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1 Introduction

The method of effective field theory (EFT) is very useful to obtain accurate descriptions
of physics effects from heavy energy scales. A prominent example is the calculation of the
Higgs boson mass in supersymmetric (SUSY) models. Interestingly, the measured value
Mh = (125.10± 0.14GeV) [1, 2] lies in the mass range that can be accommodated by SUSY
models, however it typically requires a rather heavy SUSY particle spectrum. Hence many
recent precision calculations of the Higgs boson mass utilized EFT methods [3–16] including
hybrid methods which combine EFT and fixed-order calculations [17–30], see refs. [31, 32]
for recent reviews.

In the present work we focus on the situation where the minimal supersymmetric
standard model (MSSM) is regarded as the full model and matched to the standard model
(SM) as the EFT. It corresponds to assuming all SUSY masses to be of the order of a
common heavy scale MS . This situation is the one of many Higgs boson mass calculations,
but also of general interest.

A crucial ingredient in EFT calculations is the matching between SM and MSSM
parameters. The obtained threshold corrections or decoupling coefficients stay finite in the
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limit MS → ∞, but they are in general complicated functions of all dimensionless and
dimensionful parameters of the full model. The MSSM contains several parameters which
can lead to significant systematic enhancements of higher-order threshold corrections. A
well-known example is the ratio of the two Higgs vacuum expectation values tan β. Higher-
order threshold corrections to the bottom-quark Yukawa coupling can contain terms of the
form g2n

3 (tan β)n, where g3 is the QCD gauge coupling. Such corrections can be of order
100% and could endanger the convergence of perturbation theory. However, it was observed
and analyzed in detail in refs. [33–35] that these corrections do not arise in n-loop Feynman
diagrams. Schematically, one can write mSM

b = mMSSM
b (1 + ∆b), where ∆b at 1-loop is

parametrically enhanced as O(g2
3 tan β). The analyses then showed that in a calculation

where the bottom mass is obtained from low-energy observables, the matching equation
can be inverted exactly for mMSSM

b . The result is a geometric series of n-loop terms at
the orders

(
g2

3(tan β)
)n and in this sense one speaks of a “resummation”. The all-order

resummation only requires ingredients from one-loop calculations. Further generalizations
of the analyses were presented in [36–40].

Here we consider similar enhancements by the trilinear squark-Higgs couplings xq
arising in the threshold corrections for Yukawa couplings and the quartic Higgs coupling
λ. The tan β-enhancement mentioned above is strongly related to the xb-enhancement
arising in the bottom Yukawa coupling. Our analysis covers this but focuses mainly on
the xt-enhancements arising in λ, which have a high impact on MSSM Higgs boson mass
predictions. First constraints on xt-enhancements and statements on xt-resummation have
been mentioned and used in ref. [28]. Here we give proofs of these and more general
statements.

As discussed in ref. [28], the computation of threshold corrections allows the choice of
different parametrizations: traditionally, EFT-parametrization is most common. Here the
threshold corrections are expressed as a perturbative expansion in terms of EFT parameters
(in practice truncated at some finite order). In contrast, full-model parametrization means
expansion in terms of full-model parameters (and truncated at some finite order). In
principle both parametrizations are possible and equivalent, however after truncation at
finite order they differ. The behavior of xq and tan β-corrections depends crucially on the
chosen parametrization, and the resummation can be understood via comparing full-model
and EFT parametrization.

To provide a preview we compare the following three results for contributions leading
in the QCD gauge coupling and xt (valid at sufficiently large n):

• diagrammatic contributions to the four-point Green function in the MSSM in full-
model parametrization involve at most the following powers of xt (result from sec-
tion 3)

Γh4 ⊃ (yMSSM
t )4(gMSSM

3 )2n x≤nt (1.1)

• threshold corrections to the quartic Higgs coupling in full-model parametrization
involve at most (see ref. [28] and section 2)

∆λ ⊃ (yMSSM
t )4(gMSSM

3 )2n x≤4
t (1.2)
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Mh|LL ∝ g2n
3 logn+1 M2

s

m2
q

Mh|xq-enh. ∝ g2n
3 xn+4

q

expression for Mh(P SM) absent absent

expression for Mh(PMSSM) present absent

expression for Mh(P obs) present present

origin of terms solving RGE
matching relation in
terms of low-scale obs.

minimal requirement 0` matching MSSM-SM 1` matching MSSM-SM
for resummation + 1` RGE in full-model parameters

Table 1. Comparison of leading logarithms and leading xq enhanced terms in QCD contributions
to the Higgs pole mass. Depending on the set of variables by which the Higgs pole mass is expressed,
logarithmic and/or parametric contributions are present/absent in the analytical relation. The sets
P SM, PMSSM and P obs are SM parameters (which in an EFT/RGE calculation are determined via
matching to the full theory), MSSM parameters and input parameters, respectively.

• threshold corrections to the quartic Higgs coupling in EFT-parametrization involve
at most (see ref. [28] and section 4)

∆λ ⊃ (ySM
t )4(gSM

3 )2n x
≤(n+4)
t . (1.3)

Here the full-model (and EFT) parameters are denoted by a superscript MSSM (and SM)
and are renormalized in the DR (and MS) scheme, respectively. We see that the results
for threshold corrections in full-model parametrization are the strongest; the leading terms
in EFT-parametrization can be resummed at all orders by fixed-order calculations in full-
model parametrization. These and more general statements along with their implications
on xq resummation are the content of the present paper.

Before describing the outline we provide further background information for the log-
resummation based on the renormalization group equation (RGE) and “xq-resummation”.
To illustrate the differences and similarities we compare the appearance of such terms in
the formula relating the Higgs pole mass to three sets of arguments in table 1.

In the first line of the table, the Higgs mass is described in terms of parameters P SM,
the MS-renormalized SM parameters at the renormalization scale Q = Mt, in particular the
quartic λSM and top-Yukawa coupling ySM

t . The result does not contain large logarithms
or xq-enhanced terms in an explicit form. This parametrization typically appears in the
context of EFT calculations of the Higgs mass in the MSSM. The corrections from RGE
running and matching can be made explicit if one expresses the SM couplings at the low
scale Q = Mt by couplings at the matching scale Q = MS .

In the second line, the pole mass is expressed by PMSSM, which are the DR-
renormalized MSSM parameters at the scale Q = MS such as the Yukawa coupling yMSSM

t

and soft-breaking squark-mass parameter m2
q̃ . In the view of the theorems presented in

section 2, the threshold corrections and, hence, the Higgs mass formula do not contain the
leading xq-enhanced terms in question. In this way xq resummation behaves differently
than log-resummation and large logs can be resummed by solving RGEs.
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In the third line of table 1, we analyze the Higgs mass as expressed in terms of quantities
P obs which are input parameters typically used in phenomenological applications, such as
the low-scale input (MZ , Mt, . . . ) and the high-scale input (m2

q̃ , xt, . . . ). In terms of these
parameters, the leading logarithms and leading xq-enhanced terms are inevitably present
in corrections for the Higgs mass. In section 4 we will discuss how to obtain towers of xq
enhanced terms.

The content of our paper is structured as follows. In section 2 we derive the strong
bound on the threshold corrections in parameters of the full model, similar to eq. (1.2).
We continue with the weaker constraint for Green functions in section 3, as in eq. (1.1).
Furthermore, we elaborate how contributions to Γh4 with highest powers in the xq cancel
in the matching procedure and thus how eqs. (1.2), (1.1) are compatible. The discussion
in section 4 gives details about the consequences of the constraint out of section 2. It is
outlined what threshold corrections are required to “resum” the leading xq contributions
at various coupling structures. We continue to present predictions for the highest power
xt contributions, as in eq. (1.3), to threshold corrections at multi-loop level and show
the limitations.

2 Constraints on threshold corrections ∆λ and ∆yq

As mentioned in section 1, we begin by discussing constraints on threshold corrections. In
our set-up the high-scale model is fixed to be the real MSSM in the same notation as in
ref. [28]. That is, all parameters of the MSSM are denoted without a hat, PMSSM ≡ P ;
most important are the MSSM gauge couplings g1, g2, g3, the third generation top and
bottom Yukawa couplings yq ∈ {yt, yb}, the two Higgs vacuum expectation values vu, vd,
v = (v2

u + v2
d)1/2 and the ratio tan β = vu/vd. All MSSM parameters are defined in the

DR scheme.
We consider the masses of all BSM fields to be close to one characteristic scale MS ,

which we assume to be much higher than the electroweak scale. The central interactions
of our analysis involve two squarks q̃ ∈ {t̃L, t̃R, b̃L, b̃R} (interaction eigenstates) and one
Higgs scalar φ ∈ {h,H,A,H±, G0, G±} (mass eigenstates). The corresponding trilinear
couplings are dimensionful. Throughout the present paper we assume these couplings to
be large, i.e. of the order MS .

