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1 Introduction

Supersymmetric flux backgrounds of string/M-theory remain of great interest for both
phenomenology and the AdS/CFT correspondence. They also provide extensions of con-
ventional geometrical structures that are of mathematical interest in their own right [1–10].
In the absence of flux, compactifications on manifolds with special holonomy are required
in order to preserve supersymmetry. The integrable G-structures that describe such back-
grounds can be used to understand key properties of the background, such as the massless
moduli. Following [11–13], turning the fluxes on breaks the integrability of the conventional
G-structures, and understanding properties of the geometry becomes much more difficult.

In this paper we will focus on generic minimal supersymmetric flux compactifications to
five-dimensional Minkowski space. Although the geometrical structures we describe will be
equally applicable to type II theories, we will focus on M theory backgrounds. They are the
natural M-theory extensions of a Calabi-Yau threefold, a geometry that enters many classic
problems such as braneworld models [14, 15], geometrical engineering of five-dimensional
supersymmetric field theories [16–18], or the M-theory interpretation of topological string
amplitudes [19, 20]. When analysed using conventional G-structure techniques one finds a
local SU(2) structure [21] and the solutions naturally fall into two classes, one that includes
the fluxless Calabi-Yau solution and the other corresponding to a back-reacted M5-brane
geometry. Our focus will be in particular on the geometry that captures the moduli that
fall into hypermultiplet representations in five-dimensions. For the Calabi-Yau case these
come from the complex structure moduli and the three-form gauge field potentials, so our
structure can be viewed as some extension of conventional complex geometry.

We will use the formalism of exceptional generalised geometry [4, 22, 23] which de-
scribes arbitrary type II or M-theory flux backgrounds in terms of geometry on an extended
tangent space on which there is a natural action of the exceptional group Ed(d) × R+. We
will define a new G-structure in E6(6)×R+ geometry, referred to as an exceptional complex
structure (ECS), that is a natural extension of a conventional complex structure or the
generalised complex structures of Hitchin and Gualtieri. Its moduli space is quaternionic-
Kähler and parameterises the hypermultiplet degrees of freedom in the D = 5 theory. The
analogous objects were first introduced in E7(7) × R+ geometry in the context of D = 4
backgrounds of string and M-theory in [24], and analogous structures were later found in
the O(6, 6 + n) geometry relevant to heterotic strings [25]. This work can be viewed as
an extension of these ideas to D = 5 Minkowski backgrounds. As we will see the ECS
is a particularly rich structure that can be viewed as having aspects of both conventional
complex and hyperkähler geometries.
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Recall that in the language of exceptional generalised geometry, a generic supergravity
background is described through a generalised metric, that is, a reduction of the structure
group to the maximally compact subgroup Hd ⊆ Ed(d)×R+ [22, 23, 26]. If the background
also preserves supersymmetry then there is a further reduction of the structure group
such that the Killing spinor equations are equivalent to the existence of a torsion-free
generalised connection compatible with the reduced structure group [6, 8]. This rephrases
the conditions of a supersymmetric background with arbitrary flux as the existence of global
integrable G-structure in generalised geometry in analogy with conventional G-structure
in the fluxless case.1 The D = 5 backgrounds we discuss in this paper are described by
an integrable global USp(6) structure and were studied in [7] where they were dubbed
exceptional Calabi-Yau (ECY) spaces. They are defined in terms two sub-structures that
have to obey some compatibility conditions: a V-structure, that is invariant under F4(4)
structure, and an H-structure, invariant under SU∗(6) structure [29]. Here, we will find
that it is convenient to define an ECS as a slightly weaker version of an H-structure,
invariant under R+ ×U∗(6). It is equivalent to specifying a particular complex subbundle
of the generalised tangent bundle, the analogue of holomorphic tangent bundle T 1,0 ⊂ TC
in complex geometry. It is these SU∗(6) and R+ × U∗(6) structures that we will study in
some detail in this paper.

We find that we can describe a given ECS in terms of two labels which we have called
type, analogous to the type of generalised complex structures, and class. The class will
turn out to exactly match the two classes of solutions identified in [21] using conventional
G-structures. Supersymmetry means that the space of (non-integrable) SU∗(6) structures
and ECSs are themselves hyperkähler and kähler spaces respectively, and, furthermore,
admit analogues of the Hitchin functionals [30, 31] that exist, for example, for conventional
complex structures. As we will discuss, supersymmetry can be regarded as extremisation
of the appropriate functional. We derive the most general form of the ECS in each case
and use this to find the exact moduli in terms of natural cohomology groups.

It is well-known that there are general no-go theorems [11, 32–34] that exclude com-
pact solutions with non-zero flux (unless one allows sources) so that the only allowed
compact background is, in our case, a Calabi-Yau manifold. Thus at first blush our moduli
space calculations should be regarded as identifying the hypermultiplet moduli for non-
compact backgrounds or alternatively for spaces with boundaries where the sources have
been removed. Interestingly, however, it is also possible that the sources enter only in the
V-structure equations, such that the SU∗(6) H-structure remains well defined even at the
source. In this case, our expressions would be valid without excising sources.

The paper is structured as follows. In section 2 we review the geometry of D = 5,
N = 1 backgrounds in terms of local SU(2) structures and in terms of exceptional Calabi-
Yau structures. Following this, we define ECS as a substructure of the ECY and study the
integrability conditions in section 3. In section 4, we completely classify ECS and SU∗(6)
structures, introducing the notion of type and class. We further study the integrability

1This is in fact only true for Minkowski backgrounds. AdS backgrounds still have a well-defined global
G-structure, just now they are weakly integrable meaning that the intrinsic torsion lies in a singlet repre-
sentation of the G-structure [10, 27, 28].
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conditions, and relate their structure to the local SU(2) structure of the background. In
section 5 we use the deformation theory of ECS to find the hypermultiplet moduli, following
similar results for complex structures [35]. We first analyse the class 0 and class 1 cases
separately and then introduce exceptional Dolbeault operators to analyse the moduli in
full generality. Finally, in section 6, we consider how these structures apply to Minkowski
backgrounds. The appendices are left for conventions and proofs of results in the main text.

2 Review of D = 5 Minkowski backgrounds

We would like to analyse the geometry of N = 1, D = 5 flux compactifications of M-theory
with the aim of finding their moduli. First, we will briefly review what is already known
about these backgrounds, both in terms of local SU(2) structures in conventional geometry,
and in terms of exceptional Calabi-Yau structures in exceptional geometry. This provides
the physical context for exceptional complex structures that we study in greater detail in
the following sections. The reader that is only interested in the mathematical aspects of
these structures can happily skip this section, referring back for notation.

2.1 Local SU(2) structures

The generic geometry for the internal manifold for backgrounds of the form R4,1 ×M was
found in [21, App D] where it was given in terms of a local SU(2) structure. Generically
the supersymmetry parameter can be written in terms of two orthonormal chiral spinors
η1, η2 as

η̃ =
√

2
(

cosαη1 + sinα
(
aη1 +

√
1− |a|2η2

)∗)
. (2.1)

where a is some complex function with |a| ≤ 1. Note that there can be points on M where
the supersymmetry parameter is chiral. These correspond to having sin(2α) = 0, so that
one of the chiral terms vanishes and the SU(2) structure degenerates to an SU(3) structure.
If this happens at every point, we have a true global SU(3) structure and one finds that
supersymmetry is incompatible with the presence of flux [21, 36]. Hence in this case M is
a Calabi-Yau manifold and the geometry is well understood. To match [21], we will make
the following definitions2

ε+ = 1√
2
η ε− = − 1√

2
iγ7η θ = π

2 − 2α (2.2)

The local SU(2) structure can equivalently be described in terms of 1-forms ζ1, ζ2 and
three real 2-forms ω1, ω2, ω3 such that the metric and volume form can be written as

ds2(M) = ds2
SU(2) + ζ2

1 + ζ2
2 vol = 1

2ω ∧ ω ∧ ζ1 ∧ ζ2 (2.3)

where ds2
SU(2) is the 4-dimensional SU(2) metric given by the ωi. In the volume form,

we can take ω = ωi for any i. There is an alternative description of the local SU(2)
2Note that our notation slightly differs from [21] in that their ξ is our η, their ζ is our θ, and their Ki

are our ζi.
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structure through a complex 2-form Ω̂ = ω2 + iω1, and a real 2-form ω̂ = ω3 (following
the conventions of [21]). These objects are defined through bilinears in ηi which are not
globally well-defined objects on M . Instead, we should build tensors from bilinears in the
global spinors ε±. A full list of these bilinears in terms of the local SU(2) structure is given
in appendix B, but here we will simply define the following

1 = ε̄+ε+ = ε̄−ε− Ω̃ = ε−Tγ(2)ε
+ Λ = ε+ Tγ(3)ε

+

sin θ = ε̄+ε− = ε̄−ε+ Y = −iε̄+γ(2)ε
+ V = ε̄+γ(3)ε

−

f = a∗ cos θ = ε+ Tε+ = −ε−Tε− f vol = −iε+ Tγ(6)ε
− sin θ vol = −iε̄+γ(6)ε

+

(2.4)
Here the γ are the gamma matrices for Cliff(6) in an orthonormal frame for M . There are
some other useful spinor bilinear identities we can define

ζ̃1 = ε̄+γ(1)ε
+ i ∗ Λ = ε−Tγ(3)ε

+

ζ̃2 = iε̄+γ(1)ε
− ∗V = −iε̄+γ(3)ε

+

Y ′ = iε̄+γ(2)ε
− Z = ∗ζ̃1 = iε̄+γ(5)ε

−
(2.5)

Note that, from (2.1), the SU(2) structure degenerates to an SU(3) structure when sin θ =
±1. When this occurs, the form of the metric as given in (2.3) breaks down. Although
ζ1 and ζ2 are not well defined at those points the spinors ε± are, and hence the bilinears
defined above are well defined but may degenerate.

The Killing spinor equations put constraints on these tensors. The necessary and
sufficient conditions on the tensors for a supersymmetric background were found in [21].
It is helpful to divide these into two sets, the reason for which we will explain properly in
the next section when we introduce SU∗(6) structures. First one has

d(e3λ sin θ) = 0 d(e3λV ) = e3λ sin θF
d(e3λf) = 0 d(e3λΛ) = −e3λfF

(2.6)

The remaining constraints from the Killing spinor equations are

d(eλY ′) = −ξyF d(eλZ) = eλY ′ ∧ F (2.7)

where ξ is a Killing vector field that preserves all the bilinears, given by

ξ = eλζ̃#
2 (2.8)

Note that generically these equations are together sufficient to imply supersymmetry.3

As was noted in [21], the full set of equations imply that f = 0. Since the warp fac-
tor e2λ cannot vanish, the first equation in (2.6) then splits the solutions into two classes
depending on whether globally sin θ 6= 0 or sin θ = 0. Physically, these two classes corre-
spond to fluxed backgrounds that live in the same family as the Calabi-Yau solution and
backgrounds corresponding to the back-reacted geometry around an M5 brane transverse
to MHK × R, where MHK is a four-dimensional hyperkähler manifold, and where a flat
direction of the M5 brane fibers over MHK × R base.4 We denote these

3When sin θ = f = 0 one must append (2.6) by conditions relating the flux to the exterior derivatives of
ζ̃1 ∧ Y and ζ̃1 ∧ Ω̃ as given in (4.53)–(4.55).

4We can also consider compactifying R to S1.
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(i) class 0 (sin θ 6= 0): flux-deformed Calabi-Yau space

(ii) class 1 (sin θ = 0): back-reacted wrapped M5-brane geometry

These same two cases will arise naturally in our analysis of generalised SU∗(6) structures.
In that case, integrability of the structure is not sufficient to set f = 0 and so we will define
class 1 by sin θ = f = 0 and class 0 as the complement.

2.2 Exceptional Calabi-Yau structures

N = 1, D = 5 flux backgrounds have been studied in context of exceptional generalised
geometry for R4,1 backgrounds in [6–8] and for AdS backgrounds in [10, 28]. These were re-
spectively called exceptional Calabi-Yau structures (ECY), and exceptional Sasaki-Einstein
structures (ESE) because they generalised the respective manifolds to arbitrary flux.5 Both
ECY and ESE structures are described by a global USp(6) ⊂ E6(6) × R+ structure, but
differ in their integrability conditions. ECY are defined by an entirely integrable USp(6)
structure [6], i.e. a global USp(6) structure with a torsion-free compatible connection, while
ESE backgrounds are defined to have weak generalised holonomy [28] meaning the intrinsic
torsion lies in a singlet representation. In this paper, we will focus on Minkowski back-
grounds and will review the definition and integrability of ECY here. Details of E6(6)×R+

geometry, including expressions for the generalised tangent bundle, the adjoint bundle, and
the adjoint action, can be found in appendix A.

As with conventional geometry, we would like to describe integrable G-structures in
terms of generalised tensors stabilised by the group G, and differential conditions on those
tensors. This would be the equivalent of the existence and closure conditions of the Kähler
form ω and the holomorphic 3-form Ω for an SU(3) structure. In [7] it was shown that
a USp(6) structure is defined by the combination of what was called an H-structure and
a V-structure, satisfying some compatibility conditions and differential conditions. In the
effective five-dimensional theory, the H-structure is be related to the scalars in the hyper-
multiplets, while the V-structure is related to the scalars in the vector multiplets, hence
the nomenclature.6

For M theory compactifications, the H-structure generalises the notion of complex
structure on a Calabi-Yau manifold. As we will see, in some ways it is also analogous
to a hyperkähler geometry, and so can more generally be viewed as an object that in-
terpolates between the two. It is defined by a triplet of weighted adjoint valued tensors
Jα ∈ Γ((detT ∗)1/2 ⊗ ad F̃ ), α = 1, 2, 3. These have to form a highest root su(2) algebra of
e6(6). In particular we require

[Jα, Jβ ] = 2κεαβγJγ Tr(JαJβ) = −κ2δαβ (2.9)

5Closely related structures also exist in other dimensions [7, 10].
6In fact, in [7], they introduce these structures for compactifications down to 4, 5, and 6 dimensional

Minkowski space preserving 8 supercharges. The H and V-structures for compactifications down to 4
dimensions were first introduced in [29].

– 5 –



J
H
E
P
0
8
(
2
0
2
1
)
0
8
8

Where κ is some section of (detT ∗)1/2. Alone, these tensors define an SU∗(6) structure,
where SU∗(6) is a particular non-compact real form7 of SL(6,C) [37, 38]. This G-structure
is integrable if and only if the following generalised one-forms vanish.

µα(V ) := −1
2εαβγ

∫
M

Tr(JβLV Jγ) !≡ 0 (2.10)

The objects µα can be viewed as moment maps for the action of generalised diffeomorphisms
on the infinite-dimensional hyperkähler space of H-structures AH . We will expand a little
more in the next section on how this works. In fact, the space AH is a hyperkähler cone over
a quarternionic-Kähler base where the H∗ = SU(2)× R+ of the cone direction is precisely
parameterised by the {Jα, κ} defining the SU∗(6) structure. This fact will be important
when we analyse the moduli space in section 5.

For a generic background (sin θ 6= 0), the vanishing of the moment maps above
is equivalent to the set of Killing spinor equations given in (2.6). The remaining con-
straints (2.7), (2.8) come from the differential conditions on the V-structure and certain
compatibility conditions that we will lay out below. In the non-generic case (sin θ = 0),
the picture is slightly more subtle and the vanishing of the moment maps above implies
some extra conditions (see footnote 3). The V-structure in M theory compactifications
generalises the notion of symplectic structure on the Calabi-Yau. It is defined by a single
generalised vector K ∈ Γ(E) that satisfies

c(K,K,K) > 0 (2.11)

where c : S3E → detT ∗ is the cubic invariant of E6(6) and we have fixed an orientation on
M to define the inequality. This describes an F4(4) structure which is integrable if

LKK = 0 (2.12)

Finally, the USp(6) structure is defined by an H-structure and a V-structure obeying
an additional compatibility and integrability conditions. These are

Jα ·K = 0 c(K,K,K) = κ2 LKJα = 0 (2.13)

The first two compatibility conditions ensure that the stabiliser group of the two structures
is F4(4) ∩ SU∗(6) = USp(6), and the extra differential condition is required to ensure the
intrinsic torsion of the USp(6) structure completely vanishes.

As mentioned, these structures describe the geometry of arbitrary N = 1 backgrounds
with R4,1 external space. Hence, we should be able to embed the results of the previous
section into this language. This was done in [10] for AdS backgrounds, and can be extended
to Minkowski with the following identifications.

J3 = 1
2κ
(
−YR + (∗V − ∗V #) + sin θ(vol + vol#)

)
(2.14)

J+ = 1
2κ
(
Ω̃R − (i ∗ Λ− i ∗ Λ#)− if(vol + vol#)

)
(2.15)

K = ξ − eλY ′ + eλZ (2.16)
7It can be identified as the following subgroup of SL(6,C). If J is an antisymmetric 6 × 6 matrix such

that J2 = −Id, then U ∈ SU∗(6) with U∗ its complex conjugate if and only if UJ = JU∗.
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where J+ = J1 + iJ2, κ2 = e3λ vol and the subscript R denotes raising one index with the
metric to creating a GL(6) adjoint element. We can see from these expressions that the
triplet Jα are defined from a triplet of scalars, a triplet of 2-forms and a triplet of 3-forms.
These are respectively given by {sin θ,Re f, Im f}, {Y,Re Ω̃, Im Ω̃}, and {V,Re Λ, Im Λ}.

In (2.14)–(2.16) we have not explicitly included the flux field gauge potentials of the
geometry, which can be viewed as ‘twisting’ the generalised tensors by an E6(6) × R+

element eA+Ã, or, as we will mostly use in this paper, by modifying the Dorfman derivative
by flux-dependent terms. (Note that A is the three-form potential for the four-form flux
F = dA on M , while Ã is the six-form potential giving a dual description of a form-
form flux on the non-compact R4,1. Lorentz invariance implies the later has a trivial
field-strength.) The authors of [10] also showed that (2.9)–(2.13) precisely reproduce the
algebraic conditions required for an SU(2) structure, along with the differential conditions
for supersymmetry (2.6), (2.7). In several places in this paper, we will use the very concrete
special case of a Calabi-Yau manifold case as an example, as defined in section 3.3.

3 Exceptional complex structures

A central focus of this paper is to give a general analysis of the moduli space of integrable
SU∗(6) structures. In terms of the reduction on a supersymmetric space, this space encodes
the massless hypermultiplet degrees of freedom of an on-shell background and as such
should be finite-dimensional. It turns out that rather than working directly with the SU∗(6)
structure on can rephrase the problem in terms of a slightly weaker notion of an exceptional
complex structure (ECS). These objects, their integrability conditions, classification and
relation to SU∗(6) structures is the subject of this section.

3.1 SU∗(6) and R+ ×U∗(6) structures

Much as one can study hyperkähler geometries by focusing on one particular complex
structure, we can study the geometry of SU∗(6) structures by restricting to a single Jα,
which we will denote as J3. The SU(2) action on the triplet Jα means that, as in the
hyperkähler case, there is an S2 ' CP1 ' SU(2)/U(1) of such choices. In fixing one, we
find a structure analogous to the ECS that was used to describe four-dimensional N = 1 M-
theory and type II geometries in [24], and the corresponding heterotic backgrounds in [25]
backgrounds. As in those cases, we show that integrability is naturally defined in terms
of an involutive subbundle of the generalised tangent bundle. The moduli space of ECSs
is generically infinite-dimensional. However, if the ECS arises from an integrable SU∗(6)
structure, as we show in section 5.4, there is a natural way to interpret the moduli space
of the SU∗(6) structure in terms of the ECS.

