
J
H
E
P
0
8
(
2
0
2
1
)
0
9
4

Published for SISSA by Springer
Received: April 13, 2021

Revised: July 21, 2021
Accepted: July 23, 2021

Published: August 18, 2021

Distributions in CFT. Part II. Minkowski space

Petr Kravchuk,a Jiaxin Qiaob,c and Slava Rychkovc,b
aInstitute for Advanced Study,
Princeton, New Jersey 08540, U.S.A.
bLaboratoire de Physique de l’Ecole normale supérieure, ENS,
Université PSL, CNRS, Sorbonne Université, Université de Paris,
F-75005 Paris, France
cInstitut des Hautes Études Scientifiques,
91440 Bures-sur-Yvette, France

E-mail: pkravchuk@ias.edu, jiaxin.qiao@phys.ens.fr

Abstract: CFTs in Euclidean signature satisfy well-accepted rules, such as the convergent
Euclidean OPE. It is nowadays common to assume that CFT correlators exist and have
various properties also in Lorentzian signature. Some of these properties may represent
extra assumptions, and it is an open question if they hold for familiar statistical-physics
CFTs such as the critical 3d Ising model. Here we consider Wightman 4-point functions of
scalar primaries in Lorentzian signature. We derive a minimal set of their properties solely
from the Euclidean unitary CFT axioms, without using extra assumptions. We establish
all Wightman axioms (temperedness, spectral property, local commutativity, clustering),
Lorentzian conformal invariance, and distributional convergence of the s-channel Lorentzian
OPE. This is done constructively, by analytically continuing the 4-point functions using
the s-channel OPE expansion in the radial cross-ratios ρ, ρ. We prove a key fact that
|ρ|, |ρ| < 1 inside the forward tube, and set bounds on how fast |ρ|, |ρ| may tend to 1 when
approaching the Minkowski space.

We also provide a guide to the axiomatic QFT literature for the modern CFT audi-
ence. We review the Wightman and Osterwalder-Schrader (OS) axioms for Lorentzian and
Euclidean QFTs, and the celebrated OS theorem connecting them. We also review a classic
result of Mack about the distributional OPE convergence. Some of the classic arguments
turn out useful in our setup. Others fall short of our needs due to Lorentzian assumptions
(Mack) or unverifiable Euclidean assumptions (OS theorem).
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1 Introduction

Quantum Field Theory (QFT) can be studied via constructive or axiomatic approaches.
The former use microscopic formulations, while the latter rely on axioms. There are
many constructive approaches, e.g. using Hamiltonian, path integral, lattice, etc. There are
also many axiomatic approaches, corresponding to various sets of axioms (Wightman [5],
Osterwalder-Schrader [2, 3], Haag-Kastler [6, 7], etc.). Historically, axiomatic approaches
played an important role in clarifying general QFT properties, but they did not have a
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tremendous success in making predictions about concrete theories in d > 2 dimensions.1
This started to change recently, with the revival of the bootstrap philosophy [10]. Our
focus here will be on conformal field theories (CFTs) in dimension d > 2, i.e. QFTs invari-
ant under the action of conformal group, which are nowadays studied via the conformal
bootstrap. This axiomatic approach led to precise determinations of many experimentally
measurable quantities, such as the critical exponents of the 3d Ising [11–15], O(N) [15–19]
and other critical points (see review [20]).2

The numerical conformal bootstrap relies on the “Euclidean CFT axioms”,3 which
specify properties of correlation functions in any unitary CFT in Rd via a set of simple and
commonly accepted rules, such as the unitarity bounds on primary operator dimensions,
conformally invariant and convergent Operator Product Expansion (OPE), and reality
constraints on OPE coefficients.

On the other hand, correlation functions in a general unitary QFT (and in particular
in a CFT) should satisfy Osterwalder-Schrader (OS) and Wightman axioms. It is then
interesting and important to inquire what is the relation of Euclidean CFT axioms to these
other sets of axioms.4 To carry out this analysis will be the main goal of our paper. Our
main conclusion will be that the Euclidean CFT axioms imply OS axioms and Wightman
axioms for 2, 3 and 4-point functions. In this paper we only consider bosonic operators.

The relation of Euclidean CFT and OS axioms is perhaps not so surprising since they
both deal with the Euclidean correlation functions. It is more interesting that we are
able to construct Minkowski n-point functions (for n = 2, 3, 4), and show that they satisfy
Wightman axioms, such as temperedness, spectral condition, and unitarity. Temperedness
(being a tempered distribution) is a crucial property of Minkowski correlation functions:
it shows that in a certain averaged sense they are meaningful everywhere including the
light-cone and double light-cone singularities. One might be tempted to think that in CFT
this question is relatively trivial due to OPE. However, as discussed in [36, 37], already
for 4-point functions there exist causal configurations of points in Minkowski space, away
from the null cones, for which no OPE channel is convergent in the conventional sense. We
briefly discuss one such example in the conclusions (section 10).

A theorem of Osterwalder and Schrader [2, 3] says that, under some extra assumption,
OS axioms imply Wightman axioms. Unfortunately this extra assumption, the so called
“linear growth condition”, which involves the Euclidean n-point functions with arbitrarily
high n, appears impossible to verify from the Euclidean CFT axioms (see section 9). For
this reason we cannot appeal to the OS theorem, and we will give an independent derivation
of Wightman axioms for CFT correlators.

The study of distributional properties of CFT correlators started in our recent
work [36]. There, we considered expansions of the CFT 4-point function g(ρ, ρ) in terms of

1In d = 2 significant progress has been achieved axiomatically for massive integrable models using the
S-matrix bootstrap [8] as well as for rational CFTs [9].

2There is also an ongoing revival of the S-matrix bootstrap applicable to nonintegrable massive QFTs
in d ≥ 2 [21–35].

3The term “Euclidean bootstrap axioms” is also sometimes used.
4Clarifying the relation to the Haag-Kastler axioms appears more challenging as those axioms do not

deal with correlation functions but with operator algebras.
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conformally invariant cross-ratios ρ, ρ. While such expansions converge in the usual sense
for |ρ|, |ρ| < 1, in [36] we showed that they also converge for |ρ|, |ρ| = 1 in the sense of
distributions. As explained in [36], results of this sort follow naturally from the theory of
functions of several complex variables (namely Vladimirov’s theorem), given some apriori
information about the growth of the analytically continued correlator. That key insight
of [36], “Look for a powerlaw bound!”, will be transported here from the cross-ratio to the
position space.

The readers interested in our main technical result — analytic continuation of a scalar
Euclidean CFT 4-point function to the forward tube and showing that the Minkowski 4-
point function is a tempered distribution — may follow the fast track: start with the
executive summary in section 1.1, proceed to sections 4 and 5 (skipping 4.1 and 5.1), then
continue with sections 6.1–6.5 (optionally including section 7) and finish with the discussion
in section 10. This is only about 20-25 pages.

On the other hand, we made an effort to make the exposition self-contained and to
review main ideas and results of the axiomatic quantum field literature, directly or tan-
gentially related to our discussion. This explains the great total length of our work. The
reader will find here:

• A review of classic QFT axioms: Wightman (section 2.1), OS (section 2.2). A re-
view of main implications among these axioms: how OS reflection positivity robustly
implies Wightman positivity (section 6.7). A review of the Osterwalder-Schrader
theorem about how OS axioms imply Wightman axioms under the additional as-
sumptions of the linear growth condition (section 9).

• A formulation of ‘Euclidean CFT axioms’ for unitary CFT in Euclidean space Rd

(section 2.3). We consider bosonic fields in arbitrary tensor representations. Our
axioms encode in a consistent and non-redundant manner the main properties used in
the numerical conformal bootstrap calculations.5 They are applicable to any globally
conformally invariant theory in d > 2. We do not include the axioms involving the
local stress tensor and the conserved currents. In particular our axioms would be
too weak (but valid) when applied to local 2d CFTs, as they know nothing about
the Virasoro algebra.6 See remark 2.6 for a comparison between our axioms and the
CFT rules gathered in the conformal bootstrap review [20].

• A derivation of OS axioms from Euclidean CFT axioms for 4-point function (sec-
tion 3). A notable result is a rigorous proof that the state produced by two operators
in lower Euclidean half-space belongs to the CFT Hilbert space generated by single-
point operator insertions. The higher-point case is discussed in appendix B, where
we need a somewhat stronger form of the OPE axiom than in section 2.3.

5See also [38] for a recent informal exposition of Euclidean CFT axioms (incomplete as it omits tensor
fields) for mathematical physics audience. Ref. [39] attempted the axiomatization of Euclidean CFT in
d > 2 dimensions similar to Segal’s axioms in d = 2 [40]. It is not immediately obvious if the axioms of
ref. [39] are equivalent to ours, or how to connect them to practical CFT calculations.

6Recall that while in d = 2 assuming the existence of a local stress tensor immediately implies Virasoro
symmetry, no such dramatic statements are currently known in d > 2.
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• A derivation of Wightman axioms from Euclidean CFT axioms for scalar 4-point func-
tions (section 6). As mentioned above, this is the main technical result of the paper.
The key observation is that the analytic continuation from Euclidean to Minkowski
can be done in a way which keeps the s-channel ρ, ρ less than 1 in absolute value
along the continuation contour. When we take the Minkowski limit |ρ|, |ρ| stay less
than 1 for some causal orderings and approaches 1 for others (see [37] for a classifi-
cation) but even if |ρ|, |ρ| → 1 they approach this limit sufficiently slowly (“powerlaw
bound”) which guarantees that the Minkowski 4-point function is a tempered distri-
bution everywhere. E.g. using this argument we can show for the first time that the
CFT 4-point function is a tempered distribution on the double light-cone singularity.

• We include also a derivation of other expected properties of Minkowski 4-point func-
tions, such as conformal invariance, unitarity, clustering, and local commutativity
(sections 6.6–6.9). The reader may find it curious how some of the steps do not use
conformal invariance at all but follow simply from analyticity and/or OS positivity.

• Section 7 proves a curious geometric “Cauchy-Schwarz” inequality for ρ, ρ variables
which provides an alternative way of understanding why |ρ|, |ρ| < 1 in the forward
tube. It bounds ρ, ρ for a generic configuration by ρ, ρ for reflection-symmetric con-
figurations. It would be interesting to find an elementary proof of this inequality (our
proof uses some facts about conformal blocks).

• Section 8 shows that the (s-channel) conformal block expansion of 4-point Wightman
functions converges in the sense of distributions for all configurations of points in
Minkowski space. It is also shown that the OPE for the state-valued distributions
|O(x1)O(x2)〉 with x1, x2 ∈ Rd−1,1 converges in the sense of distributions. We discuss
the relationship of these results to the classic work of Mack [41] and prove estimates
for the convergence rates of these expansions.

• Section 9 contains a review of the papers [2, 3] by Osterwalder and Schrader. In
particular, we discuss the gap in the arguments of [2] which precludes the derivation
of Wightman axioms from the OS axioms of [2], and explain in detail how this gap
is filled in [3] with the addition of new axioms.

• Appendix A is a guide to the modern Lorentzian CFT literature: conformal collider
bounds, light-cone bootstrap, causality constraints, the Lorentzian OPE inversion
formula, light-ray operators, etc. Our results help put some of these considerations
on a firmer footing. We indicate the most critical remaining steps, which still wait
to be rigorously derived from the Euclidean CFT axioms.

We conclude in section 10. Some additional technical details are given in appendices B)–(D.

1.1 Executive summary of results for CFT experts

This paper is rather lengthy as a result of our attempt to make it self-contained. In this
section we give a brief summary of the main technical results, aimed at the more expert
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readers who may not wish to read the expository parts of this paper. Note, however, that
here we omit many secondary results, some of which are mentioned above.

The basic question we address in this paper is the question of the distributional prop-
erties of Wightman 4-point functions in CFTs. As is well-known, Wightman n-point dis-
tributions are recovered from the boundary values of functions holomorphic in the forward
tube Tn. For an n-point function

〈0|O1(x1) · · · On(xn)|0〉 (1.1)

the forward tube is defined as the set of xi ∈ C1,d−1 subject to

Im x1 ≺ Im x2 ≺ · · · ≺ Im xn, (1.2)

where ≺ denotes the causal ordering in R1,d−1. Analyticity in Tn and existence of the
boundary value as Im xi → 0 is usually derived from Wightman or OS axioms (with extra
assumptions in the latter case). In this paper we want to understand this question from
the point of view of CFT axioms.

With the cases n = 2, 3 being relatively trivial in a CFT, our main observation is
that a particular OPE channel for 4-point functions converges everywhere in the interior
of T4. Specifically, we take the OPE O(x1)×O(x2) in the Wightman function of identical
scalar operators

〈0|O(x1)O(x2)O(x3)O(x4)|0〉. (1.3)

This OPE is expected to converge, at least distributionally for real xi, from the results of
Mack [41]. However, his work assumes Wightman axioms from the beginning, and our goal
here is to clarify the implications of Euclidean CFT axioms, which only assume convergence
of the Euclidean OPE.

To see that this OPE channel converges, we show in lemma 6.1 that for any configu-
ration of xi in T4 the radial cross-ratios ρ and ρ for this OPE belong to the open unit disk
(for the definition of radial cross-ratios, see section 6.2):

|ρ|, |ρ| < 1. (1.4)

This implies convergence of the conformal block expansion in O(x1) × O(x2) channel in
the interior of T4. A technical way to see this is to note that the expansion in descendants

g(ρ, ρ) =
∑
h,h>0

ph,hρ
hρh, (1.5)

where g is the conformally-invariant part of the 4-point function and ph,h > 0, can be
bounded term-by-term by

|ph,hρ
hρh| 6 ph,hr

hrh, (1.6)

where r = max(|ρ|, |ρ|) < 1. The right-hand side of this inequality is a term in the
expansion of g(r, r), a Euclidean configuration in which the OPE is known to converge,
so (1.5) is dominated by a convergent series. Therefore, (1.5) is convergent for r < 1, and
moreover uniformly so on compact subsets, since each term ph,hr

hrh is monotonic. We can
then conclude that the sum g(ρ, ρ) is a holomorphic function.
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This reasoning also gives us the inequality

|g(ρ, ρ)| 6 g(r, r). (1.7)

So, we find that the correlator can be recovered inside of T4 from the O(x1)×O(x2) OPE,
is analytic there, and is bounded by a Euclidean configuration.

In section 6.5.1 we establish a stronger form of lemma 6.1, schematically,

1− r(c) > dist(c, ∂T4)a (1.8)

for some a > 0, where c ∈ T4 is a configuration of 4 points in T4. (The more precise form
also bounds 1− r(c) as c goes to infinity.) This immediately implies a powerlaw bound on
g(r, r) near the boundary of T4. Indeed, near r → 1 the correlator is dominated by the
identity operator in the crossed channel, and so

g(r(c), r(c)) 6 C(1− r(c))−4∆ϕ , (1.9)

and thus
|g(c)| 6 C dist(c, ∂T4)b (1.10)

for some real b. This allows us to use Vladimirov’s theorem 4.1, which implies that the
boundary limit (as xi approach real Minkowski values) of (1.3) exists in the space of tem-
pered distribution. (We establish a more refined bound for xi →∞ to claim temperedness.)

The above bounds hold just as well for the truncated conformal block expansion as for
the full correlator. A variant of theorem 4.1 then allows us to conclude that the conformal
block expansion, while converging in the sense of functions in the interior of T4, converges
in the space of tempered distributions on the Minkowski boundary.

We extend the above results to correlators of non-identical scalars by replacing the
term-by-term bound (1.6) with a standard Cauchy-Schwarz argument, bounding the cor-
relator in terms of a product of two reflection-symmetric Euclidean correlators. While it
is intuitively obvious that similar arguments should also work for operators with spin, we
found that the extension to spinning operators, due to the complexity of tensor structures,
requires enough additional work to warrant a separate paper [42].

Finally, in section 7 we prove theorem 7.2, which gives an optimal bound of the
form (1.8). Specifically, it is

r(c)2 6 r(c12)r(c34), (1.11)

together with a bound for the right-hand side. Here, if c = (x1, x2, x3, x4) (where xi are real
in Minkowski space), then c12 ≡ (x1, x2, x

∗
2, x
∗
1) and c34 ≡ (x∗4, x∗3, x3, x4). The bound for

the right-hand side is easier to obtain because the configurations c12 and c34 are reflection
symmetric. This is done in section 7.2. The bound (1.11) looks like a Cauchy-Schwarz-type
inequality, and is indeed derived from the Cauchy-Schwarz inequality for unitary conformal
blocks (7.21). The latter is true because of the unitarity of conformal representations
corresponding to these blocks. In the limit ∆ + ` → ∞, ∆ − ` fixed, conformal blocks
are dominated by r(∆+`)/2, which reduces the conformal block Cauchy-Schwarz inequality
to (1.11).
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2 Axioms

2.1 Wightman axioms

In this section we will state the properties of Wightman correlation functions in a uni-
tary QFT, to which we will refer here as “Wightman axioms.” These axioms appear as
“properties of the vacuum expectation values” in [5], section 3-3, and as (W1)–(W5) in [43],
theorem II.1. Refs. [5, 43] give in addition another set of axioms (called Gårding-Wightman
axioms in [43]) saying that fields are operator-valued distributions in the Hilbert space on
which the Lorentz group acts, etc. This other set of axioms will not be used in this work.
In any case, the Wightman reconstruction theorem [5] says that the two sets of axioms
are equivalent.

A unitary QFT in Minkowski space studies n-point correlators

〈ϕ1(x1) . . . ϕn(xn)〉, (2.1)

(Wightman functions) of local operators ϕi(x), x ∈ R1,d−1.7 For simplicity in this paper we
will only consider bosonic operators, although more generally one should allow fermionic
operators and spinor representations. Wightman functions are translation and SO(1, d −
1) invariant.8 We will choose a basis of local operators Oi transforming in irreducible
SO(1, d− 1) representations ρi. Then, Wightman functions remain invariant when

Oαi (x)→ ρi(g)αβ O
β
i (g−1x), (2.2)

where g ∈ SO(1, d − 1), and ρi(g) are finite-dimensional matrices of the representation
ρi (α, β = 1 . . . dim ρi). Let C be the complex vector space whose elements are arbitrary
components of Oi’s, and their finite linear combinations with constant complex coefficients.
Operators ϕi in (2.1) can be arbitrary elements of C, and Wightman function (2.1) is multi-
linear in ϕi. Note that in this and the next section derivatives of local operators (of any
order) are counted as independent operators, while in the CFT section 2.3 we will start
making distinction between primaries and their derivatives.

Wightman functions (2.1) are required to be tempered distributions, i.e. can be paired
with Schwartz class test functions f(x1, . . . , xn). For this reason they are sometimes referred
to as “Wightman distributions”. Note that the test functions f(x1, . . . , xn) with which
Wightman functions are paired do not have to vanish at coincident points (unlike for the
Schwinger functions discussion in the next section). This means that, in a distributional
sense, Wightman functions have meaning for all configurations, including coincident points
and light-cone singularities. Translation and Lorentz invariance of Wightman functions are

7In this paper, we use the term “operator” according to CFT terminology, where the term “field” is used
in Wightman and Osterwalder-Schrader terminology. For example, in refs. [5, 43], the term “operator” is
reserved for the actual unbounded Hilbert space operator φ(f) defined on a dense domain of the Hilbert space
(which justifies the terminology “operator-valued distribution” φ in the Gårding-Wightman formulation).

8Here and everywhere in this paper, SO(1, d − 1) means the connected component of the group. E.g.
diag(−1,−1, 1, . . . , 1) is not included. Of course, it is possible for the theory to also possess discrete space-
time symmetries such as time inversion or space reflection. The consequences of such symmetries are
straightforward to figure out and are not discussed in this paper.
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also understood not pointwise but in the sense of distributions (i.e. that the pairing should
remain invariant if the test function is transformed in the dual way).9

We will not consider here other Minkowski correlators, such as retarded, advanced,
or time ordered, which are obtained from Wightman functions multiplying by theta-
functions of time coordinate differences, and whose distributional properties require a
separate discussion.

Limiting to the bosonic case as we are, local commutativity (also called microcausality)
morally says that operators commute at spacelike separation. Wightman axioms impose
this as a constraint on Wightman functions:

〈ϕ1(x1) . . . ϕp(xp)ϕp+1(xp+1) . . . ϕn(xn)〉 = 〈ϕ1(x1) . . . ϕp+1(xp+1)ϕp(xp) . . . ϕn(xn)〉 (2.3)

whenever xp − xp+1 is spacelike: (xp − xp+1)2 > 0 (in this paper we use the − + . . .+
convention). Since we are talking about distributions, this constraint means that (2.3)
holds when paired with any test function whose support is contained in (xp − xp+1)2 > 0.

Clustering says that correlators should factorize if two groups of points are far separated
in a spacelike direction:

〈ϕ1(x1) . . . ϕp(xp)ϕp+1(xp+1 + λa) . . . ϕn(xn + λa)〉
→ 〈ϕ1(x1) . . . ϕp(xp)〉〈ϕp+1(xp+1) . . . ϕn(xn)〉 (2.4)

as λ→∞ for any spacelike vector a, limit understood in the sense of distributions.
We next discuss the spectral condition. By translation invariance we can write

〈ϕ1(x1) . . . ϕn(xn)〉 = W (ξ1, . . . , ξn−1), ξk = xk − xk+1, (2.5)

where W is a tempered distribution in one less variable. Consider its Fourier transform:

Ŵ (q1, . . . , qn−1) =
∫
W (ξ1, . . . , ξn−1)e

i
n−1∑
k=1

qk·ξk
dξ1 . . . dξn, (2.6)

where qk = (Ek,qk), ξk = (tk, ξk), qk · ξk = −Ektk + qk · ξk. Since W is a tempered
distribution, the Fourier transform Ŵ is well defined and is also a tempered distribution.
The spectral condition then says that Ŵ must be supported in the product of closed forward
light cones, i.e. in the region

Ek > qk, k = 1, 2, . . . , n− 1. (2.7)

For the two remaining conditions we need to discuss conjugation. Physically, each operator
ϕ should have a conjugate ϕ†. In the discussed framework we cannot define ϕ† as an adjoint
of an operator acting on a Hilbert space, since we do not have a Hilbert space. Instead, we
will simply assume that there is a rule which associates ϕ† to ϕ, and impose the expected
relations at the level of correlation functions (eq. (2.10) below). This rule, conjugation

9Although Wightman functions can be shown to be real-analytic at some totally spacelike-separated
configurations (Jost points), in general they may be singular even away from light cones (in particular
when there are timelike separations).
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map † : C → C, associates to each independent component Oαi (α = 1 . . . dim ρi) of the
above-mentioned basis of C a conjugate operator (Oαi )†. This map is required to be an
involution, i.e. †† = 1. Furthermore, it is extended to the whole of C by anti-linearity, i.e.
(c1ϕ1 + c2ϕ2)† = c∗1ϕ

†
1 + c∗2ϕ

†
2.10

Let us group operators (Oαi )† in a multiplet which we denote by O†i , i.e. (O†i )α = (Oαi )†.
We will see below that (O†i )α transform under g ∈ SO(1, d − 1) with matrices complex-
conjugate to those of Oαi :

Oαi → ρi(g)αβ O
β
i ⇒ (O†i )α → ρi(g)αβ (O†i )β . (2.8)

In other words, O†i transforms in the conjugate representation ρi.
Since we are considering only bosonic operators, the relevant representations ρi are

tensors Tµ1...µl , on which g ∈ SO(1, d− 1) act as:

Tµ1...µl → (ρi(g)T )µ1...µl = gµ1
ν1 . . . g

µl
νl
T ν1...νl . (2.9)

Depending on ρi, these tensors have some fixed rank and mixed symmetry properties. In
addition, in even d, for tensors with d/2 antisymmetric indices, (anti-)chirality11 constraints
must be imposed. All tensor representations of SO(1, d− 1) are real (i.e. matrices ρi(g)αβ
in (2.8) can be chosen real), except for (anti-)chiral representations in d = 0 mod 4 which
are complex-conjugate to each other. For operators in real representations we can choose
a basis such that Oi = O†i .

After this intermezzo we are ready to formulate hermiticity and positivity conditions.
Hermiticity says that complex conjugate correlators equal correlators of conjugated oper-
ators in inverted order:

〈ϕ1(x1) . . . ϕn(xn)〉 = 〈ϕ†n(xn) . . . ϕ†1(x1)〉. (2.10)

This would be true of course if ϕ’s were operators acting on a Hilbert space, with ϕ†’s their
adjoints. In the present framework without Hilbert space it is imposed as an axiom. This
axiom implies in particular (2.8), i.e. that O†i transforms in the conjugate irrep ρi.

The last Wightman axiom, positivity, is most conveniently written down using the
language of states. One considers basic ket states |ψ(f, ϕ1, . . . , ϕn)〉, associated with n

local operators ϕ1, . . . , ϕn ∈ V and a complex Schwartz test function of n variables f . One
defines the inner product on basic ket states by

〈ψ(g, χ1, . . . , χm)|ψ(f, ϕ1, . . . , ϕn)〉 :=
∫
dx dy g(x1, . . . , xm)f(y1, . . . , yn) (2.11)

×〈χ†m(xm) . . . χ†1(x1)ϕ1(y1) . . . ϕn(yn)〉.

The vector space of ket states H0 consists of finite linear combinations |Ψ〉 of basic ket
states, with the inner product extended to it by (anti)linearity. Positivity then says that
the so defined inner product is positive semidefinite:

〈Ψ|Ψ〉 > 0 ∀|Ψ〉 ∈ H0. (2.12)
10The † operation is denoted by ∗ in [5].
11Chiral and anti-chiral representations are sometimes also called “self-dual” and “anti-self-dual”. We use

“chiral” and “anti-chiral” to avoid the clash with “dual representation” in mathematician’s sense.
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Remark 2.1. A comment is in order concerning the meaning of these states. They may
be seen as just a convenient notation, since eq. (2.12) can be rewritten without ever using
the word “state” (see [5], eq. (3-35)). But they are more than that: the vector space of
states H0 is “almost” the Hilbert space H of our QFT. The only difference between H0 and
H is that H0 is not complete and may contain some states of zero norm. However, since H0
has a positive semidefinite inner product, as expressed by eq. (2.12), we can obtain from
it a Hilbert space H via a standard procedure of completion and modding out by states
of zero norm. This is the first step of the Wightman reconstruction theorem [5], and the
resulting Hilbert space H turns out to be (possibly a superselection sector of) the Hilbert
space of the QFT, on which fields can then be realized as operator valued distributions.

Remark 2.2. Although we included hermiticity as a separate axiom because of its
suggestive form, it can be derived from positivity, considering the states of the form
|Ψ〉 = |ψ(f0, 1)〉+ |ψ(f, ϕ1, . . . , ϕn)〉 where f0 ∈ C and 1 is the unit operator.

Remark 2.3. Another interesting positivity property of Wightman functions is called
Rindler Reflection positivity, or Wedge Reflection positivity [44]. A restricted version of
this property (with wedge-ordered points) can be derived from Wightman axioms, while a
stronger version (no wedge-ordering) follows from Tomita-Takesaki theory which relies on
Haag-Kastler axioms [44]. In CFT context this property has been discussed, e.g., in [45].
We will not discuss these properties in this paper. However, it would be interesting to see
whether the stronger form of Rindler positivity (including distributional information) can
be derived from CFT axioms without the appeal to Tomita-Takesaki theory (the weaker
version following from our results on Wightman axioms and [44]). We believe this can be
done, and it could be a nice exercise for someone wishing to master our techniques.

2.2 Osterwalder-Schrader axioms

We next describe a version of the Osterwalder and Schrader axioms [2, 3] of Euclidean
unitary QFT (see the end of the section about the relation to the original OS axioms).
The setup is similar to Wightman axioms with SO(d) replacing SO(1, d− 1). We consider
a basis of local bosonic operators Oi transforming12 in SO(d) irreps ρi, counting derivatives
as independent operators. Finite linear combinations of their components span a complex
vector space C of local operators. The axioms specify properties of translation and SO(d)
invariant n-point correlators (often called Schwinger functions)

〈ϕ1(x1) . . . ϕn(xn)〉, ϕi ∈ C, xi ∈ Rd. (2.13)

These correlators are defined away from coincident points (i.e. whenever xi 6= xj for each
i, j). We will assume that13

correlators are real-analytic, (2.14)
12In the sense of eq. (2.2) where now g ∈ SO(d).
13Recall that a C∞ function of m real variables is called real-analytic in a domain D ⊂ Rm if it has a

convergent Taylor series expansion in a small ball around every point of this domain. Equivalently, such a
function has an analytic extension to a small open neighborhood of this domain inside Cm.
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and grow not faster than some power when some points approach each other or go to
infinity, i.e.

|〈ϕ1(x1) . . . ϕn(xn)〉| 6 C

(
1 + max

i 6=j

(
1

|xi − xj |
, |xi − xj |

))p
(2.15)

with some correlator-dependent positive constants C, p. Unlike Wightman axioms, OS
axioms do not bother what happens precisely at coincident points (not even in the sense
of distributions).

As we are limiting to the bosonic case, correlators remain invariant when operators
are permuted:14

〈ϕ1(x1) . . . ϕn(xn)〉 = 〈ϕπ(1)(xπ(1)) . . . ϕπ(n)(xπ(n))〉. (2.16)

To formulate the Euclidean version of hermiticity and positivity, we will need some simple
facts about SO(d) representations. Abstractly, for any irrep ρ acting Tα → ρ(g)αβT β , the
conjugate representation ρ acts with complex conjugate matrices ρ(g)αβ . Since SO(d) is
compact, we have ρ ' ρ∗, the dual representation. The SO(d) irreps ρ are again tensors
Tµ1...µl like in (2.9), of in general mixed symmetry, and with (anti)-chirality constraints
if having d/2 antisymmetric indices in even d. All of them are real, except for chiral
representations in d = 2 mod 4 which are complex-conjugate to the anti-chiral ones.15

We will also need the reflected representation ρR with matrices ρR(g) = ρ(gR), where
g → gR = ΘgΘ, Θ = diag(−1, 1, . . . , 1), is an automorphism of SO(d). For tensor repre-
sentations, we can consider the map

Tµ1...µl → Θµ1
ν1 . . .Θ

µl
νl
T ν1...νl , (2.17)

which preserves rank and mixed symmetry properties. It also maps chiral to anti-chiral
tensors in any even d. Whenever the representation space is preserved, this map serves as
an intertwiner between ρR and ρ. This means that ρR ' ρ for all tensor representations
without chirality constraints, while this operation interchanges chiral and antichiral irreps
in any even d.16

Applying both conjugation and reflection we get the conjugate reflected representation
ρR (isomorphic to dual reflected). From the above it follows that ρR ' ρ for all SO(d)
irrreps, except for (anti-)chiral tensors in d = 0 mod 4 which are interchanged.

Just as for Wightman axioms, we will need a conjugation operation † : C → C on
the vector space of local operators, which is involutive, anti-linear, and associates to each
independent component Oαi (α = 1 . . . dim ρi) a conjugate operator (O†i )α := (Oαi )†. Then
the hermiticity axiom takes the form17

〈ϕ1(x1) . . . ϕn(xn)〉 = 〈ϕ†n(xθn) . . . ϕ†1(xθ1)〉, (2.18)
14In particular one can sort all operators so that the Euclidean time coordinates are ordered x0

1 > x0
2 >

· · · > x0
n, and Euclidean correlator for any other ordering can be obtained by trivially permuting field labels.

15This well-known shift from d = 0 mod 4 for SO(1, d−1) is induced by raising the indices of the ε-tensor.
E.g. ε01ε10 = −1 for SO(2), while it is 1 for SO(1, 1).

16In odd d, Θ is a product of −1 and an SO(d) matrix, so that g → gR is an inner automorphism. This
provides another argument why ρR ' ρ for all irreducible SO(d) representations in odd d.

17Although we write the operators in the r.h.s. in the inverted order like in (2.10), permutation invariance
renders this detail unimportant for the OS axioms.
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similar to the Minkowski counterpart (2.10) but with an important difference that the
operators in the r.h.s. are put at reflected positions

xθ := Θx. (2.19)

This change has a consequence that O†i transforms in the conjugate reflected representation
ρi
R, explaining why we introduced this concept in the first place.18 For self-conjugate-

reflected representations we may choose a basis such that

(O†i )(µ) = Θ(µ)
(ν)O

(ν)
i , (2.20)

where Θ(µ)
(ν) := Θµ1

ν1 . . .Θ
µl
νl

is the intertwiner (2.17).
To write positivity, basic ket states |ψ(f, ϕ1, . . . , ϕn)〉 are associated with n local op-

erators ϕ1, . . . , ϕn ∈ C and a complex compactly supported Schwartz test function of n
variables f(x1, . . . , xn) which vanishes unless all points are in the lower half space and have
time variables ordered: 0 > x0

1 > x0
2 > · · · > x0

n. These support requirements were absent
in the Wightman case. The inner product on the basic ket states is defined by

〈ψ(g, χ1, . . . , χm)|ψ(f, ϕ1, . . . , ϕn)〉 :=
∫
dx dy g(yθ1, . . . , yθm)f(x1, . . . , xn) (2.21)

×〈χ†m(ym) . . . χ†1(y1)ϕ1(x1) . . . ϕn(xn)〉,

and is extended by (anti)linearity to the vector space HOS
0 of finite linear combinations |Ψ〉

of basic ket states. In this notation, positivity takes the same form as (2.12), i.e. that the
so defined inner product must be positive semidefinite:

〈Ψ|Ψ〉 > 0 ∀|Ψ〉 ∈ HOS
0 . (2.22)

This is referred to as “OS reflection positivity” because of the reflected g arguments
in (2.21), differently from the Wightman case. Because of this reflection and the above test
function support requirements, all operators in (2.21) sit at separated positions. This is one
reason why the OS axioms involve ordinary functions, without worrying about coincident
points. In contrast, Wightman positivity integrates operator insertions over coincident
points and makes sense only for distributions.

Just as in the Wightman case (remark 2.1), we can complete the vector space HOS
0 ,

mod out by states of zero norm, and obtain a Hilbert space HOS of the Euclidean theory.
Although we included hermiticity as an independing axiom, it can be derived from

positivity, just as in remark 2.2 in the Wightman case.
One simple consequence of OS reflection positivity is pointwise positivity of 2n-point

functions at reflection invariant configurations of points:

〈ϕ†n(xθn) . . . ϕ†1(xθ1)ϕ1(x1) . . . ϕn(xn)〉 > 0 (2.23)

for any x1, . . . , xn in the lower half space.19 This follows from (2.22) by taking |Ψ〉 =
|ψ(f, ϕ1, . . . , ϕn)〉 and localizing f near one configuration of points. In general, impos-
ing (2.23) for all ϕ’s and x’s would be clearly weaker than full OS reflection positivity.

18Indeed we have 〈(O†i )
α(x) . . .〉 = 〈Oαi (xθ) . . .〉 = ρ(g)αβ〈O

β
i (g−1xθ) . . .〉 = ρ(g)αβ〈(O

†
i )
β((gR)−1x) . . .〉.

19For tensor operator in self-conjugate-reflected representations, choosing the real basis (2.20), this be-
comes 〈. . .Θ(µ)

(ν)O
(ν)(xθ)O(µ)(x) . . .〉 > 0 (no sum on µ), i.e. tensor indices are also reflected.
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E.g. (2.22), but not (2.23), can be used to bound 3-point functions in terms of 2- and
4-point functions, or non-reflection-invariant 4-point functions by reflection-invariant ones.
However for CFTs we will see below that OS reflection positivity can be reduced to a form
of (2.23) for 2-point functions plus a form of (2.18) for 3-point functions.

Finally, the OS clustering asserts that

lim
λ→∞

∫
dx dy g(yθ1, . . . , yθm)f(x1, . . . , xn)〈χ†m(ym) . . . χ†1(y1)ϕ1(x1 + λa) . . . ϕn(xn + λa)〉

=
∫
dx dy g(yθ1, . . . , yθm)f(x1, . . . , xn)〈χ†m(ym) . . . χ†1(y1)〉〈ϕ1(x1) . . . ϕn(xn)〉

(2.24)

for any Schwartz test functions f(x1, . . . , xn) and g(y1, . . . , ym) supported for 0 > x0
1 > x0

2 >

. . . > x0
n and 0 > y0

1 > y0
2 > . . . > y0

n, for any local fields ϕ1, . . . , ϕn and χ1, . . . , χm, and for
any a ∈ Rd which is parallel to the x0 plane (a0 = 0, called “purely spatial” elsewhere). The
latter requirement is somewhat analogous to having the Wightman cluster property (2.4)
to be satisfied only for spacelike a.20

Note that the Minkowski operators can be mapped to Euclidean operators. In partic-
ular any SO(1, d−1) irrep can be mapped to an SO(d) irrep. This map of irreps originates
from the map between the two Lie algebras which have the same complexification. It can
then be shown that a pair of conjugate SO(1, d − 1) irreps is mapped to a pair of SO(d)
irreps which are conjugate-reflected to each other. This gives another rationale for the
appearance of reflected irreps in the OS axioms.

Remark 2.4. The stated version of OS axioms includes the assumption of real analyt-
icity (2.14) and the bound (2.15). These assumptions are natural from physics perspec-
tive; they also easily follow from Wightman axioms. The original OS axioms did not
include (2.14) nor (2.15), but included instead a differently stated assumption:

correlators are distributions on 0S, (2.25)

where 0S is the space of Schwartz test function vanishing at coincident points with all their
derivatives.

We would like to discuss here the relation between (2.14)+(2.15) and (2.25). In one
direction this is easy: clearly (2.15) implies (2.25). In the other direction it can be shown
that (2.25) and other OS axioms (in particular OS positivity and rotation invariance) imply
real analyticity (2.14). This is a result of [2, 3] and [46]. It is also possible to derive (2.15)
from (2.25) and other OS axioms [3]. These issues will be reviewed further in section 9.

Remark 2.5. In ref. [3], Osterwalder and Schrader introduced an extra assumption on
Euclidean correlators, the linear growth condition. We will come back to this in section 9.
Here we would like to stress that this condition is not needed for the implications discussed
in the previous paragraph. On the other hand, the linear growth condition was used in
ref. [3] when showing that the Euclidean correlators can be Wick-rotated to Lorentzian
signature, resulting in Wightman distributions.

20This is axiom E4 in [2]. Ref. [2] also mentions a stronger axiom E4’, but we will be content here with
checking the easier axiom E4.
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2.3 Euclidean CFT axioms

Wightman and OS axioms stated in the previous two sections are standard. We took
care to present them for general operator representations and in general d. We will now
present axioms for Euclidean unitary CFT. Just as OS axioms, these concern correlators
in Euclidean signature, but there is an extra assumption of conformal invariance. Another
feature of the CFT axioms is that assumptions are imposed on simple building blocks
(2- and 3-point functions) from which more complicated correlators can be constructed.
Properties of these complicated correlators then follow. The point of our paper is how one
can recover OS axioms and (after Wick rotation) Wightman axioms in this setup.

A Euclidean unitary CFT in Rd (d > 2) deals with local primary operators Oi(x)
and with their n-point correlation functions 〈Oi1(x1) . . .Oin(xn)〉. Correlators are real-
analytic functions defined away from coincident points, which are permutation-invariant as
in (2.16). Each primary is characterized by its scaling dimension ∆i and is an SO(d) tensor
transforming in an irreducible representation ρi.21 The scaling dimensions are real and
nonnegative, with the unit operator having dimension zero. The set of scaling dimensions
(“spectrum”) is assumed to be discrete, by which we mean that there are finitely many
∆i’s in any finite interval [a, b] ⊂ R.22

The set of all local operators of a CFT consists of primaries Oi(x) and their space-time
derivatives ∂µ1 . . . ∂µnOi(x), often referred to as descendants. The correlation functions of
the descendant operators are simply the derivatives of the correlation functions of pri-
mary operators. They are well-defined since the correlators of primaries are assumed to
be real-analytic.

Parameters ∆i and ρi determine transformation properties of Oi(x) under the confor-
mal group SO(d + 1, 1), and correlators remain invariant under these standard transfor-
mations which we will not write down. These constraints determine the functional form
of 1,2,3-point functions. In particular, the unit operator is the only one with a nonzero
1-point function. See, e.g., [20] for a review of these facts.

An important fact that follows from the conformal invariance of correlation functions
is that one is allowed to insert an operator at spatial infinity. The primary operator at
spatial infinity is defined as

〈Oi(∞) · · ·〉 ≡ lim
L→+∞

L2∆i〈Oi(Lê0) · · ·〉. (2.26)

To see that this limit exists one can use a conformal map that takes ∞ to a finite point and
moves no other operators to infinity. After applying this map the limit (2.26) turns into a
limit in which all points approach finite values. We conclude that (2.26) exists, and is then
of course independent of the concrete conformal map that we chose. In the definition (2.26)
we have chosen a particular direction (ê0) for the limit. Using conformal symmetry it is

21Operators can also be grouped into multiplets of the global symmetry group G which a CFT might
have, but we will not discuss global symmetry here. For simplicity we will only consider bosonic operators.
More generally one should allow fermionic operators and spinor representations.

22There exist 2d unitary CFTs, such as the Liouville theory, with a continuous spectrum of scaling
dimensions. In this case axioms need to be modified. All known unitary CFTs in d > 3 have a discrete
spectrum.
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easy to show that (2.26) is independent of this direction, up to a rotation on the indices of
Oi. In what follows we will always allow for Euclidean CFT correlators to have one of the
operators to be at ∞.

A Euclidean unitary CFT comes equipped with a conjugation operation †, an involutive
antilinear operator on the vector space of local operators (including both primaries and
descendants), similarly to the OS axioms. Every primary Oi is mapped by † to a conjugate
primary O†i such that the 2-point function 〈O†iOi〉 does not vanish. The Oi and O†i have
equal scaling dimensions, and transform in the conjugate-reflected irreps. Recall that in
section 2.2 we saw that most SO(d) irreps are self-conjugate-reflected, ρi ' ρRi , the only
exception being (anti-)chiral tensors in d = 0 mod 4 which are exchanged by this operation.
For operators in self-conjugate-reflected irreps we may choose operator basis such that
eq. (2.20) holds, which we copy here:

(O†i )(µ) = Θ(µ)
(ν)O

(ν)
i . (2.27)

The functional form of the 〈O†i (x)Oi(y)〉 2-point function is fixed by conformal symmetry:

〈(O†i )(µ)(x)O(ν)
i (y)〉 = NiI(µ),(ν)(x− y), (2.28)

where (µ), (ν) are collections of tensor indices (of equal length), I(µ),(ν)(x − y) is a tensor
function depending only on ∆i, ρi, and Ni is a constant.

We are free to rescale the basis of primaries, multiplying them by some positive con-
stants which should be the same for both Oi and O†i . This transformation clearly preserves
the above conditions on †, as well as further conditions which will be discussed below,
notably (2.32). Using this freedom we can rescale Ni by a positive real number and fix |Ni|
in some arbitrary unimportant way, e.g. so that some component of the 2-point function
is of absolute value one at unit separation. On the other hand the phase of Ni cannot
be changed in this way. Instead, it is uniquely determined by the positivity condition
discussed below.

