150 888 0 5
17 40 135 720 0 6
14 120 1522 8544 1 0
20 78 960 5460 1 1
20 45 563 3276 1 2
20 25 305 1848 1 3
20 18 162 1032 1 4
20 24 110 684 1 5
14 91 1147 6468 2 0
20 55 693 3996 2 1
20 28 386 2316 2 2
20 14 200 1284 2 3
20 13 111 756 2 4
19 24 95 588 2 5
14 68 850 4824 3 0

h1,1 h2,1 h3,1 χ nsu2 nsu3

20 38 492 2892 3 1
20 17 263 1644 3 2
20 9 137 936 3 3
20 14 90 624 3 4
14 51 625 3576 4 0
20 27 351 2112 4 1
20 12 188 1224 4 2
20 10 110 768 4 3
14 40 466 2688 5 0
20 22 264 1620 5 1
20 13 155 1020 5 2
19 16 113 744 5 3
14 35 367 2124 6 0
20 23 225 1380 6 1
20 20 158 996 6 2
14 36 322 1848 7 0
20 30 228 1356 7 1
14 43 325 1824 8 0
19 42 267 1512 8 1
14 56 370 2016 9 0

Table 2. Summary of the rays of the polytope ∆(nsu3 , nsu2) that leads to smooth elliptic four-fold
X4(nsu3 , nsu2) with e8, su3 and su2 fibers over a base P3. The Hodge numbers of all consistent
inequivalent four-folds are summarized below.
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Putting all pieces together, the contributions to h2,1(X4) via eq. (2.12) and eq. (2.11) and
using the knowledge of the tensor branches in eq. (4.7) is given as

h2,1
non-flat(X4) = gE-string + 2g[e8su2] + 4g[e8su3] . (4.9)

This can be explicitly checked by constructing a family of four-folds that exhibit a simple
toric description. The simplest base to take is B3 = P3. In terms of the base hyperplane
class H1 we can fix all line bundle choices as

Ze8 ∼ H , Zsu3 ∼ nsu3H , Zsu2 ∼ nsu2H . (4.10)

Here the nsun are positive integers bounded by effectiveness of all bi, ai,k in (4.4). For those
constructions, the base is again too simple to contribute h2,1. It is also important to note
that this particular geometry does not come from a direct compactification of an already
present 6D theory. Hodge numbers of the family of four-folds X4(nsu2 , nsu3) are given as

h1,1(X4(nsu2 , nsu3)) = 10 + (1− δ(19−2nsu2−3nsu3 ,0)) + 3(1− δ(nsu2 ,0)) + 6(1− δ(nsu3 ,0)) ,

h2,1(X4(nsu2 , nsu3)) = gE-string(1− δ(19−2nsu2−3nsu3 ,0))

+ 2ge8su2(1− δ(nsu2 ,0)) + 4ge8su3(1− δ(nsu3 ,0)) . (4.11)

This is double checked via the Batyrev construction. The 5D polytope ∆(nsu3 , nsu2) that
realizes the two-parameter family of four-folds X4(nsu3 , nsu2) is summarized in table 2.
In the same table also Hodge and Euler numbers are computed for all reflexive polytopes
consistent with the expectation from eq. (4.11). The fully resolved hypersurface is given as

p = b1e3f4f5g3h2Y
2 + b2e

2
1e2f2f

2
3 f5g

2
2g4h3k2X

3

+ a1,1e1e2e3f1f2f3f4f5g1g2g3g4h1h2h3k1k2l1m1XY Z

+ a2,2e
2
1e

2
2e3f

2
1 f

2
2 f

2
3 f4f5g

2
1g

2
2g3g

2
4h

2
1h2h

2
3 k

2
1k

2
2l

2
1m

2
1X

2Z2

+ a3,3e1e
2
2e

2
3f

3
1 f

2
2 f3f

2
4 f5g

3
1g2g

2
3g

2
4h

3
1h

2
2 h

2
3k

3
1k

2
2l

3
1m

3
1Y Z

3

+ a4,4e
2
1e

3
2e

2
3f

4
1 f

3
2 f

2
3 f

2
4 f5g

4
1g

2
2g

2
3g

3
4h

4
1 h

2
2h

3
3k

4
1k

3
2l

4
1m

4
1XZ

4

+ a6,5e
2
1e

4
2e

3
3f

5
1 f

3
2 f3f

2
4 g

4
1g3g

2
4h

3
1h3k

2
1l1Z

6 ,

(4.12)

and has been analyzed for various (fiber) triangulations e.g. in [2] with f1 being the affine
component of e8. The split into the various non-flat loci at (4.5) can be readily verified at
the loci given in eq. (4.5).

