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1 Introduction

A promising and conceptually simple avenue towards understanding the nature of dark
energy in quantum gravity is the pursuit of explicit de Sitter solutions in string theory [1–
15]. It was argued long ago by Kachru, Kallosh, Linde and Trivedi (KKLT) that such
solutions should exist in the landscape of type IIB Calabi-Yau (CY) orientifolds with
threeform fluxes, D3 and seven-branes [3]. Specifically, KKLT showed that if the classical
flux superpotential W0 can be tuned to very small values, volume moduli are generically
stabilized at large values, and the resulting vacuum is AdS4. If moreover, the very same
fluxes generate strongly warped and weakly curved Klebanov-Strassler throats [16, 17], an
anti-D3 brane at the bottom of the throat can lift the vacuum energy to small positive
values, provided that W0 can be finely tuned against the throat hierarchy.

Various aspects of the KKLT proposal have been scrutinized extensively in the past:
some of the earliest work has focused on establishing that all Kähler moduli can in principle
be stabilized non-perturbatively [18–20]. Only more recently, it was shown that flux vacua
with exponentially small flux superpotential can be found systematically [21], and further-
more that the required solutions hosting both long warped throats and small flux superpo-
tentials simultaneously can likewise be found [22, 23]. Another part of the recent literature
has focused on the consistency and meta-stability of the warped anti-D3-brane [24–33], and
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its surrounding throat region [34–37]. In particular, [31] explains nicely how the apparently
pathological near-brane behavior of supergravity fields is resolved by brane polarization. In
yet another line of work the 10d uplift of gaugino condensation effects in the 4d EFT was
studied [38–49]. Specifically, after proper inclusion of quartic gaugino terms and contribu-
tions to the stress-tensor from the (non-local) volume dependence of the gaugino bi-linear,
one arrives at a consistent picture [44–47, 49] (see however [48]).

In contrast, the aim of this paper is to resolve (literally) a parametric control problem
as posed in [47, 50] (see also [51]) which we summarize in section 3. Briefly stated, the
problem is that an efficient competition between stabilizing potential and a meta-stable
anti-D3 uplift forces the overall volume modulus to take values of the same order as the
overall D3-charge hosted in the warped throat. In such a regime, the backreaction radii of
both the sources of positive and negative D3 charges turn out to be of the same order as
the typical length scale of the compact CY. Since the square of the conformal factor of the
compact threefold is driven to unbounded negative values near localized sources of negative
D3 charge with real co-dimension larger than one (see section 2) this implies that at the
KKLT minimum an entire O(1) fraction of the compact threefold can no longer be described
by a semi-classical solution. This is to be contrasted with the large volume regime where
only the regions very close to localized sources of negative D3 charge cannot be described
by the semi-classical solution which is of course entirely expected, and irrelevant for the
Physics at length-scales larger than the string scale.

The aim of this paper is to understand in detail how string theory resolves this semi-
classical singularity via effects that are non-perturbative in the α′ expansion. In order to
make progress, we will make the important simplifying assumption that all negative D3
charge is hosted on seven-branes wrapping K3 surfaces. While such orientifold vacua are
not generic, many exist (see e.g. [52]). Then, since the low-energy world-volume dynamics
of the seven-branes accidentally respects N = 2 SUSY in four dimensions this will allow
us to understand the relevant non-perturbative bulk effects in terms of instanton effects in
the gauge theory. These in turn are known by virtue of the Seiberg-Witten solution of the
low-energy limit of N = 2 pure Yang-Mills theory [53–57]. Using this, we will argue for
the following proposals:

1. The wrapped seven-branes hosting negative D3 charge must properly be thought of as
bound states of more elementary co-dimension two exotic branes of 6d N = (2, 0)
SUGRA separated by a distance that is non-perturbatively small in the α′-expansion.

2. As the overall volume modulus takes values of order of the D3 tadpole, the exotic
branes forming the perturbative defects get split over a distance comparable to the size
of the compact threefold. This splitting of branes stops the running of the conformal
factor before it turns negative, thus resolving the apparent pathology.

3. The ‘inside region’ left behind by the spreading of exotic defects has O(1) Einstein
frame curvature.

More precisely, we will resolve the singularity of the conformal factor much in the same way
that F-theory [58–60] resolves the apparent singularity of the axio-dilaton in the vicinity of
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an O7 plane (where formally 1/gs < 0) by splitting the perturbative O7 plane into a pair
of mutually non-local defects [61, 62].1 This well-known effect can be seen either directly
using F-theory [61] or alternatively by probing the background with a D3 brane realizing
the SU(2) Yang-Mills theory as in [62]. Similarly, we can realize the SU(N) Yang-Mills
theory by wrapping N D7 branes on K3, thus giving rise to −N units of induced D3
charge [63]. We argue that the non-perturbative gauge theory effects of the Yang-Mills
theory can directly be interpreted as a splitting of each perturbative D7 brane into a pair
of mutually non-local exotic branes on which D5-strings can end.2 By comparing with
the known singularities in the moduli space of SU(N) Yang-Mills theory [55–57, 64] we
conclude that a stack of n such exotic branes hosts the Argyres-Douglas (AD) theory of
type (A1, An−1). Thus, if we assume that a significant fraction of the D3 tadpole resides
on a stack of seven-branes wrapping a K3 surface, we can establish our claim (a).

Using (a) it follows immediately that the exotic branes are separated by a distance of
order the strong coupling scale Λ (in appropriate units). Thus, as the UV gauge coupling
(the Kähler modulus) is driven towards stronger coupling, the exotic branes spread out-
wards in their transverse space. Since the UV coupling is naturally defined at distances of
order the size of the compact threefold our claim (b) follows. Furthermore, in this regime
the strong coupling scale Λ is of the same order as R-symmetry breaking spurions Λ/R in-
duced by the compact bulk threefold. Therefore, the above regime is naturally associated
with poor control over the low energy expansion in Λ/Λ/R.3

Furthermore, we will use the Seiberg-Witten solution of SU(N) Yang-Mills theory to
argue that the ‘inside region’ is indeed strongly curved, i.e. (c). More precisely, we will show
that the origin of the Coulomb branch of the gauge theory approaches a wall of marginal
stability in the large N limit. We will conclude from this that there is no (parametrically)
preferred string with small tension that can be stretched in the interior region and thus
Einstein frame volumes must be of O(1) in the large N limit.

As the resolution of semi-classical singularities can be understood entirely in terms of
gauge theory effects known to be present in the 4d EFT we view this as strong evidence
that the EFT employed by KKLT remains well-controlled even though an O(1) fraction of
the bulk CY has O(1) Einstein frame curvature. More precisely, in sections 5.2 and 6 we
will argue that

4. A small classical flux superpotential ensures control over the euclidean D3 (ED3)
instanton expansion even if an O(1) fraction of the ED3 worldvolume probes the
strongly curved region.

5. A small classical flux superpotential also ensures that the non-perturbative spreading
of defects that ensures the resolution of singularities does not extend far enough to
significantly affect the local warped throat region.

1Note that this is also morally similar to the resolution of the anti-D3 brane singularity at the bottom
of a warped throat by polarization into a spherical NS5-brane as discussed in [31].

2As in [63] the stretched D5 string realizes a magnetic monopole.
3Note that sub-leading corrections in Λ/Λ/R are expected to respect only four supercharges.
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We argue for (d) by noting that if the leading ED3 instanton wrapped on some divisor D
has disappeared entirely into the strongly curved inside region its euclidean action must be
of O(1). Since a small W0 ensures that its action is of order log(|W0|−1)� 1 we conclude
that part of D remains in the weakly curved outside region. Furthermore, we argue that if
a significant fraction of positive D3 charge is hosted in a warped throat, the final stages of
the small volume limit correspond to the exotic branes ‘walking’ down the warped throat
leading to recombination of D3 charge (see section 5.2). Thus, if D does not reach all the
way to the bottom of the throat, a large ED3 action dynamically ensures that the warped
throat is not significantly affected by the strongly coupled effects in the bulk, i.e. (e).

Since the KKLT proposal only requires 1) tunable control over the instanton expansion
and 2) a tunable uplift we conclude that the presence of even a large region of O(1)
curvature in the bulk should not jeopardize the EFT employed for moduli stablization and
uplift. Nevertheless, our analysis suggests (as in [47, 50]) that a considerable fraction of
the bulk CY has O(1) Einstein frame curvature in KKLT de Sitter vacua. This should be
taken into account in phenomenological model building based on the KKLT proposal.

This paper is organized as follows: we start by reviewing basics about the overall
volume modulus and the local behavior of the conformal factor near sources of D3 charge
(section 2). In section 3 we review the potential control problem of KKLT discussed
in [47, 50], related to fitting throats into compact bulk CYs and avoiding large singular
regions in the bulk. In section 4 we explain how non-perturbative effects cure the apparent
singularities via the splitting of perturbative D7 branes into elementary monodromy defects
of 6d N = (2, 0) SUGRA bound together by a potential. In section 5 we comment on the
nature of the small volume limit in a global model 5.1, and relate its final stages with
a process of recombination of D3 charges 5.1, 5.2. Finally, in section 6 we argue that
KKLT de Sitter vacua are generically safe from significant alterations of the EFT due to
the appearance of regions of strong bulk curvature. We conclude with section 7.

2 Spacetime singularities in flux compactifications

As a starting point we consider the (classical) GKP solutions [17]: tree level vacua of
type IIB string theory on an O3/O7 orientifold B of a Calabi-Yau (CY) threefold X with
D7 branes, D3 branes and threeform fluxes, or more generally F-theory on an elliptically
fibered CY fourfold with base B and four-form fluxes.4 Let {Di} be a basis of H+

4 (X,Z) =
H+

2,2(X,Z), i.e. the orientifold-even four-cycles. Then, at the classical level, the h1,1
+ (X)

Kähler moduli Ti remain exactly flat directions, while the h2,1
− complex structure moduli

za and the dilaton τ are frozen by the fluxes. Below the mass-scale of the Kähler moduli
the classical (in the α′ expansion) effective N = 1 superpotential is a constant W0,

Wcl(T i) = W0 :=
√

2
π

〈∫
X

(F3 − τH3) ∧ Ω(z)
〉

+O(e2πi〈τ〉) , (2.1)

where the first term is the Gukov-Vafa-Witten (GVW) flux superpotential [65], and the
O(e2πiτ ) D(−1) instanton corrections can be computed in F-theory.