Positivity is imposed in Euclidean CFT axioms only on 2-point functions. We write it
again using the language of states. Basic ket states are |∂(β)O(ν)

i 〉 where O
(ν)
i is a primary

component and ∂(β) an arbitrary derivative. The inner product is defined as

〈∂(α)O(µ)
i |∂

(β)O(ν)
i 〉 = Θ(α)

(α′)〈∂
(α′)(O†i )(µ)(xN )∂(β)O(ν)

i (xS)〉, (2.29)

i.e. as the value of the shown 2-point function inserting the operators at xS = (−1, 0, . . . , 0)
and xN = (1, 0, . . . , 0) = (xS)θ (where N,S stands for north, south). For ket states
with i 6= j the inner product vanishes since the 2-point function is zero. This inner
product is extended by (anti)linearity to the vector space HCFT

0 of finite complex linear
combinations of basic ket states. In this language, Euclidean CFT positivity reads exactly
as the Wightman and OS positivity: 〈Ψ|Ψ〉 > 0 for all states of this restricted form. More
prosaically, this can also be stated that the infinite matrices M (α)(µ),(β)(ν)

i built out of 2-
point functions in the r.h.s. of (2.29) are all positive semidefinite when restricted to finite
subspaces.
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CFT positivity can be analyzed primary by primary, and it depends only on the pri-
mary 2-point function, eq. (2.28) which determines the full matrix M (α)(µ),(β)(ν)

i . Clearly,
only one phase of the normalization constant Ni in eq. (2.28) can give rise to a positive
definite matrix, so that phase is uniquely fixed. Once the phase of Ni is fixed, positivity
for a given primary depends only on its ∆, ρ. It then can be shown that CFT positivity
holds if and only if every ∆, in addition to being real and non-negative, lies above a certain
minimal ρ-dependent value (“unitarity bound”):

∆ > ∆min(ρ). (2.30)

These unitarity bounds are documented in the literature, e.g. we have ∆min = d/2− 1 for
scalars, and d+ `− 2 for spin-`, ` > 1. For arbitrary SO(d) representations see [47].23

For future uses, we wish to define the CFT Hilbert space HCFT via completion ofHCFT
0 ,

after modding out by zero norm states (for operators saturating the unitarity bounds,
some descendants have zero norm). This can be done abstractly, or explicitly using a basis
as we now describe. Throwing out zero-norm descendants, the remaining states can be
organized choosing an orthonormal basis. We may choose such a basis independently among
descendants of each primary, and then combine all these bases, e.g. in the order of non-
decreasing scaling dimensions. The elements of HCFT are then formal linear combinations∑
n cn|n〉,where |n〉 are orthonormal basis elements, and cn is an arbitrary complex `2

sequence. The norm on HCFT is the `2 norm of the sequence cn. Restricting to sequences
cn which have only a finite number of nonzero elements, we get elements of HCFT

0 (modulo
the zero-norm states).

Let us continue with the axioms. CFT hermiticity condition is imposed only on the
2-point and 3-point functions, namely:

〈(O†i )(µ)(x1)O(ν)
i (x2)〉 = 〈O(µ)

i (xθ1)(O†i )(ν)(xθ2)〉, (2.31)

which is also a consequence CFT positivity and in particular fixed the phase of Ni up to a
sign,24 and

〈O(µ)
i (x1)O(ν)

j (x2)O(λ)
k (x3)〉 = 〈(O†i )(µ)(xθ1)(O†j)(ν)(xθ2)(O†k)(λ)(xθ3)〉. (2.32)

23We chose to express CFT positivity inserting operators at the points (±1, 0, . . . , 0) which corresponds to
the N-S quantization (see [48]) and will facilitate the comparison with the Osterwalder-Schrader reflection
positivity. Equivalently, one could go via a conformal transformation to the more familiar radial quanti-
zation corresponding to inserting the operators at 0 and ∞. CFT positivity is then equivalent to radial
quantization states having positive norm on every level, which is how the unitarity bounds are usually
worked out in Euclidean CFTs [47]. In mathematical language, this latter condition corresponds to having
a positive-definite Shapovalov form on the parabolic Verma module. Recent work [49, 50] explained how
the determinant formulas by Jantzen [51] provide a rigorous justification of the Euclidean unitarity bounds
(both in the necessary and sufficient directions).

24For the special case x1 = xN , x2 = xS , eq. (2.31) is nothing but hermiticity of the matrix M (µ),(ν)
i ,

a consequence of positive-semidefiniteness. The general case reduces to the special one mapping x1, x2,
to xN , xS by a conformal transformation (both sides of (2.31) have the same conformal transformation
properties).
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for any 3 primaries Oi, Oj , Ok.25 Similarly to the 2-point function case, this condition can
be simplified using the conformally invariant tensor structures, with an important difference
that the normalization of operators has already been fixed. Conformal invariance constrains
the 3-point functions to take the form

〈O(µ)
i (x1)O(ν)

j (x2)O(λ)
k (x3)〉 =

Nijk∑
a=1

faijk〈O
(µ)
i (x1)O(ν)

j (x2)O(λ)
k (x3)〉a, (2.33)

where 〈O(µ)
i (x1)O(ν)

j (x2)O(λ)
k (x3)〉a span the finite-dimensional space (of dimension Nijk)

of solutions of conformal invariance constraints on the 3-point functions of the opera-
tors with given ∆s, ρs (s = i, j, k). On the other hand the coefficients faijk ∈ C are not
fixed by conformal symmetry (no sum on i, j, k in the r.h.s. of (2.33)). We often refer
to faijk as the “OPE coefficients.” It is always possible to choose the basis structures
〈O(µ)

i (x1)O(ν)
j (x2)O(λ)

k (x3)〉a to satisfy the hermiticity constraint (2.32) individually, in
which case the OPE coefficients must satisfy

(faijk)∗ = fa
ijk
, (2.34)

where the barred indices refer to the conjugate operators O†i ,O
†
j ,O

†
k. In particular, when

all three operators are self-conjugate-reflected i.e. satisfy (2.27), the OPE coefficients faijk
must be real.

Finally, unitary CFTs enjoy a convergent operator product expansion (OPE). This
means that any correlation function26 satisfies

〈O(µ)
i (x1)O(ν)

j (x2)O(ρ)
m (x3) · · · 〉

=
∑
k

Nijk∑
a=1

faijkC
(µ)(ν)
a,(λ) (x1, x2, x0, ∂0)〈(O†k)

(λ)(x0)O(ρ)
m (x3) · · · 〉, (2.35)

where the first sum runs over all primary operators Ok in the theory, and
C

(µ)(ν)
a,(λ) (x1, x2, x0,∂0) is a formal sum of the form

C
(µ)(ν)
a,(λ) (x1, x2, x0, ∂0) =

∑
α

C
(µ)(ν)
a,(λ),α(x1, x2, x0)(∂/∂x0)α. (2.36)

This differential operator is determined by conformal symmetry27 and depends only on
∆s, ρs (s = i, j, k). Here (∂/∂x)α = (∂/∂x0)α0 . . . (∂/∂xd−1)αd−1 with α = (α0, . . . , αd−1) ∈
(Z>0)d a multiindex. Convergence of OPE means that the sum (2.35), with C expanded
as in (2.36), converges whenever

x1, x2 ∈ B(x0, R), R = min(|x3 − x0|, |x4 − x0|, . . .) (2.37)
25Note that since † is involutive, this covers the case when an operator and its conjugate are interchanged

between the two sides of this equation.
26Importantly, we allow here for one of the operators to be inserted at spatial infinity.
27There is an ambiguity when Ok is in a short conformal representation (in unitary theories this happens

only if Ok is a conserved current or a free field). This subtlety will not play any role in this paper.
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where B(x0, R) is an open ball centered at x0 and of radius R. In other words, OPE
converges whenever x1 and x2 are the two closest operator insertions to x0 (in Euclidean
distance). Convergence should be understood carefully as follows. For each O†k in the r.h.s.
of (2.35), and for each n ∈ Z+, we perform finite summation over a, λ, and all multiindices
α with |α| = n. We are left then with the doubly infinite sum

∑
k

∞∑
n=0

gk,n({xi}). (2.38)

This doubly infinite sum has to converge absolutely for every x1, x2 as in (2.37).28

That the same coefficients faijk appear in the OPE (2.35) and the 3-point function (2.33)
follows immediately by using the OPE inside the latter 3-point function.

Local Euclidean CFTs contain the conserved stress tensor operator Tµν of dimension
d, and in case of continuous global symmetry, conserved global symmetry currents Jµ of
dimensions d − 1. We will not discuss here additional axioms involving 3-point functions
and OPE coefficients of these operators, related to their conservation and Ward identities,
see e.g. [52, 53].

Remark 2.6. The just given Euclidean CFT axioms are more careful in what concerns
reality constraints than the set of CFT rules gathered in the conformal bootstrap review
[20]. They are also more economical: e.g. Ref. [20] assumed OS reflection positivity and
clustering for n-point functions, which for us will be theorems to prove, not assumptions.
Ref. [20] also included some constraints on the CFT data which emerge when considering
CFT in Minkowski signature, most notably the Averaged Null Energy Condition (ANEC).
In this paper we will establish all Wightman axioms for scalar Minkowski CFT 4-point
functions from the Euclidean CFT axioms, but we will not discuss ANEC. A proof of
ANEC [54] has been given using the Haag-Kastler axioms for general QFT. CFT arguments
have also been given in [45, 55], but they rely on some assumptions which have not been
rigorously proven from axioms. It would be interesting to fill these gaps and establish
ANEC as a theorem from Euclidean CFT axioms.29

3 Euclidean CFT ⇒ Osterwalder-Schrader

In this section we will discuss some simple consequences of CFT axioms and in particu-
lar will show that they imply OS axioms for 4-point functions (the case of higher-point
functions is more subtle and is discussed in appendix B). Here we will prove only the OS
reflection-positivity and the cluster property. The “Euclidean temperedness” bound (2.15)

28The requirement of absolute convergence can be somewhat relaxed, see section 3.1.
29 The argument in [45] uses an OPE asymptotic expansion on the second sheet, outside of the range

of convergence of the OPE rigorously implied by the Euclidean CFT axioms (see appendix A.1 where we
review this method going back to [4]). In [55] ANEC is derived using manipulations with a generalization
of the Lorentzian inversion formula of [56], of which some have not been rigorously justified. For example,
the derivation starts with the Euclidean inversion formula, which is readily justified from Harmonic analysis
only for external scaling dimensions on principal series and square-integrable correlators, none of which is
generically the case in the required setup.
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will follow from our arguments in the following sections, where we establish power-law
bounds on CFT correlation functions. The remaining OS axioms are a subset of the
CFT axioms.

3.1 OS reflection positivity

In this section we prove OS positivity for compactly-supported test functions. The ex-
tension to Schwartz functions is easy once we establish (2.15) for CFT correlators, see
remark 4.2.

To someone familiar with OPE in CFTs, the goal of this section may seem straightfor-
ward to achieve: in usual CFT treatments, one can express any state as a sum of “single
operator states”, created by action of a single insertion of primaries and their descendants
on the vacuum, and our two-point positivity axiom makes sure that the inner products of
such states are positive-semidefinite. The part of this wisdom that doesn’t work immedi-
ately in our setup is being able to express states in the OS Hilbert space as infinite OPE
sums. Our OPE axiom is much weaker than this statement, in particular the truncation
order for the OPE needed to achieve a given precision ε in (2.35) may a priori depend on
everything in the left-hand side, including coordinates xi and the “spectator” operators
Om, . . ., in an arbitrary fashion. (On the contrary, for a Hilbert space OPE statement, the
truncation order is good for all choices of spectator operators as long as an appropriate
norm remains bounded by a fixed constant.) In spite of this difficulty, in this and the next
section we will be able to recover reflection positivity for n-point functions up to n ≤ 4
and Hilbert space OPE convergence for states created by up to 2 operator insertions, but
doing so requires some care.

First let us slightly reformulate the OPE convergence property. Consider an n-point
correlation function with operators inserted at x1 . . . xn. Let S be a hyperplane and x0 be
a point such that x1, x2, x0 are on one side of S while all the other points xi, i > 2, are
on the other side. Using a conformal transformation we can map S to a sphere S′ so that
x0 is mapped to the center of S′ which we denote by x′0. Let x′i denote the positions of
all the other points xi after this map. We can then use the OPE (2.35) for the correlation
function evaluated at x′i,

〈O(µ)
i (x′1)O(ν)

j (x′2)O(ρ)
m (x′3) · · · 〉

=
∑
k

Nijk∑
a=1

faijkC
(µ)(ν)
a,(λ) (x′1, x′2, x′0, ∂0′)〈(O†k)

(λ)(x′0)O(ρ)
m (x′3) · · · 〉. (3.1)

Transforming this expansion term-by term to the original coordinates xi we find the con-
vergent expansion (with convergence understood in the same sense as in the previous
section30)

〈O(µ)
i (x1)O(ν)

j (x2)O(ρ)
m (x3) · · · 〉

=
∑
k

Nijk∑
a=1

faijkC
(µ)(ν)
a,(λ) (x1, x2, x0,D0)〈(O†k)

(λ)(x0)O(ρ)
m (x3) · · · 〉. (3.2)

30Careful reading of the argument below shows that, in the 4-point case, the requirement of absolute
convergence of (2.38) could be replaced by a weaker requirement that we can find any subsequence of
partial sums of (2.38) which approximates the correlator pointwise.
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Here the differential operators D(α) are simply the derivatives
(
∂
∂x′

)(α)
expressed in the

original coordinates x, and conjugated by the conformal transformation factor of O†k. The
functions C(µ)(ν)

a,(λ) are obtained from C
(µ)(ν)
a,(λ) by our conformal transformation. The important

point is that truncation of C(µ)(ν)
a,(λ) in order of derivatives ∂(α) corresponds to truncation of

C
(µ)(ν)
a,(λ) in order of operators D(α).

We now specialize to S being the x0 = 0 plane, x0 = xS = (−1, 0, . . .), and take S′

to be the unit sphere with the center x′0 = 0. Then the derivatives
(
∂
∂x′

)(α)
O(µ)
k (x′0) are

eigenstates of the standard dilatation generator D with eigenvalues ∆k + |α|. Note that
D has two fixed points: x′0 = 0 and infinity. Applying our conformal map, we find that
the derivatives D(α)O(µ)

k (xS) are in turn eigenstates, with the same eigenvalues, of the
conformal generator D′ = (K0−P 0)/2 that preserves xS and xN = xθS (which is the image
of infinity under our conformal map) and acts by dilatations near these two points. This,
together with the conformal invariance and diagonality of 2-point functions, implies

〈(D(α))θO†(µ)
j (xN )D(β)O(ν)

k (xS)〉 ∝ δ|α|,|β|δj,k, (3.3)

where (D(α))θ is obtained from D(α) by replacing x→ xθ.
The OPE (3.2) gives an expansion for ket states |Ψ〉 ∈ HOS

0 created by two local
operators in terms of ket states created by a single operator, which are elements of HCFT

0 .
We would like to have a dual version of this expansion for bra states 〈Ψ|. For this we
need to understand how the OPE transforms under the conjugation. Note that the formal
differential operators C(µ)(ν)

a,(λ) (x1, x2, x0,D0) can be uniquely determined by the equation

〈O(µ)
1 (x1)O(ν)

2 (x2)O(ρ)
3 (x3)〉a = C

(µ)(ν)
a,(λ) (x1, x2, x0,D0)〈(O†3)(λ)(x0)O(ρ)

3 (x3)〉, (3.4)

where it is understood that the points are arranged as above, so that the formal sum
defined by C

(µ)(ν)
a,(λ) (x1, x2, x0,D0) actually converges. By applying complex conjugation on

both sides and using the 2-point and 3-point hermiticity constraints (2.31) and (2.32)
we find

〈(O†1)(µ)(xθ1)(O†2)(ν)(xθ2)(O†3)(ρ)(xθ3)〉a = [C(µ)(ν)
a,(λ) (x1, x2, x0,D0)]∗〈O(λ)

3 (xθ0)(O†3)(ρ)(xθ3)〉,
(3.5)

which implies that

[C(µ)(ν)
a,(λ) (xθ1, xθ2, xθ0,Dθ0)]∗ = C̃

(µ)(ν)
a,(λ) (x1, x2, x0,D0), (3.6)

where C̃
(µ)(ν)
a,(λ) (x1, x2, x0,D0) is the formal sum that appears in the OPE for operators with

conjugate-reflected quantum numbers.
We are now ready to prove OS positivity for 4-point functions. Let |Ψ0〉 be an OS ket

state involving at most two local operators, i.e.31

|Ψ0〉 =
∑
i,j,α,β

∫
dx1 dx2 fi,j,(α)(β)(x1, x2)|O(α)

i (x1)O(β)
j (x2)〉, (3.7)

31In the notation of section 2.2 this could be written as
∑

i,k,α,β
|ψ(fi,j,(α),(β), O(α)

i , O(β)
j )〉.
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where f(x1,x2) is a compactly supported test function vanishing unless 0 > x0
1 > x0

2.
(Terms with one or no operators are realized by setting one or both operators to the
identity.) Since by Euclidean CFT axioms the correlation functions are real-analytic, the
integrals that appear in the expression for 〈Ψ0|Ψ0〉 can be approximated by finite Riemann
sums, reflection-symmetric if necessary. This implies that, for any ε > 0, we can pass from
|Ψ0〉 to a ket state |Ψ〉 which is created by a finite linear combination of insertions of up
to two local operators with x0

1, x
0
2 < 0:

|Ψ〉 =
∑

i,j,α,β,x1,x2

ci,j,(α)(β),x1,x2 |O
(α)
i (x1)O(β)

j (x2)〉, (3.8)

and has the property that

|〈Ψ0|Ψ0〉 − 〈Ψ0|Ψ〉| < ε, |〈Ψ0|Ψ〉 − 〈Ψ|Ψ〉| < ε, (3.9)

so that as a result

|〈Ψ0|Ψ0〉 − 〈Ψ|Ψ〉| < 2ε (3.10)

We are therefore reduced to proving the nonnegativity of 〈Ψ|Ψ〉.
Now, the OPE convergence axiom implies that, for any ε > 0, starting from |Ψ〉 and

using the OPE (3.2) in the half-space x0 < 0, we can construct a state |ψ〉 = |ψΛ〉 ∈ HCFT
0

created by a finite linear combination of local operators at xS such that

|〈Ψ|ψ〉 − 〈Ψ|Ψ〉| < ε. (3.11)

Here Λ is an OPE truncation cutoff which we need to increase appropriately as ε gets
smaller. Namely, we will obtain |ψ〉 by keeping in the OPE all terms with ∆k + |α| < Λ,
where ∆k is the dimension of a primary Ok appearing in the OPE, and α is the order of
the descendant D(α)Ok.

We can then repeat this procedure in the upper half-plane x0 > 0 and construct a
state 〈ψ′| = 〈ψΛ′ | of local operators inserted at xN such that

|〈Ψ|ψ〉 − 〈ψ′|ψ〉| < ε. (3.12)

Eq. (3.6) and the reality constraint (2.34) for the OPE coefficients imply that the state
〈ψ′| differs from 〈ψ| at most by where the OPE expansion was truncated. Furthermore,
we can always assume that 〈ψ′| contains at least all the terms that 〈ψ| does (i.e. Λ′ > Λ),
since adding more OPE terms to 〈ψ′| can only improve (3.12).

Eq. (3.3) then implies that 〈ψ′|ψ〉 = 〈ψ|ψ〉 and therefore

|〈Ψ|ψ〉 − 〈ψ|ψ〉| < ε. (3.13)

Combining this with (3.11) we conclude:

|〈Ψ|Ψ〉 − 〈ψ|ψ〉| < 2ε, (3.14)

Since by the CFT positivity axiom 〈ψ|ψ〉 is non-negative, we conclude that 〈Ψ|Ψ〉 is also
non-negative. This completes the proof of OS positivity for states created by up to two
operator insertions.
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3.2 Denseness and Hilbert space implications

Here we will describe some useful byproducts of the just given argument. Note that (3.11)
and (3.13), in addition to (3.14), also implies

‖Ψ− ψΛ‖ ≡ 〈Ψ− ψΛ|Ψ− ψΛ〉 = 〈Ψ|Ψ〉 − 〈Ψ|ψΛ〉+ 〈ψΛ|ψΛ〉 − 〈ψΛ|Ψ〉 < 2ε. (3.15)

This means that any |Ψ〉 can be approximated arbitrarily well by a |ψΛ〉 ∈ HCFT
0 . In other

words, HCFT
0 is a dense subspace of the vector space of Ψ’s.

This fact has a simple but quite powerful consequence involving the CFT Hilbert
space HCFT, defined in section 2.3 as the completion of HCFT

0 . Eq. (3.15) implies, using the
triangle inequality ‖ψΛ1−ψΛ2‖ 6 ‖Ψ−ψΛ1‖+‖Ψ−ψΛ2‖, that the states |ψΛ〉 corresponding
to smaller and smaller ε form a Cauchy sequence. Therefore, these states have a limit in
HCFT as Λ→∞, which we call |ψ∞〉. This ψ∞ is nothing but the full, untruncated, OPE
expansion of the state Ψ. We claim that the map mapping Ψ’s to the corresponding ψ∞’s
is isometric, i.e. it preserves the inner products:

〈Φ|Ψ〉 = 〈ϕ∞|ψ∞〉. (3.16)

Here the inner product on the l.h.s. is the OS inner product, computed using CFT 4-
point functions with operators inserted in the lower and upper half-spaces, while the inner
product in the r.h.s. is the HCFT inner product, defined as the limit of HCFT

0 inner product
removing the cutoff:

〈ϕ∞|ψ∞〉 := lim
Λ→∞

〈ϕΛ|ψΛ〉. (3.17)

The proof of (3.16) is straightforward. We write:

〈ϕΛ|ψΛ〉 = 〈Φ + (ϕΛ − Φ)|Ψ + (ψΛ −Ψ)〉 = 〈Φ|Ψ〉+ err(Λ), (3.18)
err(Λ) = 〈ϕΛ − Φ|Ψ〉+ 〈Φ|ψΛ −Ψ〉+ 〈ϕΛ − Φ|ψΛ −Ψ〉. (3.19)

By eq. (3.15) we know that ‖Ψ− ψΛ‖, ‖Φ− ϕΛ‖ go to zero as Λ→∞. Hence, err(Λ)→ 0
and (3.16) is proved.

Eqs. (3.16) and (3.17) mean that OPE converges in the sense of the CFT Hilbert
space. This property is often used in the CFT literature (see section 6.2). Note that CFT
axioms in section 2.3 only assume pointwise OPE convergence, which is a weaker statement.
Curiously, by the given arguments, pointwise OPE convergence plus CFT positivity imply
Hilbert space convergence, at least for the 4-point functions.

In the above argument we used the Hilbert space HCFT, the completion of HCFT
0 .

We may introduce a second Hilbert space as the completion of the space of Ψ’s, call it
H(2). This Hilbert space contains e.g. all Ψ0 states (3.7). (Similarly to (3.15), eqs. (3.9)
and (3.10) imply that Ψ states are dense in the Ψ0 states.) Although H(2) may look like
a “bigger” space than HCFT, actually it’s not. Indeed, the map from Ψ to ψ∞ extends
to an isometric map from H(2) to HCFT. In other words, eq. (3.16) remains true for any
Φ,Ψ ∈ H(2). Since we can view HCFT

0 as a subspace of the space of Ψ’s, we also have that
this map is surjective. The Hilbert spaces H(2) and HCFT are thus unitarily equivalent and
may be identified.
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3.3 OS clustering

Here we will derive the OS clustering (2.24) from CFT axioms. We will consider only
m + n = 4, i.e. when the left-hand side of (2.24) can be written in terms of a 4-point
function (this also covers m+n < 4 since we can choose some of ϕ’s or χ’s to be the trivial
identity field). We can assume that all χ’s and ϕ’s in (2.24) are primary fields, since any
derivatives can be integrated by parts.

First as a general remark, assuming OS positivity, clustering (for any m,n) only needs
to be established point-wise, i.e.

lim
λ→∞

〈χ†m(ym) . . . χ†1(y1)ϕ1(x1 + λa) . . . ϕn(xn + λa)〉

= 〈χ†m(ym) . . . χ†1(y1)〉〈ϕ1(x1) . . . ϕn(xn)〉. (3.20)

This follows from the dominated convergence theorem. Indeed, OS positivity and transla-
tion invariance (recall that we only consider a0 = 0!) implies a uniform in λ bound32

|〈χ†m(ym) . . . χ†1(y1)ϕ1(x1 + λa) . . . ϕn(xn + λa)〉|2 (3.21)

6 〈χ†m(ym) . . . χ†1(y1)χ1(yθ1) . . . χn(yθn)〉 × 〈ϕ†n(xθn) . . . ϕ†1(xθ1)ϕ1(x1) . . . ϕn(xn)〉.

It then follows that the integrand in (2.24) is bounded by a λ-independent integrable
function, and the dominated convergence theorem is applicable.

Going back to the 4-point function case which is our focus in this section, let us start
with m = n = 2. Since we already proved OS positivity for states created by at most two
operators (section 3.1), in this case we can rely on the above observation and we only need
to check the point-wise limit:

lim
λ→∞

〈χ†2(y2)χ†1(y1)ϕ1(x1 + λa)ϕ2(x2 + λa)〉 = 〈χ†2(y2)χ†1(y1)〉〈ϕ1(x1)ϕ2(x2)〉. (3.22)

To see this, we apply the OPE (3.2) to χ†2(y2)χ†1(y1) in the left-hand side. The results
of the previous section imply that this OPE can be interpreted as expanding the state in
the Hilbert space H created by χ†2(y2)χ†1(y1) in terms of eigenstates of (K0 − P 0)/2. This
implies that the OPE converges uniformly in λ since the norm of |ϕ1(x1 +λa)ϕ2(x2 +λa)〉
is independent of λ due to translation invariance (a0 = 0!). We can thus use the OPE to
approximate 〈χ†2(y2)χ†1(y1)ϕ1(x1 +λa)ϕ2(x2 +λa)〉 for any λ to within any ε > 0 by a finite
sum of 3-point functions of the form 〈(D(α))θO(ν)

i (xN )ϕ1(x1 +λa)ϕ2(x2 +λa)〉 times some
λ-independent coefficients. Of these, only the term corresponding to the identity operator,
i.e. the one with (D(α))θO(ν)

i = 1, does not decay with λ. It is easily verified that the
contribution of this term is precisely equal to 〈χ†2(y2)χ†1(y1)〉〈ϕ1(x1)ϕ2(x2)〉. This finishes
the proof of clustering for m = n = 2.

In the remaining case m = 3, n = 1, we will consider the limit for the integral (since we
have not yet proved OS positivity for states involving 3 operators). Note that 〈ϕ1(x)〉 = 0

32This follows, similarly to (2.23), by applying OS positivity to the state |Ψ〉 = |ψ(F,ϕ1 . . . ϕn)〉 +
eiα|ψ(G,χ1 . . . χn)〉 where F,G tend to delta functions localizing the operators at points x1+λa, . . . , xn+λa
and yθ1 , . . . , yθn respectively, and choosing the phase α appropriately.
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unless ϕ1 ∝ 1, in which case the cluster property becomes trivial. This means that we only
need to prove

lim
λ→∞

∫
dx dy g(yθ1, yθ2, yθ3)f(x1)〈χ†3(y3)χ†2(y2)χ†1(y1)ϕ1(x1 + λa)〉 = 0 (3.23)

for ϕ1 6= 1. This in turn is a very simple consequence of conformal invariance, and of
the fact that ∆ϕ > 0 for all operators but the identity. We will be somewhat schematic.
The main point is that the configuration (y3, y2, y1,∞) is nonsingular from the conformal
kinematics point of view (for which the conformal compactification Sd of the Euclidean
space Rd is the appropriate arena). One way to see it is that the cross ratios are finite in
this limit. Thinking in a pedestrian way, we can find a conformal transformation gλ which
will move points (y3, y2, y1, x1 + λa) to some points which have finite limits as λ → ∞.
Transforming the integral (3.23) to this coordinate system, the only singular behavior at
large λ comes from the Weyl transformation factor as the operator ϕ1 is moved from near
infinity to a finite position. This factor implies that the integral (3.23) will go to zero as
λ−2∆ϕ , proving clustering in this particular case. See section 6.8.2 for additional details.
More generally, the same argument will also work for arbitrary m as long as n = 1.

4 Euclidean CFT ⇒ Wightman: basic strategy

We will now pass to the main task of our paper: given a Euclidean unitary CFT, recover
Minkowski correlators and show that they satisfy Wightman axioms.

Let us first discuss this problem without assuming conformal invariance. Suppose we
know correlatorsGEn (x1, . . . , xn) of a scalar field in a Euclidean QFT which is translationally
and rotationally invariant, but not necessarily conformally invariant. We are assuming, as
discussed above, that the correlators GEn are defined and real-analytic (see footnote 13) for
non-coincident Euclidean points (xk ∈ Rd, xi 6= xj).

We would like to recover correlators in Minkowski signature. We are only interested
here in Wightman correlation functions, where the operator ordering is fixed while the
Minkowski time coordinates vary independently. We will call them simply “Minkowski
correlators”. Starting from this section we will focus on correlators of scalar primaries;
correlators of fields in general SO(d) representations will be considered in our future pub-
lication [42].

To understand the equations below, it helps to keep in mind the basic heuristic. If
we had a Hilbert space, field operators φ, and a Hamiltonian H, then the Minkowski
correlators would be given by

GMn (xM1 , . . . , xMn ) = 〈0|φ (0,x1) e−iH(t1−t2)φ (0,x2) e−iH(t2−t3) . . . |0〉,
xMk = (tk,xk) . (4.1)

while the Euclidean correlators by

GEn (x1, . . . , xn) = 〈0|φ (0,x1) e−H(ε1−ε2)φ (0,x2) e−H(ε2−ε3) . . . |0〉,
xk = (εk,xk) , εk > εk+1, (4.2)
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We stress that the r.h.s. of these two equations will never be used in this paper. We just
use them to illustrate the intuitive property that GMn can be recovered from GEn by analytic
continuation εk → εk + itk and sending εk → 0 while respecting εk > εk+1. In other words,
there is a holomorphic function Gn which reduces to GMn in one limit and to GEn in another.
The precise domain of analyticity of Gn can be clarified from the Wightman axioms [5].
Their basic consequence is that Minkowski correlators can be analytically continued to
the “forward tube” (see below), which contains the configuration space of Euclidean time-
ordered points as a section. In this paper we will derive Wightman axioms, rather than
assume them. In particular, we will carry out analytic continuation to the forward tube
just from the properties of the Euclidean correlators.

Let us put these observations into a definition of what it means to recover GMn from
GEn . We consider n-point configurations with complexified coordinates:

c = (x1, . . . , xn), xk =
(
x0
k,xk

)
∈ Cd. (4.3)

The “forward tube” Tn is defined as the set of all such configurations for which the differ-
ences yk = xk − xk+1 = (y0

k,yk) ∈ Cd satisfy the constraint:

Re y0
k > | Im yk|, k = 1, . . . , n− 1. (4.4)

Equivalently, this means that vectors Im(iy0
k,yk) belong to the open forward light cone of

R1,d−1, explaining the name “forward tube”.33

Let Dn be the subset of the forward tube consisting of the configurations with real
spatial parts xk. Equivalently, we have:

Dn = { c | x0
k = εk + itk, xk ∈ Rd−1, ε1 > ε2 > . . . > εn}. (4.5)

Finally, we denote by DEn the Euclidean part of Dn obtained by setting all tk = 0.
Minkowski correlators are then defined by the following two-step procedure:

Step 1. One finds an extension GEn from DEn to a function Gn(x1, . . . , xn) such that one
of the two conditions is satisfied:

Gn is defined on Tn, and holomorphic in all variables x0
k, xk, (4.6)

or

Gn is defined on Dn, is holomorphic in variables x0
k and is real-analytic in xk. (4.7)

Real analyticity in xk means that Gn can be extended from Dn to a holomorphic function
defined on a neighborhood of Dn which allows small imaginary parts for xk. This neigh-
borhood can be arbitrarily small. Condition (4.7) is thus weaker than (4.6) and may be
easier to check, although theorem 4.1 below shows that the two conditions are equivalent
under the “powerlaw bound” assumption.

33The just given definition of the forward tube is adapted to the Euclidean coordinates. In section 1.1,
eq. (1.2), we wrote the same definition in terms of Minkowski coordinates xMk = (−ix0

k,xk).
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Step 2. Minkowski correlators are defined as the limits of Gn from inside Dn by send-
ing εi → 0:34

GMn (xM1 , . . . , xMn ) = lim
εi→0

Gn(x1, . . . , xn), xMk = (tk,xk) , k = 1 . . . n. (4.8)

As mentioned several times, Minkowski correlators are expected to be tempered distribu-
tions, and therefore this limit has to be understood in the distributional sense. To show
that the limit exists and has properties required by Wightman axioms, one relies on the
following powerful theorem of several complex variables:

Theorem 4.1 (Vladimirov’s theorem). Suppose that the function Gn is translation- and
rotation-invariant, satisfies (4.7) and in addition satisfies everywhere on Dn the following
‘powerlaw bound’ with some positive constants Cn, An, Bn:

|Gn(x1, . . . , xn)| 6 Cn

(
1 + max

k

1
εk − εk+1

)An
(1 + max

i
|xi − xi+1|)Bn , (4.9)

|xi − xj |2 ≡ |εi + iti − εj − itj |2 + |xi − xj |2. (4.10)

Then:

1. Limit (4.8) exists in the sense of tempered distributions. The limiting value GMn is a
tempered distribution.35

2. The distribution GMn is Poincaré-invariant and satisfies the Wightman spectral con-
dition. I.e. its Fourier transform W (p1, . . . , pn−1) with respect to the differences
xMk − xMk+1 has support in the product of closed forward light cones, which is the
region Ek > |pk|, pk = (Ek,pk).

3. The function Gn can be extended from a holomorphic function on the whole for-
ward tube Tn. The limit (4.8) exists also from the forward tube, i.e. when Re y0

k →
0, | Im yk| → 0, satisfying (4.4).

See appendix C for the proof of Vladimirov’s theorem and a reminder of what the limit
in the sense of distributions means. In the process of the proof, it will be established that
the holomorphic function Gn on Tn can be written as a “Fourier-Laplace” transform

Gn(x1, . . . , xn) =
∫
dp1 . . . dpn−1W (p1, . . . , pn−1)e

n−1∑
k=1

(−Ek(x0
k−x

0
k+1)+ipk·(xk−xk+1))

, (4.11)

where W is a tempered distribution which is the Fourier transform of the tempered distri-
bution GMn , mentioned in Part 2 of the theorem.

34We will see in theorem 4.1 that this limit has to be taken along a fixed direction and is independent
of direction. If the stronger condition (4.6) holds, the limit can in fact be taken along any direction in the
forward null cone.

35This part of the theorem does not need translation- and rotation-invariance of Gn.
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To use theorem 4.1, one needs to verify the powerlaw bound (4.9). This strategy was
first developed by Osterwalder and Schrader (OS) [2, 3].36 Their full list of assumptions
included, in addition to reflection positivity and other OS axioms listed in section 2.2,
a less widely known linear growth condition, which roughly says that GEn (appropriately
integrated) grows with n not faster than a power of n! and the degree of its singularities
grows not faster than linearly in n. The proof of the powerlaw bound was the most technical
part of the OS construction, and it crucially relied on the linear growth condition. See
appendix 9 for the review.

In this paper we aim to define Minkowski correlators of a conformal field theory, given
Euclidean correlators satisfying the CFT axioms of section 2.3. As seen in section 3.1,
reflection positivity is robustly encoded in CFT via the positivity requirements for 2-point
functions and reality constraints on the OPE coefficients. On the other hand, not much
is known about how CFT n-point functions grow with n. In particular, we are unable to
justify the OS growth condition in our setup, hence we cannot appeal to the OS theorem.

In this paper we will be able to circumvent this difficulty, by giving an alternative
proof of the powerlaw bound for the most important in applications cases of 2, 3 and 4-
point functions. Then, by theorem 4.1, these correlators exist in Minkowski space and are
tempered distributions. Our proof of the powerlaw bound uses only the Euclidean CFT
axioms. In fact, the two- and 3-point function case is almost trivial, these correlators being
fixed by conformal invariance. The 4-point function case is much deeper and is one of our
main results. Remaining Wightman axioms not mentioned in theorem 4.1 (positivity and
clustering) will also be shown to hold.

Remark 4.1. In practice, to compute the Minkowski correlator function one may connect
a Minkowski configuration to a Euclidean configuration by a curve c(s), 0 6 s 6 1, where
c(0) is Euclidean, c(1) Minkowskian, and c(s), 0 < s < 1, belong to the forward tube. In
general, the curve should remain in the forward tube except for the endpoint c(1). This
means that we must have strict inequalities:

Rex0
1(s) > Rex0

2(s) > · · · > Rex0
n(s) (4.12)

everywhere along the analytic continuation contour, except for s = 1. See figure 1.
In the literature, one sometimes encounters a different prescription for computing the

Minkowski correlators (see e.g. [4], section 3.1), where one puts all points but one at
Minkowski positions, and considers correlators as a holomorphic function of the complex-
ified coordinate of the remaining point. One then imagines that Wightman functions are
holomorphic functions branching at light-cone separation, and that one can access different
operator orderings by going around branch points. We would like to warn the reader that
this prescription has to be taken with a grain of salt. To our knowledge there is no general
result that the only Wightman functions singularities are branch cuts on the light cones.
This is known to be true only in some special cases, e.g. for CFT 2-point and 3-point func-
tions, as well as for CFT 4-point functions in d = 2 [57]. While some analytic continuation

36OS used a slightly stronger version of theorem 4.1 with real analyticity in xk replaced by the weaker
assumption of continuity in these variables, but this difference is not essential.
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0(s)

x2
0(s)

x3
0(s)

x4
0(s)

Figure 1. Inequalities (4.12) should be satisfied along the analytic continuation contour.

beyond the forward tube can be done in a general QFT (to the so called permuted extended
tube), it does not suffice to justify the analytic continuation prescription of [4] in a general
QFT. In CFTs in higher dimensions, the prescription of ref. [4] has some applicability, with
the understanding that the correlator is analytic along the continuation contour but may
stop being analytic at the endpoint (see appendix A.1).

Remark 4.2. A powerlaw bound in the forward tube (4.9) of course implies a powerlaw
bound for the Euclidean 4pt function itself. Together with rotation invariance, this will
imply the remaining OS axiom, the “Euclidean temperedness bound” (2.15). Indeed, by
rotation invariance, we can choose the direction of the x0 axis before applying the Euclidean
powerlaw bound. Let us choose the x0 direction so that, after ordering the operators
according to ε1 > ε2 > ε3 > ε4, we have εk − εk+1 > α|xk − xk+1| for each k. Such a
direction exists for a sufficiently small positive α, depending on d and the number of points
but not on xi.37 Applying the Euclidean case of the powerlaw bound (4.9) in this frame
we obtain (2.15).

4.1 Recovering Minkowski averages from Euclidean averages

Minkowski correlators provided by theorem 4.1, being tempered distributions, can be paired
with a Schwartz test function F :

(GMn , F ) =
∫
dxGMn (x1 . . . xn)F (x1 . . . xn). (4.13)

Here we will discuss how these pairings can be computed given the Euclidean correlators
(compare [2], section 4.3). This discussion will be needed in section 6.7 below and may be
skipped on the first reading.

Eq. (4.13) can equivalently be expressed via the Fourier transform W of GMn with
respect to xk − xk+1:

(GMn , F ) =
∫
dpW (p1, . . . , pn−1)f(p1 . . . pn−1), (4.14)

37For each pair of points (xi, xj) we consider the set of direction ê0 such that |(xi−xj)· ê0| 6 |xi−xj | sin δ.
This gives a subset Uδ of the sphere Sd−1 with Vol(Uδ) 6 2δVol(Sd−2). If we choose δ∗ = Vol(Sd−1)

2n(n−1) Vol(Sd−2) ,
then the total volume excluded by considering all possible (xi, xj) pairs is less than Vol(Sd−1)/2. Therefore,
we can find a direction ê0 such that the opposite inequality |(xi − xj) · ê0| > |xi − xj | sin δ∗ holds for all
pairs. Then, renumbering the points in the order of decreasing x0

i , we obtain x0
k−x0

k+1 > |xk−xk+1| sin δ∗.
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where f(p1 . . . pn−1) = F̂ (−p1, p1 − p2, . . . , pn−2 − pn−1, pn−1). Natural pairings for Eu-
clidean correlators are

(GEn , ϕ) =
∫
dxGEn (x1 . . . xn)Φ(x1 . . . xn). (4.15)

where Φ is a C∞ test function compactly supported in x0
1 > · · · > x0

n. We wish to discuss
how pairings (4.13) or (4.14) can be found given (4.15).

By the Fourier-Laplace representation (4.11), we can write (4.15) as

(GEn , ϕ) =
∫
dpW (p1, . . . , pn−1)g(p1, . . . , pn−1), (4.16)

where g is any Schwartz class function which agrees inside the forward
light cones with ϕ̃, the Fourier-Laplace transform of ϕ(y1, . . . , yn−1) =∫
dxn Φ

(
xn +∑n−1

i=1 yi, xn +∑n−1
i=2 yi, . . . , xn

)
:

g ∈ S, g(p) = ϕ̃(p) (pk ∈ V+). (4.17)

ϕ̃(p1, . . . , pn−1) =
∫
dy ϕ(y1 . . . yn−1)e

n−1∑
k=1

(−p0
ky

0+ipk·yk)
,

Note that we cannot just put g = ϕ̃ because ϕ̃ is by itself not a Schwartz function (it may
grow exponentially in the negative p0

k directions, although it will decrease exponentially in
the positive one, since ϕ is supported at y0

k > 0). On the other hand the values of g outside
the light cones, where W is supported, are unimportant. We can for example take

g(p1, . . . , pn−1) = χ(p0
1) . . . χ(p0

n−1)ϕ̃(p1, . . . , pn−1), (4.18)

where χ(s) is a C∞ function which equals identically 1 for s > 0 and 0 for s < −1.
Suppose then that we find a sequence of C∞ functions {ϕr}∞r=1 compactly supported

at y0
k > 0, the corresponding functions gr ∈ S such that gr = ϕ̃r inside the light cones,

and in addition that gr → f in the sense of the Schwartz space (i.e. that all Schwartz
space seminorms of the difference go to zero), where f is the function in (4.14). Let us put
Φr(x1, . . . , xn) = ϕ(x1 − x2, x2 − x3, . . . , xn−1 − xn)ω(xn) where ω is any C∞0 function of
integral one. Then we will have

(GEn ,Φr) = (W, gr) −→ (W, f) = (GMn , F ) (r →∞), (4.19)

and so we will solve the problem of computing Minkowski averages given Euclidean av-
erages. The following lemma, loosely related to lemma 8.2 in [2], shows that it is indeed
possible to find such sequences ϕr and gr for any Schwartz class f .

Lemma 4.2. The set of functions g ∈ S(Rd(n−1)) which satisfy (4.17) for some ϕ a C∞

test function compactly supported in y0
k > 0 is dense in the Schwartz space.

We will give a formal proof; see appendix D for some intuition. We will consider the
case n = 2 as n > 2 is no more complicated. For each ϕ we consider the set Aϕ of Schwartz
functions g which satisfy (4.17):

Aϕ :=
{
g ∈ S(Rd)

∣∣∣g|V+
= ϕ̃

}
. (4.20)
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We know that Aϕ is non-empty, e.g. we can take g from (4.18) (it is not hard to show that
this is a Schwartz function). Our lemma says that A ≡ “the union of Aϕ over all ϕ” is
dense in S(Rd). The proof will be by contradiction. Note that A is a linear subspace of
S(Rd). If A 6= S(Rd), then there exists a tempered distribution T ∈ S ′(Rd) such that T
vanishes on all test functions from A but does not vanish identically.38

So T in particular vanishes on A0 =
{
g ∈ S(Rd)

∣∣∣g|V+
= 0

}
(take ϕ = 0). This means

that the support of the distribution T is contained inside V+. Consider the Fourier trans-
form of T ,

T̂ (x) :=
∫

ddp

(2π)d T (p)eip0x0−ip·x. (4.21)

We can consider T̂ (x) for real x where it is a distribution. Since supp(T ) ⊆ V+ it is also
natural to consider T̂ (ξ+iη) where ξ, η are real and η is in the forward cone. We know that
T̂ (x) is a holomorphic function for such x = ξ + iη. We also know that the distribution
T̂ (x) for real x can be obtained as a limit of the holomorphic function T̂ (ξ + iη) as η → 0.

