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1 Introduction

Quantum electrodynamics (QED) is a quantum field theory of the electromagnetic
force [1–3], which describes the gauge invariant interaction of charged particles with pho-
tons. Due to the quantum fluctuations, the QED vacuum behaves like a polarizable
medium, leading to novel quantum effects, such as Casimir effect [4], elastic photon-
photon scattering [5, 6] and pair production from vacuum in extreme strong electromagnetic
field [7]. The vacuum pair production is a process in which virtual dipole pair in the vacuum
can be accelerated apart by the external field, emerging as real pair. In the laboratory, the
vacuum pair production can be realized in the strong Coulomb field of relativistic heavy ion
collisions [8]. The electromagnetic fields accompanied in these collisions are of order of [9]

Emax '
Zeγ

b2 , (1.1)

where Ze is the electric charge carried by the colliding ion, b is the impact parameter,
and γ is the Lorentz factor of nuclei in center of mass frame. For gold-gold collisions at
highest energy from the Relativistic Heavy Ion Collider (RHIC), with the values of Z = 79,
b = 15 fm and γ = 108, the maximum field strength is of Emax = 5.3×1016 V/cm. For the
lead-lead collisions at the Large Hadron Collider (LHC), we get Emax = 1.4× 1018 V/cm
with the values of Z = 82, b = 15 fm and γ = 2706. The duration time of the strong
field is very short, which makes the perturbative theory still appropriate for vacuum pair
production. As illustrated in figure 1, the pair production can be treated perturbatively
via the collision of two quasi-real light quanta from the strong Coulomb fields surround-
ing the heavy ions, which is very similar to the famous Breit-Wheeler process [10]. The
theoretical investigations of vacuum pair production in heavy-ion collisions go back to the
early days of QED. The lowest order (Born approximation) results were given by Landau
and Lifshitz [11] and Racah [12] in the thirties of the past century.
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Figure 1. (Color online) An illustration of vacuum pair production process from the strong
Coulomb field of fast moving nuclei in heavy ion collisions.

Due to the large charge carried by the heavy ion, the effect coupling Zα (∼ 0.6 for gold
and lead) for the production process is close to 1. This suggests significant higher-order
effect, which links the crossover from perturbative to nonperturbative regime of QED. This
is analogous to the case of Quantum Chromodynamics (QCD) [13, 14] from high energy to
low energy area. In 1954, the pioneer studies [15, 16] for higher-order effect of QED were
made by Bethe, Maximon and Davies in a similar process — Bethe-Heitler process [17]
(the photoproduction of electron-positron pair in the nuclear Coulomb field). Higher-order
effect was treated using the Sommerfeld-Maue wave function, which is appropriate solution
of the Dirac equation at high energy. This approach takes higher-order effect into account
to all orders and can be related to the usual Feynman graph technique [18]. A sizeable
negative correction was found to the Bethe-Heitler formula. Back to the case of vacuum
pair production in relativistic heavy ion collisions, the correction should be stronger, since
the projectile quasi-real photon is also attached to the heavy ion in contrast to the Bethe-
Heitler process.

The theoretical, as well as, experimental investigations of higher-order effect for vac-
uum pair production in heavy ion collisions were spurred in the late 20th century by the
relativistic heavy ion facilities Alternating Gradient Synchrotron (AGS) at Brookhaven,
the Super Proton Synchrotron (SPS) at the European Organization for Nuclear Research
(CERN) and more recently RHIC at Brookhaven and LHC at CERN. The higher-order
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correction in heavy-ion collisions can be studied by the regularization to the photon propa-
gator in the ‘Sommerfeld-Maue’ type approach. The authors of [19, 20] merely regularized
the photon propagator at large distance, in which the higher-order correction represents
itself as a common phase shift. This led to the absence of higher correction to total cross
section for vacuum pair production. With the same regularization, the study of [21, 22]
indicated that the higher-order effect could only be observed in the differential cross section
as a function of impact parameter. This is in obvious contradiction to the special case of the
Bethe-Maximon correction to the Bethe-Heitler formula. To solve the inconsistency, Lee
and Milstein [23] constructed an appropriate regularization by introducing a screening of
the Coulomb potential, which resulted in a large negative correction to the total cross sec-
tion. However, with the multiple pair production taken into account [24], the higher-order
effect for total cross section became small. Following this strategy, the hint of higher-order
effect [25, 26] had been observed in comparison with the RHIC measurements. Over the
decades, various experimental measurements of lepton pair production [27–34] has been
made in ultra-peripheral collisions (UPC) at RHIC and LHC. In these measurements, due
to the limited kinetic space, the multiple production of vacuum pair should be negligible.
Surprisingly, all the measurements are found to be in good agreement with the calcula-
tions of equivalent photon approximation approach, which are identical to the lowest order
QED results for cross section estimation. The searching for higher-order effect seems to
be hopeless, just as the statement in ref. [9]: “In April 1990 a workshop took place in
Brookhaven with the title ‘Can RHIC be used to test QED?’. We think that after about
17 years the answer to this question is ‘no’.”. This is very puzzling: if the higher-order
effect is not there, how could we expect the nonperturbative vacuum pair production from
Schwinger mechanism? And exploring the nonperturbative feature of QED is one of the
primary goals for the planning ultra strong laser facilities in the not-so-far future.