First note that to define an SU∗(6) structure, it is sufficient to just define J+. Indeed
we can then obtain the full Jα via

J− = J̄+ J3 = (−8 Tr(J+J−))−1/2 i [J+, J−]

Recall that the space of H-structures AH is hyperkähler. Parameterising point on AH by
a choice of J−, picks out a particular complex structure on AH , such that X := κJ− ∈

– 7 –
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Γ(detT ∗ ⊗ ad F̃ ) is a holomorphic coordinate.8 From these tensors we can define two
reductions of the structure group

SU∗(6) structure: X := κJ− ∈ Γ(detT ∗ ⊗ ad F̃ )
R+ ×U∗(6) structure: J := κ−1J3 ∈ Γ(ad F̃ )

(3.1)

so that J is the unweighted J3. To see that J defines an R+×U∗(6) structure we note that,
since it is unweighted, it is invariant under the R+ ⊂ E6(6) × R+ action. The additional
U(1) symmetry comes from the action generated by J itself. Alternatively, we can define
the R+ ×U∗(6) structure more directly from the supersymmetry.

Definition 1. Let t ∈ su(2) ⊂ e6(6) be the Lie algebra element that generates U(1) ⊂
E6(6)×R+ where su(2) is a highest root subalgebra, and we normalise Tr t2 = −1. All such
elements lie in the same adjoint orbit O. An R+ × U∗(6) structure is a smooth section
J ∈ Γ(ad F̃ ) such that J |p lies in O for every point p ∈M .

Given such a J , one can use it to decompose the generalised tangent bundle into
eigenbundles. We find that

EC = L1 ⊕ L−1 ⊕ L0

27→ 61 ⊕ 6−1 ⊕ 150
(3.2)

In the second line we have expressed this decomposition in terms of U∗(6) representations.
Here the subscripts denote the charge under the U(1) ⊂ U∗(6) generated by the J . Much
as for conventional almost complex structures and almost generalised complex structures,
we can also define the R+ ×U∗(6) structures purely in terms of L1:

Definition 2. An R+ ×U∗(6) structure is defined by a subbundle L1 ⊂ EC such that

i) dimC L1 = 6

ii) L1 ×N L1 = 0

iii) L1 ∩ L̄1 = {0}, L1 ∩ L0 = {0}

iv) The map ζ : L1 × (L−1)∗ :→ R defined by

ζ(V,Z) = Tr
(
(V ×ad Z)(V̄ ×ad Z̄)

)
(3.3)

is negative ∀V ∈ L1, Z ∈ (L−1)∗

We call such structures almost ECS. Any bundle obeying the first two conditions is called
an almost exceptional Dirac structure in analogy with [2].

Here, N ⊂ S2E is a particular bundle transforming in the 272 of E6(6) × R+, and ×N
represents the projection onto that bundle.9 Note that we could equally well define the

8This was first noticed in collaboration with Edward Tasker.
9The decomposition of N into natural geometric bundles, as well as the projection map, are given in

appendix A.
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structure in terms of L−1. While conditions (iii) and (iv) appear to depend on the full de-
composition (3.2), one can define L0 from L1 via the following. Let A = {Z ∈ E∗ | 〈V,Z〉 =
0 ∀V ∈ L1 ⊕ L−1} ⊂ E∗, where 〈·, ·〉 is the natural pairing between E and E∗. That is, A
is the null space of L1 ⊕ L−1. Then we define

L0 = (L1 ×ad A) · L−1 (3.4)

Once we have found L0 such that (iii) holds, we have a well-defined splitting of the dual
space E∗ into (L±1)∗ and (L0)∗. Hence (iv) is well-defined.

We can also decompose the weighted adjoint bundle into eigenbundles of J . We find

78⊕ 1→ 1+2 ⊕ 1−2 ⊕ 20+1 ⊕ 20−1 ⊕ adPR+×U∗(6) (3.5)

The singlets imply that an R+ ×U∗(6) structure defines a line bundle

UJ ⊂ (detT ∗)⊗ ad F̃C ' C⊕ ∧3T ∗C ⊕ (T ∗C ⊗ ∧5T ∗C)⊕ (∧3T ∗C ⊗ ∧6T ∗C)⊕ (∧6T ∗C)⊗2 (3.6)

One can show that it is fixed by requiring

V •X = 0 ∀V ∈ Γ(L1), (3.7)

where X is a local section of UJ . The product V • X is defined by the projection E ⊗
(detT ∗)⊗ ad F̃ → C where C is the generalised tensor bundle transforming in the 3514 of
E6(6)×R+.10 One can equally define a local section X by the condition J ·X = [J,X] = 2iX.
Furthermore, one can show that for any non-zero X, one has that Tr(XX̄) is negative,
where we recall that Tr(XX̄) is a section of (detT ∗)2 which has a canonical orientation and
hence a well defined notion of a negative section. One can use the converse to reformulate
of the last condition in definition 2 as

iv’) Given any non-zero local section X of the line bundle UJ ⊂ (detT ∗)⊗ ad F̃ , defined
by L1, one has Tr(XX̄) < 0

As we will see later one can view this requirement as an generalisation of the notion of
stability for three-forms defining an SL(3,C) structure introduced by Hitchin [30, 31].

We can then give the definition

Definition 3. Given an almost ECS J with trivial line bundle UJ , an SU∗(6) structure is
a global non-vanishing section of UJ .

All SU∗(6) structures will arise in this way and any two will be related by some E6(6)×R+

transformation. Note that any two SU∗(6) structures X and X ′ which define the same
R+ ×U∗(6) structure will be related by some non-vanishing function h

X ′ = hX (3.8)

Much like for complex structures and generalised complex structures, suitable values for X
do not fill out the whole of 78⊕1. Instead, they exist in some particular E6(6)×R+ orbit.

10Note that this is R4 in the tensor hierarchy of E6(6) [39].
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It is important to reiterate that since SU∗(6) 6⊂ USp(8), a choice of X does not define
a generalised metric and hence does not fully define a supergravity background. To do so,
one needs to also specify a compatible V-structure K. Nonetheless, the space of SU∗(6)
structures encodes the moduli space of hypermultiplets in the effective theory that arises
on compactification on M , and so, even by itself encodes important information.

3.2 Involutivity, moment maps, and integrability

We will now look at the conditions imposed on X by integrability. Recall from section 2.2
that the integrability of the SU∗(6) structure is a subset of the supersymmetry conditions.
This was given as the vanishing of a triplet of moment maps for the action of generalised
diffeomorphisms on the space of H-structures AH . We will see that we will be able to
recast this as an involutivity condition on L1, which gives the integrability of the ECS
(roughly corresponding to the vanishing of the moment maps µ+ = µ1 + iµ2 = 0), along
with the vanishing of just a single moment map (µ3). In using this description for integrable
H-structures, one drops the explicit hyperkähler structure on AH that is guaranteed by
supersymmetry, and instead views AH as a Kähler space. For each SU∗(6) structure there
is an S2 of integrable ECS and corresponding moment maps which will all give equivalent
integrability conditions, a point we will return to in the following section.

The intrinsic torsion for the generalised structures lies in a subbundle of the torsion
bundle W which transforms under E6(6) × R+ as 27−1 ⊕ 351−1. Decomposing into U∗(6)
representations we find that they transform as [7]

W
SU∗(6)
int : 152 ⊕ 15−2 ⊕ 150 ⊕ 61 ⊕ 6−1 (3.9)

W
R+×U∗(6)
int : 152 ⊕ 15−2 (3.10)

where again the subscripts denote the U(1) charge. We define the integrable structures as
those with vanishing intrinsic torsion. Just as the integrability of complex structures (and
generalised complex structures) is given by involutivity of an eigenbundle, we find

Definition 4. An integrable R+ × U∗(6) structure, or ECS, is an almost ECS that is
involutive under the Dorfman derivative. That is

LVW ∈ Γ(L1) ∀V,W ∈ Γ(L1) (3.11)

In analogy with generalised complex geometry, we refer to an involutive structure that does
not satisfy L1 ∩ L−1 = {0} as an exceptional Dirac structure.

In general, LVW 6= JV,W K. However, the definition of the Dorfman derivative is such that

LVW + LWV ∼ d×E (V ×N W ) (3.12)

which clearly vanishes by property (ii) of definition 2. Hence, it is equivalent to determine
integrability with respect to the Courant bracket.

To see that this definition is correct, one can introduce a compatible connection D

that is not necessarily torsion free. Generalised torsion is defined such that

LVW = LDVW − T (V ) ·W (3.13)
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where LDV is the Dorfman derivative where each instance of ∂ is replaced with D. Because
of the compatibility of D, the first term must be a section of L1. Moreover, since the left
hand side does not depend on the choice compatible connection, the projection of LVW
onto L0 ⊕ L−1 can only depend on the intrinsic torsion T int. Given (3.10) we can see that

T int(V ) ·W ∈ Γ(L0) (3.14)

Hence, for LVW to be a section of L1 for all V,W ∈ Γ(L1), we need that T int|15−2 = 0.
The complex conjugate of this condition then sets the whole of T int = 0. We then see that
definition 4 is correct.

From (3.9) we can see that the integrability conditions for R+ × U∗(6) structures is
a subset of the conditions for an integrable SU∗(6) structure. This makes sense as the
R+ × U∗(6) structure is a strictly weaker structure. Given X defining an R+ × U∗(6)
structure that is integrable, we want to know what additional conditions are required so
that the SU∗(6) structure is also integrable. Let us consider just the map µ3 from (2.10).
In [7], it is shown that this is equal to

µ3(V ) ∝
∫
M

Tr(κJ3T
int(V )) + 1

2

∫
M
T int(J3 · V ) · κ2 (3.15)

From this we can see that µ3 ≡ 0 if and only if the singlet part of T int(V ) is 0 for all
V ∈ Γ(E). From the decomposition of E given in (3.2), we see that this is equivalent
to the 150 ⊕ 61 ⊕ 6−1 part of T int vanishing. This is precisely the remaining part of
the intrinsic torsion of the SU∗(6) structure given in (3.9). This motivates the following
alternative definition of an integrable H-structure

Definition 5. An integrable SU∗(6) structure X := κJ+, is an SU∗(6) structure with an
integrable U∗(6) structure, along with the vanishing of the moment map µ3.

As we mentioned, µ3 is a moment map for the action of generalised diffeomorphisms
on space of SU∗(6) structures AH . Following [7], we recall that AH has a hyperkähler cone
structure with hyperkähler potential given by11

K =
∫
M
κ2 =

∫
M

(
−Tr(XX̄)

)1/2
(3.16)

where in the second equality we have expressed the potential with respect to the particular
holomorphic structure picked out by J . We can view the right hand side as a Kähler
potential in the holomorphic coordinate X. To see how the moment map arises, splitting
the functional derivative into holomorphic and antiholomorphic parts δ = ∂′+ ∂̄′, and using
$ = i∂′∂̄′K we can first write the Kähler form on the space as

ıβıα$ =− i
2

∫
M

1(
−Tr(XX̄)

)1/2

[
Tr(ıαδXıβδX̄)− Tr(ıβδXıαδX̄)

+ 1
2(−Tr(XX̄))

(
Tr(ıαδXX̄) Tr(XıβδX̄)− Tr(ıβδXX̄) Tr(XıαδX̄)

)] (3.17)

11Note our conventions differ from that of [7] by an irrelevant overall factor of 1
2 .
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Using the non-holomorphic coordinate J+, this takes the much simpler form

ıβıα$ = − i
2

∫
M

[Tr(ıαδJ+ıβδJ−)− Tr(ıβδJ+ıαδJ−)] (3.18)

Here α, β ∈ Γ(TAH). Taking β = ρV to be the vector generated by an infinitesimal
generalised diffeomorphism, i.e. ıρV δJ+ = LV J+, then we see that

ıρV ıα$ = − i
2

∫
M

[Tr(ıαδJ+ıρV δJ−)− Tr(ıρV δJ+ıαδJ−)] (3.19)

= − i
2

∫
M

[Tr(ıαδJ+LV J−)− Tr(LV J+ıαδJ−)] (3.20)

= i
2

∫
M

[Tr(J−LV ıαδJ+) + Tr(ıαδJ−LV J+)] (3.21)

= ıαδ

( i
2

∫
M

Tr(J−LV J+)
)

(3.22)

= ıαδµ3(V ) (3.23)

Therefore the moment map for generalised diffeomorphisms is indeed the function µ3 de-
fined above.

3.3 Example: Calabi-Yau manifolds

Calabi-Yau three-folds provide a supersymmetric background when all the fluxes vanish.
We should thus be able to embed some of the data of the Calabi-Yau into the formalism of
ECS. From [7] we see that the SU∗(6) structure for the Calabi-Yau is given entirely in terms
the SL(3,C) structure parameterised by the complex three-form Ω. Explicitly one has12

J3 = 1
2κ(I − vol− vol#) (3.24)

J+ = = 1
2κ(−Ω + Ω#) (3.25)

where I is the GL(3,C) structure associated to Ω, that is the conventional complex structure
of the Calabi-Yau, and κ2 = vol = i

8Ω ∧ Ω̄ is the volume form determined by the SL(3,C)
structure.

As we have noted there is an S2 family of ECSs defined by each SU∗(6) structure.
Conventionally, we take the one associated to J3 so that in this case

SU∗(6) structure: X = 1
2κ

2(−Ω + Ω#) (3.26)

R+ ×U∗(6) structure:
{

J = 1
2(I − vol− vol#)

L1 = ei vol · (T 1,0 ⊕ ∧0,2T ∗)
(3.27)

It is a simple check using the formulae for the adjoint action in appendix A that L1
is the +i eigenbundle of J , and X lives in the −2i eigenbundle of J . Note that J is
determined by knowing only the complex structure I and the volume form, that together

12Note that these expressions can be derived by taking the sin θ → −1 limit in (2.14) and (2.15). Taking
the sin θ → 1 limit gives the opposite orientation vol = − i

8 Ω ∧ Ω̄.
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define a U(1) × SL(3,C) ⊂ GL(3,C) structure. Recall that a complex structure always
determines an orientation, so the additional information is just choice of section of the
(trivial) determinant bundle. We see that embedding the Calabi-Yau structure into the
language of ECS takes the following pattern of inclusions.

USp(6) ⊂ SU∗(6) ⊂ R+ ×U∗(6)
∪ ∪ ∪

SU(3) ⊂ SL(3,C) ⊂ U(1)× SL(3,C)
(3.28)

We next consider what the integrability conditions given by definitions 4 and 5 imply for
the underlying GL(3,C) and SL(3,C) structures. Here we will ignore the flux for simplicity
and assume that we know it vanishes. More generally, integrability of the SU∗(6) structure
also puts constraints on the flux as we will see later. First, let’s consider the integrability
of the R+ × U∗(6) structure. Taking V = eα+i vol(v + ω), V ′ = eα+i vol(v′ + ω′) ∈ Γ(L1),
we have

LV V
′ = Lei vol(v+ω)ei vol(v′ + ω′)

= ei volLv+ω(v′ + ω′)
= ei vol [Lvv′ + (Lvω′ − v′ydω)− ω′ ∧ dω

] (3.29)

For this to be a section of L1 also, we require that Lvv′ ∈ Γ(T 1,0) for any v, v′ ∈ Γ(T 1,0).
This is precisely the statement that the GL(3,C) structure is integrable. If this is the case
then the exterior derivative decomposes into the Dolbeault operators d = ∂ + ∂̄. With
this, the 5-form terms vanish identically. Further, the term in the parenthesis becomes
vy∂ω′ − v′y∂ω ∈ Γ(∧0,2T ∗). Hence

R+ ×U∗(6) structure integrable ⇔ GL(3,C) structure integrable (3.30)

Next we consider the vanishing of the moment map µ3. Using the algebra in ap-
pendix A, one can show that

µ3(V ) = i
∫
M
−LV κ2 + 1

16κ
2
[
−Ω̄#yLvΩ + Ω#yLvΩ̄− (Ω# ∧ Ω̄#)ydσ

]
(3.31)

This first term vanishes since LV κ2 is a total derivative.13 The final term gives

− 1
2

∫
M
κ2 vol#ydσ ∝

∫
M

vol#yκ2dσ ∝
∫
M

d(vol#yκ2) ∧ σ != 0 ∀σ ∈ Γ(∧5T ∗) (3.32)

This is true if and only if κ2 = c vol for some constant c ∈ R, which we can set to 1 without
loss of generality. This just says that the volume form picked out by the SU∗(6) structure is
the same as that picked out by the SL(3,C) structure. The rest of (3.31) is proportional to∫

M

(
LvΩ ∧ Ω̄− Ω ∧ LvΩ̄

)
=
∫
M

(
vydΩ ∧ Ω̄ + d(vyΩ) ∧ Ω̄− Ω ∧ vydΩ̄− Ω ∧ d(vyΩ̄)

)
= 2

∫
M
vy(ā− a) Ω ∧ Ω̄ (3.33)

13Here we use the fact that
∫

M
d(. . .) = 0 which means we are takingM to be compact without boundary,

or that the fields die off sufficiently quickly at infinity.
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In moving to the second line we have used integration by parts to put the derivatives on
the Ω, Ω̄, and have used the integrability of I to write dΩ = ā ∧ Ω for some ā ∈ Γ(T ∗0,1).
This vanishes for all v ∈ Γ(T ) if and only if ā = 0, or equivalently, if dΩ = 0. Therefore,
we have

SU∗(6) structure integrable ⇔ SL(3,C) structure integrable (3.34)

As we have stressed, for a given H-structure there is an S2 family of ECS one can
define. It is thus natural to ask how the analysis would have changed if we had chosen a
different ECS. Suppose for example, we act by a global SU(2) rotation on the Jα, so that
we have a new SU∗(6) structure with J ′1 = J3, J ′2 = J1 and J ′3 = J2. We then have

SU∗(6) structure: X ′ = 1
2κ

2(I − vol− vol#−iρ+ iρ#) (3.35)

R+ ×U∗(6) structure:
{
J ′ = 1

2(−ρ̂+ ρ̂#)
L′1 = eiρ̂ · TC

(3.36)

where Ω = ρ+ iρ̂. Recall that ρ̂ by itself defines an SL(3,C) structure [30]. Hence in this
case, both the SU∗(6) structure and the R+×U∗(6) structure are defined by a conventional
SL(3,C) structure. As we will see below, this is actually the generic case. Turning to the
integrability conditions, it is easy to see that, in this case, involutivity gives

R+ ×U∗(6) structure integrable ⇔ dρ̂ = 0 (3.37)

which is a considerably weaker than integrability of I that we got previously. Imposing the
moment map condition implies that in addition dρ = 0 and hence the SL(3,C) structure is
integrable. As expected, since the corresponding SU∗(6) structures are the same (up to a
constant SU(2) transformation), we thus get the same integrability condition as in (3.34).

4 Classification of ECS and SU∗(6) structures

In this section we will examine what definition 2 implies for the structure of L1 and of
the corresponding SU∗(6) structures. We will find that the isotropy and reality conditions
place strong restrictions on the possible local form of the ECS in terms of natural bundles,
such that characterised by two numbers that we refer to as type and class.

4.1 A closer analysis of ECS

First, we define a notion of type similar to that of generalised complex structures defined
in [2], and also defined in exceptional geometry in [24]. We then go further and show
that ECS are also characterised by a second important property that we call class. It
is important to note that, in general, this classification is only local, in that the type of
the structure can change over the manifold, just as for generalised complex structures.
However, while the type and class of an ECS can change smoothly, as we will see in the
following sections, it is not possible to have a smooth class-changing integrable SU∗(6)-
structure. We make these definition only for M-theory though a similar analysis could be
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made for type IIB. To ensure that all objects defined here are globally well-defined sections
of natural geometric bundles, we will work with the flux twisted14 Dorfman derivative LFV ,
where F ∈ H4

d(M,R) is defined only up to its cohomology class.