4We work in 10d Einstein frame, and set the 10d reduced Planck mass M8
P,10d = 4π. This amounts to

setting l2s ≡ (2π)2α′ = 1. Moreover, we use our freedom to Weyl-rescale the 4d components of the 10d
metric to also set the 4d reduced Planck mass to M2

P,4d = 4π.
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As the discrete axionic shift symmetries T i → T i + ici, ci ∈ Z, cannot be broken by
perturbative effects, the superpotential receives only non-perturbative corrections in the
Kähler moduli [66]

W (T i) = Wcl(T i) +Wnp(T i) ≡W0 +
∑
~n∈Γ

A~n e
−2π

∑
i
niT

i

, (2.2)

where the ni are rational numbers, and the coefficients A~n are in general hard to compute.
The 10d metric takes the form [17]

ds2 = e2A(y)

t
dx2 + e−2A(y)gintij dy

idyj , (2.3)

with warp factor e2A(y) varying over the 6d internal Calabi-Yau orientifold B (or more
generally an F-theory base) parameterized by local coordinates yi. The metric gintij is a
Ricci flat metric (or more generally an F-theory solution) normalized to unit volume,∫

B
d6y

√
gint = 1 , (2.4)

and dx2 denotes the 4d Minkowski line element. The overall volume modulus t is defined
as [67]

t :=
∫
B
d6y

√
ginte−4A(y) . (2.5)

The physical metric of B differs from gintij by the crucial factor e−2A which by virtue of the
equations of motion is the inverse of the warp factor. We will refer to its square e−4A as
the conformal factor.

In terms of the 10d metric and four form potential C4 the Kähler moduli are defined as

T i :=
∫
Di

e−4A 1
2J ∧ J − iC4 , (2.6)

where J is the Kähler form of the unit-volume orientifold or F-theory base B.
A GKP solution [17] is given by a choice of flux quanta [F3], [H3] ∈ H3(X,Z) stabilizing

the complex structure moduli of B and the axio-dilaton τ := C0 + ie−φ at values such that

∗int G3 = iG3 , G3 := F3 − τH3 . (2.7)

The self-dual five form field strength F5 becomes

F5 = (1 + ∗)de4A ∧ d4x , (2.8)

and the conformal factor is a solution to the electro-static problem

−∇2
inte
−4A = ρD3 , (2.9)

with D3 charge density ρD3 with overall net zero charge, and ∇2
int is the Laplacian asso-

ciated with the metric gintij . The fluxes carry positive D3 charge density F3 ∧ H3, mobile
D3 branes and O3 planes have localized charge +1 respectively −1

4 , while seven-branes
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wrapped on a surface S carry negative D3-charge smeared across their world-volume pro-
portional to the Euler characteristic χ(S).

Eq. (2.9) clearly has a modulus e−4A(y) → e−4A(y) + δt corresponding to shifts of the
overall volume modulus t→ t+ δt in eq. (2.5). The reason for this terminology is the fact
that in the large t limit we get e−4A(y) → t = const (except near singularities) so the 10d
metric approaches the form

ds2
t→∞ = t−

3
2dx2 + t

1
2 gintij dy

idyj . (2.10)

Therefore, in this limit the physical volume of B becomes Vol(B)→ t
3
2 � 1. In the vicinity

of singular sources the conformal factor behaves as it would in flat space: near a stack of
N D3 branes we get

e−4A(r) = N

4π3r4 + c , (2.11)

where r is a radial distance measuring radial distance from the source in the unit volume
metric gintij , and c is an integration constant. Shifts c→ c+δc correspond to shifts t→ t+δc,
and at distances much smaller than the compactification scale the integration constant c
is meaningless because it can be absorbed by a redefinition of the radial coordinate:√

N

4π3r4 + c(dr2 + r2dΩS5) ≡

√
N

4π3r̃4 + 1(dr̃2 + r̃2dΩS5) , (2.12)

with r̃4 := c r4.
Near a (real) co-dimension two source wrapped on a surface S the conformal factor

scales as
e−4A(r) = −ρD3,⊥

2π log(r/r∗) , (2.13)

where ρD3,⊥ is the (assumed constant) D3-charge density along the surface S, and with

dynamically generated radial scale r∗. Rescalings r∗ → r∗e
2π

ρD3,⊥
δt

correspond to shifts
in the volume modulus, t → t + δt. Thus, for negative D3 charge density, and for large
volume t, one formally gets a negative conformal factor below an exponentially small radial
distance

r ≤ r∗ ∼ e
− 2πt
|ρD3,⊥| = e

− 2π
|Q|Vol(S)

, (2.14)

where Q is the integrated D3 charge on the surface S. This formula of course already
suggests that the negative conformal factor regime is cured by non-perturbative effects in
the α′-expansion, which will indeed turn out to be true.

Now, as in (the appendix of) [47], let us consider the case where all positive D3 charge
is localized at real co-dimension six (a stack of N D3 branes), and all negative D3 charge is
localized on a complex surface S at real co-dimension two (a seven-brane stack with induced
D3 charge −N). As usual, by inspecting the D3 stack one sees that its backreaction turns
it into an AdS5×S5 throat of radius N1/4. This throat can be glued into a weakly curved
bulk only when the physical bulk-volume is large enough,

Vol(B)
2
3 & N . (2.15)
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This geometrical argument can be verified at the technical level via inspection of the
solution near the seven-branes: in the regime Vol(S) � |Q| = N , where the throat is
parametrically smaller than the bulk, the conformal factor is negative only exponentially
close to the brane stack. In contrast, in the critical regime Vol(S) ∼ N , where the throat
fits into the bulk only marginally, the exponential suppression gets lost and the vanishing
locus of the conformal factor has moved into generic position [47, 50]. This latter point
has been emphasized and discussed in detail particularly in [50].5

To our knowledge the regime where the conformal factor is formally negative in an
O(1) fraction of the CY has remained largely unstudied so it has been standard practice
to impose eq. (2.15) with some reasonable control factor [47, 51, 68]. Part of the aim of
this paper is to relax this requirement and see where it takes us.

3 Fitting throats & singularities in KKLT

In the KKLT scheme of moduli stabilization one stabilizes the Kähler modulus T (we
assume h1,1

+ (X) = 1) using a small classical flux superpotential W0 � 1 and effects non-
perturbative in the α′ expansion ∼ e−

2π
c Re(T ), where c ∈ N is the dual-Coxeter number of

a confining seven-brane gauge theory or c = 1 for a euclidean D3 brane (ED3) instanton
wrapping the generator of H4(X,Z) [3]. This leads to moduli stabilization at large volume

Re(T ) ≈ c
2π log(|W0|−1) , (3.1)

if the classical flux superpotential is small, |W0| � 1, and the scalar potential is of order

Vbulk ∼ −e−4πRe(T )/c ∼ −|W0|2 < 0 . (3.2)

For simplicity, let us set c = 1, so we consider moduli stabilization from euclidean D3
brane instantons. The negative scalar potential from the bulk moduli stabilization must
be compensated for by a small ‘uplifting’ potential energy from an anti-D3 brane at the
bottom of a warped throat. Its contribution to the scalar potential is gravitationally
redshifted by a factor [3, 16, 17]

a4
0 := e4A|IR

e4A|UV
∼ e−

8π
3

K
gsM = e

− 8π
3
Qthroat
gsM2 � 1 , (3.3)

where K and M are flux quanta, gs is the string coupling, and Qthroat := KM is the D3
charge of the fluxes generating the throat. By appropriate fine-tuning of the IR warp factor
a4

0 ≈ |W0|2 ∼ e−4πRe(T ), i.e.
gsM

2 !∼ Qthroat
Re(T ) , (3.4)

one can find vacua with small positive cosmological constant [3]. Furthermore, for the
throat to fit into the bulk CY the r.h. side of (3.4) should be smaller than unity, so we
obtain a constraint

Re(T ) & Qthroat → gsM
2 . 1 . (3.5)

5It is not essential to the argument what the general charge configuration is as long as we keep negative
and positive D3 charge seperated from each other, to avoid recombination or significant screening of brane
charges. A detailed discussion of this can be found in [50].
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However, for a confident prediction of the meta-stability of the anti-D3 brane [69] (see
also [35, 36]) one would like to stay at weak string coupling gs � 1 and in the regime of
validity of the 10d SUGRA approximation at the tip of the throat: R2

IR ∼ gsM � 1, so

gsM
2 = (gsM)2

gs
� 1 . (3.6)

The (parametric) tension between eq. (3.6) and eq. (3.5) suggests a difficulty to ‘fit’ an
appropriately red-shifted and weakly curved throat into a likewise weakly curved bulk
geometry with moduli stabilization in place, as was noted in [47].6 Upon relaxing the
condition (3.5) one has to deal with the fact that the classical vanishing locus of the
conformal factor e−4A is no longer exponentially close to the position of the seven-branes.
In fact, the region where formally e−4A < 0 will generically take up an O(1) fraction of the
CY [47, 50].

4 Resolution of singularities

In this section we would like to explain our proposal that seven-branes wrapped on K3
split into elementary monodromy defects of 6d N = (2, 0) supergravity, argue that stacks
of these host Argyres-Douglas SCFTs of type (A1, An), and explain how this resolves the
apparent singularities of the conformal factor (see section 4.1). Furthermore, we will argue
that after this is taken into account, the bulk region where semi-classically e−4A < 0 gets
replaced by a region of O(1) Einstein frame curvature (in section 4.2).

But first, as a proof of principle, let us exhibit an N = 1 O7 orientifold of a CY threefold
such that the entire D3 tadpole is generated by seven-branes wrapping K3 surfaces. Many
such examples can be found in the list of [52], and here is a particularly simple example: we
consider the anti-canonical hypersurface in P1×P3 which has two Kähler moduli associated
with the hyperplane classes of P1 and P3 (and it is a K3 fibration over P1). The orientifold
involution inherited from the ambient space involution

I : P1 × P3 → P1 × P3 , ([x0 : x1], [y0 : ... : y4]) 7→ ([−x0 : x1], [y0 : . . . : y4]) (4.1)

gives rise to two non-intersecting O7 planes at the intersection of {x0 = 0} respectively
{x1 = 0} with the hypersurface. Both arise as an anti-canonical hypersurface in P3 which
is K3. Placing four D7 branes on each O7 plane gives rise to gauge algebra so(8)2 (which
can be enhanced to so(16) by moving all eight seven branes onto the same O7 plane) and
induced D3 charge −12 that can be canceled by fluxes and/or mobile D3 branes. In the
following we will discuss the resolution of singularities of the conformal factor in terms
of the Seiberg-Witten solution of SU(N) Yang-Mills theory, but the discussion for gauge
group SO(2N) is analogous.

6Note that the problem becomes more severe when the uplift scale is decreased, i.e. for AdS vacua with
small SUSY breaking, the prospects of which have recently been studied in more generality in [70]. We
note that the results of this paper may also be used to argue for the possibility of small SUSY breaking in
AdS using KKLT.
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4.1 A qualitative description

We will start by making an analogy to F-theory. The technical point that has to be
addressed is the apparent singularity where the conformal factor turns negative in the
proximity of seven-brane stacks with negative D3 charge,

e−4A(r) = |ρD3|
2π log(r/r∗) < 0 , for r < r∗ . (4.2)

It turns out that such apparent pathologies are completely analogous to the behavior of
the dilaton near a perturbative (in gs) O7 plane:

e−φ(r) = 4
2π log(r/r∗) . (4.3)

Here, e−φ is the radially dependent inverse string coupling, and the coefficient in front
of the logarithm arises because an O7 plane has −4 units of D7 brane charge. At weak
bulk string coupling7 the singularity is exponentially close to the O-plane, i.e. at distances
O(e−

2π
gs ), but at gs ∼ 1 the negative region appears on a generic slice through the bulk. This

singularity is of course resolved by D(-1) instanton effects, naturally described by F-theory:
the O7 plane is a bound state of two (p, q) seven-branes with monodromy charges [61]

(2,−1) and (0, 1) , (4.4)

separated from each other at non-perturbative distance ∼ e−
2π
gs .