Let us now come back to the assumption that (T, g) = 0 for any g ∈ Aϕ. We will apply
this to a function g of the form g = X(p)ϕ̃ where X(p) is a C∞ function identically 1 on
the forward light cone and such that X(p)e−p0x0+ip·x is in Schwartz class for any x0 > 0.
It is easy to see that such functions X(p) exist. Writing (T, g) in full we get:

0 = (T, g) =
∫
dp T (p)X(p)

∫
dx e−p

0x0+ip·xϕ(x)

=
∫
dxϕ(x)

∫
dp T (p)X(p)e−p0x0+ip·x

=
∫
dxϕ(x)T̂ (ix0,x). (4.22)

The swap of the order of integration between the first and the second line can be justified
as follows. Since T (p) is a tempered distribution, we can write it as a finite sum of deriva-
tives of continuous functions of power growth: T (p) = ∑

α ∂
α
p Fα(p). Using distributional

integration by parts, we can the rewrite the first line of (4.22) as a sum of ordinary inte-
grals, apply Fubini’s theorem to swap the integration order, and integrate by parts back
to express the answer in terms of T (p).

Because ϕ(x) has compact support in the region x0 > 0, the argument of T̂ in the
last line of (4.22) is of the form ξ + iη with η = (x0,0) in the forward light cone, where
we know T̂ is analytic. So, from the fact that the last line of (4.22) vanishes for any ϕ we
conclude that

T̂ (ξ + iη) = 0, ξ = (0,x), η = (ix0,0), x0 > 0. (4.23)

The set of these points is a totally real submanifold, and so by analyticity we conclude that
T̂ (ξ + iη) is identically zero for any ξ ∈ Rd and any η in the forward cone. Furthermore,

38The corresponding statement for normed spaces is standard, being a well-known consequence of the
Hahn-Banach theorem (see e.g. [58], Corollary 1.8). For the Schwartz space, we can first find a Schwartz
norm | · |n, such that A is not everywhere dense with respect to this norm, and then apply the standard
statement with the norm | · |n. This gives a linear functional T on S(Rd) continuous with respect to | · |n,
hence T ∈ S ′(Rd).
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as mentioned above, T̂ (x) for real x is a boundary value of T̂ (ξ + iη). Therefore, T̂ = 0
in the sense of distributions. However we assumed above that T was not identically zero.
The reached contradiction shows that A is dense in S.

5 Two- and 3-point functions

Let us see how the strategy from section 4 works for the CFT 2-point and 3-point func-
tions. The Euclidean 2-point and 3-point correlators of scalar primaries are given by
[x2
ij = (xi − xj)2]

GE2 (x1, x2) = 1
(x2

12)∆ , (5.1)

GE3 (x1, x2, x3) = c123
(x2

12)h123(x2
13)h132(x2

23)h23
, hijk = (∆i + ∆j −∆k)/2. (5.2)

In this case, the standard way to obtain the Wightman functions is to write these
Euclidean correlators in terms of x2

ij with i < j (as we did). Substituting the analytic
continuation of x2

ij ,

x2
ij = (xi − xj)µ(xi − xj)µ = (x0

i − x0
j )2 + (xi − xj)2, xi =

(
x0
i ,xi

)
∈ Cd. (5.3)

into the Euclidean 2-point and 3-point functions expressions, we obtain their analytic
continuations. Suppose further that x2

ij 6= 0, i < j, in the forward tube (this will be shown
below). Then the functions

c 7→ x2
ij (i < j) (5.4)

are holomorphic functions from the forward tube to C̃\{0}, the universal covering of the
complex plane minus the origin. On the other hand z 7→ zh is holomorphic from this
universal covering to C. Composing these two holomorphic functions, we conclude that
(x2
ij)h, i < j, are holomorphic on the forward tube. Hence this procedure analytically

extends the Euclidean 2-point and 3-point functions to the whole forward tube Tn (n = 2, 3).
We will now give a simple lemma which proves that indeed x2

ij 6= 0, i < j, in the forward
tube. Actually the lemma says that a bit more is true, namely x2

ij ∈ C\(−∞, 0]. This has
the following practical consequence. In general, to compute the analytic continuation of
(F (c))h, where F (c) is a nonzero holomorphic function, we need to know the phase of F (c),
i.e. to which sheet of the Riemann surface C̃\{0} it belongs. To compute the phase we need
to connect c to some cE by a curve and analytically continue along this curve, following
the phase. However, this is unnecessary for (x2

ij)h. Indeed, by the lemma below x2
ij always

belongs to the principal sheet. So there is no need to use a curve to compute the phase: it
can be computed unambiguously just by plugging the coordinates into (5.3).

Lemma 5.1. Let y = (y0,y) ∈ Cd satisfy Re y0 > | Im y|. Then

y2 ≡ (y0)2 + y2 ∈ C\(−∞, 0]. (5.5)
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Proof. We will denote by Greek letters ξ, η, etc., vectors of Minkowski space R1,d−1 with
the Minkowski inner product ξ2 = −(ξ0)2 + ξ2.39 Decomposing the vector (iy0,y) into its
real and imaginary parts:

(iy0,y) = ξ + iη, (5.6)

condition Re y0 > | Im y| means that η0 > 0 and −η2 > 0, i.e. η is in the open forward
light cone, which we will denote by η � 0. In this notation, we have to prove that

(ξ + iη)2 = ξ2 − η2 + 2i(ξη) 6∈ C\(−∞, 0]. (5.7)

where by our conventions all inner products involving ξ, η are Minkowski. Suppose this is
violated, i.e.

(ξη) = 0, ξ2 − η2 < 0, (5.8)

for some ξ, η. Since η is timelike, (ξη) = 0 implies that ξ is spacelike. But then ξ2 −
η2 = ξ2 + (−η2) > 0. Thus the two conditions in (5.8) cannot both be true, and (5.7)
is proved.

As the next step of implementing the strategy from section 4, we need to check that
the constructed analytic continuations satisfy a powerlaw bound so that we can apply
theorem 4.1. Although we already constructed analytic continuation to the whole Tn, we
only need to check the bound on Dn which is somewhat easier. The powerlaw bound follows
from the following lemma.

Lemma 5.2. (a) Let y = (ε + is,y), ε, s ∈ R, y ∈ Rd−1. Then y2 is bounded above and
below in the absolute value, as follows:

ε2 6 |y2| 6 |y|2 ≡ |ε+ is|2 + y2; (5.9)

(b) On Dn (n = 2, 3), each 1/(x2
ij)h factor in (5.1), (5.2) (h ∈ R) satisfies a powerlaw

bound: ∣∣∣ 1
(x2
ij)h

∣∣∣ 6 |xi − xj |B(εi − εj)A
(i > j), (5.10)

where A = 2h, B = 0 for h positive and A = 0, B = −2h for h negative.

Proof. (a) The upper bound is obvious. Let us show the lower bound by an explicit
computation (see lemma 6.3 below for an alternative proof). We have:

|y2|2 ≡ |(ε+ is)2 + y2|2 = (ε2 − s2 + y2)2 + 4ε2s2, (5.11)

Minimizing this in y, we get

min
y
|y2|2 =

 (ε2 − s2)2 + 4ε2s2 = (ε2 + s2)2, |s| 6 ε,

4ε2s2, |s| > ε.

Minimizing this next in s, we find that the absolute minimum is located at y = 0, s = 0,
and is equal to ε4. Part (b) follows from (a).

39We remind the readers that everywhere in this paper we are using −,+, . . . ,+ Minkowski signature.
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Now that we have the powerlaw bound, we can apply theorem 4.1. We conclude that
the Minkowski 2-point and 3-point functions, defined as εi → 0 limits of the analytically
continued Euclidean correlators, exist, are Lorentz-invariant tempered distributions, and
satisfy the spectral condition.40

5.1 Comparison with the iε-prescription

Here we will comment on the “iε-prescription” often used in the literature to define
Minkowski 2-point and 3-point correlators, and how it compares with our definition. We
will focus on the 2-point case for definiteness (same remarks hold for the 3-point case).

The iε-prescription defines the Minkowski 2-point correlator GM2 (xM1 , xM2 ) as
1

(−(s− iε)2 + y2)∆ , (5.12)

with s = t1−t2, y = x1−x2 and taking the ε→ 0+ limit. The precise meaning of the limit is
often left implicit in the physics literature. Away from the light cone the 2-point correlator
is an ordinary function, the limit can be understood pointwise and it agrees with our
definition. Clearly, on the light cone the limit must be understood in distributional sense,
integrating against a test function f(s,y). That is what we showed above: Vladimirov’s
theorem guarantees that the limit ε → 0 exists as a tempered distribution and can be
therefore integrated against any Schwartz test function. In physics literature, one instead
often hears that such integrals should be defined by “shifting the integration contour”. Note
however that this alternative way of understanding the ε → 0 limit would only work for
analytic test functions. Let us discuss the consequences of this limitation.

It is helpful to recall that the theory of distributions commonly uses three classes of
test functions, denoted S,K,Z [61]. Here S is the space of Schwartz functions, K (denoted
sometimes by D) is the space of compactly supported C∞ functions, and Z consists of
entire holomorphic functions decreasing faster than any power in the real directions and
bounded by some fixed exponential in the imaginary directions. Note that K,Z ⊂ S. The
corresponding distribution spaces thus satisfy the opposite inclusion: S ′ ⊂ K′,Z ′. The
elements of S ′ are precisely the tempered distributions discussed above, K′ are distributions
on the compactly supported test functions41, while Z ′ is yet another distributional class.

Importantly, the Fourier transform F leaves S invariant. Since the Fourier transform
is defined in the theory of distributions by duality, we also have F(S ′) = S ′: the Fourier
transform of a tempered distribution is also a tempered distribution. On the other hand,
one can show (see [61]) that F(K) = Z. This is the rationale behind introducing the space
Z, and this also implies that F maps K′ to Z ′ and vice versa.

Coming back to (5.12), shifting the integration contour defines this distribution as an
element of Z ′. The pairing with a test function f ∈ Z is thus defined by∫

C
dz

∫
dy 1

(−z2 + y2)∆ f(z,y) (5.13)

40Since these are tempered distributions, their Fourier transforms are well defined. Explicit expres-
sions for these Fourier transforms are known in many cases. See [59] for 〈O∆,l(p)O∆,l(−p)〉 and [60] for
〈O∆1(p1)O∆2(p2)O∆,l(p3)〉.

41They are briefly mentioned in the proof of theorem 4.1, appendix C.2, after eq. (C.13).
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with the contour C running parallel to the real axis in the lower half plane.42 By the
previous paragraph, this is then sufficient to define the Fourier transform of the 2-point
function as an element of K′. By moving the contour far away from the real axis, one shows
that the Fourier transform vanishes for negative energies, and by Lorentz invariance one
concludes that the support must belong to the forward light cone. These arguments have
parallels in the proof of Part 2 of theorem 4.1 (see appendix C.2).

Compared to this simple and almost elementary discussion, theorem 4.1 proves a
stronger statement that the 2-point distribution (5.12) can be extended to test functions of
Schwartz class and, furthermore, to functions which have only a finite number of derivatives
as expressed by eq. (C.3). This can be seen as a finer characterization of the singularity
structure at short distances. The Fourier transform is then also a tempered distribution,
thus bounded by some power, which is a stronger statement than it being an element of
K′ since those can grow arbitrarily fast at infinity.

Since the 2-point and 3-point correlators are known in closed form, one can in prin-
ciple verify that their Fourier transform does not grow too fast at infinity by an explicit
computation. This would provide an alternative proof of temperedness. Our point here is
that theorem 4.1 reaches this conclusion without any computations. For the 4-point corre-
lators considered below, the Fourier transform cannot be evaluated easily, and theorem 4.1
appears to be the only realistic way to show temperedness.

It is instructive to discuss why we insist so much on temperedness. In other words,
why Wightman axioms require that the Minkowski n-point correlators must be tempered
distributions, and not of some other class? There is a simple reason why temperedness
is a natural requirement, while K′ or Z ′ would not suffice. The point is that Wightman
axioms include both commutativity at spacelike separation and the spectral condition (the
Fourier transform supported in the forward tube). Both these conditions need compactly
supported test functions: the former in position space, the latter in momentum space. The
space S is large enough to write both these conditions, while K or Z are inadequate as we
would lose one of them.43

Finally, sometimes by the iε-prescription one means the following simplified form
of (5.12):

1
(−s2 + i0+ sign(s) + y2)∆ , (5.14)

which agrees with (5.12) away from the light cone. By Vladimirov’s theorem, this defines
a distribution for s > 0 (including the light cone) and another distribution for s < 0, but
it is not an adequate starting point for defining the distribution around (s,y) = (0, 0).

42We can somewhat relax the condition f ∈ Z. At the very least, f must be holomorphic in the lower
half-plane close to the real axis and decrease sufficiently fast at infinity for the integral to be convergent.

43For completeness it should be noted that one can reduce S a bit and still be able to formulate both these
axioms, as for Jaffe fields [62], which may have stronger-than-powerlaw singularities at short distances. For
CFTs and for any theory which asymptotes to a CFT at short distances, there is no reasons to consider
such modifications, and S remains the natural choice.
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6 Scalar 4-point function

This section is the heart of our paper. In it we will show how to define Minkowski 4-point
functions starting from Euclidean 4-point functions of a unitary CFT. We will follow the
strategy of section 4 and in particular will rely on theorem 4.1. To avoid inessential details,
we will focus on the case of four identical scalars. Non-identical scalars can be treated by the
same argument (see section 6.10). Additional complications arise for spinning operators;
this case is postponed to a future publication [42].

So, we consider the Euclidean CFT 4-point function of four identical scalar Hermitian
primaries, which by conformal invariance can be written as:

GE4 (cE) ≡ 〈O(x1)O(x2)O(x3)O(x4)〉 = 1
(x2

12x
2
34)∆O

g(cE). (6.1)

Here cE = (x1, x2, x3, x4) denotes an ordered configuration of four Euclidean non-coincident
points (xk ∈ Rd, xi 6= xj), ∆O is the scaling dimension of O, and g(cE) is a real function
which depends only on the conformal class of cE . It can be written as a function of two
conformally invariant cross-ratios u, v:

g(cE) = g(u, v), u = x2
12x

2
34

x2
13x

2
24
, v = x2

14x
2
23

x2
13x

2
24
. (6.2)

Our plan is as follows. After a discussion of the basic issues involved in the analytic contin-
uation of the 4-point function (section 6.1), we will introduce a representation in terms of
the radial coordinates ρ, ρ (section 6.2), and use it to construct the analytic continuation
to the whole forward tube T4 (section 6.3). This construction works because ρ, ρ remain
strictly inside the unit disc everywhere in the forward tube (lemma 6.1 and eq. (6.21)), a
fundamental fact proved in section 6.4. We then briefly review the well-established pow-
erlaw bound on g(ρ, ρ) with respect to ρ, ρ, and prove a powerlaw bound on |ρ(c)|, |ρ(c)|
with respect to c ∈ T4. Combining these powerlaw bounds together, we will get a pow-
erlaw bound on the analytically continued 4-point function G4(c), which by theorem 4.1
implies (as c approaches the Minkowski region) the existence of the boundary limit of
G4(c) as a tempered distribution (section 6.5). After establishing temperedness, we will
derive the Minkowski conformal invariance (section 6.6), Wightman positivity (section 6.7),
Wightman clustering (section 6.8) and local commutativity (section 6.9). Some of them
do not rely on conformal properties: for these we will use the standard arguments given
by Osterwalder and Schrader [2]. In section 6.10, we will generalize the above results to
non-identical scalars by using Cauchy-Schwarz arguments.

6.1 Informal introduction to basic issues

Here we wish to outline a few basic difficulties which must be dealt with when analytically
continuing the 4-point function. We will be using u, v coordinates as an example, although
we will see below that other coordinates will be more suitable for our task. Readers
uninterested in philosophical discussions may skip directly to section 6.2.

Given any point c of the forward tube, we can connect it to a Euclidean point cE by
a curve, and analytically continue the 4-point function along the curve (see figure 2, left).
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Figure 2. Illustration of the discussion in section 6.1.

The forward tube being simply connected, the analytic continuation (if it exists) does not
depend on the curve. Furthermore, let us take into account that our conformal 4-point
function effectively only depends on two variables u, v. Applying lemma 5.1, we see that
u, v are both nonzero holomorphic functions on the forward tube. Consider the map:

ω : c→ (u, v). (6.3)

Since the forward tube is simply connected, we can consider this map as acting from T4 to
(C̃\{0})2, where tilde denotes the universal cover. Denote by ω(T4) and ω(DE4 ) the images
of the forward tube and of its Euclidean part under this map (see figure 2, right).

Now suppose that we found an analytic continuation of g(u, v) from ω(DE4 ), where
it is initially defined, to the whole of ω(T4). Then we could immediately write down the
analytic continuation of the 4-point function to the forward tube as follows:44

G4(c) = 1
(x2

12x
2
34)∆O

g(u(c), v(c)). (6.4)

This formula defines the analytic continuation to the forward tube as a composition of two
holomorphic functions:

T4
ω−→ ω(T4) g−→ C. (6.5)

We would like to use this strategy, but its direct implementation is hindered by a couple
of difficulties:

• We don’t know much about the shape or even topology of ω(T4). E.g. we don’t know
if this set is simply connected. The continuous image of a simply connected set, such
as the forward tube, does not have to be simply connected (figure 3). If ω(T4) is not
simply connected, there is no guarantee that g(u, v) will be single-valued on it. And
if g(u, v) has branch cuts, then a simple formula like (6.4) using only the endpoint
values (u(c), v(c)) will not work; we will need to know in addition “from which side
of the cut” we got to this point along the analytic continuation contour (see figure 3).

• To be sure, we don’t know if the above difficulty is actually realized. Perhaps the
set ω(T4) is, after all, simply connected, and g(u, v) has a single-valued analytic
continuation to it. Even if this is the case, how can we construct this extension
starting from g(u, v) in the Euclidean region?
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Figure 3. Illustration of a potential difficulty if the set ω(T4) were not simply connected (see
section 6.1).

In this paper we will circumvent these difficulties rather than attacking them head-on.
In the Euclidean region, one often uses different variables to parametrize the cross-ratios
u, v, such as the Dolan-Osborn variables z, z, or the radial variables ρ, ρ. As one can imag-
ine, a smart choice of Euclidean variables can greatly simplify the analytic continuation.
We will see that the radial variables are ideally suited for this task, allowing a natural
resolution of the above-mentioned difficulties.

6.2 Euclidean 4-point function in radial coordinates

We first recall the well-known Dolan-Osborn variables z, z [63, 64], which are two complex
variables related to u, v by

u = zz, v = (1− z)(1− z), or (6.6)

z, z = 1
2

(
1 + u− v ±

√
(1 + u− v)2 − 4u

)
. (6.7)

Since in the Euclidean case we only consider non-coincident points, we have u, v 6= 0, and
hence z, z 6= 0, 1. It is possible to fix a Euclidean conformal frame by setting the four
points to positions

x1 = 0, x2 = aê0 + bê1, x3 = ê0, x4 =∞ê0, (6.8)

where êµ is the standard orthonormal basis of Rd. Using this frame, we obtain z, z = a±ib.
This shows that in the Euclidean, the variables z, z are complex-conjugate (z = z∗).

Euclidean configurations with real z = z correspond to four points lying on a circle,
which maps in the frame (6.8) to four points on a line. The three possibilities z < 0,
z ∈ (0, 1), z ∈ (1,+∞) are then realized for different cycling orderings.

The radial variables ρ, ρ ∈ C [65, 66] are defined in terms of the Dolan-Osborn variables
by the formula:

ρ = f(z), ρ = f(z), f(w) := w

(1 +
√

1− w)2 . (6.9)

The function f(w) in this definition45 is the uniformization map for the complex plane
minus the cut (1,+∞), i.e. it is a one-to-one map of C\[1,+∞) onto the unit disk. Eq. (6.9)

44The prefactor analytically continues just as the 2-point and 3-point functions in section 5.
45The definition assumes the standard branch of the square root function.
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thus associates with any Euclidean configuration a pair of complex conjugate ρ, ρ (ρ = ρ∗)
belonging to the unit disk: |ρ| 6 1. Moreover we have |ρ| < 1 except for the Euclidean
configurations with z = z ∈ (1,+∞). As explained above, this happens when four points
lie on a circle in the cyclic order 1324. For such exceptional configurations one may define
ρ, ρ by continuity so that |ρ| = 1, ρ = ρ∗.

The meaning of the coordinate ρ is clarified by mapping the 4-point configuration to
a conformal frame (compare (6.8))

x1 = −αê0 − βê1, x2 = αê0 + βê1, x3 = ê0, x4 = −ê0, (6.10)

Using this frame, we obtain ρ, ρ = α± iβ.
There is a small difference between d = 2 and d > 3 dimensions. In d > 3, conformal

frames (6.8) and (6.10) are unique only up to a sign of b and β (flipped rotating by π in
the 12 plane), which implies that pairs (z, z) and (ρ, ρ) are defined only up to permutation.
On the other hand in d = 2 flipping the sign of b or β is a parity transformation, which
is not in the identity component of the conformal group. Hence the conformal frames are
unique and z, z as well as ρ, ρ are individually meaningful.

In a unitary Euclidean CFT, the 4-point function admits a power-series expansion in
the ρ coordinate, absolutely convergent whenever |ρ| < 1 [65]. Specifically, the function
g(cE) appearing in the 4-point function (6.1) of four identical scalar Hermitean primaries
has a series expansion of the form

g(cE) =
∑
δ,m

pδ,mr
δeimθ, (6.11)

where the sum runs over a discrete set of pairs (δ,m) with δ > 0, m ∈ 2Z, and the variables
r, θ ∈ R are the modulus and the phase of ρ(cE) = reiθ. The sum is absolutely convergent
when r = |ρ(cE)| < 1. In addition, we know that |m| 6 δ and pδ,m > 0 for all terms
in (6.11). Finally, when d > 3 we have pδ,−m = pδ,m, so that the r.h.s. of (6.11) is
uniquely defined in spite of ρ(cE) being defined only up to complex conjugation.

The readers familiar with this fact may skip to section 6.3 where we will use it to
perform analytic continuation. In the rest of this section we recall how it follows from the
CFT axioms [65, 67].

We consider the 4-point function in the conformal frame configuration (6.10) and write
it as the inner product of two states created by the operators outside and inside a unit
sphere S centered at the origin:

〈O(1, 0,0)O(−1, 0,0)|O(α, β,0)O(−α,−β,0)〉 (6.12)

We can find a conformal transformation which maps the sphere S to x0 = 0 plane, its
center 0 to xS and the infinity to xN . This is the setup in which we developed the CFT
Hilbert space picture in section 3.2. Applying the inverse transformation, we are allowed
to use the Hilbert space language in the frame (6.12), which is the familiar setting of radial
quantization. We decompose the radial quantization Hilbert space, produced by local
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operators inserted at the origin, in orthonormalized eigenstates |δ,m〉 of the dilatation D
and the planar rotation M01. The ket state is expanded in this basis as

|O(α, β,0)O(−α,−β,0)〉 =
∑
δ,m

cδ,mr
δ−2∆ϕeimθ|δ,m〉. (6.13)

The dependence of the expansion coefficients in this formula on r and θ is fixed by knowing
how the state in the l.h.s. transforms under rotations and dilatations. The transformation
θ → θ + π swaps the two operators leaving the state invariant for the considered case of
identical operators. Hence the state in the r.h.s. also must remain invariant, proving that
m must be even.

Setting r = 1, θ = 0 in (6.13), we get

|O(1, 0,0)O(−1, 0,0)〉 =
∑
δ,m

cδ,m|δ,m〉. (6.14)

In the considered frame the OS reflection is the inversion with respect to the sphere S:
xµ → xµ/x2. In particular, this leaves x3 and x4 invariant. Applying this transformation
to (6.14), we get

〈O(1, 0,0)O(−1, 0,0)| =
∑
δ,m

c∗δ,m〈δ,m|. (6.15)

Taking the inner product of (6.13) and (6.15), we get

〈O(1, 0,0)O(−1, 0,0)|O(α, β,0)O(−α,−β,0)〉 =
∑
δ,m

|cδ,m|2rδ−2∆ϕeimθ. (6.16)

Comparing this with eq. (6.1), and using that x2
12 = 4r2, x2

34 = 4 in the considered
conformal frame, we obtain (6.11) with pδ,m = 16∆O |cδ,m|2 > 0.

In the above argument we chose for simplicity the sphere of radius 1, but any sphere of
radius r < r0 < 1 would work equally well and give rise to the same expression. Absolute
convergence for r < 1 follows, because both the bra and the ket states are normalizable for
such r0 (while for r0 = 1 as above the bra state 〈ϕ(x3)ϕ(x4)| is not normalizable).

The restriction |m| 6 δ follows from the 2d unitarity bounds. The 2d unitarity bound
applies, as any d-dimensional CFT restricted to a plane can be seen as a unitary 2d CFT.
For 2d primaries of spin J and dimension ∆, the 2d unitarity bound says |J | 6 ∆. The
descendants at level n ∈ Z>0 have δ = ∆ + n, |m− J | 6 n, hence |m| 6 δ follows.

Finally, let us prove that pδ,m = pδ,−m in d > 3. We consider eq. (6.14) and perform
a π rotation in the 12 plane. In the r.h.s. |δ,m〉 → |δ,−m〉 because M01 → −M01 under
such a rotation. On the other hand the l.h.s. does not change. This implies that we must
have cδ,m = cδ,−m, and hence pδ,m = pδ,−m. (In d = 2, these properties also hold under the
additional assumption of parity invariance.)

6.3 Analytic continuation

In this section we will construct the analytic continuation of the Euclidean 4-point func-
tion (6.1) to the forward tube T4 (recall the forward tube definition (4.4)). Analytic contin-
uation to D4 ⊂ T4 has already been given in [37], section 3.4, and we will use a somewhat
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streamlined version of that construction. We will analytically continue to the full forward
tube T4, since this does not lead to additional complications.

The analytic continuation will be given by the formula

G4(c) = 1
(x2

12x
2
34)∆O

g(c), c ∈ T4. (6.17)

Here the prefactor trivially analytically continues to T4 similarly to the 2-point and 3-point
functions discussed in section 5. We will construct g(c), analytic continuation of g(cE),
starting from eq. (6.11).

First we have to define the variables z(c), z(c) on the forward tube, which is naturally
done as follows. Given a configuration c ∈ T4, we evaluate u = u(c), v = v(c) via (6.2).
By lemma 5.1, u(c) and v(c) are nonzero holomorphic functions on the forward tube. We
then define z(c), z(c) via (6.7):

z(c), z(c) = 1
2

(
1 + u(c)− v(c)±

√
[1 + u(c)− v(c)]2 − 4u(c)

)
. (6.18)

Unlike for Euclidean configurations, for a general configuration c ∈ T4 these are two complex
numbers unrelated by conjugation. Since u(c) and v(c) are nonzero, eq. (6.6) implies
z(c), z(c) ∈ C\{0, 1}.

Since eq. (6.18) only defines z(c), z(c) up to permutation, we view it as a map from
the forward tube to C2/Z2, the set of unordered pairs of complex numbers. This map is
continuous, and is analytic everywhere except on Γ ⊂ T4 where the expression under the
square root vanishes:

Γ = {c ∈ T4 : [1 + u(c)− v(c)]2 − 4u(c) = 0}. (6.19)

Actually, it turns out that in d = 2 one can resolve the ambiguity inherent in eq. (6.18) and
define z(c), z(c) as individually globally holomorphic functions on T4. We will bring up
this fact below when we need it. Ref. [37], appendix A, showed that such an improvement
is impossible in d > 3.

The following result is fundamental for our construction. The proof is elementary but
a bit tricky and is postponed to section 6.4.

Lemma 6.1. For any c ∈ T4 we have z(c), z(c) 6∈ [1,+∞).

We next define ρ(c), ρ(c) on T4, via

ρ(c) = f(z(c)), ρ(c) = f(z(c)), (6.20)

where f is the same function as in (6.9), mapping C\[1,+∞) onto the unit disk. By
lemma 6.1, we then have46

0 < |ρ(c)|, |ρ(c)| < 1 for any c ∈ T4. (6.21)

Moreover, ρ(c) and ρ(c) are locally holomorphic away from Γ. Because of this, and since
eq. (6.11) for the 4-point function converges in the Euclidean for any |ρ| < 1, we may hope

46Note that the converse is not true: the region in which 0 < |ρ|, |ρ| < 1 is larger than the forward tube.
For example, it includes the extended forward tube (see section 6.9.1).
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to use eq. (6.11) to analytically continue g(c) to the whole forward tube. We will now carry
out this strategy. Note that some extra care is needed, because ρ(c) and ρ(c) are, just as
z(c) and z(c), not globally holomorphic and are defined only up to permutation (except in
d = 2, see below), and because (6.11) contains in general non-integer powers.

To begin with, we rewrite eq. (6.11) equivalently as

g(cE) =
∑

δ,06m6δ

(ρρ)δ/2−m/2(pδ,mρm + pδ,−mρ
m) , (6.22)

Various pieces of this formula need to be analytically continued to the forward tube. Con-
sider first

R(c) = ρ(c)ρ(c), (6.23)

which is a candidate for the analytic continuation of ρρ from the Euclidean region. We
can view it as a composition of two functions: c 7→ (ρ(c), ρ(c)) which is a continuous
function from T4 to C2/Z2 analytic away from Γ, followed by (ρ, ρ) 7→ ρρ which is a
continuous holomorphic function from C2/Z2 to C. Hence R(c) is a continuous function
on the forward tube, analytic everywhere except perhaps on Γ. However, manifold Γ
has complex codimension one, and by an analogue of Riemann’s theorem about removable
singularities we conclude that R(c) is in fact analytic also on Γ, and thus on the whole T4.47

In addition, R(c) is nonzero in the forward tube. Thus we can lift R(c) to a holomorphic
function R̃(c) from the forward tube to the universal cover C̃\{0}. Composing this function
with zh : C̃\{0} → C, we obtain an analytic continuation of (ρρ)h for any h ∈ R, which we
denote by Rh(c). This discussion mirrors the one around eq. (5.4) in section 5. However,
unlike x2

ij in that discussion, it is not true that R̃(c) always belongs to the principal sheet
of C̃\{0}. So, in general, to compute the phase of the analytically continued function, one
should follow the phase of ρρ along a curve joining cE to c.

Following a curve is perfectly fine as a theoretical device. For practical computations
of the phase, one may wish to use instead the following trick which avoids having to look
at the curve. (The reader happy to follow the curve may skip the trick and go directly to
eq. (6.26).) Consider the identity:

ρρ = 1
16u(1 + ρ)2(1 + ρ)2 = 1

16
x2

12x
2
34

x2
13x

2
24
Y 2, Y = (1 + ρ)(1 + ρ), (6.24)

which follows by using z = 4ρ
(1+ρ)2 , the inverse of the relation (6.9) between ρ and z, as well

as u = zz and the expression for u. The function Y (c) = (1+ρ(c))(1+ρ(c)) is holomorphic
on T4 by the same “analyticity on T4\Γ plus Riemann’s theorem” argument as used above

47The precise argument is as follows. Let us keep all complex coordinates fixed and vary just one, say
x0

1. There are two cases: either (6.19) is identically zero as a function of x0
1, or it is a nonzero polynomial

of x0
1. In the first case R(c) is trivially holomorphic in x0

1. In the second case (6.19) vanishes at most for
a few isolated values of x0

1. We can then apply 1d Riemann’s theorem to say that R(c) is also analytic at
those isolated points. By these arguments, we conclude that R(c) is holomorphic in each variable separately.
Finally, a continuous function of several complex variables holomorphic in each variable separately is jointly
holomorphic [68].
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for ρρ. In addition, and this is the key point, because |ρ(c)|, |ρ(c)| < 1, we know that
Y (c) ∈ C\(−∞, 0]. The upshot of the trick is that eq. (6.24) expresses ρρ as a product of
factors which all remain on the principal sheet of zh upon the analytic continuation. Hence
we can compute the analytic continuation of (ρρ)h by

Rh(c) = 1
16h

(x2
12)h(x2

34)h
(x2

13)h(x2
24)hY (c)2h (h ∈ R), (6.25)

This determines the phase of Rh(c) unambiguously without having to look at the curve
joining cE to c.

Next, we consider for an integer m a function

Φm(c) = ρ(c)m + ρ(c)m. (6.26)

Just as ρρ and Y , it is continuous on T4 and holomorphic on T4\Γ, and thus holomorphic
on the whole T4.

We can now define the analytic continuation of (6.22). Consider first d > 3, when
pδ,−m = pδ,m. In this case the analytic continuation is given by the formula

g(c) =
∑

m,δ,06m6δ

pδ,mRδ/2−m/2(c)Φm(c). (6.27)

This series consists of holomorphic functions, and it reduces to (6.22) in the Euclidean
region. Furthermore, every term in the series can be bounded in absolute value by:

|pδ,mRδ/2−m/2(c)Φm(c)| 6 pδ,m|ρ(c)ρ(c)|δ/2−m/2(|ρ(c)|m + |ρ(c)|m)
6 pδ,mr

δ−m(rm + rm), (6.28)

where r = r(c) = max(|ρ(c)|, |ρ(c)|), which is < 1 by eq. (6.21). Here we used pδ,m > 0 in
the first line, and δ−m > 0 in the second line. The terms in the r.h.s. of (6.28) comprise a
positive convergent series whose sum is the Euclidean 4-point function (6.22) evaluated at
ρ = ρ = r(c). This proves that (6.27) converges uniformly on compact subsets of T4, and
hence defines a holomorphic function in T4.

It remains to consider d = 2. As anticipated above, in this case the functions z(c), z(c)
are individually globally holomorphic on T4. This can be seen introducing coordinates
(see [37], section 3.5)

zk = x0
k + ix1

k, zk = x0
k − ix1

k, k = 1, 2, 3, 4. (6.29)

Then the explicit formulas for z(c), z(c) are given by:

z(c) = (z1 − z2)(z3 − z4)
(z1 − z3)(z2 − z4) , z(c) = (z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4) . (6.30)

The functions ρ(c), ρ(c) defined by (6.20) are also individually globally holomorphic on T4.
As a consequence, the functions ρ(c)m and ρ(c)m are individually holomorphic in d = 2,
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and not just their sum (6.26). We can therefore define the analytic continuation of g(c) by
the formula (compare (6.27)):

g(c) =
∑

m,δ,06m6δ

Rδ/2−m/2(c)[pδ,mρ(c)m + pδ,−mρ(c)m]. (6.31)

This formula would be appropriate for non-parity invariant 2d CFTs which may have
pδ,m 6= pδ,−m. Analyticity follows from the uniform convergence on compact subsets, by
the same argument as for d > 3.

Finally, we wish to explain how the above construction may be translated into the
language of section 6.1, to see how the issues raised there are resolved. This is instructive
but not strictly speaking necessary, so we will be schematic. In the 2d case, when ρ(c),
ρ(c) are individually defined, the translation is in terms of the map

Ω : c 7→ (ρ(c), ρ(c)) ∈ (D̃\{0})2, (6.32)

where D is the open unit disk, and we lifted each of the maps ρ(c), ρ(c) to the universal
cover of D\{0}. This map is the present analogue of ω in (6.3). The function g(ρ, ρ) extends
analytically to the whole (D̃\{0})2, which makes it unnecessary to understand the precise
shape of Ω(T4).

For d > 3, ρ(c), ρ(c) are defined only up to permutation. Translation can then be done
in terms of their symmetric combinations ρρ, ρ + ρ. Any symmetric polynomial in ρ, ρ,
such as the r.h.s. of (6.26), can be expressed as a polynomial in these coordinates. Let
then X be the image of (D\{0})2 under the map (ρ, ρ) 7→ (ρρ, ρ + ρ). The following map
is holomorphic on T4:

Ω : c 7→ (ρ(c)ρ(c), ρ(c) + ρ(c)) ∈ X̃, (6.33)

where we lifted to the universal cover. The above argument can be interpreted as showing
that the function g(ρ, ρ) extends analytically to the whole X̃. Understanding the precise
shape of Ω(T4) is once again unnecessary.

6.4 Proof of z, z 6∈ [1,+∞)

Here we will prove lemma 6.1 which played such a fundamental role in the previous section.
Just as for lemma 5.1, it will be helpful to use the Minkowski metric. Thus we pass from
Euclidean complex coordinates xk ∈ Cd to Minkowski complex coordinates ζk = (ix0

k,xk) ∈
C1,d−1. Definitions of u, v are then rewritten equivalently as

u = ζ2
12ζ

2
34

ζ2
13ζ

2
24
, v = ζ2

23ζ
2
14

ζ2
13ζ

2
24
, (6.34)

where ζij = ζi − ζj and ζ2 = −(ζ0)2 + ζ2. We denote

ζk = ξk + iηk, ξk, ηk ∈ R1,d−1. (6.35)

We will thus use Minkowski norm for ξ’s, η’s and their differences. The forward tube
condition on xk is rewritten as ηk − ηk+1 � 0 which is the notation for

η0
k − η0

k+1 > 0 and − (ηk − ηk+1)2 > 0. (6.36)
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We will need the following lemma which is related to lemma 5.1 (see the proof at the end
of the section).

Lemma 6.2. Let ζ = ξ + iη and η2 < 0. Then
(a) ζ2 6= 0;
(b) Define ζ ′ = ξ′ + iη′ by

ζ ′ = ζ/ζ2, (6.37)

which is finite by Part (a). Then η′ belongs to the same causal part of the light cone (future
or past) as η. I.e. η � 0⇒ η′ � 0. Analogously, η ≺ 0⇒ η′ ≺ 0.

Let us start the proof of lemma 6.1. The z, z are defined from u, v via (6.6). It is
not hard to see from the first line of (6.6) that z, z are precisely the two solutions of the
quadratic equation

z2 − (1 + u− v)z + u = 0. (6.38)

We thus have to show that, assuming (6.36), this equation has no solutions which are real
and belong to the interval [1,+∞).

Without loss of generality, we can assume that ζ3 = 0.48 Then we have η1, η2 � 0
while η4 ≺ 0. Then we apply lemma 6.2 and map the configuration (ζ1, ζ2, 0, ζ4) to the
configuration (ζ ′1, ζ ′2,∞, ζ ′4) with η′1, η

′
2 � 0 while η′4 ≺ 0. These relations imply η′14 �

0, η′24 � 0 which will be used below.
Since u, v are invariant under the inversion, we have (this can be checked by a direct

computation)

u = (ζ ′12)2

(ζ ′24)2 , v = (ζ ′14)2

(ζ ′24)2 , (6.39)

and eq. (6.38) reduces to

(ζ ′24)2z2 − [(ζ ′24)2 + (ζ ′12)2 − (ζ ′14)2]z + (ζ ′12)2 = 0. (6.40)

Using that ζ ′12 = ζ ′14 − ζ ′24, this equation can be written equivalently as

(ζ ′14 + (z − 1)ζ ′24)2 = 0. (6.41)

Now let us suppose that z ∈ [1,+∞). Then

Im[ζ ′14 + (z − 1)ζ ′24] = η′14 + (z − 1)η′24 � 0. (6.42)

Then eq. (6.41) is in contradiction with lemma 5.1. lemma 6.1 is demonstrated.
48It is important to move ζ3 (or ζ2) to zero rather than ζ1 or ζ4, because only then, after applying the

inversion, one gets causal information not only on η′k’s but also on some of their differences.
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Proof of lemma 6.2. This was shown in [55], footnote 74, and we reproduce the argu-
ment here for completeness. Part (a) is a partial case of lemma 5.1 (for η ≺ 0 we should
apply it to the complex conjugate vector ζ∗ = ξ− iη). Let us show Part (b). To show that
η � 0⇒ η′ � 0, we write

ζ ′ = ξ + iη

ξ2 − η2 + 2i(ξ, η) = (ξ + iη)(ξ2 − η2 − 2i(ξ, η))
(ξ2 − η2)2 + 4(ξ, η)2 . (6.43)

So, up to a positive factor, η′ is given by

(ξ2 − η2)η − 2(ξ, η)ξ. (6.44)

For ξ = 0 this is given by (−η2)η � 0. More generally, this squares to

(ξ2 − η2)2η2 + 4(ξ, η)2ξ2 − 4(ξ, η)2(ξ2 − η2) = η2((ξ2 − η2)2 + 4(ξ, η)2) < 0. (6.45)

Therefore, for all ξ, we have that η′ is timelike. Since we have shown that η′ � 0 for ξ = 0,
by continuity it follows that η′ � 0 for all ξ.

Finally, the implication η ≺ 0⇒ η′ ≺ 0 follows by complex conjugation.

6.5 4-point function powerlaw bound

We wish to show next that the analytically continued 4-point function satisfies a powerlaw
bound, so that we can apply theorem 4.1. The prefactor in eq. (6.17) satisfies a powerlaw
bound by lemma 5.2. Furthermore, eq. (6.28) implies that the analytic continuation g(c)
constructed in section 6.3 is bounded by a Euclidean 4-point function, namely:

|g(c)| 6 gE(c∗), (6.46)

where c∗ is any Euclidean 4-point function configuration having ρ(c∗) = ρ(c∗) = r = r(c) =
max(|ρ(c)|, |ρ(c)|). We choose the conformal frame (6.10):

c∗ : x1 = −rê0, x2 = rê0, x3 = ê0, x4 = −ê0. (6.47)

Using the convergent OPE in the x2 → x3, x1 → x4 channel, we have the asymptotics

GE4 (c∗) ∼
1

(1− r)4∆ϕ
(r → 1). (6.48)

The function gE(c∗) satisfies the same asymptotics up to a constant, being related to GE4 (c∗)
via eq. (6.1) by a factor which is non-singular in the r → 1 limit. Since gE(c∗) is a positive
monotonically increasing function for 0 6 r < 1 (see eq. (6.11)), we conclude that it has
a bound

gE(c∗) 6
const .

(1− r(c))4∆ϕ
, (6.49)

and |g(c)| by (6.46) satisfies the same bound.
The upshot of this discussion is that we will have a powerlaw bound on G4(c) if we

manage to get a powerlaw bound on 1
1−r(c) . We will next state and prove such a bound.
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Before launching into the technical discussion, let us discuss intuitively why a result
like this is expected to be true. We know (lemma 6.1) that |ρ(c)|, |ρ(c)| < 1 and now we
wish to prove that |ρ(c)|, |ρ(c)| do not approach 1 too quickly as c goes to the Minkowski
boundary of the forward tube. This may remind the reader of the Schwarz-Pick lemma,
which says that if f(w) is a function from a unit disk to itself and f(0) = 0, then |f(w)| 6
|w|, hence providing a bound on how fast |f(w)| can approach 1 as |w| → 1. In the 2d
case, when ρ(c) and ρ(c) are individually defined holomorphic functions in the forward
tube, it is indeed possible to use the Schwarz-Pick lemma to prove a powerlaw bound
on max(|ρ(c)|, |ρ(c)|) [69]. It should be possible to generalize the Schwarz-Pick argument
to any d, although we have not worked it out in full details.49 The proof below will be
different and more direct: it will simply mimic the proof of lemma 6.1, replacing all “> 0”
inequalities by “> ε” with an explicit positive ε.