The Higgs sector mass eigenstates are obtained from the two Higgs doublet components
by unitary matrices depending on β and α at tree level. In the limit of high SUSY masses,
MS � v, the two mixing angles are related as α ≈ β−π/2, and the real trilinear tree-level
interactions can be expressed as

LMSSM =ytsβXtG
+t̃†Rb̃L −

iytcβYt√
2

At̃†Rt̃L −
ybcβXb√

2
hb̃†Rb̃L + ybsβYbH

−b̃†Rt̃L + · · · , (2.1)

and 20 other analogous terms. Neglecting powers of i and
√

2, each coupling of the relevant
24 operators φ q̃Rq̃′L is given by one of four parameter combinations

ytsβXt, ytsβYt cotβ, ybcβXb, ybcβYb tan β, (2.2)
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where we explicitly factored out the quark Yukawa combinations (ytsβ) and (ybcβ), which
correspond to the tree-level SM Yukawa couplings. In terms of fundamental MSSM pa-
rameters the coupling coefficients of interest are [41]

Xt = At − µ cotβ, Xb = Ab − µ tan β, (2.3a)
Yt = At + µ tan β, Yb = Ab + µ cotβ, (2.3b)

where At and Ab are the trilinear couplings from the soft breaking, µ is the higgsino mass
term from the superpotential. The so-called squark mixing parameter Xq also appears in
the off-diagonal element of the stop- and sbottom mass matrix

M2
t =

m2
t +m2

q̃3 mtXt

mtXt m2
t +m2

ũ3

 , M2
b =

m2
b +m2

q̃3 mbXb

mbXb m2
b +m2

d̃3

 , (2.4)

where mq̃3 , mũ3 and md̃3
are soft breaking mass terms, i.e. of orderMS . Note that D-terms

have been neglected in the matrices. The quark masses are mq = yqfq(β)v/
√

2 ∈ {mt,mb}
with the notation

fq(β) =
{
sβ , q = t

cβ , q = b
. (2.5)

To keep the analysis transparent, we introduce the dimensionless parameters xq which
indicate the appearance of any of the trilinear couplings in (2.2),

xt ∈
{
Xt

MS
,
Yt cotβ
MS

}
, xb ∈

{
Xb

MS
,
Yb tan β
MS

}
, (2.6)

where the tree-level SM Yukawa coupling is split off, leading to cotβ and tan β factors in
connection with Yt,b.

Next, we consider the SM as the valid EFT below the scale MS where all parameters
are MS renormalized. We continue to use the notation as in ref. [28]; the parameters of the
SM are denoted with a hat P SM ≡ P̂ , most relevant are the quartic Higgs coupling λ̂, the
SM gauge couplings ĝ1, ĝ2, ĝ3, the third generation quark-Yukawa couplings ŷq ∈ {ŷt, ŷb}
and the Higgs VEV v̂. In the SM the quark masses are given by m̂q = ŷqv̂/

√
2 ∈ {m̂t, m̂b}.

All SM parameters are defined in the MS scheme.
As we consider a large mass gap MS � v̂, the matching procedure results in a relation

between the parameters of both models which is expanded perturbatively. The so-called
threshold corrections can be written symbolically as ∆P = P̂ − P .

The focus of the present section is on the appearance of the parametric enhancement
xnq in the threshold corrections of the Yukawa coupling ∆yq and of the quartic coupling ∆λ

∆yq = ŷq − fq(β)yq , (2.7)
∆λ = λ̂− λ , (2.8)

where the quartic coupling of the light Higgs h in the MSSM is given by D-terms as
λ = (g2

1 + g2
2)c2

2β/4.
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The appearance of the trilinear interaction via eqs. (2.2) and (2.4) is always accom-
panied with either a Yukawa coupling or a quark mass (which in turn is proportional to
a Yukawa coupling). This seems to suggest that also in threshold corrections the power
of xq is directly bounded by the power of the Yukawa couplings. However, there are two
complications which might invalidate such a conclusion.

• The threshold correction in eq. (1.3) contains terms of the form ĝ2
3 ŷ

4
t x

5
t , which seem to

violate the above conclusion. The origin of such terms has been analyzed in ref. [28]
and traced back to the implicit expansion of full-model parameters in terms of EFT
parameters. In order to reveal the full xq dependence at n-loop, besides genuine
n-loop diagrams also all such implicit expansions have to be inspected carefully.

• The appearance of mqxq in the squark mass matrices might be accompanied with
factors of 1/mq from loop integrations. One could proceed in two equivalent ways to
extract the full xq structure in this context:

– Transit to squark mass eigenstates and expand the multi-loop Feynman integrals
in powers of xqv/MS .

– Work in the chiral basis and treat the off-diagonal element as a two-squark
vertex in Feynman graphs, which can be inserted arbitrarily often. We denote
such insertions as chiral squark flips. Our analysis follows this approach.

2.1 Constraints

In this section we list the constraints on threshold corrections in full-model parametrization.
For a detailed discussion on the parametrization see section 2 of ref. [28]. In short, threshold
corrections have to be expanded in a power series in either EFT or full-model parameters.
Both options are equivalent; however, if truncated at finite order (n-loop) a difference of
higher order (> n-loop) remains. An important insight is that in full-model parametrization
stronger bounds for the powers in xq exist, as can be directly seen by comparing eqs. (1.2)
and (1.3).

Similar discussions on constraints can be found in the literature for ∆yb , see refs. [33,
34], and for ∆λ, see ref. [28]. In the latter reference, this fact has already been used to
achieve an xt-resummation for the Higgs boson mass.

Here we present generalized constraints, which include finite powers of the Yukawa
couplings and which allow arbitrarily high orders in αs. Furthermore, we consider gauge-
less limit for ∆yq but we allow a finite power of electroweak couplings in ∆λ.

i) Consider the threshold correction ∆yq in full-model parametrization. In its leading-
and subleading-QCD contributions of O(yqg2n

3 + y3
qg

2n
3 ) for any n ≥ 0, the power of

xq is at most the power of the Yukawa coupling. Technically, we write the correction
at these orders as

∆yq = g2n
3

(
yqP1,n(xq) + y3

q P3,n(xq)
)

+O(m/MS) . (2.9)
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The coefficients are polynomials in xq with indices corresponding to the coupling struc-
tures. The desired constraints are formulated as constraints on the degrees of these
polynomials:

deg(P1,n) ≤ 1, (2.10a)
deg(P3,n) ≤ 3. (2.10b)

ii) Consider the threshold correction ∆λ in full-model parametrization. In its leading-
and subleading-QCD contributions of O(y4

qg
2n
3 + g2

1y
2
qg

2n
3 + g2

2y
2
qg

2n
3 + y6

qg
2n
3 ) for any

n ≥ 0, the power of xq is at most the power of the Yukawa coupling. Technically, we
write the correction at these orders as

∆λ = g2n
3

(
y4
qP4,n(xq) + y2

qg
2
1P2,n,g1(xq) + y2

qg
2
2P2,n,g2(xq) + y6

qP6,n(xq)
)

+O(m/MS) . (2.11)

The coefficients are polynomials in xq, with indices corresponding to the coupling
structures, whose degrees are constrained as

deg(P4,n) ≤ 4, (2.12a)
deg(P2,n,g1) ≤ 2, (2.12b)
deg(P2,n,g2) ≤ 2, (2.12c)

deg(P6,n) ≤ 6. (2.12d)

2.2 Proof

In the following we prove the above constraints by performing a matching calculation
between the MSSM and the SM valid below Q = MS with a focus on the third generation
in the matter content.

The interactions of the MSSM are described by the DR renormalized fields e.g. Φ ∈
{h, q, gµ} (the light Higgs boson, left- and right-handed top quark, left- and right-handed
bottom quark, gluon).1 Their kinetic term is canonically normalized.