Definition 6. The type of an almost ECS L1 ⊂ EC at a point p ∈ M is the (complex)
codimension of its image under the anchor map. That is, if a : E → T is the anchor map,
naturally extended to the complexified bundles, then

typeL1|p = codimC a(L1|p) = 6− dimC a(L1|p) (4.1)

We will find that the only allowed types of an ECS are 0 and 3.
We would like to classify the possible forms of L1 based on the criteria set out in

definition 2. We will only state the results here and leave the proofs for appendix C. Let
us first focus on condition (ii), the isotropy condition that states

L1 ×N L1 = 0 (4.2)

If we write Vi = vi + ωi + σi ∈ L1, then using the formula for the projection onto N

around (A.33) we find that the elements of L1 must satisfy

v1yω2 + v2yω1 = 0 (4.3)
jω1 ∧ ω2 + jω2 ∧ ω1 = 0 (4.4)

ω1 ∧ ω2 − v1yσ2 − v2yσ3 = 0 (4.5)

Careful consideration of these equations shows that any exceptional Dirac structure must
be of the following form.

Proposition 1. Any isotropic subbundle L ⊂ EC has the form

eα+β · (∆⊕ S2 ⊕ S5) (4.6)

where α ∈ Ω3(M)C and β ∈ Ω6(M)C are arbitrary but fixed, and where ∆ ⊂ TC, S2 ⊂
∧2T ∗C, S5 ⊂ ∧5T ∗C satisfy the following conditions. For all v ∈ ∆, ω, ω′ ∈ S2 and σ ∈ S5
we have

vyω = 0 vyσ = 0
ω ∧ ω′ = 0 jω ∧ σ = 0

(4.7)

We now turn our attention to conditions (i) and (iii) in definition 2. One finds that
imposing dimC L1 = 6 restricts us to type 0, 3 and 6. Then imposing L1∩L0 = {0} excludes
the type 6 case. We can therefore summarise the general form of an ECS in proposition 2.
To do so, it is helpful to introduce some notation which will be useful both here and later
when we discuss the moduli of these structures.

Let ∆ ⊂ TC be some subbundle. We define by Fkp (∆) ⊂ ∧kT ∗C to be the bundle of
differential k-forms φ satisfying

φ(x1, . . . , xp, v1, . . . , vk−p) = 0 ∀x1, . . . , xp ∈ Γ(TC), v1, . . . , vk−p ∈ Γ(∆) (4.8)
14This implies that the generalised tangent bundle is globally isomorphic to E = T ⊕ ∧2T ∗ ⊕ ∧5T ∗.
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Note that this defines a filtration of the fibers of ∧kT ∗C with

0 = Fkk (∆) ⊆ Fkk−1(∆) ⊆ . . . ⊆ Fk0 (∆) ⊆ Fk−1(∆) := ∧kT ∗C (4.9)

where we have defined Fk−1(∆) = ∧kT ∗C for convenience. We can now summarise the results
stated above as follows.

Proposition 2. An ECS at p ∈M can only be of type 0 or type 3, and their general form
is given by

type 0: eα+β · TC|p
type 3: eα+β · (∆⊕F2

1 (∆))|p
(4.10)

where ∆|p ⊂ TC|p is dimension 3 and α ∈ Ω3(M)C, β ∈ Ω6(M)C.

In each case we can also write the form of the line bundle UJ defined by the ECS

UJ |p =

eα+β · C type 0
eα+β · F3

2 (∆)|p type 3
(4.11)

where comparing with (3.6), for type 0 the leading term is in C, the space of functions at
p, and for type 3 it is a three-form in F3

2 (∆) ⊂ ∧3T ∗C at p. Note that a section ξ ∈ Γ(F3
2 )

defines ∆ via the condition that vyξ = 0 for all v ∈ Γ(∆). Note also that, for type 3 ECS,
the complex 3-form twist α is only defined up to a section of F3

1 . Indeed, if γ ∈ Γ(F3
1 (∆))

then, viewed as an adjoint element, one can show that

eα+β · (∆⊕F2
1 (∆)) = e(α+γ)+(β− 1

2α∧γ) · (∆⊕F2
1 (∆)) (4.12)

We will use this freedom to make a particularly simple choice of complex twist in the
following.

The objects α, β,∆ are not generic and are constrained by condition (iv) of definition 2.
To find the non-linear conditions imposed by (iv), we will consider the type 0 and type 3
cases separately. Note first that we can rewrite the group action

eα+β = ec+c̃eia+ib (4.13)

where we have decomposed α = c + ia and β = c̃ + i(b − 1
2c ∧ a) into real and imaginary

parts. Since the conditions in definition 2 are preserved by real E6(6)×R+ transformations
we expect they will only constrain a and b. Starting with the type 0 structure, we can
hence assume, without loss of generality, that it has the form.

L1|p = eia+ib · TC|p (4.14)

where a ∈ Ω3(M)R, b ∈ Ω3(M)R. Condition (iv) of definition 2 is then equivalent to

Tr(K2
a) + 6b2 < 0 (4.15)

Here, Ka : T → T ⊗ detT ∗ is the map introduced by Hitchin in [30]. Note in particular
that (4.15) implies that Tr(K2

a) < 0 and so a defines an SL(3,C) structure leading to
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Corollary 1. A type 0 ECS at p ∈ M is equivalent to an SL(3,C) structure on T |p,
a bounded 6-form, and a generic real E6(6) × R+ transformation of the form ec+c̃ where
c ∈ Ω3(M)R and c̃ ∈ Ω6(M)R.

For type 3, the details of the calculation become more complicated and so we have left
them to appendix C and summarise the results here. We can use condition (iv) to put a
constraint on dim(∆ ∩ ∆̄). Indeed, we find that we must have

dim(∆ ∩ ∆̄) ≤ 1 (4.16)

We make the following definition which refines the classification of ECS

Definition 7. The class of an almost ECS L1 ⊂ EC at p ∈M is the (complex) codimension
of a(L1 ⊕ L−1)|p. That is

classL1|p = codimC a(L1 ⊕ L−1)|p = codimC(∆ + ∆̄)|p (4.17)

Allowing dim ∆ to be 3 or 6, this definition holds for all ECS and it follows from (4.16)
that the class can only be 0 or 1.

For class 0 type 3, ∆|p defines a GL(3,C) almost complex structure. In this case, one
can use the ambiguity in (4.12) to write any imaginary twist ia in the decomposition (4.13)
as a real twist c. Hence, without loss of generality we can consider

L1|p = eib ·
(
∆⊕F2

1 (∆)
)
|p (4.18)

From (C.26), the condition (iv) of definition 2 is then equivalent to

b > 0 (4.19)

where we are using the natural orientation defined by the almost complex structure to
define the sign of b. Concretely if ξ is a section of F3

2 (∆) (which in this case is the space
of (0,3)-forms) our convention is that iξ̄ ∧ ξ is a positive six-form. Together ∆ and b are
stabilised by U(1)× SL(3,C) and so we have

Corollary 2. A type 3 class 0 ECS at p ∈M is equivalent to a U(1)× SL(3,C) structure
on T |p and a generic real E6(6) × R+ transformation of the form ec+c̃ where c ∈ Ω3(M)R
and c̃ ∈ Ω6(M)R.

For class 1, the situation is more complicated. One finds that the action of b and some
parts of a are not independent. In particular, we can use the ambiguity in (4.12) to remove
the 6-form twist and write, without loss of generality

L1|p = eia ·
(
∆⊕F2

1 (∆)
)
|p (4.20)

where a is a section of A ∩ Ā where A := ∧3TC/F3
1 (∆). Using the result and notation

of (C.26), the constraint is then

i(ja ∧ ξ) ∧ (ja ∧ ξ̄) > 0 (4.21)

We will explain the content of this condition more explicitly in section 4.3. In particular,
we will see that together ∆ and a are stabilised by U(2)× (GL(1,R)2 nR) and so we have
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Class Type Bundle L1 Constraints G-structure on T
0 0 eα+β · TC Tr(K2

a) + 6b2 < 0 SL(3,C)
0 3 eα+β · (∆⊕F2

1 (∆)) dim(∆ ∩ ∆̄) = 0, b > 0 U(1)× SL(3,C)
1 3 eα+β · (∆⊕F2

1 (∆)) dim(∆ ∩ ∆̄) = 1, (4.21) U(2)× (GL(1,R)2 nR)

Table 1. Classification of almost ECS in E6(6) × R+ geometry for M-theory backgrounds. Here
α ∈ Ω3(M)C, β ∈ Ω6(M)C, ∆ ⊂ TC, dim ∆ = 3. We also have a and b as defined in (4.13).

Corollary 3. A type 3 class 1 ECS at p ∈M is equivalent to a U(2)×GL(1,R)2 structure
on T |p and a real E6(6) × R+ transformation of the form ec+c̃ where c ∈ Ω3(M)R and
c̃ ∈ Ω6(M)R.

Note that in this case, unlike that of type 0 or type 3 class 0, the transformation is not
generic in that not all ec+c̃ transformations define different structures.

We can, thus summarise the classification of almost ECS in the following proposition.

Proposition 3. Any almost ECS must take one of the forms in table 1.

Since every R+×U∗(6) structure admits a USp(6) structure, we can use the explicit spinor
bilinear expressions (2.14) and (2.15) for Jα found in [10] to give the concrete form for L1
in each of these cases. These will be given in section 4.3 below.

We now turn to the conditions for integrability of the U∗(6) × R+ structure. Recall
from (3.11) that an ECS is integrable if and only if it is involutive with respect to the
Dorfman derivative. We will write L1 = eα+β · (v+ω) ∈ Γ(L1), and similarly for V ′, where
v ∈ Γ(∆) and ω ∈ Γ(F2

1 ). Note that in the case that ∆ = TC, F2
1 (∆) = 0 and hence this

expression covers both type 0 and type 3 (and the cases of type-changing). Involutivity
then becomes

Γ(L1) 3 LFV V ′ = eα+β ·
(
[v, v′] + (Lvω′ − v′ydω + v′y(vy(F + dα)))

−ω′ ∧ dω + ω′ ∧ (vy(F + dα))
) (4.22)

For this to be true we require [∆,∆] ⊆ ∆. In the global type 0 structure this is trivial,
but more generally it implies the existence of a generalised involutive distribution where
dim ∆|p = 0, 3. For a global type 3 structure this becomes a three-dimensional foliation.
The 2-form piece implies that for all v, v′ ∈ Γ(∆)

vydω′ − v′ydω + v′y(vy(F + dα)) ∈ Γ(F2
1 ) (4.23)

A short calculation shows that, provided ∆ is integrable in the sense of Frobenius, the
de Rham differential restricts to d : Γ(Fkp ) → Γ(Fk+1

p ). Hence, Γ(F•p ) defines a filtration
of the de Rham complex. It is then clear that for all v ∈ Γ(∆), ω′ ∈ Γ(F2

1 ) we have
vydω′ ∈ Γ(F2

1 ). We further require that v′y(vy(F + dα)) ∈ Γ(F2
1 ) which we can restate as

FC = F + dα ∈ Γ(F4
1 ) (4.24)
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Finally, we need the 5-form term to vanish in (4.22). Since ω′ ∈ Γ(F2
1 ) and dω ∈ Γ(F3

1 ),
you can show that ω′ ∧ (dω− vyFC) ∈ Γ(F5

3 ). This space trivially vanishes because ∆ is of
dimension (at least) 3. Therefore, the final term vanishes trivially.

Finally, recall the ambiguity (4.12) in the definition of the complex 3-form twist α ∼
α + γ, for any γ ∈ Γ(F3

1 ). Combining this with (4.24), we see that FC is only defined up
to dγ. That is, the complex flux is part of the cohomology group

FC ∈
{
a ∈ Γ(F4

1 ) | da = 0
}{

a = db | b ∈ Γ(F3
1 )
} =: H4(M,F•1 ) (4.25)

We can summarise the results as follows.

Proposition 4. An integrable ECS is of the form L1 = eα+β · (∆ ⊕ F2
1 (∆)) for ∆ ⊂ TC,

α ∈ Ω3(M)C and β ∈ Ω6(M)C as in proposition 3 such that

[∆,∆] ⊆ ∆ FC := F + dα ∈ H4(M,F•1 ) (4.26)

In the case that the ECS is of global type 0, the second condition just implies FC = 0,
which in turn implies that F = −dα and hence F must be in a trivial cohomology class.
Since the twisted Dorfman derivative is only defined up to the cohomology, we can take
F = 0 in this case. For global type 3 solutions, the complex flux does not need to vanish
and in general, F can be in a non-trivial cohomology class.

We will determine the conditions on α, β for integrability of the full SU∗(6) structure
in the following sections.

4.2 The classification of SU∗(6) structures

Recall that an SU∗(6) structure can be described by a triplet of adjoint elements Jα which
form a highest weight su(2) subalgebra. In passing to the description in terms of ECS,
we have broken the explicit SU(2) symmetry prescribed by this structure. We now take a
closer look at the implications of this additional symmetry of the structure.

In the definition of ECS in section 3.1, we took L1 to be the +i eigenbundle of J =
κ−1J3. However, this is just an arbitrary choice and we could choose any one of J1, J2, J3.
In fact, we can choose any linear combination Ju = κ−1uαJα, where u ∈ R3, such that

Tr(JuJu) = −1 ⇔ |u|2 = 1 (4.27)

We see that we have an S2 ' CP1 ' SU(2)/U(1) of possible ECS for each SU∗(6) structure.
That is, each Ju defines a U∗(6) × R+ structure. (Equivalently we can rotate the original
Jα by a global SU(2) transformation to define a new SU∗(6) structure J ′α and set Ju = J ′3.)
Recall that we could equally define the structure in terms of eigenbundles. Taking the +i
eigenbundle of Ju to be Lu, we find

Lu =


(
1 + i(u3−1)

2(u1+iu2)κ
−1J+

)
· L1 u3 6= ±1

L±1 u3 = ±1
(4.28)

We saw that we could describe the integrability of an SU∗(6) structure as the vanishing
of the moment maps (2.10), or equivalently as the integrability of L1 and the vanishing
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of µ3. However, since the choice of Ju just corresponds to a global SU(2) rotation of the
Jα, integrability defined by Ju implies the vanishing of the same (rotated) moment maps.
Hence the integrability of the SU∗(6) structure can also be written as

JLu, LuK ⊆ Lu uαµα = 0 (4.29)

for any u ∈ S2.
We may wonder whether involutivity of some fixed Lu implies involutivity of all Lu.

However, it turns out that this condition is not quite strong enough. A quick calculation
shows that requiring involutivity for all u ∈ S2 implies that the intrinsic torsion of the
SU∗(6) structure satisfies

T int|15+2⊕150⊕15−2 = 0 (4.30)

which is a strictly stronger condition than just involutivity of L1 (which just required the
15±2 part of T int to vanish). It is then possible to show that

LVX = A(V )X ∀V ∈ Γ(L1) (4.31)

where Γ(E∗) 3 A ∼ T int|6−1
. From this it is clear that full integrability of the SU∗(6)

structure is given by further imposing LVX = 0 for all V ∈ Γ(L1). Defining Xu as the
SU∗(6) structure defined by an involutive Lu, it is easy to see that LVXu = 0 for all
V ∈ Γ(Lu) gives the same condition for any u ∈ S2. This proves the following statement.

Proposition 5. Let X ∈ Γ(detT ∗⊗ad F̃ ) define an SU∗(6) structure, equivalently defined
by weighted adjoint tensors Jα. Then the following are equivalent.

1. The SU∗(6) structure is integrable

2. ∀u ∈ S2, uαµα = 0

3. ∀u ∈ S2, JLu, LuK ⊆ Lu, LVXu = 0 for all V ∈ Γ(Lu)

4. ∃u ∈ S2, JLu, LuK ⊆ Lu, uαµα = 0

Turning to the form of the SU∗(6) structure, since Lu defines an ECS for any u, it
must take the form of one of the cases in table 1. Since a generic Lu mixes together parts
of L±1, the type may vary as we change u. However, since L1 ⊕ L−1 is SU(2) invariant,
the class will remain fixed as we vary u. Hence, the following is well-defined.

Definition 8. The class of an SU∗(6) structure at point p ∈ M is the class of any of its
associated ECS. That is

classX|p = classLu|p any u (4.32)

It then immediately follows that we only have two categories of SU∗(6) structures

Proposition 6. Let X ∈ Γ(detT ∗⊗ad F̃ ) define an SU∗(6) structure, equivalently defined
by weighted adjoint tensors Jα. Then

either classX|p = 0 ⇔ ∃u typeLu|p = 0
or classX|p = 1 ⇔ ∀u typeLu|p = 3

(4.33)
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The second of these statements is clear. Indeed, if codim a(L1 ⊕ L−1)|p > 0 then
codim a(Lu)|p > 0 for any Lu ⊂ L1 ⊕ L−1. Hence typeLu|p 6= 0 so it must be type 3 for
all u. The first statement can be seen by applying (4.28) to the class 0, type 3 solution in
table 1.

Finally, we can apply the conditions in proposition 5 to find the form of integrable
SU∗(6) structures. For a class 0 structure, choosing a u such that the Lu is type 0, then
from (3.6) we have

Xu = eα+β · h = ec+c̃eia+ib · h (4.34)

where h is a function and we have decomposed α = c+ ia and β = c̃+ i(b− 1
2c∧ a). Recall

that integrability of Lu implies
da = dc = 0 (4.35)

It is then relatively straightforward to show that the vanishing of the moment map uαµα
is equivalent to

dâ = 0, dh = 0, d (b/(a ∧ â)) = 0 (4.36)

where â is the conjugate three-form to a defined by Hitchin [40]. This means that a+ iâ is
a holomorphic three-form defining an integrable SL(3,C) structure. Thus we have

Proposition 7. An integrable class 0 SU∗(6) structure is equivalent to

i) an integrable SL(3,C) structure Ω̃ = a+ iâ

ii) a closed real three-form c and real six-form c̃, a complex constant h and a real constant
b0 with 6b20 < 1

where there exists a u such that Xu takes the form (4.34) with b = 1
4b0 a ∧ â.

Recall that for a type 0 structure integrability implied the F appearing in the twisted
Dorfman derivative was trivial in cohomology. Hence we can choose a twist where F = 0,
and this is why no cohomological data needs to be specified in the proposition. When u is
such that we have a class 0 type 3 ECS, this is not immediately clear, since by proposition 4
the integrability of the ECS allows a non-trivial F . However, once one imposes the moment
map condition, so that the SU∗(6) structure is integrable, one again finds F is trivial in
cohomology.

In the next section we will see explicitly how these ingredients are related to the local
SU(2) structure and spinor bilinears defined in section 2.2. This actually gives the simplest
way to summarise the geometrical structure determined by an integrable class 1 structure.
We find

Proposition 8. An integrable class 1 SU∗(6) structure is equivalent to

i) an SU(2)×GL(1,R)×R structure defined by (ωα, ζ1, ζ2) where we make the identi-
fication (sωα, s−1ζ1, s

−1ζ2) ∼ (ωα, ζ1, ζ2) and ζ1 + tζ2 ∼ ζ1 for (s, t) ∈ GL(1,R)× R,
and a function e3λ satisfying (4.53) and (4.55)

ii) a six-form potential Ã, and a form-form flux F satisfying (4.54)
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For general u we can write the SU∗(6) structure as

Xu = eA+Ã e−iωu∧ζ1 · e3λΩu ∧ ζ2 (4.37)

with ωu = uαωα and Ωu given by (4.52)

Comparing (4.34) and (4.37) for generic u, we see that for a class 0 structure the leading
term in Xu is a function h while for a class 1 structure it is the three-form e3λΩu ∧ ζ2.
The condition dh = 0 means that h is constant and so we the SU∗(6) structure cannot
smoothly change from class 0 to class 1 as one moves from point to point in the manifold.
Thus we have

Corollary 4. There are no (smooth) class-changing integrable SU∗(6) structures.

One can on the other hand have a smooth type-changing ECS, as it only specifies X up to
a local C∗ action.