Another way to describe the same phenomenom is to consider the setup from the point
of view of a probe D3 brane. From this perspective, instanton effects in the gauge theory
living on the D3 worldvolume will resolve the dilaton singularity, as first noted in [62].
Concretely, a probe D3 brane has gauge coupling 4π

g2 = 1
gs

and in the vicinity of an O7
plane the U(1) gauge group on its worldvolume enhances to USp(2) ' SU(2). The position
modulus of the D3 brane in the transverse space is identified with the vacuum expectation
value (vev) of the Coulomb branch (CB) operator of the worldvolume theory, which is 4d
N = 2 pure SU(2). The low energy dynamics of this theory is determined by the Seiberg-
Witten solution [53, 54]. In particular, in the interior of the CB there are two monodromy
defects where dyons carrying electric-magnetic charges (2,−1) respectively (0, 1) become
massless. By identifying the W-boson as the stretched F-string, and the magnetic monopole
as the D-string, one sees that the defects indeed correspond to the (p, q) seven-branes listed
in eq. (4.4). Note that the D3 brane is a particularly clean probe of the axio-dilaton profile:
the gauge coupling corresponds to the axio-dilaton which is sourced only by the background
O7 plane and not by the probe itself.

Given the qualitative and even technical similarity of the apparent singularity of the
conformal factor near loci of negative D3 charge (4.2) and the dilaton singularity (4.3),
and given the well known resolution of the latter problem in terms of a probe D3 brane

7To define this one uses the fact that the negative D7 charge of the O7 is canceled by other seven-branes
screening the charge at large radii. At yet larger radii the dilaton profile is constant, and this constant is a
modulus that we call 1/gs.
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dynamics [62], we find it natural and promising to consider very analogous reasoning in
order to discuss the resolution of the former.

In order for this to work, one would like to relate the conformal factor e−4A to the
Yang-Mills coupling of wrapped branes. Thus, we should consider a stack of N wrapped D7
branes on a surface S. Upon moving away a single D7 brane in the transverse direction,
its effective U(1) coupling probes the backreaction of the remaining seven-branes. This
deformation is a flat direction only if the normal bundle of the surface S is trivial: classically,
the Coulomb branch is explored by simply moving D7 branes away from the stack in the
transverse directions. If the normal bundle N were non-trivial, there would either not
exist a Coulomb branch at all (the divisor is rigid) or a D7 brane deformed away from
the main stack still intersects it along a curve leading to massless bifundamental matter.
Since c1(N ) = −c1(S) via the adjunction formula, we avoid this if we consider N D7
branes wrapping a K3 surface in a CY(-orientifold) X. The holographic correspondence
between the one-loop running of the gauge coupling and the solution for the conformal
factor has been observed in [63] which also identifies the W-bosons as stretched F-strings
and the magnetic monopoles as stretched effective strings from D5 branes wrapped on K3.
Indeed, by evaluating the probe brane actions on the supergravity background sourced by
the seven-branes, one recovers the field theory central charges of W-bosons and magnetic
monopoles (see e.g. our appendix A).

The precise holographic dictionary between the 7-brane gauge coupling and the con-
formal factor is8

τD7 := τ̂ − τ , τ̂ :=
∫
K3

C4 + i

∫
K3

d4y
√
gintK3e

−4A , (4.5)

where gintK3 is the induced metric of the K3 surface obtained from the unit volume bulk
metric gint. The negative correction by the axio-dilaton τ is due to the O(α′2) curvature
correction to the gauge-kinetic term living on the brane stack.9 Indeed, the log-coefficient
of τ̂ − τ is given by the difference of D7 and D3 brane charges (QD7, QD3) = (N,−N), i.e.

τD7(z) = −2N
2πi log(z/z∗) + . . . , (4.6)

where z is the complex transverse coordinate. This matches with the beta-function coeffi-
cient 2N of SU(N) Yang-Mills theory. Naturally, the distance scale z∗ corresponds to the
strong coupling scale Λ of the gauge theory. Thus, in order to describe what happens at
|z| < |z∗| one can again invoke the Seiberg Witten solution of pure SU(N) N = 2 gauge
theory.

Ideally, one would like to determine the supergravity solution by probing N background
D7 branes with a further D7 brane that itself does not source the gauge coupling τD7.
However, unlike the D3 brane as a probe of a single O7-plane solution a probe D7 brane itself

8Strictly speaking, in eq. (4.5) we should replace τ by the axio-dilaton averaged over the K3 surface.
9The correction by Re(τ) = C0 follows immediately from the well-known α′-corrected D-brane CS

action [71, 72]. The correction by Im(τ) can most easily be seen from the fact that a gauge-instanton
with action 2πIm(τD7) can be thought of as a wrapped euclidean D3 brane: the DBI action of a D3 brane
receives a correction δS = − 1

192π

∫
K3 Im(τ)Tr (R∧ ∗R) = −2πIm(τ) [73–75].
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also sources τD7. Therefore, one has to be a bit careful in identifying the Coulomb branch
of the gauge theory with the physical transverse space of the brane stack. Happily, we will
see that from the behavior of SU(2) Yang-Mills theory one can quite readily understand
how a single D7-brane splits into more elementary monodromy defects. The generalization
to SU(N) turns out to be straightforward.

Just as F-theory describes ‘elementary’ mutually non-local SL(2,Z) monodromy defects
in 10d, i.e. (p, q)-seven-branes, one should be able to describe the corresponding defects in
our situation as monodromy defects10 of 6d N = (2, 0) SUGRA: type IIB string theory on
K3 as in [77–80]. The U-duality group and spectrum of strings is much larger in 6d than
it is in 10d [81],

U = O(5, 21;Z) , (4.7)

and we get ~p-strings with ~p ∈ Z26 from 10d (p, q) strings, (p, q) 5-branes wrapped on
K3, and D3 branes wrapped on the 22 two-cycles of K3, coupling to the (anti-)self-dual
2-forms in 6d transforming in the 26 of the monodromy group U . As in ten dimensions,
there are cosmic defects on which (some) strings can end.11 We consider configurations of
monodromy defects such that the monodromy transformations on overlapping patches are
contained in a U ′ := O(2, 2;Z) ⊂ U subgroup acting only on the (p, q) strings and wrapped
(p, q) five-branes transforming in the 4, as in [78]. The tension of a ~p-string, with ~p ∈ Z4,
in 6d Planck units is given by [82]

T~p =
√
π Im(τ)−

1
2 Im(τ̂)−

1
2 |p1τ + p2τ̂ + p3 − p4τ τ̂ | . (4.8)

U ′ is generated by two commuting SL(2,Z) sub-groups acting on the modular parameters
(τ, τ̂), as well as a Z2 subgroup interchanging τ̂ ↔ τ [78]. The latter can morally be
thought of as ‘four T-dualities’ because the string-frame K3 volume gets inverted. Indeed,
Im(τ) = C0 and Im(τ̂) =

∫
K3C4 so the RR potentials transform according to the standard

rules of T-dualities.
Configurations of cosmic defects whose monodromies are contained in U ′ include in

particular configurations of (p, q) seven-branes wrapped on K3 and D3 branes on points in
K3. Since O(2, 2;Z) ⊂ O(2, 18;Z) which is the monodromy group of the complex structure
moduli space of a K3 surface, one may encode the axio-dilaton, conformal factor and C4
profiles in a K3 surface fibered over the base P1 [77, 78]. This approach has been termed
G-theory by analogy to F-theory [78]. As a consequence, each such brane configuration is
dual to type IIB on a certain K3-fibered CY threefold.

We will now invoke the Seiberg-Witten solution of SU(N) gauge theory living on a stack
of N D7 branes wrapped on K3, in order to understand the resolution of the singularity
of the conformal factor, in the spirit of [62]. First, let us recall some well-known facts
about the Seiberg-Witten solution. Pure N = 2 SU(N) Yang-Mills theory has an N − 1
dimensional Coulomb branch. At generic vev’s of the adjoint scalar Φ the effective theory
has gauge group U(1)N−1 and an over-complete set of coordinates on moduli space is given

10For an exposition of exotic defects in string theory, see e.g. [76]
11A cosmic defect is defined by an element of the U-duality group M ∈ U . A necessary condition for a

~p-string to be able to end on it is that its tension is invariant under M .
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by the periods of an auxiliary Riemann surface ΣN−1 of genus N − 1. The latter can be
taken to be the hypersurface in C2 3 (x, y) specified by [53–57] (we follow the conventions
of [57])

y2 =W(x; {uk})2 − Λ2N , (4.9)

where Λ is the strong coupling scale of the UV theory and W(x; {uk})2 is the characteristic
polynomial

W(x) := det (xI− Φ) ≡ xN −
N∑
k=2

ukx
N−k , (4.10)

and the Casimirs uk are the invariant polynomials uk = 1
kTr

(
Φk
)

+O(uk−1, . . . , u2). One
can think of the curve ΣN−1 as the double cover of the complex x-plane with branch cuts
running between the N roots e+

i of W+ :=W − ΛN and the roots e−i of W− :=W + ΛN .
One defines a holomorphic one-form (the Seiberg-Witten form or differential)

λ(u) := 1
2πi

x∂xW
y

dx , (4.11)

and the period vector is defined as the integral of λ over a basis of one-cycles. In the
singular classical limit Λ/u

1
k
k → 0 we get coinciding roots

e±i → ei , (4.12)

where the ei are the roots of W(x). It follows that at weak coupling there is a preferred
set of N shrinking cycles αi that encircle each coinciding pair of roots in the x-plane. In
this limit the residue theorem implies that the associated period components are equal to
the roots,

ai :=
∫
αi

λ −→ ei , i = 1, . . . , N . (4.13)

We have
∑
i ai = 0 because

∑
i[αi] = 0 ∈ H1(ΣN−1,Z), so we can use N − 1 of the ai as

coordinates on moduli space in the weak coupling patch. In our context of realizing the
gauge theory with N D7 branes wrapped on K3 we can think of the roots ei as the positions
of the N perturbative D7 branes in the transverse plane parameterized by x ∈ C. Indeed,
the charged W-bosons stretching between the i-th and j-th D7 brane have central charge

Zij = ai − aj , (4.14)

so the mass of the corresponding BPS particle is proportional to the distance between
the branes in flat space parameterized by a flat coordinate a, which matches the mass of
a stretched F-string (see appendix A). Away from the classical limit each root ei splits
in two,

ei → (ei+, ei−) , (4.15)

separated from each other at a non-perturbative distance scale. Thus, even away from
the classical limit we can think of the ai’s as the center of mass positions of the N D7
branes, but each D7 brane should be interpreted as a bound state of a pair of elementary
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Figure 1. The roots ofW+(x) (blue) andW−(x) in the complex x-plane. A pair of roots ofW+W−
that coincides as Λ → 0 can be thought of as a perturbative D7-brane. Left: roots near the first
singularity u→ +Λ2. Right: roots near the other singularity u→ −Λ2.

monodromy defects at positions (ei+, ei−). The two constituents are interpreted as elemen-
tary monodromy defects that are separated from each other by a non-perturbative distance
scale in the transverse plane.