The paper is organized as follows. In section 2, we introduce the theoretical setup em-
ployed to calculate vacuum pair production in ultra-peripheral heavy-ion collisions (UPC).
In section 3, we present the latest lowest order QED calculations for lepton pair produc-
tion in heavy-ion collisions and find that the result is about 5.2 standard deviations larger
than the combined world-wide data. Furthermore, the higher-order QED correction to all
orders is carried out, which reduces the lowest order results sizably ( ∼ 20%). Taken the
higher-order effect into account, the corresponding result is consistent with data, which
claims the discovery of higher-order effect for the QED pair production, and settles the
dust of previous debates for several decades. We also discuss the missing part in the old
lowest order calculations, which prevents us from the observation of higher-order QED
effect. Finally, the paper is summarized in section 4.

2 Theoretical setup

2.1 Lowest order QED approach

The total cross section of vacuum pair production in lowest order due to the Coulomb fields
of two colliding nuclei has been carried out for the first time by Landau and Lifshitz [11]
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in 1934. However, the experimental measurements are usually performed in limited kine-
matics phase due to the limited acceptance covered by the detector system, which calls for
differential theoretical calculations. We treat the electromagnetic fields of the heavy ions
as external fields and employ “straight line approximation” since the deflection angle due
to the Coulomb scattering is very small. The electromagnetic fields of the colliding nuclei
are then given by

A(1,2)
µ (q) = −2πZeµ(1,2)

µ δ(qµ(1,2))f(q2)
q2 exp(±iqb/2), (2.1)

where Z is the electric charge carried by ions, µ(1,2) is the four-velocity of nuclei 1 and 2, b
is the impact parameter of collisions, and the form factor f(q2) is Fourier transform of the
charge distribution in nucleus. In the calculation, we employ the Woods-Saxon form [35]
to model the charge distribution of nucleus in spherical coordinates:

ρA(r) = ρ0

1 + exp[(r −RWS)/d] , (2.2)

where the radius RWS (Au: 6.38 fm, Pb: 6.62 fm) and skin depth d (Au: 0.535 fm, Pb:
0.546 fm) are based on fits to electron-scattering data [36] and ρ0 is the normalization
factor. For p + p(p̄) collisions, the standard dipole form factor of proton (anti-proton) is
utilized with the electric charge radius determined (〈rE〉 = 0.879 fm) by the latest electron-
proton scattering data [37]. For symmetric collisions, Z and f(q2) are the same for both
nuclei. In center of mass frame, the four-velocity of nuclei can be written as

µ(1,2)(q) = γ(1, 0, 0,±β) =: γw(1,2), (2.3)

where γ and β are the Lorentz factor and velocity of colliding nuclei, respectively. Following
the derivations of refs. [38, 39], with the direct and cross Feynman diagrams, the matrix
element for the creation of a lepton pair is given by

M = µ̄M̂v (2.4)

with

M̂ = −ie2
∫

d4q1
(2π)4 /A

(1)(q1)
/p− − /q1 +m

(p− − q1)2 −m2 /A
(2)(p+ + p− − q1)

− ie2
∫

d4q1
(2π)4 /A

(2)(p+ + p− − q1)
/q1 − /p+ +m

(q1 − p+)2 −m2 /A
(1)(q1)

= −i(Ze
2

2π )2 1
2β

∫
d2q1⊥

1
q2

1

1
(p+ + p− − q1)2 exp(iq1⊥b) /w(1)(/p− − /q1 +m)/w(2)