For energy scales much below MS the effective theory can be described through the
SM-Lagrangian. This can be expressed either by using fields in terms of which renormalized
Green functions have the same normalization, or by using SM fields Φ̂ ∈ {ĥ, q̂, ĝµ} (Higgs
boson, left- and right-handed top, left- and right-handed bottom, gluon) which are defined
in the MS-scheme and whose corresponding kinetic term is canonically normalized. In the
following we will denote the relation between these differently normalized fields as the wave
function renormalization (WFR)

KΦ ≡
δΦ̂
δΦ . (2.13)

1We neglect the decomposition of q in a left- and right-handed part, which later affects the decomposition
of the wave function renormalization and the vertex function.
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We choose to neglect higher dimensional operators and include dim≤ 4 operators only.
Hence, the threshold corrections are evaluated in the limit v/MS → 0. We make use of
the advantage to set the Higgs VEVs to zero, v, vu,d → 0, on the Lagrangian level, which
is equivalent to matching in the unbroken phase. The Green functions Γ obtained by this
procedure are denoted as

Γv=0 ≡ Γ̃. (2.14)

The limit is carried out such that dimensionless parameter and couplings are fixed and all
SM fields become massless. Later in section 3, we discuss the contributions to Γ obtained
by taking the limit v → 0 after its evaluation in the broken phase. The limit does not
interchange with loop integration for IR sensitive loop functions which allows for terms
with higher powers in xq.

The matching procedure is constructed by the simplified Green functions from
eq. (2.14) and the corrections are determined at vanishing external momentum. In general,
the matching conditions form a coupled system in an evaluation at multi-loop level. Since
we are interested in threshold corrections to the Yukawa coupling yq and the quartic λ, the
relevant subset of matching conditions is

Γ̃full
q̄qh = Γ̃eft

q̄qh, → ŷq, (2.15a)

Γ̃full
q̄qgµ = Γ̃eft

q̄qgµ , → ĝ3, (2.15b)

Γ̃full
h4 = Γ̃eft

h4 , → λ̂, (2.15c)
∂

∂/p
Γ̃full
q̄q = ∂

∂/p
Γ̃eft
q̄q , → Kq, (2.15d)

∂

∂p2 Γ̃full
gµgν = ∂

∂p2 Γ̃eft
gµgν , → Kg, (2.15e)

∂

∂p2 Γ̃full
hh = ∂

∂p2 Γ̃eft
hh, → Kh. (2.15f)

In the eqs. (2.15) the arrows associate symbolically the matching condition with the cor-
responding parameter of the EFT. In order to study the appearances of xq in ∆P at the
multi-loop level, we inspect the following six kinds of loop contributions in the match-
ing condition.

1. Genuine diagrammatic contributions to Γ̃full: the simplification of evaluating Γfull in
the unbroken phase implies the absence of bilinear chiral-mixing terms in internal
squark propagators. The only xq contributions arise from the trilinear vertices of
two squarks and one Higgs component field φ ∈ {h,H,A,H±, G0, G±}. As indicated
by eq. (2.2), each vertex carries an additional factor of the Yukawa coupling yq.
Therefore, every external(internal) line φ is accommodated maximally by one(two)
factor(s) of the Yukawa coupling. The only Higgs interaction unrelated to Yukawa
couplings, which is considered in our discussion, is the quartic D-term interaction
∝ g2

1,2h
2q̃2.

– 8 –



J
H
E
P
0
8
(
2
0
2
1
)
0
7
0

2. Counterterm insertions in diagrammatic contributions to Γ̃full: in the DR-scheme,
counterterms which carry powers of xq are associated to divergent contribution in di-
agrams which contain squark-Higgs interactions. Hence, diagrams with counterterm
insertions can be analyzed as nested diagrammatic contributions as before.

3. DR → MS conversion in Γ̃full: in order to transit from a SUSY theory defined in
the DR scheme to a non-SUSY theory in the MS scheme one has to take unphysical
ε-scalars of mass mε in the SQCD sector into account. Their interactions are inde-
pendent of the xq parameter. As outlined in refs. [42, 43], the scheme conversion can
be performed by a decoupling of ε-scalars together with physical superpartners at the
threshold scale MS ≈ mε. Further details have been given in refs. [44–46].

4. Conversion to canonically normalized fields in Γ̃eft: the matching condition in
eq. (2.15) needs to be combined with Green functions of canonically normalized fields.
In order to extract unambiguously the WFR introduced in eq. (2.13) we write

Γ̃eft
Φn = (KΦ)n Γ̃eft

Φ̂n . (2.16)

5. Diagrammatic contributions to Γ̃eft (with canonically normalized fields): we loop-
expand the Green function in terms of effective couplings of the EFT-Lagrangian
P eft ∈ {ŷq, λ̂, ĝ1,2, ĝ3}

Γ̃eft
Φ̂n ≡ Γ̃eft

∣∣∣
0`

+ Γ̃eft
∣∣∣
1`

+ Γ̃eft
∣∣∣
2`

+ · · · . (2.17)

6. Expansion of Γ̃eft in full-model parameters: in order to have a consistent matching for
the Wilson coefficient contained in the term Γ̃eft

∣∣∣
0`
, one has to evaluate and truncate

both sides in eq. (2.15) in the same set of parameters. In full-model parametrization
the corrections to Γ̃eft

∣∣∣
m`

have to be expanded in terms of full-model parameters [28]

Γ̃eft
∣∣∣
m`

=
[
Γ̃eft

∣∣∣
m`

]
P eft=P full

+
[

∂

∂P eft Γ̃eft
∣∣∣
m`

]
P eft=P full

∆P + · · · . (2.18)

This re-expansion in terms of renormalized parameters of Lfull mixes the loop orders
of the perturbation theory such that a genuine contribution on the r.h.s. of eq. (2.18)
is of (≥ m)-loop. The joint evaluation and truncation in one set of parameters
of Γ̃eft is what we denote as double loop expansion. Note that, setting v = 0 on
the Lagrangian level results only in contributions to Γ̃eft with finite powers in EFT
parameters.2

Regarding the IR finiteness of the multi-loop contributions, the KLN theorem [47–
49] (and the fact that EFT covers all of the low-energy physics) ensures that various
IR-divergent contributions cancel in the matching and well defined threshold corrections
remain. A careful treatment of IR divergences in threshold correction in the massless case at

2 Non-polynomial contributions can arise from log(m̂q/Q) which can be decomposed as log ŷq + log v̂/Q.
These terms are absent in Γ̃eft by construction, since it is evaluated at v̂ = 0. In the next section we will
return to such contributions.
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1-loop was presented in ref. [8]. For further details in the case of a 2-loop matching of Green
functions, see ref. [16]. Here, we want to illuminate some aspects of IR-regularization by
small mass terms and DREG/ DRED in the context of the broken and the unbroken phase.

• IR regularization DREG/DRED: in the unbroken phase, where scaleless integrals
appear, the simultaneous regularization of UV and IR divergences in DREG or DRED
is of advantage since the Feynman integrals vanish. However, in the broken phase
some scaleless diagrams become dependent on the mass scale of SM fields v. This
leads to IR-logarithms ∝ log v/Q. These logs are divergent in the limit v → 0.
Further details are given in [16]. The absence of logarithms log m̂q/Q ensures that
Γ̃eft∣∣

m`
, discussed in the vicinity of eq. (2.18), is polynomial in the Yukawa coupling,

see footnote 2.

• Regularization with small mass δ: considering the case of multiple scales in Feynman
integrals, a frequently used approach is to regulate UV divergences by DRED and
IR divergent integrals by giving massless fields a small mass m ∝ δ. Contrary to the
SSB mechanism, these mass terms explicitly break EW symmetry. From the KLN
theorem it follows that after the inclusion of all contributions to a fixed order the
limit δ → 0 is well defined and the EW symmetry is restored. The decisive feature
of such a method is, that the regulator used for the quark mass does not necessarily
appear in the bilinear squark-mixing term, i.e. the term q̃†l q̃rXqδ is not required. In
consequence, the off-diagonal elements in eq. (2.4) stays zero and the absence of chiral
squark flips in diagrammatic contributions is assured. In contrast to the unbroken
phase, the generation of a quark mass term mq q̄q through EWSB goes hand in hand
with the appearance of the off-diagonal squark-mixing term Xqmq q̃

†
l q̃r in eq. (2.4). As

was announced in section 2, there are loop integrals resulting in 1/mq contributions,
and together with a factor ∝ xqmq from chiral squark flips, the VEV drops out.
Thus tree-level squark flips may increase the power of xq in diagrams in the limit
v → 0. These complications of the matching in the broken phase are at the core of
the discussion in section 3. We will show that terms in the double loop expansion
of Γeft give rise to contributions of higher power in xq, such that they cancel with
contributions from chiral flips in Γfull in the matching and the result stays the same
as in the unbroken phase.