For simplicity, let us first consider the case N = 2: for two D7 branes we have W(x) =
x2−u with u := 1

2Tr
(
Φ2) a gauge invariant coordinate on the Coulomb branch. As famously

shown in [53] the classical singularity at u = 0 is resolved into a pair of singularities at
u = ±Λ where magnetic monopoles become massless. At each of these two points one
of the two defects forming the first perturbative D7 brane coincides with one of the two
defects forming the other one, see figure 1. As shown in [63], the magnetic monopole is a
stretched string obtained from wrapping a D5 brane on K3. Since this is the dyon that
becomes massless at one of the two singularities in moduli space we learn that a wrapped
D5 string can end on one of the two elementary monodromy defects (or exotic branes) of
6d N = (2, 0) supergravity that constitute a perturbative D7 brane.

The monodromies of (τ, τ̂) can be determined using G-theory. In fact, the appropriate
K3 fibrations over P1 with monodromies only in U ′ = O(2, 2;Z) have been described
in [78], and the relevant monodromy matrices have been worked out in [82], albeit in a
very different context.12 Here, we present a simplified argument to get to the right result:
first, one notices that the perturbative monodromy around a D7 brane acts as τ → τ + 1
and τ̂ → τ̂ − 1, in particular leaving the combination τ̂ + τ invariant. Let us make the
natural assumption that the microscopic monodromies also leave τ̂ + τ invariant. Then,
the only allowed monodromies are generated by {T 2, (−1)} with T : τD7 7→ τD7 + 1, and
(−1) : τD7 7→ −τD7. Using that the D5 string (with tension ∝ |τD7|) can end on the first
defect, as in [63], it follows that

M1 = (−1) : τD7 7→ −τD7 , M2 = (−1) · T−2 : τD7 7→ −τD7 + 2 . (4.16)

12We are indebted to Andreas Braun for pointing out and explaining ref. [82] to us. In an earlier version
of this paper we had given the monodromies under the incorrect assumption that they act like a standard
SL(2,Z) transformation on τD7.
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Figure 2. Splitting of perturbative D7 brane into two cosmic defects (red and blue points). A
D5-string (blue) can end on one of the defects, and a D5 with a negative unit of electric charge
(red) (D̃5) can end on the other. The F-string (purple) can end on the entire configuration via a
string junction.

These are indeed the monodromies found in [82] but now reinterpreted as the monodromies
around the constituent defects forming a perturbative D7 brane. In the decompactification
limit Vol(K3) → ∞ the constituents merge and one recovers the elementary D7 brane in
ten flat dimensions (this limit is dual to the degeneration limit of the K3 fiber considered
in [82] in the geometric context).

Note that M1 and M2 differ from each other only by a choice of base point: we have

M2 = T ·M1 · T−1 . (4.17)

As a D5-string can end on one of the two defects forming a perturbative D7 brane, the
string that can end on the other one (let us call it the D̃5 string) differs from a D5 string
by one unit of F-string charge, see figure 2. Indeed, a D5 string ending on the first defect
picks up one unit of F-string charge upon rotating half-way around the transverse plane of
a D7 brane due to the non-trivial C0 and C4 profile around it,

C0 → C0 −
1
2 ,

∫
K3

C4 →
∫
K3

C4 + 1
2 . (4.18)

This induces F-string charge on the D5-brane due to its CS-coupling,

SCS ⊃ 2π
∫

Σ
B2

(∫
K3

C4 − C0

)
, (4.19)

see figure 3 for a pictorial representation. After splitting off an F-string, which can end
on the pair of defects via a string junction, we get the D̃5 string that can end on the
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Figure 3. A D5 string ending on the first defect picks up a unit of F-string charge upon half-way
encircling a D7-brane. Therefore, after passing an angle > π/2 one may lower its energy by splitting
off an F-string. The remaining D̃5 string can end on the second defect.

second defect. Of course there exists an entire tower of monopoles with arbitrary integer
electric charge, corresponding to D5 strings winding around the pair of defects, eventually
ending on one. By analogy with (p, q)-strings in 10d we will refer to (p′, q′)-strings as
the strings with charges (−q′, q′, p′, 0) ∈ Z4 such that the (1, 0)-string is the F-string and
the (0, 1)-string is the D5-string, and a BPS dyon in the SU(2) Yang-Mills theory with
electric-magnetic charges (2p′, q′) can be thought of as a stretched (p′, q′)-string.

The typical distance separating the two defects is non-perturbative in the 7-brane
gauge coupling and thus of order Λeff ∼ r0e

2πi
2 τD7(r0), with arbitrary radial scale r0. Below

this distance scale, the logarithmic running of the conformal factor terminates because
there is no remaining D3 charge at smaller radii. It is apparent that this is what keeps the
conformal factor from turning negative too close to the location of negative D3-charge.

It does not take too much imagination to anticipate what happens in the case of N
D7 branes wrapped on K3 (at the origin of the Coulomb branch): non-perturbatively, the
instanton corrections to the holographic running of the gauge coupling become important
at a distance scale

Λ ∼ r0e
2πi
2N τD7(r0) , (4.20)

and the N perturbative (in the α′ expansion) D7-branes split into N pairs of exotic cosmic
defects: each pair can be thought of as a bound state realizing a perturbative D7 brane as
in eq. (4.16) and (4.17). At the origin of the Coulomb branch (i.e. uk = 0) the characteristic
polynomial W(x) reads

W(x)|uk=0 = xN → W±(x) = xN ∓ ΛN , (4.21)

and the entire Z2N R-symmetry group is unbroken. There, the 2N defects align along a
circle of radius Λ, see figure 4,

W+(x)W−(x) = 0 → x = Λe
2πi
2N k , k ∈ {0, . . . , 2N − 1} . (4.22)

Since the R-symmetry of the gauge theory corresponds geometrically to the rotational
symmetry around the stack of seven-branes, we see that the non-perturbative splitting of

– 15 –



J
H
E
P
0
8
(
2
0
2
1
)
0
9
3

Figure 4. The 2N monodromy defects forming N perturbative D7 branes, depicted on the trans-
verse plane, at the origin of the Coulomb branch. Locally, each defect looks the same, but the ones
drawn in blue are mutually non-local compared to the ones drawn in red.

Figure 5. Left: loops γn encircling the defects arranged in a circle from the ‘outside’. Right:
different choice of loops γ∗n encircling the defects from the ‘inside’.

the perturbative D7 branes into 2N defects is the bulk version of the explicit symmetry
breaking U(1)R → Z2N by instantons in the gauge theory. The bulk monodromies around
the 2N defects (with loops γn taken as depicted on the left in figure 5) take the simple form

Mn =Tn−1 ·M1 · T−(n−1) , (4.23)

and with M1 and T as in eq. (4.16) and (4.17). Thus, the monodromy Mn leaves the
tension of a D5 string with −n + 1 units of induced F-string charge invariant.13 The 2N

13Note that while the tension of a string that can end on a monodromy defect is invariant under the
monodromy transformation, its charge vector ~p ∈ Z4 ⊂ Z26 is mapped to −~p in our case, while strings with
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elementary defects look the same locally because the monodromies differ from each other
only by a choice of base point as is manifest in eq. (4.23).

Thus again, the splitting of the perturbative D7-brane into the more elementary mon-
odromy defects halts the running of the coupling at the non-perturbative scale Λ and
prevents regions of negative conformal factor from appearing. It is also clear that the
defects corresponding to the roots of (say) W+(x) can be stacked on top of each other by
tuning the moduli ui,

W+(x) =
N∏
i=1

(x− e+
i )→ x

N∏
i=2

(x− e+
i )→ . . .→ xN , (4.24)

i.e. they are mutually local. The effective strings that can end on them are the D5 strings
with minimal induced F-string charge.14

Correspondingly, the monodromy matrices corresponding to suitably defined loops γ∗n
(as shown on the right in figure 5) around the roots of W+(x) satisfy:

M∗n =


M∗1 ≡M1 n ∈ 2Z + 1

M∗2 ≡M1 ·M2 ·M−1
1 n ∈ 2Z

. (4.25)

Thus, each perturbative D7 brane splits non-perturbatively into two mutually non-local
defects (that look the same locally due to M2 = T−1M1T ). Let us call them the A-type
and B-type defect respectively. All the A-type (B-type) defects are mutually local with
respect to each other, so a D5 string that can end on any of the A-type defects can also
end on any of the other A-type defects as long as it stretches along the ‘interior’ region of
the circle of defects. Indeed, such configurations give rise to BPS dyons at the origin of
the Coulomb branch [83]. The field theory that lives on a stack of n A-type (or n B-type)
defects is the Argyres-Douglas (AD) CFT of type (A1, An−1) because these theories are
well-known to arise when multiple roots of W+(x) or W−(x) coincide [64, 84–86]. Indeed,
the most generic singularity is obtained by colliding two defects, and a single dyon becomes
massless. At such a point in moduli space the dual K3 fibered CY threefold should develop
a conifold singularity because this is the most generic singularity (at finite distance) that
arises in its complex structure moduli space, see figure 6.

For n ∈ 2Z we can form n/2 pairs of coinciding monodromy defects which is dual to
n conifolds on the geometric side. Each conifold hosts a single massless particle from a
D3 brane wrapped on the shrinking A-cycle [87], which is dual to the D5 string stretched
between two colliding monodromy defects. Furthermore, there exists a basis of n/2− 1 D5
strings stretching from one pair of defects to the next, and these are dual to D3 branes

invariant charge vector are not allowed to end on the defect. Otherwise, there would be unwanted extra
massless particle states e.g. from D3 branes wrapped on curves in K3 at singular loci of the gauge theory.
The mathematical reason for this in G-theory was pointed out to us by A. Braun: at the location of an
elementary monodromy defect, a curve γ with self-intersection γ2 = −2 shrinks in the auxiliary K3 fiber of
G-theory. The Picard-Lefschetz formula implies [γ]→ [γ] + γ2[γ] = −[γ] under the monodromy.

14Note however that the dyons from the set of stretched D5 strings between three or more mu-
tually local cosmic defects are non-local in the sense that the pairwise Dirac-products are generally
non-vanishing [56, 64].

– 17 –



J
H
E
P
0
8
(
2
0
2
1
)
0
9
3

Figure 6. Left: two monodromy defects separated by a small distance ε is dual to the deformed
conifold. Right: two defects stacked on top of each other are dual to a singular conifold.