[(p− − q1)2 −m2] +
/w(2)(/q1 − /p+ +m)/w(1)

[(q1 − p+)2 −m2]

 ,

(2.5)

where the longitudinal components of q1 are given by q10 = 1
2 [(ε+ + ε−) + β(p+z + p−z)],

q1z = q10/β, ε+ and ε− are the energies of the produced leptons, and m is the mass of
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lepton. One can get the differential probability by taking the absolute value squared of M
and summing over the spin indices as

P (p+,p−, b) =
∑
s

|M |2 = 4
β2

∫
d2q1⊥d

2q⊥exp(iq⊥b) (2.6)

×f(N0)f(N1)f(N3)f(N4)F (N0)F (N1)F (N3)F (N4)

×Tr
{

(/p−+m)
[
N−1

2D /u1(/p−−/q1+m)/u2+N−1
2X /u2(/q1−/p++m)/u1

]
(/p+−m)

[
N−1

5D /u2(/p−−/q1−/q+m)/u1+N−1
5X /u1(/q1+/q−/p++m)/u2

]}
,

with

N0 = −q2
1, N1 = −[q1 − (p+ + p−)]2,

N3 = −(q1 + q)2, N4 = −[q + (q1 − p+ − p−)]2,

N2D = −(q1 − p−)2 +m2,

N2X = −(q1 − p+)2 +m2,

N5D = −(q1 + q − p−)2 +m2,

N5X = −(q1 + q − p+)2 +m2.

(2.7)

The photon propagators F (Nk) attached to the Coulomb fields of heavy ions can be writ-
ten as

F (Nk) = Zα

Nk
= Zα

w2
k
γ2 + p2

Tk

, k = 0, 1, 3, 4, (2.8)

where α (∼ 1
137) is the fine structure constant, and wk and pTk are the energies and

transverse momenta of the photons, respectively. For the total cross section, we integrate
over p+, p−, and b to get

σ =
∫
d2b

d3p+d
3p−

(2π)62ε+2ε−
P (p+, p−, b). (2.9)

In the calculation of P (p+, p−, b), the trace is treated with the help of the Mathematica
package FeynCalc [40]. The multiple dimension integration is done with the help of the
Monte Carlo (MC) integration routine VEGAS [41].

In the lowest order QED calculations, the internal photon radiation is not considered,
which leads to the absence of tail in the transverse momentum distributions of the pro-
duced vacuum pairs. In ref. [42], S.R. Klein etal. estimated the QED showering effect in a
Sudakov formalism, which qualitatively described the notable tail in acoplanarity distribu-
tions observed by ATLAS [43]. To include this effect, the lowest-order QED calculations
are provided as input into Pythia8 (version 8.305 [44, 45]) for QED showering. The shower-
ing process would not affect the overall cross section, however can lead to a fraction of the
events migrating in and out of the selected fiducial region used in the experimental mea-
surements. For a fair comparison with experimental data, this effect should be considered
to correctly estimated the acceptance in the measured kinematic region.
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2.2 Higher-order correction to all orders

It was pointed out by Ivanov, Schiller, and Serbo [46] that the higher-order effect (or
Coulomb correction) of lepton pair production in heavy-ion collisions was analogous to the
well know Bethe-Heitler process on a heavy target [17]. The higher-order effect in Bethe-
Heitler process was first studied by Bethe, Maximon and Davies [15, 16]. They summed
up the higher-order term using Sommerfeld-Maue wave function, which is approximate
solution of the Dirac equation in the nuclear Coulomb field valid for high energies and
small scattering angles; and found a negative higher-order correction proportional to Z2.
It is very interesting to see that the standard method of summing up all Feynman graphs
gives identical results [18], which establishes the equivalence between the calculations using
Sommerfeld-Maue wave function and the standard higher-order QED approach. This is
very important for our study of high-order effect in heavy ion collisions: there are again
the Feynman diagram approach and the ‘Sommerfeld-Maue type’ of approach.