4.3 ECS and SU∗(6) structures and the local SU(2) structure

We are now in a position to see how this classification applies to the general expres-
sions (2.14), (2.15) for the Jα in terms of the local SU(2) structure that were found in [10].
Since every SU∗(6) structure admits a USp(6) structure, the objects defined in (2.14), (2.15)
are in fact generic, and so the SU(2) bilinears give a good parameterisation of any ECS.

One can ask under what conditions we have a class 0 SU∗(6) structure. From (4.33)
we can see that this equates to the condition that there exists a type 0 Lu, or equivalently,
from (3.6), that Xu = eα+βh for some function h. Examining (2.14), (2.15), we see that
this is true provided either sin θ or f is non vanishing. That is, we have

classX =

1 sin θ = f = 0
0 otherwise

(4.38)

We will study these two cases separately.

Class 0. Let us first focus on the class 0 case. Using (4.28) and the expressions for the
Jα given in (2.14), (2.15), we find that the generic class 0 ECS is given by

Lu = eA+ÃeΛu/fu · TC (4.39)

where we have included the form-field gauge potentials A and Ã and defined

Λu =


V − i(u1−iu2)

2(1+u3) Λ− i(u1+iu2)
2(1−u3) Λ̄

Λ̄
Λ

fu =


sin θ − if(u1−iu2)

2(1+u3) −
if̄(u1+iu2)

2(1−u3) u3 6= ±1
f̄ u3 = 1
f u3 = −1

(4.40)

These expressions hold for generic u and generic points on the manifold where fu 6= 0.
Wherever

u = r−1(Im f,−Re f, sin θ)|p (4.41)
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where r2 = sin2 θ+ ff̄ one has fu = 0 and the ECS Lu|p degenerates to a type 3 (but still
class 0) structure.

Comparing with (4.10) we can read off

α = (A+ Re(Λu/fu)) + i Im(Λu/fu)

β = Ã− 1
2A ∧ (Λu/fu)

(4.42)

and hence from proposition 3 we have that au = Im(Λu/fu) defines an SL(3,C) structure.
As we vary u, this 3-form changes and so we can compare the induced SL(3,C) struc-
tures. If we do not impose integrability of the SU∗(6) structure, then sin θ and f are two
independent functions on the manifold and in general, Im(Λu/fu) will define inequivalent
SL(3,C) structures for different values u. Imposing SU∗(6) integrability, however, we find
that involutivity of the Lu ∀u is equivalent to

d(Λ/f) = −F d(V csc θ + Λ/f) = 0 d(f csc θ) = 0 (4.43)

In particular, we see that there is some constant c such that f = c sin θ. This is enough to
show that the SL(3,C) structures induced from Im(Λu/fu) will be equivalent up to rescaling
by a non-vanishing constant. Concretely, one finds a closed holomorphic three-form, as in
proposition 7, given by

Ω̃ =

V − sin θRe(Λ/f) + ir Im(Λ/f) f 6= 0
Λ/ sin θ f = 0

(4.44)

Moreover, imposing this we find that the right hand side of (4.41) is a constant vector.
Then if (4.41) holds at a point p, it will hold everywhere on M and the solution will be
globally type 3.

Finally, imposing the condition that LVX = 0 for V ∈ Γ(L1) gives

d(e3λf) = 0 (4.45)

which, combined with (4.43), gives the subset of the Killing spinor equations in (2.6).

Class 1. Let us now consider the class 1 case. Here we have sin θ = f = 0 and so the
expressions for the Jα in (2.14), (2.15) simplify. In terms of the local SU(2) structure given
in terms of the triplet of 2-forms ω1, ω2, ω3, and the 1-forms ζ1, ζ2, we have

Jα = 1
2κωαR + 1

2κ
(
ωα ∧ ζ1 − ω#

α ∧ ζ
#
1
)

(4.46)

where we have realigned15 the basis of Jα relative to [10] so that they match with the SU(2)
structure.

15We send J3 → −J3, J2 → −J1, J1 → −J2. This is an SU(2) rotation so defines an equivalent SU∗(6)
structure.
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It is clear then that choosing a Ju is equivalent to choosing some distinguished complex
structure ωuR = uαωαR, three-form uαωα ∧ ζ1 and three-vector uαω#

α ∧ ζ
#
1 . Using these,

and including the form-field gauge potentials A and Ã, we find that the ECS for any u is

Lu = eA+Ã e−iωu∧ζ1 · [∆⊕F2
1 (∆)] (4.47)

∆ = T 1,0
u ⊕ Cζ#

1 (4.48)

where T 1,0
u ⊂ TC has a +i eigenvalue under the action complex structure ωuR and Cζ#

1
is defined by having zero wedge product with uαω#

α ∧ ζ
#
1 . Note that in writing Lu, the

imaginary exponential is not uniquely determined since there is a kernel for the action on
∆⊕F2

1 (∆). The kernel is the space of sections F3
1 ∩F3

1 , that is elements of the form γ ∧ ζ2
where γ is a (1, 1) form. Thus we should identify

ωu ∧ ζ1 ∼ ωu ∧ ζ1 + γ ∧ ζ2 (4.49)

Comparing with (4.10) we can read off

α = A− iωu ∧ ζ1

β = Ã+ 1
2iA ∧ ωu ∧ ζ1

(4.50)

and hence we see that the general solution of the constraint (4.21) is a = −ωu ∧ ζ1 up to
the equivalence (4.49). It is then relatively straightforward to show that the group that
stabilises the pair (∆, a), up to the equivalence (4.49), is indeed U(2)× (GL(1,R)2 nR) as
claimed in corollary 3. The GL(1,R)2 factors act as ωu → sωu, ζ1 → s−1ζ1 and ζ2 → s′ζ2.
The R action is the shift ζ1 → ζ1 + tζ2 for some function t, which in (4.49) corresponds to
γ = tωu.

The corresponding SU∗(6) structure is given by

Xu = eA+Ã e−iωu∧ζ1 · e3λΩu ∧ ζ2 (4.51)

where

Ωu =
√

1− (u3)2

(
ω3 + u1 − iu2

2(1 + u3)(ω1 + iω2)− u1 + iu2

2(1− u3)(ω1 − iω2)
)

(4.52)

Note that Xu fixes a conventional SU(2)×GL(1,R)×R structure on T . Involutivity of Lu
∀u together with LVX = 0 for V ∈ Γ(L1) implies

d
(
e3λωα ∧ ζ2

)
= 0 (4.53)

which is equivalent (given f = sin θ = 0) to the conditions (2.6). It also implies that
FC = F − id(ωu ∧ ζ1) ∈ Γ(F4

1 ) for all u or equivalently

(ωα ∧ ζ2)#yF = 1
2εαβγ(ωβ ∧ ζ2)#yd(ωγ ∧ ζ1) (4.54)

(ωα ∧ ζ2)#yd(ωβ ∧ ζ1) + (ωβ ∧ ζ2)#yd(ωα ∧ ζ1) = 2
3δαβ(ωγ ∧ ζ2)#yd(ωγ ∧ ζ1) (4.55)
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where here F = dA is the physical flux. Note that the condition (4.53) means that these
equations are invariant under ζ1 → ζ1 + tζ2 as expected. We see, in particular, that the full
SU(2) × GL(1,R) × R structure is not integrable as a conventional G-structure, although
the larger structure defined by the set of 3-forms ωα ∧ ζ2 is.

Including the V-structure K, fixes ζ1 and ζ2 and hence a global conventional SU(2)-
structure. As discussed in [21], the corresponding additional supersymmetry condi-
tions (2.7) imply that the six-dimensional space has is locally a product of R with a real
line bundle over a four-dimensional hyperkähler base. The R factor is spanned by ζ#

2 and
the fiber of the line bundle by ζ#

1 , while the ωα define the hyperkähler structure on the
base. The full solution can be interpreted as the back-reacted geometry of an M5 brane
wrapped on the line bundle fiber. Thus physically a class 1 SU∗(6) structure should be
viewed as a particular to six-dimensional generalisation of a four-dimensional hyperkähler
structure, that captures the geometry of the wrapped brane.

5 Moduli of H-structures

As previously mentioned, an SU∗(6) structure does not define a generalised metric and
hence does not define a supergravity background. However, much as the moduli space of
a Calabi-Yau locally splits into Kähler and complex moduli, the moduli space of a USp(6)
structure splits locally into H-structure and V-structure moduli. Therefore, by studying
the moduli of the H-structure, we will be able to retrieve some information about the
spectrum of the effective theory on R4,1. From the classification of the previous section
we have shown that H-structures in M theory are characterised by their class and that,
furthermore, the class is a global notion in that it is the same at all points on the manifold.
Thus we expect two different moduli spaces problems, one for class 0 and one for class 1.

The moduli space MH was described in [7] in terms of a hyperkähler quotient of
the space of SU∗(6) structure by generalised diffeomorphisms. This description comes
from the condition for integrability given by 2 in proposition 5 as the vanishing of the
triplet of moment maps µα. Here, we will instead exploit the structure implied by the
integrability conditions 4 of proposition 5 and choose a particular ECS. This will lead
to explicit statements about the moduli of the structure in terms of natural cohomology
groups. It comes at the cost of losing the explicit hyperkähler construction, since only
one of the Kähler structures is manifest. However, the moduli space should be the same
independent particular choice of ECS that we make. We will see that reinstating the
SU(2) symmetry thus implies an interesting structure on the cohomologies defined by these
different choices.

Let us first review the hyperkähler geometry of the moduli space as given in [7]. Recall
from the discussion around (3.16) that the space of SU∗(6) structures AH has a natural
hyperkähler structure. The moduli space MH is defined to be the space of integrable
SU∗(6) structures up to generalised diffeomorphisms. From condition 2 in proposition 5,
integrability is given by the vanishing of the three maps µα and hence

MH = {X ∈ AH |µα = 0}/GDiff = AH///GDiff (5.1)
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This construction, called a hyperkähler quotient, keeps the hyperkähler nature of MH

manifest. In fact AH and hence alsoMH has the structure of a hyperkähler cone and the
physical moduli space of hypermultiplet scalars is given by

Mhyper =MH/H∗ =MH/(SU(2)× R+) (5.2)

This is because there are deformations of the SU∗(6) structure that do not deform the
generalised metric and hence should not be regarded as physical moduli. Specifically, the
SU(2) comes from the ambiguity in the definition of the orthonormal internal spinors ηi

in (2.1) which can be absorbed into the definition of the external component of the full
11 dimensional spinor. Hence this SU(2) symmetry is related to the R-symmetry of the 5
dimensional N = 1 theory. The R+ corresponds to shifting the warp factor λ by a constant,
but this can be absorbed into the definition of the external flat metric. This defines the
hyperkähler cone structure of AH which becomes the internal SU(2) symmetry of the Jα
along with R+ rescalings of κ. However, this descends to MH since the action of GDiff
commutes with the H∗ action.

In general, a hyperkähler cone M can be viewed as a real cone over a tri-Sasaki
space L [41, 42]. This is an SO(3) bundle over the quarternionic Kähler baseM/H∗ and is
defined by setting the hyperkähler potential (in our case given by K in (3.16)) to a constant.
Selecting some U(1) ⊂ SO(3), we can consider the quotient L/U(1). This defines a Kähler
space called the twistor space

Z = L/U(1) =M/C∗ (5.3)

The twistor space defines an S2 bundle over the base spaceM/H∗ via the following com-
muting diagram.

M Z = L/U(1) =M/C∗

M/H∗

(5.4)

For the moduli space of SU∗(6) structures the associated twistor space ZH has a
natural description in terms of ECS. Indeed, the conditions for integrability given by 4
of proposition 5 allows us to write MH in a different, but equivalent way. Fixing some
u ∈ S2, we have

MH = {X ∈ AH |Lu involutive, uαµα = 0}/GDiff = ÂH//GDiff (5.5)

where ÂH = {X ∈ AH |Lu involutive}. While this Kähler quotient construction hides the
manifest hyperkähler structure, we can now exploit a general result about group actions
that preserve a Kähler structure: the space can be viewed as either a Kähler quotient, or
a quotient by the complexified group GDiffC,16 (see for example [43]). We can therefore

16One has to be careful in defining this complexified group since the natural complexification is not well
defined. What we mean by GDiffC is the group generated by ρV , IρV ∈ Γ(TAH), where I is the complex
structure on AH .
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write the moduli space of H-structures in the convenient form17

MH = ÂH/GDiffC (5.6)

Finally, from the discussion around (3.8), we know that choosing an ECS L ⊂ EC defines
the SU∗(6) structure X up to a complex scaling. Hence, the twistor space can be defined
via ECS as

ZH =MH/C∗ = {Lu an ECS |Lu involutive}/GDiffC = ÂECS/GDiffC (5.7)

where we have defined ÂECS to be the space of integrable ECS.
The space (5.7) is now in a form that allows analysis very similar to the analysis of the

moduli of conventional complex structures [35]. In the following sections we will use the
deformation theory of ECS to get a local dimension of the twistor space around an arbitrary
point. We should highlight that ZH is not the moduli space of ECS, but rather is the space
of structures satisfying the additional condition that the moment map uαµα vanishes. The
moduli space of ECS is given byMECS = ÂECS/GDiffR which is infinite dimensional and
does not have nice properties. By imposing the vanishing of the moment map, the moduli
we find are, in general, moduli of the full SU∗(6) structure rather than of the associated
ECS. Thus, once we have analysed the structure of ZH , we should project on the S2 fiber
to recover the physical moduli spaceMhyper. This S2 fiber has a natural interpretation as
the SU(2)/U(1) = S2 of ECS associated to any SU∗(6) structure, as was laid out previously
in section 4.2. Projecting on this S2 corresponds to removing one complex modulus from
the infinitesimal analysis which we will explain in more detail in the following. Finally we
note that the resulting space Mhyper should be independent of the choice of uα we made
in defining (5.7).

5.1 Deformation theory and moduli of SU∗(6) structures

The form of (5.7) means we can understand the local structure of ZH by analysing the de-
formation theory of ECS. By identifying deformations up to local complexified generalised
diffeomorphisms, we will find a finite-dimensional result in terms of natural cohomology
groups. The dimension of these gives a local dimension of ZH which we can use to find the
moduli of MH/H∗ by removing a particular complex modulus associated to the S2 fiber
of ZH →MH/H∗. Let us start by outlining the general deformation theory.

At a point p ∈M , the space of almost ECS is given by the coset

QR+×U∗(6) = E6(6) · J0 = E6(6)/U∗(6) = E6,C/P (5.8)

where J0 is some fixed ECS and P is the parabolic subgroup that stabilises L1

P = StabL1 = GL(6,C) nC21 (5.9)
17In fact, one really needs to consider the space Âps

H of ‘polystable’ points in ÂH . This has interesting
links to geometric invariant theory but we won’t go into more detail. Here, we are just interested in the
infinitesimal structure of the moduli space for which this technicality is not important. The links between
ECS and geometric invariant theory were explored in more detail in [24, 25].
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By considering all possible p ∈M we find that J must be a section of the bundle

QR+×U∗(6) −→ QR+×U∗(6) −→M (5.10)

Infinitesimally, the deformations are given by sections of the bundle

e6,C/p −→ QR+×U∗(6) −→M (5.11)

In practice, we choose an embedding e6,C/p ↪→ e6,C. Then, given some section A ∈
Γ(QR+×U∗(6)), we can define the deformed L1 bundle L′1 by

L′1 = (1 + εA) · L1 (5.12)

for some small parameter ε � 1 and we view A as a map : L1 → EC/L1. Through the
embedding e6,C/p ↪→ e6,C, we get an embedding EC/L1 ↪→ EC.

By assumption, the original bundle L1 is involutive and hence the intrinsic torsion
vanishes. For a generic deformation A, L′1 will have some non-zero intrinsic torsion that
appears as an obstruction to the involutivity of the bundle with respect to the (flux-twisted)
Dorfman derivative. By expanding the involutivity condition to first order in ε, we find
a map

d2 : Γ(QR+×U∗(6)) −→ Γ(WR+×U∗(6)
int ) (5.13)

The integrable deformations are determined by the kernel of this map. That is, L′1 is
integrable if and only if A ∈ ker d2.

We also have a notion of trivial deformation given by complexified generalised diffeo-
morphisms. To linear order, these are given by the action of the Dorfman derivative along
some complexified vector V ∈ Γ(EC). That is, L′1 is said to be a trivial deformation if

L′1 = (1 + εLFV )L1 some V ∈ Γ(EC) (5.14)

This defines a second map

d1 : Γ(EC) −→ Γ(QR+×U∗(6)) (5.15)

where a deformation A is trivial if an only if A ∈ im d1. It is an easy check that any trivial
deformation is involutive to linear order in ε. Indeed,

LFW+εLF
V W

(W ′ + εLFVW
′) = LWW

′ + ε(LFLF
V W

W ′ + LFWL
F
VW

′) +O(ε2)

= (1 + εLFV )LWW ′ +O(ε2)
(5.16)

This implies that d2 ◦ d1 = 0, and hence we have a three-term complex

Γ(EC) d1−−−−−→ Γ(QR+×U∗(6))
d2−−−−−→ Γ(WR+×U∗(6)

int ) (5.17)

where the cohomology of (5.17) gives the tangent space TJZH .
To get the physical moduli, we need to remove the modulus associated to the S2

fiber. From section 4.2, and particularly the discussion around (4.28), it is clear that
this S2 is generated by η(κ−1J+) for some constant η ∈ C and that deformations of this
kind are always integrable provided we start at a fully integrable SU∗(6) structure. We
must therefore remove the complex modulus associated to the image of κ−1J+ under the
projection ad F̃C → QR+×U∗(6).
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5.2 Class 0 structures

A generic ECS associated to a class 0 SU∗(6) structure is of type 0,18 and so is of the form

L1 = eα+β · TC α ∈ Ω3(M)C, β ∈ Ω6(M)C (5.18)

The conditions arising from definition 2 put algebraic conditions on α, β which we derived
in (4.15). In particular, we saw that Imα defines an SL(3,C) structure as in [30]. It is
easy to see from (4.26) that this is an integrable R+ ×U∗(6) structure iff dα = 0.

To study the deformations we can choose the following embeddings:

EC/L1 = ∧2T ∗C ⊕ ∧5T ∗C (5.19)

QR+×U∗(6) = ∧3T ∗C ⊕ ∧6T ∗C (5.20)

Then a generic deformation of L1 of the form (5.18) will be

L′1 = (1 + ε(a+ b))L1 = eα+β+ε(a+b̃)TC (5.21)

where the formula on the right hand side is to be taken to first order in a, b, and where
b̃ = b− 1

2a ∧ α. From this it is clear that

L′1 integrable ⇔ da = 0 (5.22)

since the condition db = 0 is trivial. We then want to consider when a deformation is
trivial. That is, when we can write it in the form19

L′1 = (1 + εLV )L1 some V ∈ EC (5.23)

Writing V = eα+β(V + ω + σ), we find that the trivial L′1 can be written as

L′1 = eα+β−dω−dσ̃TC (5.24)

where σ̃ = σ + 1
2α ∧ ω. Hence, the deformation is trivial if and only if a, b are exact.

From this it is clear to see that the deformations are counted by the complex de Rham
cohomology groups

TJZH = H3(M,C)⊕H6(M,C) (5.25)

We now must remove the modulus associated to J+ to find the physical moduli. To
do so, we need to know how κ−1J+ projects onto QR+×U∗(6) = ∧3T ∗C ⊕ ∧6T ∗C. Fortu-
nately, this projection is quite simple and we just take the 3 and 6-form components of
e−α−βκ−1J+eα+β . Moreover, since we have chosen our representative ECS to be class 0,
one can show that the 6-form component in particular never vanishes. Hence, the associ-
ated modulus we should remove is a particular combination of classes in H3 and H6 which

18Generic in the sense that any the space of L1 with non-surjective projection onto T are measure 0 in
the Grassmannian of all L1.