Figure 7. Left: two pairs of two coincident defects, separated from each other a distance δ

corresponds to two conifolds sharing a compact B-cycle with volume δ. Right: colliding the two
pairs is dual to shrinking the conifold B-cycle and leads to the geometrically engineered (A1, A3)
AD CFT.

wrapped on n/2 − 1 compact B-cycles that connect the n conifolds. Stacking all n mon-
odromy defects on top of each other corresponds to colliding the n conifolds, see figure 7.
Indeed, this is well known to geometrically engineer the AD CFT of type (A1, An−1) in
type IIB string theory [88, 89]. Consider for example geometrically engineering the (A1, A3)
CFT from type IIB on the non-compact CY threefold embedded into C4 as

f(x) + y2 + u2 + v2 = 0 ,

with f(x) :=
(
x+ δ

2

)2 (
x− δ

2

)2
+ ε1
δ

(
x+ δ

2

)
+ ε2
δ

(
x− δ

2

)
. (4.26)

In the regime |εi| � |δ|4 we get two conifolds with deformation parameters εi near the loci
{x = ±δ/2, y = u = v = 0}, and δ is a measure for the distance between them. In the
limit (εi, δ)→ 0 (taken such that εi/δ → 0) we get f(x)→ x4 which realizes the unbroken
(A1, A3) SCFT. The extended Coulomb branch of such SCFT is parametrized by the vev
of the CB operator 〈O 4

3
〉, a mass parameter m, and a coupling µ 2

3
, where the subscripts

denote conformal dimension. The geometric parameters (εi, δ) correspond to the SCFT
parameters as

µ 2
3

= −δ
2

2 , m = ε1 + ε2
δ

, 〈O 4
3
〉 = δ4

16 + ε1 − ε2
2 , (4.27)

In other words, the (A1, A1)2 point realized by the two conifolds arises at generic points
along the locus

{
〈O 4

3
〉 = 1

4µ
2
2
3
, m = 0

}
in the extended Coulomb branch of the

(A1, A3) theory.
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As an aside, it would be very interesting to understand the Higgs branch of the
(A1, An−1) theory with n even in terms of its realization by stacks of cosmic defects in
6d supergravity. Note however that in the fully geometric duality frame one can under-
stand the Higgs branch as a resolution of conifolds. Indeed, as mentioned above, for n even
one can find k := n/2 conifolds with k corresponding shrinking A-cycle three-spheres con-
nected by k−1 compact B-cycles. Using [90, 91], this implies a one-dimensional resolution
branch. Even more interestingly, it would be important to study the geometrical origin
of the flavor symmetry group (isometry group of the Higgs branch) of such theories. The
flavor symmetry of (A1, An−1) AD theories is always U(1) (for n ≥ 6 and n even) but for
n = 4 it gets enhanced to SU(2).15 We leave these interesting questions to further studies.

Finally, we expect that the moduli space of local non-compact CY threefolds dual (via
an element in O(5, 21;Z)) to a stack of N D7 branes wrapped on K3 can be embedded
locally in C4 3 (x, y, u, v) via

y2 + u2 + v2 =W(x; {uk})2 − Λ2N , (4.28)

such that the co-dimension two slice u = v = 0 is the Seiberg-Witten curve. This non-
compact model indeed geometrically engineers the pure SU(N) gauge theory [88, 95].

Let us distill what we have learned into a rather simple effective model that should be
valid when the negative D3 charge is large. We encode the non-perturbative splitting of
N D7 branes at the origin of the Coulomb branch as follows: the 2N monodromy defects
are smeared along a circle of radius r∗ ∼ Λ, giving rise to an effective circular defect of
real co-dimension one that hosts all the negative D3 charge. In this case, the conformal
factor runs logarithmically at large radii r ≥ r∗ ∼ Λ and remains constant at smaller radii
r ≤ r∗ ∼ Λ, see figure 8. There is only one number that this effective description requires
as input from a more microscopic analysis: the precise radius r∗ at which the effective co-
dimension one membrane lives, or equivalently the value of the K3-volume in the interior
region r ≤ r∗.

Because the interior region can be probed by the individual strong coupling defects
forming a perturbative D7 brane (see figure 9) it is natural to propose that the gauge
coupling (K3 volume) in the interior region is truly strongly coupled. More precisely, we
claim that

τD7|r=0 =
∞∑
k=0

ωkN
−k , (4.29)

with numerical O(1) constants ωk. In particular, the l.h. side approaches a universal finite
value ω0 as N → ∞. More precisely, we claim that ω0 cannot be dualized to something
weakly coupled, i.e. 0 < Im(ω0) <∞. In the next section, we will confirm this by inspecting
the Seiberg-Witten solution of SU(N) Yang-Mills theory near the origin of the Coulomb
branch. The reader not interested in how we arrive at this technical conclusion may skip
section 4.2.

15This can be clearly seen at least in two ways. Either from the computation of the superconformal
index [92], or from the topological symmetry enhancement of their 3d N = 4 mirror theory [93, 94], which
is U(1) with Nf = n/2 flavors, and it is well known that such enhancement happens only for Nf = 2.
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Figure 8. Upon smearing the 2N defects forming the N perturbative D7 branes along the angular
circle we obtain a simplified effective model, where the conformal factor runs at one-loop in the
exterior region r∗ ≤ r ≤ r0 and remains constant in the interior region r ≤ r∗. Also, we assume
that the negative D3 charge on the D7 branes is screened by positive D3 brane charge at r = r0
resulting in a constant profile at r ≥ r0 which corresponds to the volume modulus.

Figure 9. By taking u2,...,N−1 = 0 and uN ≤ ΛN N mutually local exotic defects move into the
interior region until they collide at the origin for uN = ΛN realizing the (A1, AN−1) AD theory.

The crucial consequence of our claim is that as the UV-gauge coupling Im(τD7)UV is
dialed to values . N the non-perturbatively resolved seven-branes start to explore the
entire CY threefold,16 leaving behind a region with O(1) Einstein frame curvature. The
defects that resolve the apparent negative conformal factor singularity live at real co-
dimension two, so we expect to find singularities in the 4d EFT only for isolated values
of τD7 where one of the defects collides with (say) a mobile D3 brane. Therefore, at least
when all negative D3 charge comes from a stack of wrapped seven-branes, we expect the
4d effective field theory to generically remain regular even when Im(τD7)UV � N .

16From the gauge theory perspective one can think of this as the insertion of R-symmetry breaking
spurions with characteristic scale of order the strong coupling scale Λ. In this sense the 7-brane gauge
theory would become truly strongly coupled.
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Figure 10. Crossing a wall of marginal stability in the SU(2) theory. Right: weakly coupled cham-
ber where the W-boson is BPS and realized via a string junction system ending on the defects. Left:
strongly coupled chamber where the W-boson has decayed into a two-particle state corresponding
to the two BPS dyons with electric-magnetic charges (2,−1) and (0, 1).

4.2 A strongly curved region

Now we would like to consider quantitatively the SU(N) gauge theory engineered by D7
branes wrapped on K3 in order to substantiate the claim of eq. (4.29). To this end, we will
analyze the Seiberg Witten solution near the origin of the Coulomb branch u2,...,N = 0.

First, at weak coupling |uk| � 1 one can relate the bulk field τD7 to suitable compo-
nents of the gauge coupling matrix τYM of the effective U(1)N−1 gauge theory. This goes
as follows: the W-bosons and magnetic monopoles correspond to F-strings and D5-strings
stretched between the two D7 branes, see figure 3. Thus, for a pair of D7 branes realizing
an SU(2) ⊂ SU(N) Yang-Mills theory its effective U(1) coupling τeff is equal to ∂ZM/∂ZW
where (ZM ,ZW ) are the central charges of the magnetic monopole and the W-boson [53].
In other words, it measures how fast the mass of a magnetic monopole grows in relation
to that of a W-boson upon moving the two D7-branes apart. This identifies τeff with the
bulk coupling τD7 at a point between the two D7-branes. In the same way, one can repro-
duce the semi-classical monodromy of the SU(2) Yang-Mills theory from the semi-classical
monodromies of the bulk field τD7 that we discussed in the last section (see appendix A).

In regions of stronger coupling |uk| & 1 this relation breaks down because the F-string
actually ends on a string junction as depicted on the r.h. side of figure 10. Then, the mass
of a W-boson receives a significant contribution from the D5 strings ending in the junction,
and we cannot claim τD7 ' τeff. At even stronger coupling |uk| . 1 the W-boson ceases to
be BPS and breaks into dyons with electric-magnetic charges (qe, qm) = (2,−1) and (0, 1),
see l.h. side of figure 10.17 The co-dimension one surfaces in moduli space across which the
BPS property jumps are called walls of marginal stability [53, 54]. In chambers of moduli
space where W-bosons are not BPS, the precise relation between the bulk and Yang-Mills
couplings becomes even less clear.

Nevertheless, one can use the gauge theory solution to argue for genuine strong bulk
coupling τD7 in the interior region near the origin of the Coulomb branch. First, consider
the SU(2) solution of Seiberg and Witten [53]. Along the real imaginary line u ≡ u2 = it

with t ∈ R+ the two dyons with charges (0, 1) and (2,−1) have equal mass. For t ≥ tc ≈
17Note that this does not imply that the F-string itself becomes unstable. Rather, the F-string component

of the junction system shrinks to zero size.
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Figure 11. At the wall of marginal stability a BPS multiparticle state with electric-magnetic
charge q′(0, 1) + p′(2,−1) and q′/p′ > 0 (here depicted for q = 4 and p = 3) could reduce its mass
by producing a (p′, q′− p′)-string (green) in the middle if this string were parametrically light. But
this cannot be the case because (0, 1) and (2,−1) are mutually BPS.

0.860 the W-boson is BPS and at the intersection of the imaginary line with the wall of
marginal stability u = itc we have a = aD and thus

m(0,1) = m(2,−1) = 1
2m(2,0) , (4.30)

and all three dyons are mutually BPS. At this point in moduli space the W-boson is about
to decay into the two dyons (of equal mass), and thus a small F-string localized in the
interior must have comparable tension to either of the two D5-strings. We conclude that
τD7|interior = O(1). Finally, let us assume that there is a duality frame in which the bulk
coupling is actually weak. Then, there would exist a (p′, q′) string with parametrically
smaller tension than the one of the D5 and F-strings. If moreover q′/p′ > −1 we could
build a corresponding BPS (multi-)particle state in the gauge theory with the same electric-
magnetic charges from the dyons with (0, 1) and (2,−1). That state could reduce its mass
by forming the light string (see figure 11). This is in contradiction with the fact that (0, 1)
and (2,−1) are mutually BPS. Thus, such a parametrically light string does not exist. If
q′/p′ ≤ −1 the corresponding dyon would not be BPS so excluding light strings in that
range is a bit harder, and we will postpone this subtlety until the end of this section when
we consider the large-N limit. Ignoring this for now, we conclude that

τD7|interior = O(1) (4.31)

in any duality frame. In the rest of this section we will show that the origin of the Coulomb
branch for SU(N) Yang-Mills theory approaches a wall of marginal stability of the same
type in the large N limit N →∞. The claim of eq. (4.29) then follows.