The ‘Sommerfeld-Maue type’ approach in heavy-ion collisions results from an exact
solution of the time dependent Dirac equation in the ultra-relativistic limit [19]. In this
approach, the high-order correction is present by the regularization to the photon prop-
agator. The photon propagator F (k) describes the interaction with the Coulomb field of
one of the nuclei. It is proportional to the lepton eikonal scattering amplitude for one of
the potentials V (r⊥, z):

F (k) =
∫
d2r⊥exp(−ikr⊥){exp[−iχ(r⊥)]− 1}, (2.10)

where
χ(r⊥) =

∫ +∞

−∞
dzV (r⊥, z). (2.11)

For an unscreened Coulomb potential V (r⊥, z) = −Zα/
√
r2
⊥ + z2, the photon propagator

can be written as

F (k) =
∫
d2r⊥exp(−ikr⊥)[exp(−2izαlnr⊥)− 1]. (2.12)

If one merely regularizes F (k) at large r, it gives [19, 20]

F (k) = 4παZ
k2−2iαZ . (2.13)

And a lower k cutoff at some ω/γ has to be put in the photon propagator by hand to obtain
dependence on the collision energy and to agree with the known perturbative result, which
modifies F (k) to

F (k) = 4παZ
(k2 + ω2/γ2)1−iαZ . (2.14)

Then the higher-order effect is introduced by a common phase shift in the denominator
of eq. (2.14), which means that the higher-order correction would be absent for the total
cross section. This is contradicted with the physical picture extracted from Bethe-Maximon
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theory. In order to solve the contradiction and construct an appropriate regularization,
Lee and Milstein [23] introduce a screening of the Coulomb potential as

V (r⊥, z) =
−Zαexp

(
−
√

r2
⊥ + z2ω/γ

)
√
r2
⊥ + z2

. (2.15)

Then the integral eq. (2.11) can be carried out to obtain

χ(r⊥) = −2ZαK0(r⊥ω/γ), (2.16)

and the photon propagator is modified to

F (k) = 1
2

∫
dr⊥r⊥J0(kr⊥) {exp[2iZαK0(r⊥ω/γ)]− 1} . (2.17)

In the limit as Zα→ 0, eq. (2.17) goes to the familiar perturbation theory form

F 0(k) = 4πiZα
k2 + ω2/γ2 . (2.18)

In the calculation, we employ eq. (2.17) to estimate the higher-order correction.

2.3 Equivalent photon approximation

As revealed in eq. (2.6), there are apparent numerical difficulties in evaluating the multiple
dimension integration due to the oscillating factor ei~q·~b. A simpler model, EPA approach,
is widely used, which is identical to the lowest order QED calculation for the cross section
estimation. Since most the experimental results are compared to EPA calculations to test
the validity of lowest order QED, we briefly introduce it here. In the approach, the vacuum
pair production in heavy-ion collisions can be factorized into a semiclassical and quantum
part. The semiclassical part deals with the distribution of quasi-real photons induced by the
colliding ions, while the quantum part handles the interactions of photon-photon. It gives:

σ(A+A→ A+A+ l+l−)

=
∫
dω1dω2n(ω1)n(ω2)σ(γγ → l+l−),

(2.19)

where ω1 and ω2 are the photon energies from the two colliding beams, and σ(γγ → l+l−)
is the photon-photon reaction cross-section for lepton pair. The photon flux induced by
the heavy ions can be modeled using the Weizsäcker-Williams method [47]:

n(ω, r⊥) = 4Z2α

ω

∣∣∣∣ ∫ ~q⊥
(2π)2 ~q⊥

f(~q)
q2 ei~q⊥· ~r⊥

∣∣∣∣2
~q =

(
~q⊥,

ω

γ

) (2.20)

where n(ω, r⊥) is the flux of photons with energy ω at distance r⊥ from the center of
nucleus. For the point-like charge distribution, the photon flux is given by the simple
formula

n(ω, r⊥) = Z2α

π2ωr2
⊥
x2K2

1 (x), x = ωr⊥/γ. (2.21)
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The elementary cross-section to produce a lepton pair with lepton massm and pair invariant
mass W can be determined by the Breit-Wheeler formula [10].

σ(γγ → l+l−) = 4πα2

W 2

[(
2 + 8m2

W 2 −
16m4

W 4

)
ln
(
W +

√
W 2 − 4m2

2m

)

−

√
1− 4m2

W 2

(
1 + 4m2

W 2

)]
.