6.5.1 A powerlaw bound on 1
1−r(c)

Let us introduce some notation. We will measure the size of a complex vector ζ ∈ C1,d−1

by |ζ|,

|ζ|2 = |ζ0|2 + |ζ1|2 + · · ·+ |ζd−1|2. (6.50)

Clearly |(ζ1, ζ2)| 6 |ζ1||ζ2|. We also define for ζ = ξ + iη, ξ, η ∈ R1,d−1, and η2 < 0 (i.e.
timelike)

S(ζ) = max
( 1√
−η2 , |ζ|

)
. (6.51)

Thus S(ζ) is large either if some component of ζ (real or imaginary) is large or if η ap-
proaches the light cone. Note that S(ζ) > 1 for any ζ. We will never need S(ξ + iη) for
spacelike η.

Finally we consider an analogous function on T4:

S(c) = max
i<j

S(ζij), (6.52)

which becomes large if any of S(ζij) become large. We claim that there is the following
bound (recall r(c) = max(|ρ(c)|, |ρ(c)|))

1
1− r(c) 6 720S(c)12 (c ∈ T4). (6.53)

This bound will be shown for any c in the forward tube, which is the natural setting. When
we specify to c ∈ D4 ⊂ T4 [see eq. (4.5)], we have

S(c) = max
i<j

max
{

1
|εi − εj |

, |xi − xj |
}
. (6.54)

Eq. (6.53) then becomes a powerlaw bound for 1
1−r(c) on D4 of the form (4.9), precisely as

needed for applying theorem 4.1.
49For any d, the Schwarz-Pick lemma allows a natural generalization to holomorphic functions in the

forward tube [70].
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The proof of the bound (6.53) will build upon the proof of z, z 6∈ [1,+∞) given in
section 6.4. There we showed that z solves eq. (6.41), which however is inconsistent for
z ∈ [1,+∞) and c in the forward tube. Here we will use the same eq. (6.41), but make the
rest of the argument quantitative, by showing that if c stays away from the boundary or
infinity of the forward tube, so that S(c) is bounded, then both z(c) and z(c) must stay
a finite distance away from [1,+∞), as measured by an upper bound on 1

1−r(c) expressed
by eq. (6.53). The proof is straightforward but somewhat technical and we split it into a
series of lemmas.

Lemma 6.3. Let ζ = ξ + iη, η2 < 0. Then for any ξ

|ζ2| > (−η2). (6.55)

Proof. This is a generalization of lemma 5.2(a) and could be proven analogously. We give
a slightly different proof for a change. We have

|ζ2|2 = (ξ2 − η2)2 + 4(ξ, η)2 = (ξ2)2 + (η2)2 + 2[2(ξ, η)2 − ξ2η2]. (6.56)

The lemma now follows from the inequality:

2(ξ, η)2 − ξ2η2 > 0. (6.57)

Eq. (6.57) is obvious for ξ2 > 0, so let us consider ξ2 < 0. By Lorentz invariance and
homogeneity it’s enough to consider ξ = (±1, 0, . . . , 0) in which case the l.h.s. of (6.57)
becomes (η0)2 + η2 > 0.

Then we have the following strengthening of lemma 6.2(b):

Lemma 6.4. Let ζ = ξ + iη, η2 < 0, and ζ ′ = ζ/ζ2. Then

S(ζ ′) 6 [S(ζ)]3. (6.58)

Proof. We have

|ζ ′| = |ζ|
|ζ2|

6 [by lemma 6.3] |ζ|
−η2 6 S(ζ)3. (6.59)

We also have (see the proof of lemma 6.2, in particular eq. (6.45)) that η′2 < 0 and

1
−η′2

= |ζ
2|2

−η2 6 [by lemma 6.3] S(ζ)6.

Lemma 6.5. Let ζi ∈ C1,d−1, ηi � 0 (i = 1, 2). Then

S(ζ1 + ζ2) 6 S(ζ1) + S(ζ2). (6.60)

Proof. We have |ζ1 + ζ2| 6 |ζ1|+ |ζ2| and −(η1 + η2)2 > −η2
1 − η2

2 (since η1 · η2 < 0).
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Lemma 6.6. Let Υi = Φi + iΨi ∈ C1,d−1,Φi,Ψi ∈ R1,d−1, Ψi � 0 (i=1,2), and z solves
the equation

(Υ1 + (z − 1)Υ2)2 = 0. (6.61)

Then

1− |ρ(z)| > δ0 := 1
45S4 , S = max(S(Υ1), S(Υ2)). (6.62)

Proof. Note that z = 4ρ/(1 + ρ)2, and so eq. (6.61) can be rewritten as

((ρ+ 1)2Υ1 − (ρ− 1)2Υ2)2 = 0. (6.63)

For ρ = eiα, multiplying this equation by e−2iα, it becomes

(Υ)2 = 0, Υ ≡
(

2 cos α2

)2
Υ1 +

(
2 sin α2

)2
Υ2, (6.64)

which contradicts lemma 6.2(a), since Im Υ � 0. So ρ cannot lie precisely on the unit circle
(as we already knew). It should then not be surprising that it also cannot get too close to
the unit circle, which is what (6.62) says. This can be shown by a straightforward although
somewhat technical generalization of the above argument.

Denoting ρ = reiα = eiα − δeiα, δ = 1 − r > 0, and multiplying (6.63) by e−2iα, it
becomes ((

2 cos α2 − δe
iα/2

)2
Υ1 +

(
2 sin α2 + iδeiα/2

)2
Υ2

)2

= 0, (6.65)

or

(Υ + Υ′)2 = 0 (6.66)

with

Υ = 4 cos2 α

2 Υ1 + 4 sin2 α

2 Υ2, (6.67)

Υ′ = κ1Υ1 + κ2Υ2, (6.68)

κ1 = −4 cos α2 δe
iα/2 + δ2eiα, κ2 = 4i sin α2 δe

iα/2 − δ2eiα. (6.69)

So for δ small, Υ′ is a small correction to Υ. We write Im(Υ + Υ′) = Ψ + Ψ′, where

Ψ = Im Υ = 4 cos2 α

2 Ψ1 + 4 sin2 α

2 Ψ2, Ψ′ = Im Υ′.

We know that Ψ � 0. In addition we also have a lower bound on −Ψ2:

−Ψ2 > 16 cos4 α

2 (−Ψ2
1) + 16 sin4 α

2 (−Ψ2
2) > 1

S2 × 16 min
{

cos4 α

2 , sin
4 α

2

}
= 4
S2 . (6.70)
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We will now show that −(Ψ + Ψ′)2 remains strictly positive if δ < δ0. This will imply, by
lemma 6.2(a), that eq. (6.66) cannot hold, and hence we must have δ > δ0, i.e. eq. (6.62),
proving the lemma.

To implement this natural strategy, we will need only crude estimates of the size of
various terms. Note that δ0 < 1 since S > 1, so in particular we have δ2 6 δ. Using this
we have the bounds |κi| 6 5δ, and hence an upper bound

|Ψ′| 6 |Υ′| 6 10δS. (6.71)

We also have an upper bound |Ψ| 6 4S. Using these, (6.70), and δ2 6 δ, we have:

−(Ψ + Ψ′)2 = −Ψ2 − 2(Ψ,Ψ′)− (Ψ′)2 >
4
S2 − 2|Ψ||Ψ′| − |Ψ′|2

>
4
S2 − 80δS2 − 100δ2S2

>
4
S2 − 180δS2 = 4(1− δ/δ0)

S2 , (6.72)

which is strictly positive for δ < δ0. As explained above this proves the lemma.

Finally we can prove (6.53). We repeat the proof of lemma 6.1 given in section 6.4.
As there, we reduce to configuration having ζ3 = 0 and obtain that z (as well as z) is a
solution of eq. (6.41), which has the form (6.61) with

Υ1 = ζ ′14 = ζ ′1 − ζ ′4, Υ2 = ζ ′24 = ζ ′2 − ζ ′4, ζ ′i = ζi/ζ
2 (i = 1, 2, 4). (6.73)

Let us write Υi = Φi + iΨi ∈ C1,d−1,Φi,Ψi ∈ R1,d−1. As was already pointed out in
section 6.4, we have Ψi � 0 (i = 1, 2). Furthermore, by lemma 6.4 we know that S(ζ ′i) 6
S(c)3, and then applying lemma 6.5 that S(Υi) 6 2S(c)3. Thus lemma 6.6 implies (6.53)
(note that 720 = 45× 16).

Remark 6.1. The bound (6.53) is not optimal. We will prove a better bound in section 7,
by a different argument.

Let us recap. In section 6.3 we have analytically continued the Euclidean 4-point
function to the forward tube, and here we showed that this analytic continuation satisfies
a powerlaw bound. Then by theorem 4.1, the Minkowski 4-point function defined as the
limit (4.8) exists, is a Lorentz-invariant tempered distribution, and satisfies Wightman
spectral condition. In the remainder of this section we will show that this distribution is
also conformally invariant (section 6.6), that it satisfies the remaining Wightman axioms
(positivity in section 6.7, clustering in section 6.8, and local commutativity in section 6.9).
Later in section 8 we will also show that it can be computed by a convergent (in the sense
of distributions) OPE.

Now that we know that the Minkowski 4-point function is a distribution everywhere,
one may inquire about the regularity of this distribution. E.g. for some configurations the
4-point function is actually real-analytic [37]. We will come back to this question in the
conclusion section.
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6.6 Conformal invariance

Conformal invariance of Euclidean 4-point function (6.1) can be described as invariance
under finite conformal transformations x→ x′ = f(x),

Ω1Ω2Ω3Ω4G
E
4 (x′1, x′2, x′3, x′4) = GE4 (x1, x2, x3, x4), (6.74)

where Ωi = J(xi)∆O and J(x) = det(∂fµ/∂xν)1/d is the local scale factor. Alternatively,
and equivalently, this can be expressed as invariance under infinitesimal conformal transfor-
mations, a conformal Ward identity, which says that the Euclidean correlator is annihilated
by a sum of differential operators, one per point:

4∑
i=1
D(xi, ∂xi)GE4 (x1, x2, x3, x4) = 0. (6.75)

There is a differential operator per conformal group generator (∂µ for Pµ, xµ∂ν − xν∂µ for
Mµν , x · ∂ + ∆O for D, x2∂µ − 2xµ(x · ∂)− 2xµ∆O for Kµ).

Since all these differential operators have polynomial coefficients, Ward identities (6.75)
continue to hold in the forward tube for the function G(x1, x2, x3, x4). Taking the limit to
the Minkowski boundary, we obtain that the Minkowski 4-point function satisfies infinites-
imal Minkowski conformal invariance expressed by the Ward identities.

The possibility to take the limit is guaranteed by the standard result that distri-
butional limits commute with derivatives. Indeed, suppose that we have, in the sense
of distributions, limε→0 fε = g. This means that for any test function ϕ, we have
limε→0(fε, ϕ) = (g, ϕ). But then for any derivative ∂,

(∂g, ϕ) = −(g, ∂ϕ) = − lim
ε→0

(fε, ∂ϕ) = lim
ε→0

(∂fε, ϕ), (6.76)

which implies that limε→0 ∂fε = ∂g. A similar argument shows that the limit commutes
with multiplication of distributions by polynomials. All this is analogous to how we prove
Lorentz invariance of the Minkowski correlator in appendix C.

So we have shown that the Minkowski 4-point function satisfies Lorentzian conformal
Ward identities. This means that

4∑
i=1

(DiGM4 , ϕ) = 0, (6.77)

where Di are the analytic continuations of the Euclidean differential operators to Minkowski
space, and the pairing with the Schwartz test functions is defined by integration by parts.
Note that the conformal Ward identities in Minkowski space hold also at coincident points
(i.e. the test function ϕ does not have to be zero at coincident points).

Now let us discuss invariance of Minkowski 4-point function under finite Lorentzian
conformal transformations. Since GM4 is a distribution, the appropriate form of writing is
to transform the test function:

(GM4 , ϕ) = (GM4 , ϕf ), (6.78)
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Figure 4. In the 2d case, the special conformal transformation (6.80) is singular on the blue light
cone x0 = ±|x1 + β−1|. Suppose ϕ is supported as shown on the right of the light cone. As β → 0,
the light cones moves towards the left infinity and does not touch supp(ϕ). Therefore, such a ϕ
satisfies the condition for the invariance under a finite special conformal transformation (6.80).

where ϕf (x1, . . . , x4) = ϕ(f−1(x1), . . . , f−1(x4))∏4
i=1 J(f−1(xi))∆O−d. However we have

to be careful. This invariance is true not for every test function ϕ but only for an f -
dependent subset of test functions.

Let ft be a smooth family of Lorentzian conformal transformations connecting f to
the identity: f0 = id, f1 = f . Suppose that

ϕft is a Schwartz function for any ft in the family. (6.79)

Then we can integrate infinitesimal conformal invariance and prove that (6.78) is true.
For translations, Lorentz transformations and dilatations, eq. (6.79) is clearly satisfied and
eq. (6.78) holds for any ϕ. However, for general conformal transformations, (6.79) may
not necessarily be true. The problems will appear if f is singular on the support of ϕ, as
ϕf may then not be a Schwartz function. As a concrete example, consider the Lorentzian
special conformal transformation:

f(x) = xµ + x2bµ

1 + 2x · b+ x2b2
. (6.80)

The corresponding scale factor is J(x) = 1
1+2x·b+x2b2 . Take for definiteness spacelike

b = βê1, where β > 0 and ê1 is the unit vector in the x1 direction. The transforma-
tion (6.80) is then singular for x0 = ±|x + β−1ê1|, where the scale factor blows up, i.e.
on the light cone whose vertex is at x = −β−1ê1.50 Scaling β to zero we can connect
the transformation (6.80) to the identity. Under this scaling the light cone of singularities
moves away to infinity along the negative x1 direction. Requirement (6.79), and hence
finite invariance (6.78), will hold if the light cone of singularities, while moving away, does
not touch the support of ϕ (see figure 4 for the 2d case).

Note that such a support requirement still leaves the possibility for both spacelike and
timelike separations among the points xi in the support of ϕ. For xi ∈ suppϕ, the points
f(xi) will have the same causal structure as the points xi, i.e. (f(xi)−f(xj))2 will have the

50Recall that we are using −,+ · · ·+ Minkowski signature.
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same sign as (xi−xj)2. This follows from the fact that J(x) > 0 on supp(ϕ), as guaranteed
by being able to continuously connect to the identity without singularities.

In the early CFT days, it was considered puzzling that Lorentzian special conformal
transformations may change the causal structure of a point configuration. As we see here,
the puzzle can be avoided by either limiting to infinitesimal conformal invariance, or by
restricting the class of test functions so that the causal structure is preserved. A third
way to deal with the puzzle is to consider the Lorentzian conformal transformations acting
on the Lorentzian cylinder as opposed to the Minkowski space [71]. We will revisit the
Lorentzian cylinder in our future publication [72].

Remark 6.2. We would like to contrast the Minkowski conformal Ward identities (6.77)
with conformal Ward identities valid for Euclidean correlators. Euclidean correlators are
real-analytic away from coincident points and naturally satisfy conformal Ward identities
for such configurations. Although in this paper we don’t need it, in some questions it might
be useful to extend Euclidean correlators, in the sense of distributions, also to coincident
points. One may ask if such an extension can be done in a way so that the resulting
distributional correlators satisfy conformal Ward identities analogous to (6.77). In general
the answer is no, already for 2-point functions. Namely 2-point functions of primaries of
dimension ∆ such that 2∆−d ∈ Z will in general not allow even a scale invariant extension
at coincident points, let alone conformally invariant one. E.g. this feature will always be
present for the stress tensor 2-point function.

6.6.1 Conformal invariance in terms of cross ratios

So as we have just seen, Minkowski correlator GM4 is conformally invariant. If it were a
function, conformal invariance would imply that we could write it as the usual prefactor
times a function of the cross-ratios. Since it is a distribution, one might hope that it can
be written as the prefactor times a distribution of the cross-ratios. We will now develop
this point of view and show that it indeed works, at least locally.51

Our goal in this section will be to make sense of the formula:

G4(c) = g(z(c), z(c))
(x2

12x
2
34)∆O

, (6.81)

where g(z, z) will be in general a distribution in two variables, and g(z(c), z(c)) its pullback
to the space R4d of Minkowski 4-point configurations c. This equation will be understood in
the sense of integrating both parts with a test function. Because of the difficulty described
in footnote 51, we will only consider compactly supported C∞ test functions ϕ(c), with the

51We note right away that one does not expect a very nice global statement. Indeed, the cross-ratio space
is morally the moduli space of four points on Minkowski cylinderM. (Note that we have not yet constructed
the Wightman functions as distributions on Minkowski cylinder. However, it is not important for the point
that we are trying to convey.) This is a quotient space (M4)/G where G is the universal cover of Lorentzian
conformal group. This quotient space is rather singular, which has to do with different configurations in
M4 having different stability subgroups (light-cones, z = z). The quotient space (M4)/G is not only not
smooth, it is not even Hausdorff. So away from some regular regions of (M4)/G one shouldn’t expect a
simple statement of the form (6.81), unless one finds a smoother model of this moduli space.
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additional requirement that all c ∈ suppϕ have the same causal ordering. In particular,
this implies that suppϕ contains no c’s with lightlike separated pairs. The causal ordering
of a configuration c = (x1, x2, x3, x4) is encoded by the directed graph with vertices 1, 2, 3, 4
and edges i → j if xj belongs to the open future light cone of xi (no edge if two points
are spacelike).

Since u, v are real in Minkowski space, z, z are either both real (excluding 0, 1) or
complex conjugate. Ref. [37] divided all causal orderings into 4 classes according to possible
values of (z, z):

• Class S: (z, z) ∈ (0, 1)× (−∞, 0) or the other way around

• Class T: (z, z) ∈ (0, 1)× (1,+∞) or the other way around

• Class U: (z, z) ∈ (−∞, 0)× (1,+∞) or the other way around

• Class E causal orderings which contain configurations realizing the remaining possi-
bilities:

– Esu: (z, z) ∈ (−∞, 0)× (−∞, 0)
– Est: (z, z) ∈ (0, 1)× (0, 1)
– Etu: (z, z) ∈ (1,+∞)× (1,+∞)
– Estu: z, z are complex-conjugate and not real

Some class E causal orderings realize only one of the four subclasses, while others contain
configurations in each subclass. In the latter case different subclasses are connected along
configurations with z = z (see figure 2 in [37]).

To simplify the discussion, we will assume that suppϕ does not include any configu-
rations with z = z. In particular, this implies that all configurations from suppϕ fall into
a single class S, T, U or a single subclass Esu, Est, Etu, Estu. Below we will comment how
one can add the z = z configurations.

If suppϕ falls into class S, Esu, Est, Estu, we will have |ρ|, |ρ| < 1. These cases do not
require special treatment, since the correlator is a function, and eq. (6.81) is true in the
ordinary sense of functions.

If suppϕ falls into class T or U, we will have |ρ| < 1, |ρ| = 1 or the other way around.
Then g(z, z) will be a function in z and a distribution in z.52 This case can be treated
analogously, and simpler, than the |ρ|, |ρ| = 1 case discussed below.

Finally, if suppϕ falls into class Etu, we will have |ρ|, |ρ| = 1. Then g(z, z) will generally
be a distribution in two variables. This is the case we will focus on. E.g. it is realized for
the causal ordering 1→ 3→ 2→ 4.

Let us define the distribution g(z, z) for z, z ∈ (1,+∞). We first define the distribution
g(ρ, ρ) with |ρ|, |ρ| = 1. This is done using the series in the r.h.s. of eq. (6.22), which we
now consider as a function of two independent variables ρ, ρ. To be precise we consider
the series:

g(ρ, ρ) =
∑

δ,06m6δ

eiΦ(δ/2−m/2)(ρρ)δ/2−m/2(pδ,mρm + pδ,−mρ
m) , (6.82)

52For some (but not all) of these causal orderings, it can be shown using another OPE channel that g(z, z)
is actually a function of both variables. See ref. [37].
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which we view as a holomorphic function on (D\(−1, 0])2. Here eiΦ, Φ ∈ {0,±2π,±4π},
is the phase acquired by ρ(c)ρ(c) upon analytic continuation from Euclidean space (as
discussed in section 6.3 this phase is the same as for u(c)). This phase is constant for
each causal ordering and it may be determined by following a path from cE to c for any
particular c. Alternatively, the phase can also be determined from (6.24). E.g. the causal
ordering 1→ 3→ 2→ 4 has Φ = 0.53

It’s easy to see that function (6.82) satisfies a powerlaw bound as |ρ|, |ρ| → 1. This is
a baby version of the problems studied in this paper, which was considered in [36]. The
limit of g(reiθ1 , reiθ2) as r → 1 defines a tempered distribution on the boundary of the
domain of analyticity, parametrized by the two angles θ1, θ2. We can write it as g(ρ, ρ),
with ρ, ρ ∈ S1.54

In fact we are interested only in a part of this distribution, because ρ, ρ 6= ±1 for each
fixed causal ordering. The points −1, 1 divide the circle into two open arcs, and within
suppϕ, ρ and ρ will each live in one or the other arc. Each arc is mapped smoothly and
one-to-one to (1,+∞) by the ρ 7→ z map. Thus we obtain the distribution g(z, z) defined
for z, z > 1. Although in general z(c), z(c) are defined only up to permutation, let us define
them in the case at hand, with real z 6= z, so that z(c) > z(c).

Now let us go back to making sense of (6.81). Suppose first g(z(c), z(c)) were a function.
Integrating (6.81) against a test function we have:∫

d4dcG4(c)ϕ(c) =
∫
d4dc g(z(c), z(c))ϕ̃(c), ϕ̃(c) = ϕ(c)

(x2
12x

2
34)∆O

. (6.83)

Note that ϕ̃(c) is still C∞ since we are away from light cones. We would like to continue
by expressing the r.h.s. of the previous equation as an integral of g(z, z) against a two-
dimensional test function:∫

d4dc g(z(c), z(c))ϕ̃(c) =
∫
dz dz g(z, z)ψ(z, z),

ψ(x1, x2) =
∫
d4c δ(x1 − z(c))δ(x2 − z(c))ϕ̃(c).

(6.84)

We would like to know if ψ(x1, x2) is a smooth function. By our assumptions, ϕ̃(c) is
supported away from z(c) = z(c). In this region the map c→ (z(c), z(c)) is a submersion,
which means that the Jacobian has maximal rank (i.e. 2). Alternatively, this means that
the form dz ∧ dz does not vanish anywhere away from z = z. Showing this is a matter of
an easy computation.55

53We have that x2
12, x2

34, x2
13, x2

24 all acquire phase −π, hence u = x2
12x

2
34

x2
13x

2
24

acquires phase 0.
54In [36] we also discussed a more general distribution defined on the product of universal covers of two

circles. Here eq. (6.82) with fixed α will be sufficient for our purposes.
55Start by noting that, away from z = z, we have dz ∧ dz ∝ du ∧ dv with a nonvanishing prefactor.

We need to understand where ∇u can become proportional to ∇v. Using the embedding space formalism
[73] we write u = (X1X2)(X3X4)

(X1X3)(X2X4) , v = (X1X2)(X3X4)
(X1X3)(X2X4) where Xi are null cone d + 2 dimensional vectors.

For any Xi, Xj , Xk the direction Ri,jk = Xj(XiXk) − Xk(Xi, Xj) is tangent to the null cone at Xi.
Imposing Ri,jk · ∇Xi (u − αv) = 0 for all unequal i, j, k where α is a constant, one gets a set of simple
algebraic constraints on u, v. These constraints can be easily solved to show that α = 2u

−1+u+v while
(1 + u− v)2 − 4u = 0. The latter is precisely the constraint characterizing z = z.
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Using the fact that c → (z(c), z(c)) is a submersion, it’s easy to show that ψ(x1, x2)
is smooth for ϕ̃(c) supported away from z(c) = z(c) (see Chapter III.1 of [61] for such
arguments). To summarize, for every smooth function ϕ(c) compactly supported away
from z(c) = z(c) and from the light cones, we constructed a smooth function ψ(z, z)
compactly supported in 1 < z < z such that∫

d4dcG4(c)ϕ(c) =
∫
dz dz g(z, z)ψ(z, z) (6.85)

holds in case g(z, z) is a function. We now claim that this equation continues to hold,
with the same ψ, in case g(z, z) is a distribution. The point is that we can find a sequence
of functions gn(z, z) which tend to g(z, z) in the sense of distributions, so that the corre-
sponding gn(z(c),z(c))

(x2
12x

2
34)∆O

tend to G4(c) in the sense of distributions on R4d. Since both ϕ and
ψ are smooth, we are allowed to pass to the limit on both sides of the equation, proving
the claim. The functions gn(z, z) are given e.g. by the partial sums of the series (6.82),
transformed from the ρ to the z coordinates.

Let us now discuss how configurations where z = z can be included into this discus-
sion. The basic difficulty is that the map c 7→ (z, z) fails to be a submersion near such
configurations. So in general the function ψ(z, z) will not be smooth. Consider e.g. the
causal ordering 1→ 3→ 2→ 4. In this case it’s possible to show (we omit the proof) that
the function ψ(z, z) behaves like

|z − z|d−2 times a smooth function near z = z, (6.86)

which in general is not smooth unless d is even.
We need to be able to make sense of the r.h.s. of (6.85) for such non-fully-smooth test

functions. This is possible due to the following observation. Above we explained, following
the arguments first presented in [36], that g(ρ, ρ) is a distribution for |ρ|, |ρ| = 1. But in
fact it’s a bit better than that (the fact not mentioned in [36]): it is a distribution in ρ for
each fixed value of ρ/ρ = eiα! Indeed if we substitute ρ = eiαρ with a fixed α into (6.82), we
get a holomorphic function in the unit disk of ρ, which satisfies a powerlaw bound, hence
its boundary value is a distribution. This can be generalized to holomorphic maps ρ = f(ρ)
which maps the unit disk into itself (or at least a portion of the unit disk near ρ = ρ0 into
the unit disk). Translating to z, z, this implies in particular that g(z, z+ t) is a distribution
for any fixed t. In fact, the map z = z + t corresponds to a map ρ = ft(ρ) to which the
previous argument is applicable. So g(z, z) is by no means the most general distribution
in two variables, as it allows the restriction to the submanifold z = z + t for any t. E.g.
δ(z − z) is not allowed by this property, while δ(z + z) is allowed. Following this logic a
bit more carefully, it can be shown (we omit the proof) that g(z, z) can be paired with test
functions ψ(z, z) which, when expressed in terms of s = z+ z, t = z− z, have the following
property: ψ(s, t) is C∞ with respect to s for any fixed t, with bounds on derivatives in
the s direction which are integrable in the t direction. Eq. (6.86) is compatible with this
requirement.

A further complications arises near the z = z > 1 locus for the causal orderings which
include configurations in both Etu and Estu subclasses. In this case the function ψ(z, z)
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defined in (6.84) will consist of two functions ψ1(z, z) and ψ2(z, z): one defined for real z, z,
another for complex-conjugate z, z. The two functions ψi will be glued along the z = z > 1
line. The resulting glued function will not in generally be smooth on the z = z > 1 line
(while it will be smooth away from it). However the directions orthogonal to the line turn
out analogous to the t direction in the previous paragraph, i.e. the test function is actually
not required to be smooth in these directions for the pairing to be defined. This allows to
make sense of the formula (6.85) also in this case. We omit the details.

6.6.2 Fixing points

We would like to put the results of the previous section in the context of a general question
of “fixing points” in a distribution. E.g. we know that the Minkowski 4-point function is
a translationally invariant distribution. Using translation invariance we can always fix one
of the 4 points to a given position, e.g. zero, and consider it as a distribution with respect
to the remaining 3 positions. One could ask if one can do better than that, i.e. to fix n

points to given positions and consider the 4-point function as a distribution with respect
to the remaining 4 − n positions. Where the 4-point function is real-analytic we can of
course consider all four points as fixed.

Now, results of section 6.6.1 show that, if one excludes lightlike separations limiting
to configurations having some fixed causal ordering, one can fix a conformal frame, i.e.
fix three points to some fixed positions, and the fourth point to a position characterized
by two conformal cross ratios, and consider the distribution as a distribution in only two
variables (cross ratios). It is not clear if results of section 6.6.1 can be generalized to cover
lightlike separations.

In some cases it is possible to argue that one can fix more than one point without using
conformal invariance. E.g. we may always fix a consecutive pair of points, i.e. (xk, xk+1),
where k = 1, 2 or 3, to spacelike-separated positions in Minkowski space, while allowing
the remaining two points to approach Minkowski limit from the forward tube. The proof
of lemma 6.1 can be slightly modified to show that |ρ|, |ρ| < 1 for such configurations (see
section 6.9.1 below). Moreover, a powerlaw bound also holds, by a slight modification of the
argument after eq. (6.73).56 Then our arguments show that the Minkowski 4-point function
is a distribution with respect to the two unfixed coordinates, which depends analytically on
the fixed coordinates. In this case the unfixed coordinates may have any causal orderings
and also lightlike separation.

One interesting case is that of the double light cone (DLC) singularity, i.e. the region
close to x1 = 0, x3 = ê1, x4 =∞, while x2 on the light cones of x1, x3. Our results are the

56Since S(c) = ∞ in these cases, we cannot rely on (6.53). Instead we directly show powerlaw bounds
on S(Υ1), S(Υ2) defined in eq. (6.73). Then the powerlaw bound on |ρ|, |ρ| holds by lemma 6.6. For k = 1,
by fixing ζ3 = 0, and using lemmas 6.4 and 6.5, we have S(Υi) 6 S(ζ′i) + S(−ζ′4) 6 S(xi3)3 + S(x34)3

(i = 1, 2). This is the desired powerlaw bound with respect to x3 and x4. For k = 2, S(Υ1) is bounded
as for k = 1, while for S(Υ2) we argue as follows. Since x2 and x3 are spacelike separated, after fixing
ζ3 = 0, ζ2 is a spacelike Minkowski point, hence so is ζ′2, i.e. Im(ζ′4 + ζ′2) = Im(ζ′4). Then by lemma 6.4,
S(Υ2) 6 S(ζ′4) + |ζ′2| 6 S(ζ4)3 + |ζ′2|, which is the needed bound. Case k = 3 follows by similar arguments
or by mapping it to k = 1 via (x1, x2, x3, x4) → (x′1 = xθ4, x

′
2 = xθ3, x

′
3 = xθ2, x

′
4 = xθ1) which maps ρ and ρ

are to their complex conjugates.
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first ones which establish the existence of the Wightman 4-point function in a neighborhood
of DLC. However, there is a difference between restricting to one causal ordering near DLC
or studying an open neighborhood of DLC which includes several causal orderings (see
figure 10 in Conclusions). In the former case we can use directly the results of section 6.6.1
and represents the 4-point function as a distribution in two variables z, z. In the latter
case we can fix, by the above argument, two successive spacelike points x3 and x4. We are
left with a distribution depending on x1, x2, i.e. 2 × d coordinates. This distribution still
satisfies conformal invariance Ward identities w.r.t. infinitesimal conformal transformations
preserving x2. It would be interesting to understand how this constrains the distribution
at the DLC.

Although it is not directly related, we would also like to mention here the clas-
sic result of Borchers [74] which says that it is enough to smear Wightman functions
GM (x1, . . . , xn = 0) with respect to the time variables only, i.e. integrating with respect
to h1(x0

1) . . . hn−1(x0
n−1) where hi ∈ S(R), after which they become C∞ functions in the

remaining spatial variables xi. This result is valid in any QFT satisfying Wightman ax-
ioms. It holds because smearing in time, which acts as an energy cutoff, is effectively also
a momentum cutoff because |p| 6 E.

6.7 Wightman positivity

Recall that in section 3.1 we showed that CFT axioms imply OS reflection positivity for 4-
point functions. That discussion gives us access to OS states |O(x)O(y)〉 with 0 > x0 > y0,
with finite norm, and inner products measured by the Euclidean 4-point function. We know
that these states belong to the CFT Hilbert space, i.e. can be arbitrarily well approximated
in norm by states produced by inserting finite linear combinations of CFT local operators
at one point in the half-space x0 < 0, e.g. the south pole xS = (−1,0).

Now that we analytically continued the 4-point function, we can consider other states
involving operators at complexified coordinates. We wish to prove that those states belong
to the CFT Hilbert space and have a positive definite inner product. This can be shown
by a robust argument, going back to Osterwalder and Schrader [2], section 4.3. The
argument uses only OS positivity and the Fourier-Laplace representation, but not directly
the CFT axioms.

We will consider two new kinds of states. First, states generated by a pair of Minkowski
operators smeared with respect to an arbitrary Schwartz test function:

|ΨM (F )〉 =
∫
dx dy F (x, y)|O(ix0,x)O(iy0,y)〉, (6.87)

and second, states generated by a pair of Euclidean operators at complexified time
positions:

|O(x3)O(x4)〉, xi = (εi + iti,xi) , 0 > ε3 > ε4. (6.88)

The inner products of states (6.87) are given by integrals of the Minkowski 4-point function

〈ΨM (F1)|ΨM (F2)〉 =
∫
dxGM4 (x1, x2, x3, x4)F1(x2, x1)F2(x3, x4), (6.89)
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while the natural inner product on the states (6.88) is:

〈O(x1)O(x2)|O(x3)O(x4)〉 = G4(xθ2, xθ1, x3, x4), (6.90)

where the OS reflection operation extends to points with complex time coordinates by:

x = (ε+ it,x) 7→ xθ = (−ε+ it,x). (6.91)

The states (6.87) also have a natural inner product 〈O(x1)O(x2)|Ψ(F )〉 with the
OS states.57

We wish to show that all these new inner products are positive definite and, moreover,
that the new states can be approximated in norm by the smeared OS 2-operator states at
Euclidean positions. Note that the positive definiteness of (6.89) is precisely Wightman
positivity for the 4-point case.

6.7.1 Wightman states

Let us start with (6.89). Rewriting the inner product in terms of W (p1, p2, p3), the (dis-
tributional) Fourier transform of GM4 with respect to yk = xk − xk+1, we obtain

〈ΨM (F1)|ΨM (F2)〉 =
∫
dpW (p1, p2, p3)[F̂1(p2 − p1, p1)]∗F̂2(p2 − p3, p3). (6.92)

We will also need the inner products of the (smeared) OS states

|Ψ(H)〉 =
∫
dx dy H(x, y)|O(x)O(y)〉 (6.93)

where H is any C∞ function compactly supported at 0 > x0 > y0. Their inner products
are given by

〈Ψ(H1)|Ψ(H2)〉 =
∫
dxGE4 (x1, x2, x3, x4)H1(xθ2, xθ1)H2(x3, x4). (6.94)

This can be expressed using the Fourier-Laplace representation (4.11). We obtain

〈Ψ(H1)|Ψ(H2)〉 =
∫
dpW (p1, p2, p3)g(H1)(p2, p1)g(H2)(p2, p3), (6.95)

where g(H)(p, q) is a Schwartz class function related to H(x, y) as follows. First we form
the function h(y1, y2) = H(−y1,−y1 − y2) which has support at y0

1, y
0
2 > 0. Next we

consider h̃, the Fourier-Laplace transform of h(y1, y2):

h̃(p1, p2) =
∫
dy1 dy2 e

−p0
1y

0
1+ip1·y1−p0

2y
0
2+ip2·y2h(y1, y2). (6.96)

Finally, g(H) is an arbitrary Schwartz class function which coincides with h̃ inside the
forward light cones. We also have an analogous formula for the inner product between
states of two types:

〈Ψ(H)|ΨM (F )〉 =
∫
dpW (p1, p2, p3)g(H)(p2, p1)F̂2(p2 − p3, p3). (6.97)

57We start from the analytically continued Euclidean 4-point function G4(x1, x2, x3, x4) and take the
limit where x1, x2 are kept at fixed Euclidean positions, while x3, x4 approach the Minkowski space. By
theorem 4.1, the limit is a distribution in x3, x4, and the inner product is its pairing with the test function F .
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At this point we recall lemma 4.2 from section 4.1. That lemma implies that Schwartz
functions of the form g(H) are dense in the Schwartz space. In particular, for any Schwartz
F , we can find a sequence of functions {Hr}∞r=1 such that g(Hr)(p2, p3) → F̂ (p2 − p3, p3)
in the Schwartz space. Then it follows from (6.92), (6.95), (6.97) that

〈Ψ(Hr)|Ψ(Hr)〉 → 〈ΨM (F )|ΨM (F )〉, (6.98)
〈Ψ(Hr)|ΨM (F )〉 → 〈ΨM (F )|ΨM (F )〉.

From the first equation we conclude that 〈ΨM (F )|ΨM (F )〉 > 0, proving Wightman posi-
tivity. The two equations taken together imply that

〈Ψ(Hr)−ΨM (F )|Ψ(Hr)−ΨM (F )〉 → 0, (6.99)

i.e. OS states can approximate Wightman states in norm.

6.7.2 OS states for complexified times

Let us discuss next the states (6.88) obtained by putting operators at complexified time
positions. In these states we don’t take the limit to Minkowski space, so they are defined
without smearing. Using the Fourier-Laplace representation, their inner product (6.90) is
expressed as

〈O(x1)O(x2)|O(x3)O(x4)〉 =G4(xθ2, xθ1, x3, x4)

=
∫
dpW (p1, p2, p3)fx1,x2(p2, p1)fx3,x4(p2, p3), (6.100)

where fx,y(p, q), where 0 > Re(x0) > Re(y0), is any Schwartz function which agrees with

ep
0x0−ip·x−q0(x0−y0)+iq·(x−y). (6.101)

for p, q in the forward light cone (where this function is exponentially decreasing) and
extends it somehow outside the light cones (it does not matter how because W has support
in the forward light cones).

Since fx,y is a Schwartz function, it can be approximated by Schwartz functions of the
form g(H) as in the preceding subsection. This implies that non-smeared complexified OS
states can be approximated in norm by Euclidean OS states smeared with compactly sup-
ported test functions. In particular, the inner product (6.90) is positive definite, providing
an extension of pointwise OS positivity to complexified times:

G4(yθ, xθ, x, y) > 0, (0 > Rex0 > Re y0). (6.102)

As usual, positive-definite inner product implies a Cauchy-Schwarz inequality for the com-
plexified times:

|G4(x1, x2, x3, x4)|2 6 G4(x1, x2, x
θ
2, x

θ
1)G4(xθ4, xθ3, x3, x4), (6.103)

valid for Rex0
1 > Rex0

2 > 0 > Rex0
3 > Rex0

4. The analogues of these properties for
conformal blocks will be useful in section 7.
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Remark 6.3. We can extend the reflection operation further for points with complexified
both time and space coordinates, as

x = (ε+ it,x + iy) 7→ xθ = (−ε+ it,x− iy). (6.104)

With this definition, we can show by the same arguments as above that G4(yθ, xθ, x, y) > 0
(pointwise OS positivity) remains true for 0 � (Rex0, Im x) � (Re y0, Im y) where η1 � η2
means η1 − η2 � 0 (i.e. in the forward light cone). We can then show that the states
|O(x)O(y)〉 make sense for such x, y and can be approximated in norm by integrated
Euclidean OS states.

6.8 Wightman clustering

6.8.1 2 + 2 split

In this section we will derive clustering (2.4) for Wightman 4-point functions (see [2], section
4.4). As in section 3.3 for the OS case, we will consider 2+2 and 3+1 splits separately. The
property we need to prove in the 2+2 case can be written conveniently in the language of
Wightman states |ΨM (F )〉, at our disposal by the discussion in section 6.7:

〈ΨM (F1)|ΨM (UλaF2)〉 → 〈ΨM (F1)|Ω〉〈Ω|ΨM (F2)〉 (6.105)

as λ→∞ for any spacelike vector a and any Schwartz test functions F1, F2, where Uλa is
translation: (UλaF2)(x, y) = F2(x−λa, y−λa), and Ω is the vacuum state corresponding to
inserting the unit operator. By Lorentz invariance it’s enough to prove this for a = (0,a),
purely spatial vector. In section 3.3 we showed the OS clustering, which we can also write
using the integrated OS states (6.93), as

〈Ψ(H1)|Ψ(UλaH2)〉 → 〈Ψ(H1)|Ω〉〈Ω|Ψ(H2)〉. (6.106)

As explained in section 6.7, we can find states |Ψ(H1)〉 and |Ψ(H2)〉 which approximate
|ΨM (F1)〉 and |ΨM (F2)〉 in norm within any ε > 0. Moreover it’s obvious from that
construction that the norm is invariant under shifts in purely spatial direction (i.e. the
operator Uλa is unitary). Hence we have ‖Ψ(UλaH2)−ΨM (UλaF2)‖ = ‖Ψ(H2)−ΨM (F2)‖ 6
ε for any λ. By these properties, (6.106) implies (6.105).58

6.8.2 3 + 1 split

Let us first restate the Euclidean 3+1 clustering argument from section 3.3 in a somewhat
more explicit form, and specializing to scalars. So let ϕ(x1), χ(x2, x3, x4) be two smooth
functions with compact support59

supp(ϕ) ⊂ {x0
1 > 0}, supp(χ) ⊂ {0 > x0

2 > x0
3 > x0

4}. (6.107)
58Indeed we have |〈ΨM (F1)|ΨM (UλaF2)〉 − 〈Ψ(H1)|Ψ(UλaH2)〉| 6 Cε with some C independent of λ.

Now passing to the limit λ → ∞ and using (6.106) we obtain lim supλ→∞〈ΨM (F1)|ΨM (UλaF2)〉 6
〈ΨM (F1)|Ω〉〈Ω|ΨM (F2)〉 + C′ε, and an analogous lower bound on lim infλ→∞. Since ε > 0 is arbitrary
we obtain (6.105).

59For simplicity, in this section we prove clustering for compactly-supported, as opposed to Schwartz, test
functions. We expect that it should be possible to find a proof for Schwartz test functions as well. In any
case, the most natural proof would use positivity and the OPE similarly to 2+2 split, provided positivity
for higher-point functions is proven (which we don’t do in this paper).
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We would like to show

lim
λ→∞

(G,ϕλ ⊗ χ) = 0, ϕλ := ϕ(· − λê1) (6.108)

where G = GE4 is the Euclidean 4-point function of four identical scalars, and ê1 is the x1

unit vector. The main idea is that we can find a conformal transformation which moves
the point at infinity as well as all the other points to some finite positions. The suppression
of the integral then comes from the Jacobian of this transformation. Consider a special
conformal transformation f(x) = xµ+x2bµ

1+2x·b+x2b2 = J ◦ Tb ◦ J , where J is inversion and Tb
is a translation by b = ê1. We have f(−ê1) = ∞, while f is non-singular on supp(ϕλ)
and supp(χ). We also have f(∞) = ê1. By conformal invariance we have (compare (6.78))
(G,Φ) = (G,Φf ) where Φf (x1, . . . , x4) = Φ(f−1(x1), . . . , f−1(x4))∏4

i=1 J(f−1(xi))∆O−d,
where J(x) = 1

1+2x·b+x2b2 . We apply this equation with Φ = ϕλ ⊗ χ. The function χ is
mapped by this transformation to some smooth function. Suppression of the integral in
the limit λ→∞ will come from the transformation of ϕλ, which is mapped to

ϕfλ(x1) := ϕ(f−1(x1)− λê1)J(f−1(x1))∆O−d. (6.109)

Namely we have

|(G,ϕfλ ⊗ χ
f )| 6 C(λ)I, I =

∫
dx1 |ϕfλ(x1)|, C(λ) = sup

x1∈suppϕf
λ

|(G(x1, ·), χf )|. (6.110)

The function ϕfλ is nonzero for f−1(x1) ∈ supp(ϕ)+λê1, which is a point near infinity for λ
large. We conclude that ϕfλ is supported in a small neighborhood, order 1/λ, of f(∞) = ê1.
Since G is real-analytic at nonzero point separation, this implies that C(λ) is bounded by
some constant for λ > λ0. To compute I, we do the change of variables x1 = f(y):

I =
∫
dy |ϕ(y − λê1)|J(y)∆O ∼ const

λ2∆O
. (6.111)

This finishes the proof of Euclidean 3+1 clustering, eq. (6.108).
Let us proceed next to showWightman 3+1 clustering. We will show the same equation

as (6.108), namely

lim
λ→+∞

(G,ϕλ ⊗ χ) = 0, (6.112)

where now G = GM4 is the Minkowski 4-point function, which is a tempered distribution,
and ϕ(x1) and χ(x2, x3, x4) are arbitrary compactly supported test functions (i.e. no sup-
port requirements analogous to (6.107)).60 The proof will be based on the same idea
of moving the point at infinity to a finite position, paying attention to G now being dis-
tribution, and to the requirement (6.79) on invariance under finite Minkowski conformal
transformations.