The Seiberg-Witten solution is determined in terms of the Seiberg-Witten curve of
eq. (4.9), and the quantum periods are integrals of the Seiberg-Witten form of eq. (4.11)
over one-cycles of the Riemann surface ΣN−1. First, let us specify a standard symplectic
basis of H1(ΣN−1,Z), following [57]. As explained in the previous section we identify ΣN−1
with the double cover of the complex x-plane branched over cuts between the N roots ei+
of W+(x) and the N roots ei− of W−(x), as depicted in figure 12.

Each pair (ei+, ei−) can be thought of as a perturbative D7 brane wrapped on K3.
Let cycles αi, i = 1, . . . , N , encircle each pair of roots (ei+, ei−) counter-clockwise,
and define [α̂i] :=

∑i
j=1[αj ]. Furthermore, we let the cycles βi, i = 1, . . . , N − 1,
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Figure 12. We show (for N = 10) two sheets of the complex x-plane marked by the roots of W+
(blue) and the roots of W− (red), with branch cuts running between them (black dots), at the
origin of the Coulomb branch u2,...,N = 0. The cycles αi (red) run along the upper sheet, while the
cycles βi (blue) run into the branch cuts and continue along the lower sheet (dotted blue).

connect the i-th and (i + 1)-th D7 brane as depicted in figure 12. The set of cy-
cle classes {[α̂1], . . . , [α̂N−1], [β1], . . . , [βN−1]} is a symplectic basis of middle homology
H1(ΣN−1,Z), i.e.

α̂i ∩ βj = δji , α̂i ∩ α̂j = βi ∩ βj = 0 . (4.32)

In order to evaluate the periods at the origin of the Coulomb branch we can use the fact
that the α-cycles are mapped into each other by discrete rotations in the x-plane, i.e. by
a ZN ⊂ Z2N R-symmetry group. This implies that the periods al :=

∫
αl
λ can be obtained

via analytic continuation in the small-u patch as

al({uk}k) = e
2πi
N

(l−1)a1({e−
2πi
N
k(l−1)uk}k) , l = 1, . . . , N , (4.33)

and âl =
∑l
m=1 am. Similarly, we can obtain the periods aiD. However, since they are not

simply mapped into each other by the R-symmetry group it turns out to be useful to define
a further set of cycles γ1,...,N drawn in figure 13 that are better adapted to the symmetry
of the problem than the β-cycles. These can be expressed as

[γ]l = −[βi]− (−1)l[αle+1] , l = 1, . . . , N − 1 , (4.34)
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Figure 13. Same setup as in figure 12 but instead of the β-cycles we depict the γ-cycles (in green)
which are obtained from the α-cycles via action of the R-symmetry.

where le is the even part of l. The γi can also be obtained from α1 via the action of the
R-symmetry group so the corresponding periods πlγ :=

∫
γl λ satisfy

πlγ({uk}k) = e
2πi
2N (2l−1)a1({e−

2πi
2N k(2l−1)uk}k) , l = 1, . . . , N . (4.35)

We can now express the periods alD as

alD = −πlγ − (−1)lale+1 , l = 1, . . . , N − 1 , (4.36)

and use the continuation formulae 4.33 and 4.36 to compute the periods in terms of a := a1,
though we will not explicitly make use of them.

In order to show that the origin of the Coulomb branch approaches a wall of marginal
stability as N →∞ we consider the ratio of central charges

Ω(N) := Z
d1

ZW
, (4.37)

with ZW = a1−a2, and Zd1 = a1−π1
γ , as a function of N . Using our continuation formulae

in eq. (4.33) and eq. (4.36) it follows that

Ω(N) = 1
1 + e

2πi
2N

= 1
2 −

i

2
sin
(

2π
2N

)
1 + cos

(
2π
2N

) → 1
2 as N →∞ . (4.38)

Thus, in the large N limit the origin of the Coulomb branch of the SU(N) theory is
completely analogous to the special point u = itc on the wall of marginal stability of the
SU(2) theory. By reasoning that we applied for the SU(2) theory in the beginning of this
section a strong bulk coupling as claimed in eq. (4.29) can be derived: the three relevant
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Figure 14. Left: two D5-strings stretching between neighboring D7 branes forming BPS dyons
with central charges Zd1 and Zd2 . Right: state with central charge ZW = Zd1 +Zd2 is marginally
BPS in the large N limit according to eq. (4.38). Upon slightly deforming away from the origin
of the Coulomb branch this state should become finitely bound due to the formation of a small
F-string (purple).

Figure 15. Analogue of figure 14 but with pair of D7 branes residing at antipodal positions.

(almost-)BPS states are the W-boson with central charge ZW and the two dyons (which are
exactly BPS [83]) with central charges Zd1 and Zd2 = −Zd1 +ZW , depicted in figure 14. As
a consequence, the bulk gauge coupling τD7 must take a universal O(1) value at a point in
the interior region close to its boundary, as well as its 2N−1 images under the R-symmetry
group. Even more generally, one can consider almost-BPS W-bosons stretched between the
first and i-th pair of D7 branes, i.e. with central charges ZWi = a1−ai+1, and exactly-BPS
stretched dyons with central charges Zd1

i =
∑i
l=1(al−πlγ), and Zd2

i = −Zd1
i +ZWi , as well

as their images under the R-symmetry group to probe essentially the entirety of the interior
region (see figure 15 for the case i ∼ N/2). Again, it is straightforward to show that

Ωi(N) := Z
d1
i

ZWi
≡ Ω(N) . (4.39)

Not only does this confirm that the typical gauge coupling in the interior region is strong,
but it also gives further justification for our effective model (cf. figure 8) treating the bulk
coupling as essentially constant throughout the interior region, at large N .

Finally, we can also close the loophole that we left in the beginning of this section:
one would like to exclude light (p′, q′) strings in the interior region also for q′/p′ ≤ −1. If
we consider a pair of D7-branes as in figure 15 the relative separation of two D7-branes
diverges in the large-N limit. Then, if we assume that a (p′, q′) string exists that becomes
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tensionless in the large-N limit, we can build a dyon from the dyons with central charges
Zd1
i and Zd1

i that can form this light string in the interior as in figure 11. The contribution
to the mass of this dyon from the junction system is finite in the large N limit18 while
the contribution to its mass from the light string in the interior grows at most as Nα with
α < 1. Thus, at sufficiently large N the mass of this dyon is smaller than the mass of
the BPS dyons we have used as building blocks, so the new dyon should be BPS. But
such a state is not part of the BPS-spectrum [83] so indeed no (p′, q′) string can become
tensionless in the interior region as we take the large-N limit.

5 Comments

We have described how the non-perturbative gauge theory effects lead to the splitting of
wrapped D7 branes into more elementary cosmic defects and thus prevent regions of nega-
tive conformal factor to occur. We have described this rather quantitatively under certain
simplifying assumptions: 1) seven-branes wrap a K3 surface, 2) Classical R-symmetry
breaking effects from the compact CY as well as other sources of D3 charge can be ne-
glected locally. This means that positively charged D3 branes screen the negative charge
on the seven-branes at distances r0 much bigger than the strong coupling scale Λ.

In this section we would like to sketch plausible outcomes upon dropping our simpli-
fying assumption 2): in 5.1 we consider type IIB on an N = 2 orientifold of T 2 ×K3 with
D3 and D7 branes (the standard weak coupling limit of F-theory on K3 ×K3 [61]). We
use this model to argue that at small K3-volume Vol(K3) . N the D3 charges recombine
due to the non-perturbative splitting of seven-branes sweeping up positive D3 charge in
the bulk. In 5.2 we consider the final stages of recombination against the D3 charge hosted
by a warped throat. We argue that recombination of D3 charge can be understood as a
lowering of the UV cutoff of the KS gauge theory dual the throat. This leads to a reduction
of the exponential hierarchy between the IR scale and the UV scale, or in gravitational
terms a reduction of warp factor hierarchy. In this extreme regime, the effective field theory
of KKLT must be significantly modified (but we will argue in section 6 that this regime
turns out to be dynamically avoided in KKLT).

5.1 Sketching the small volume limit in a simple global model

We consider the N = 2 O7 orientifold of type IIB on T 2×K3 with the orientifold involution
acting only on the T 2 factor with four fixed points (as analyzed in [96]). This is a weak
coupling description of F-theory on K3×K3 (as studied in [97]). There are four O7 planes
and 16 D7 branes wrapping K3 to cancel the D7-tadpole. Furthermore, we include 24 D3
branes to cancel the D3 tadpole. This allows us to engineer gauge theory sectors with gauge
groups of the form SO(2N)×USp(2M) with N ≤ 16 D7 branes and M ≤ 24 D3 branes for
D3/D7 branes on O7 planes, and their subgroups U(N) × U(M) for D3/D7 branes away
from O7 planes.

In the unitary case, we can engineer precisely the situation analyzed in the previous
section: a stack of N D7 branes surrounded by N D3 branes at radius r0, with Λ� r0. The

18In units where the BPS dyon connecting neighboring mutually local defects has mass equal to one.
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classical K3-volume is defined as a modulus at scales r ≥ r0. As we take Λ→ r0 limit the
D7 branes approach the D3 branes, and the opposite charges start to screen each other.
In fact, one can argue that in a sense they actually recombine: from the gauge theory
perspective, sending in δN D3 branes towards the center means sending the mass of δN
flavors to zero. This reduces the beta-function coefficient of the seven-brane gauge theory

2N → 2N − δN . (5.1)

As a consequence, strong coupling effects become important at smaller K3 volume
Vol(K3) − 1

gs
∼ 2N − δN . Moreover, once δN = N charge-screening D3 branes have

been sent to the origin r0 → 0 we should instead consider the U(N)×U(N) gauge theory
from N D7 branes and N D3 branes with a massless bi-fundamental hyper and another
hypermultiplet in the (1,Adj). The 7-brane stack is still asymptotically free, but this is
now only due to the running of the dilaton while the conformal factor remains constant.
At a radial scale corresponding to the new strong coupling scale of the 7-brane stack we
get Im(τ̂) = Im(τ) and the holomorphic 7-brane coupling vanishes. Below this radial scale
the string frame K3 volume is smaller than unity so we should ‘T-dualize’19

τ̂ ↔ τ . (5.2)

This corresponds to Seiberg duality on the field theory side [98], and sends the N D7 branes
and N D3 branes to a stack of N D3 branes. Indeed, for SU(Nc) gauge theory, Seiberg
duality makes sense when there are at least as many flavors (D3 branes) as Nc [99]. In the
dual description, the dilaton stays constant, and the conformal factor approaches the one
of the AdS5 × S5 throat, with typical length scale of order N

1
4 .

As we further decrease the K3 volume as defined in the outside region r ≥ r0 the radial
scale below which one should T-dualize increases further due to the running of the dilaton
towards strong coupling at large r until the negative D7 charge of the bulk has been swept
up as well. Beyond this, the entire compactification should instead be described by the
T-dual frame. In the absence of local charges, i.e. with unbroken (conformal) D7-D3 gauge
sector (SO(8)×USp(12))4, T-duality simply maps the orientifold to itself [100], and the K3-
volume is uniquely defined independent of radial scale. For a generic brane configuration it
is natural to define the K3-volume and dilaton τ zero modes (τ̂0, τ0) at some generic position
z0 on the T 2/Z2 ' P1. As we send τ̂0−τ0 → 0 the non-perturbatively split 7-branes spread
over the P1 and the spreading of branes should lead to recombination of D3/D7 charges
that is complete once we get to the self-dual radius Im(τD7,0) ≡ Im(τ̂0 − τ0) = 0.