5 Conclusion and outlook

This note has considered a systematic analysis of smooth elliptic four-folds that exhibit non-
flat fibers. First we have shown how non-flat fibers in codimension two contribute to the
Hodge numbers and in particular to the three-form cohomology. Via the M-theory duality
such three-forms lead to additional chiral singlets that are expected to lift to 4D F-theory.
In F/M-theory these non-flat configurations are to be interpreted as compactifications of
6D/5D superconformal matter theories on a Riemann-surface. This allowed us to identify
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their contributions to the Hodge numbers in terms of the 6D/5D tensor(coulomb) branch
dimensions and the genus of the Riemann-surface. The validity of this proposal is checked
for several examples which include 6D SCFTs of various ranks. In particular this work
suggests that threeform contributions with one leg in the fiber might always come from
non-flat and hence are genuine to strongly coupled 4D theories. Furthermore we have
investigated conifold transitions among four-folds that remove those non-flat fibers and
hence these specific chiral singlet fields. The first branch of these transitions is analogous
to a 6D tensor branch and corresponds to a base blow up. This transition changes all Hodge
numbers but most notably does not change the Euler number of the compact model. Note
that this work has focused primarily on the geometric aspects and not the inclusion of G4
flux. The fact that the Euler number does not change in such transitions simplifies the
matching of 4D SUSY vacua substantially [13, 14] due to the vanishing of the right hand
side of

∆ (nD3) + 1
2∆

(∫
G4 ∧G4

)
= ∆

(
χ

24

)
. (5.1)

Euler number preserving transitions therefore do not require to change the G4 flux (norm)
or number of D3 branes during the transition. The second type of transitions we have
considered is analogous to a (partial) 6D Higgs branch that keeps the total gauge group
but moves the non-flat fiber from curves down to points of the base B3. These points lead
to non-perturbative four-point matter couplings, mediated by D1 instantons and do change
the Euler number. The existence of these non-perturbative interaction points is enforced
geometrically and can be interpreted as a remnant of the 6D E-string theory. In fact we
have argued that the matter representations involved in such couplings can be deduced due
to the anomalies of the 6D E-string transition.

This work serves as a first step towards the investigation of 4D/3D theories obtained
from F/M-theory on non-flat elliptic four-folds. From here on there are several directions
to go in the future. First it is important to fully include G4 fluxes. As argued, the
right starting point might be a four-fold with only flat fibers where a consistent G4 flux
configuration can be computed. The change to the non-flat flux configuration might then
be deduced by using invariance of the Euler number under the transition. Moreover in
order to fully understand the 4D theory and its possible non-perturbative effects, a better
understanding of the 4D effective action is desirable. As analyzed in [29], Euclidean D3
instantons can lead to a mixing of the complex structure and Kähler moduli. This work
shows that three-forms are a potential third contribution to those moduli sectors that are
characteristic to non-flat resolution. Understanding all those effects is important to clarify
how quantum corrections might obstruct 4D SCFT points in the IR. As the four-fold is fully
smooth those contributions are best analyzed in the 3D M-theory. There are also further
generalizations possible from pure geometric point of view. These include the addition of
monodromies that act on the superconformal matter curves, analogous to split fibers in
elliptic three-folds. Such effect would naturally incorporate the folding action familiar from
twisted compactifications [53] into the four-dimensional picture. Finally it would also be
very interesting to explicitly construct the heterotic duals of those theories and match the
contributions of h2,1

non-flat(X4) to that of the NS5 branes [31].
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A Toric resolution of the (E6 × U(1))/Z3 model

In this appendix we look at some geometric details that were left out in the main section.
These include in particular the fully resolved three-and fourfolds and their intersections.