60The method described below cannot be straightforwardly generalized to the case of Schwartz test
functions.
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supp('�)supp(�)

x0

x1

Figure 5. Location of supports of ϕλ and χ with respect to the singularity light cone of f .

We will use the same transformation f(x) = xµ+x2bµ

1+2x·b+x2b2 , b = ê1. By translation
invariance, we may assume that supp(χ) lies at larger x1 values than of the singularity
light cone x0 = ±|x + ê1| of this transformation (see section 6.6). For sufficiently large λ,
supp(ϕλ) will also satisfy this condition. As we scale b to zero to connect f to the identity,
the singularity light cone moves away to infinity along the negative x1 direction, without
touching supp(ϕλ) nor supp(χ), see figure 5. Hence requirement (6.79) is satisfied and we
may apply invariance (6.78), which says (G,ϕλ ⊗ χ) = (G,ϕfλ ⊗ χf ).

Now, using translation invariance of the 4-point function, G(x1, x2, x3, x4) = G̃(x2 −
x1, x3 − x1, x4 − x1) we may write

(G,ϕfλ ⊗ χ
f ) =

∫
dx1 ϕ

f
λ(x1)F (x1), (6.113)

where F (x1) = (G̃, Tx1 ·χf ) and Ta is a translation. G̃ is a distribution, but since translation
is a continuous operation in the space of test functions, we know that F (x1) is a continuous
function of x1. When λ goes to +∞, the support of ϕfλ shrinks to the point ê1.61 Hence for
λ > λ0 we can bound |F | on supp(ϕfλ) by a constant, and estimate (6.113) in absolute value
by const×

∫
dx1 |ϕfλ(x1)|. This remaining integral is computed via the change of variables

as the Euclidean one, and goes to zero as λ−2∆O , completing the proof.

6.9 Local commutativity

Let us show that the constructed Minkowski correlators satisfy local commutativity. This
follows by a robust argument which uses only Lorentz invariance, analyticity in the forward
tube, existence of the boundary distribution, together with real analyticity and permutation
symmetry of the Euclidean correlators away from coincident points (OS [2], section 4.5).
Here for completeness we will provide this argument for n-point functions which is its
natural setting. In section 6.9.1 below we will make some remarks specific to CFT 4-
point functions.

So, we start from the Euclidean correlator GE(x1, . . . , xn) at x0
1 > x0

2 > · · · > x0
n and

its analytic continuation G(x1, . . . , xn) to the forward tube Tn which is the set of points
61It is important for the argument that, as one can easily check, supp(ϕfλ) shrinks to a compact set (in

fact, a point) and not, say, spreads out along some light cone.
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xk ∈ Cd such that their differences yk = xk − xk+1 satisfy Re y0
k > | Im yk| or equivalently

ηk � 0 in terms of ζk = (iy0
k,yk) = ξk + iηk, ξk, ηk ∈ R1,d−1. We will write G instead of

Gn. We know by theorem 4.1 that this analytic continuation is invariant under Lorentz
transformations ζk → Λζk where Λ ∈ L↑+, the identity component of the real Lorentz group.
Since G is translationally invariant, it depends only on ζk, and we will abuse of notation
by sometimes writing G(ζ1, . . . , ζn−1) and (ζ1, . . . , ζn−1) ∈ Tn instead of G(x1, . . . , xn) and
(x1, . . . , xn) ∈ Tn.

Step 1. We will extend domain of analyticity of G using the complex Lorentz group L(C),
defined as the set of complex matrices A preserving the Minkowski metric, i.e. AT gA = g

where g = diag(−1, 1 . . . 1). We will only need the component of L(C) connected to the
identity, denoted L+(C). For any Λ ∈ L+(C) consider the equation

G(ζ1, . . . , ζn−1) = G(Λ−1ζ1, . . . ,Λ−1ζn−1). (6.114)

The two sides of this equation coincide for real Λ ∈ L↑+ (by Lorentz invariance of Gn), and
hence by analyticity in the components of Λ also for complex Λ ∈ L+(C), at least for Λ
close to 1. In other words, eq. (6.114) is just an identity if Λ ≈ 1 and the arguments of
Gn on both sides are in the forward tube. But a general Λ ∈ L+(C) does not preserve
the forward tube. For such Λ, eq. (6.114) extends analytically G from the forward tube to
the set

T ′n =
⋃

Λ∈L+(C)
Λ · Tn, (6.115)

called the extended tube. The Bargmann-Hall-Wightman theorem shows that no further
topological obstructions arise in this analytic continuation; see [75], p. 78 for details. Call
this extension G̃.

Step 2. Let us consider G̃(x1, . . . , xn) for

ε1 > . . . > εk−1 > 0 > εk+2 > . . . > εn, (6.116)

while assuming that εk, εk+1 are near zero and much smaller than other εi’s, and |tk−tk+1| <
|xk−xk+1|, xk, xk+1 real, so that xk−xk+1 approaches a spacelike separation. For εk > εk+1
this configuration is in the forward tube, so we know G̃ is analytic there and agrees with
G(x1, . . . , xn). Let us show that the configurations with εk < εk+1 are in the extended
tube. We may set xk+1 = 0 for this argument, so that

ζk = (tk + iεk,xk). (6.117)

We may assume without loss of generality that xk = (x1
k, 0, . . . 0), x1

k > |tk|. Then acting
on ζk with the complexified Lorentz transformation

Λθ =
(

cosh(iθ) sinh(iθ)
sinh(iθ) cosh(iθ)

)
∈ L+(C), (6.118)

with small θ we get, using Λθ ≈
(

1 iθ
iθ 1

)
, ζ ′k = Λθζk ≈ (tk, x1

k) + i(θx1
k + εk, θtk), and thus

η′k ≈ (θx1
k+ εk, θtk). If εk is negative but very small, we can can achieve η′k � 0 by choosing
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tk¡ tk+1

�k¡ �k+1

Figure 6. Projection of the set Qn,k, where the function G̃ is holomorphic, to the plane (εk −
εk+1, tk − tk+1). The vertical extent of this region is determined by the condition |tk − tk+1| <
|xk − xk−1|. The horizontal extent is determined, among other things, by the condition that
εk, εk+1 have to be much smaller that all the other εi’s.

an appropriate small θ. We need θ small so that all the other ζ ′i remain in the forward
light cone, and this will work because we are assuming that εk is very much smaller than
all the other εi’s.

The bottom line is that the extended tube contains an open set of configurations as
above, with |tk − tk+1| < |xk − xk+1| and εk, εk+1 small, with εk − εk+1 of any sign. Let us
call this set Qn,k. By restricting this set a bit, we may assume that Qn,k is invariant under
permutations of xk and xk+1. By Step 1 we know that function G̃ is holomorphic in the
extended tube and hence also in Qn,k. In particular, it is analytic if we set εk = εk+1 = 0.
This already has an interesting consequence: the Minkowski correlator is analytic with
respect to a pair of spacelike-separated points (while it remains a distribution with respect
to all the other points). The projection of Qn,k to the plane (εk − εk+1, tk − tk+1) is shown
schematically in figure 6.

The set Qn,k contains real configurations (horizontal axis in figure 6, setting other
ti → 0 as well). Restriction of G̃ to the real part ofQn,k agrees with the Euclidean correlator
GE . (They agree for εk > εk+1 by construction and for εk < εk+1 by the uniqueness of
analytic continuation. Recall that the Euclidean correlator GE is real analytic everywhere
away from coincident points, i.e. for εk − εk+1 of any sign as long as xk 6= xk−1.) One
consequence of this fact is that G̃ restricted to the real part Qn,k is permutation invariant
w.r.t. xk ↔ xk+1:

G̃(. . . xk, xk+1 . . .) = G̃(. . . xk+1, xk . . .), (6.119)

because the Euclidean correlator has this property. Finally, since Qn,k is connected to the
real configurations (see figure 6), we conclude that permutation invariance (6.119) holds
everywhere in Qn,k.62

We now see the meaning of G̃ for configurations with εk < εk+1. Via permutation
invariance (6.119), such configurations are mapped to the forward tube and hence can be
evaluated as G for the permuted configurations.

62In fact, G̃ can be extended to a single-valued holomorphic function on the “permuted extended tube”⋃
π∈Sn πT ′n, and satisfied permutation invariance (6.119) on this large set. See [75], appendix II, [76] and

[77], section 9.D. However for our purposes analyticity and permutation invariance on Qn,k will suffice.
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Step 3. We are now ready to show local commutativity. We have to prove that boundary
value limits of two holomorphic functions agree:

lim
εi→0

G(. . . xk, xk+1 . . .) = lim
εi→0

G(. . . xk+1, xk . . .), (6.120)

when approaching a Minkowski configuration in which xk−xk+1 is spacelike. Note that, by
the original definition, the two limits are from different forward tubes: the first one must
respect the condition εk > εk+1, while the second εk+1 > εk. By theorem 4.1, Part 3, we
can take the limits εi → 0 in any order, so let us send εk, εk+1 → 0 first, while keeping other
εi fixed for the moment. For very small εk, εk+1, the configurations on both sides will be in
Qn,k where both sides are restrictions of the function G̃ analytic around εk, εk+1 = 0 and
satisfying permutation invariance (6.119). It follows that the two sides of (6.120) agree in
the limit εk, εk+1 → 0. Sending the remaining εi → 0 we recover the local commutativity.

6.9.1 Local commutativity for CFT 4-point functions

In this paper we analytically continued the CFT 4-point function 〈O(x1)O(x2)O(x3)O(x4)〉
to the forward tube using ρ, ρ coordinates. We would like to indicate here that this provides
an alternative path to understanding local commutativity. We have shown previously
that 0 < |ρ|, |ρ| < 1 in the forward tube. Since the extended tube is obtained from the
forward tube by complexified Lorentz transformations and ρ, ρ are invariant under such
transformations, it follows that 0 < |ρ|, |ρ| < 1 also in the extended tube. Below we will
show this explicitly for the configurations used in the proof of local commutativity. We
consider separately k = 1 and k = 2 (k = 3 being analogous to k = 1).

k = 1: here x1, x2 approach spacelike-separated Minkowski points. We know that
|ρ|, |ρ| < 1 in D4, ε1 > ε2 > ε3 > ε4. Extended tube analyticity suggests that this
must remain true also for ε1 = ε2 > ε3 > ε4. Indeed, this follows from critical rereading of
the proof of lemma 6.1 (section 6.4, eq. (6.38) and below). (That proof does not use the
condition η1 � η2 but only η1, η2 � 0.63) It is also important for analyticity that ρ, ρ not
vanish. In the forward tube ρ, ρ do not vanish because x2

ij 6= 0, i < j (lemma 5.1). When
ε1 = ε2 we have x2

12 > 0 (spacelike separation), hence also nonzero. These observations
show that the CFT 4-point function can be analytically extended, using the ρ, ρ expansion,
to a neighborhood of points with ε1 = ε2 > 0 > ε3 > ε4, x2

12 > 0, in agreement with the
general QFT arguments given above.

Let us now permute the first two points: (ε1 +it1,x1)↔ (ε2 +it2,x2). In the Euclidean
region, this transformation maps ρ → −ρ, ρ → −ρ and leaves the 4-point function of
identical scalars invariant because the expansion (6.11) contains only even m. The same
transformation remains true for complexified times for spacelike separation. Taking the
limit ε1, ε2 → 0, we recover local commutativity very explicitly.

63An alternative argument is as follows. In section 7 we will show the Cauchy-Schwarz inequality for ρ, ρ,
theorem 7.2, which bounds ρ, ρ for any configuration in the forward tube with ε1 > ε2 > 0 > ε3 > ε4 in
terms of ρ, ρ of “reflection-symmetric” configurations having ε3 = −ε2, ε4 = −ε1. The proof of lemma 7.1,
eq. (7.7) shows that ρ, ρ remain less than 1 for the latter configurations in the limit ε1 → ε2.
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k = 2: now we are interested in the limit ε2 → ε3 from inside ε1 > ε2 > ε3 > ε4.64 As for
k = 1, critical rereading of the proof of lemma 6.1 shows that |ρ|, |ρ| remain less than 1.
(We put in that proof ζ2 = ξ2 + iη2, ξ2 = (t2,x2) spacelike, and η2 = (ε2,0), ε2 > 0. The
proof does not use the condition η′2 � 0 but only η′24 � 0. The latter condition remains
true for ε2 → ε3 = 0, as ζ ′2 goes to a finite real vector.) Hence, the CFT 4-point function
can be analytically extended, using the ρ, ρ expansion, to a neighborhood of points with
ε1 > ε2 = ε3 > ε4, x2

23 < 0.
To finish the proof of local commutativity, we fall back on the general argument,

appealing to the permutation invariance of the (real-analytic) CFT 4-point function under
x2 ↔ x3. (Unlike for k = 1, the s-channel OPE expansion (6.11) cannot be used to make
this step more explicit, as it does not manifestly have this invariance.)

6.10 Generalization to non-identical scalars

In the previous subsections we proved that the 4-point function of identical scalars has an-
alytic continuation to the forward tube T4, and its boundary value in the Minkowski region
is a tempered distribution. Then Minkowski conformal invariance, Wightman positivity,
Wightman clustering and local commutativity follow from their Euclidean analogues.

In this section we will indicate how to generalize analytic continuation and tempered-
ness to 4-point functions of non-identical scalars. The proof of the other properties is the
same as in the case of identical scalars.

We consider the 4-point function of scalar primary operators Oi with scaling dimen-
sions ∆i,

GE1234(cE) := 〈O1(x1)O2(x2)O3(x3)O4(x4)〉

= 1
(x2

12)
∆1+∆2

2 (x2
34)

∆3+∆4
2

(
x2

24
x2

14

)∆1−∆2
2

(
x2

14
x2

13

)∆3−∆4
2

g1234(cE), (6.121)

which reduces to (6.1) when ∆i’s are identical. The analytic continuation of the prefactor
to the forward tube T4 is straightforward. The function g1234(cE) only depends on the
conformal equivalence class of cE , i.e. g1234(cE) = g1234(ρ(cE), ρ(cE)). By the similar
argument to that in section 6.2, the function g1234(cE) has the following series expansion

g1234(cE) =
[(1− ρ)(1− ρ)

(1 + ρ)(1 + ρ)

]∆1−∆2−∆3+∆4
2 ∑

δ,m

a12(δ,m)a43(δ,m)∗rδeimθ, ρ(cE) = reimθ,

(6.122)

where the sum runs over a discrete set of pairs (δ,m) with δ > 0, m ∈ Z (not necessarily
even for non-identical scalars), |m| 6 δ. Analogously to the case of identical scalars, the

64The discussion on the local commutativity of this type can also be found in the study of causality in a
shockwave background (see section 5 of [4]). In [4], the 2-point function in a shockwave background is defined
by 〈O(x)O(y)〉Ψ := 〈Ψ(iδ)O(x)O(y)Ψ(−iδ)〉

〈Ψ(iδ)Ψ(−iδ)〉 , where x, y are Minkowski points and “iδ” means the Euclidean
point (δ, 0, . . . , 0). In our language it corresponds to the 4-point function 〈Ψ(x1)O(x2)O(x3)Ψ(x4)〉 with
ε1 = −ε4 = δ > 0 and ε2 = ε3 = 0. We know that the 4-point function is regular analytic at such
configurations. So the commutator [O(x),O(y)] vanishes in the shockwave background when x and y are
spacelike separated.
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sum is absolutely convergent when |ρ(cE)| < 1 (see below). Also, when d > 3 we have
pδ,−m = pδ,m, where pδ,m = a12(δ,m)a43(δ,m)∗. Analogously to section 6.3, the analytic
continuation of g1234(c) in d > 3 will be given by the formula (compare (6.27))

g1234(c) =
(
x2

14x
2
23

x2
13x

2
24

)∆1−∆2−∆3+∆4
4 ∑

m,δ,06m6δ

pδ,mRδ/2−m/2(c)Φm(c). (6.123)

In d = 2, pδ,m 6= pδ,−m but the functions ρ(c)m and ρ(c)m are individually holomorphic. In
this case the analytic continuation of g1234(c) is given by the formula (compare (6.31)):

g1234(c) =
(
x2

14x
2
23

x2
13x

2
24

)∆1−∆2−∆3+∆4
2 ∑

m,δ,06m6δ

Rδ/2−m/2(c)[pδ,mρ(c)m + pδ,−mρ(c)m].

(6.124)
We would like to show that
(a) when r = max{|ρ|, |ρ|} < 1, the series

g̃1234(ρ, ρ) =
∑
δ,m

a12(δ,m)a43(δ,m)∗ρ(δ+m)/2ρ(δ−m)/2 (6.125)

is absolutely convergent;

(b) the remainder g̃1234(ρ, ρ; δ∗) := ∑
δ>δ∗,m

a12(δ,m)a43(δ,m)∗ρ(δ+m)/2ρ(δ−m)/2 has a pow-

erlaw bound, uniform in δ∗:

|g̃1234(ρ, ρ; δ∗)| 6 C(1− r)−∆1−∆2−∆3−∆4 . (6.126)

This is done as follows (compare [36], section 4.2). Consider the 4-point functions
〈O1O2O†2O

†
1〉, 〈O

†
4O
†
3O3O4〉, and let g̃1221, g̃4334 be the analogues of (6.125):

g̃1221(ρ, ρ) =
∑
δ,m

|a12(δ,m)|2ρ(δ+m)/2ρ(δ−m)/2, (6.127)

g̃4334(ρ, ρ) =
∑
δ,m

|a43(δ,m)|2ρ(δ+m)/2ρ(δ−m)/2. (6.128)

Noticing that |m| 6 δ, we estimate (6.125) by absolute value and apply Cauchy-Schwarz
inequality:

|g̃1234(ρ, ρ; δ∗)| 6
∑
δ,m

|a12(δ,m)||a43(δ,m)|rδ 6 [g̃1221(r, r)g̃4334(r, r)]1/2. (6.129)

The functions g̃1221(r, r) and g̃4334(r, r) correspond to the 4-point functions at the Euclidean
configurations with ρ = ρ = r < 1, hence their series expansions (6.127), (6.128) are
convergent by the Euclidean OPE axiom. Therefore, (6.125) is absolutely convergent when
|ρ|, |ρ| < 1. This finishes the proof of part (a).

Using the t-channel OPE, we can show that for 0 6 r < 1,

g̃1221(r, r) 6 C(1− r)−2∆1−2∆2 , (6.130)
g̃4334(r, r) 6 C(1− r)−2∆3−2∆4 , (6.131)

with some C > 0. Combining (6.130), (6.131) with (6.129) we get (6.126). This finishes
the proof of part (b).
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7 Optimal powerlaw bound from Cauchy-Schwarz ρ, ρ inequality

In section 6.5 we provided a powerlaw bound for the 4-point function, based on the inequal-
ity (6.53) for max(|ρ(c)|, |ρ(c)|). That did the job of allowing us to apply theorem 4.1 and
prove that the Minkowski 4-point function is a distribution, but the actual bound (6.53)
is not optimal. It is interesting to get a better bound on |ρ(c)|, |ρ(c)|, because this will
translate into a better powerlaw bound for the 4-point function, allowing us to get a better
idea about the regularity of the Minkowski 4-point function as a distribution, i.e. how many
derivatives test functions must have. In the proof of theorem 4.1, parameters An and Bn of
the powerlaw bound enter into eq. (C.6) which provides an upper bound on the regularity.

In this section we will provide such an optimal bound on |ρ(c)|, |ρ(c)|. The main idea
of the bound and of its proof is inspired by section 6.7.2. Let us denote by D(0)

4 the subset
of configurations c ∈ D4 satisfying the condition Rex0

1 > Rex0
2 > 0 > Rex0

3 > Rex0
4.

We showed that the 4-point functions for complexified times satisfy the Cauchy-Schwarz
inequality (6.103) for c = (x1, x2, x3, x4) ∈ D(0)

4 . For a general configuration c ∈ D(0)
4 we

define two configurations

c12 = (x1, x2, x
θ
2, x

θ
1), c34 = (xθ4, xθ3, x3, x4), (7.1)

where θ is the operation in (6.91) which generalizes the OS reflection to complexified times.
We will call such configurations, for obvious reasons, reflection-symmetric. It is clear that
both c12, c34 ∈ D(0)

4 . Eq. (6.103) can now be written as

|G4(c)|2 6 G4(c12)G4(c34) (c ∈ D(0)
4 ). (7.2)

Since we know that G4 can be written as a convergent power series in ρ, ρ, eq. (7.2) suggests
that there should be a corresponding bound for the ρ, ρ coordinates. This is indeed the
case, as we have the following couple of results:

Lemma 7.1. Any reflection-symmetric configuration c ∈ D(0)
4 has ρ(c), ρ(c) ∈ (0, 1).

Theorem 7.2 (Cauchy-Schwarz inequality for ρ, ρ). For any configuration c ∈ D(0)
4 we

have the inequality:

max{|ρ(c)|, |ρ(c)|}2 6 max{ρ(c12), ρ(c12)} ×max{ρ(c34), ρ(c34)}. (7.3)

We will next prove lemma 7.1. We will then show how, combined with theorem 7.2,
this implies an optimal bound on ρ, ρ. Finally we will present a proof of theorem 7.2, which
is surprisingly subtle.

7.1 Proof of lemma 7.1

To prove the lemma, consider a reflection-symmetric configuration c as in (7.1) with:

x1 = (ε1 + it1,x1), x2 = (ε2 + it2,x2), ε1 > ε2 > 0, (7.4)
x3 = xθ2 = (−ε2 + it2,x2), x4 = xθ1 = (−ε1 + it1,x1).
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We will compute z(c), z(c) explicitly. We can use translations in the x direction, as well as
spatial rotations to simplify these computations. All these transformations do not change
the conformal class of configuration, hence preserve u, v and z, z. They also commute with
time reflection, and so map reflection-symmetric configurations to reflection-symmetric
ones. By using this freedom, we get an equivalent configuration c′ with the same z, z:

x′1 = (ε1 + it1,0), x′2 = (ε2 + it2, |x2 − x1|, 0, . . . , 0), x′3 = (x′2)θ, x′4 = (x′1)θ. (7.5)

This is an effectively two-dimensional configuration. The z, z variables of a two-dimensional
4-point configuration xk = (x0

k, x
1
k) are given by eq. (6.30), which we copy here

z = (z1 − z2)(z3 − z4)
(z1 − z3)(z2 − z4) , z = (z1 − z1)(z3 − z4)

(z1 − z3)(z2 − z4) , zk = x0
k + ix1

k, zk = x0
k − ix1

k. (7.6)

Applying this to the configuration c′, we get z, z for c′ (which are the same as for c). It’s
easy to see that z3 − z4 = (z1 − z2)∗, z1 − z3 = (z2 − z4)∗ as a consequence of reflection
symmetry, and similarly for z’s. So we get z(c), z(c) both real and positive. Explicit
expressions come out to be

z(c) = (ε1 − ε2)2 + (t1 − t2 − |x1 − x2|)2

(ε1 + ε2)2 + (t1 − t2 − |x1 − x2|)2 , (7.7)

z(c) = (ε1 − ε2)2 + (t1 − t2 + |x1 − x2|)2

(ε1 + ε2)2 + (t1 − t2 + |x1 − x2|)2 .

In particular we see that 0 < z(c), z(c) < 1. The function f(ζ) in the definition of ρ
variables maps the interval (0, 1) to itself. Hence also 0 < ρ(c), ρ(c) < 1, and the lemma
and proved.

7.2 Optimal bound for ρ, ρ

We wish to derive a powerlaw bound on 1
1−r , r = max(|ρ|, |ρ|), since by the arguments

in section 6.5 this implies a powerlaw bound for the 4-point function. Our aim here is to
improve on (6.53), (6.54).

Consider first a configuration c ∈ D(0)
4 . For such a configuration, by theorem 7.2,

we have

r(c) 6
√
r(c12)r(c34) 6 max(r(c12), r(c34)), (7.8)

and hence
1

1− r(c) 6 max
( 1

1− r(c12) ,
1

1− r(c34)

)
. (7.9)

We are thus reduced to study r(c) for reflection-symmetric configurations, like in (7.4). By
definition (6.9) of ρ variables, we have

1
1− ρ = 1 +

√
1− z

2
√

1− z
6

1√
1− z

, z ∈ [0, 1), (7.10)
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so it suffices to study 1/(1− z) and 1/(1− z). Using z, z for reflection-symmetric configu-
rations computed in eqs. (7.7) we have

1
1− z(c12) = (ε1 + ε2)2 + (t1 − t2 − |x1 − x2|)2

4ε1ε2
, (7.11)

and an analogous relation for 1
1−z(c12) . From these equations, using ε2 < ε1, and estimating

ε1 − ε2, |t1 − t2|, |x1 − x2| from above by |x1 − x2| (see (4.10)), we easily get

1
1− z(c12) ,

1
1− z(c12) 6

(
1 + 1

ε2

)2
(1 + |x1 − x2|)2, (7.12)

Putting together this relation, an analogous relation for z(c34), z(c34), eqs. (7.9) and (7.10),
we get

1
1− r(c) 6 max

{(
1 + 1

ε2

)
(1 + |x1 − x2|),

(
1 + 1
|ε3|

)
(1 + |x3 − x4|)

}
(c ∈ D(0)

4 ) .

(7.13)

This was for c ∈ D(0)
4 . For a general configuration c ∈ D4, we will shift the coordinates by

a translation in time direction (which of course does not change ρ, ρ), arranging so that
the shifted configurations c′ has ε2 > 0 > ε3, i.e. c′ ∈ D(0)

4 . Specifically we will choose

ε2(c′) = 1
2(ε2(c)− ε3(c)), ε3(c′) = −1

2(ε2(c)− ε3(c)). (7.14)

Then, using (7.13) for c′, we obtain a bound on 1
1−r(c) which for example can be expressed as

1
1− r(c) 6 2

(
1 + 1

ε2 − ε3

)
(1 + max{|x1 − x2|, |x3 − x4|}) (c ∈ D4). (7.15)

This is a powerlaw bound of the type we were looking for. By considering reflection-
symmetric configurations, it’s easy to see that the exponents in this bound cannot be
improved. Eq. (7.15) is much stronger than our previous suboptimal bound (6.53); in fact
it implies a bound of the same form as (6.53) with the power exponent 12 replaced by 2.

7.3 Proof of theorem 7.2

Although (7.3) looks like a simple-enough geometric inequality, we do not know an elemen-
tary proof of this fact. We essentially guessed this inequality, checked it numerically, and
then looked for a proof. Our guess started in the Euclidean region, where ρ = ρ∗, and (7.3)
takes the form

|ρ(c)|2 6 ρ(c12)ρ(c34) (c ∈ D(0)
4 Euclidean). (7.16)

Even in this case we don’t know an elementary proof. We guessed that this must hold,
because otherwise it was hard to imagine that the 4-point function itself would satisfy a
Cauchy-Schwarz inequality. Indeed (7.16) implies the Euclidean version of (6.103). We
then guessed (7.3) as a generalization of (7.16) for complexified times.
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Our proof of (7.3) reverses this logic, by deriving it from (6.103). There exist many
explicit CFT 4-point functions, e.g. mean field theories (MFT). One could imagine that
by considering (6.103) for a family of such 4-point functions, and passing to some limit
(e.g. of scaling dimension of the mean field going to infinity), one could recover (7.3). We
haven’t managed to make this work using MFTs, but a closely related strategy does work.
Namely we will apply this sort of argument not to the full 4-point function, but to a single
conformal block, since the latter also satisfy (6.103) (as we will explain).

Now that we explained the main idea, let us supply the details. By applying a transla-
tion, we may set x1 = 0. The remaining spacial component vectors x2,x3,x4 span at most
three-dimensional subspace of Rd−1. This shows that it is enough to prove the inequal-
ity (7.3) in the case d = 4. We assume that the readers are familiar with the conformal
blocks, which encode contributions of a primary into a 4-point function. In the considered
case of 4 identical Hermitean scalar, the relevant OPE has the form (simplifying the general
case considered in section 3.1)

ϕ(x1)ϕ(x2) = fϕϕOC(λ)(x1, x2, x0,D0)O(λ)(x0) (7.17)

where O(λ) is a dimension ∆, spin ` symmetric traceless primary. The conformal block
then can be computed by

g∆,`(c) = C(λ)(x1, x2, x0,D0)C(µ)(xθ3, xθ4, xθ0,Dθ0)〈O(λ)(x0)O†(µ)(xθ0)〉. (7.18)

The 4d Euclidean conformal blocks are known explicitly [63, 64]:

g∆,`(c) = zz

z − z
[kh(z)kh−1(z)− kh(z)kh−1(z)], (7.19)

where h, h = (∆±`)/2, and kβ(z) = zβ2F1(β, β, 2β; z). (We only cite the result for external
operators with equal dimensions.) We will assume that the exchanged operator O satisfies
the 4d unitarity bound ∆ > `+2. As eq. (7.19) shows, Euclidean conformal blocks are real-
analytic functions whenever |z| < 1. We can also use this formula to analytically continue
them to the forward tube. We wish to show that this analytic continuation satisfies some
properties. This is best shown not from the explicit formula, but by adapting the robust
4-point function arguments from section 6. Indeed, conformal blocks allow an expansion
of the same form as (6.11), with non-negative coefficients which are fixed by conformal
invariance. This can be shown by arguments similar to those in section 6.2. The existence
of the representation (7.18) guarantees Hilbert space unitarity. Then, by the arguments
of section 6.3, conformal blocks admit an analytic extension to the forward tube (which
is of course the same as the one following from the explicit formula (7.19)). The point of
the current construction is that it shows that the analytic extension satisfies an inequality
analogous to (6.46):

|g∆,`(c)| 6 g∆,`(c∗) (7.20)

Then, by the arguments in section 6.5, conformal blocks satisfy the powerlaw bound in
the forward tube. (As is easy to see from (7.19), 4d Euclidean conformal blocks grow
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as 1/(1 − z) as z → 1− along the real axis, which replaces eq. (6.48).) Finally, by the
arguments analogous to section 6.7.2 we conclude that the analytically continued conformal
blocks satisfy Cauchy-Schwarz inequality:

|g∆,l(c)|2 6 g∆,l(c12)g∆,l(c34) for any c ∈ D(0)
4 . (7.21)

(Euclidean reflection positivity of conformal blocks follows from the representation (7.18),
which we assume to be valid in the Euclidean region.)

In the rest of the argument we will only need two facts, the Cauchy-Schwarz inequal-
ity (7.21) and the explicit Dolan-Osborn formula (7.19). We will apply (7.21) to the blocks
of spin ` > 1 at the unitarity bound, i.e. with h = 1, h = ` + 1. The Cauchy-Schwarz
inequality for ρ, ρ will follow by extracting the asymptotics in the limit h → +∞. The
asymptotic behavior of kh is given by the following lemma:

Lemma 7.3. For any fixed z ∈ C\[1,+∞), the function kh(z) has the following asymptotic
behavior in terms of the ρ variable defined in (6.9):

kh(z) = (4ρ)h
[

1√
1− ρ2 + o(1)

]
, h→ +∞. (7.22)

Proof. We have the following identity for kh(z) [66]:

kh(z) = (4ρ)h2F1(1/2, h;h+ 1/2; ρ2). (7.23)

The region z /∈ [1,+∞) corresponds to |ρ| < 1, where the hypergeometric function 2F1 has
the power series representation

2F1(1/2, h;h+ 1/2; ρ2) =
∞∑
n=0

(1/2)n(h)n
n!(h+ 1/2)n

ρ2n. (7.24)

When h → +∞, each coefficient of the series increases monotonically, and tends to the
coefficients of the convergent in the disk |ρ| < 1 series

∞∑
n=0

(1/2)n
n! ρ2n = 1√

1− ρ2 .

This implies the statement of the lemma.

Consider now inequality (7.21) for the blocks with h = 1, h = ` + 1. Since k0 ≡ 1,
it reads:

|w · [kh(z)− kh(z)]|2 6 w12w34 · [kh(z12)− kh(z12)][kh(z34)− kh(z34)], (7.25)

where we denoted w = zz
z−z , and similarly w12, w34. Let us assume that the configuration

c ∈ D(0)
4 is such that

|ρ| 6= |ρ|, ρ12 6= ρ12, ρ34 6= ρ34. (7.26)
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Then, using lemma 7.3, for large h inequality (7.25) becomes:

(A+ o(1)) max{|ρ|, |ρ|}2h 6 (B + o(1)) max{ρ12, ρ12}h max{ρ34, ρ34}h, (7.27)

where A,B are some positive h-independent quantities. Now, taking the limit h → +∞,
we obtain inequality (7.3).

It’s easy to see that configurations which violate the condition (7.26) are non-generic.
They can be approached by configurations which do satisfy (7.26). Therefore, by continuity
inequality (7.3) is valid also for such exceptional configurations.

8 OPE convergence in the forward tube and in Minkowski space

We have several OPE convergence statements scattered throughout the paper. The Eu-
clidean CFT axioms assume convergence of the OPE series for O1(x1)O2(x2) whenever the
two points x1, x2 are closer to the OPE center than any other point. Then we established
OPE convergence in the Hilbert space sense (section 3.2) in the Euclidean region for states
generated by two operators in the half-space. Then in section 6.2 we used Hilbert space
language to derive the power series representation (6.11) for the 4-point function, whose
convergence is thus morally equivalent to OPE convergence (for the 4-point functions). We
then used this power series representation to analytically continue the 4-point function to
the forward tube, and then define the Minkowski 4-point function as a boundary value
in the sense of distributions. Finally, in section 6.7 we showed, by arguments not using
conformal invariance, that the OS states |O1(x1)O2(x2)〉 can be extended to the forward
tube and (when integrated against test functions) to the Minkowski region, and that the so
obtained states can be arbitrarily well approximated by (integrated) OS states. Therefore,
OPE convergence holds for these states, as for the OS states.

In this section we will give a more explicit discussion of the OPE convergence for the
Minkowski 4-point function and for the 2-operator states in the forward tube and Minkowski
space. We will also explain how our approach and results compare to the classic paper by
Mack [41].

8.1 Convergence of conformal block decomposition for 4-point functions

Let us consider the 4-point function of identical scalars (6.1):

G(x1, x2, x3, x4) ≡ G(c) = 〈O(x1)O(x2)O(x3)O(x4)〉 = g(ρ, ρ)
(x2

12x
2
34)∆O

. (8.1)

The discussion below can be easily extended to non-identical scalars using the same ideas
as in section 6.10.

We know that in the Euclidean region the function g(ρ, ρ) has a convergent conformal
block decomposition

g(ρ, ρ) =
∑
∆,l
C2

∆,lg∆,l(ρ, ρ). (8.2)
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As in section 7.3, we will assume that the reader is familiar with conformal blocks. The
main point is that the conformal block decomposition is obtained by separating the series
(6.11) into parts corresponding to the conformal multiplets of primary operators O∆,l
occurring in the O × O OPE with coefficients C∆,l. Conformal blocks in the Euclidean
region by themselves have power series expansions like (6.11) with positive coefficients
(fixed by conformal symmetry). As in section 6.3, we can use this expansion to analytically
continue conformal blocks to the forward tube. By an analogue of the bound (6.28) we
know that conformal block expansion remains convergent everywhere in the forward tube,
since |ρ|, |ρ| < 1 there. Since individual conformal blocks are smaller than the 4-point
function in the Euclidean region, by the arguments in section 6.5 we know that they
satisfy a powerlaw bound, and hence they become tempered distributions when going to
the Minkowski region.65,66,67

By the arguments like in section 6.5, g(ρ, ρ), the partial sums of the conformal block
decomposition g(ρ, ρ; ∆∗) = ∑

∆6∆∗,l
C2

∆,lg∆,l(ρ, ρ), and the corresponding remainders satisfy

in the forward tube a uniform bound:

|g(ρ, ρ; ∆∗)|, |g(ρ, ρ)− g(ρ, ρ; ∆∗)| 6 C(1− r)−4∆, r = max{|ρ|, |ρ|}. (8.3)

Consider the 4-point partial sums including the prefactor G(c; ∆∗) = 1
(x2

12x
2
34)∆O

g(ρ, ρ; ∆∗).
By the powerlaw bound of (1− r(c))−1, we have the powerlaw bounds

|G(c; ∆∗)|, |G(c)−G(c; ∆∗)| 6 C

(
1 + max

k

1
εk − εk+1

)A
(1 + max

i
|xi − xi+1|)B (8.4)

for all c ∈ D4 and ∆∗ > 0. Consider the boundary value of G(c; ∆∗), call it
GM (x1, x2, x3, x4; ∆∗), where xi ∈ R1,d−1; it is a tempered distribution by theorem 4.1. The
following theorem establishes distributional convergence of conformal block decomposition.

Theorem 8.1. We have GM (x; ∆∗)→ GM (x) in the sense of tempered distributions.

Proof. Denote H(c; ∆∗) = G(c)−G(c; ∆∗). We have to show that, as ∆∗ goes to infinity,
the boundary value of H(c; ∆∗) converges to 0 in the sense of tempered distributions, i.e,

65This argument shows that any conformal block which occurs in a reflection-positive CFT 4-point func-
tion satisfies a powerlaw bound. E.g. conformal blocks for l > 0, ∆ > l + d− 2 occur in a 4-point function
〈ϕ1ϕ2ϕ1ϕ2〉 where ϕ1, ϕ2 are two GFFs of appropriately chosen equal dimension. It should be also possible
to show that conformal blocks satisfy a powerlaw bound without relying on a fiducial 4-point function.
E.g. for d = 4 conformal blocks this follows from their explicit Dolan-Osborn expressions. For general d,
powerlaw bound on the diagonal z = z can be shown using the differential equation found in [78] and
extended to z 6= z by the usual arguments.

66It should be noted that away from light cones conformal blocks are better than distributions: they are
real-analytic there (although this fact won’t play a role for us). In even d this is obvious from their explicit
expressions in terms of hypergeometric functions. For general d this follows from a first-order matrix ODE
satisfied by a finite-length vector including the conformal block and its low-order derivatives. Such an ODE
exists for a length-8 vector and can be built using the quadratic and quartic Casimir equations [79].

67Also “conformal partial waves” g∆,l(ρ,ρ)
(x2

12x
2
34)∆O

are tempered distributions in the Minkowski space. There-
fore their Fourier transforms are well defined. Explicit expressions for these Fourier transforms were found
recently in [80].
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for any Schwartz test function f ∈ S(R4d)

lim
∆∗→∞

lim
λ→0+

∫
H(λε+ it,x; ∆∗)f(t,x) dt dx = 0, (ε1 > ε2 > ε3 > ε4), (8.5)

where we write for brevity t instead of t1, t2, t3, t4 etc. The proof is the same as in our paper
[36], theorem 3.1. We will retrace here the main steps for completeness and because we will
need it to establish a stronger result below. Define Lf (λ; ∆∗) :=

∫
H(λε+ it,x; ∆∗)f(x) dx

with x = (t,x). Since H is holomorphic in τ = λε+ it we have

L
(n)
f (λ; ∆∗) =

∫ ((
ε · ∂
i∂t

)n
H(λε+ it,x; ∆∗)

)
f(x) dx

=
∫
H(λε+ it,x; ∆∗)

((
iε · ∂

∂t

)n
f(x)

)
dx,

(8.6)

which by the powerlaw bound (8.4) implies

L
(n)
f (λ; ∆∗) 6

Cn
λA
|f |pn , λ ∈ (0, 1], pn = max{n, dBe+ 4d+ 1}. (8.7)

These bounds blow up in the λ→ 0 limit, but by using the Newton-Leibniz repeatedly one
can get bounds which do not blow up:

L
(n)
f (λ; ∆∗) 6 Dn|f |pn+[A]+1 , λ ∈ (0, 1]. (8.8)

Using this for n = 1 one proves that the limit Lf (0; ∆∗) = limλ→0+ Lf (λ; ∆∗) exists and

|Lf (0; ∆∗)− Lf (λ; ∆∗)| 6 D1λ|f |max{[A]+2,dBe+4d+1}. (8.9)

By Lebesgue’s dominated convergence theorem, for any fixed λ in (0, 1], Lf (λ; ∆∗) tends
to zero as ∆∗ → +∞. Thus the previous bound implies

lim
∆∗→∞

|Lf (0,∆∗)| 6 lim
∆∗→∞

|Lf (0,∆∗)− Lf (λ; ∆∗)|+ lim
∆∗→∞

|Lf (λ; ∆∗)|

6 D1λ|f |max{[A]+2,dBe+4d+1}. (8.10)

Since λ can be arbitrarily small, we get lim
∆∗→∞

|Lf (0,∆∗)| = 0. This finishes the proof.

8.1.1 Convergence rate for compactly supported test functions

Because of the use of Lebesgue’s theorem on dominated convergence, theorem 8.1 does
not give the rate of convergence. We will now give the rate in an important special case
of compactly supported test functions. This provides an explicit example for the remark
in [36], the last paragraph of section 3.3.

The idea is that not only H(c,∆∗) → 0 pointwise but it does so exponentially fast.
We will first derive the exponential convergence bound, upgrading the Euclidean argument
from [65], to the forward tube, and then use it. Let F (t) be the Laplace transform of a
positive measure µ(E) on E > 0:

F (t) =
∫ ∞

0
µ(E)e−Et dE, µ(E) > 0. (8.11)
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We assume that the integral is convergent for t > 0 and F (t) ∼ t−α as t→ 0+, and α > 0.
Then by the Hardy-Littlewood tauberian theorem we know that

M(E) =
∫ E

0
µ(E′) dE′ ∼ Eα

Γ(α+ 1) asE → +∞. (8.12)

We can now estimate the remainder FE∗(t) :=
∫∞
E∗
µ(E)e−Et dE, via

FE∗(t) =
∫ ∞
E∗

e−Et dM(E) = −M(E∗)e−E∗t + t

∫ ∞
E∗

M(E)e−Et dE, (8.13)

which gives |FE∗(t)| 6 C1e
−E∗tEα∗ + C2e

−E∗t
(

1+E∗t
t

)α
, and finally

|FE∗(t)| 6 const×e−E∗t(t−1 + E∗)α. (8.14)

for any E∗ > 1 (say).
Now let’s go back to the 4-point function of four identical scalars G(c) =

〈O(x1)O(x2)O(x3)O(x4)〉, c ∈ D4. The remainder H(c; ∆∗) can clearly be bounded by
replacing ρ, ρ with r = max{|ρ|, |ρ|}:

|H(c; ∆∗)| 6
1

|x2
12|∆O |x2

34|∆O
[g(r, r)− g(r, r; ∆∗)], (8.15)

By setting t = log(1/r), g(r, r) with its representation (6.11) is in the same form as (8.11)
and by eq. (6.48) we have that the corresponding F (t) ∼ t−α with α = 4∆O. Bounding the
remainder g(r, r)−g(r, r; ∆∗) by (8.14), and using (8.15), we get a bound on the remainder
|H(c; ∆∗)| for any ∆∗ > 1 (say):

|H(c; ∆∗)| 6
const

|x2
12|∆O |x2

34|∆O
× r(c)∆∗

( 1
log(r(c)−1) + ∆∗

)4∆O
. (8.16)

Let us now convert this into an explicit estimate for the distributional convergence rate,
improving on theorem 8.1 for compactly supported test functions. Recall that we have
an upper bound on r(c) = max{|ρ(c)|, |ρ(c)|} (c = (x1, x2, x3, x4)), eq. (7.15), which we
copy here:

1
1− r(c) 6 2

(
1 + 1

ε2 − ε3

)
(1 + max{|x1 − x2|, |x3 − x4|}). (8.17)

This bound tells us how much r(c) is separated from 1. In turn, by (8.16) this translates
into an explicit bound on |H(c; ∆∗)|. Let us retrace the proof of theorem 8.1, replacing
eq. (8.10) by

|Lf (0,∆∗)| 6 |Lf (0,∆∗)− Lf (λ; ∆∗)|+ |Lf (λ; ∆∗)|

6 D1λ|f |max{[A]+2,dBe+4d+1} + |Lf (λ; ∆∗)|. (8.18)

We will now choose λ small, as a function of ∆∗, so that the second term in the r.h.s. is
smaller than the first one. Let us choose and fix ε1 > ε2 > ε3 > ε4. For xλk = (λεk+ itk,xk),
xMk = (itk,xk), bound (8.17) gives

1
1− r(cλ) 6

Cε
λ

(1 + max{|xM1 − xM2 |, |xM3 − xM4 |}) (0 < λ 6 1), (8.19)
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where Cε is a constant which depends only on εi but not on λ or xMk . If f ∈ C∞0 (R4d), a
compactly supported test function, then (8.19) implies

1
1− r(cλ) 6

Af
λ

(0 < λ 6 1, (xMk ) ∈ supp(f)), (8.20)

where Af = 2Cε sup
(xM
k

)∈supp(f)
(1 + max{|xM1 − xM2 |, |xM3 − xM4 |}).