Now we trace all xq contributions entering ∆P . In the described steps, xq appears
explicitly in the items (i), (ii), (iv) and (vi). From the arguments in (i) and (ii) we conclude
for Γ̃full in the unbroken phase: indeed every factor xq originates from an interaction of
squarks with Higgs bosons and hence is accompanied by one factor of the coupling yq.3
Hence, each factor of yq may introduce at most one factor of xq and we can write

Γ̃full
hq̄q ⊃ yqg2n

3 x≤1
q + y3

qg
2n
3 x≤3

q , (2.19a)

Γ̃full
q̄qgµ ⊃ g3g

2n
3 x0

q + y2
qg

2n+1
3 x≤2

q , (2.19b)

3Each internal line of φ gives rise to two factors of yq whereas each external line induces one factor yq.
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Γ̃full
h4 ⊃ y2

qg
2
1,2g

2n
3 x≤2

q + y4
qg

2n
3 x≤4

q + y6
qg

2n
3 x≤6

q , (2.19c)
∂

∂p2 Γ̃full
hh ⊃ y2

qg
2n
3 x≤2

q , (2.19d)

∂

∂p2 Γ̃full
gµgµ ⊃ g2n

3 x0
q + y2

qg
2n
3 x≤2

q , (2.19e)

∂

∂/p
Γ̃full
q̄q ⊃ g2n

3 x0
q + y2

qg
2n
3 x≤2

q , (2.19f)

where the first terms correspond to zero internal Higgs lines and the last term corresponds
to one internal Higgs line. The notation “⊃ gni x

≤m
q ” means that at O(gni ) (unsuppressed)

contributions to the l.h.s. with xm+1
q (or higher) are explicitly forbidden. However, the

terms on the l.h.s. of “⊃” may contain other coupling structures whose xq behavior is
not specified.

The loop contributions to Γ̃eft carry implicit xq contributions through items (iv)
and (vi). Since Γ̃eft at m-loop depends genuinely on the parameter shifts ∆P and on
the WFR KΦ at (< m)-loop, the evaluation of Γ̃eft

Φn is intertwined. We continue by math-
ematical induction.

• Base step: for the threshold corrections at the lowest order we include the full-
model contributions Γ̃full at 1- and 2-loop analyzed in eq. (2.19). Performing a direct
expansion of the Γ̃eft in full-model parameters up to 2-loop results in

∆yq ⊃ yqg2
3x
≤1
q + y3

qx
≤3
q , (2.20a)

∆g3 ⊃ g3
3x

0
q + g3

3y
2
qx
≤2
q , (2.20b)

∆λ ⊃ g2
1,2y

2
qx
≤2
q + y4

qx
≤4
q + y6

qx
≤6
q , (2.20c)

KΦ ⊃ g2
3x

0
q + y2

qx
≤2
q , (2.20d)

for Φ ∈ {q, g, h} where relevant orders only are taken into account.4

• Induction hypothesis: we assume that the O(g2n
3 ) corrections, i.e. n-, (n + 1)- and

(n+ 2)-loop, obtained from eqs. (2.15) satisfy

∆yq ⊃ yqg2n
3 x≤1

q + y3
qg

2n
3 x≤3

q , (2.21a)

∆g3 ⊃ g2n+1
3 x0

q + y2
qg

2n+1
3 x≤2

q , (2.21b)

∆λ ⊃ g2
1,2y

2
qg

2n
3 x≤2

q + y4
qg

2n
3 x≤4

q + y6
qg

2n
3 x≤6

q , (2.21c)

KΦ ⊃ g2n
3 x0

q + y2
qg

2n
3 x≤2

q . (2.21d)

Note that the 1-loop analysis is sufficient to show that ∆λ is of O(g2
1,2y

2
qg

2n+2
3 x≤2

q ).5

4Note that if we specify Φ = h, g in eq. (2.20d), the 1-loop contributions Kh ⊃ g2
3x

0
q and Kg ⊃ y2

qx
≤2
q

do not exist.
5Because Γ̃eft

ĥ4 has no contributions at O(ĝ2
1,2ŷ

2
q , λ̂ŷ

2
q) (and likewise for additional powers in ĝ2

3), non-trivial
contributions to Γ̃eft

ĥ4 arise through the product λKh only and not by reparametrization.
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• Induction step: now we perform a matching at order O(g2n+2
3 ). The full-model correc-

tions at this order are characterized by eq. (2.19) (with the replacement n→ n+ 1).
The genuine loop contributions to Γ̃eft of item (v) above at the order O(g2n+2

3 ) do
not contain xq explicitly but need to be combined with KΦ in eq. (2.16) and ∆P in
eq. (2.18) up to O(g2n

3 ) (where Φ ∈ {q, gµ, h} and P ∈ {yq, g3, λ}). Using the con-
straint from the hypothesis eq. (2.21), the expansions in Γ̃eft entering the evaluation
of the matching equations (2.15) can only lead to structures of higher order where
each coupling yq is associated with at most one factor xq. In conclusion the threshold
correction can be evaluated to the same constraint as eq. (2.21) with the substitution
g2n

3 → g2n+2
3 . This finishes the induction step and therefore the proof.

2.3 Comments

• For phenomenological reasons we focused on low powers in yq. However, the proof can
be extended to orders with more Yukawa couplings. In full-model parametrization,
the highest power xq contributions to threshold corrections ∆λ and ∆yq are of order
O(g2n

3 (ytxt)nt(ybxb)nb).

• The generalized constraint is in line with the statement of refs. [36, 38, 39] on resum-
mation of mixed Yukawa corrections to ∆yb. In our notation the constraint is; there
are no O(yb(y2

tAt tan β/MS)n) contributions to ∆yb.

• In the context of the MSSM including all three generations, the proof can be extended
to soft-breaking trilinear couplings related to flavor violation. We will specify this
statement in section 4.2.

• Along the lines of section 3.1 one could find an alternative proof by analyzing the
contributions in the large mass expansion. In that context, eq. (A.3) provides the
relevant constraint on the leading QCD contributions to quartic Higgs coupling and
to the quark-Higgs coupling at O(y4

qg
2n
3 ) and O(yqg2n

3 ), respectively.

• One may derive similar constraints on Wilson coefficients of higher dimensional op-
erators, for instance on H6. At one-loop order its threshold correction contains
terms ∝ y6

qx
6
q . By plugging in finite v, contributions to the O(m/MS) part of ∆λ in

eq. (2.11) would be generated. Those power-suppressed contributions involve higher
xq powers than the ones given on the dimension-4 level by the constraint on ∆λ in
eq. (2.11), which could also be studied by the arguments given in the present section.
For a detailed analysis of such power-suppressed terms see ref. [7]; the discussion
involves the inspection of “hedgehog diagrams” as in ref. [35].

3 Constraints on the Green functions

In this section we present the constraint on Green functions Γh4 and Γhq̄q in the MSSM
which is weaker than in the case for threshold corrections.6 In the light of a large mass

6Here the Green functions are evaluated as usual with v 6= 0, i.e. in the broken phase, in contrast the
Green functions Γ̃ used in the proof in section 2.2.
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loop order Γh4 Γq̄qh

1` y4
qx

≤4
q yqg

2
3x

≤1
q

2` y4
qg

2
3x

≤4
q yqg

4
3x

≤1
q

3` y4
qg

4
3x

≤4
q yqg

6
3x

≤2
q

4` y4
qg

6
3x

≤4
q yqg

8
3x

≤3
q

5` y4
qg

8
3x

≤4
q yqg

10
3 x≤4

q

6` y4
qg

10
3 x≤5

q yqg
12
3 x≤5

q

7` y4
qg

12
3 x≤6

q yqg
14
3 x≤6

q

...
...

...

Table 2. Contributions to Γn`
q̄qh and Γn`

h4 , which are not constrained to be vanishing by the theorem.

splitting between the SM fields and the SUSY scale m < MS , we analyze the structure of
the Green function at leading order in the expansion parameter m/MS .

i) In full-model parametrization unsuppressed xq contributions to the Green function
Γq̄qh at O(g2n

3 ) and n ≥ 1 are expanded as

Γq̄qh(p = 0)|yqg2n
3

= yqg
2n
3 P̄1,n(xq) +O(m/MS). (3.1)

The coefficients are polynomials in xq whose degrees are constrained as

deg(P̄1,n) ≤

1 for n ≤ 2,
n− 1 for n ≥ 3.