Therefore, in the range

0 ≤ Im(τD7,0) . 2N ≤ 32 , (5.3)

we expect Im(τD7,0) to be a measure of how much un-screened D3/D7 charge remains. We
will say more about this once we consider charge recombination against a warped throat
in section 5.2. Finally, we expect that the above discussion carries over directly at least

19Note that this is not a monodromy transformation.
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for genuine N = 1 compactifications on O7 orientifolds with seven-branes wrapped on K3
surfaces. If moreover the CY threefold is K3-fibered and the orientifold involution acts only
on the base of the fibration (with fixed points), one would hope to be able to describe such
vacua non-perturbatively in fiber volumes and field-strengths along the fiber by an N = 1
version of [77–80].

5.2 Recombination of D3 charge against a warped throat

In section 5.1 we have collected evidence indicating that the non-perturbative resolution
of singularities of the conformal factor effectively localizes the negative D3 charge on a
real co-dimension one locus that becomes macroscopic as Vol(X)2/3 → |QD3|, and sweeps
out the entire CY threefold as Vol(X) → 0. It appears unavoidable that the amount
of positive D3 charge, hosted in fluxes or mobile D3 brane swept up by the membrane
effectively recombines with the negative charge on the membrane thus reducing the overall
amount of unscreened D3 charge QD3.20 So far, we have argued for this phenomenon from
the perspective of the gauge theories residing on the negatively charged defects, but one
can argue for the same result from the perspective of a region carrying overall positive
D3 charge.

Specifically, we consider a warped throat with total D3 charge ND3 := |QD3|. As
usual, the D3 charge is spread out along a radial direction such that the total integrated
D3 charge up to radial distance r is given by

Neff(r) := ND3 + 3
2πgsM

2 log(r/rUV) , (5.4)

for r ≤ rUV [16, 101]. From the local solution of the conformal factor, one notices that if
this running is cut-off at intermediate radial distance r∗ � rUV due to e.g. the spreading of
seven-branes down into the throat, the apparent volume of the throat at the cut-off value
is still of order

t ∼ (Vol(throat)(r∗))
2
3 ≈

(16
27

) 2
3 Neff(r∗)

4π , (5.5)

and the warp factor log-hierarchy between that point and the infra-red end is given by

A(rIR)−A(rUV) =: log(a−1
0 ) ≈ 2π

3
Neff(r∗)
gsM2 . (5.6)

Since the overall volume modulus corresponds to an additive constant to e−4A we see
that for sufficiently small value of the Kähler modulus the semi-classical singularity at the
locus where e−4A = 0 starts to walk down the throat, effectively pinching of the throat at
smaller radii. At least when the negative charge comes from seven-branes wrapping K3
we can argue that the pinching of the throat is non-perturbatively replaced by a set of
elementary monodromy defects, see figure 16. In this regime, one can think of the system

20One might expect that such recombination of negative D3 charges on seven-branes against bulk fluxes
changes the classical flux superpotential. However, the size of the strongly curved region is exponentially
dependent on the vev’s of the Kähler moduli, so there is no room for additional corrections to the 4d
superpotential beyond the standard non-perturbative expansion. We thank Daniel Junghans for a useful
discussion about this point.
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Figure 16. At small values of the overall volume modulus t . ND3 the effective membrane of
defects pinches off the throat at a radial scale r∗ s.t. Neff(r∗) ∼ t.

as a Randall-Sundrum throat with total D3 charge Neff(r∗) and a Planck-brane residing at
r = r∗ carrying −Neff(r∗) units of charge. If this occurs at radial position r∗, the typical
length scale of the setup is given by eq. (5.5), and we can think of all the positive D3 charge
residing at larger radii as having been absorbed by the effective membrane carrying the
negative charge.

As a consequence, the throat hierarchy starts to become exponentially sensitive to
the value of the Kähler modulus due to the screening of charges above the dynamically
adjusting UV-cutoff r∗,

log(a−2
0 ) −→ 4π

3
Neff(r∗)
gsM2 ≡ 2π

˜Vol(K3)
gsM2/c

, c = O(1) . (5.7)

Here, the O(1) constant depends on the precise relation between the throat volume mea-
sured near the radial scale r∗ and the value of the real part of the holomorphic modulus
τ̂ − χ(S)

24 τ ' ˜Vol(K3).21 Crucially, the validity of the standard KKLT EFT starts to break
down once a significant fraction of the throat fluxes that induce the running of the warp
factor are swept up by the effective membrane carrying the negative D3 charge. This is
because the uplift starts to become exponentially sensitive to the volume modulus t. As
argued in [47, 50] this regime begins once t . ND3. However, and this will become crucial
in section 6 when we discuss the KKLT uplift in more detail, in the regime t . ND3 we also
no longer have a relation SED3 ∼ t where SED3 is the action of the leading ED3 instanton
contributing to the superpotential.

6 Resolution of singularities and instanton expansion in KKLT

Now consider again the KKLT scenario and again for simplicity we set h1,1
+ = 1 and assume

that the Kähler modulus T is stabilized by an ED3 instanton wrapping some divisor D.
Furthermore, in order for the ED3 instanton to contribute to the superpotential even in

21If they were exactly the same we would get c = 8π
3

(
16
27

)− 2
3 .
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Figure 17. Compact CY with warped throat, seven-branes contributing the D3 tadpole and
transversally intersecting rigid divisor D supporting an ED3 instanton responsible for moduli sta-
bilization. We depict the large volume regime where the D7-branes can be treated semi-classically,
i.e. they are all stacked on top of each other. The bulk CY is weakly curved everywhere except
exponentially close to the seven-branes.

the absence of worldvolume and background fluxes, we will assume that D intersects the
O7 plane transversally along some curve and that D is rigid, i.e. hi(OD, D) = 0 for i = 1, 2.
To simplify things even further we will also place four D7 branes on the O7 plane such that
the dilaton is a constant (see figure 17), and to make concrete contact with the preceding
analysis we will take the divisor wrapped by the O7 plane to be K3. As before, Q denotes
the negative D3 charge spread along the seven-branes.

We will also (for now) set the Kähler modulus T to a (very) large value. As shown in
section 2 in the vicinity of the seven-branes the conformal factor will vary logarithmically,
matching the one-loop running of the gauge theory living on the seven-brane stack, while
away from the sources it can be treated as a constant. The (complexified) ED3 action is

SED3 = 2π
∫
D

(
e−4A 1

2J ∧ J − iC4

)
. (6.1)

If we assume that D is the generator of the cone of effective divisors this is equal to the
real part of our Kähler modulus T . We may write the unit volume Kähler form J as

J =
(6
κ

) 1
3

[D] , (6.2)

with triple intersection number κ, where [D] is the (harmonic) Poincaré dual two-form to
the divisor D. Using that dJ = 0 we can relate the divisor volume Re(T ) with the overall
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Figure 18. Same CY as in figure 17, for small value of the volume modulus t . ND3 and
ReT = O(1). The non-perturbative splitting of seven-branes has eaten up almost the entire bulk
CY but has not yet entered the warped throat. The inside region (on the left) that has been swept
up by the spreading of seven-branes is strongly curved, while the outside region (on the right) is
still weakly curved.

volume modulus t (defined in eq. (2.5)),

Re(T ) =
∫
D
e−4A 1

2J ∧ J =
∫
X
e−4A 1

2J ∧ J ∧ δ
(2)
D

=
(9

2κ
) 1

3
t− 1

2

∫
X
d(e−4A) ∧ ω1 ∧ J ∧ J , (6.3)

with δ-function two-form δ
(2)
D = [D] + dω1, for some one-form ω1, and we have integrated

by parts and used that [D] ∧ [D] ∧ [D] = κ
√
gCY d

6y.
In the large volume limit we can treat e−4A as a constant and we get a simple relation

between the overall volume modulus and Re(T )

Re(T )→
(9

2κ
) 1

3
t as t→∞ , (6.4)

but this relation breaks down once warping becomes significant because the second term
in (6.3) cannot be neglected. In particular, in a situation where we have engineered a
warped throat carrying a large amount of positive D3 charge ND3, we can decrease the
overall volume modulus into the critical regime t . ND3 where the classical vanishing locus
of the conformal factor e−4A has swept up almost the entire bulk CY but has not yet crept
into the warped throat (see figure 18). If the divisor D does not significantly reach into
the throat, it has been swept up by the vanishing locus of the conformal factor as well. In
particular, as we have argued that volumes are O(1) in the interior region, it follows that
at this point in moduli space the ED3 action is of order one, i.e.

Re(T ) = O(1) . (6.5)
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Figure 19. Same CY as in figure 17, for intermediate overall volume t & ND3 and 1 � Re T �
ND3. The non-perturbative splitting of seven-branes has eaten up an O(1) fraction of the bulk CY
but leaves enough room for a large physical volume of the divisor D, i.e. Vol(D) ∼ log(|W0|−1)� 1.

Nevertheless, as argued in [47, 50] the overall volume modulus t is of order ND3. This is
consistent with eq. (6.5) because the relation of eq. (6.4) holds only at very large volume
t� ND3. Since the leading contribution to the non-perturbative superpotential scales as

Wnp ∼ e−2πT = O(1) , (6.6)

we see that the instanton expansion is poorly controlled at this point in moduli space, and
the scale of the stabilizing potential becomes large. Since the warped throat still carries
significant D3 charge of order ND3, an anti-brane uplift gives a contribution to the scalar
potential that is much smaller than that of the non-perturbative superpotential. In other
words, the uplift is too small to reach a de Sitter vacuum. But as argued in [47], in the
regime where the singularities of the conformal factor can be completely neglected, i.e.
t� ND3, the uplift is too large giving rise to a runaway towards large volume. Hence, by
continuity, there must exist a critical value of Re(T ) in the intermediate regime

t & ND3 , 1 < Re(T ) < ND3 (6.7)

such that the uplift precisely competes with the leading small non-perturbative contribu-
tions to the scalar potential (depicted in figure 19). Thus, in order to promote this point
in field space to a de Sitter minimum of the scalar potential it should suffice to find an
appropriate small value of W0 such that at the above critical value of Re(T ) one also finds

e−2πRe(T ) ∼ |W0| � 1 . (6.8)

Indeed, the AdS KKLT minimum arises via a competition of the classical flux superpoten-
tial with the leading non-perturbative correction and is thus very robust against corrections
to the Kähler potential, as already pointed out in [3]. Even if significant non-perturbative
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corrections would render the Kähler potential hard to compute it is difficult to imagine
how this could drive the KKLT minimum to strong coupling T = Ts = O(1). This would
require a quite remarkable fine-tuning |∂TK − 2π|T=Ts . |W0| � 1 that string theory
would need to automatically realize, given a small W0.22