19As we saw in section 4.1, the flux must be in the trivial cohomology class for class 0 structures. Hence
we can use the untwisted Dorfman derivative in this case.
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are related through the SL(3,C) structure, Imα. We can use this element to write any
6-form deformation in terms of 3-form deformations and write the physical moduli as

moduli =
(
H3(M,C)⊕H6(M,C)

)
/[J+] ' H3(M,C) (5.26)

As a sanity check, H3(M,C) has a natural symplectic structure and hence must be 2n
complex dimensional. It is therefore 4n real dimensional - the required dimension of a
quarternionic Kähler space.

One may ask whether we would obtain the same result if we had taken our represen-
tative ECS to be of type 3. This will follow from the analysis we do in the next section.

5.3 Class 1 structures

For class 1 solutions, all associated ECS are of type 3. We therefore want to understand
the deformations of

L1 = eα+β · (∆⊕F2
1 (∆)) (5.27)

We will keep ∆ general for now, and hence the results of this section apply to class 0 type
3 as well. For convenience, we will define a dual filtration of multivectors Fkp(∆) ⊂ ∧kTC
given by ξyφ = 0 for all ξ ∈ Fkp(∆), and for all φ ∈ Fkp (∆). It is possible to show that one
can choose the following for the quotient spaces.

EC/L1 =
(
TC/F

1
0

)
⊕
(
∧2T ∗C/F2

1

)
⊕ ∧5T ∗C (5.28)

QR+×U∗(6) =
[(
TC/F

1
0

)
⊗
(
T ∗C/F1

0

)]
⊕
(
∧3TC/F

3
2

)
⊕
(
∧3T ∗C/F3

1

)
⊕ ∧6T ∗C (5.29)

While these spaces may seem confusing at first, things are made easier by choosing some
space Σ ⊂ TC that is complement to ∆. If the structure is class 0 then ∆ ∩ ∆̄ = 0 and so
there is a canonical choice of Σ = ∆̄. Interestingly, as we will see in section 6, there is a
canonical choice of Σ even when ∆ ∩ ∆̄ 6= 0. We can use this split TC = ∆⊕Σ to simplify
the quotients to

EC/L1 = Σ⊕ (Σ∗ ⊗∆∗)⊕ ∧2∆∗ ⊕ ∧5T ∗ (5.30)

QR+×U∗(6) = [Σ⊗∆∗]⊕ ∧3Σ⊕ ∧3∆∗ ⊕ (∧2∆∗ ⊗ Σ∗)⊕ ∧6T ∗ (5.31)

The final result should be independent of this choice of splitting and so we will work with
the general form (5.28), (5.29).

An important consideration to make in the type 3 case is the possibility of non-trivial
flux. As we saw in proposition 4, the complex flux locally defined by dα does not need to
vanish. Instead, it falls into some, possibly non-trivial, cohomology class in H4(M,F•1 ).
This, in turn, implies that the physical flux F need not be in a trivial cohomology class.
As we will discuss in the following section, the cohomology class of F represents something
physical, related to the number of M5 branes wrapping a cycle. In this case, it is easiest to
work with the flux-twisted Dorfman derivative.20 We will find that the moduli are therefore

20The expression for the flux-twisted Dorfman derivative is given in appendix A. This formulation of
generalised geometry is equivalent to the original formulation with flux-twisted bundles.
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counted by the cohomology of a ‘flux-twisted’ differential. To find such a differential that
squares to 0, it will be convenient to work with the complex-flux twisted Dorfman derivative
LFC
V and consider deformations of the untwisted bundle L̃1 = ∆ ⊕ F2

1 (∆). This has the
same quotient bundles as (5.28), (5.29).

Consider a general deformation element R = r + Ξ + θ + τ ∈ Γ(QR+×U∗(6)) where
r ∈ Γ

[(
TC/F

1
0
)
⊗
(
T ∗C/F1

0
)]
, Ξ ∈ Γ(∧3TC/F

3
2), etc. We then have the deformed bundle

L̃′1 = (1 +R)L̃1 = eθ+τ (1 + r + Ξ) · (∆ + F2
1 (∆)) (5.32)

What are the conditions for L̃′1 to be involutive under LFC
V ? We will leave the detailed

calculation to the appendix and for now just note that the moduli are controlled by two
cohomology groups related to ∆. First, since ∆ is involutive with respect to the Lie bracket,
this defines a Lie algebroid and has an associated differential

d∆ : ∧p
(
T ∗C/F1

1

)
−→ ∧p+1

(
T ∗C/F1

1

)
d2

∆ = 0 (5.33)

If we take i : ∆ ↪→ TC to be the natural inclusion, then i∗ : T ∗C → (T ∗C/F1
1 ). We can define

the differential above via i∗ ◦ d = d∆ ◦ i∗, where we take the natural extension of i∗ to
∧pT ∗C. This will define cohomology groups which we will denote by Hp

∆. We will further
denote by Hp

∆(M,B) the cohomology group of ∧p(T ∗C/F1
1 ) evaluated in the bundle B.

The second cohomology group of interest is defined in terms of the filtration Fpk (∆).
Recall that d : Fpk (∆)→ Fp+1

k (∆) if ∆ is an integrable distribution. Hence, the de Rham
differential descends to the following complex.(

∧1T ∗/F1
k

) d−→
(
∧2T ∗/F2

k

) d−→ . . .
d−→
(
∧6T ∗/F6

k

)
(5.34)

We then denote the cohomology groups associated to this complex as Hp(M,∧•T ∗/F•k ).
(It is probably worth noting that neither of these cohomologies are the basic cohomology
of foliated spaces defined in e.g. [44].)

After a lengthy calculation, one finds that the deformations are counted by the coho-
mology of a differential that we will label d∆,F which creates the following complex

Γ
((
TC/F

1
0

)
⊕
(
∧2T ∗C/F2

1

)
⊕ ∧5T ∗C

)
d∆,F−−−−−−−→Γ

((
∧3TC/F

3
2

)
⊕
[(
TC/F

1
0

)
⊗
(
T ∗C/F1

0

)]
⊕
(
∧3T ∗C/F3

1

)
⊕ ∧6T ∗C

)
d∆,F−−−−−−−→Γ

([(
∧3TC/F

3
2

)
⊗
(
T ∗C/F1

0

)]
⊕
[(
TC/F

1
0

)
⊗ ∧2

(
T ∗C/F1

0

)]
⊕
(
∧4T ∗C/F4

1

))
(5.35)

If we take R = Ξ + r + θ + τ ∈ Γ(QR+×U∗(6)), and V = v + ω + σ ∈ Γ(EC/L1), then the
closure conditions are21

0 = d∆Ξ (5.36)
0 = d∆r − jΞyj2FC (5.37)
0 = dθ − r · FC (5.38)

21The definition of jΞyj2FC can be found in appendix A.
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and the exactness conditions are

r = d∆v (5.39)
θ = dω − vyFC (5.40)
τ = dσ + ω ∧ FC (5.41)

We are implicitly taking projections onto relevant quotient spaces where needed above. It
is an easy check to see that d2

∆,F = 0. If FC is in a trivial cohomology class in H4(M,F•1 ),
which is true for class 0 backgrounds in particular, then the deformations are counted by

TJZH = H0
∆(M,∧3TC/F

3
2)⊕H1

∆(M,TC/F
1
0)⊕H3(M,∧•T ∗C/F•1 )⊕H6

d(M,C) (5.42)

To find the physical moduli, we need to remove the modulus associated J+. Again,
this is done by finding the projection of κ−1J+ onto the space (5.29). The precise form
of this projection is complicated but one can show that the projection onto the following
space is always non-vanishing

∧3∆∗ ' ∧3T ∗/F3
2 ⊆ ∧3T ∗/F3

1 ⊆ QR+×U∗(6) (5.43)

In the first equality we have chosen a decomposition T = ∆⊕Σ. We can therefore use J+
to remove deformations along ∧3∆∗ to obtain the physical moduli of the background.

5.4 Exceptional Dolbeault operators

The moduli found in the previous sections determine the moduli of all structures of constant
type. This works well for class 1 SU∗(6) structures where the notion of type is unambiguous.
However, as we noted in section 4.2, the type of an ECS associated to a class 0 SU∗(6)
structure is not uniquely specified. Although it is generically type 0 there are two points
on the S2 of structures where it becomes type 3. We would therefore like to characterise
the moduli in a way that is independent of the type of particular ECS used to analyse
the problem, and treats both class 0 and class 1 in a single formalism. This will lead
us to defining an ‘exceptional Dolbeault operator’ whose cohomology groups then capture
the moduli.

To allow analysis for arbitrary type, we would like to be able to find the deformations
of Lu for arbitrary u ∈ S2. Recall from proposition 5 that integrability can be defined
in terms of any Lu and hence our results should be independent of this choice. Being
able to find the deformations requires a ‘nice’ choice of embedding EC/Lu ↪→ EC, and
e6,C/pu ↪→ e6,C. Fortunately, one such nice embedding is naturally selected by the U∗(6)
structure independent of class. Decomposing into eigenbundles of Ju, one finds

EC = X1 ⊕ X−1 ⊕ ∧2X∗ (5.44)

ad F̃C = adPR+×U∗(6) ⊕ ∧3X∗−1 ⊕ ∧6X∗−2 ⊕ ∧3X∗1 ⊕ ∧6X∗+2 (5.45)

W
R+×U∗(6)
int = ∧4X∗−2 ⊕ ∧4X∗2 (5.46)
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where X is a bundle that transforms in the 6 of SU∗(6). The subscript denotes the U(1)
charge under Ju, so X1 ' Lu. A natural choice of embeddings is then

EC/Lu = ∧2X∗ ⊕ ∧5X∗−1 QR+×U∗(6) = ∧3X∗−1 ⊕ ∧6X∗−2 (5.47)

We assume that we start from a fully integrable SU∗(6) structure and hence there exists
a torsion-free compatible connection D. Using (3.13) with vanishing torsion, we know that
we can replace the definitions of d1, d2 in terms of the Dorfman derivative with expressions
involving LDV . This means that we can write the maps d1, d2 in terms of the connection
D. Moreover, viewing D : Γ(T )→ Γ(E∗⊗T ), we can decompose E∗ into Ju eigenbundles.
The compatibility of D implies that it is consistent to define a decomposition of D as

D = Du +D−u +D0 (5.48)

where Dnu = πnD where πn is the projection of E∗ to the subspace with Ju charge ni. Note
that, while D±u depend on the choice of Lu ⊂ L1 ⊕ L−1, the operator D0 is independent
of that choice.

With these decompositions, we find that the complex (5.17) can be written

Γ(∧2X∗) Γ(∧3X∗−1) Γ(∧4X∗−2)

Γ(∧5X∗−1) Γ(∧6X∗−2)

D−u D−u

D−u

D0 D0 (5.49)

Note that the involutivity of Lu implies that D2
−u = 0. In fact, it is possible to show that

Lu defines a Lie algebroid and that D−u is the associated differential

D−u : ∧pX∗q −→ ∧p+1X∗q−1 (5.50)

In full generality, not much can be said about the cohomology of (5.49) without more
knowledge of the maps D−u, D0. However, if we make the following assumption, we can
give a generic result about the moduli of the SU∗(6) structures.

Definition 9. D0, D−u are said to satisfy the exceptional ∂∂̄-lemma if they satisfy the
following

imD0 ∩ kerD−u ⊆ imD−uD0 (5.51)

We show in appendix C that provided the exceptional ∂∂̄-lemma holds, and D0 is a cochain
homomorphism, then the cohomology H of the complex (5.17) is given by the cohomology
of D−u. More precisely we have

H = H3
D−u
⊕H6

D−u
(5.52)

Recall that the cohomology of (5.17) is precisely the tangent space to the twistor space H =
TJZH . To find the physical moduli, we therefore need to remove the modulus associated
to J+. This is particularly easy with the embeddings chosen since ∧6X∗−2 is precisely the
line bundle generated by J+. Hence, the deformations associated to J+ are simply H6

D−u

and we get the following result
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Proposition 9. Provided a background satisfies the generalised ∂∂̄-lemma, the hypermul-
tiplet moduli are given by H3

D−u

The definition of D−u as the differential associated to the Lie algebroid Lu mirrors
the properties of the Dolbeault operator ∂ with the complex distribution T 1,0. More-
over, through complex conjugation, one can show that Du squares to 0, is the differential
associated to L−u, and Du = D−u. We therefore make the following definition.

Definition 10. The exceptional Dolbeault operators associated to the integrable ECS Ju
are the operators D±u.

It is interesting to note that, if the SU∗(6) structure is fully integrable, then Lu is in-
volutive for all u ∈ S2. This implies that we have a set of differentials Du labelled by
u ∈ S2 ' CP1. Moreover, as the analysis above was independent of the choice of u, these
differentials should be quasi-isomorphic.22 Finally, we note that, unlike conventional Dol-
beault operators, we do not have D(uD−u) = 0. Instead, using the fact that any connection
must satisfy D ×N D = 0, we have

(Du)2 = 0 (D−u)2 = 0 DuD−u +D−uDu ∼ (D0)2 (5.53)

This should be expected as Lu⊕L−u does not define a Lie algebroid, and hence we cannot
form a differential out of Du +D−u.

5.4.1 Example: Calabi-Yau and class 0

We return to the explicit example of compactification on a Calabi-Yau. Following the
method set out above, we decompose EC, ad F̃C into eigenspaces of J . This is outlined in
appendix C but for now, we just note that there is an isomorphism between this complex
and the following, using the holomorphic three-form Ω.

Ω2(M)C Ω3(M)C Ω4(M)C

Ω5(M)C Ω6(M)C

∂ ∂

∂

D0 D0 (5.54)

where D0 = Ω#y∂̄+ Ω̄#y∂. One can show that this satisfies the generalised ∂∂̄-lemma and
hence the moduli are counted by

H3
∂(M) (5.55)

Note that this contains all the hypermultiplet moduli of deformations of the Calabi-Yau
manifolds, namely the complex structure moduli H2,1

∂̄
and the deformations of the three-

form and six-form potential A and Ã. The latter lie in de Rham cohomology classes
H3

d(M,R) and H6
d(M,R). Using the holomorphic three-form these can be associated with

H3,0
∂̄

, H0,3
∂̄

and H1,2
∂̄

thus filling out H3
d(M,R).

22This should at least hold in the sense that H3
u
∼= H3

ũ.
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This was calculated for J = J̃3, but as was noted above, we should be able to do
the analysis for arbitrary u ∈ S2. Since the Calabi-Yau is class 0, the generic ECS for a
Calabi-Yau is in fact type 0. One can use this to show that the generic differential Du will
be quasi-isomorphic to the de Rham differential. That is

Du ∼


d u3 6= ±1
∂ u3 = 1
∂̄ u3 = −1

(5.56)

Therefore, either using the results of section 5.2 or the results from (5.52), at a generic
point u ∈ S2, the moduli will be counted by H3

d(M,C). The fact that these calculations
give the same result, i.e. the quasi-isomorphism of the various Du, is equivalent to Hodge’s
Theorem on a Calabi-Yau manifold.

These arguments can be easily extended to a generic class 0 background, which by
corollary 1 differs from the above by a 6-form and an irrelevant E6(6) × R+ twist. It is
easy to then incorporate the 6-form into the isomorphisms (5.54) and into the definition
D0. The generalised ∂∂̄-lemma is then equivalent to the conventional ∂∂̄-lemma for the
associated SL(3,C) structure. If this is satisfied then H3

D−u
equals H3

∂(M) = H3
d(M,C)

depending on the choice of u.

6 Hypermultiplet moduli for Minkowski backgrounds

We have showed in the previous section how to calculated the infinitesimal moduli for an
arbitrary integrable M theory H-structure Jα. As we discussed in section 2.2 this should
allow us to calculate the hypermultiplet moduli of a general supersymmetric Minkowski
compactification.

Recall that the full supersymmetric background includes a compatible V-structure de-
fined by a generalised vector K. Together (Jα,K) define a generalised metric encoding
the physical metric and form-field potentials, and supersymmetry implies the background
satisfies the supergravity equations of motion. However, there are well-known no-go the-
orems [11, 32–34] that exclude compact solutions with non-zero flux, so that the only
allowed compact background is, in our case, a Calabi-Yau manifold, although non-compact
backgrounds are also of significant interest, such as for geometrical engineering.

The basic way to avoid the no-go theorems is to include sources for the fluxes coming
from branes and orientifold planes. Thus generically we should consider deformations on
spaces with boundaries where the sources have been removed. However, it is also possible
that the sources enter only in the V-structure equations, such that the H-structure remains
well defined even at the source. To see how this can work, recall that, in terms of bilinears,
a generic type 0 structure had the form

Lu = eα+β · TC (6.1)
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with α and β given by

α = (A+ Re(Λu/fu)) + i Im(Λu/fu)

β = Ã− 1
2A ∧ (Λu/fu)

(6.2)

We see that the ECS does not determine the gauge potentials A and Ã but only combi-
nations of potential and bilinear such as A + Re(Λu/fu). It is only once one specifies K
that the separate terms are picked out. Thus the solution may be singular such that A and
Re(Λu/fu) both diverge but α remains finite and hence the ECS remains well defined. The
H-structure is well defined, but there is no compatible supersymmetric V-structure that is
not divergent at some point. If this is the case then one can calculate the hypermultiplet
moduli without having to make any excision of the sources.

Recall that the general analysis of [21] showed that the local supersymmetric solutions
split into two classes, that directly correspond to class 0 and class 1 SU∗(6) structures.
The former class includes the fluxless Calabi-Yau background but more generally can be
considered as a deformation to ‘Calabi-Yau with flux’ since class 0 backgrounds define
an integrable conventional SL(3,C) structure (albeit non-metric-compatible). The second
class of supersymmetric solutions could actually be reduced to solving for a single function,
and have the interpretation of the back-reacted geometry of an M5-brane wrapped on a
circle fibered over a five dimensional space of the form MHK × R where MHK is a four-
dimensional hyperkähler space. The two classes are distinguished by sin θ = f = 0 for class
1/M5-brane, and otherwise the background is class 0/Calabi-Yau with flux.23

In section 5 we saw how to calculate the infinitesimal moduli for global class 0 and
1 in terms of cohomologies, and so we can simply apply those results here to find the
hypermultiplet degrees of freedom for the Minkowski backgrounds. As noted in corollary 4,
we cannot have smooth class-changing structures so the global analysis of section 5 is valid
away from singular points. In fact, it may be of slightly broader applicability in that
the corresponding ECS may be smooth and non-singular. If we choose the corresponding
ECS as type 3 at both the class 0 and class 1 points, the moduli space analysis is still
then captured by the discussion in section 5.3 though now with a distribution ∆ that
changes class.

6.1 Class 0

Recall from proposition 7, an integrable class 0 SU∗(6) structure defines an integrable
conventional SL(3,C) structure Ω̃. Furthermore, the generic ECS associated to a class 0
SU∗(6) structure is type 0 and so from the analysis of section 5.2 we have

moduli = H3
d(M,C) (6.3)

We see that the physical hypermultiplet moduli space is locally the (complexified) moduli
space of SL(3,C) structures. One can view this as deformations of the complex structure

23As was observed in [21], the full set of supersymmetry equations sets f = 0 always. However, this
cannot be seen from integrability of the SU∗(6) structure alone and so we shall keep it general.
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associated to Ω̃, the constant b0 and of the closed three- and six-forms c and c̃ that appear
in the proposition.