(3.2)

ii) In full-model parametrization unsuppressed xq contributions to the Green function
Γh4 at O(y4

qg
2n
3 ) and n ≥ 1 are expanded as

Γh4(p = 0)|y4
qg

2n
3

= y4
qg

2n
3 P̄4,n(xq) +O(m/MS), (3.3)

where P̄4,n are polynomials whose degrees are constrained as

deg(P̄4,n) ≤

4 for n ≤ 4,
n for n ≥ 5.

(3.4)

To exemplify the xq contributions which are allowed by the theorem we show table 2.
The constraints on Green functions in eqs. (3.2), (3.4) can be compared to the constraints
on threshold corrections in eqs. (2.10a), (2.12a), respectively. The constraints on Green
functions are weaker and allow terms with higher power of xq than of yq.
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3.1 Proof

The proof of the theorem relies on an inspection of diagrammatic contributions which is
based on a large mass expansion (LME). The strategy is to analyze a genuine multi-loop
diagram and track all xq appearances as described in the following.

The evaluation of an arbitrary diagrammatic contribution F to a Green function with
the technique of LME leads to a sum of diagrams Gg ≡ F/g with insertions ∆Vg stemming
from the subgraph g

F =
∑
g

Gg ◦∆Vg. (3.5)

More specifically ∆Vg represents the Taylor expansion of the subdiagram g which is 1PI in
the light lines and contains all heavy internal lines.

In order to investigate the contributions to ∆Vg it is of advantage to introduce the
notion of an effective vertex, which makes the factorization property of ∆Vg manifest.
That is, if g is an unconnected set of k connected graphs, the result of its Taylor expansion
factorizes symbolically as ∆Vg ⊃ ∆v1 × · · · ×∆vk.

Effective vertex ∆vi. In the LME of eq. (3.5), the effective vertex ∆vi denotes the
contraction of a connected subdiagram in g. This contraction represents the point-like
connection of light lines, which originates from a Taylor expansion in the light mass of
the in- or outgoing fields and their soft momentum. This procedure can be conceived as a
construction of a BRST invariant EFT below the scale MS , where ∆vi ≡ ∆vO is correlated
to a threshold correction of a coupling corresponding to an operator O ⊂ LEFT [50, 51].7

In appendix A we analyze all ∆vi relevant for Γq̄qh and Γh4 at leading order in the
QCD coupling. After truncating the Taylor expansion at leading order in m/MS the result
can be expressed as

∆vO = g2n
3 P (xq), (3.6)

where the degree of the polynomial in xq inside of r.h.s. depends on the fields φ ∈ {h, t, g, c}
which are attached to the individual effective vertex. More specifically, in appendix A we
derive that the maximal xq contribution to an effective vertex can be written as

∆vO ⊃(yqxq)nh(xqm)nd−nppnp
(
xq

m

MS

)nI+np−nd [
const +O

(
m, p

MS

)]
, (3.7)

where the indices nh, nd, np and nI represent the number of Higgs lines attached by the
vertex (nh), the mass dimension (nd), the power of momentum (np) and the number of
chiral flips in the squark propagators (nI). We note that eq. (3.7) confirms the constraints
presented in section 2.1, where the threshold corrections have been expanded in full-model
parameters. For our purpose, we classify the effective vertices for our discussion as:

7In order to extract the threshold correction, it is mandatory to substitute the fields by ones which are
canonically normalized and the WFR (2.13).
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• An infinite number of vertices with a suppression by the SUSY scale, which corre-
spond to non-renormalizable operator in the EFT: ∆v ∝ 1/M≥1

S (note that because
of BRST invariance, trilinear interactions of a Higgs with gluons/ghosts correspond
to higher dimensional operators) 8

∆vhgg, ∆vhc̄c, ∆vq2h2 , · · · . (3.8)

• A finite number vertices which correspond to renormalizable operators which, how-
ever, have no explicit xq dependence, ∆v ∝ g2n

3 x0
q :

∆vgg, ∆vg3 , ∆vg4 , ∆vgc̄c, ∆vc̄c, ∆vgq̄q, /p part of ∆vq̄q, · · · , (3.9)

where the dots represent interactions which do not contribute at leading orders in
g2n

3 . In Feynman diagrams, those are denoted by a white square.

• The remaining list of effective vertices corresponds to renormalizable operators which
introduce an explicit xq dependence. These are the three vertices

∆vq̄qh ∝ yqg2n
3 x≤1

q , mq1 part of ∆vq̄q ∝ g2n
3 x≤1

q , ∆vh4 ∝ g2n
3 x≤4

q . (3.10)

In the diagrams, those effective vertices are denoted by a gray square.

Now we apply dimensional analysis to evaluate each contribution in eq. (3.5) which
depends on ∆vi and a loop integral function I originating from the integral over loop
momenta in Gg

Gg ◦∆Vl = ∆vj11 ∆vj22 · · ·∆v
jk
k I(m) + · · · . (3.11)

Here each effective vertex is raised to some integer power ji, and the only physical scale
in the function I is the light mass m. Hence, the loop integral I(m) cannot induce further
MS enhancement. In conclusion, the final xq dependence and the suppression of O(m/MS)
in each addend in eq. (3.5) can be read off the product of effective vertices. Once a certain
loop order and power of the couplings yq and g2

3 is specified, it is a matter of inspecting
all possible contributions to construct diagrams with the vertices ∆vi which maximize the
power of xq appearing at this order. In the following we present the results of this analysis.

• Γq̄qh: there are two structures of effective vertex diagrams in eq. (3.5) maximizing
the xq power. Depending on the loop level, for O(yq(g2

3)n≥2) or O(yq(g2
3)n≤2) the

structures are illustrated as follows

O(yq(g2
3)n≤2) :

q q

h

∝ ∆vq̄qh ⊃ yqg2n
3 x≤1

q , (3.12)

O(yq(g2
3)n≥2) :

q q

h

· · · ∝ g2
3∆vq̄qh (∆vq̄q)n−2 ⊃ yqg2n

3 x≤(n−1)
q , (3.13)

8We note that higher dimensional operators can induce an xq dependence of higher orders, see ref. [7].

– 15 –



J
H
E
P
0
8
(
2
0
2
1
)
0
7
0

At n = 2, the xq-constraint for both structures is the same. Also there are other types
of effective vertex diagrams contributing to eq. (3.13). The first type of variants are
diagrams where the Higgs couples to any other box in the quark propagator. The
second type is represented by structures, where (n− 1) effective vertices of ∆vq̄q are
present and the Higgs couples directly to a quark propagator. Both types result in
the same maximal power for xq. This establishes the constraint out of eq. (3.2).

• Γh4 : depending on the loop level, the maximal xq powers originates from contributions
in eq. (3.5) of the form

O(y4
q (g2

3)n≤4) :

h

h

h

h

∝ ∆vh4 ⊃ y4
qg

2n
3 x≤4

q , (3.14)

O(y4
q (g2

3)n≥4) :

h

h

h

h
· · ·

∝ y4
q (∆vq̄q)n ⊃ y4

qg
2n
3 x≤nq . (3.15)

In the last line, further effective vertex diagrams exist which contribute at the
same order O(y4

qg
2n
3 x≤nq ) as the depicted diagram: these are diagrams composed

as y4−m
q ∆vmq̄qh∆vn−mq̄q , with 0 ≤ m ≤ 4. Altogether, this establishes the constraint

out of eq. (3.4).

3.2 Explicit cancellation of contributions at O(y4
qg

10
3 x

5
q)

In this section we elaborate the connection between the constraints on the Green functions
and on the threshold correction. As a consistency check of both, we discuss various contri-
butions in a matching calculation of Green functions Γh4 for the threshold correction ∆λ.
We choose to work at the 6-loop order O(y4

qg
10
3 ), which provides an instructive illustration.