Interestingly, even though the non-perturbative expansion of the superpotential is con-
trolled by virtue of a small classical flux superpotential, the gauge theory hosted on the
seven-branes that dominate the D3 tadpole is strongly coupled in the sense that classical
R-symmetry breaking spurions take values of order the strong coupling scale of the gauge
theory. Since an O(1) fraction of the bulk CY is now strongly curved, one might be worried
about the stability of the complex structure since their potential is (in practice) computed
using the large volume approximation. However, since the size of the strongly curved re-
gion depends explicitly on the Kähler moduli, its presence can enter the superpotential only
non-perturbatively in T . Since a small W0 ensures that non-perturbative corrections are
negligible we can still rely on the classical approximation of W in order to compute the F-
term potential for the CS moduli and the dilaton. Again, obtaining a good approximation
of the Kähler potential may be difficult. However, if all moduli have a steep potential at
large volume, and ifW0 is small, the F-terms are again independent of the Kähler potential
to good approximation, DaW = ∂aW + ∂aKW0 ≈ ∂aW . If some of the CS moduli have
masses of order W0 one has to be a bit more careful, but at least the subset of solutions of
the supergravity F-terms of the light moduli which can be deformed to nearby solutions of
∂aW = 0 should survive because they again rely on a competition between different terms
in the superpotential (the solutions of [21–23] are of this type). As a consequence we do
not see how the presence of the large strongly curved region could jeopardize the scheme
of moduli stabilization. Finally, in order to argue for an actual dS vacuum one has to also
ensure that the anti-brane uplift potential can be computed reliably. But up to the irrel-
evant overall eK factor in the F-term potential, the uplift potential is determined by the
local Physics of the IR region of the throat which remains in its supergravity regime near
the AdS KKLT minimum. Thus, it appears that even the KKLT dS solution is generically
safe from corrections induced by the strongly curved region in the bulk.

Nevertheless, the fact that generically an O(1) fraction of the bulk CY is strongly
curved in KKLT should be kept in mind in the construction of phenomenological models
based on the KKLT scenario. Finally, since the local divisor volume (of K3) is not single-
valued upon encircling the elementary defects that we have described, we see that at the
KKLT minimum a significant part of the full bulk CY may be best thought of as a U -fold
or T -fold (see e.g. [102] for a review of non-geometric backgrounds in string theory).23

7 Conclusions

In this paper we have revisited a potential control problem for the KKLT scenario of moduli
stabilization [3]: as argued in [47, 50], when Kähler moduli take values near a meta-stable
KKLT de Sitter vacuum the backreaction radii associated with D3 charges from fluxes and

22We thank Daniel Junghans for a useful discussion about this point.
23We thank Alexander Westphal for a helpful discussion about this.
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branes can no longer be neglected anywhere in the compactification. In particular, the
singular near-brane behavior of the supergravity fields in the vicinity of sources of negative
D3 charge extends over an O(1) fraction of the bulk CY.

We have restricted ourselves to compactifications where negative D3 charge is sourced
by seven-branes wrapped on K3 surfaces, realizing (at low energies) N = 2 pure Yang-Mills
sectors. In section 4 we have argued that the singular near-brane behavior of supergravity
fields is resolved by non-perturbative effects in the α′-expansion that can be understood
quantitatively in terms of instanton effects in the gauge theory. In a way that is analo-
gous to the resolution of dilaton singularities near perturbative (in gs) O7 planes [61, 62]
the non-perturbative corrections in the Seiberg-Witten solution of the IR-behavior of the
gauge theory can be understood to split a perturbative (in α′) D7 brane into a bound
state of two mutually non-local defects collectively carrying the negative D3 charge. This
non-perturbative splitting of branes then stops the perturbative running of supergravity
fields before a singularity forms. Concretely, N wrapped D7 branes split into 2N defects
distributed along a circle around the perturbative location of the branes, leaving behind an
‘inside region’ with O(1) local K3-volume (in Einstein frame). Each of the 2N defects can
be thought of as a cosmic defect in 6d N = (2, 0) supergravity, realized by compactifying
type IIB string theory on K3. We have described the monodromies of the conformal factor
around each defect and by comparing with the singularities in the moduli space of SU(N)
Yang-Mills theory we have concluded that a stack of n mutually-local such defects hosts
the Argyres-Douglas (AD) SCFT (A1, An−1).

Because the resolution of singularities can be described entirely in terms of the low
energy degrees of freedom already known to be present in the 4d EFT we have concluded
that even a macroscopic strongly curved ‘inside region’ would not invalidate the KKLT
EFT employed in [3] to discuss the stabilization of Kähler moduli. Moreover, we have
argued in section 6 that a small flux superpotential should ensure that a sufficiently large
part of the bulk CY remains weakly curved such that the leading ED3 instanton has large
action, thus dynamically preventing significant alterations of the 4d EFT treatment of the
anti-brane uplift.

It would be interesting to understand in detail the resolution of the singularity of the
conformal factor also for other sources of negative D3 charge. Arguably, O3 planes are
easiest to understand because the singularity of the conformal factor can be related via
T-duality to the dilaton singularity of an O7 plane wrapped on T 4 which is resolved in
F-theory [61]. Also, it appears plausible that one can understand the case of seven-branes
wrapped on rigid divisors because they realize N = 1 pure Yang-Mills theories which can
be thought of as massive deformations of the N = 2 theory that we have considered.
Perhaps the most mysterious case is that of wrapped seven-branes on surfaces with many
normal bundle deformations. The gauge theory is IR-free so explaining the resolution of the
near-brane singularity in terms of gauge theory instantons seems difficult. Furthermore, it
would be interesting to turn things around and ask what other AD SCFTs can be realized
by stacks of exotic branes in N = (2, 0) supergravity. Finally, one might be able to use
our results to improve control over the Kähler uplifting scenario of [5] where a confining
seven-brane theory is at most marginally weakly coupled at the UV-cutoff.24

24We thank Alexander Westphal for useful discussions about this.
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A Bulk equations of motion

We would like to show that the non-perturbatively corrected 10d metric still solves the tree
level equations of motion (but with different singular source terms). We will zoom-in close
to the stack of D7 branes so we approximate the total space as C×K3. First, let us forget
about D3 brane charges. It is well known that the inclusion of 7-brane charges modifies
the Ricci flat 10d metric as (see e.g. [103])

ds2 → dx2 + Im(τ(ab))|dab|2 + ds2
K3 , (A.1)

where ab is a complex coordinate parameterizing the transverse complex plane. As in [17],
the inclusion of D3 charges further modifies the metric as

ds2 → e2A(a,ā)dx2 + e−2A(ab,āb)(Im(τ(ab))|dab|2 + ds2
K3) , (A.2)

where e−4A satisfies an electro-static equation

−∇2
0 e
−4A = ρD3 , (A.3)

with ρD3 the D3-charge density and ∇2
0 the 6d Laplacian of Im(τ(ab))|dab|2 + ds2

K3. Here,
we have normalized ds2

K3 to be the unit volume metric on K3. In the approximation
where all D3-charges are smeared over K3 the 6d electro-static problem reduces to a two-
dimensional one over the transverse space parameterized by ab. Since the conformal factor
Im(τ) drops out in two dimensions, away from sources the equation of motion reduces to
∂ab ∂̄ābe

−4A = 0 which is indeed true when e−4A(ab,āb) = Im(τ̂(ab)) for τ̂(ab) holomorphic.
At leading order in the α′ expansions, τ and τ̂ are indeed the gauge couplings on probe

D3 and D7 branes as is seen from expanding the DBI action to leading order in the brane
velocities,

SD3 ⊃ −2π
∫
d4x

(1
2 Im(τ)|∂aD3|2 + 1

2g
K3
ij ∂φ

i∂φj + . . .

)
, (A.4)

SD7 ⊃ −2π
∫
d4x

(1
2 Im(τ̂)|∂aD7|2 + . . .

)
, (A.5)

where ds2
K3 ≡ gK3

ij dφ
idφj is the unit volume K3 metric, and aD3/D7 denotes the position

of the D3 respectively D7 brane in the transverse plane. Inspecting the CS term of a
D7-brane one sees that the α′2 correction leads to the replacement τ̂ → τD7 := τ̂ − χ(K3)

24 τ
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in (A.5). This is indeed what is required by N = 2 supersymmetry: the kinetic terms of
the scalars in vector multiplets are the imaginary parts of the gauge couplings and the field
space metric for the scalars in hypermultiplets is hyperkähler because K3 is hyperkähler.

It remains to be shown that Re(τ̂) is identified with the axion
∫
K3C4. For this, we

simply plug in the solution for the warp factor into the solutions of [17]

F5 = (1 + ∗)de4A ∧ d4x = de4A ∧ d4x+ ωK3 ∧ i(∂ab − ∂̄ab)e
−4A(ab,āb) (A.6)

= d
(
e4A ∧ d4x+ ωK3 Re(τ̂(ab))

)
≡ dC4 , (A.7)

where ωK3 is the volume form on K3. Here, we have used that e−4A(ab,āb) = Im(τ̂(ab))
and i(∂ − ∂̄)Im(f) = dRe(f) for a holomorphic function f . So indeed, it follows that
Re(τ̂) =

∫
K3C4.

Finally, the action of a (energy-minimizing) F-string stretched between two D7 branes
at points (a(1)

b , a
(2)
b ) is given by

SF = −2π
∫

Σ2

d2σ
√
gΣ2√

Im(τ)
= −2π

∫
dt

∣∣∣∣∣∣
∫ a

(2)
b

a
(1)
b

da

∣∣∣∣∣∣ = −2π|a(1)
b − a

(2)
b |

∫
dt , (A.8)

where Σ2 denotes the worldsheet and gΣ2 is the induced Einstein frame metric on the
worldsheet. Therefore, defining a := a

(1)
b − a

(2)
b we get the central charge of a W-boson in

the SU(2) theory realized by the two D7 branes. Since the semi-classical monodromy in
the field theory corresponds to exchanging the two D7 branes we get indeed that

a→ −a , (A.9)

as in [53]. Likewise, the tree-level DBI action of a stretched (energy-minimizing) string
from a D5 brane wrapped on K3 is given by

SD5 = −2π
∫

Σ6

d6σ
√
gΣ6√

Im(τ)
= −2π

∣∣∣∣∫ dab e
−4A(ab,āb)

∣∣∣∣ ∫ dt , (A.10)

which is corrected due to induced D1 and F-string charge from the K3-curvature and∫
K3C4-profile respectively to give

SD5 = −2π|aD|
∫
dt , with aD :=

∫ a
(2)
b

a
(1)
b

dab τD7 . (A.11)

Under the field theory monodromy at infinity the central charge of the magnetic monopole
(as realized by a D5 string stretched between two D7 branes) aD indeed transforms as

aD → −aD + 2a , (A.12)

as in [53]. The minus sign again comes from the fact that the two D7s are interchanged,
and the additive term is generated because the stretched D5 string is rotated half-way
around each of the two D7 branes thus picking up the monodromy of the bulk field τD7 as
described in section 4.1.
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