We emphasise that this result was obtained without introducing a specific V -structure
K and hence is independent of the precise value of the flux. Instead, we only required inte-
grability of the SU∗(6) structure which constrains the flux to be d-exact. Different choice
of K will give different values of the flux within the trivial cohomology class. Provided the
background admits a compatible Kähler metric, one could choose K such that the fluxes
vanish and the background is genuinely Calabi-Yau (i.e. taking sin θ ≡ −1). As discussed
at the end of section 5.4, (6.3) then gives the expected result. On the other hand, one
could choose K such that the fluxes do not vanish and hence we are necessarily away from
the Calabi-Yau solution. Despite this, we find that the hypermultiplet moduli are given
by the same cohomology groups as in the fluxless case. This remarkable fact is non-trivial
as one cannot smoothly deform a Calabi-Yau solution to one with flux and so there is no
guarantee that the moduli will be the same.

In finding the moduli, we could have alternatively deformed around the type 3, class
0 ECS. In this case, we could use the results of section 5.3 to write the moduli in terms of
the cohomology of the differential associated to the ∆ = T 1,0, i.e. the Dolbeault operator
∂. The moment map condition implies that the complex flux FC is exact and hence we can
find an exact decomposition into Dolbeault cohomology groups. We find

TJZH = H0
∂̄
(M,∧3,0T )⊕H1

∂̄
(M,T 1,0)⊕H1,2

∂̄
(M)⊕H0,3

∂̄
(M)⊕H3,3

∂̄
(M) (6.4)

=
3⊕

k=0
Hk,3−k
∂̄

(M)⊕H3,3
∂̄

(M) (6.5)

In the second line, we have formed isomorphisms using the holomorphic 3-form Ω̃. As
argued at the end of section 5.3, the physical moduli are found by removing deformations
along ∧0,3T ∗. Therefore, the physical moduli are

moduli =
3⊕

k=1
Hk,3−k
∂̄

(M)⊕H3,3
∂̄

(M) =
3⊕

k=0
Hk,3−k
∂̄

(M) (6.6)

where again we have used an isomorphism induced by the holomorphic 3-form Ω̃ in the
last expression.

Strikingly, the statement that these two calculations of the moduli are equal appears
to suggest that these backgrounds should always satisfy some kind of Hodge theorem.
However, this is not quite correct due to a technicality in the way one derives the moduli
from the moment map picture. One needs that the Kähler metric on the space of structures
is non-degenerate transverse to the action of GDiff [1, 30]. One sufficient condition is to
say the backgrounds satisfies the ∂∂̄-lemma which is enough to guarantee the isomorphism
of (6.3) and (6.4). In the same way, that the existence of a Kähler metric implies the
conventional ∂∂̄-lemma, we expect that the existence of a compatible supersymmetric K
is also sufficient.
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6.2 Class 1: sin θ = f = 0

In this case, the internal spinors are of fixed norm and hence the local SU(2) structure is in
fact global. As discussed in section 4.3, the SU∗(6) structure defines a SU(2)×GL(1,R)×R
structure satisfying the equations (4.53)–(4.55). All the corresponding ECS are of type 3.
We can then use the results of section 5.3 to find the moduli of such a background as the
cohomology of the complex (5.35) for the differential d∆,F . Crucially F does not need
to be in a trivial cohomology class and hence we cannot decompose the moduli into the
cohomology of d∆ alone.

Recall that the cohomology class of F encodes some physical information about the
background namely the number of M5 branes wrapping the circle fibered over MHK ×
R. Under infinitesimal deformations of the background, this cohomology class should
remain unchanged. However we have already seen that class 0 structures have trivial flux.
Hence, when F is non-trivial, there should be no deformation from class 1 to class 0.
Such deformations were parameterised by Ξ. Thus physically we expect these moduli are
obstructed by 0 6= [F ] ∈ H4(M).

To see this more directly from the moduli equations (5.36)–(5.38), it is useful to use the
full structure of the supergravity background. In particular, the metric naturally selects a
complement to ∆ given by

Σ = T̂ 0,1 ⊕ Cξ (6.7)

where ξ is a real Killing vector that also satisfies LξF = Lξλ = Lξωα = Lξζi = 0. This
particular choice of complement is convenient as one can use the Killing spinor equations24

to show [Σ,Σ] ⊆ Σ. We can therefore decompose the exterior derivative as

d = d∆ + dΣ d∆ = Pr p+1,q ◦ d dΣ = Pr p,q+1 ◦ d (6.8)

where Pr p,q : ∧nT ∗ → ∧p∆∗ ⊗ ∧qΣ∗. We will use the abuse of notation ∧p,qT ∗ =
∧p∆∗ ⊗ ∧qΣ∗. Since ∆̄ 6= Σ, the reader should not be confused and think of ∧p,qT ∗
as a decomposition under some complex structure.

We can already put constraints on the real flux F . Recall that the integrability of a
class 1 SU∗(6) structure implies that FC ∈ F4

1 (∆). As discussed in section 4.3, in terms of
the global SU(2) structure we have FC = F − id(ωu ∧ ζ1) and hence, using subscripts p, q
to denote the ∧p,qT ∗ component of the form, we must have

0 = (FC)3,1 (6.9)
= F3,1 − i(d(ωu ∧ ζ1))3,1 (6.10)
= F3,1 − id∆(ωu ∧ ζ1)2,1 (6.11)

⇒ F3,1 = i∂̂(ωu ∧ ζ1)2,1 (6.12)

where we have decomposed a tangential Dolbeault operator ∂̂ coming from the integrable
hyperkähler structure on MHK. Since F is a real form,25 we can put constraints on F1,3.

24This is not the case for AdS backgrounds.
25Again, since we do not have a complex structure F̄3,1 6= F1,3 and so we need to be careful. One can

use the complex structure on MHK however to form constraints.
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Now suppose we have some integrable deformation R = Ξ + r + . . . such that Ξ is
globally non-vanishing.26 Since this is an integrable deformation, we have

d∆Ξ = 0 d∆r − jΞyj2(FC)2,2 = 0 (6.13)

Since Ξ is non-vanishing we can define Ξ−1 ∈ Γ(∧3Σ∗) to be the unique section such that
ΞyΞ−1 = 1. Eq. (6.13) then implies

(F − id(ωu ∧ ζ1))2,2 = −d∆(r · Ξ−1) (6.14)

Again, using reality conditions, one can now completely determine the form of F and
we find

F − id(ωu ∧ ζ1) + d(r · Ξ−1) = dΣρ (6.15)

some ρ ∈ Γ(∧1,2T ∗) that can be described explicitly in terms of r,Ξ. The left hand side
of (6.15) is clearly d-closed and hence the right hand side must be d∆-closed. Careful
consideration of this equation and application of the ∂̂ ˆ̄∂-lemma induced from integrable
hyperkähler base implies we can therefore write dΣρ = d∆σ for some σ ∈ Γ(∧0,3T ∗). Hence
we have

F − id(ωu ∧ ζ1) + d(r · Ξ−1)− dσ = 0 (6.16)

We then see that
Ξ 6= 0 ⇒ [F ] = 0 ∈ H4(M) (6.17)

or, put another way, the cohomology class of the flux acts as an obstruction to the trivector
deformation as expected.

7 Discussion

In this paper we defined and classified a new object in E6(6)×R+ generalised geometry which
we called an exceptional complex structure and used it to analyse generic supersymmetric
D = 5 Minkowski backgrounds of M-theory. These are the analogue of SL(3,C) structures
in conventional geometry, or SU(3, 3) structures in Hitchin’s generalised geometry, and they
extend the definition of exceptional complex structures in [24, 25] to D = 5 backgrounds.
We saw that ECSs fell into three families labelled type and class. In each case, along with
some extra data, the ECS defined a conventional G-structure on T ; in particular for class
0 type 0 backgrounds this was simply an SL(3,C) structure. Integrability of the ECS did
not however, in general, lead to integrability of the conventional G-structure but instead
constrained part of the intrinsic torsion.

The D = 5 supersymmetric background define a SU∗(6) structure [7] that encodes the
massless hypermultiplet scalar degrees of freedom in the five-dimensional effective theory.
We showed that for each such ‘H-structure’ there is an S2 of associated ECSs. While the
type of the associated ECS may vary, we found that the class is fixed and constant on the
manifold, so that SU∗(6) structures were of either class 0 and class 1 matching the two types

26This restricts us to deformations into class 0 backgrounds with a smooth metric.
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of solution identified in [21]. Class 0 SU∗(6) structures describe flux-deformed Calabi-Yau
solutions in the sense of section 6, while class 1 correspond to a an M5 brane wrapped on
a circle transverse to MHK × R, where MKH is hyperkähler. We analysed the integrability
conditions of the SU∗(6) structures in multiple ways and found that class 0 solutions always
have an integrable SL(3,C) structure on T , but it is not necessarily metric-compatible. We
also found that class 1 structures had a particular non-integrable SU(2) × GL(1,R) × R
structure. In each case, the integrability conditions had natural interpretations as Kähler
quotients, or equivalently as the extremisation of a Hitchin functional.

Using the classification of SU∗(6) structures and their integrability, we were able to find
the hypermultiplet moduli of arbitrary backgrounds. For class 0 structures, that the moduli
correspond to the complexification of the moduli space of the associated SL(3,C) structure.
This was true independent of the flux, showing that flux deformed Calabi-Yau solutions
remarkably have the same hypermultiplet moduli as the fluxless Calabi-Yau background.
For class 1 solutions, we found the moduli in terms of the cohomology of some differential
d∆,F and used this to show that a non-trivial flux obstructs some of the moduli. This can
be viewed as the statement that some deformations would break the supersymmetry of the
wrapped brane configuration and so are lifted.

We saw that an integrable SU∗(6) structure defined a rich set of cohomologies, with an
S2 of natural ‘exceptional Dolbeault operators’ dependent on which compatible ECS one
chooses. Provided the deformation problem for the SU∗(6) structure is well-defined, there
must be relations between the corresponding cohomologies since we can parameterise the
deformation using any of the different ECSs. In the class 0 case, this was equivalent to the
Hodge Theorem relating de Rham and Dolbeault cohomology groups.

Although we focused on the M-theory case, the general formalism is equally applicable
to type II theories. The main difference would be the classification of the structures in terms
of type and class and the corresponding modification of the moduli space calculations. Type
IIA should follow straightforwardly from M-theory with the generic ECS being again type 0.
For type IIB however it is easy to see that the generic case is type 1, and so the distribution
∆ in the analogue of proposition 2 is never the whole of TC. Nonetheless one expects that
the tools used to analyse type 3 ECS here would carry over to the type IIB case.

Another very natural extension is to try to understand obstructions in this theory. In
general the Kähler quotient only matches the moduli space if the quotient group has a free
action on the space of structures. While there are generally no generalised diffeomorphisms
that fix the full supergravity solutions, the analogue of the statement that a Calabi-Yau
has no isometries, this may not be the case for ECS alone. For example, in Calabi-Yau
backgrounds, we have LV J = 0 for V = v where v is a holomorphic vector field, i.e. a
real vector field such that LvΩ is proportional to Ω. While on a generic complex manifold
there can be an infinite number of solutions to this equation, Calabi-Yau manifolds are
unobstructed [45, 46] and hence have no holomorphic vector fields. It would be interesting
to see if a similar statement holds when we move to arbitrary flux backgrounds.

One of the intriguing observations in this work is that, for generic class 0 backgrounds,
one simply needs to specify an integrable SL(3,C) structure. The full supersymmetric
background is completed by finding an compatible V-structure. In the Calabi-Yau case,
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this corresponds to specifying the Ricci-flat Kähler metric. More generally it requires
identifying a holomorphic vector ξ together a exact flux F satisfying (2.7). This opens
up a relatively straightforward way of searching for new supersymmetric flux backgrounds
given any complex manifold with vanishing first Chern class. One might wonder if there
was an analogue of the Calabi-Yau theorem in this case. In addition, as we have also
stressed, there is the possibility that the sources in compact background only effect the V-
structure, so that the SU∗(6) structure is globally well-defined and we can directly identify
the hypermultiplet moduli as H3(M,C).

Another obvious extension of this work is to try to apply it AdS backgrounds. These
are described by USp(6) structures with weak generalised holonomy [10, 27, 28, 47]. In
particular, they have an SU∗(6) structure that is not quite integrable but has intrinsic
torsion in a USp(6) singlet. One can always choose the ECS such that this singlet appears
in the moment map and not the involutivity condition. Moreover, if we impose the condition
from the Killing spinor equations that f = 0, then this choice of ECS is globally of type 3.
Unlike the Minkowski case, however, we find that the class of the structure is not constant
on M . Indeed, this follows from the AdS Killing spinor equation d(e3λ sin θ) = 2me2λζ̃1
wherem is the inverse AdS radius. This implies there can be class-changing solutions. Even
though the moment map is non-zero, it has been shown by Ashmore, Petrini, Tasker and
Waldram [48] that one can still interpret the moduli space as a suitable Kähler quotient and
so find the moduli in terms of the cohomology of d∆,F . Grading this cohomology by the R-
charge, we should get finite dimensional results, which collectively give the whole spectrum
of chiral operators on the associated CFT. It would be very interesting to investigate these
ideas in the simple cases such as the Maldacena-Nunez solutions [32].

Another direction, that we hope to address soon, is to try and apply the theory of
ECS to topological theories. Recall that the 1-loop corrections to topological string the-
ories could be calculated by quantising the Hitchin functional for generalised complex
structures [49]. It is natural to wonder if there is an analogous calculation using the ECS
Hitchin function (3.16). One could then compare with one-loop corrections to the universal
hypermultiplet in five dimensions as in [50–52].

Finally, one may use the mathematical structure analysed here as a stepping stone for
understanding D = 4 backgrounds of M-theory with non-trivial flux. We already know
from [24] that such backgrounds are given in terms of an analogous ECS and we expect
backgrounds with non-trivial flux to be also given by type 3 structures. The moduli will
therefore be broadly similar, this time counted by a differential associated to some 4-
dimensional ∆ ⊂ TC which defines a transverse holomorphic foliation. These will encode
the back-reacted geometry of M5 branes wrapping cycles in the internal manifold and are
of interest in model-building.

Acknowledgments

DT and DW are supported in part by the EPSRC New Horizons Grant “New geometry from
string dualities” EP/V049089/1. DW is also supported in part by the STFC Consolidated
Grants ST/P000762/1 and ST/T000791/1. We would like to thank Alex Arvanitakis for
helpful comments on the paper.

– 41 –



J
H
E
P
0
8
(
2
0
2
1
)
0
8
8

A Conventions

A.1 Exterior and interior products

We use the following conventions for the exterior and interior products of differential forms
and multivectors. Here u ∈ Γ(∧pT ), v ∈ Γ(∧qT ), λ ∈ Ωp(M), ρ ∈ Ωq(M), and we take
p ≥ q without loss of generality.

(u ∧ v)a1...ap+q = (p+ q)!
(p!q! v[a1...apu_p+1...ap+q ] (A.1)

(λ ∧ ρ)a1...ap+q = (p+ q)!
p!q! λ[a1...ap

ρap+1...ap+q ] (A.2)

(vyλ)a1...ap−q = 1
q!v

b1...bqλb1...bqa1...ap−q (A.3)

(uyρ)a1...ap−q = 1
q!u

a1...ap−qb1...bqρb1...bq (A.4)

(jvyjρ)ab = 1
(q − 1)!v

ac1...cq−1ρbc1...cq−1 (A.5)

(jλ ∧ ρ)a,a1...ap+q−1 = (p+ q − 1)!
(p− 1)!q! λa[a1...ap−1ρap...ap+q−1] (A.6)

Also, for Ξ ∈ Γ(∧3T ), F ∈ Ω4(M), we define

(jΞyj2F )abc = 1
2X

apqFbcpq (A.7)

we can also define for 3-forms α, β, γ, δ

(jα ∧ β) ∧ (jγ ∧ δ) =
( 6!

3! 2!

)2
αa1b2b3βb4b5b6γb1a2a3δa4a5a6 (A.8)

Indices with the same letter are antisymmetrised.

A.2 E6(6) × R+ generalised geometry

The generalised tangent bundle, the adjoint bundle, and the N bundle for E6(6) × R+

geometry are as follows

E = T ⊕ ∧2T ∗ ⊕ ∧5T ∗ (A.9)

ad F̃ = R⊕ (T ⊗ T ∗)⊕ ∧3T ∗ ⊕ ∧6T ∗ ⊕ ∧3T ⊕ ∧6T (A.10)

N = T ∗ ⊕ ∧4T ∗ ⊕ (T ∗ ⊗ ∧6T ∗) (A.11)

We take the following sections of these bundles, where each term matches with the expres-
sions above in the obvious way.

V = v + ω + σ + τ R = l + r + a+ ã+ α+ α̃ (A.12)

The following gives the adjoint action R · V = V ′

v′ = lv + r · v + αyω − α̃yσ (A.13)
ω′ = lω + r · ω + vya+ αyσ (A.14)
σ′ = lσ + r · σ + vyã+ a ∧ ω (A.15)
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The following gives the Lie algebra bracket [R,R′] = R′′

l′′ = 1
3(αya′ − α′ya) + 2

3(α̃′yã− α̃yã′) (A.16)

r′′ = [r, r′] + jαyja′ − jα′yja− 1
3I(αya

′ − α′ya)

+ jα̃′yjã− jα̃yjã′ − 2
3I(α̃

′yã− α̃yã′)
(A.17)

a′′ = r · a′ − r′ · a+ α′yã− αyã′ (A.18)
ã′′ = r · ã′ − r′ · ã− a ∧ a′ (A.19)
α′′ = r · α′ − r′ · α+ α̃′ya− α̃ya′ (A.20)
α̃′′ = r · α̃′ − r′ · α̃− α ∧ α′ (A.21)

A.2.1 Dorfman derivative

The following is the Dorfman derivative on vectors.

LV V
′ = Lvv′ + (Lvω′ − v′ydω) + (Lvσ′ − v′ydσ − ω′ ∧ dω) (A.22)

The following is the Dorfman derivative on adjoint elements.

LVR = Lvl +
(
Lvr + jαyjdω − 1

3Iαydω − jα̃yjdσ + 2
3Iα̃ydσ

)
+ (Lva+ r · dω − αydσ) + (Lvã+ r · dσ + dω ∧ a)
+ (Lvα− α̃ydω) + Lvα̃

(A.23)

To obtain the twisted Dorfman derivative we make the following substitutions.

dω → dω − vyF dσ → dσ − vyF̃ + ω ∧ F (A.24)

A.2.2 The cubic invariant

The following is the cubic invariant for E6(6)

c(V, V, V ) = −
(
vyω ∧ σ + 1

3!ω ∧ ω ∧ ω
)

(A.25)

A.2.3 The Killing form

The Killing form for Ed(d) is

Tr(R,R′) = 1
2

( 1
9− d Tr rTr r′ + Tr rr′ + αya′ + α′ya− α̃yã′ − α̃′yã

)
(A.26)
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A.2.4 Projections

Let Z = ζ + u+ s ∈ Γ(E∗). Then the projection E × E∗ → ad F̃ is given by

l = −1
3uyω −

2
3syσ (A.27)

r = v ⊗ ζ − juyjω + 1
3uyωI− jsyjσ + 2

3syσI (A.28)

a = ζ ∧ ω + uyσ (A.29)
ã = ζ ∧ σ (A.30)
α = v ∧ u+ syω (A.31)
α̃ = −v ∧ s (A.32)

If Y = λ+ κ+ µ ∈ Γ(N) then the projection E × E → N is given by

λ = vyω′ + v′yω (A.33)
κ = vyσ′ + v′yσ − ω ∧ ω′ (A.34)

µ = (jω ∧ σ′ + jω′ ∧ σ)− 1
4(σ ∧ ω′ + σ′ ∧ ω) (A.35)

B Spinor bilinears and the local SU(2) structure

We will build the spinor bilinears of the local SU(2) structure, and the associated gener-
alised USp(6) structure, from the completely generic spinor

η̃ =
√

2(cosαη1 + sinα (aη1 +
√

1− |a|2η2)∗) (B.1)

We can parameterise a = eiψ sinφ. Then we take ε+, ε− as in section 2. The non-vanishing
bilinears we can form are as follows.