(2.22)

As discussed in our previous work [48], the standard and generalized EPA calculations are
powerless to reproduce the differential transverse momentum spectra of lepton pairs, how-
ever, for the total cross section versus impact parameter, they give the same results as the
lowest order QED calculations, which establishes the equivalence between EPA approaches
and the lowest order QED on total cross section estimation. In reality, due to the limited
acceptance covered by the detector system, the experimental measurements on cross section
are usually made in limited transverse momentum region of lepton pairs, which weakens the
accuracy of EPA calculations. Fortunately, the lepton pairs are mostly produced at very
low transverse momentum, the effect originated from the incorrect transverse momentum
spectra of lepton pairs should be small.

2.4 The trigger probability in ultra-peripheral collisions

At small impact parameters, the vacuum pair production could be accompanied by hadronic
processes, which contaminates the exclusive process with additional hadrons. To avoid
needing to disentangle these two processes, the ultra-peripheral events are triggered with-
out any nuclear overlap. In heavy-ion collisions, the probability of having no hadronic
interaction can be estimated by Glauber model [35]. According to the optical Glauber
model, the mean number of projectile nucleons that interact at least once in A + A colli-
sions with impact parameter b is:

mH(b) =
∫
d2r⊥TA(r⊥ − b){1− exp[−σNNTA(r⊥)]}, (2.23)

where TA(r⊥) is the nuclear thickness function determined from the nuclear density dis-
tribution, and σNN is the total nucleon-nucleon cross section. Here, the nuclear density
distribution can be written as:

ρN (r) = Z

A
ρp(r) + N

A
ρn(r) (2.24)

where ρp(r) and ρn(r) are the proton and neutron density distributions, respectively. For
symmetric (N = Z) nuclei, it is expected that the proton and neutron density distributions
have similar shapes, which could be parameterized as eq. (2.2). In heavy or unstable
neutron-rich nuclei (N � Z), the excess neutrons are pushed out against surface tension
forming a neutron skin, which is defined as the difference between the neutron and proton
root-mean-square radii: ∆rnp = 〈r2

n〉1/2 − 〈r2
p〉1/2. Therefore, in neutron-rich nuclei, the

neutron distribution is expected to have a larger radius than that of proton distribution,
but with a similar skin depth parameter. We employ the parameterization of neutron skin
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thickness ∆rnp in [49] (Au: 0.26 fm, Pb: 0.28 fm) in the calculation, which is consistent
with the recent experimental measurement [50] for lead. The total nucleon-nucleon cross
section is extracted from the recommendation of Particle Data Group [51] (0.2TeV: 42 mb,
2.76TeV: 62 mb, and 5.02TeV: 68 mb). Then, the probability with no hadronic interaction
in heavy-ion collisions is:

PH(b) = exp[−mH(b)]. (2.25)
For p+p(p̄) collisions, the probability with no inelastic collision in impact parameter space
can be modeled by [52]

PH = |1− exp(−b2/(2B))|2, (2.26)
where B is determined by the experimental measurements [51, 53].

The vacuum pair production could also be accompanied by Coulomb dissociation of
nuclei, which leads to the presence of forward neutrons. The forward neutron multiplic-
ity can be used to select different impact parameter ranges in ultra-peripheral collisions.
The electromagnetic dissociation probability of nuclei with different neutron tag can be
estimated by EPA method. The Coulomb excitation of an ultra-relativistic nucleus can be
factorized into two parts [54]: the distribution of quasi-real photons induced by the collid-
ing nuclei, and the appropriate photon-absorption cross section of nuclei. The lowest-order
probability for an excitation to the state which emits at least one neutron (Xn) is

mXn(b) =
∫
dkn(b, E)σγA→A∗(E), (2.27)

where E is the photon energy, n(b, E) is the flux of photons with energy E at distance
b from the center of nucleus, and σγA→A∗(E) is the photoexcitation cross section with
incident energy E. The photon flux generated by the nucleus can be modeled by the
Weizsäcker-Williams method, shown as eq. (2.20) and (2.21). The photoexcitation cross
section σγA→A∗(E) can be determined from the experimental measurements [55–61]. In
high energy collisions, for example at RHIC top energy or LHC energies, mXn(b) would
exceed 1 at small impact parameter, which can not be interpreted as a probability. In
ref. [62], mXn(b) was treated as the mean number of excitations with a Poisson distribution.
Then the probability of zero neutron emission is equal to

P0n(b) = e−mXn(b), (2.28)

and the probability for at least one neutron emission is

PXn(b) = 1.0− e−mXn(b). (2.29)

The probability of mutual electromagnetic dissociation, under the assumption of indepen-
dent nuclear break-up, can be factorized as the product of the dissociation probability of
each nucleus:

PXnXn(b) = (1.0− e−mXn(b))2,

P0nXn(b) = 2(1.0− e−mXn(b))e−mXn(b),

P∗nXn(b) = 1.0− e−2mXn(b),

P0n0n(b) = e−2mXn(b),

(2.30)

where ∗n denotes the absence of requirement on neutron emission.
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Hereinbefore, the Coulomb dissociation of nuclei and the production of vacuum pair
are assumed as independent processes. In reality, it is also possible that the production of
vacuum pair leads to the dissociation of nuclei: the nuclei can be excited and dissociated
due to the emission of the photon, which is known as incoherent photon emission. In
experiment, it is hard to distinguish the vacuum pair production with nuclear break-up from
their incoherent production. The incoherent contribution can be estimated by the EPA
approach. Following ref. [63], the equivalent photon flux due to the incoherent emission
can be written as

nincoh(ω, b) =
∫
d2r⊥TZ(r⊥)nproton(ω, b+ r⊥)− n(ω, b)/Z, (2.31)

where n(ω, b) is the usual equivalent photon flux for a given nucleus, see eq. (2.20) and (2.21),
nproton(ω, b) denotes the equivalent photon spectrum of proton, and TZ(r⊥) is the proton
thickness function of nucleus. As shown in eq. (2.31), the incoherent contribution is pro-
portional to Z, whereas the coherent part is proportional to Z2. In heavy-ion collisions,
one expects the coherent contribution to be dominant. For semi-coherent production of
vacuum pair (one photon from incoherent emission, the other from coherent process), the
cross section can be estimated by replacing one of the coherent photon fluxes n(ω, r) by
the incoherent one nincoh(ω, r) in eq. (2.19). For incoherent production, both the coherent
photon fluxes should be displaced by the incoherent ones.

Could the nuclei be dissociated by the lepton pair, when the pair production occurs
within one of the nuclei? For the lepton pair produced within one of the nuclei, they
would travel through the nuclei with time scale about RA/γc (∼ 0.06 fm/c for RHIC, and
∼ 0.006 fm/c for LHC) after production. At such small time after production, the distance
between the lepton pair is very small, so the lepton pair can be viewed as a whole with
zero electric charge. Thus, the lepton pair would have negligible electromagnetic interaction
with the nuclei, which would barely cause the nuclei to dissociate. In the calculation, we
ignore the probability of nuclear dissociation induced by the lepton pair production within
one of the nuclei.

3 Results

Various exclusive experimental measurements [64–67] for lepton pair production in p+p(p̄)
collisions have been made, despite of the tiny cross section due to Z = 1. The coupling
constant in these collisions is in perturbative limit (Zα → 0), which provides excellent
baseline to test the validity of lowest order QED. Figure 2 shows comparison of the ratios
of the measured cross sections from world-wide experiments [64–67] to the lowest order
QED calculations for lepton pair production in p+p(p̄) collisions. The error bars represent
the total uncertainties for the experimental measurements, in which the statistical and
systematic errors are added in quadrature. The theoretical uncertainties are estimated by
varying the parameters in the proton form factor and the UPC trigger probability, which
are found to be less than 2%. The yellow bands in the figure represent the uncertainties
for lowest order QED calculations. As shown in figure, the lowest order QED calculations
describe the world-wide measurements very well. The world-wide results are combined with
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Figure 2. (Color online) Comparison of the ratios of the measured cross sections from world-wide
experiments [64–67] to the lowest order QED calculations for lepton pair production in p + p(p̄)
collisions. The error bars represent the total uncertainties for the experimental measurements,
which include the statistical and systematic errors. The yellow bands denote the uncertainties for
lowest order QED calculations.

unequal weights determined by the errors to improve the precision of measurement. In the
combination of results, the uncertainties from luminosity determination at the same collider
have been considered to be fully correlated and the systematic uncertainties associated with
detector response are assumed to be completely correlated at the same Collaboration. The
uncertainties from theoretical calculations are also combined with the assumption of being
fully correlated. The combined result is consistent with the lowest order QED calculation
within one standard deviation.