Now by (8.16), (8.20), and lemma 5.2(b) we have a bound for a compactly supported
test function f :

|Lf (λ; ∆∗)| 6
const
λ4∆O

e
− λ
Af

∆∗
(
Af
λ

+ ∆∗
)4∆O ∫

|f | dx. (8.21)

By this and (8.18) we have

|Lf (0; ∆∗)| 6 A1λ+ A2
λ4∆O

e
− λ
Af

∆∗
(
Af
λ

+ ∆∗
)4∆O

, (8.22)

where all constants A1, A2, Af are f -dependent. If we choose λ = 1/∆γ
∗ then for any

γ ∈ (0, 1) the first term dominates (the second term decays exponentially fast for large
∆∗). It is easy to see that the first term still dominates for λ = κ log ∆∗

∆∗ with sufficiently
large κ. We therefore obtain the following promised strengthening of theorem 8.1.

Theorem 8.2. For any compactly supported C∞ test function f , we have (GM (∆∗), f)−
(GM , f)→ 0 as O

(
log ∆∗

∆∗

)
.

It is somewhat surprising that conformal block decomposition converges so slowly in
the Minkowski region, while it converges exponentially fast in the Euclidean region.

8.2 OPE convergence in the sense of HCFT

We will now rephrase the question of OPE convergence from the point of view of states
generated by two operators (rather than 4-point functions which represent inner products
of such states). We already discussed these questions to some extent in section 3.2 in the
Euclidean region, and section 6.7 in the forward tube and in the Minkowski region. We
will now update that discussion.

Recall that in section 6.7 we defined states (see eq. (6.88) and remark 6.3)

ψ(x1, x2) = |O(x1)O(x2)〉, xk = (εk + itk,xk + iyk) , 0 � (ε1,y2) � (ε1,y2), (8.23)

as elements of a vector space with inner products (6.90):

〈O(x1)O(x2)|O(x3)O(x4)〉 = G4(xθ2, xθ1, x3, x4), (8.24)

where xθ = (−ε+ it,x− iy) for x = (ε+ it,x+ iy). We then proved that this inner product
was positive definite, and that these states could be approximated in norm by Euclidean
states, and so belong to the same Hilbert space. The arguments of section 6.7 did not use
conformal symmetry.
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So, by arguments of section 6.7 we have a map ψ(x1, x2) from x1, x2 as in (8.23) into
HCFT. We claim that this map is holomorphic. To begin with, this map is continuous with
respect to the HCFT norm, and in particular bounded on compact subsets. This follows
easily from the continuity of G4. To show holomorphicity, we will use Morera’s theorem
and Osgood’s lemma (which remain valid for Hilbert-space-valued functions of complex
variables). Morera’s theorem says that a locally continuous function of one complex variable
is holomorphic if its integral over any small contour is zero. Let C be a small 1d contour
in the region of ξ = (x1, x2) where ψ is defined (we assume that one of the components of
ξ goes around the contour while the others stay fix). We have∥∥∥∥∫

C
dξ ψ(ξ)

∥∥∥∥2
=
∫
ξ′∈C

dξ′
∫
ξ∈C

dξ G4(ξ′θ, ξ) = 0 , (8.25)

the last integral being zero because G4 is holomorphic in ξ. Hence
∫
C dξ ψ(ξ) = 0 and

by Morera’s theorem ψ(x1, x2) is holomorphic in each component separately. Finally, by
Osgood’s lemma [68] ψ(x1, x2) is holomorphic in all variables jointly.

Let us connect this discussion with the OPE. In the Euclidean region, OPE says

ψ(x1, x2) = |O(x1)O(x2)〉 =
∑
k,λ

fOOkCk,λ(x1, x2, xS ,D)|(O†k)
(λ)(xS)〉, (8.26)

Ck,λ(x1, x2, xS ,D) =
∑
α

fOOkCk,λ,α(x1, x2, xS)Dα,

where x1, x2 are two Euclidean points in the lower halfspace, 0 > x0
1, x

0
2, xS = (−1, 0, . . .)

is the south pole, and D = DxS is the image of ∂/∂x|x=0 under a conformal transformation
which maps 0,∞ to xS , xN . We proved in section 3.2, from the Euclidean CFT axioms,
that the series in the r.h.s. converges in HCFT. As discussed in section 3.2, convergence
holds provided that the series is summed in a certain manner: for each Λ we define a partial
sum ψΛ(x1, x2) over all terms with ∆k + |α| < Λ, and then tend Λ→∞. This procedure is
needed because, although the states Dα|(O†k)(λ)(xS)〉 are orthogonal for different |α| (be-
cause they are eigenvectors of K0−P 0

2 with different eigenvalues), they are not orthonormal.
This can be corrected as follows. For each k, let us orthonormalize the infinite multiplet
of states Dα|(O†k)(λ)(xS)〉. Let ek,n, n ∈ Z>0, be the corresponding orthonormal basis of
states (there is obviously a lot of arbitrariness in this basis). We then can write

ψ(x1, x2) = |O(x1)O(x2)〉 =
∑
k

fOOk
∑
n

C̃k,n(x1, x2)ek,n, (8.27)

where C̃k,n’s are some finite linear combinations of Ck,λ,α(x1, x2, xS). Since ek,n’s with
different k are also orthogonal, this equation is an expansion of the state ψ(x1, x2) in an
orthonormal basis. Convergence of the series is now equivalent to the finiteness of the norm
of ψ(x1, x2):

‖ψ(x1, x2)‖HCFT =
∑
k,n

|fOOkC̃k,n(x1, x2)|2 <∞. (8.28)

Moreover, by definition, this norm is nothing but the 4-point function
〈O(xθ2)O(xθ1)O(x1)O(x2)〉.
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Eqs. (8.26)-(8.28) were all in the Euclidean region, but we claim that they continue to
make sense in the forward tube. The argument is as follows. We know by the arguments
around (8.25) that ψ(x1, x2) have analytic continuation to the region (8.23). The inner
product 〈ek,n|ψ(x1, x2)〉 is then the analytic continuation of fOOkC̃k,n(x1, x2) from the
Euclidean to the same region. (This inner product is a finite linear combination of xN -
derivatives of the 3-point function 〈(Ok)(λ)(xN )O(x1)O(x2)〉, hence holomorphic in the
forward tube.) We thus obtain the following fact:

Theorem 8.3. Expansion (8.27), analytically continued from the Euclidean region to the
forward tube term by term, converges in the sense of HCFT to the same states ψ(x1, x2) in
the region (8.23) that we defined in section 6.7.

For the subsequent discussion, we also define the states

ψk(x1, x2) = fOOk
∑
n

C̃k,n(x1, x2)ek,n. (8.29)

The norms of these states is given by conformal blocks (up to prefactor f2
OOk/(x2

12)4∆O).
Just as the state ψ(x1, x2), each state ψk(x1, x2) is an HCFT-valued holomorphic function
in the region (8.23), moreover in this region we have

ψ(x1, x2) =
∑
k

ψk(x1, x2), (8.30)

the series convergent in the sense of HCFT. The norm of the tail of this series is given by
the function H(c,∆∗) from the proof of theorem 8.1:∥∥∥∥∥ ∑

∆k>∆∗
ψk(x1, x2)

∥∥∥∥∥ = H(c,∆∗), c = (xθ2, xθ1, x1, x2). (8.31)

Vladimirov’s theorem 4.1 remains true for Hilbert-space-valued holomorphic functions,
whose norm satisfies a powerlaw bound in the forward tube. Applying such a version of
theorem 4.1, as well as arguments from the proof of theorem 8.1 and from section 8.1.1
(in particular using the bound (8.16)), it’s easy to obtain the following result (we omit
the proof).

Theorem 8.4. (a) The boundary value bv(ψ) = limεi→0 ψ(x1, x2) exists as HCFT-valued
tempered distributions, and similarly for each bv(ψk): bv(ψ), bv(ψk) ∈ S ′(R2d) ⊗ HCFT.
Explicitly, the limit

(bv(ψ), f) = lim
ε→0

∫
ψ(ε+ it,x)f(t,x) d2t d2(d−1)x (8.32)

exists as a vector in HCFT for any Schwartz function f ∈ S(R2d), and is a continuous
linear operator from S(R2d) to HCFT, and analogously for bv(ψk);

(b) (Distributional OPE convergence in HCFT) For each Schwartz test function f ∈
S(R2d), the series

∑
k

(bv(ψk), f) converges in HCFT norm to (bv(ψ), f);

(c) (Convergence rate) For compactly supported test functions, the series in (b) summed
over ∆k 6 ∆∗ converges with rate O

(√
log ∆∗

∆∗

)
.
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Remark 8.1. The following more finegrained version of theorem 8.4(b) also holds. Denote

Ek,n(x1,x2) = fOOkC̃k,n(x1, x2)ek,n. (8.33)

As explained above, C̃k,n(x1, x2) is a finite sum of terms like
(Dθ)α〈(Ok)(λ)(xN )O(x1)O(x2)〉 (all having the same |α|), so bv(Ek,n) exists by
Vladimirov’s theorem. Then for each Schwartz test function f ∈ S(R2d), the series∑
k,n

(bv(Ek,n), f) converges in HCFT norm to (bv(ψ), f).

It would be interesting to prove a version theorem 8.4(c), truncating the series∑
k,n

(bv(Ek,n), f) to k, n such as the corresponding ∆k + |α| 6 ∆∗. To do so one would

have to find an analogue of the bounds (8.31), (8.16) valid for such a truncation. This is
not straightforward because the partial sums of the series (8.28) truncated to ∆k+|α| 6 ∆∗
do not correspond to a simple truncation of the ρ, ρ series of the full 4-point function (ba-
sically because the transformation which maps x1, x2, x

θ
1, x

θ
2 to their ρ, ρ conformal frame

does not necessarily map xS , xN to 0,∞).

8.3 Comparison to Mack’s work on OPE convergence

To assume OPE convergence as an axiom in Euclidean CFT, and to derive Minkowski
physics from it, as we did in this paper, seems natural from the modern perspective. On
the contrary, in the early days of CFTs it was considered natural to assume standard
Minkowski physics (such as Wightman axioms). The OPE convergence was not assumed
at the time, but was something to be derived.

This was the underlying philosophy of the works by Lüscher and Mack [71] and of
Mack [41, 81]. Written 45 years ago, these papers remain widely cited, but not everyone
is familiar with what precisely has been derived there. Here we will present a short review
for the benefit of the modern audience.

These works make two main assumptions. First, that we have a unitary quantum
field theory in the Minkowski signature which satisfies Wightman axioms (in particular
has a Hilbert space H on which the Poincaré group acts unitarily and quantum fields are
operator-valued distributions). Correlators then have the usual analyticity properties of
Wightman functions, in particular they are real-analytic in the Euclidean. The second
main assumption is that these Euclidean correlators are invariant under the action of the
Euclidean conformal group.

Using these two assumptions, Lüscher and Mack [71] proved that the Hilbert space H
carries a unitary representation not just of the Poincaré but of the group G∗ =universal
cover of the Lorentzian conformal group SO(d, 2).68 Mack [81] then classified all uni-
tary positive energy representations of G∗. It should be mentioned that refs. [41, 71, 81]

68One also often quotes Lüscher and Mack [71] for proving that CFT correlation functions may be
continued to the Minkowski cylinder Sd−1×R. This is a misquotation as they did not prove this, but posed
it as a conjecture. What they did prove was that CFT correlation functions can be analytically continued
to a domain of which Sd−1×R is a real boundary. One still needs to establish a powerlaw bound to take the
boundary limit and obtain a distribution. We plan to derive this fact in our future work [72], for 4-point
functions, from the Euclidean CFT axioms, using the ρ, ρ expansion.
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only consider d = 4 spacetime dimensions. Many explicit group theoretic calculations are
done only for this value of d. The results should however generalize to arbitrary d with
appropriate modifications.

Continuing this program, Mack [41] studied distributional OPE convergence in
Minkowski CFT. Since we also have results of this kind (section 8.2), it will be par-
ticularly interesting to compare with Mack’s discussion. So let us review his argument.
Compared to [71, 81], ref. [41] includes one extra assumption: that the OPE ϕi(x1)ϕj(x2)
of two fields acting on the Minkowski vacuum is valid in an asymptotic sense. Namely that
for some dense set of states ψ we have69

〈ψ|ϕi(x1)ϕj(x2)〉 ∼
∑
k

Cijk(x1, x2)〈ψ|ϕk(0)〉, (8.34)

as an asymptotic expansion for rescaling x1, x2 → λx1, λx2, where Cijk(x1, x2) are some ψ-
independent homogeneous functions: Cijk(λx1, λx2) = λ∆k−∆i−∆jCijk(x1, x2).70 Asymp-
totic means that if we truncate the expansion at ∆k = ∆∗ and take λ → 0 limit for any
fixed x1, x2 then the error is o(λ∆∗−∆i−∆j ). Note that there are both primaries and de-
scendants among ϕk’s. The main result of [41] is to convert this asymptotic expansion to
an expansion convergent in the Hilbert space sense.

The first step is to use a general result that any Hilbert space carrying a unitary
representation of a semisimple Lie group can be decomposed as a direct integral of unitary
irreducible representations [82]. Since, by the above-mentioned result of [71], H carries a
unitary representation of G∗, we thus have

H =
∫ ⊕

dµχ dµ̃ν Hχν , (8.35)

where χ labels different unitary irreps of G∗, χ = (∆χ, ρχ) with ∆χ the scaling dimension
and ρχ a Lorentz group irrep, and ν labels different copies of the same irrep. Only positive
energy irreps may occur, since all states of Wightman theory have positive energy. By
definition, eq. (8.35) identifies every vector ψ ∈ H with a Hilbert-space-valued function
(χ, ν) 7→ ψχν ∈ Hχ, some standard realization of the irrep χ. It is assumed that 〈ψ|ψ〉 <∞,
inner products being given by the following integral:

〈ψ|ψ′〉 =
∫
dµχ dµ̃ν 〈ψχν |ψ′χν〉Hχ , (8.36)

Also G∗ acts on ψ by acting on each ψχν . Furthermore, ref. [81] realized Hχ as a space of
distributions ψ(x) on Minkowski space71 taking values in the representation space of ρχ,
with Fourier transform supported in the forward light cone, and for which the following
inner product (defined initially on a dense subset of smooth ψ,ψ′) is finite:

〈ψ|ψ′〉Hχ =
∫
dx dy ψ(x)Iχ(x− y)ψ′(y), (8.37)

69Mack assumes x2 = −x1 but here for simplicity we will assume that this is valid for any x1, x2.
70In fact Cijk is a distribution so homogeneity should be understood in the sense of pairing with a rescaled

test function.
71More properly ψ(x) is a distribution on the Lorentzian cylinder on which the group G∗ acts naturally,

but due to a periodicity condition it may be reconstructed from its values on the Poincaré patch.
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where Iχ is an “intertwining kernel”. Physically, Iχ is the Minkowski CFT 2-point function
of the primary in the “shadow irrep” of χ.

The above integration measure dµχdµ̃ν depends on the theory; from the abstract ar-
guments alone it may be continuous or discrete. Ref. [41] then proceeds to show that
(a) this measure is actually discrete (a sum of delta-functions), so that the direct integral
is a direct sum; (b) that the state |Oi(x1)Oj(x2)〉 produced by two Minkowski primary
operators acting on the Minkowski vacuum can be written as

|Oi(x1)Oj(x2)〉 =
∑
k,a

faijk

∫
dxBa

k,ij(x, x1, x2)|Ok(x)〉, (8.38)

where Ba
ijk(x, x1, x2), a = 1 . . . Nijk, are some kinematically determined distributions, the

convergence is in the Hilbert space sense after integrating with an arbitrary test functions
f(x1, x2), and the local primary operators Ok occurring in this sum have quantum numbers
in the discrete set where the integration measure dµχdµ̃ν is supported.

To show how this comes about, let us focus on the case of scalar identical Oi = Oj = O
for simplicity. In this case expansion (8.38) will end up being precisely our expansion (8.30)
(although derived under very different assumptions), with B(x, x1, x2) related to the OPE
kernel in (8.26).

Applying (8.36) with |ψ′〉 = |O(x1)O(x2)〉 gives (eq. (2.6) in [41]):

〈ψ|O(x1)O(x2)〉 =
∫
dµχ dµ̃ν cχν

∫
dxψχν(x)Bχ(x, x1, x2), (8.39)

where we denoted
∫
dy Iχ(x − y)ψ′χν(y) = cχνBχ(x, x1, x2) where cχν is a proportionality

factor, and Bχ(x, x1, x2) is a kinematically determined distribution (it is basically the
amputated Minkowski 3-point function 〈Oχ(x)O(x1)O(x2)〉). Mack then undertakes a
meticulous study of Bχ(x, x1, x2) and of its Fourier transform with respect to the first
argument B̂χ(p, x1, x2). This actually takes most of his paper, and involves many explicit
nontrivial calculations (e.g. it involves the first ever explicit characterization of the most
general 3-point function of CFT primaries in arbitrary irreps). One of the main results is
that B̂χ(p, x1, x2) are entire functions of p:

B̂χ(p, x1, x2) =
∑
|α|>0

bαχ(x1, x2)(−ip)α, (8.40)

where bαχ(x1, x2) = (x2
12)−∆O+∆χ/2 times a polynomial in x1, x2 of degree |α|, in particular

bαχ(λx1, λx2) = λ∆χ+|α|−2∆Obαχ(x1, x2).
Let us now specialize to states ψ for which the function ψχν(x) has Fourier transform

of compact support (one can show that such states are dense in H). Then the previous
equations imply the following convergent expansion for the integrand in (8.39):∫

dxψχν(x)Bχ(x, x1, x2) =
∑
α

bαχ(x1, x2)∂αψχ(0), (8.41)

Mack then claims (before eq. (2.11′)) that if, for each χ, this convergent expansion is
truncated at ∆χ + |α| = ∆∗, and inserted back into (8.39), this results in an asymptotic
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expansion for the l.h.s. of (8.39). I.e. for any ∆∗ (Mack does not write this equation
explicitly):

〈ψ|O(x1)O(x2)〉 =


∫
dµχ dµ̃ν cχν

∑
∆χ+|α|6∆∗

bαχ(x1, x2)∂αψχ(0)

+ E(x1, x2; ∆∗), (8.42)

where the error term E(λx1, λx2; ∆∗) = O(λ∆∗−2∆O) as λ → 0 for any fixed x1. Unfor-
tunately, Mack does not give any justification of this claim, which to us does not appear
self-evident. The difficulty is that although for every χ, ν the truncated series has error
O(λ∆∗−2∆O), the constant will certainly depend on χ, ν. How do we know that the error
estimate survives after the integration in χ, ν? It might be possible to close this omission
in Mack’s reasoning using normalizability of |ψ〉, but this needs extra arguments compared
to what is given in his paper, and we have not investigated this in detail.72 Researchers
relying on Mack’s result should keep this caveat in mind.

Assuming that (8.42) is true, the argument is completed as follows. We now have
two asymptotic expansions for the l.h.s. of 〈ψ|O(x1)O(x2)〉, one coming from (8.42), and
another from (8.34). The second one is discrete (by assumption), so the first one also must
be discrete. This establishes that the measure dµχdµ̃ν is discrete, a sum of delta functions,
hence we can write (8.39) with the r.h.s. as a sum, not an integral:

〈ψ|O(x1)O(x2)〉 =
∑
n

cχn

∫
dxψχn(x)Bχn(x, x1, x2). (8.43)

A more detailed comparison of this equation with (8.34) leads us to conclude that (a)

cχnψχn(x) = fn〈ψ|Oχn(x)〉, (8.44)

where Oχn are primary operators related by rescaling to a subset of the local operators ϕk,
we choose them unit-normalized (hence a coefficient fn); (b) that all the other operators
ϕk are the descendants Oχn ’s; and (c) that all coefficients Ck(x1, x2) are basically the
expansion coefficients bαχn(x1, x2) in (8.40). From (8.43) and (8.44), we have

〈ψ|O(x1)O(x2)〉 =
∑
n

fn

∫
dx 〈ψ|Oχn(x)〉Bχn(x, x1, x2), (8.45)

for a dense set of states ψ. Because of the orthogonality of different |Oχn(x)〉’s, this
implies that

|O(x1)O(x2)〉 =
∑
n

fn

∫
dxBχn(x, x1, x2)|Oχn(x)〉, (8.46)

the sum convergent in the Hilbert space sense after integrating out with any test function
f(x1, x2). This is eq. (8.38) in the considered case Oi = Oj = O.

72We also tried, but unfortunately we did not manage, to get feedback from Prof. Gerhard Mack con-
cerning this matter.
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8.3.1 Relating Mack’s kernel B to the Euclidean OPE kernel C

Now we would like to relate Mack’s OPE kernel B to our OPE kernel C(µ)(ν)
a,(λ) (x1, x2, x0, ∂0)

defined by eqs. (2.35) and (2.36). We only consider the OPE kernel for the scalar external
operators for simplicity, i.e. Cχ(x1, x2, x0, ∂0), χ = (∆, ` = 0); similar remarks apply in the
general case. We first give the conclusion:

Cχ(x1, x2, x0, ∂0) =
∑
µ

bµχ(x1 − x0, x2 − x0)∂µ0 , (8.47)

where the coefficient functions bµχ are the same as in (8.40). One could “derive” this by
using (8.38) and formally manipulating the integral in the momentum space:73

|O(x1)O(x2)〉χ =
∫
dxBχ(x, x1, x2)|Oχ(x)〉

=
∫
dp B̂χ(p, x1, x2)|Ôχ(p)〉 =

∑
µ

bµχ(x1, x2)|∂µOχ(0)〉, (8.48)

which shows (8.47) in the case when x0 = 0. The general x0 case follows by translation
invariance. This derivation is not rigorous for various reasons: (a) we did not clarify the
meaning of Ôχ(p); (b) why can we swap the order of summation and integration? (c) the
above derivation is done in Minkowski region, how do we match the coefficients bµχ(x1, x2)
with the Euclidean coefficients in (2.36)?

Below we will give a rigorous justification of (8.47), using only the two- and 3-point
functions which are kinematically determined by conformal invariance. Recall that on the
Euclidean side, the formal power series of Cχ (the scalar version of (2.36))

Cχ(x1, x2, x0, ∂0) = 1
(x2

12)∆O−∆χ/2

∑
µ

cµχ(x10, x20)∂µ0 (8.49)

is determined by the Euclidean two- and 3-point functions:

〈O†χ(y)O(x1)O(x2)〉E = 1
(x2

12)∆O−∆χ/2

∑
α

cχ,α(x10, x20)〈O†χ(y)∂αOχ(x0)〉E .

Here we already used translation invariance, which implies C
(µ)(ν)
a,(λ),α(x1, x2, x0) =

c
(µ)(ν)
a,(λ),α(x10, x20) on the r.h.s. of (2.36). One can match the coefficients cµχ(x10, x20) with
the Taylor expansion of 〈O†χ(y)O(x1)O(x2)〉E around x1 = x2 = x0. In Euclidean one can
always find a proper region for the matching: let y be sufficiently far from the (x0, x1, x2)
cluster, so that the Taylor expansions of [(y − x1)2]# around x1 = x0 and [(y − x2)2]#
around x2 = x0 are convergent.

On the Minkowski side, the OPE kernel Bχ is kinematically determined by the equality

ĜOχOO(p, x1, x2) = B̂χ(p, x1, x2)Ĝχ(p), (8.50)

73Since here we are only interested in the OPE kernels Bχ and Cχ, we set fχ = 1 (the overall coefficient)
for convenience.
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where ĜOχOO(p, x1, x2) =
∫
dy 〈O†χ(y)O(x1)O(x2)〉Me−ip·y and Ĝχ(p) =∫

dy 〈O†χ(y)Oχ(0)〉Me−ip·y (see [41], eq. (8.2)).74 All Fourier transforms here are in
the sense of distributions. To get an equation valid in the sense of functions we pick a test
function ϕ with compactly supported Fourier transform, and integrate (8.50) against ϕ̂,
which gives: ∫

〈O†χ(x)O(x1)O(x2)〉Mϕ(x) dx =
∫
dp ϕ̂(p)B̂χ(p, x1, x2)Ĝχ(p). (8.51)

The variable x ranges over the Minkowski space, while we will pick x1, x2 complex, in the
forward tube region

Im(x1), Im(x2) ≺ 0. (8.52)

Then the 3-point function 〈O†χ(x)O(x1)O(x2)〉M is nonsingular as a function of x and the
l.h.s. of (8.51) is a finite number. To transform the r.h.s. of (8.51) we will use the fact that
B̂χ has the following form (a more detailed version than (8.40)):

B̂χ(p, x1, x2) = e−ip·x1

(x2
12)∆O−∆χ/2

Eχ(x12 · p, x2
12p

2), (8.53)

where Eχ(z1, z2) is some entire function on C2. Hence as long as x2
12 6= 0 (not necessarily

real), B̂χ(p, x1, x2) has the following convergent expansion:

B̂χ(p, x1, x2) = e−ip·x1

(x2
12)∆O−∆χ/2

∑
α

aαχ(x21)(−ip)α, (8.54)

where aαχ(x) is some SO(1, d − 1)-covariant, homogeneous, symmetric polynomial of
degree |α|. Plugging this into (8.51), using that the expansion (8.54) converges uniformly
on the support of ϕ̂ (assumed compact), and the fact that Ĝχ is a tempered measure,75 we
obtain:∫

〈O†χ(x)O(x1)O(x2)〉Mϕ(x) dx

= 1
(x2

12)∆O−∆χ/2

∑
α

aαχ(x21)
∫
〈O†χ(x)∂αOχ(x1)〉Mϕ(x) dx. (8.55)

At this stage we have established that for any x1, x2 as in (8.52), and for any test ϕ with
compact ϕ̂, the series in the r.h.s. converges to the l.h.s.

Now the key point is that the r.h.s. of (8.55) is a convergent power series in x21, while
the l.h.s. can be expanded in such a convergent power series. Indeed we know the explicit
form of 〈O†χ(x)O(x1)O(x2)〉M :

〈O†χ(x)O(x1)O(x2)〉M = 1
(x2

12)∆O−∆χ/2
1

[(x− x1)2(x− x2)2]∆χ/2
. (8.56)

74In the unitary CFTs, ĜnOO(p, x1, x2) and Ĝχn (p) vanish unless p ∈ V+, so the behavior of B̂χn (p, x1, x2)
outside the forward light cone is not important.

75This is a consequence of the Bochner-Schwartz theorem: any positive tempered distribution is the
Fourier transform of some positive tempered measure (see [83], section 8.2).
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For all x in the Minkowski space, the function [(x− x1)2(x− x2)2]−∆χ/2 is holomorphic in
x1, x2 as long as Im(x1), Im(x2) ≺ 0. It’s easy to show that this remains true after integra-
tion in ϕ. At this point we can match the expansions for the two sides of (8.55), and get

∑
|α|=n

∫
dxϕ(x)

{(x21)α
α! ∂αx2 [(x− x1)2(x− x2)2]−∆χ/2|x2=x1

− aαχ(x21)〈O†χ(x)∂αOχ(x1)〉M
}

= 0. (8.57)

Up to this point it was crucial to keep the function ϕ in the game to keep convergence
issues under control, but now we can get rid of it. Indeed ∑

|α|=n
is a finite sum, also

〈O†χ(x)∂αOχ(x1)〉M is a holomorphic function in the forward tube T2. For any Minkowski
point x0, we choose a sequence of test functions ϕk of compact support ϕ̂k such that ϕk
tends to δ(x−x0). Passing to the limit, (8.57) implies the same equality for the integrand.
I.e. for any fixed n ∈ N, and any Minkowski x,

(x21)α
α! ∂αx2 [(x− x1)2(x− x2)2]−∆χ/2|x2=x1 − aαχ(x21)〈O†χ(x)∂αOχ(x1)〉M = 0. (8.58)

Now as promised we are reduced to an equation which only involves 2-point and 3-point
functions which are holomorphic. E.g. we can take x = 0 and x1, x2 in Euclidean.
Then this equation is the same one as the equation which determines the Euclidean
OPE kernel for x0 = x1, i.e. Cχ(x1, x2, x1, ∂). For convenience in this discussion we use
Minkowski coordinates for Euclidean correlators (i.e. we write the Euclidean correlators as
〈〈O(−iτ,x) . . .〉M ). Under this convention we have

Cχ(x1, x2, x1, ∂) = 1
(x2

12)∆O−∆χ/2

∑
(µ)
aµχ(x21)∂µ =

∑
(µ)
bαχ(0, x21)∂α. (8.59)

This establishes (8.47) for x0 = x1. The general case reduces to this one by noticing
that cαχ satisfies the relation:

cαχ(x10, x20) =
∑
β6α

1
β!c

α−β
χ (0, x21)xβ10, (8.60)

where β 6 αmeans βi 6 αi for all i; and bχ satisfies the identical relation with cχ → bχ. For
cαχ this follows by translation invariance and analyticity of CFT two- and 3-point functions,
and for bαχ from B̂χ(p, x10, x20) = e−ip·x10B̂χ(p, 0, x21).

9 Review of Osterwalder-Schrader theorem

In this section we review the results of [2, 3] and, in particular, discuss the linear growth
condition and why it was necessary for establishing Wightman axioms in [3].

In [2] Osterwalder and Schrader formulated an equivalence theorem which stated that
a set of axioms for Euclidean correlation functions (a version of the Osterwalder-Schrader
axioms described in section 2.2) is equivalent to Wightman axioms for Euclidean correlation
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functions. Unfortunately, later a technical error was discovered in their proof, and in [3]
Osterwalder and Schrader gave two new results.

The first result of [3] is a revised equivalence theorem, which shows that a stronger
version of Euclidean axioms is in fact equivalent to Wightman axioms. The proof of this
theorem is rather simple. However, as we will review, this is at the expense of the new
version of Euclidean axioms being rather hard to verify.

The second result of [3] shows that the original OS axioms, plus a “linear growth con-
dition,” imply Wightman axioms and a growth condition on Wightman distributions. A
partial result in the reverse direction is also valid. It assumes a stronger growth condition
on the Wightman distributions than follows from the direct result, and it yields a growth
condition on Euclidean correlators which is weaker than the linear growth condition. There-
fore, these latter results do not establish an equivalence of any two systems of axioms, but
they do allow to establish Wightman axioms from OS axioms in some situations.

In what follows we will review the general structure of the arguments of [2, 3]. For
our purposes it will suffice to ignore the space coordinates and focus only on the time
arguments of the fields. We will not completely reproduce all arguments of [2, 3], and
in some of the omitted steps the space arguments and Lorentz symmetry are important.
We will also work with correlation functions involving a single hermitian scalar field φ,
similarly to [2, 3]. In CFT applications we are interested in correlation functions of all
local operators. It should be relatively straightforward to adapt the discussion of [2, 3] to
this more general setup.

Our main goal is to construct an analytic continuation of the Euclidean correlation
functions

GEn (t1, . . . , tn) ≡ 〈φ(t1) . . . φ(tn)〉 (9.1)

from real to complex tk, and to establish that the Wightman functions recovered in the
limit of pure imaginary tk (real Lorentzian times) are tempered distributions. This is
the most non-trivial part of the argument. Other Wightman axioms such as positivity,
spectrum condition, etc., follow relatively easily and have been reviewed in section 6.

9.1 The argument of [2]

Physically, the analyticity of position-space correlation functions is due to positivity of
energy. More concretely, the Euclidean evolution operator e−Ht is well-defined and holo-
morphic in t for Re t > 0 due to the spectrum of H being non-negative. The first step to
establishing analyticity is thus to construct the operator H, and for this we first need to
construct a Hilbert space on which it acts.

The Hilbert space HOS is constructed, as we discussed in section 2.2, by considering
the vector space HOS

0 of formal linear combinations of states76

|φ(t1)φ(t2) . . . φ(tn)〉 (9.2)
76In section 2.2 the states are introduced as integrals of these quantities. This is also what is done in [2, 3],

since they assume only that the Euclidean correlators are distributions. Here, for simplicity of discussion,
we use the knowledge that correlators are functions and use states evaluated at points. The arguments
easily generalize to distributions and smeared states, but become more technical.
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with 0 > t1 > t2 > · · · > tn. A Hermitian inner product is introduced on HOS
0 by

〈φ(s1)φ(s2) . . . φ(sm)|φ(t1)φ(t2) . . . φ(tn)〉 ≡ GEn (−sm, . . . ,−s1, t1, . . . , tn). (9.3)

By OS reflection positivity-axiom this inner product is positive-semidefinite. The Hilbert
space HOS is obtained from HOS

0 by modding out null states and completing the result-
ing quotient space with respect to the above inner product. We can naturally think of
|φ(t1)φ(t2) . . . φ(tn)〉 as states in HOS.

Physically, to construct the Hamiltonian H, we first define it by its action on (9.2).
Then we note that H has to be positive, otherwise the correlation functions would grow
exponentially at large distances. Formally, one first defines for t > 0 an operator Ut
on HOS

0 by

Ut|φ(t1)φ(t2) . . . φ(tn)〉 ≡ |φ(t1 − t)φ(t2 − t) . . . φ(tn − t)〉. (9.4)

The usual care must be taken to ensure that this defines an operator on HOS. For this
one notes that for any Ψ ∈ HOS

0 we have |〈Ψ|Ut|Ψ〉| 6 P (t) for some polynomial P (t) since
the Euclidean correlation functions are assumed to be powerlaw-bounded when groups of
points are separated to infinity. Then a simple estimate gives

|〈Ψ|Ut|Ψ〉| 6 ‖Ψ‖‖UtΨ‖ = ‖Ψ‖|〈Ψ|U2t|Ψ〉|1/2 6 · · · 6 ‖Ψ‖1+1/2+···+1/2n−1 |〈Ψ|U2nt|Ψ〉|1/2
n
.

(9.5)

Using |〈Ψ|Ut|Ψ〉| 6 P (t) we get in the limit n→∞

|〈Ψ|Ut|Ψ〉| 6 ‖Ψ‖1+1/2+···+1/2n−1(P (2nt))1/2n → ‖Ψ‖2. (9.6)

This shows that Ut maps null states to null states and thus is defined on (a dense subset
of) HOS. By the above, it is also a bounded operator, so it extends in a unique way to
all of HOS. Furthermore, noting that it is symmetric, of norm at most 1, and we have
the semigroup law UtUs = Ut+s, we find that Ut = e−Ht for a non-negative self-adjoint
Hamiltonian H (see, e.g., [84] section 141).

Since the domain in which we need to construct the analytic continuation of GEn is
awkward to define in tk variables, we introduce the difference variables yk ≡ tk− tk+1. Due
to translation invariance, GEn (t1 . . . tn) can be rewritten as

GEn (t1 . . . tn) = Sn−1(y1 . . . yn−1) (9.7)

for some functions Sn. Similarly, we will use the following notation for states in terms of
yk variables,

|Ψn(−t1; y1 . . . yn−1)〉 ≡ |φ(t1)φ(t2) . . . φ(tn)〉. (9.8)

Note that

〈Ψm(t′; y′1 . . . y′m−1)|Ψn(t; y1 . . . yn−1)〉 = Sm+n−1(y′m−1, . . . , y
′
1, t
′ + t, y1, . . . , yn−1). (9.9)

– 88 –



J
H
E
P
0
8
(
2
0
2
1
)
0
9
4

In terms of Sn−1(y1 . . . yn−1), our goal is to construct an analytic continuation to Re yk > 0
and show that the limit of all Re yk → 0+ exists in the sense of tempered distributions.

With a positive H now constructed, we can define a holomorphic family of bounded
operators Uτ = e−Hτ for Re τ > 0, which will be our main tool for analytically continuing
the correlation functions Sn. In particular, we can now consider the matrix elements

〈Ψm(t′; y′1 . . . y′m−1)|Uτ |Ψn(t; y1 . . . yn−1)〉 = Sm+n−1(y′m−1, . . . , y
′
1, t
′ + t+ τ, y1, . . . , yn−1),

(9.10)

which are analytic for Re τ > 0. This establishes the desired analyticity of Sn−1(y1 . . . yn−1)
in each variable yk separately. In [2] they additionally establish some growth conditions on
these individual holomorphic functions which then imply that for fixed yk, y′k and Re τ > 0
the above function can be represented as the Fourier-Laplace transform

Sm+n−1(y′m−1, . . . , y
′
1, τ, y1, . . . , yn−1) =

∫
dα e−ατ Š(α) (9.11)

for some tempered distribution Š(α). In other words, Sm+n−1 can be extended to a holo-
morphic function in the right-half plane in each variable separately, and each such holomor-
phic function can be represented as a Fourier-Laplace transform of a tempered distribution.
The erroneous lemma 8.8 of [2] states that under these conditions, the full function Sm+n−1
is a simultaneous Fourier-Laplace transform in all its variables of a tempered distribution,

Sm+n−1(τ1 . . . τm+n−1) =
∫
dα e−α1τ1−···−αm+n−1τm+n−1Šm+n−1(α1 . . . αm+n−1). (9.12)

From this, the tempered Wightman distributions are obtained immediately by setting
Re τk → 0+ in which case the Fourier-Laplace transform above becomes a Fourier transform
of a tempered distribution. Fourier transform of a tempered distribution is, of course,
itself tempered.

9.2 The argument of [3]

9.2.1 Fixing the equivalence theorem

Unfortunately, lemma 8.8 of [2] is wrong. As explained in [3], the function S2(y1, y2) =
e−y1y2 gives a simple counter-example. For fixed y2 > 0,we find that S2(y1, y2) is holomor-
phic for Re y1 > 0 and is there the Fourier-Laplace transform of the tempered distribution
δ(α − y2). The same statements hold with y1 and y2 exchanged. However, S2(y1,y2) is
not a Fourier-Laplace transform of a tempered distribution in both variables simultane-
ously. For if this were the case, the corresponding Wightman function S2(ix1, ix2) = ex1x2

would be a tempered distribution, which it is not since it grows faster than any power in
some directions.

The first result of [3] (see also the review in [43]) rescues lemma 8.8 by making a
stronger assumption about Sn(y1 . . . yn) which they denote by Ě0. Concretely, let Rn+ be
the set of points (y1, . . . , yn) with yk > 0. Let S(Rn+) be the subspace of the space of
Schwartz functions, consisting of functions supported on Rn+ with the induced topology.
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The functions Sn(y1 . . . .yn) can be viewed as distributions in the continuous dual space
S ′(Rn+) defined by, for f ∈ S(Rn+)

Sn(f) ≡
∫
dy1 . . . dyn Sn(y1 . . . yn)f(y1 . . . yn). (9.13)

Note that smoothness of f together with its support properties ensures that f(y1 . . . yn)
vanishes with all derivatives whenever yk = yj for k 6= j. The assumption that Sn has
at most powerlaw singularities at coincident points and at infinity means that Sn(f) is
continuous in f in the topology of S(Rn+). The additional assumption Ě0 is that it is
also continuous in f in a weaker topology. This weaker topology is defined by the usual
Schwartz norms on Rn+

|g|p,+ = sup
x∈Rn+,|α|6p

|(1 + x2)p/2∂(α)g(x)| (9.14)

but applied not to f and instead to its Fourier-Laplace77 transform f̌

f̌(q1 . . . qn) ≡
∫
dy1 . . . dyn e

−q1y1−···−qnynf(y1 . . . yn). (9.15)

One establishes that f̌ = 0 iff f = 0 (injectivity) and that the set of all images f̌ is
dense in an appropriate space of Schwartz functions (denseness). The proof of (9.12) then
becomes straightforward: one first defines Šn by Šn(f̌) = Sn(f). This definition makes
sense due to the injectivity property. The assumption Ě0 ensures that Šn is continuous.
The denseness property just mentioned then allows to extend Šn to an appropriate space
of Schwartz functions by continuity, establishing temperedness of Šn and allowing one to
define tempered Wightman distributions as Fourier transforms of Šn. It is similarly not
difficult to show that Wightman axioms imply Ě0.

9.2.2 Wightman axioms from linear growth condition

As we can see, the axiom Ě0 is not very different from directly assuming temperedness
of Wightman distributions, even though it is formulated for Euclidean correlators. It is
also unclear how to verify this axiom in practice.78 For this reason, [3] introduced an
alternative “linear growth condition” on the correlation functions Sn which is easier to
verify and has been established in some models (see below), yet is also sufficient to establish
temperedness of Wightman functions (though this condition is not known to follow from
Wightman axioms). The construction of the analytic continuation of the functions Sn as

77As written, this is a Laplace transform. It is a Fourier transform in the spatial variables which we are
omitting.

78We would also like to mention related work by Zinoviev [85]. Zinoviev replaces axiom Ě0 by an axiom
E5 which imposes that certain limits exist which allow to compute the inverse Laplace transform of Sn.
While E5 may look like a more constructive version of Ě0, in practice its verification appears just as hard
as assuming outright that Sn is a Laplace transform (which is what Ě0 essentially does). We are grateful
to David Brydges for an enlightening explanation of Zinoviev’s construction, and in particular for pointing
out that it represents a generalization of Post’s Laplace transform inversion formula [86] to the case of
distributions.
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well the proof of the temperedness of the resulting Wightman distributions is much more
complicated than using Ě0. Therefore, our review of these arguments will be even more
schematic than the above, and we will only try to illustrate the key ideas and explain why
and how the linear growth condition is used. We are not aware of any previous attempt to
review this part of [3].

First of all, let us state the linear growth condition of [3]. Note that the correlation
functions GEn can be viewed as distributions in (0S)′(Rd·n), where 0S(Rd·n) is the space of
Schwartz functions of n arguments in Rd which vanish with all derivatives at coincident
points, by

GEn (f) =
∫
ddx1 . . . d

dxn f(x1, . . . , xn)GEn (x1, . . . , xn). (9.16)

Here we have temporarily restored the spatial coordinates. In fact, [2, 3] do not assume
that GEn are functions, and only that they are distributions in (0S)′(Rd·n). It follows,
however, from the OS axioms (without the linear growth condition) that GEn are real-
analytic functions, as shown in [3, 46].