In contrast to eq. (2.15) evaluated in the unbroken phase, we now consider the matching
condition for Green functions at finite v (but still at vanishing external momenta)

Γfull
h4 = Γeft

h4 . (3.16)

The constraint in eq. (3.4) allows Γfull
h4 ⊃ y4

qg
10
3 x
≤5
q , i.e. x5

q may appear in this equation.
However, the stronger constraint in eq. (2.12a), ∆λ ⊃ y4

qg
10
3 x
≤4
q , excludes explicitly contri-

butions ∝ x5
q in the threshold correction. Our goal in the following is to explain how these

two statements are compatible.
It turns out that the main mechanism is a cancellation of such x5

q contributions in
eq. (3.16) due to an interplay between a large mass expansion of diagrams on the l.h.s. and
the double loop expansion on the r.h.s. of eq. (3.16) (see the discussion around eq. (2.18)
for details on the necessary double loop expansion). We present our reasoning for both
contributions in the following.
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Γfull
h4 at O(y4

qg
10
3 x

5
q). We consider the sum of 6-loop diagrams which could give rise to

a contribution of O(y4
qg

10
3 x

5
q) to the Green function in the full model. From eq. (3.15) we

know that diagrammatic contributions with highest power in xq can be characterized under
the LME as

iΓfull
h4 =

∑
1PI diagrams

1PI

h

h

h

h

LME︷︸︸︷=

h

h

h

h

(= F )

+

h

h

h

h

(= G)

+ · · · ,

(3.17)

where we classified the highest xq powers in the resulting diagrams in the following way.

• As discussed in eqs. (3.10) and (A.9), diagrams of type F with “hard” loop momenta
never give rise to unsuppressed higher xq contributions than O(y4

qg
10
3 x

4
q)

F ⊃ y4
qg

10
3 x

4
q

(
xq

m

MS

)nI
, (3.18)

for some integer nI ≥ 0.

• At O(y4
qg

10
3 ) diagrams of type G have one light “soft” loop momentum k in the

internal quark line. They are the leading-power contribution in the xq parameter as
noted in eq. (3.15) and they can be schematically evaluated to

G = ∆vq̄q(∆vq̄qh)4
∫
k
f(k,mq) , (3.19a)

⊃ y4
qg

10
3 x
≤5
q mq I(mq, Q), (3.19b)

where f(k,mq) denotes the loop integrand, the effective vertices ∆vq̄qh and ∆vq̄q
carry each one factor of O(g2

3xq) at 1-loop, respectively.9 The crucial difference to
the diagram F is that higher-power contributions as xnq , for n > 4, do not lead to
a suppression by m/MS . Note that the two-vertex in diagram G acts like a mass
insertion, which corresponds to the fact that ∆vq̄q|xq ∝ mq (in contrast ∆vq̄qh is
dimensionless). As can be seen by eq. (3.10), the 1-loop QCD enhanced contributions
to the effective vertices can be decomposed as

∆vq̄q = −imqg
2
3 a(1,1)xq + · · · , (3.20a)

∆vq̄qh = −iyqfq(β)g2
3 a(1,1)xq + · · · , (3.20b)

9Note that a non-zero contribution requires an even number of chirality flips in the quark loop, which
implies that the integrand has an odd power of quark masses in the numerator, f ∝ m2i+1

q . However we do
not need this fact in the analysis.
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where the dots denote unsuppressed contributions with less powers in xq and a(1,1)
is some coefficient independent of β. For the diagram G to be dimensionless implies
that the integral function I(mq, Q) in eq. (3.19) has to be of negative mass dimension.
However, it cannot induce any suppression by the heavy scaleMS . It only depends on
light physical scales of order m, i.e. I(mq, Q) ∝ 1/m. In sharp contrast to eq. (2.19)
the Green function has higher power in xq contribution

Γfull ⊃ y4
qg

10
3 x
≤5
q , (3.21)

which stays finite in the limit v → 0. In consequence the only source of potential
contributions at O(y4

qg
10
3 x

5
q) can only stem from diagrams of type G and of similar

types, where a combination of effective vertices, (∆vq̄q)n(∆vq̄qh)(5−n) with 1 ≤ n ≤ 5,
are connected by an internal fermion loop.

Γeft
h4 at O(y4

qg
10
3 x

5
q). In this paragraph, we discuss the EFT loop contributions to the

r.h.s. of eq. (3.16). In order to connect to the constraint on the threshold correction
∆λ in full-model parameters, we have to double loop expand the EFT Green function as
outlined in eq. (2.18). The relevant contributions originate from the 1-loop diagram with
an internal quark Γeft

h4

∣∣∣
1`
. We write the double loop expansion of this 1-loop contribution

symbolically as

iΓeft
h4

∣∣∣
ŷ4
q

=

e
∆yq ∂

∂ŷq

h

h

h

h


ŷq=yqfq(β)

=

h

h

h

h

(= Ĝ)

+ · · · .

(3.22)

If the Yukawa threshold correction ∆yq is evaluated only at the order g2
3, this operation

generates a full-model parametrized expression including all orders O(y4
qg

2n
3 ).10 On the far

r.h.s. of (3.22) we singled out a particular contribution, denoted as Ĝ and involving four
black boxes at the vertices and one black box on a quark line. The black vertex boxes
indicate that the Yukawa coupling in front of the trilinear vertex q̄qh is replaced by the
threshold correction ∆yq with the xq dependence discussed in eq. (2.9).11 The black box

10Eq. (3.22) can be connected to the remark of footnote 2: the 1-loop diagram evaluated at v 6= 0 involves
terms logarithmic in the quark mass, iΓeft

h4

∣∣
ŷ4

q
∝ ŷ4

q log(m̂q/Q). Thus the contributions resulting from the
double loop expansion applied to such 1-loop contribution contain terms of the structure[

e
∆yq

∂
∂ŷq log ŷqv√

2Q

]
ŷq=yqfq(β)

= log mq

Q
−
∑
i

(
−∆yq

yq

)i
,

where the ratio in the last term can be simplified as ∆yq

yq
∝ g2

3xq + . . .. The arising terms explicitly break
the connection between Yukawa couplings yq and the xq parameter which exists for Γ̃, i.e. the power of xq
in Γ is not determined by the power of yq but is associated also with higher orders in g2

3 .
11The effective vertices and the threshold correction may differ by contributions from the conversion of

the regularization scheme (DR and MS) between the full-model and the EFT. These contributions do not
introduce any xq dependence at O(g2

3).
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in the quark propagator represents a mass insertion ∆mq = v∆yq/
√

2.12 Both threshold
corrections ∆yq and ∆mq contain a term proportional to g2

3xq, whose coefficient coincides
with a(1,1) in eq. (3.20).

The explicit contribution of the form Ĝ is evaluated as

Ĝ = (−i∆mq)(−i∆yq)4
∫
k
f(k,mq), (3.23)

where the integrand f(k,mq) is the same as the counterpart for G in eq. (3.19). At O(g2
3xq)

the threshold corrections (−i∆yq) and (−i∆mq) coincide with the effective vertices ∆vq̄qh
and ∆vq̄q, respectively. Thus, the overall contribution of O(y4

qg
10
3 x

5
q) in G and in Ĝ is the

same. In general, all contributions to Γeft
h4 at O(y4

qg
10
3 x

5
q) arise from diagrams similar to Ĝ,

with one fermion loop and five black boxes, where at least one internal fermion propagator
is dressed by a black box. All such contributions involve the factors (∆mq)n(∆yq)(5−n)

with 1 ≤ n ≤ 5.
There is clearly a one-to-one correspondence between such generalized terms of type G

and Ĝ, i.e. on the l.h.s. and r.h.s. in eq. (3.16). Hence the x5
q terms cancel in this equation.

After this cancellation, extracting the threshold correction ∆λ from eq. (3.16) leads to a
result compatible with the constraints of section 2.

4 Reparametrization of threshold corrections in the MSSM-SMmatching

In this section we will illustrate the resummation implied by the constraints on leading xq
contributions presented in section 2.1. As a matter of principle the threshold corrections
may be expressed in parameters of the full-model or of the EFT. Evaluating matching
corrections in full-model parametrization, followed by reparametrization in terms of EFT
parameters, leads to the announced resummation of leading xq contributions to observables.
We will precisely specify the structure of terms covered by the resummation and provide
several applications which go beyond ref. [28] on the Higgs boson mass correction.

4.1 What can be resummed

The structure of the matching corrections result in the form ŷq = yq + ∆yq ≡ f(yq, gi) and
λ̂ ≡ f̄(yq, gi), where again full-model parameters are denoted without hat, SM parameters
with hat. The functions f and f̄ are constrained by eqs. (2.9), (2.11). In the calculation
of the Higgs mass, the SM parameter λ̂ is predicted while ŷq is instead determined via
experimental low-energy observables. One therefore needs the inverted relation for the
MSSM Yukawa coupling yq and use it to express the threshold correction for λ̂ in terms
of SM couplings. The key consideration is the following. Although the correction ∆yq is
of finite order, we invert the matching relation exactly which generates terms of arbitrary
high orders. Schematically, we write yq = f−1(ŷq, ĝi). Using the constraints on xq this

12Note that threshold corrections to the VEV v do not contribute at O(g2
3).