The comparison of the ratios of the measured cross sections from world-wide exper-
iments [29–34] and the predicted higher-order QED results to the lowest order QED cal-
culations for lepton pair production in heavy ion collisions is shown in figure 3. In the
calculation, optical Glauber model [35] is employed to determine the UPC trigger prob-
ability of heavy ion collision in impact parameter space. The theoretical uncertainties of
vacuum pair production are estimated by varying the parameters in the Woods-Saxon dis-
tributions of heavy nuclei, which simultaneously changes the form factor of heavy nuclei
and the UPC trigger probability in impact parameter space. The uncertainty originated
from this is less than 2.5%. Some of the experimental measurements are performed with
mutual Coulomb dissociation of the colliding nuclei. The calculations of mutual Coulomb
dissociation probabilities are introduced in section 2.4. The uncertainties associated with
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Figure 3. (Color online) Comparison of the ratios of the measured cross sections from world-
wide experiments [29–34] and the predicted higher-order QED results to the lowest order QED
calculations for lepton pair production in A + A collisions. The error bars represent the total
uncertainties for the experimental measurements, which include the statistical and systematic errors.
The yellow bands denote the uncertainties for QED calculations.

Coulomb dissociation for XnXn and ∗nXn (at least one neutron emission) configurations
are about 11% and 6% respectively, which mainly result from the experimental errors for
the photonuclear cross sections. The contribution of vacuum pair production related to in-
coherent photon emission is estimated by EPA approach, see section 2.4, which is taken as
an additional source of theoretical uncertainty. The uncertainties from incoherent photon
emission for XnXn, ∗nXn, and ∗n∗n (no requirement on neutron emission) configurations
are about 6.5%, 3.4%, and 1.5%, respectively. The combined theoretical uncertainty as-
sociated with the combined world-wide experimental data is about 3%. As demonstrated
in the figure, except for the STAR [34] and ALICE [31] results, the measurements are
systematically smaller than the lowest order QED predictions and the QED results with
higher-order correction describe the data very well. Considering the large experimental
and theoretical uncertainties for the STAR (experimental uncertainty: 14%, theoretical
uncertainty: 13%) and ALICE (experimental uncertainty: 14%, theoretical uncertainty:
3%) measurements, they are both consistent with the lowest order and higher-order QED
predictions. The combined data is 5.2 standard deviations smaller than the lowest order
calculation and is consistent with the higher-order result within one standard deviation,
which claims the discovery of higher-order effect for the QED pair production in heavy
ion collisions.
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As shown in figure 3, the higher-order corrections are significant ( ∼ 20%). This raises
a puzzle: why the higher-order effect is not observed previously? Most the experimental
measurements are compared to a industry standard model — STARLight [68], which in-
corporates the equivalent photon approximation (EPA) approach to calculate the lepton
pair production. The EPA approach is identical to the lowest order QED calculation for
cross section estimation. In STARLight model, it treats the nucleus as a point-like charge
for evaluating the photon flux. To avoid the singularities in the spatial distribution of
photon flux, the pair production within the geometrical radius of the nucleus is ignored.
However, according to our study, the production within the geometrical radius of the nu-
cleus is not negligible. As an illustration, for the dimuon production in Pb+ Pb collisions
at √sNN = 5.02TeV with the fiducial acceptance of ATLAS (pTµ > 5GeV/c, |ηµ| < 2.4),
the fraction of production within the nuclei is about 28%. Coincidentally, the higher-order
correction to the lowest QED result is about 20%, which is comparable to the fraction of
production ignored in STARLight model. The two missing parts (the production within
the nuclei and the higher-order correction) compensate with each other, which makes the
STARLight model effective to describe world-wide data. This prevents us from the obser-
vation of higher-order effect.

4 Summary

We report the lowest-order QED calculations for lepton pair production both in proton-
proton (anti-proton) and heavy ion collisions. The lowest-order predictions describe the
world-wide measurements in p+ p(p̄) collisions (Zα→ 0) very well, however, overestimate
the production in heavy ion collision (Zα ∼ 0.6) by about 20% with a 5.2 sigma-level of
significance. The corresponding higher-order QED results can reproduce the world-wide
measurements within one standard deviation. These findings lend credence to claim the
discovery of higher-order effect for the QED pair production under the strongest electro-
magnetic field in laboratory, which have waited more than half a century for verification
and pave the way for future tests of QED in the unexplored nonperturbative regimes. Fur-
thermore, by colliding different species of nuclei, the coupling constant for the QED pair
production can be varied to investigate the higher-order effect towards the nonperturba-
tive regime, which provides a nice reference for the study of QCD from perturbative to
nonperturbative area.
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