Note that the assumption that GEn ∈ (0S)′(Rd·n) means GEn is sufficiently continuous
as a linear functional or, equivalently, is sufficiently bounded. That is,

|GEn (f)| 6 σn|f |qn (9.17)

for all f ∈ 0S(Rd·n) and some σn > 0 and qn ∈ Z>0, where |f |p denotes the Schwartz norms
on 0S(Rd·n). The linear growth condition requires qn to grow at most linearly, and σn at
most as a power of a factorial. In other words, the linear growth condition is the statement
that there exists a positive integer s and a sequence σn such that

|GEn (f)| 6 σn|f |n·s (9.18)

for any n and f ∈ 0S(Rd·n), and σn 6 α(n!)β for some constants α,β.
The unusual feature of the linear growth condition is that this is a condition on all

n-point correlation functions GEn . It has to hold for all n in order for the result of [3]
to imply, say, even just the temperedness of 3-point Wightman distribution. In order to
understand why this is required, below we will review the basic strategy behind the proof
of [3]. There are two steps in the argument. In the first step, one establishes analyticity of
Sn(y1, . . . ., yn) in the region Re yk > 0. This does not require the linear growth condition
[3, 46]. In the second step, which does use the linear growth condition, one proves a bound
on Sn in this region, which allows the application of Vladimirov’s theorem and thus the
construction of tempered Wightman distributions.

We conclude this section with additional comments about the linear growth condition.
First of all, appendix of [3] shows that the linear growth condition follows from requiring
that GEn ∈ S ′(Rdn) and imposing

|GEn (f1 ⊗ . . .⊗ fn)| 6 σn

n∏
i=1
|fi|r, (9.19)
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for any n, where fi ∈ S(Rd), | · |r is some fixed Schwartz space norm, and σn 6 α(n!)β .
In other words, while in (9.18) the n-point function variables are smeared jointly, here
each variable is smeared separately. Note that the total smearing f1 ⊗ . . . ⊗ fn does not
necessarily exclude coincident points, that’s why we need to assume GEn ∈ S ′(Rdn) and not
GEn ∈ (0S)′(Rd·n) as above.

Although (9.19) is stronger than (9.18), it is easier to verify in particular models. E.g.
it holds for any gaussian scalar field O with a two point function G2 having a powerlaw
asymptotics in the UV.79 It has been also established in some non-gaussian models.80

More generally, bound (9.19) is natural for field theories realizable as random distribu-
tions.81 Imagine that there is a measure dµ in the space of distributions φ ∈ S ′(Rd) such
that for every test function f ∈ S(Rd) the following expectation value is finite:

S(f) =
∫
dµ eφ(f) . (9.20)

Such measures make rigorous sense of the Feynman path integral. Eq. (9.20) is a rigorous
version of generating functional, and differentiating with respect to f one defines correla-
tion functions 〈φ(x1) . . . φ(xn)〉 which are in this framework automatically distributions in
S ′(Rdn). Bound (9.19) in this case can be reduced to an estimate on the growth of S(f).
The Osterwalder-Schrader and Wightman axioms then follow.

The field φ in (9.20) is naturally a “fundamental field” of some model, such as P (φ)2 [88]
or (φ4)3 (see [88], section 23.1 for references). Sometimes this framework can be extended
to generating functionals

∫
dµ eφ

′(f) where φ′ is a composite operator. E.g. φ′ = : φn :,
n < degP , in P (φ)2 is treated in [88]. See also [89] for the general problem to construct
:φ2 : as a random distribution given φ.

9.2.3 Analytic continuation

There are three tricks used together to construct the analytic continuation of Sn. The first
trick was already used above: it is the observation that if the states |Ψn(t; y1, . . . , yn)〉 and
|Ψm(t′; y′1, . . . , y′m)〉 are defined for some values of t, yk and t′, y′k, then we can compute the
matrix elements

〈Ψm(t′; y′1 . . . y′m−1)|Uτ |Ψn(t; y1 . . . yn−1)〉

= Sm+n−1(y′m−1, . . . , y
′
1, t
′ + t+ τ, y1, . . . , yn−1) (9.21)

with Re τ > 0, thus potentially extending the domain of analyticity of Sm+n−1.
79Then GEn (f1 ⊗ . . .⊗ fn) is a sum of (n− 1)!! terms, products of Wick contractions G2(fi ⊗ fj), which

can be bounded by A|fi|r|fj |r where r depends on the UV dimension of O. We thus get (9.19) with
σn = (n− 1)!!An/2.

80See e.g. [87], theorem 1.1.8, which establishes eq. (9.19) for Schwinger functions of arbitrarily high
normal-ordered powers :φn : of the fundamental field φ in weakly coupled P (φ)2 theories.

81See [88], section 6. This book introduced axioms for random distributions, numbered OS0-OS5. This
chosen name is a bit unfortunate because these axioms are quite different in spirit from the original
Osterwalder-Schrader axioms described in section 2.2, and appear much stronger. E.g. they make the
recovery of Wightman axioms a relatively trivial task. We don’t know how to derive the axioms of [88]
from the Euclidean CFT axioms.
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The second trick, intuitively, says that we can write

〈Ψn(t; y1 . . . yn−1)|Ψn(t; y1 . . . yn−1)〉 = S2n−1(yn−1, . . . , y1, 2t, y1, . . . , yn−1), (9.22)

and so the state |Ψn(t; y1 . . . yn−1)〉, whose norm appears in the left-hand side, should
be well-defined as long as the correlation function in the right-hand side is well-defined.
That is, while we start with the states |Ψn(t; y1 . . . yn−1)〉 defined for positive real yk, we
should be able to analytically continue them in yk if we manage to analytically continue
the correlators S2n−1. Of course, this is not a proof that |Ψn(t; y1 . . . yn−1)〉 is well-defined.
We will give the proof below, after we get more information about the domain in which we
wish to construct it.

The final trick is the idea of analytic completion for functions of several complex
variables. Recall that for n > 1 not every domain in Cn is the domain of holomorphy of some
holomorphic function: there exist domains D ⊂ Cn such that any f holomorphic in D can be
extended to a function holomorphic in a strictly larger domain D′ ⊃ D. For our applications
the relevant theorem is Bochner’s tube theorem, which states that any holomorphic function
in a tube domain of the form D = Rn+ iX, where X is a connected open subset of Rn, can
be extended to a holomorphic function on D′ = ch(D) = Rn + i ch(X), where ch denotes
the convex hull. Note that since D′ is a convex set, it is a domain of holomorphy82 and
so f cannot be extended any further by analytic completion alone. The requirement that
X is open is a bit too restrictive and we’ll need also a degenerate case of this theorem, as
described below.

These three tricks are applied one by one infinitely many times in order to construct
the full analytic continuation of Sn. Instead of setting up the procedure in its full glory,
we will only follow the first steps to see how it works in principle. The full analysis is
performed in [3].

First, it helps to introduce new variables wi by

ewi = yi. (9.23)

Our domains of analyticity in terms of wi will always be tubes of the form (w1 . . . wn) ∈
D(X) ≡ Rn + iX for various X ⊂ Rn, and so we’ll often just describe X. For example,
we start with Sn and Ψn defined for real positive yi, which corresponds to the domain
D({0}) in wi.

Consider the 2-point function S1(y1). We start with the domain D({0}) = R in w1,
corresponding to real positive y1. Next, we apply the first trick. Specifically, we write

〈Ψ1(t′)|Uτ |Ψ1(t)〉 = S1(t′ + t+ τ), (9.24)

82To see this, it suffices to show that for any point z on the boundary of D′ there exists a function
holomorphic in D′ but singular at z. In general, such functions might not exist since the set of singularities
of a holomorphic function cannot be arbitrary. However, it is easy to construct a function singular on any
complex codimension-1 hyperplane in Cn (take the reciprocal of an affine-linear function). For a convex D′

one can always find such a hyperplane passing through a given boundary point but staying away from the
interior of D′.
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=⇒

Figure 7. Left: set X2. Right: domain X ′2 which defines the envelope of holomorphy D(X ′2)
of D(X2).

and since we are free to choose t > 0 and t′ > 0 arbitrarily small, while Uτ , as discussed
above, is a well-defined bounded operator for Re τ > 0, we obtain an analytic continuation
of S1(y1) to the right half-plane.

We are now done with the analytic continuation of S1, since our goal was to con-
tinue all yk to the right-half plane. In terms of wi, this corresponds to the domain
w1 ∈ D

((
−π

2 ,+
π
2
))
, i.e. a strip. For higher-point functions, in terms of wi, we should

stop when our domain of analyticity is D
((
−π

2 ,+
π
2
)
× · · · ×

(
−π

2 ,+
π
2
))
.

Consider now the 3-point function S2(y1, y2). We can again use the first trick and
define it on (w1, w2) ∈ D(X2), where X2 = {0}×

(
−π

2 ,+
π
2
)
∪
(
−π

2 ,+
π
2
)
×{0} (see figure 7,

left). In more detail, we write the following two equations for S2(y1, y2), representing it as
an inner product in two ways, and inserting a Uτ ,

〈Ψ2(t′; y′1)|Uτ |Ψ1(t)〉 = S2(y′1, t′ + t+ τ), (9.25)

〈Ψ1(t′)|Uτ |Ψ2(t, y1)〉 = S2(t′ + t+ τ, y1), (9.26)

where the left-hand sides are well-defined (at this point) for t, t′, y1, y
′
1 > 0 and Re τ > 0. We

see that the first equation defines S2(y1, y2) for real y1 > 0 and Re y2 > 0 as a holomorphic
function of y2. The second equation does the same, but with y1 and y2 exchanged. In terms
of (w1, w2) this corresponds to the “analyticity domain” D(X2) described above. We write
“analyticity domain” in quotes because D(X2) is not open (and has empty interior), and
thus is not a domain. Correspondingly, we cannot say that S2 is an holomorphic function
of two variables on D(X2). We will deal with this problem momentarily.

To proceed with the analytic continuation of S2(y1, y2), we want to use the third
trick, the tube theorem, to extend the analyticity domain from D(X2) to D(X ′2), with
X ′2 ≡ ch(X2) (figure 7, right).

The problem with this is that X2 is not open, as mentioned above, so the tube theorem
does not apply. Instead, for this step one has to use Malgrange-Zerner theorem [90], which
allows X2 to be a union of intervals, with S2(y1, y2) separately holomorphic in one variable
on each of these intervals, as is the case in our setup. The conclusion is still that S2(y1, y2)
can be analytically continued to D(X ′2).

Note that the domain D(X ′2) is not yet the full analyticity domain
D
((
−π

2 ,+
π
2
)
×
(
−π

2 ,+
π
2
))

that we are aiming for. In particular, X ′2 is a proper
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subset of the square
(
−π

2 ,+
π
2
)
×
(
−π

2 ,+
π
2
)
, see the right panel of figure 7. Importantly, it

doesn’t approach the corners
(
±π

2 ,±
π
2
)
, which correspond to pure imaginary y1, y2. Pure

imaginary y1, y2 is, in turn, where we want to recover the Wightman distributions.
To extend the domain of analyticity of S2(y1, y2) even further, we need to first extend

the domain of Ψ2(t, y1), which can be done by the second trick above — via the equality

〈Ψ2(t, y1)|Ψ2(t, y1)〉 = S3(y1, 2t, y1). (9.27)

Note that we are not interested in the analytic continuation in t here — it is automatic
when we act on Ψ2 with e−Ht — so we can assume t is real. For S3 we can run the same
argument as we just did for S2 and conclude that it is holomorphic in D(X ′3), where X ′3
is the convex hull of three intersecting intervals on coordinate axes (an octahedron). As
discussed above, we expect that Ψ2(t, y1) is defined whenever t and y1 are such that the
arguments of S3 above are in its analyticity domain. This happens whenever

(w1, log 2t, w1) ∈ D(X ′3),

which is equivalent to

(Imw1, Im log 2t, Imw1) ∈ X ′3. (9.28)

Since we take t to be real and positive, we have Im log 2t = 0 and so t is otherwise
unconstrained. By construction of X ′3 and X ′2, (Imw1, 0, Imw1) ∈ X ′3 is equivalent to
(Imw1, Imw1) ∈ X ′2. Using Imw1 = − Imw1, we conclude that w1 is constrained by

(− Imw1, Imw1) ∈ X ′2. (9.29)

This is equivalent to | Imw1| < π
4 , which is the same as w1 ∈ D

((
−π

4 ,+
π
4
))
. To conclude,

we expect Ψ2(t, y1) to be defined and holomorphic in y1 for t > 0 and w1 ∈ D
((
−π

4 ,+
π
4
))
.

We can now apply the first trick to S2(y1, y2) again, writing it as inner product of Ψ1
and Ψ2 in the two ways (9.25) and (9.26). However, this time we can use Ψ2(t, y1) in a
wider domain of y1, as computed above, equivalent to w1 ∈ D

((
−π

4 ,+
π
4
))
. From (9.25) we

conclude that S2(y1, y2) is analytic for

(w1, w2) ∈ D
((
−π4 ,+

π

4

)
×
(
−π2 ,+

π

2

))
, (9.30)

where the domain of analyticity in w1 comes from that of Ψ2(t, y1), and in w2 from e−Hτ .
Similarly, (9.26) now implies analyticity in the domain

(w1, w2) ∈ D
((
−π2 ,+

π

2

)
×
(
−π4 ,+

π

4

))
. (9.31)

Combining the two together, we find that S2(y1, y2) is analytic for (w1, w2) ∈ D(X ′′2 ), where

X ′′2 ≡
(
−π4 ,+

π

4

)
×
(
−π2 ,+

π

2

)
∪
(
−π2 ,+

π

2

)
×
(
−π4 ,+

π

4

)
, (9.32)

see the left panel of figure 8.
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Figure 8. Left: set X ′′2 . Right: domain X ′′′2 which defines the envelope of holomorphy D(X ′′′2 )
of D(X ′′2 ).

Using the tube theorem, we can now extend the analyticity domain from D(X ′′2 ) further
to D(X ′′′2 ), whereX ′′′2 ≡ ch(X ′′2 ) is the convex hull of X ′′2 shown in the right panel of figure 8.

We see that in order to analytically continue the 3-point function S2, it was useful
to split it into an inner product of one-operator and two-operator states Ψ1 and Ψ2, and
use the information about the latter that is provided by its norm, the 4-point function S3.

Still, we have not yet managed to analytically continue S2 to the entire region of interest
(we still have the corners missing in the right panel of figure 8). The only way to fix this
is to extend the region of analyticity of S3. For that, we have to split it into a product of
two states, and extend the region of analyticity of these states. It is useless to split it as
a product of two Ψ2 states, since their norm is computed by S3 itself and we won’t learn
anything new in this way. Instead, we have to split it as a product of Ψ1 and Ψ3. This
will lead us to consider the norm of Ψ3, which is computed by the six-point function S5.
Following this logic, eventually, we will be forced to consider Sn with arbitrarily high n just
in order to construct the analytic continuation of S2. Fortunately, it can be shown that
this procedure converges to the desired domain D

((
−π

2 ,+
π
2
)
× · · · ×

(
−π

2 ,+
π
2
))

for all Sn,
see [3] for details.

To finish the discussion of the analytic continuation of Sn, let us justify the second
trick, which constructs the states Ψn based on analyticity of their norm S2n−1. Let C be
the domain of analyticity of S2n−1(y1 . . . y2n−1) known to us, expressed in terms of wi,
and let D be the domain of the arguments t, w1 . . . wn−1 of Ψn(t; y1 . . . yn−1) for which the
arguments of S2n−1 in the right-hand side of

〈Ψn(t; y1 . . . yn−1)|Ψn(t; y1 . . . yn−1)〉 = S2n−1(yn−1, . . . , y1, 2t, y1, . . . , yn−1), (9.33)

belong to C. As is clear from the above discussion, C (expressed in terms of wi) is always
of the form C = D(X) for some X. We similarly have D = D(Y ) for some Y . By the tube
theorem (or Malgrange-Zerner theorem), we can assume that X (and thus also Y ) is open,
non-empty, and convex. Furthermore, it is easy to convince oneself that X, and thus Y ,
is invariant under reflections along any of the coordinate real axes (i.e. sending wi to wi
for some i).

Suppose now that we have a point (t;w0
1 . . . w

0
n−1) ∈ D. Then by definition of D

we have

p ≡ (w0
n−1 . . . w

0
1, log 2t, w0

1 . . . w
0
n−1) ∈ C. (9.34)
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p

Re p

C

X

P

Figure 9. Schematic picture of the tube C and polydisk P .

The above properties imply that there are ri > 0 such that the polydisk

P = {(w1 . . . w2n−1)||wi| < ri}+ Re p (9.35)

is contained in C, P ⊂ C, and moreover p ∈ P. Indeed, since C = D(X), this will be true
if ImP ⊂ X and Im p ∈ ImP .83 By construction, ImP is a box with sides 2ri centered
at 0. On the other hand, the properties of X imply that together with any point x, X
contains such a box with x being one of its vertices. We can then find an ε > 0 such that
(1 + ε) Im p ∈ X, and take ImP to be the box defined by the vertex x = (1 + ε) Im p. See
figure 9 for an intuitive picture.

Writing temporarily the state Ψn as a function of wk instead of yk, we define it at wk
by the Taylor series

|Ψn(t;w1 . . . wn−1)〉 ≡
∑
α

(w − Rew0)α
α! ∂α|Ψn(t; Rew0

1 . . .Rew0
n−1)〉 (9.36)

(α is a multiindex so wα = wα1
1 wα2

2 . . . etc.). Note that the state in the right-hand side is
well defined since the corresponding yk = eRew0

k > 0. To check whether this Taylor series
converges, we look at its remainder

∑
|α|>N

(w − Rew0)α
α! ∂α|Ψn(t; Rew0

1 . . .Rew0
n−1)〉, (9.37)

whose norm squared is

∑
|α|>N

∑
|β|>N

(w − Rew0)α
α!

(w − Rew0)β
β!

× ∂α∂βS2n−1(Rew0
n−1 . . .Rew0

1, log 2t,Rew0
1 . . .Rew0

n−1), (9.38)

where β-derivatives act on the first n − 1 arguments of S2n−1, while α-derivatives act on
the last n − 1 arguments. Here we also temporarily write S2n−1 as function of wk. This

83The latter is because Im of the section of P by Rex = Re p is ImP .
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norm is clearly just the tail of the Taylor series of S2n−1 expanded around the point Re p,
and evaluated at (wn−1, . . . , w1, log 2t, w1, . . . , wn−1). (We are not expanding in t.) Since
S2n−1 is holomorphic in the polydisk P centered at Re p, this Taylor series converges in P
and thus this remainder tends to 0 there.

Since p = (w0
n−1 . . . w

0
1, log 2t, w0

1 . . . w
0
n−1) ∈ P , the remainder tends to 0 at p, and

thus (9.36) converges at (t;w0
1 . . . w

0
n−1). Furthermore, since P is open, it follows that (9.36)

converges in some neighborhood of (t;w0
1 . . . w

0
n−1), defining |Ψn(t;w1 . . . wn−1)〉 as a holo-

morphicHOS-valued function in that neighborhood. Since the choice of (t;w0
1 . . . w

0
n−1) ∈ D

was arbitrary, we have defined |Ψn(t;w1 . . . wn−1)〉 as a holomorphic function of wi for all
points in D.

9.2.4 Temperedness bound

Now that the correlation functions Sn(y1 . . . .yn) have been analytically continued from
yk > 0 to Re yk > 0, we only need to establish a bound on their growth as Re yi → 0
in order to construct tempered Wightman distributions by an application of Vladimirov’s
theorem. The logic proceeds by establishing a bound on Sn(y1 . . . yn) for real yk, and then
repeating the analytic continuation described above, while keeping track of this bound. We
will only sketch this rather technical argument in very general terms.

The final temperedness bound that we want to establish is

|Sn(y1 . . . yn)| 6 cn

((
1 +

∑
k

|yk|
)(

1 +
∑
k

(Re yk)−1
))pn

, (9.39)

for some sequences cn and pn.84 We would like (9.39) to hold for all yk, Re yk > 0. For
real positive yk (i.e. in the Euclidean) this holds as a consequence of (2.15). As discussed
in remark 2.4, the original OS axioms did not include (2.15), so their first step was to
derive (9.39) for yk > 0 using (9.17).

In principle at fixed n, (9.39) looks reasonable given (9.17): both say, intuitively, that
the correlation functions cannot be too singular at coincident points or grow too fast at
infinity. However, (9.39) imposes this in a much more direct way. It turns out that in
general one cannot derive direct bounds such as (9.39) from averaged statements such
as (9.17), even if we know that Sn is real analytic.

Consider the real-analytic function sin(ex), x ∈ R. It is a bounded function, hence a
tempered distribution. Thus its first derivative ex cos(ex) is also a tempered distribution.
This is an example of a real-analytic tempered distribution which is not polynomially
bounded. So some further assumptions are needed beyond real analyticity.85

In our case, the functions Sn(y1 . . . yn) are real-analytic and satisfy (9.17). In addition,
they satisfy OS positivity. We already used OS positivity to show real-analyticity, and we
will now have to invoke it again to prove (9.39) for yk > 0. The full argument is rather

84Here, for simplicity, we again ignore spatial arguments of the correlation functions, although they need
to be taken care of at this step in order to establish “temperedness in spatial directions.” Furthermore,
note that Osterwalder and Schrader establish additional bounds on ck, etc., which are not important for
the application of Vladimirov’s theorem.

85Incidentally, our example shows that the Corollary of lemma 1 in [46] is wrong.
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technical; we will explain the main idea on the example of S1(y). Since we know that S1
is holomorphic, in particular harmonic, by the mean value theorem for harmonic functions
we can write it as a radially symmetric average

S1(y) =
∫
dx dt S1(y + x+ it)kρ(x, t)

=
∫
|t|,|t′|<ρ

dt dt′ T (t|gρ(·, t+ t′), gρ(·, t′)), (9.40)

T (t|ϕ1, ϕ2) :=
∫
dx dx′ S1(y + x+ it)ϕ1(x+ x′)ϕ2(x′),

where kρ is a C∞0 radial function supported in a ball of radius ρ and of integral 1, and
we choose ρ sufficiently small so that all points under the integral sign are where S2 is
analytic. We also chose

kρ(x, t) =
∫
dx′ dt′ gρ(x+ x′, t+ t′)gρ(x′, t′), (9.41)

a convolution of another radial C∞0 function with itself (and hence a radial function). The
point of this construction is that, for generic ϕ1, ϕ2, T (0|ϕ1, ϕ2) is an inner product 〈Ψ1|Ψ2〉
of two OS states:

〈Ψ1| =
∫
dxO(y/2 + x)ϕ1(x), |Ψ2〉 =

∫
dxO(−y/2 + x)ϕ2(x). (9.42)

The norm of these states, and hence their inner product, can be bounded using (9.17).
Furthermore T (t|ϕ1, ϕ2) = 〈Ψ1|e−iHt|Ψ2〉 satisfies the same bound. Using this bound for
ϕ1 = gρ(·, t+ t′), ϕ2 = gρ(·, t′), eq. (9.40) gives a bound on S1(y). The same idea works for
higher point functions. We first have to estimate the norm of some states using (9.17).86 We
then analytically continue separately in each time, and then use Malgrange-Zerner theorem
to extend the bound on T to an open set. A single use of Malgrange-Zerner theorem suffices
here, like in figure 7. We refer the reader to section VI.1 of [3] for full details.

Once (9.39) is established for yk > 0, one repeats the analytic continuation procedure
that we described above, keeping track of the implications of (9.39). The analytic continu-
ation used three tricks: (1) analytically continuing Sn by representing it in the form (9.21)
(as e−Hτ inserted between two states), (2) expressing the norms of these states in terms of
higher-point Sn as in (9.22), and (3) analytic completion.

The bound (9.39) propagates through the tricks (1) and (2) by the use of Cauchy-
Schwarz inequality, as well as by using the fact that the norm of e−Hτ is bounded from
above by 1 (i.e. eq. (9.6)).

To propagate the bound through trick (3), the following simple idea is used. Suppose
we have domains D′ ⊃ D such that any holomorphic function f on D can be extended to
a holomorphic function on D′. Then we have the equality of images

f(D′) = f(D), (9.43)
86Note that the linear growth condition is not needed at this point: eq. (9.17) with some σn and qn suffices

to establish (9.39) with some cn and pn. The linear growth condition gives in addition cn of factorial growth
and pn growing at most linearly. This turns out important later in the proof, see below.
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and in particular

sup
z∈D′
|f(z)| = sup

z∈D
|f(z)|. (9.44)

To see this, suppose a ∈ C is a value which f assumes in D′ but not in D. Then the function
(f(z)−a)−1 is holomorphic in D but has a singularity in D′, which is a contradiction. This
shows that if we have a bound on f in D, it is also valid in D′.

Finally, recall that in order to construct the analytic continuation of Sn0 for some fixed
n0, we had to use Sn with arbitrarily high n in the process. This means that in order to
establish the bound (9.39) on Sn0 for all Re yk, we have to use (9.39) for yk > 0 for Sn
with arbitrarily high n. These bounds need to combine in a way that is strong enough to
establish (9.39) for Sn0 . For this, it is important that cn is of factorial growth and pn grows
at most linearly. This requires the same of the sequence σn and the index of the seminorm
in (9.17), explaining the need for the linear growth condition.

10 Conclusions

In this paper we studied the relationship between the modern Euclidean CFT axioms (which
we formulated in section 2.3) and the more traditional Osterwalder-Schrader andWightman
axioms. We showed that at least for (n 6 4)-point functions, both OS and Wightman
axioms follow from the Euclidean CFT axioms. Our Euclidean CFT axioms are quite
modest. In particular, beyond the minimal assumptions of regularity of correlators and the
standard constraints of unitarity, we assumed only a very weak form of the convergent OPE.

Our derivation of Wightman axioms is of particular importance: it shows that the
conformal Wightman 4-point functions are well-defined tempered distributions for arbitrary
configurations of the 4 points, even when no OPE channel is convergent in the sense of
functions. We have furthermore shown that these tempered distributions can always be
computed by a conformal block expansion which is convergent in the sense of distributions,
generalizing our previous results in cross-ratio space [36], and giving a derivation of Mack’s
results [41] from Euclidean CFT axioms.

For example, consider the configuration in figure 10, where the operators in a 4-point
function are inserted at x1 = 0, x3 = ê1, x4 =∞ê1, while x2 = tê0 +xê1 is allowed to move
in a plane parametrized by (t, x). The cross-ratios for this configuration are z, z = x± t. It
is then easy to see that for x2 in the blue region of figure 10 |ρ|, |ρ| < 1 and the s-channel
OPE converges in the sense of functions. Our results imply that the s-channel OPE also
converges in the red region where |ρ| and/or |ρ| = 1, but now the convergence is in the
sense of distributions. In particular, the 4-point function is at least a distribution for all
values of x2. Of course, in some regions of figure 10 this was obviously true — for example,
in the red part of the regions 9,12 (labeling according to the classification in [37]), one
can show that the 4-point function is real-analytic using the convergent t-channel OPE.
One may hope to establish real-analyticity also in the region 7 using u-channel OPE. This
would indeed be the case for the ordering 〈O(x2)O(x1)O(x3)O(x4)〉. However, for the
ordering 〈O(x1)O(x2)O(x3)O(x4)〉 that we are discussing here, it turns out that no OPE
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Figure 10. Minkowski configurations with x1 = 0, x3 = ê1, x4 = ∞ê1 and x2 = tê0 + xê1. Blue:
configurations where |ρ|, |ρ| < 1 and the 4-point functions is analytic. Red: configurations where
|ρ| and/or |ρ| = 1. Boldface numbers X = 7,9,12 denote the causal type of the configuration
according to [37] (excluding lightlike separations). S1,2 are double light-cone singularities.

channel converges in region 7 in the sense of functions.87 Therefore, before our work it
was not at all clear whether this correlator makes any sense in region 7 if we assume only
the Euclidean CFT axioms.

While we have shown that the correlator is at least distributional in region 7, we have
not excluded the possibility of it being real-analytic there. For example, in 2 dimensions
Virasoro symmetry implies that the 4-point function is analytic everywhere away from
light-cone singularities [57]. This is perhaps too much to expect in higher dimensions, but
one can still ask whether analyticity can be established in a larger domain. One approach
is to ask for the envelope of holomorphy of the known domain of analyticity. Since the
4-point function is essentially only a function of two cross-ratios, this might be a tractable
question [91]. We leave working out the full consequences of this idea for future work.88

In an upcoming paper [42], we will generalize our results to external operators with
spins. In addition, there are many other fundamental open questions which we believe
are important to understand. First of all, this paper is concerned with properties of CFT
Wightman functions in Minkowski space. However, it is expected that Lorentzian CFTs
should be naturally defined on Minkowski cylinder [71], which is the smallest physically-
sensible space on which finite conformal transformations can act. Yet, it is not known
whether CFT Wightman functions can be defined as tempered distributions on Minkowski

87For a reader comfortable with cuts in z, z plane the intuitive argument is simple: we have z < 0 (on
what we’ll call s-channel cut), z > 1 (on t-channel cut). Furthermore according to the operator ordering,
when z crosses 0 we need to make Im t slightly negative (and thus Im z slightly negative), because x2 at
this point crosses the null cone of x1, and when z crosses 1 we need to make Im t slightly positive (and thus
Im z slightly negative) because it corresponds to x2 crossing the null cone of x3. Thus both z and z end on
lower sides of their respective cuts, and so one of them must have crossed the u-channel cut at (0, 1) when
analytically continuing from a Euclidean configuration. We conclude that s- and t- channel OPEs are only
distributionally convergent, while u-channel is badly divergent.

88Another approach could be via alternative representations of the 4-point function having an extended
region of analyticity, e.g. [92].
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cylinder (see note 68). Answering this question in the positive for CFT (n 6 4)-point
functions is the main goal of our forthcoming paper [72].

An important problem is to extend our results to (n > 4)-point functions. As we
discuss in appendix B, even deriving the OS axioms might require some strengthening of
the OPE axiom. Another interesting possibility is to formulate Euclidean CFT axioms
as OS axioms supplemented with a very weak form of the OPE (for example, asymptotic
OPE in Euclidean space). This is perhaps less attractive, since it is desirable to formulate
CFT axioms directly in terms of the CFT data (scaling dimensions and OPE coefficients).
However, it will still be interesting to establish an equivalence between OS+(weak OPE
axiom) and (possibly a stronger version of) our Euclidean CFT axioms, perhaps using
arguments similar to those of [41]. Once OS axioms are established, it is likely that a
strategy similar to that of the present paper can be pursued to establish Wightman axioms,
using a comb-like OPE channel.

In this paper we only considered Wightman functions, but in practice one often needs
time-ordered Minkowski correlators. Textbook definition of time-ordered correlators in-
volves multiplying Wightman functions by θ-functions implementing time ordering. Since
Wightman functions are in general distributions, this definition does not make rigorous
sense at coincident points. As a matter of fact, time-ordered correlators have not been rig-
orously defined just from Wightman axioms alone (see e.g. [77], p.505) in a general QFT.
In a general QFT setting, it is known that defining time-ordered Minkowski correlators is
closely related to defining Euclidean correlators at coincident points [93]. In the future,
it would be interesting to define time-ordered CFT Minkowski correlators as distributions
just from Euclidean CFT axioms.89

A more ambitious goal is to understand the relationship of CFT axioms to Haag-
Kastler axioms. This appears to be considerably harder since these axioms deal with
operator algebras rather than local correlation functions, and some qualitatively new ideas
seem to be required.
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A Lorentzian CFT literature

Recent years have seen an explosion of the uses of Lorentzian CFT, motivated in partic-
ular by the conformal bootstrap applications. In this appendix we will mention some of
these works, and comment on their underlying assumptions. See also [96] for a modern
pedagogical introduction to Lorentzian CFT.

Conformal collider bounds. One of the first “modern” Lorentzian CFT results was
obtained in [97]. This work considered a thought experiment, creating a CFT state via a
(smeared) local operator and measuring energy coming out at null infinity in a particular
direction, integrated over time. On physical grounds, one expects 〈Ψ|

∫
dx− T−−|Ψ〉 > 0

for any state (“averaged null energy condition” - ANEC). One interesting case is of 3-point
functions 〈O†TµνO〉 where O has nontrivial spin, when there are several independent OPE
coefficients multiplying different tensor structures allowed by conformal symmetry. In this
case ANEC implies that certain linear combinations of these OPE coefficients must be
non-negative (“conformal collider bounds”). Interference effects can be used to strengthen
conformal collider bounds to provide explicit lower bounds [98], while combining conformal
collider bounds with stress-tensor Ward identities leads to constraints on operator dimen-
sions which are sometimes stronger than standard unitarity bounds [99]. See below for work
aiming to justify ANEC, or to derive conformal bounds directly without using ANEC.

Light-cone bootstrap. Refs. [67, 100] were the first to notice that some bootstrap
constraints become more visible in the Lorentzian signature. These references pioneered
the “analytic light-cone bootstrap” which studies conformal four point functions in the
regime of 0 < z, z < 1 real, i.e. in the kinematics of figure 10 when the point x2 is spacelike
with respect to x1, x3. By studying the light cone limit z → 0 at fixed z of one OPE
channel and requiring that it should be reproduced by the crossed channel, they argued
that, in any CFT for d > 2, the OPE should contain a series of operators of arbitrarily
large spin and twist asymptoting to a particular value. The original argument has some
caveats (see the discussion in [101], appendix F) and a mathematically rigorous proof is
lacking. It would be nice to provide such a proof, given the extreme importance of the
light-cone bootstrap in the modern bootstrap literature. There is little doubt that the
light-cone bootstrap results are correct. Numerical bootstrap studies of the critical 3d
Ising and the O(2) models [102, 103] have found the series of operators predicted by the
light-cone bootstrap see also [104]). Ref. [105] used the light-cone bootstrap to derive the
conformal collider bounds of [97] without using ANEC.

Causality constraints. Refs. [4, 45, 106] pioneered the study of causality constraints for
CFT 4-point functions. In particular ref. [4] pointed out that the z, z and ρ, ρ expansions
are sufficient to construct Lorentzian 4-point functions for many kinematic configurations
and show local commutativity (i.e. that spacelike-separated operators commute). See also
note 64. These techniques led to a proof of ANEC [45]. As mentioned in footnote 29,
some steps in these papers are not completely rigorous. See appendix A.1 below for a more
detailed review of [4].
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Bulk point singularity. Ref. [57] studied the CFT 4-point function on the Lorentzian
cylinder focusing on “bulk-point” configurations which correspond to scattering events
in AdS/CFT [107–111]. Using a local AdS dual description, one may suspect that the
4-point function should be singular at such configurations. However, on the boundary
CFT side, one does not see this singularity in perturbation theory in d = 2 and d = 3
dimensions [57]. In d = 2, ref. [57] showed non-perturbatively that the CFT 4-point
function is analytic everywhere away from light cones (in particular regular at bulk-point
configurations). This assumes Virasoro symmetry and unitarity and uses Zamolodchikov’s
q-variables [112]. What happens non-perturbatively in d > 3 (or in d = 2 in the absence
of the local stress tensor) is still an open problem. Note that at bulk-point configurations,
the ρ-expansion of the CFT 4-point function does not absolutely converge in s-channel (as
|ρ| = |ρ| = 1 there) and diverges in t-,u-channels [37]. In this paper we only considered
the CFT 4-point functions in flat space, but by the same strategy we will show in [72]
that the Wightman axioms also hold for CFT 4-point functions on Lorentzian cylinder.
In particular, this will show that the CFT 4-point functions are well defined at bulk-point
configurations in the sense of tempered distributions (but it will not settle the question of
their analyticity there).

Lorentzian inversion formula. Ref. [56] introduced an analogue of Froissart-Gribov
formula in the context of conformal field theory, which is now known as the Lorentzian
inversion formula (LIF). This formula computes the OPE data of a scalar 4-point function
in terms of a Lorentzian integral of this 4-point function. The OPE data is extracted in
the form of a function C(∆, `). For integer `, the function C(∆, `) encodes the scaling
dimensions of exchanged primary operators of spin ` in the positions of poles in ∆, and
the corresponding OPE coefficients are encoded in residues. LIF has many interesting
properties, such as analyticity in `, and suppression of double-twist operators when a cross-
channel conformal block expansion is used under the integral. The original derivation of [56]
was done in cross-ratio space. The formula was re-derived in position space in [113]. The
derivation was further simplified and generalized in [55].

Among other applications, LIF has been used to systematize and extend many of the
results of light-cone bootstrap (see, e.g., [103, 114–120]). Similarly to light-cone bootstrap,
this application is not completely rigorous simply due to the fact that LIF expresses C(∆, `)
in terms of an integral, and the local operators correspond to singularities of C(∆, `). In
other words, the integral has no chance of converging near the values of ∆, ` relevant
to local operators, except perhaps for leading-twist operators (see [104] for steps in this
direction). This necessarily makes any conclusions about anomalous dimensions of local
operators reliant on additional assumptions. These are easy to justify in some perturbative
expansions, but in non-perturbative setting do not appear to have been solidly understood.

Light-ray operators. Ref. [55] generalized LIF to external operators with spin and
uncovered an interesting relation to Knapp-Stein intertwining operators, especially to what
they called the light transform. They interpreted the analyticity of LIF in ` in terms of
families of non-local non-integer-spin operators, the light-ray operators. These operators
are defined for generic complex ` and reduce to light-transforms (null integrals) of local
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operators for integer spins. More recently, light-ray operators have been used to understand
an OPE for event-shape observables such as energy-energy correlators in CFT [121–123]
(see also [124, 125]). The light-ray operators correspond to poles in ∆ of C(∆, `), and the
issues with convergence of LIF described above prevent a simple rigorous proof of their non-
perturbative existence. (E.g., for generic `, C(∆, `) could have cuts or a natural boundary
of analyticity in ∆.) It would be interesting to find such a proof. In addition to clarifying
the nature of light-ray operators, it would probably also have a bearing on the light-cone
bootstrap results discussed above.

Conformal Regge theory provides a way to understand Minkowski correlators in Regge
limit, and was developed in refs. [126–129]. Regge limit in CFT is a limit of a 4-point
function in Lorentzian signature in which O2 approaches the “image of O3 in the next
Poincaré patch,” in 4-point function with the ordering

〈O4O3O2O1〉. (A.1)

The operators O1 and O4 are kept spacelike separated, with O1 in past of O2 and O4
in the future of O3.90 The image of O3 in the next Poincaré patch is the first point
on Minkowski cylinder where all future-directed null geodesics from O3 meet. A lot of
interest in Regge limit comes from its interpretation as bulk high-energy scattering through
AdS/CFT. Kinematically, this limit is somewhat similar to the O2 → O3 limit because
O3 and its image in the next Poincaré patch transform in the same way under conformal
group. For example, the cross-ratios zt, zt → 0 in Regge limit. (Here by zt, zt we mean the
cross-ratios for t-channel O2×O3.) However, they do so after zt crosses the cut [1,∞), and
so in terms of ρt, ρt we have ρt → 0 and ρt →∞. Therefore, the O2×O3 OPE is divergent.
Conformal Regge theory gives a way to resum the O2 × O3 OPE in a way that exhibits
a dominant contribution from a “Reggeon” exchange, which is an example of a light-ray
operator. Justification for this resummation, which involves analytic continuation of OPE
data in spin, comes from LIF (which historically was understood after Conformal Regge
theory was established). In the context of our paper, it would be interesting to understand
whether such resummations can be made rigorous enough (in axiomatic sense) and used to
prove that Minkowski correlators are functions in regions where so far only temperedness
has been proven.91 For this it might not be necessary to understand the Reggeon or
more general light-ray operators, since the resummation procedure can be stopped at a
point where the correlator is expressed as an integral of C(∆, `) over a region where LIF
converges. See [92] for progress on these questions.

Works of Gillioz, Luty et al. Papers by this group of authors are characterized by
the systematic use of momentum space in Lorentzian CFT. So, refs. [60, 80] computed
Lorentzian momentum space 3-point functions (3 scalars and scalar-scalar-spin `) by solving

90In a symmetric version of the limit, which is related to the one described here by a conformal transfor-
mation, the operators O1 and O4 approach each other’s images in the same way as O2 and O3 do.

91In the classic Regge limit there is a channel in which the OPE converges regularly, but it is possible
that some causal orderings can be relaxed while keeping the resummation procedure valid.
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the conformal Ward identities. In momentum space, it’s also possible to form conformal
blocks by gluing 3-point functions [80]. See also notes 40, 67.

Ref. [130] carried out this program quite explicitly in 2d CFT, with an eye towards
eventual conformal bootstrap applications. They stressed that the momentum confor-
mal block expansion generally converges only in the sense of distributions — one of the
first mentions of distributional convergence in the modern CFT literature. For some mo-
menta configurations, they argued that the momentum conformal blocks can be pointwise
bounded by the position conformal blocks with an appropriately chosen real z ∈ (0, 1). For
such configurations the momentum expansion converges in the ordinary sense of functions.
The same work also proposes a bootstrap equation in the momentum space, obtained by
transforming the local commutativity constraint multiplied by a test function selecting
configurations with a spacelike pair of points (however, examples of test functions chosen
in [130] may be too singular).

Refs. [131–133] studied the Fourier transform of the time-ordered Minkowski 4-point
function in relation to various interesting physics questions. Note that, as mentioned in the
conclusions, time-ordered Minkowski CFT 4-point functions have not yet been rigorously
defined as a distributions. The Fourier transform depends on 4 momenta pi, and to reduce
functional complexity it is interesting to take some or all of these momenta lightlike, p2

i → 0.
So, ref. [131] considered the Fourier transform of the connected time-ordered 4-point

function 〈T {O1O2O3O4}〉c. Here they worked with operators of scaling dimension ∆i >

d/2 for which the Fourier transform is expected to have a finite limit as p2
i → 0.92 Ref.

[131] proposed a Lorentzian CFT analogue of the optical theorem:

ImM1234(s, t) =
∑
O6=1

f12Of
∗
43ONO(q)〈T {Ô1(p1)Ô2(p2)}O†(0)〉〈O(0)T {Ô3(p3)Ô4(p4)}〉,

(A.2)

whereM1234 is proportional to the Fourier transform of 〈T {O1O2O3O4}〉c, fijk is the same
as in (2.33), NO(q) is some normalization factor at q = p1 +p2(= −p3−p4), and Ô denotes
the Fourier transform of O. Eq. (A.2) is supposed to hold in the following kinematic region
in the momentum space:

p2
i = 0, s = (p1 + p2)2 > 0, t = (p1 + p3)2 6 0,

and was derived from a combinatorial operator identity
n∑
k=0

(−1)k
∑
σ∈Sn

1
k!(n− k)!T {Oσ1(xσ1) . . .Oσk(xσk)}T {Oσk+1(xσk+1) . . .Oσn(xσn)} = 0,

(A.3)

summing over all permutations, with T (T ) time ordering (anti-time ordering). Note that
the use of this identity may be not fully safe in the distributional context, as it arises from
a non-smooth partition of unity.

92We thank Marc Gillioz for explanations of his work and in particular of the distinction between the
high dimension case discussed here and the low dimension case below.
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The CFT optical theorem (A.2) was used in ref. [131] to study the scale anomalies that
appear in a specific class of CFT correlation functions. In fact, unlike Wightman functions
which are conformally invariant distributions, time-ordered correlator distributions may,
for certain scaling dimensions, contain pieces which violate scale invariance. Thus the scale
anomaly describes the violation of dilatation Ward identities, and in position space it is
an ultralocal term, located at coincident points. In Fourier space, scale anomaly translates
into a nonzero imaginary part of M1234(s, t) at t = 0. Eq. (A.2) then computes the scale
anomaly coefficient through a positive definite sum rule (in particular predicts that it is
positive). These scale anomalies also appear in the Euclidean signature, and a similar sum
rule for anomaly coefficients can also be found in ref. [131]. However, the Euclidean sum
rule is not positive definite unlike the Lorentzian case.