Scalars

ε̄+ε+ = ε̄−ε̄− = 1 (B.2)
ε̄+ε− = ε̄−ε+ = sin θ (B.3)

ε+ Tε+ = −ε−Tε− = e−iψ sinφ cos θ (B.4)

1-forms

ε̄+γ(1)ε
+ = −ε̄−γ(1)ε

− = cos θ cosφ ζ1 (B.5)
iε̄+γ(1)ε

− = −iε̄−γ(1)ε
+ = cos θ cosφ ζ2 (B.6)

2-forms
−iε̄+γ(2)ε

+ = −iε̄−γ(2)ε
− = ω3(1− sin2 φ (1− sin θ))− sin θζ1 ∧ ζ2

− 1
2(1− sin θ) sin 2φ (cosψ ω1 + sinψ ω2)

(B.7)

iε̄+γ(2)ε
− = iε̄−γ(2)ε

+ = ζ1 ∧ ζ2 − ω3(sin θ + sin2 φ (1− sin θ))

+ 1
2(1− sin θ) sin 2φ (cosψ ω1 + sinψ ω2)

(B.8)

ε+ Tγ(2)ε
− = −ε−Tγ(2)ε

+ = cos θ (cosφ (ω2 + iω1) + ie−iψ sinφ (ω3 − ζ1 ∧ ζ2)) (B.9)

– 44 –



J
H
E
P
0
8
(
2
0
2
1
)
0
8
8

3-forms
iε̄+γ(3)ε

+ = −iε̄−γ(3)ε
− = cos θ sinφ cosψ (ω1 ∧ ζ1 − ω2 ∧ ζ2)

+ cos θ sinφ sinψ (ω2 ∧ ζ1 + ω1 ∧ ζ2)
− cos θ cosφω3 ∧ ζ1

(B.10)

ε̄+γ(3)ε
− = −ε̄−γ(3)ε

+ = cos θ sinφ sinψ (ω1 ∧ ζ1 − ω2 ∧ ζ2)
− cos θ sinφ cosψ (ω2 ∧ ζ1 + ω1 ∧ ζ2)
+ cos θ cosφω3 ∧ ζ2

(B.11)

ε+ Tγ(3)ε
+ = ε−Tγ(3)ε

− = −(ω2 + iω1) ∧ (sin θ ζ1 − iζ2)

− 1
2(1− sin θ) sin2 φ (ω2 + iω1) ∧ (ζ1 + iζ2)

− 1
2(1− sin θ) sin2 φ e−2iψ(ω2 − iω1) ∧ (ζ1 + iζ2)

+ i
2(1− sin θ)e−iψ sin 2φω3 ∧ (ζ1 + iζ2)

(B.12)

ε+ Tγ(3)ε
− = ε−Tγ(3)ε

+ = −(ω2 + iω1) ∧ (ζ1 − i sin θ ζ2)

+ 1
2(1− sin θ) sin2 φ (ω2 + iω1) ∧ (ζ1 + iζ2)

+ 1
2(1− sin θ) sin2 φ e−2iψ(ω2 − iω1) ∧ (ζ1 + iζ2)

− i
2(1− sin θ) sin 2φ e−iψω3 ∧ (ζ1 + iζ2)

(B.13)

4-forms

ε̄+γ(4)ε
+ = ε̄−γ(4)ε

− = ∗(iε̄+γ(2)ε
−) = ∗(iε̄−γ(2)ε

+) (B.14)

−ε̄+γ(4)ε
− = −ε̄−γ(4)ε

+ = ∗(−iε̄+γ(2)ε
+) = ∗(−iε̄−γ(2)ε

−) (B.15)

−iε+ Tγ(4)ε
+ = iε−Tγ(4)ε

− = ∗(ε+ Tγ(2)ε
−) = ∗(−ε−Tγ(2)ε

+) (B.16)

5-forms
ε̄+γ(5)ε

+ = −ε̄−γ(5)ε
− = ∗(iε̄+γ(1)ε

−) = ∗(−iε̄−γ(1)ε
+)

= cos θ cosφ ∗ ζ2
(B.17)

−iε̄+γ(5)ε
− = iε̄−γ(5)ε

+ = ∗(ε̄+γ(1)ε
+) = ∗(−ε̄−γ(1)ε

−)
= cos θ cosφ ∗ ζ1

(B.18)

6-forms

−iε̄+γ(6)ε
+ = −iε̄−γ(6)ε

− = sin θ vol (B.19)
−iε̄+γ(6)ε

− = −iε̄−γ(6)ε
+ = vol (B.20)

−iε+ Tγ(6)ε
− = iε−Tγ(6)ε

+ = e−iψ sinφ cos θ vol (B.21)

C ECS in E6(6) × R+ geometry

Proposition 10. Any isotropic subbundle L ⊂ EC has the form

eα+β · (∆⊕ S2 ⊕ S5) (C.1)
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where α ∈ Ω3(M) andβ ∈ Ω6(M) are arbitrary but fixed, and where ∆ ⊂ T , S2 ⊂ ∧2T ∗,
S5 ⊂ ∧5T ∗ satisfy the following. For all v ∈ ∆, ω, ω′ ∈ S2and σ ∈ S5 we have

vyω = 0 vyσ = 0
ω ∧ ω′ = 0 jω ∧ σ = 0

(C.2)

To prove this, we follow a similar proof for isotropic bundles in O(d, d) geometry laid out
in [2].

Proof. The condition for isotropy is V1 ×N V2 = 0 for all V1, V2 ∈ L which translates to

v1yω1 + v2yω1 = 0 (C.3)
jω1 ∧ σ2 + jω2 ∧ σ1 = 0 (C.4)

ω1 ∧ ω2 − v1yσ2 − v2yσ1 = 0 (C.5)

It is a simple check to see that any L of the form (C.1) satisfies these conditions and
hence defines an isotropic bundle. Hence it is left to show that any isotropic bundle takes
that form.

Clearly we have ∆ = a(L). Suppose we have some

ω1, ω2 ∈ π∧2T ∗

(
(∧2T ∗ ⊕ ∧5T ∗) ∩ L

)
(C.6)

where π∧2T ∗ : E → ∧2T ∗, and similarly for πT , π∧5T ∗ . From (C.3) and (C.5) we see that
for any v ∈ ∆

vyωi = 0 ⇒ ωi ∈ F2
1 (∆)

ω1 ∧ ω2 = 0 ⇒ ωi ∈ S2
(C.7)

Now consider the element

α(v) := π∧2T ∗

(
π−1
T (v) ∩ L

)
∈ ∧2T ∗

π∧2T ∗((∧2T ∗ ⊕ ∧5T ∗) ∩ L) (C.8)

From (C.3) for V ×N V = 0, we see that we need

vyα(v) ∀ v ∈ ∆ ⇒ α ∈ ∧3T ∗ (WLOG) (C.9)

Then we can write any element λ ∈ π∧2T ∗(L) as

λ = vyα+ ω v ∈ ∆, ω ∈ S2 (C.10)

No we consider any σ ∈ ∧5T ∗ ∩ L. From (C.4) and (C.5) we see that for all v ∈ ∆,
ω ∈ S2 we need

vyσ = 0 ⇒ σ ∈ F5
4 (∆)

jω ∧ σ = 0 ⇒ σ ∈ S5
(C.11)

Note that we also need

j(vyα) ∧ σ = 0 ⇔ (vol#yσ)y(vyα) = 0 (C.12)
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However, since F5
4 (∆) = 0 if dim ∆ > 1, one can check that

(vol#yσ)y(vyα) ∝ vy(vyα) = 0 (C.13)

Now consider the element

θ(v, ω) := π∧5T ∗

(
(π−1
T (v) + π−1

∧2T ∗(ω)) ∩ L
)
∈ ∧5T ∗

∧5T ∗ ∩ L
(C.14)

From (C.5) we need

(ω1 + v1yα) ∧ (ω2 + v2yα)− v1yθ(v2, ω2)− v2yθ(v1, ω1) (C.15)

which has the general solution

θ(v, ω) = 1
2vyα ∧ α+ vyβ + λ ∧ α (C.16)

where β ∈ ∧6T ∗ is arbitrary. It is a simple check to see that this also satisfies (C.4).
Checking the action of eα+β we see that we have

L = eα+β · (∆⊕ S2 ⊕ S5) (C.17)

Proposition 11.
dimC L = 6 ⇔ typeL = 0, 3, 6 (C.18)

Proof. We will consider each typeL = k for k = 0, 1, . . . , 6

k=0
All type 0 bundles are of the form L = eα+β · T which is clearly 6 dimensional

k=1
If we have a type 1 bundle then dim ∆ = 5 and dimF2

1 (∆) = dimF5
4 (∆) = 0. Hence the

bundle looks like eα+β ·∆ again. However, this is just 5 dimensional.

k=2
In this case we have rk∆ = 4, dimF2

1 (∆) = 1, dimF5
4 (∆) = 0 and hence the isotropic

bundle is of the form eα+β · (∆⊕F2
1 (∆)) which is 5 dimensional.

k=3
We have dim ∆ = 3, dimF2

1 = 3, dimF5
4 = 0. Hence we can take L = eα+β cot(∆⊕F2

1 (∆))
which is 6 dimensional.

k = 4
We have dim ∆ = 2, dimF2

1 (∆) = 6, dimF5
4 (∆) = 0. However, it is not that case that

ω ∧ ω′ = 0 for all ω, ω′ ∈ F2
1 (∆). We take any subspace which satisfies this condition
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which has maximal dimension 3. Hence the isotropic bundle of the form eα+β · (∆ ⊕ S2)
has maximal dimension 5

k = 5
We have dim ∆ = 1, dimF2

1 = 10, dimF5
4 (∆) = 1. Again, we choose a maximal

S2 ⊂ F2
1 (∆) satisfying ω ∧ ω′ = 0. This will have dimension 3 and so the isotropic bundle

eα+β · (∆⊕ S2 ⊕ S5) has dimension 5.

k = 6
In this case dim ∆ = 0. It will be convenient to parameterise S5 = Γy vol where Γ ⊂ T .
We will also choose a basis ei of T ∗ with dual basis êi of T . The only possible type 6
solutions are given in the table below.

Γ S2 L dimL

T 0 ∧5T ∗ 6
〈ê1, . . . , ê4〉

〈
e5 ∧ e6〉 S2 ⊕ S5 5

〈ê1, ê2, ê3〉
〈
ei ∧ ej | i, j = 4, 5, 6

〉
s2 ⊕ S5 6

Proposition 12. There are no ECS of type 6

Proof. There are two different 6 dimensional isotropic spaces of type 6, which shown in the
table above. We will show that these do not satisfy the remaining conditions in definition 2.

Firstly, let’s consider L1 = ∧5T ∗. Clearly, this does not satisfy condition (iii) as
L̄1 = L1. Therefore, this cannot be an ECS.

Secondly, let’s consider L1 = eα · (S2 ⊕ S5), where S2, S5 are as in the third row of
the table above. We will show that L0 ∩ (L1 ⊕ L−1) 6= 0 and hence this does not satisfy
condition (iii). To find L0 we need to find the null space

A = {Z ∈ E∗ | 〈V,Z〉 = 0 ∀V ∈ L1 ⊕ L−1} (C.19)

Using the same notation as above, it is easy to see that

T ∗ ⊕
〈
êi ∧ êj | i = 1, 2, 3, j = 4, 5, 6

〉
⊆ A (C.20)

The left hand side of this is 15 dimensional. If L is to define an ECS then A must be 15
dimensional too and hence this must be the whole of A. In particular, this implies that

S5 ⊕ S̄5 = ∧5T ∗ ⊂ L1 ⊕ L−1 (C.21)

Now taking any ν ∈ T ∗, and some eα · ω ∈ L1. Then we have

eαω ×ad ν = eαω ∧ ν (C.22)
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However, we have that

(eαω ∧ ν) · L−1 ⊆ ∧5T ∗ ⊂ L1 ⊕ L−1 (C.23)

Hence we see that L0 ∩ (L1 ⊕ L1) 6= 0 and so this cannot be an ECS

Proposition 13. Suppose L1 = eα+β(∆ ⊕ F2
1 (∆)) is an almost ECS of type 3. Then

dim(∆ ∩ ∆̄) ≤ 1

Proof. If dim ∆ = 3, then we can choose a local non-vanishing ξ ∈ Γ(F3
2 ). That is, vyξ = 0

for all v ∈ Γ(∆). Then we can take a local non-vanishing section X ∈ Γ(UJ) as

X = eα+β · ξ (C.24)

Condition (iv) of definition 2 then reads

Tr((eα+β · ξ)(eᾱ+β̄ · ξ̄)) < 0 (C.25)

Careful evaluation of this finds

0 > (ξ ∧ ξ̄)⊗ (β − β̄)− (α ∧ ξ)⊗ (ᾱ ∧ ξ̄) + 1
2
(
(α ∧ ξ)⊗ (α ∧ ξ̄) + (ᾱ ∧ ξ)⊗ (ᾱ ∧ ξ̄)

)
+ (jα ∧ ξ) ∧ (jᾱ ∧ ξ̄)− 1

2
(
(jα ∧ ξ) ∧ (jα ∧ ξ̄) + (jᾱ ∧ ξ) ∧ (jᾱ ∧ ξ̄)

)
(C.26)

We have also used the notation

(jα ∧ ξ) ∧ (jᾱ ∧ ξ̄) =
( 6!

3! 2!

)2
αa1b2b3ξb4b5b6ᾱb1a2a3 ξ̄a4a5a6 (C.27)

Indices with the same letter are antisymmetrised. The other expressions containing j’s are
defined similarly. One can check that the right hand side of (C.26) is a section of (detT ∗R)2,
and depends on the choice of ξ only by multiplication by a positive real scalar. Moreover,
it is invariant under the change

α+ β −→ (α+ γ) + (β − 1
2α ∧ γ) γ ∈ F3

1 (∆) (C.28)

(i.e. a shift of α, β that leaves L1 invariant). Hence the constraint is well defined.
Now suppose we have dim(∆ ∩ ∆̄) ≥ 2. Then ξ ∧ ξ̄ = 0 and so the β term drops out.

Moreover, one can show that

(jα ∧ ξ) ∧ (jα ∧ ξ̄) = 3(α ∧ ξ)⊗ (α ∧ ξ̄) (C.29)
(jᾱ ∧ ξ) ∧ (jᾱ ∧ ξ̄) = 3(ᾱ ∧ ξ)⊗ (ᾱ ∧ ξ̄) (C.30)
(jα ∧ ξ) ∧ (jᾱ ∧ ξ̄) = (ᾱ ∧ ξ)⊗ (α ∧ ξ̄) + 2(α ∧ ξ)⊗ (ᾱ ∧ ξ̄) (C.31)

Hence, the right hand side of (C.26) becomes

(α ∧ ξ)⊗ (ᾱ ∧ ξ̄) + (ᾱ ∧ ξ)⊗ (α ∧ ξ̄)− (α ∧ ξ)⊗ (α ∧ ξ̄)− (ᾱ ∧ ξ)⊗ (ᾱ ∧ ξ̄) (C.32)

writing α ∧ ξ = a+ ib, α ∧ ξ̄ = c+ id for some a, b, c, d ∈ Ω6(M)R, we find that this equals

(a− c)2 + (b+ d)2 ≥ 0 (C.33)

Hence (C.26) does not hold for dim(∆ ∩ ∆̄) ≥ 2.
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D Proof of the local structure of moduli of SU∗(6) structures

D.1 Type 3 moduli

For the type 3 problem we have the subbundle

L1 = eα+β · (∆⊕F2
1 (∆)) (D.1)

where α ∈ Ω3(M)C, β ∈ Ω6(M)C, and ∆ ⊂ T all satisfy

[∆,∆] ⊆ ∆ vy(wy(xydα)) = 0 (D.2)

for all v, w, x ∈ Γ(∆). In what follows, it will be convenient to work with the FC-twisted
Dorfman derivative, where locally FC = dα, and the untwisted bundle L̃1 = ∆ ⊕ F2

1 (∆).
This is because, for type 3 solutions, the physical flux may be in a non-trivial cohomology
class and hence the gauge potential A, which is implicit in the definition of α, may not be
global. By working with LFC

V , we can work only with globally defined objects.
We have the quotient spaces

EC/L̃1 =
(
T/F1

0

)
⊕
(
∧2T ∗/F2

1

)
⊕ ∧5T ∗ (D.3)

QR+×U∗(6) =
[(
T/F1

0

)
⊗
(
T ∗/F1

0

)]
⊕
(
∧3T/F3

2

)
⊕
(
∧3T ∗/F3

1

)
⊕ ∧6T ∗ (D.4)

We shall pick the following elements of the deformation space Q

r ∈ Γ
(
(T/F1

0)⊗ (T ∗/F1
0 )
)

Ξ ∈ ∧3T/F3
2

θ ∈ ∧3T ∗/F3
1 τ ∈ ∧6T ∗

(D.5)

and write the deformation parameter as R = Ξ + r + θ + τ . Hence the deformed bundle
becomes

L̃′1 = (1 +R) · L̃1 = eθ+τ (1 + r + Ξ) · (∆⊕F2
1 (∆)) (D.6)

where we are working to linear order in the deformation parameters only. We take sections
V ′,W ′ ∈ Γ(L̃′1) which are of the form

V ′ = eθ+τ · (v+ r · v+ Ξyλ+ λ+ r · λ) W ′ = eθ+τ · (w+ r ·w+ xyµ+ µ+ r · µ) (D.7)

where v, w ∈ Γ(∆), λ, µ ∈ Γ(F2
1 ). We will also denote by V̂ = v̂+ λ̂ = (1 + r+ Ξ) · (v+ λ),

and similarly for Ŵ .
We want to determine when L̃′1 is involutive under LFC

V , to linear order in R. This is
the statement that for all v, w ∈ Γ(∆), λ, µ ∈ Γ(F2

1 ) we have

LFC
V ′W

′ = eθ+τ ·
(
LV̂ Ŵ + ŵ(yv̂y(FC + dθ)) + µ̂ ∧ (v̂y(FC + dθ))

)
(D.8)

= eθ+τ ·
(
[v̂, ŵ]

+ Lv̂µ̂− ŵydλ̂+ ŵy(v̂y(FC + dθ))

− µ̂ ∧ dλ̂+ µ̂ ∧ (v̂y(FC + dθ))
) (D.9)

∈ Γ(L̃′1) (D.10)

– 50 –



J
H
E
P
0
8
(
2
0
2
1
)
0
8
8

Let us consider this term by term. We will use Greek letters α, β, γ, . . . for ∆ indices, and
Latin letters a, b, c, . . . for the complement.27 If we consider the vector piece only then we
have, to linear order in R(

e−θ−τ · LFC
V ′W

′)|T = [v, w] + [r · v + Ξyλ,w] + [v, r · w + Ξyµ] (D.11)

= [v, w] +
(
rbβv

β∂bw
α − rbγwγ∂bvα

)
+
(
(Ξyν)b∂bwα − (Ξyλ)b∂bvα

)
+ r · [v, w] + Ξy(vydµ− wydλ)
wy(vyd∆r) + (vyd∆Ξ)yµ− (wyd∆Ξ)yλ

(D.12)
!= z + r · z + Ξyζ (D.13)

where z ∈ Γ(∆), ζ ∈ Γ(F2
1 ) are of the form28

z = [v, w] +O(R) ζ = vydµ− wydλ+ wy(vyFC) +O(R) (D.14)

For this to be true to linear order in R we need

wy(vyd∆r) + (vyd∆Ξ)yµ− (wyd∆Ξ)yλ = Ξy(wy(vy(FC)))
= wy(vy(jΞyj2FC))

(D.15)

This must be true for all v, w, λ, µ and hence we have

d∆Ξ = 0 d∆r − jΞyj2FC = 0 (D.16)

Now let’s consider the 2-form piece. We have(
e−θ−τ · LFC

V ′W
′)|∧2T ∗ = vydµ− wydλ+ wy(vyFC)

+ (r · v + Ξyλ)ydµ+ vyd(r · µ)
+ d((r · v + Ξyλ)yµ) + d(vy(r · µ))
− (r · w + Ξyµ)ydλ− wyd(r · λ)
+ (r · w + Ξyµ)y(vyFC) + wy((r · v + Ξyλ)yFC)
+ wy(vydθ)

(D.17)

!= ζ + r · ζ (D.18)

For now, let us set λ, µ = 0. We are left with

wy(vyFC)(r · w)y(vyFC) + wy((r · v)yFC) + wy(vydθ) (D.19)
= wy(vyFC) + r · (wy(vyFC)) + wy(vy(−r · FC + dθ)) (D.20)
!= ζ + r · ζ (D.21)

27Here we are implicitly using the orthogonal complement under some metric. This is just for ease of the
proof although it is not strictly needed to prove these results.