A.1 The resolved Tate model

Starting from the tuning of the Tate model in section 3.1 we need to resolve the I2 via
the exceptional divisor e1 = 0 the e6 with the set {f0, f1, f2, g1, g2, g3, h1} that can be
engineered as blow-ups of the P1,2,3 fiber ambient space. The fully resolved U(1) restricted
Tate model is given by

p = e1f1g3Y
2 + e2

1f1f
2
2 g2X

3 + a1,1e1f0f1f2g1g2g3h1XY Z

+ a2,2e1f
2
0 f1f

2
2 g

2
1g

2
2g3h

2
1X

2Z2 + a3,2f
2
0 g1Y Z

3 + a4,3f
3
0 f2g

2
1g2h1XZ

4 (A.1)

There are two sections given by Z = 0 that intersects the affine node f0 and e1 = 0 that
intersects f2 in a phase that employs the SRI:

SRI : {Ze1, Zf1, Zf2, Zg1, Zg2, Zg3, Zh1, Y X, Y f2, Y g2, Y h1, e1f0, f0f1, f0g2, f0g3,

f0h1, Xf1, Xg1, Xg2, Xg3, Xh1, e1g1, e1g2, e1g3, e1h1, f1g1, f1h1, f2g3, f2h1} (A.2)

Graphically we give the intersection of the e
(1)
6 fiber as

[f0]
[g1]

[f2]

e1

Z

[g3][h1][g2][f1]

.

The intersections allow us to compute the U(1) charges by using the smooth geometry
in M-theory and lift it back to F-theory. For this we employ the Shioda map, that is
the divisor that gives the U(1) generator in the M-theory expansion of the C3 form. For
simplicity we focus here on the fibral part, which is given in the difference of the two
sections. By then demanding orthogonality with respect to all other fibral divisors leaves
us with the following linear combination

σ(s1) = [e1]− [Z] + 1
3(4f1 + 5g3 + 6h1 + 4g2 + 2f2 + 3g1) . (A.3)
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The above concrete form allows us to compute the explicit charges of matter multiplets
by intersecting it with the reducible fibral curves at codimension two. E.g. first there
are the 11 over a4,3 = a3,2 = 0. Here one can see, that the coordinate e1 = 0 becomes
reducible. The fiber topology is that of an I2 curve as given in figure 4. Since e1 = 0 is a
−1 curve on the fiber ambient space which coincides with the U(1) charge of the singlets
using eq. (A.3). Then there are the 27 1

3
-plets over z = a3,2 = 0. This can be seen by

noting that the fiber here becomes of e7 type. From the reducible fiber components one
can deduce the e6 charges using (A.3). For four-folds there is an additional enhancement
locus that is of interest. A codimension three by first setting a3,2 = a4,3 = 0, where the
hypersurface becomes

p = e1f1(g3Y
2 + e1f

2
2 g2X

3 + a1,1f0f2g1g2g3h1XY Z + a2,2f
2
0 f

2
2 g

2
1g

2
2g3h

2
1X

2Z2) , (A.4)

This is also the 11 singlet locus, but note that the f1 e6 component also factors out. As
f1 = 0 restricts onto the z = 0 locus in the base, setting it to zero is a codimension three
locus. Moreover, coordinates {f2, g2, g3, Y, e1} are fully unrestricted and they parametrize
a two-dimensional surface. In figure 4 we have computed all intersections of the fibral
components over that locus. In the red box we have given the intersection structure of
these components that sit inside the non-flat surface f1 = 0. The found fiber structure is
unlike a regular15 Dynkin diagram shape that one would should have but it is characteristic
for a non-flat fiber. Secondly, we enhance the model with a non-flat fiber at codimension
two. This is done, by further factorizing one power of z out of a4,3 as zb4,4. This leads to
the codimension two non-flat curve over z = a3,2 = 0. Note that we use the toric resolution
of the fiber as given via the top construction that we are using to construct full three-and
four-folds in the next section. We have added the new fibral coordinate f3 which removes
f1 as one of the e6 fibral divisors. Notably, it is still present in the ambient space and will
be introduced as a non-flat fiber momentarily. The new resolved fibration is given as

p = e1f1f
2
3 g3Y

2 + e2
1f1f

2
2 g2X

3 + a1,1e1f0f1f2f3g1g2g3h1XY Z

+ a2,2e1f
2
0 f1f

2
2 g

2
1g

2
2g3h

2
1X

2Z2 +3,2 f
2
0 g1Y Z

3 + b4,4f
4
0 f1f

2
2 g

4
1g

3
2g

2
3h

4
1XZ

4 . (A.5)