Ref. [131] tested the above ideas for the scalar 4-point function of external dimensions
∆ = 3d/4. Ref. [132] then studied the more interesting case of the stress tensor 4-point
function 〈T {Tµ1ν1Tµ2ν2Tµ3ν3Tµ4ν4}〉 whose scale anomaly is proportional to the stress-tensor
2-point function coefficient cT . Assuming that the t → 0 limit is finite, the CFT optical
theorem expresses cT as a sum of positive contributions of all operators in the T × T OPE
apart from the identity (the stress tensor contribution is known, proportional to cT , and
can be moved to the l.h.s.). The contributions from the scalars and the spin-2 operators
are computed explicitly in [132].

The more recent ref. [133] studied instead the Fourier transform of the time-ordered
4-point function (or Euclidean 4-point function) in the opposite case of the low external
dimensions ∆φ < d/2. Unlike in [131, 132], in this low dimension case the Fourier transform
is singular as p2

i → 0, and one obtains a finite quantity multiplying it by (p2
i )d/2−∆φ

before taking the limit, a CFT analogue of LSZ reduction. Doing so, they defined a “CFT
scattering amplitude” A(s, t, u) (p2

i → 0 for all i) and a closely related “form factor”
F (s, t, u) where p2

i → 0 only for i = 1, 2, 3. Because the limit p2
i → 0 has to be taken one

momentum at a time, crossing symmetry is not obvious. Ref. [133] also gave an alternative
derivation, starting from the Mellin representation of the CFT 4-point function, where
crossing symmetry of F (s, t, u) and A(s, t, u) follows from the crossing symmetry of the
Mellin amplitude. In the future, crossing symmetric quantities A(s, t, u) and F (s, t, u) may
turn out useful in a bootstrap analysis. It should be stressed that the results of [133] in
no way contradict the usual lore that there are no S-matrices in interacting CFTs. In spite
of the name adopted in [133], the existence of the quantity A(s, t, u) does not imply that
we can set up a wave-packet scattering experiment in a CFT. Wave-packets would quickly
diffuse before reaching the interaction region, the singularity of (p2

i )∆φ−d/2 being a cut
rather than a pole.

A.1 Review of Hartman et al. [4]

Relating different orderings via analytic continuations. Here we will comment
on some of the results of [4] in more details. The first part of this paper considers the
Lorentzian CFT 4-point functions with operators O1, O3, O4 fixed at zero time and the
spatial positions 0, ê1 and ∞, while the operator O2 is inserted at Minkowski position
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t2ê0 + y2ê1. They consider four different operator orderings

〈O2O1O3O4〉, 〈O1O2O3O4〉, 〈O3O2O1O4〉, 〈O1O3O2O4〉 (A.4)

in the region of 0 < y2 < 1/2 and t2 positive. As t2 is increased from zero, the operator O2,
initially spacelike with respect to all other insertions, crosses the light cone first of O1 and
then of O3. With z, z = y2 ± t2, denoting G(z, z) = 〈O2O1O3O4〉, they give the following
prescription to compute the correlators for the other orderings (ref. [4], eq. (3.22)):

〈O1O2O3O4〉 = G(z, z)z→e−2πiz, (A.5)

〈O3O2O1O4〉 = G(z, z)(z−1)→e−2πi(z−1),

〈O1O3O2O4〉 = G(z, z)z→e−2πiz,(z−z0)→e−2πi(z−z0).

Their justification of this prescription relied on some presumed analyticity properties of
G(z, z) which, to our knowledge, have never been shown in a general QFT context. Nev-
ertheless we will see below that for CFTs eq. (A.5) turns out to be true (with z0 = 1).

The real parameter z0 was introduced in [4] as the position of the first z singularity of
G(z, z)z→e−2πiz. Their goal was to show that z0 > 1, which using (A.5) then implies local
commutativity 〈O1[O2,O3]O4〉 = 0 for z < 1 i.e. when O2 is spacelike to O3. In our paper
(section 6.9) we presented a different way to understand and derive local commutativity
which is closer to the classic literature: as we have reviewed there, it is a robust consequence
of the existence of the analytic continuation to the forward tube, which we constructed.

Let’s see what it would take to justify (A.5). We define the function G(z, z) by the
O2 × O1 OPE expansions, which converges for |ρ|, |ρ| < 1, i.e. as long as z, z stay away
from z, z ∈ (+1,∞). The points z = 0 and z = 0 are branch points singularities with
cuts which we put along the negative real axis. Note that the contours in (A.5) are all
within the analyticity domain of G(z, z). So the prescription (A.5) is meaningful. We still
have to see if it agrees with the rigorous definition which computes the Minkowski 4-point
function by analytically continuing from the Euclidean region staying in the forward tube
corresponding to the chosen operator ordering. We will see that it will indeed agree, but
showing it for the last ordering will be subtle.

For definiteness we will focus on the region t2 > 1−y2 i.e. z > 1, where O2 crossed both
light cones. The end point of the analytic continuation contour is always the same while the
initial point depends on the operator ordering. E.g. for the ordering 〈O2O1O3O4〉 we have
to pick initial Euclidean times ε2 > ε1 > ε3, while for 〈O1O2O3O4〉 we have ε1 > ε2 > ε3
etc. For any of these orderings, we denote

z1, z1 = ±iε1, z2, z2 = y2 ± i(ε2 + it2), z3, z3 = 1± iε3 (A.6)

and compute (in the limit z4, z4 =∞)

z = z1 − z2
z1 − z3

, z = z1 − z2
z1 − z3

. (A.7)
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Figure 11. z, z curves for the analytic continuation from the Euclidean; the first 3 orderings.

z

z�

Figure 12. z, z curves for the analytic continuation from the Euclidean for the 〈O1O3O2O4〉
ordering.

z

z�

Figure 13. z, z curves for computing the 〈O1O3O2O4〉 ordering via (A.5).

We are interested in the curves which z, z trace as the Euclidean times are scaled to zero
and the Minkowski time t2 from 0 to its final value. For the first three orderings the
resulting curves are shown in figure 11.

We see that in all these cases, the curves lie in the analyticity domain of G(z, z) i.e.
they don’t cross (1,+∞). For the first two cases this was guaranteed by our results that
|ρ|, |ρ| < 1 for the s-channel OPE expansion. For the third case it was not guaranteed but
it also turns out to be true, by inspection. We also see that in all these 3 cases, the curves
go around z = 0 and z = 1 in agreement with (A.5).93

For the fourth ordering 〈O1O3O2O4〉 when we have to assign ε1 > ε3 > ε2, the
analytic continuation inside the forward tube gives the z, z curves shown in figure 12, while
prescription (A.5) would correspond to figure 13.

93To see this more clearly in the third case, deform the curves continuously moving the initial z into the
upper half plane and the initial z into the lower half plane.
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Figure 14. Deforming the z, z curves for the 〈O1O3O2O4〉 ordering.

The two figures are clearly not the same. Moreover the curves in the first figure cross
(+1,∞) where the definition of G(z, z) via the O1 × O2 channel OPE expansion stops
converging. Can we show that the analytic continuation in figure 12 exists and that it
agrees with the one in figure 13?

For this, let us bring in the O2 ×O3 OPE expansion, which correspond to expanding
in zt = 1 − z, zt = 1 − z or in the corresponding ρt, ρt. In the Euclidean region the
two expansions agree. The O2 × O3 expansion converges away from zt, zt ∈ (+1,∞) i.e.
z, z ∈ (−∞, 0). Thus the curves in both figures 12, 13 lie within the range of analyticity
of the O2 × O3 expansion, so we can compare the analytic continuations. Since only
integer spins occur in the expansion, the analytic continuation does not change under
ρt → e2πiρt, ρt → e−2πiρt (such arguments were systematically exploited in [37]).94 So
let us add extra loops to the blue and the red curves in the opposite directions around 1,
see figure 14. Adding the loops and deforming the curves continuously (the first step is
shown in figure 14) we can bring them to those in figure 13. This finishes the proof that
the prescription (A.5) is correct also for the fourth ordering.

Positivity constraints. We wish to comment on another result of [4]: an argument
for positivity of certain conformal block expansion coefficients. We present the argument
exchanging the role of s an t channels w.r.t. [4]. Let G(z, z) = 1 + . . . be the holomorphic
function defined by the s-channel OPE expansion (i.e. (zz)∆1+∆2 times theG(z, z) discussed
above). We will define a certain analytic continuation of the function G(z, z). Let us start
with z and z close to zero, z in the upper half plane and z in the lower half plane. In
this range all three channels s,t,u converge. We wish to analytically continue G(z, z) by
taking z through (1,+∞) and bring it back close to zero, in the upper half plane (see
figure 15), while we don’t touch z. This analytic continuation can be performed using
the t-channel or u-channel expansions, with the same result (but not the s-channel since
it stops converging on (1,+∞)). We denote the result of this analytic continuation by
Ĝ(z, z), with Im z, Im z > 0.

Although Ĝ(z, z) is so defined with both z, z in the upper half plane, it has continuous
limits when they both approach positive real axis, or both approach negative real axis, since
in the first case the t-channel and in the second case the u-channel remains convergent.
We will be interested in the situation when O1 = O2, O3 = O4. In this case all expansion

94Sometimes this property is called “Euclidean single-valuedness”.
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Figure 15. Definition of Ĝ(z, z). Red: integration contour in eq. (A.11).

coefficients in the t and u channels are positive. This implies that the Euclidean correlator
GE(z, z) will be positive for real z, z > 0 (using t-channel) and for real z, z < 0 (using
u-channel). The difference between GE(z, z) and Ĝ(z, z), for real z, z > 0 or z, z < 0 is
that in the first case z, z approach the real axis from the opposite sides while in the second
case from the same one. When we take z through (1,+∞) cut, this only brings in some
phases in the t and u-channel expansion of Ĝ(z, z) with respect to GE(z, z). This implies
that we have a bound for real z, z > 0 or z, z < 0:

|Ĝ(z, z)| 6 GE(z, z) (A.8)

In what follows Ĝ(z, z) will be used as a holomorphic function with z, z in the upper half
plane satisfying the bound (A.8) on its boundary, while GE(z, z) will be used only with
real z, z.

In particular, since GE ≈ 1 for z, z near zero up to small corrections, eq. (A.8) says
that Ĝ is bounded, for small real z, z > 0 or z, z < 0, by 1 up to small corrections. This
argument can be generalized to show that Ĝ(z, ηz) for η > 0 real and z near zero in the
upper half plane is bounded by a constant.95

We now pass to the non-rigorous part of the argument. Although the s-channel stops
converging when crossing (1,+∞), ref. [4] proposed that, in the regime |z| � |z| � 1, the
behavior Ĝ(z, z) can nevertheless be predicted from the s-channel expansion, by organizing
it in zτ/2 where τ = 1

2(∆− `) is the twist. The typical term is

zτ/2k 1
2 (∆+`)(z), (A.9)

where kh(x) =2 F1(h, h, 2h, x) is the collinear conformal block. This is the same expansion
as used in the light-cone bootstrap, which has its own problems of rigor, but here it is
proposed to use it after z−1→ e2πi(z−1). Under this continuation the collinear conformal
block, which has a log(1− z) behavior near z = 1, picks up an imaginary piece which, for
z small, behaves as ∼ iz1− 1

2 (∆+`) (see [4], eq. (4.28)). Considering z = ηz, η � 1, |z| � 1,
we then have, according to the proposal of ref. [4],

Ĝ(z, ηz) ≈ 1−B(∆, `)p∆,` × i
ητ/2

z`−1 , (A.10)

95Let z = reiϕ, r � 1. We consider 0 6 ϕ 6 π/2, when the argument uses the t-channel, the case
π/2 6 ϕ 6 π is analogous using the u-channel. The key point is that the ρ variable in the t-channel
ρt ≈ 1−

√
reiϕ/2, |ρt| ≈ 1−

√
r cos(ϕ/2). This allows to compare the function Ĝ(z, ηz) to GE(z′, ηz′) with

real z′ = r cos2(ϕ/2), times a factor ∼ (zz)∆1/(z′z′)∆1 from the crossing kernel, which is bounded by a
constant.
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where ∆, ` are the dimension and spin of the leading twist operator (which may e.g. be the
stress tensor), p∆,` its conformal block coefficient, and B(∆, `) > 0 some explicitly known
constant. The spin ` is even since we are assuming O1 = O2. Eq. (A.10) assumes that the
limit η → 0 is taken before z → 0.96

Now, let us consider the holomorphic function f(z) = 1 − Ĝ(z, ηz), and integrate
z`−2f(z) along the contour shown in figure 15.97 We have∫

arc
z`−2f(z) dz +

∫ ε

−ε
x`−2f(x) dx = 0. (A.11)

Using (A.10) and that the integral over the arc of 1/z is πi, we get in particular:98

πB(∆, `)p∆,` ≈ η−τ/2
∫ ε

−ε
x`−2 Re[1− Ĝ(z, ηz)] dx

≈ η−τ/2
∫ ε

−ε
x`−2 Re[GE(z, ηz)− Ĝ(z, ηz)] dx, (A.12)

where in the final step we replaced 1 by GE(z, ηz). Since GE(z, ηz) has a rigorously
convergent expansion for small z, it satisfies the bound:

GE(z, z) = 1 +O(ητ/2). (A.13)

So the last replacement was legitimate if e.g. ` > 2. By (A.8), the r.h.s. of (A.12) is a
positive quantity. This equation then implies that p∆,` must be positive as well.

As already mentioned, the weak point of this argument is that the s-channel expansion
stops converging when we cross (1,+∞). It is therefore not at all obvious that analytic
continuations of the individual conformal block expansion terms have anything to do with
the asymptotics of Ĝ(z, z). Ref. [4] was of course aware of this, and provided some ar-
guments, inspired by the light-cone bootstrap, why nevertheless the asymptotics from the
leading twist terms can be trusted. We don’t know how to make those arguments rigorous.
It would be interesting to understand if asymptotics (A.10) can be justified using just Eu-
clidean CFT axioms of section 2.3 or requires additional assumptions. The same question
also looms over the proofs of ANEC [45] and ANEC commutativity [122] which involved
similar “light-cone limit on the second sheet” considerations.

B OS axioms for higher-point functions

In this appendix we discuss the modifications necessary to derive from the Euclidean CFT
axioms the OS axioms (positivity and cluster property) for n-point functions with n > 4,

96In fact, in the opposite limit z → 0 for fixed η, eq. (A.10) would violate the discussed above rigorous
bound that Ĝ(z, ηz) is bounded by a constant. There is no paradox because that’s not the limit we are
supposed to be taking.

97We can also take an intermediate step of adding a small semicircle of radius ε′ around zero, but since
Ĝ is bounded for small z, the limit ε′ → 0 is not problematic.

98Note that the quantity Re[GE(z, ηz)−Ĝ(z, ηz)] appearing in (A.12) is essentially the double discontinu-
ity considered in [56]. Similarly, eq. (A.12) can be formally obtained from the Lorentzian inversion formula
of [56] by expanding the integrand in a light-cone limit. We thank Tom Hartman for pointing this out.
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compared to the n 6 4 case considered in section 3.1. As we explain below, it appears
that there is no simple proof of OS positivity for n > 4 from the Euclidean CFT axioms of
section 2.3. Since the reason for this is rather technical, let us first discuss the conceptual
implications of this.

Ideally, one would like to have a set of Euclidean CFT axioms that would imply
Wightman axioms (and therefore also OS axioms) and also be powerful enough to derive
all the usual CFT lore such as OPEs, radial quantization, operator-state correspondence,
crossing symmetry, etc. These statements, as we saw in the main text, make sense and can
be non-trivial even when we restrict our attention to n-point functions with bounded n.

In particular, we have found that the axioms we formulated in section 2.3 achieve the
above goal for n 6 4. Extending our results to n > 4 using the same strategy would require
a solution to two problems: first, we need to derive OS axioms (specifically, positivity and
cluster property) for n > 4, and, second, we need to prove that OS axioms together with
the OPE imply Wightman axioms.

Conceptually, it seems plausible that OS axioms + OPE imply Wightman axioms for
n > 4 because we expect that for n > 4 there is again an OPE channel which is convergent
in the entire forward tube (i.e. the one given by taking the OPE in the same order as the
operators appear in the Wightman ordering). This question clearly merits further study
but is beyond the scope of this paper.

However, it is less clear to us how to even attempt a derivation of OS positivity for
n > 4 from Euclidean CFT axioms of section 2.3. Let us first explain why this is the case,
and then we will discuss the possible modifications to these CFT axioms.

Suppose we want to prove the positivity

〈Ψ|Ψ〉 > 0, (B.1)

where Ψ is a state created by a product of three local operators, |Ψ〉 =
|ϕ1(x1)ϕ2(x2)ϕ3(x3)〉.

To prove this positivity the natural idea would be to use the OPE expansion repeatedly
for the two copies of Ψ and then use the positivity of the 2-point function. However, for
this we need our OPE approximation for 〈Ψ| to be conjugate to our approximation for |Ψ〉.
This is non-trivial to achieve because we have to perform the OPEs one at a time. For
example, we can first construct an approximation of |Ψ〉 in terms of a state |Ψ′〉, created
by single operator insertions, such that

|〈Ψ|Ψ〉 − 〈Ψ|Ψ′〉| < ε. (B.2)

Similarly, we can construct a state 〈Ψ′′| such that

|〈Ψ′′|Ψ′〉 − 〈Ψ|Ψ′〉| < ε (B.3)

and thus

|〈Ψ′′|Ψ′〉 − 〈Ψ|Ψ〉| < 2ε. (B.4)
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These approximations are possible by the repeated use of the OPE (3.2). Note, however,
that since the OPE axiom is formulated for correlation functions, the number of terms we
have to include in the OPE for a given ε depends on the correlation function in which the
OPE is performed. It then follows that the state 〈Ψ′′| depends on |Ψ′〉 (because in order to
construct it we use the OPE in the correlation function 〈Ψ|Ψ′〉) and is in general different
from it. It is therefore not obvious that 〈Ψ′′|Ψ′〉 > 0, which is what we would like to use
in order to prove 〈Ψ|Ψ〉 > 0 with the help of the above inequalities.

In the case when n = 4 and |Ψ〉 is created by 2 operators we were able to solve this
difficulty. This was because in this case the only difference between |Ψ′〉 and 〈Ψ′′| can be
in the number of OPE terms included in the approximation, and we were able to use an
orthogonality property of the 2-point function to show 〈Ψ′′|Ψ′〉 = 〈Ψ′|Ψ′〉 by arguing that
we can assume that 〈Ψ′′| contains more terms than |Ψ′〉 and that those terms which are in
〈Ψ′′| but not in |Ψ′〉 do not contribute to the product 〈Ψ′′|Ψ′〉.

This argument does not work in the case at hand, |Ψ〉 = |ϕ1(x1)ϕ2(x2)ϕ3(x3)〉. The
reason for this is that in order to construct |Ψ′〉 or 〈Ψ′′| we need to perform two OPE’s
in each case. For example, the first one can be ϕ1 × ϕ2 = ∑

kOk and the second one can
be ϕ3 × Ok. Both OPE’s have to be truncated at some point, and while the truncation
of the second OPE affects only the set of terms that are present in |Ψ′〉 or 〈Ψ′′|, where
we truncate the first ϕ1 × ϕ2 OPE affects the coefficients of these terms. Since now |Ψ′〉
and 〈Ψ′′| contain terms with differing coefficients, we cannot use orthogonality to argue
〈Ψ′′|Ψ′〉 = 〈Ψ′|Ψ′〉anymore. There is no way to ensure that ϕ1×ϕ2 OPEs are truncated in
the same way in the construction of both states because the truncation in 〈Ψ′′| depends,
through our OPE axiom, on |Ψ′〉, and thus might happen to be always at a higher order
than the truncation used for |Ψ′〉.

This all is to say that due to a rather technical reason it appears that there is no simple
proof of OS positivity of higher-point functions from the Euclidean CFT axioms as stated
in section 2.3. Importantly, this doesn’t mean that there is no proof at all. Indeed, the
Euclidean CFT axioms are sufficient to derive the standard crossing-symmetry equations
for 4-point functions. It could happen that in all solutions to these crossing-symmetry
equations the OPE coefficients have such asymptotics that a stronger form of the OPE
axiom holds and allows us to prove the OS positivity for n > 4. However, it is not clear
how to implement this line of reasoning in practice.

It is therefore interesting to look for a stronger version of Euclidean CFT axioms. We
discuss below some simple modifications of the OPE axiom which avoid the above problem
and allow to prove OS positivity for higher-point functions.

Morally, we want some kind of statement of uniformity for the convergence rate of
the OPE: it should make |Ψ′′〉 above independent of the truncation made in |Ψ′〉, as long
as this truncation is done at a sufficiently high order. This would allow us to make both
truncations at a high order and ensure 〈Ψ′′|Ψ′〉 = 〈Ψ′|Ψ′〉 ≥ 0.

One option is to assume a stronger form of the OPE, which allows us to perform two
OPE’s simultaneously Specifically, we can assume that the double sum

〈O1O2O3O4 . . .〉 =
∑
k,l

〈OkOl . . .〉, (B.5)
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is convergent, where we wrote the two OPEs schematically as O1O2 = ∑
kOk and O3O4 =∑

lOl. Convergence of the double sum means that∣∣∣∣〈O1O2O3O4 . . .〉 −
∑
k,l

〈OkOl . . .〉
∣∣∣∣ < ε, (B.6)

when the sums are truncated in a way that includes some ε-dependent finite set of terms,
but is otherwise arbitrary. In particular, both sums can be truncated in the same way,
and this solves the problem that we encountered above. A disadvantage of this approach
is that it is unclear how to derive this axiom from OS axioms and the usual single OPE
axiom (however, a heuristic argument based on cutting the Euclidean path integral can be
made). This is somewhat subtle and is related to the question of whether the path integral
over a spherical layer (r1 < r < r2) with operator insertions in the interior represents a
bounded operator. We can’t say with confidence whether or not this is the case.

Another option is to assume resumed repeated OPE, i.e. that the following sum con-
verges, schematically,

〈O1 . . .OmOm+1 . . .On〉 =
∑
k

ck〈OkOm+1 . . .On〉, (B.7)

where the coefficients ck are chosen so that

〈O1 . . .OmOθk〉 = ck〈OkOθk〉, (B.8)

assuming 〈OkOθl 〉 ∝ δkl. This version of the axiom is essentially the statement that one-
operator states form a basis of the CFT Hilbert space, formulated without explicitly intro-
ducing the Hilbert space. In other words, above we are approximating the state 〈O1 . . .Om|
in terms of an orthonormal basis of states 〈Ok|, and the coefficients are computed by inner
products. This form of the axiom is easy to derive from OS + convergent OPE, and also
easily allows us to solve our problem by using the same strategy as in the case n = 4.
However, it does appear to be an overly strong assumption, making our axioms not very
different from assuming OS + convergent OPE outright.

Finally, an interesting prospect might be, instead of formulating an entirely new set
of axioms, to add an asymptotic OPE axiom (and conformal invariance) to OS axioms.
It is likely that using logic very similar to that of Mack [41], which we reviewed in sec-
tion 8.3, one can prove that (OS axioms)+(asymptotic OPE)+(conformal invariance) imply
convergent OPE.

C Details on Vladimirov’s theorem

C.1 Limit in the sense of distributions

Let us start with a reminder of what the limit in the sense of tempered distributions
means. Let f(u), u = (tk,xk) ≡ (t1,x1, . . . , tn,xn) ∈ Rnd, be a Schwartz test function, i.e.
an infinitely differentiable function decreasing at infinity faster than any power together
with all its derivatives. This can be also stated as finiteness of all Schwartz norms:

|f |N = sup
u∈Rnd,|α|6N

(1 + u2)N/2|∂αu f | <∞ ∀N > 0. (C.1)
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That the limit (4.8) exists in the sense of distributions means two requirements. First, that
the r.h.s. of (4.8) has a finite limit integrated against any f as above:

(GMn , f) := lim
εk→0

∫
dt dxGn(εk + itk,xk)f(tk,xk) exists for any Schwartzf. (C.2)

The GMn defined by this equation is a linear functional on the Schwartz space. The second
requirement is that this functional should be continuous (and thus is itself a tempered
distribution). Continuity means that it should be bounded by one of the norms (C.1) with
a sufficiently large N , i.e.:

|(GMn , f)| 6 C|f |N∗ , (C.3)

with f -independent C and N∗.
Note that by eq. (C.3), GMn can be extended from the Schwartz space to a larger space

of test functions, which are required to be differentiable only N∗ times and have a finite
|f |N∗ . Parameter N∗ thus characterizes regularity of the distribution GMn . The proof of
theorem 4.1 will determine N∗ in terms of An and Bn, see eq. (C.6).

C.2 Proof of theorem 4.1

Unfortunately, we do not know a reference where theorem 4.1 is stated and proved suc-
cinctly in the form we need. Such results are considered standard in the theory of several
complex variables. For similar statements see [134], Chapter 5, and [5], theorem 2-10. For
the convenience of the reader, we present here a proof based on these sources.

The usefulness of Vladimirov’s theorems for establishing distributional properties of
CFT correlators was recognized in our recent work [36]. There, we considered expansions
of the CFT 4-point function g(ρ, ρ) in terms of conformally invariant cross-ratios ρ, ρ. It is
well known that such expansions converge in the interior of the unit disk |ρ|, |ρ| < 1. Using
Vladimirov’s theorems, we showed in [36] that they also converge on the boundary of this
disk, in the sense of distributions. In this paper we are interested in CFT correlators as
functions of positions xk, not of cross-ratios, but the basic principle is the same as in [36]:
a powerlaw bound on an holomorphic function near a boundary implies temperedness of
the limiting distribution.

By translation invariance it’s enough to study the function Gn expressed in terms of
the differences yk = xk−xk+1 which we denote by G(y), y = (y1, . . . , yn−1). We also denote
yk = (y0

k,yk), y0
k = εk + isk, εk > 0, yk ∈ Rd−1.

Consider first the case when all εk go to zero together along a fixed direction: εk = rvk
where r → 0 and v = (vk) is a vector with positive components. Later on we will show that
the limit continues to exist if εk → 0 independently (as well as the more general statement
about the limit from inside the forward tube).

So, let us prove that G(y) has a limit as r → 0 which is a tempered distribution in
variables sk, yk. As in (C.2), we fix a Schwartz test function f and consider the integral
(we will omit index k on ε, s, v,y if no confusion may arise)

h(r) =
∫
ds dyG(rv + is,y)f(s,y). (C.4)

– 116 –



J
H
E
P
0
8
(
2
0
2
1
)
0
9
4

Te problem is analogous to theorems used in [36], so we will be brief. As in [36], section
3.3 and appendix C, using analyticity in y0, integration by parts, and the powerlaw bound
one can show that derivatives of h in r satisfy the bound:

|∂jrh(r)| 6 C

rAn
|f |N , (C.5)

where |f |N is a Schwartz norm (C.1) of a sufficiently large order N depending on j and
Bn. The constant An is the same as in (4.9), in particular the same An works for all j.
In what follows we only need this equation for finitely many j (up to [An] + 1). Using the
Newton-Leibniz formula in the r direction several times, one then proves that the same
bound as (C.5) holds in fact without 1/rAn singularity in the r.h.s. It then follows that,
first of all, limr→0 h(r) exists, and second, it is a continuous linear functional of f , that
is, a distribution. The limit holds uniformly when the components vk vary on any fixed
compact interval contained in (0,+∞). Its v-independence is shown exactly as in [36],
eq. (C.7). Let us denote the limiting distribution G(is,y) ≡ GM (s,y).

It is of some interest to know the precise regularity of the distribution GM (i.e. how
many derivatives the test function must have to be pairable with GM ) and the rate of its
growth at infinity. Following the above argument in detail, one can show the following
bound which contains this information:

|(GM , f)| 6 Const .
∫
ds dy (1 + |s|+ |y|)Bn max

|α|6[An]+1
|∂αs f(s,y)|. (C.6)

This in particular implies (C.3) with N∗ = max([An] + 1, Bn + nd+ 1).
Parts 2,3 of theorem 4.1 are new compared to [36], since such questions do not arise

in the cross-ratio space.
Lorentz invariance is easy to show, as follows. Rotation invariance of GEn implies that

G(y) satisfies for real y the differential equations

{ya∂yb − yb∂ya}G(y) = 0, a, b ∈ {0, 1, . . . , d− 1} (C.7)

(as usual y = (yk), summation in k understood). By the uniqueness of analytic continua-
tion, these equations continue to hold for complex y0. That’s the only place where we use
real-analyticity in the spatial direction.99 By taking the limit ε → 0 in (C.7), we recover
precisely the differential equations expressing the Lorentz invariance of GM . Let us explain
in more detail how the limit is taken and why it exists. Consider for definiteness a = 0,
b = 1, other cases being similar. Eq. (C.7) then says {(ε+ it)∂y1 + iy1∂t}G(ε+ it,y) = 0,
in the sense of functions, and hence integrating by parts in the sense of distributions acting
on test functions ϕ(t,y):

(Gε, {(ε+ it)∂y1 + iy1∂t}ϕ) = 0, (C.8)

where we denoted Gε(t,y) = G(ε + it,y). Now we take the limit ε → 0. We know
that (a) Gε → GM in the sense of distributions, and also that (b) |(Gε, ϕ)| is uniformly

99With some extra tricks, it’s possible to replace it by the assumption of mere continuity in y, as in [3],
theorem 4.3. In the CFT applications we have in mind, real analyticity appears a more natural assumption.

– 117 –



J
H
E
P
0
8
(
2
0
2
1
)
0
9
4

bounded as ε → 0 by some Schwartz norm of ϕ. By (b) the term (Gε, εϕ) in (C.8) drops
out when ε → 0, and by (a) the rest tends to (GM , {it∂y1 + iy1∂t}ϕ). So we conclude
that (GM , {it∂y1 + iy1∂t}ϕ) = 0 which expresses invariance of GM under the 01 Lorentz
transformation.

Let us proceed to show the rest of Parts 2,3. It will be crucial that G can be written
as a “Fourier-Laplace transform”:

G(ε+ is,y) =
∫

dE dp
(2π)d(n−1) g(E,p)e−(ε+is)E−ipy, (C.9)

where g(E,p), E ∈ Rn−1,p ∈ (Rd−1)n−1 is a tempered distribution, called “spectral func-
tion”, supported at E > 0 (by which we mean all Ek > 0) [later this will be improved to
E > |p|]. We are omitting the indices, thus εE = ∑

k εkEk, etc. The equality in (C.9) is
understood in the sense of distributions, with the r.h.s. being the inverse Fourier transform
of the tempered distribution g(E,p)e−εE . In other words, what this means is that∫

ds dyG(ε+ is,y)f(−s,−y) =
∫

dE dp
(2π)d(n−1) g(E,p)e−εE f̂(E,p), (C.10)

for any Schwartz test function f , and f̂ its Fourier transform.
Let us show (C.9). Notice first that for every ε > 0 we can write

G(ε+ is,y) =
∫

dE dp
(2π)d(n−1) gε(E,p)e−isE−ipy, (C.11)

where gε is the Fourier transform of G(ε+is,y) with respect to s,y. This Fourier transform
exists as a tempered distribution, since G(ε+ is,y) is itself a tempered distribution in s,y
(being a real-analytic function, bounded by a power at infinity). In addition, G(ε+ is,y) is
differentiable in ε and s and satisfies the Cauchy-Riemann equations. From here it’s easy
to show that gε as a distribution is differentiable in ε and satisfies the differential equations:

∂gε
∂εk

+ Ekgε = 0 (k = 1, . . . , d− 1). (C.12)

From here we conclude that

g(E,p) := gε(E,p)eεE (C.13)

is an ε-independent distribution. Substituting gε(E,p) = g(E,p)e−εE into (C.11), we
obtain (C.9). Note that since g and gε are related by an exponential factor, we can so far
only claim that g is defined as a distribution on test functions of compact support. Let us
show next that it is in fact tempered (i.e. extends to Schwartz test functions).

To this end, consider the inverse of (C.11):

gε(E,p) = g(E,p)e−εE =
∫
ds dyG(ε+ is,y)eisE+ipy, (C.14)

and integrate it against a compactly supported test function ϕ(E,p). We get (com-
pare (C.10)): ∫

dE dp g(E,p)e−εEϕ(E,p) =
∫
ds dyG(ε+ is,y)ϕ̂(−s,−y). (C.15)
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As ε → 0, the l.h.s. tends to the pairing (g, ϕ). Using Part 1 of the theorem, the r.h.s.
tends in the same limit to

∫
ds dyGM (s,y)ϕ̂(−s,−y) which exists in the sense of tempered

distributions and so is bounded by some Schwartz-space norm |ϕ̂|N . We get

|(g, ϕ)| 6 const .|ϕ̂|N 6 const .|ϕ|N ′ , (C.16)

where in the second inequality we used that the Fourier transform is continuous in the
Schwartz space. This inequality, valid for any compactly supported ϕ, means that g extends
to a tempered distribution on the whole Schwartz space. The representation (C.9) is thus
established.

Next let us show that g is supported at E > 0. For this we will pass to the large
ε limit in (C.13). Supposing that Ek < 0 for some k, the factor eEε in (C.13) decreases
exponentially as the corresponding εk → +∞. On the other hand gε(E,p) is bounded in
the same limit by a power of ε, because it’s the Fourier transform of G(ε + is,y) which
satisfies a powerlaw bound.100 This implies that g(E,p) = 0 unless E > 0.101

Consider then the following lemma, proven analogously to, and easier than,
lemma C.2 below.

Lemma C.1. Let g(E,p) be a tempered distribution supported at E > 0, and consider the
distribution g(E,p)e−εE (ε > 0). This distribution, being initially defined by this formula
on compactly supported test functions, extends to a tempered distribution, and moreover
g(E,p)e−εE → g(E,p) as ε→ 0, in the sense of tempered distributions.

Let us now take the ε→ 0 limit on both sides of (C.9) (or, which is the same, (C.10)).
The l.h.s. has a limit by Part 1, while the r.h.s. has a limit by lemma C.1. We obtain that
GM (s,y) and g(E,p) are related by the Fourier transform:

GM (s,y) =
∫

dE dp
(2π)d(n−1) g(E,p)e−isE−ipy. (C.17)

We can now complete the proof of Part 2, namely to show the spectral condition. Above
we proved that GM (s,y) is Lorentz invariant. Since g(E,p) is its Fourier transform, it is
also Lorentz invariant, and in particular its support must be a Lorentz-invariant set. We
also know that supp g ⊂ {E > 0}. These two facts together imply that supp g must be
contained in the product of the forward null cones, i.e. g(E,p) = 0 unless each Ek > |pk|,
which is the spectral condition.

Part 3 follows by standard Wightman theory arguments. Namely, let us write
(iy0

k,yk) = ξk + iηk where ξk, ηk ∈ R1,d−1 and ηk = (Re y0
k, Im yk) � 0. The extension

to the forward tube is given by the equation (with p = (E,p))∫
dp g(p)ei(p,ξ)e(p,η), (C.18)

which reduces to (C.9) for real yk. It is holomorphic by Part (c) of the following lemma,
while Parts (a,b) imply that this extension has the same limit as (C.9).

100This is the only place where we use the powerlaw bound on G(ε+ is,y) for large rather than small ε.
101If unhappy with this intuitive reasoning, the argument may be made more rigorous in its integrated

version: show that g vanishes on test functions supported in the complement of E > 0.
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Lemma C.2. Let g(p) be a tempered supported at p � 0 (closed forward light cone).
Consider the distribution gη(p) = g(p)e−(p,η), initially defined by this formula on compactly
supported test functions. Then

(a) gη for η � 0 extends to a tempered distribution;
(b) gη → g as η → 0 from inside the forward light cone η � 0, in the sense of tempered

distributions;
(c) The Fourier transform ĝη(ξ) of the distribution gη(p) is a holomorphic function of

ξ + iη for η � 0.

Proof. Let ω(p) be a C∞ function which is identically 1 on the forward light cone V+, and
zero as soon as dist(p, V+) > 1 where dist is the Euclidean distance. We can choose this
function so that all its derivatives are uniformly bounded by a constant depending only on
the derivative order: |ω(α)(p)| 6 Cα for any p.

Consider the family of C∞ functions parametrized by ξ, η ∈ R1,d−1:

Ωξ,η(p) = ei(p,ξ)e(p,η)ω(p). (C.19)

It is not hard to check that Ωξ,η is a Schwartz function for η � 0 and any ξ.
Let us define gη paired with a Schwartz function ϕ(p) via

(gη, ϕ) = (g,Ω0,ηϕ). (C.20)

We know that Ω0,ηϕ is a Schwartz function for η � 0, so this definition makes sense.
Furthermore it is not hard to check that Ω0,ηϕ → ωϕ in the Schwartz space topology as
η → 0, η � 0. This proves Parts (a),(b).

Next, let us define

F (ξ, η) = (g,Ωξ,η), ξ, η ∈ R1,d−1. (C.21)

We know that Ωξ,η is a Schwartz function for η � 0, so F (ξ, η) is a function. Moreover
it is not hard to show that the family Ωξ,η is continuous and continuously differentiable
in the Schwartz space topology. It also obviously satisfies the Cauchy-Riemann equations:
(∂ξ+ i∂η)Ωξ,η = 0. This implies that F (ξ, η) is a holomorphic function in ξ+ iη. It remains
to show that F (ξ, η) = ĝη(ξ). It’s enough to check this integrated against a compactly
supported test function χ(ξ):∫

F (ξ, η)χ(ξ) dξ =
∫

(g,Ωξ,η)χ(ξ) dξ

=
(
g,

∫
dξ χ(ξ)Ωξ,η

)
= (g,Ω0,ηχ̂) = (gη, χ̂) = (ĝη, χ). (C.22)

The proof is complete.

D Intuition about lemma 4.2

The proof of lemma 4.2 in section 4.1 was by contradiction. To help intuition, we will give
here a constructive argument of a special case of lemma 4.2, namely d = 1 and n = 2.
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I.e. we will show how any Schwartz function f ∈ S(R) can be approximated by Schwartz
functions g which for E > 0 agree with Laplace transform:

L(ϕ)(E) =
∫ ∞

0
dt ϕ(t)e−Et, (D.1)

ϕ ∈ C∞0 (R+) (compactly supported with support strictly inside (0,+∞)), while for E < 0,
g(E) is extended arbitrarily. Recall that the Schwartz space topology is given by the family
of norms

|f |n = sup
E∈R,m6n

(1 + E2)n/2|f (m)(E)|, (D.2)

and we need to find a sequence {gr}∞r=1 such that |f − gr|n → 0 as r → ∞ for any n (we
stress that one sequence gr should work for any n).

We will also consider the Schwartz space S(R+), consisting of C∞ functions on E > 0
(not necessarily vanishing at E = 0) with topology given by the family of norms |f |n,+
defined by the same equations as (D.2) but with sup taken over E > 0. It will be sufficient
to arrange that for any n

|f − L(ϕr)|n,+ → 0 (r →∞). (D.3)

This is because there exists an extension operator which takes a function h ∈ S(R+) and
provides a function E(h) ∈ S(R) such that E(h) = h for E > 0 (which is why it called an
extension operator), and in addition

|E(h)|n 6 Cn|h|n,+ (D.4)

for all n with some finite constants Cn independent of h. E.g., Seeley’s linear extension
operator [135, 136] has this property. Then, given (D.3), we put

gr = f + E(L(ϕr)− f), (D.5)

which, on the one hand satisfies gr(E) = L(ϕr)(E) for E > 0 and on the other hand
by (D.3) and (D.4) has |gr − f |n 6 Cn|L(ϕr)− f |n,+ → 0 which is what we need.

So let us focus on satisfying (D.3). By a map x = 1
1+E the half-line [0,+∞) is mapped

to the interval (0, 1] and the function f(E) is mapped to a function F (x) = f
(

1
x − 1

)
which is a C∞ function vanishing at x = 0 faster than any power of x. For any ε and any
N we can find, by the Weierstrass theorem, a polynomial Q(x) such that

|F (N)(x)−Q(x)| 6 ε (0 6 x 6 1). (D.6)

Let P (x) be the polynomial such that P (N)(x) = Q(x) and P (0) = · · · = P (N−1)(0) = 0.
Then P (x) = O(xN ) and it is not hard to see that

|F (n)(x)− P (n)(x)| 6 εxN−n (0 6 x 6 1). (D.7)

We also put p(E) = P
(

1
1+E

)
. From f(E) = F

(
1

1+E

)
we know that

|f (n)(E)| 6 Bn max
m6n

∣∣∣∣F (m)
( 1

1 + E

)∣∣∣∣ . (D.8)
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So combining this with eq. (D.7), and going up to n = N/2 we may conclude that

|f − p|N/2,+ 6 B′Nε. (D.9)

Now, by construction p has the form

p(E) =
∑

N6n6M

an
1

(1 + E)n . (D.10)

Since 1
(1+E)n = 1

(n−1)!
∫∞

0 tn−1e−(1+E)t dt, we see that p(E) is the Laplace transform of a
function ψ(t):

p = L(ψ), ψ(t) =
∑

N6n6M

an
(n− 1)! t

n−1e−t. (D.11)

Now we can finish the argument as follows. For r = 1, 2, 3, . . . we apply the above
argument with N = 2r and ε = 1/(B′Nr) to find ψr such that, by (D.9),

|f − L(ψr)|r,+ 6 1/r. (D.12)

The function ψr is not in C∞0 (0,∞) although ψ(k)
r = 0 for k = 0 . . . 2r − 2, and it vanishes

at ∞ exponentially. We can therefore approximate ψr by a C∞0 (0,∞) function ϕr so that
|ψr − ϕr|2r−2,+ is arbitrarily small, where the order 2r − 2 of the norm is related to the
order of the vanishing of ψr at t = 0. Furthermore we have the following lemma:

Lemma D.1. Let χ be a C∞ function on [0,+∞) which exponentially vanishes at infin-
ity and

χ(k)(0) = 0, k = 0 . . . n− 1. (D.13)

Then, with some constant Dn independent of χ,

|L(χ)|n,+ 6 Dn|χ|n+2,+. (D.14)

Proof. We use the following elementary properties of Laplace transform:(
d

dE

)m
L(χ)(E) = L[χ(t)(−t)m](E),

EnL(χ)(E) = L[χ(n)(t)](E), (D.15)

where the second equation is derived by integration by parts and is valid under (D.13) and
exponential decay. So we have (where . denotes 6 with some n-dependent but function-
independent constant)

|L(χ)|n,+ .
n∑

m=0
sup
E>0

(1 + En)|L(χ)(m)(E)|

6
n∑

m=0
sup
E>0
|L[χ(t)tm](E)|+ |L[(χ(t)tm)(n)](E)|, (D.16)

Using further the elementary bound |L(f)(E)| . supt>0 |(1+t2)f(t)| we deduce (D.14).
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We use this lemma with n = r and χ = ψr − ϕr, which satisfies χ(k) = 0 up to
k = 2r − 2 > r − 1, so (D.13) is satisfied. By (D.14), we have

|L(ψr)− L(ϕr)|r,+ 6 Dr|ψr − ϕr|r+2,+ 6 Dr|ψr − ϕr|2r−2,+ (D.17)

as long as r > 4 so that 2r − 2 > r + 2. As mentioned above |ψr − ϕr|2r−2,+ can be made
arbitrarily small. Combining with (D.12), we can arrange so that |f −L(ϕr)|r,+ 6 2/r → 0
as r →∞, which in particular implies (D.3).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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