28The 0th order piece of z, ζ should be given by the Dorfman derivative of the undeformed sections
V = v + λ, W = w + µ.
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For this to be the case, we need dθ − r · FC ∈ Γ(F4
1 ). This is equivalent to the statement

that
π1(dθ − r · FC) = 0 πk : ∧nT ∗ −→ ∧nT ∗/Fnk (D.22)

where we have introduced the projection operator πk as defined above for definiteness.
Now let’s set v, µ = 0. We have

− wydλ− (r · w)ydλ− wyd(r · λ) + wy((Ξyλ)yFC) (D.23)

= −wydλ− wα(rcα∂cλab − λbc∂arcα − λca∂brcα)
− r · (wydλ)− (wyd∆r) · λ+ wy((Ξyλ)yFC)

(D.24)

= −wydλ− wα(rcα∂cλab − λbc∂arcα − λca∂brcα)
− r · (wydλ)− (wy(d∆r − jΞyj2FC)) · λ

(D.25)

!= ζ + r · ζ (D.26)

This is implied by the fact that d∆r − jΞyj2FC = 0.
Next, let’s consider when w = λ = 0. We find

vydµ+ (r · v)ydµ+ vyd(r · µ) + d((r · v)yµ) + d(vy(r · µ)) + (Ξyµ)y(vyFC) (D.27)

= vydµ+ vα(rcα∂cµab − µbc∂arcα − µca∂brcα)
+ r · (vydµ) + (vyd∆r) · µ+ (Ξyµ)y(vyFC)

(D.28)

= vydµ+ vα(rcα∂cµab − µbc∂arcα − µca∂brcα)
+ r · (vydµ) + (vy(d∆r − jΞyj2FC)) · µ

(D.29)

!= ζ + r · ζ (D.30)

This is again implied by the fact that d∆r − jΞyj2FC = 0.
Finally for the 2-forms, we consider the case when v, w = 0. We find that

(Ξyλ)ydµ− (Ξyµ)ydλ+ d((Ξyλ)yµ) (D.31)

= 3(Ξyλ)a∂[aµbc] − 3(Ξyµ)a∂[aλbc] + 2∂[b|((Ξyλ)aµa|c]
− ((d∆Ξ)yλ) · µ

(D.32)

!= ζ + r · ζ = ζ (D.33)

Note that we can consider (d∆Ξ)yλ as an adjoint element and hence it has a natural action
on µ. Also, the final equality holds to linear order in R since ζ ∼ O(R) in this case. This
case holds because d∆Ξ = 0.

Now we just need to consider the 5-form pieces and show that they vanish. That is,
we need (

e−θ−τ · LFC
V ′W

′)|∧5T ∗ = −µ ∧ dλ− (r · µ) ∧ dλ− µ ∧ d(r · λ)
+ µ ∧ (vy(FC + dθ)) + (r · µ) ∧ (vyFC)
+ µ ∧ ((r · v + Ξyλ)yFC)

(D.34)

!= 0 (D.35)
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Let us first set v = 0. Then we have

−µ ∧ dλ− (r · µ) ∧ dλ− µ ∧ d(r · λ) + µ ∧ ((Ξyλ)yFC) (D.36)
=− (r · µ) ∧ d∆λ− µ ∧ d∆(r · λ) + µ ∧ ((jΞyj2FC) · λ) (D.37)
=− (r · µ) ∧ d∆λ− µ ∧ ((d∆r) · λ)− µ ∧ r · d∆λ+ µ ∧ ((jΞyj2FC) · λ) (D.38)
=− r · (µ ∧ d∆λ)− µ ∧ ((d∆r − jΞyj2FC) · λ) (D.39)
= 0 (D.40)

This holds because any term ∼ µ ∧ dλ = 0 by virtue of the integrability of ∆, and by the
fact that d∆r − jΞyj2FC = 0. Now let’s consider instead λ = 0. We have

µ ∧ (vy(FC + dθ)) + (r · µ) ∧ (vyFC) + µ ∧ ((r · v)yFC) (D.41)
= µ ∧ vyπ1(dθ) + (r · µ) ∧ (vyFC) + µ ∧ ((r · v)yFC) (D.42)
= µ ∧ (vy(r · FC)) + (r · µ) ∧ (vyFC) + µ ∧ ((r · v)yFC) (D.43)
= (r · µ) ∧ (vyFC) + µ ∧ r · (vyFC) (D.44)
= r · (µ ∧ (vyFC)) (D.45)
= 0 (D.46)

This vanishes because µ∧ (vyFC) = 0 by restrictions on FC imposed by integrability of L1.
Hence, we have found the integrability conditions for the deformations, and they are

given by

0 = d∆Ξ (D.47)
0 = d∆r − jΞyj2FC (D.48)
0 = π1(dθ − r · FC) (D.49)

Now we need to consider the exactness conditions. These are given by

L̃′1 = (1 + LFC
V )L̃1 (D.50)

where V = −v − ω − σ ∈ Γ((T/F1
0) ⊕ (∧2T ∗/F2

1 ) ⊕ ∧5T ∗). The minus signs are for
convenience. Given W = w + µ ∈ Γ(L̃1), we have

(1 + LFC
V )W = w − [v, w]

+ µ− Lvµ+ wydω − wy(vyFC)
+ wydσ + µ ∧ dω + wy(ω ∧ FC)− µ ∧ (vyFC)

(D.51)

= (w − va∂awα) + (d∆v) · w
+ (µ− 3va∂[aµbc] − 2∂[b|(vaµa|c]) + (d∆v) · µ+ wy(dω − vyFC)
+ wy(dσ + ω ∧ FC) + µ ∧ (dω − vyFC)

(D.52)

= eπ1(dω−vyFC)+(dσ+ω∧FC)(1 + d∆v) · (w̃ + µ̃) (D.53)
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where W̃ = w̃+ µ̃ ∈ Γ(L̃1), and we have introduced the projection π1 : ∧nT ∗ → ∧nT ∗/Fn1
for definiteness. Hence, the exactness conditions are given by

r = d∆v (D.54)
θ = π1(dω − vyFC) (D.55)
τ = dσ + ω ∧ FC (D.56)

This reproduces the results at the end of section 5.3.
If we assume the flux is trivial, which is not the case for any AdS solution, then we can

take the complex twist eα+β to be globally well-defined. In this case, then it is possible to
show using the following deformation parameter

R = eα+β(r + jΞyjα+ Ξ + θ + r · α̂− 1
2jΞyjα · α̂+ µ− θ ∧ α̂)e−α−β (D.57)

that the cohomology defined by the flux-twisted derivatives above is isomorphic to

H0
∆(M,∧3T/F3

2)⊕H1
∆(M,T/F1

0)⊕H3
F1(M)⊕H6

d(M) (D.58)

We have had to assume something slightly stronger about the integrability conditions to
show this. Namely that there exists some α̂ ∈ Γ(F3

1 ) such that

dα = dα̂ (D.59)

This is not directly implied by the involutivity conditions (which just states that dα ∈
Γ(F4

1 )) but it may be implied by the vanishing of the moment map.

D.2 Generalised ∂∂̄ moduli

Following the notation from section 5.4, the moduli of generic SU∗(6) structures is counted
by the cohomology of the following complex.

Γ(∧2X∗) Γ(∧3X∗−1) Γ(∧4X∗−2)

Γ(∧5X∗−1) Γ(∧6X∗−2)

D−1 D−1

D−1

D0 D0 (D.60)

Here D0 and D−1 are operators coming from any torsion free USp(6) connection29 decom-
posed into SU∗(6) representations.

D = D1 +D0 +D−1 (D.61)

In this section, we give the cohomology of the complex above in terms of the cohomology
of D−1 provided the background satisfies the generalised ∂∂̄-lemma.

29We will always assume that we are deforming around a full supergravity background.
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Definition 11. D0, D−1 are said to satisfy the generalised ∂∂̄-lemma if the satisfy the
following

imD0 ∩ kerD−1 ⊆ imD−1D0 (D.62)

With this we can prove the following result.

Proposition 14. If a background satisfies the generalised ∂∂̄-lemma, and D0 defines a
chain homomorphism D0 : Γ(∧•X∗•) → Γ(∧•−2X∗•), then the cohomology of the com-
plex (D.60) is given by

H3
D−1 ⊕H

6
D−1 (D.63)

where Hp
D−1

is the pth cohomology of the differential D−1

Proof. The cohomology of the complex (D.60) is given by30

H =
{A+B ∈ Γ(∧3X∗−1 ⊕ ∧6X∗−2) |D−1A+D0B = 0}

{A = D−1C +D0E, B = 1
2D−1E |C ∈ Γ(∧2X∗0), E ∈ Γ(∧5X∗−1)}

(D.64)

Let us define a new quotient group by

K =
{B ∈ Γ(∧6X∗−2) |D0B = 0}

{B = D−1E |E ∈ Γ(∧5X∗−1), D0E = 0} (D.65)

and two maps

θ : H3
D−
⊕K −→ H ψ : H −→ H3

D−
⊕K

[A]3 + [B]K 7−→ [A+B]H [A+B]H 7−→ [Ã]3 + [B̃]K
(D.66)

whereA, Ã ∈ Γ(∧3X∗−1), B, B̃ ∈ Γ(∧6X6
−2) and where the subscript denotes the cohomology

group that class is a member of. Ã, B̃ are defined from [A + B]H in the following way.
We have

0 = D−A+D0B (D.67)
⇒ 0 = D−D0B (D.68)

So, using the generalised ∂∂̄-lemma we can write D0B = D−D0E for some E ∈ Γ(∧5X∗−1).
We then define

Ã = A+D0E B̃ = B + 1
2D−E (D.69)

We need to check that these do define elements of H3
D−

and K respectively, and if the map
ψ is well defined. Firstly, we note that

D−Ã = D−A+D−D0E D0B̃ = D0B + 1
2D0D−E

= D−A+D0B = D0B −D−D0E

= 0 = D0B −D0B

= 0

(D.70)

30The factor of 1
2 in the quotient is due to the precise form of the projection D ×ad V in SU∗(6) indices.
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This shows that [Ã]3 ∈ H3
D−

and [B̃]K ∈ K. Note here we have used the fact that, when
evaluated on Γ(∧5X∗−)

D−D0 + 1
2D0D− = 0 (D.71)

which follows from the complex (D.60). The factor of 1
2 comes from the way the Dorfman

derivative acts. Now suppose that [A = B]H = [A′+B′]H. Then, there exists c ∈ Γ(∧2X∗0),
e ∈ Γ(∧5X∗−) such that

A′ = D−c+D0e B′ = 1
2D−e (D.72)

From these, we define E′ such that D0B
′ = D−D0E

′. It is a simple check to see that we
can choose E′ = E − e. Then we have

Ã′ = A′ +D0E
′ B̃′ = B′ + 1

2D−E
′

= A+D−c+D0e+D0(E − e) = B + 1
2D−e+ 1

2D−(E − e)
= A+D0E +D−c = B + 1

2D−E

= Ã+D−c = B̃

(D.73)

Hence we see that

[A+B]H = [A′ +B′]H ⇒ [Ã]3 = [Ã′]3 [B̃]K = [B̃′]K (D.74)

Finally, since E as defined above is not unique, we need to check that the map does not
depend on the choice. Indeed, suppose

D0B = D−D0E = D−D0E
′ ⇒ D−D0(E − E′) = 0 (D.75)

Using the generalised ∂∂̄-lemma again, we can write D0(E′ − E) = D−D0F for some
F ∈ Γ(∧4X∗0). Then we have

Ã′ = A+D0E
′ B̃′ = B + 1

2D−E
′

= A+D0E +D0(E′ − E) = B + 1
2D−E + 1

2D−(E − E′)
= A+D0E +D−D0F = B̃ +D−e

= Ã+D−c

(D.76)

where c = D0F ∈ Γ(∧2X ∗0 ), and e = 1
2(E − E′ +D−F ) ∈ Γ(∧5X∗−1) is such that D0e = 0.

Hence we have

D−D0E = D−D0E
′ ⇒ [Ã′]3 = [Ã]3 [B̃′]K = [B̃]K (D.77)

Hence, the map ψ is well defined. It is a simple check to see that θ is also well defined.
Now we show that ψ, θ are inverses of each other. Firstly,

θ ◦ ψ([A+B]H) = θ([Ã]3 + [B̃]K) (D.78)
= [Ã+ B̃]H (D.79)

=
[
A+D0E +B + 1

2D−E
]
H

(D.80)

= [A+B] (D.81)
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Therefore, θ ◦ ψ = IH. Next consider,

ψ ◦ θ([A]3 + [B]K) = ψ([A+B]H) (D.82)
= [Ã]3 + [B̃]K (D.83)

= [A+D0E]3 +
[
B + 1

2D−E
]

(D.84)

But since D0B = 0 by assumption, we can choose E = 0. Hence,

ψ ◦ θ([A]3 + [B]K) = [A]3 + [B]K (D.85)

So ψ ◦ θ = IH3⊕K and hence ψ = θ−1. Clearly θ and ψ are homomorphisms. Hence,

H ∼= H3
D− ⊕K (D.86)

Now we want to show that K ∼= H6
D−

. Again, let’s define some maps

η : K −→ H6
D−

ζ : H6
D−
−→ K

[B]K 7−→ [B]6 [B]6 7−→ [B̃]K
(D.87)

where B̃ is defined by the following. For any B ∈ Γ(∧6X∗−2) we have D−B = 0. But we
also assume that D0 is a chain homomorphism, meaning that D−(D0B) = 0. Hence, using
the generalised ∂∂̄-lemma, we can define an E such that

D0B = D−D0E (D.88)

We therefore define B̃ as

B̃ = B + 1
2D−E ⇒ D0B̃ = D0B + 1

2D0D−E = 0 (D.89)

A similar proof as above shows that these maps are well defined and are inverses of each
other. Hence we have

H ∼= H3
D− ⊕K ∼= H3

D− ⊕H
6
D− (D.90)

D.3 Calabi-Yau moduli

Here we will show that the Calabi-Yau satisfies the generalised ∂∂̄-lemma and hence we
can calculate its moduli using the formula above. The proof involves using a compact
Calabi-Yau but the result holds more generally as one can calculate the moduli using a
type 0 presentation of the ECS instead.

The ECS for a Calabi-Yau is

J = 1
2
(
I − vol− vol#

)
L1 = ei vol · (T 1,0 ⊕ ∧0,2T ∗) (D.91)

Using the adjoint action of J , we can decompose EC and ad F̃C into eigenbundles

EC = L1 ⊕ L0 ⊕ L−1 ad F̃C = adPR+×U∗(6) ⊕ S1 ⊕ S−1 ⊕ S2 ⊕ S−2 (D.92)
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The eigenbundles needed for the deformation problem laid out in the previous section are
given explicitly by

∧5X∗−1 = L− =
{
w̄ − iw̄y vol w̄ ∈ T 0,1

ω ω ∈ ∧2,0T ∗

}
(D.93)

∧2X∗0 = L0 =


v − ivy vol v ∈ T 1,0

v̄ + iv̄y vol v̄ ∈ T 0,1

θ θ ∈ ∧1,1T ∗

 (D.94)

∧3X∗−1 = S−1 =


α(2

3 + 1
3I + i vol−i vol#) α ∈ C

r r ∈ T 0,1 ⊗ T ∗1,0

β + i vol#yβ β ∈ ∧2,1T ∗

γ − i vol#yγ γ ∈ ∧3,0T ∗

 (D.95)

∧6X∗−2 = S−2 =
{
λ+ i vol#yλ λ ∈ ∧3,0T ∗

}
(D.96)

Using the holomorphic 3-form Ω of the Calabi-Yau, we can define a chain isomorphism
X∗ ' T ∗. Indeed, we have

∧5X∗−1 →
{
w̄y vol ∈ ∧3,2T ∗

ω ∧ Ω̄ ∈ ∧2,3T ∗

}
∼ ∧5T ∗ (D.97)

∧2X∗0 →


vyΩ ∈ ∧2,0T ∗

v̄yΩ ∈ ∧0,2T ∗

θ ∈ ∧1,1T ∗

 ∼ ∧2T ∗ (D.98)

∧3X∗−1 →


αΩ ∈ ∧3,0T ∗

r · Ω̄ ∈ ∧1,2T ∗

β ∈ ∧2,1T ∗

(Ω̄#yγ)Ω̄ ∈ ∧0,3T ∗

 ∼ ∧
3T ∗ (D.99)

∧6X∗−2 →
{
λ ∧ Ω̄ ∈ ∧3,3T ∗

}
∼ ∧6T ∗ (D.100)

We can also take the torsion free compatible connection ∇, and lift it to a generalised
connection D as in [23]. With this lift, and with the isomorphism above we find

D− → ∂ D0 → Ω#y∂̄ + Ω̄#y∂ (D.101)

where here ∂, ∂̄ denote the projection of ∇ onto the T ∗1,0, T ∗0,1 piece respectively.
We need to show that these operators satisfy the generalised ∂∂̄-lemma. We just need

to show this for elements in ∧5T∗ and ∧6T ∗ for the proof to hold.

Proof. First take α ∈ ∧2,3T ∗. Then we have

D0α = (Ω#y∂̄)yα+ (Ω̄#y∂)α (D.102)
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We can consider only the second term which is just Ω̄#y(∂α). Suppose further that D0α ∈
kerD− ∼ ker ∂. Then each term individually has to be in ker ∂. Since h0,3 = 1, we must
have that, up to ∂ exact terms

Ω̄#y(∂α) = cΩ̄ ⇒ ∂α = c̃ vol (D.103)

for some constants c, c̃. However, vol is not ∂-exact and hence we must have c = c̃ = 0.
Therefore, ∂α = 0 and so [α] ∈ H2,3

∂ = 0. Therefore, α is ∂-exact and so D0α = D0D−a ∼
D−D0a for some a ∈ ∧4T ∗.

Now take β ∈ ∧3,2T ∗. Here we automatically have ∂β = 0 and so [β] ∈ H3,2
∂ = 0.

Therefore β is ∂-exact and so D0β = D0D−b ∼ D−D0b for some b ∈ ∧4T ∗.
Finally, we take γ ∈ ∧3,3T ∗ and write this as γ = c vol +∂ψ for some constant c and

some ψ ∈ ∧2,3T ∗. For any constant, we have D0(c vol) = 0 since D0 is built from the
compatible connection ∇. Therefore, we have

D0γ = D0∂ψ = D0D−ψ ∼ D−D0ψ (D.104)

This gives the result.

Using the results of the previous section on the moduli of a background satisfying the
generalised ∂∂̄-lemma, we see that the moduli of the Calabi-Yau are given by

H = H3
D− ⊕H

6
D−
∼= H3

∂ ⊕H6
∂ (D.105)

Note that, sinceHp
∂
∼= Hp

d for a Calabi-Yau manifold, this agrees with the result obtained for
the moduli of the Calabi-Yau calculated through a type 0 ECS, as discussed in section 5.2.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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