Intersections can be computed via a triangulation of the toric ambient space that leads to
the SRI:

SRI : {Ze1, Zf1, Zf2, Zg1, Zg2, Zg3, Zh1, Zf3, Y X, Y f1, Y f2, Y g2, Y h1, e1f0, f0f1,

f0g2, f0g3, f0h1, f0f3, Xg1, Xg2, Xg3, Xh1, Xf3, e1f2, e1g1, e1g2, e1g3,

e1h1, f2f3, g1f3, g2f3, h1f3, f1g1, f1h1, f2g3, f2h1, g1g2g3} (A.6)

All intersections of the e6 fiber components as well as the 11 singlets can be computed as
usual and their structure has not changed at all. Notably, over a3,2 = 0 the fiber becomes

P = f1(e2
1f

2
2 g2X

3 + e1f
2
3 g3Y

2 + a1,1e1f0f2f3g1g2g3h1XY Z

+ a2,2e1f
2
0 f

2
2 g

2
1g

2
2g3h

2
1X

2Z2 + b4,4f
4
0 f

2
2 g

4
1g

3
2g

2
3h

4
1XZ

4) . (A.7)
15In codimension three the fiber obtains often a bouquet shape form, where certain nodes are deleted.
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We have exactly the same behavior as before, that is f1 = 0 is a non-flat fiber component
but this time it happens over codimension two. Note also that it is exactly the same
ambient space coordinate the appears here. Using the SRI above, one can also compute
the intersections of the fibral components as given in figure 5. Again, there we observe a
similar intersection picture as in codimension three, which is a loop of components that
sits inside the non-flat surface.

A.2 Explicit toric three-and four-fold

We give the explicit toric polytope for the three-folds and four-folds that are considered
in section 3. The toric rays of the polytope are given in the tables below. The threefold
X3 is constructed from a regular fine star triangulation of the toric fan associated to the
Batyrev polytope ∆. These polytopes are a combination of various rays as given below.
The projection onto the bases B is inherited from the toric ambient space and we fix it
to be onto the last two coordinates. We then give the various polytope ingredients below.
The U(1) restricted Tate-model is a combination of the e6 top and completed with the
choice of a base. The e6 resolution divisor becomes non-flat upon adding the ray f1 and
the non-flat fibers can be avoided by adding the two −1 curves that correspond to the toric
rays b1 and b2 to the base. Note that these are next to the −4 curve on which the e6 is
localized and thus reduces its self-intersection by one each time.

F: U(1)-Tate fiber
X (1,−1,0,0)
Y (0,1,0,0)
Z (−2,−1,0,0)
e1 (1,0,0,0)

E1: e6 Fiber
f0 (−2,−1,0,−1)
f1 (0,0,0,−1)
f2 (0,−1,0,−1)
g1 (−2,−1,0,−2)
g2 (−1,−1,0,−2)
g3 (−1,0,0,−2)
g3 (−2,−1,0,−3)

E2: non-flat-e6 Fiber
f0 (−2,−1,0,−1)
f1 (0,0,0,−1)
f2 (0,−1,0,−1)
g1 (−2,−1,0,−2)
g2 (−1,−1,0,−2)
g3 (−1,0,0,−2)
g3 (−2,−1,0,−3)
f4 (0,1,0,−1)

B1: F4

z1 (−2,−1,0,1)
x0 (−2,−1,1,0)
x1 (−2,−1,−1,−4)

B2: BL2F4

z1 (−2,−1,0,1)
x0 (−2,−1,1,0)
x1 (−2,−1,−1,−4)
b1 (−2,−1,1,−1)
b2 (−2,−1,−1,−5)

The constituents above are assembled into toric polytopes from which we can compute
the Hodge numbers via the Batyrev construction. The Hodge numbers in addition to
codimension two flatness are given below:

∆ CY h1,1 h2,1 Flat
(F,E1,B1) X3 10 162 X

(F,E2,B1) X̂3 12 160 X

(F,E2,B2) X̂3 12 160 X

(F,E1,B1) X̂3 12 160 X

(A.8)