– 19 –



J
H
E
P
0
8
(
2
0
2
1
)
0
7
0

loop order λ̂SM
∣∣∣
ŷ4

q ĝ2l
3

λ̂SM
∣∣∣
ĝ2

1,2ŷ2
q ĝ2l

3

λ̂SM
∣∣∣
ŷ6

q ĝ2l
3

λ̂SM
∣∣∣
ŷ4

q ĝ2l
3

· · ·

2` ŷ4
q ĝ

2
3x

5
q ĝ2

1,2ŷ
2
q ĝ

2
3x

3
q - - · · ·

3` ŷ4
q ĝ

4
3x

6
q ĝ2

1,2ŷ
2
q ĝ

4
3x

4
q ŷ6

q ĝ
2
3x

7
q ŷ4

q ĝ
4
3x

5
q · · ·

4` ŷ4
q ĝ

6
3x

7
q ĝ2

1,2ŷ
2
q ĝ

6
3x

5
q ŷ6

q ĝ
4
3x

8
q ŷ4

q ĝ
6
3x

6
q · · ·

...
...

...
...

... . . .

Table 3. Contributions to λ̂SM of the highest (blue) and next-to-highest (orange) power in the
xq parameter which exist at their respective order if parametrized by SM parameters. The orange
terms have been given only for the choice Â = ŷ4

q . But corresponding structures for other terms
can be given explicitly.

leads to the following towers of terms:13

λ̂SM ≡ λ̂
∣∣∣
yq=f−1(ŷq ,ĝi)

(4.1)

⊃ Â
(
∝ x≤mq

)

+Âĝ2
3

(
∝ x≤mq + k(m+1,1)x

m+1
q

)

+Âĝ4
3

(
∝ x≤mq + k(m+1,2)x

m+1
q + k(m+2,2)x

m+2
q

)

+Âĝ6
3

(
∝ x≤mq + k(m+1,3)x

m+1
q + k(m+2,3)x

m+2
q + k(m+3,3)x

m+3
q

)
+ · · ·

+Âĝ2l
3

(
· · ·+ k(m+l−3,l)x

m+l−3
q + k(m+l−2,l)x

m+l−2
q + k(m+l−1,l)x

m+l−1
q + k(m+l,l)x

m+l
q

)
+ · · · (4.2)

where Â can be a combination of couplings such as {ŷ4
q , ŷ

2
q ĝ

2
1, ŷ

2
q ĝ

2
2, ŷ

6
q} and m represents

the maximal power of xq terms in the corresponding full-model corrections m ∈ {4, 2, 2, 6},
see constraint from eq. (2.11). Analogous to eq. (4.1), one could write down a equation
for yq which gives rise to a similar pattern of towers. The terms in the first column in
eq. (4.2) arise already in full-model parametrization, while all other terms appear only in
EFT-parametrization through reparametrization. The terms encircled in blue are already
fixed by the first term in eq. (4.2) with reparametrization at leading order. The orange
terms are determined by the first two lines of eq. (4.2) together with reparametrization at
next-to-leading order.

To illustrate this resummation we show examples in table 3. In table 3, the coupling
structure Â and the corresponding resummation terms out of eq. (4.2) are specified.

13The elimination of MSSM gauge couplings g1,2,3 in terms of EFT parameters works analogously.
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The statements on the resummation of xq can be converted into statements on the
resummation of the UV parameters Aq and tan β. In our notation the soft-parameter Aq
is absorbed in the quantities Xq and Yq, see eq. (2.3). Therefore, the terms of highest
power in Aq/MS are in one-to-one correspondence with the appearance of highest power
contributions of xq. Now we turn to the appearance of leading powers of tan β in our
conventions. There are two mechanisms which introduce positive powers in the parameter
tan β relevant for our discussion.

• Explicit chiral squark flips in sbottom lines introduce a factor of tan β through xb.

• Additional tan β proportionality originates from an interaction between (down-type)
quarks/squarks and (up-type) Higgs scalars proportional to the bottom Yukawa cou-
pling and the “wrong” trigonometric functions, i.e. ∝ ybsβ ≈ ŷb tan β.

Despite the additional possible appearance one could follow the arguments given in sec-
tion 2.2 to conclude that in full-model parametrization the (unsuppressed) maximal power
of tan β in threshold corrections is bounded by the power of the down-type Yukawa coupling
yb, analogous to the xb parameter. This means that the well-known tan β-resummation in
the bottom Yukawa yb extends to λ̂SM at orders which contain powers of the bottom
Yukawa coupling.

It should be mentioned here that the application of exact relations for the bottom
Yukawa coupling of the MSSM is very well known in the context of Higgs mass calculations.
Exact relations have been discussed in the framework of fixed order approaches in [31, 52–
62] and in EFT/hybrid calculations [3, 5–7, 28, 29]. From the derivation presented above,
we conclude that not only tan β was resummed in the MSSM bottom Yukawa coupling but
also all leading tan β corrections were simultaneously included in Higgs mass.

4.2 Applications

Here we will derive all-order formulas for the resummation terms such as the ones
in eq. (4.2).

λ̂SM at {ŷ4
q ĝ

2l
3 x

4+l
q , ŷ2

q ĝ
2
1 ĝ

2l
3 x

2+l
q , ŷ2

q ĝ
2
2 ĝ

2l
3 x

2+l
q }: we begin with the resummation of

these terms, which correspond to the second and third column of table 3, corresponding to
the blue terms in eq. (4.2) with Â ∈ {ŷ4

q , ŷ
2
q ĝ

2
1, ŷ

2
q ĝ

2
2}. ref. [28] has used this resummation

and presented 2-loop and 3-loop terms. Here we give predictions generalized to all orders
in QCD contributions.

In order to achieve resummation of these terms it is sufficient to consider the highest-
power xq terms in specific 1-loop threshold contributions allowed by the constraints in
eqs. (2.9), (2.11) which may be written more explicitly as

∆yq ⊃ yqf(β)g2
3a(1,1)xq , (4.3a)

∆λ ⊃ (yqfq(β))4c(4,0,yq)x
4
q + (yqfq(β))2g2

1c(2,0,1)x
2
q + (yqfq(β))2g2

2c(2,0,2)x
2
q , (4.3b)

where a(1,1) is the 1-loop coefficient of the highest possible xq term in the thresh-
old correction ∆yq. Similarly, the 1-loop constants c(m,0,··· ) represent the coefficients
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of the highest powers in xq, i.e. m ∈ {4, 2, 2}, appearing at their respective order
{O(y4

q ),O(y2
qg

2
1),O(y2

qg
2
2)}. We note that c(2,0,1) and c(2,0,2) depend on the angle β due

to the D-term interaction of squarks with the SM-like Higgs boson q̃2h2. In contrast
c(4,0,yq) and a(1,1) are independent of β.

Combining the threshold corrections as indicated in eq. (4.1), that is eliminating the
MSSM coupling yq by the SM parameter ŷq, results in

λ̂SM
∣∣∣
ŷ4
q ĝ

2l
3 x

4+l
q

= ŷ4
qx

4
q

c(4,0,yq)[
1 + ĝ2

3a(1,1)xq
]4 , (4.4)

λ̂SM
∣∣∣
ĝ2
1,2ŷ

2
q ĝ

2l
3 x

2+l
q

= ŷ2
qx

2
q

ĝ2
1c(2,0,1) + ĝ2

2c(2,0,2)[
1 + ĝ2

3a(1,1)xq
]2 . (4.5)

which is the explicit formula of the resummed terms of this kind.
By considering the top sector, the discussed procedure allows for a resummation of

the highest-power xt = Xt/MS terms. This fact was first pointed out in ref. [28], and
ref. [28] predicted the 2-loop and 3-loop term at O(ŷ2

t ĝ
2
1,2ĝ

2
3x

3
t , ŷ

2
t ĝ

2
1,2ĝ

4
3x

4
t ), orders which

mix electroweak and QCD corrections. During the preparation of ref. [28] the full threshold
correction at O(ŷ2

t ĝ
2
1,2ĝ

2
3) was calculated in ref. [13]. Both results agree exactly. Further-

more, the 2-loop contribution at O(ŷ4
t ĝ

2
3x

5
t ) was calculated first in ref. [4] and is correctly

reproduced by eq. (4.4), thereby confirming our analyses.
For the bottom corrections in eq. (4.4), this means that the highest powers

of the fundamental parameters Ab/MS and µ tan β/MS in λ̂SM are resummed, i.e.
O(ŷ4

b ĝ
2l
3 (Ab/MS)l1 (µ tan β/MS)l2) with l1 + l2 = l + 4.