Similarly, the four-folds are constructed by enlarging the toric ambient space and adding a
P1 direction. These are given via two new toric rays y0 and y1 in the following. Using the
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two base blow-ups b1, b2 from the thee-folds degenerates the curve with the non-flat fiber
in codimension two from a genus five curve to six genus zero curves in the base. These
transitions change the Hodge numbers but not the Euler number of the fourfold as can
be seen directly. To fully resolve those six non-flat P1’s one needs to introduce the six
blow-ups b3...8. These blow-ups destroy the direct product structure of the base but make
the fibration fully flat. Note that these last six blow-ups keep all Hodge numbers invariant
in full analogy to its 6D cousins. The various polytope ingredients are given below:

F: U(1)-Tate fiber
X (1,−1,0,0,0)
Y (0,1,0,0,0)
Z (−2,−1,0,0,0)
e1 (1,0,0,0,0)

E1: e6 Fiber
f0 (−2,−1,0,−1,0)
f1 (0,0,0,−1,0)
f2 (0,−1,0,−1,0)
g1 (−2,−1,0,−2,0)
g2 (−1,−1,0,−2,0)
g3 (−1,0,0,−2,0)
g3 (−2,−1,0,−3,0)

E2: e6 Fiber
f0 (−2,−1,0,−1,0)
f1 (0,0,0,−1,0)
f2 (0,−1,0,−1,0)
g1 (−2,−1,0,−2,0)
g2 (−1,−1,0,−2,0)
g3 (−1,0,0,−2,0)
g3 (−2,−1,0,−3,0)
f4 (0,1,0,−1,0)

B1: F4 × P1 base
z1 (−2,−1,0,1,0)
x0 (−2,−1,1,0,0)
x1 (−2,−1,−1,−4,0)
y0 (−2,−1,0,0,1)
y1 (−2,−1,0,0,−1)

B2: (BL2F4)× P1)
z1 (−2,−1,0,1,0)
x0 (−2,−1,1,0,0)
x1 (−2,−1,−1,−4,0)
b1 (−2,−1,1,−1,0)
b2 (−2,−1,−1,−5,0)
y0 (−2,−1,0,0,1)
y1 (−2,−1,0,0,−1)

B3: Bl6(BL2F4)× P1)
z1 (−2,−1,0,1,0)
x0 (−2,−1,1,0,0)
x1 (−2,−1,−1,−4,0)
b1 (−2,−1,1,−1,0)
b2 (−2,−1,−1,−5,0)
y0 (−2,−1,0,0,1)
y1 (−2,−1,0,0,−1)
b3 (−2,−1,0,−1,1)
b4 (−2,−1,0,−1,−1)
b5 (−2,−1,0,−2,1)
b6 (−2,−1,0,−2,−1)
b7 (−2,−1,0,−3,−1)
b8 (−2,−1,0,−3,−1)

From the data above, the polytope ∆ can be composed that allows an easy computation
of Hodge numbers via the Batyrev formula as:

∆ CY h1,1 h2,1 h3,1 χ Flat
(F,E1,B1) X4 11 0 1447 8769 X

(F,E2,B1) X̂4 12 6 1281 7776 X

(F,E2,B2) X̂4 19 0 1269 7776 X

(F,E2,B3) X̂ ′4 19 0 1269 7779 X

(F,E1,B3) X̂ ′4 19 0 1269 7779 X

(A.9)

B Review: Hodge numbers from polytopes

The main framework that we use in order to construct elliptic three-and fourfolds are going
to be hypersurfaces in toric varieties. The toric ambient space is encoded by a regular fine
start triangulation of the polytope ∆. In particular for fourfolds, the Hodge numbers can
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be easily computed the polytope [10]

h1,1(∆) = l(∆)− 6−
∑

dim(θ)=4
l∗(θ) +

∑
codim(θ)=2

l∗(θi)l∗(θ∗i ) ,

h2,1(∆) =
∑

codim(θ)=3
l∗(θi)l∗(θ∗i ) ,

h3,1(∆) = l(∆∗)− 6−
∑

dim(θ∗)=4
l∗(θ∗) +

∑
codim(θ∗)=2

l∗(θ∗i )l∗(θi) ,

(B.1)

with θ being faces of ∆ and δ∗ of its polar ∆∗. l denotes points and l∗ interior ones of the
respective facets. The sum in the last terms goes over pairs of dual facets θ.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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