λ̂SM at ŷ4
q ĝ

2l
3 x

3+l
q : now we focus on the terms listed in the fifth column of table 3. More

specifically, we consider further contributions, which are independent of g1,2 but otherwise
contain (4.3) plus new terms14

∆λ ⊃ (yqfq(β))4c(4,0,yq)x
4
q + (yqfq(β))4g2

3c(4,1,yq)x
4
q , (4.6a)

∆yq ⊃ yqfq(β)g2
3

(
a(0,1) + a(1,1)xq

)
+ yqfq(β)g4

3a(1,2)xq , (4.6b)

∆g3 ⊃ g3
3δg3 , (4.6c)

where the new coefficient a(0,1) corresponds to a 1-loop term subleading in xq, and the new
coefficients c(4,1,yq) and a(1,2) to leading 2-loop terms. The term g3

3δg3 denotes the 1-loop
threshold correction for the QCD coupling. Solving the 2-loop matching equations for the
SM couplings ĝ3 and ŷq without truncation resums the orange circled terms of eq. (4.2).

Consequently, taking into account the terms of eq. (4.6) in full-model parametrization
allows to resum contributions which are leading and subleading in powers of xq into λ̂SM.
Analogously to eq. (4.4), we present a closed version for the subleading xq contributions in

14In principle a 1-loop term in ∆λ ∝ y4
qx

3
q would be relevant for the discussion. However, in a direct

calculation such term is absent at O((v/MS)0).
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terms of the coefficients c(··· ), a(··· ) and δg3 .

λ̂SM
∣∣∣
ŷ4
q ĝ

2l
3 x

3+l
q

= ŷ4
q ĝ

2
3x

4
q

c(4,1,yq)
(
1 + ĝ2

3a(1,1)xq
)
− 4c(4,0,yq)

(
a(0,1) + ĝ2

3

(
a(1,2) − 2δg3a(1,1)

)
xq
)

[
1 + ĝ2

3a(1,1)xq
]5 .

(4.7)

In the case of top-Yukawa contributions, the inclusion of the second and third column
of table 3 was discussed and implemented in the version of the code FlexibleEFTHiggs of
ref. [28]. Actually, the code implemented all corrections in eq. (4.6) in full-model parame-
trization. Hence, we can identify here that the code of ref. [28] automatically resums all
terms in eq. (4.7) and thus includes all terms in the fifth column of table 3.

By the inclusion of the terms in the second, third and fifth column of table 3, ref. [28]
illustrated that for high values of the parameter Xt/MS that numerical convergence of
perturbation series is improved.

λ̂SM at ŷ6
t ĝ

2l
3 x

6+l
t : these terms have more factors of the Yukawa couplings and their

resummation corresponds to the fourth column of table 3. We focus on the top sector and
more specifically on the resummation of the stop-mixing parameters xt = Xt/MS . In order
to resum such contributions, we consider the following loop corrections in the high scale
matching procedure15

∆λ ⊃ (ytsβ)4c(4,0,yt)x
4
t + (ytsβ)6c(6,0,yt2)x

6
t , (4.8a)

∆yt ⊃ ytsβg2
3a(1,1)xt + (ytsβ)3a(2,0,yt)x

2
t + (ytsβ)3g2

3a(3,1,yt)x
3
t , (4.8b)

where we substituted the coupling Yt cotβ by the parameters Xt and µ which introduces
a dependence on cotβ in the new coefficients of eq. (4.8). Analogous to the previous
paragraphs, we invert the matching relation of the Yukawa coupling

ytsβ = ŷt
1

1 + ĝ2
3a(1,1)xt

− ŷ3
t

a(2,0,yt)x
2
t + ĝ2

3a(3,1,yt)x
3
t[

1 + ĝ2
3a(1,1)xt

]4 +O(ŷ5
t ). (4.9)

We list the terms which are fully correct as a consequence of the constraints in section 2
and will not be modified. In contrast, the ŷ5

t terms will be modified once higher orders in
eq. (4.8b) are taken into account and they are therefore not explicitly listed in eq. (4.9).
For example, the tower of O(ŷ5

t ĝ
2n
3 x5+n

t ) ⊂ yt is changed once eq. (4.8b) is extended by
3-loop corrections of O(y5

t x
5
t ).

By inserting the relation in (4.1), one obtains the resummed contributions as

λ̂SM
∣∣∣
ŷ6
t ĝ

2l
3 x

6+l
t

= ŷ6
t x̂

6
t

c(6,0,yt2)
(
1 + ĝ2

3a(1,1)xt
)
− 4c(4,0,yt)

(
a(2,0,yt) + ĝ2

3a(3,1,yt)xt
)

[
1 + ĝ2

3a(1,1)xt
]7 . (4.10)

Now we discuss the 3-loop term of O(ŷ6
t ĝ

2
3x

7
t ) with the highest xt power in the degenerate

mass case. The 1-loop coefficients can be found for example in ref. [3]; in the limit where
15Note that there exists no term y3

t x
3
t in the 1-loop Yukawa threshold correction.
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2
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7
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Figure 1. Impact on the Higgs mass from 3-loop threshold correction ∆λ from the highest power xt

contribution at O(ŷ6
t ĝ

2
3). The values of the Higgs mass are obtained by the calculation implemented

in ref. [28] and its modifications.

all SUSY masses are equal they read c(4,0,yt) = −κ/2, a(1,1) = −κ4/3 and a(2,0,yt) = −κ/4
with κ = 1/(4π)2. At 2-loop, c(6,0,yt2) was listed in refs. [5, 28] and a(3,1,yt) was presented in
ref. [63]. At large values for tan β, the 2-loop coefficients and the resulting 3-loop correction
of interest reduce to

c(6,0,yt2)
κ2 =−

[
1 + 1

4 (19 + 96K) cot2 β

]
≈ −1 +O (cotβ) , (4.11)

a(3,1,yt)
κ2 =− 1

9
[
3 (1 + 4LS) + 4 (4 + 3LS − 18S2) cot2 β

]
≈ −1

3 +O (cotβ, LS) , (4.12)

λ̂SM
∣∣∣
ŷ6
t ĝ

2
3x

7
t

=− κ3ŷ6
t ĝ

2
3x

7
t

2
9
[
12 (5 + LS) + (187 + 864K − 72S2 + 12LS) cot2 β

]
=− κ3ŷ6

t ĝ
2
3x

7
t

40
3 +O (cotβ, LS) ,

(4.13)

with LS = log(Q2/M2
S), S2 = 0.260434 and K = −0.1953256.

The Higgs-mass calculation FlexibleEFTHiggs presented in ref. [28] implemented all
corrections from eq. (4.8) except for the a(3,1,yt) term, which is the leading power xt term to
∆yt at the 2-loop order O(y3

t g
2
3). Therefore the resummation of eq. (4.10) is incomplete. To

inspect the numerical impact we modified the high-scale matching relation of the Flexib-
leEFTHiggs code by 3-loop contributions in two versions. In the first version the matching
is extended by the a(3,1,yt) term, such that this version fully contains the correct term
presented in eq. (4.13). The second modified code is constructed such that the threshold
correction ∆λ vanishes at O(ŷ6

t ĝ
2
3x

7
t ) exactly. In figure 1 we compare the Higgs mass as

predicted by the unmodified FlexibleEFTHiggs calculation (with a(3,1,yt) = 0) and the
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version with the correct term from eq. (4.13) for a characteristic SUSY scale MS = 2TeV.
From both calculations we subtracted the result obtained by the version where the high-
scale correction O(ŷ6

t ĝ
2
3x

7
t ) is set to zero. The dashed line thus shows the impact of the

complete threshold correction eq. (4.13) on the Higgs mass. The solid line represents the
impact of the incomplete threshold correction in the implementation of ref. [28], where the
2-loop coefficient a(3,1,yt) = 0. In the considered limit the threshold correction is important
and ∆Mh ≈ 500MeV for xt ≈ 3. But the difference between the complete and incomplete
version, i.e. of the contribution of a(3,1,yt) to the threshold correction in λ̂SM is negligible.

Hence, although the Higgs mass calculation implemented in ref. [28] does not contain
a 2-loop threshold to the Yukawa matching at O(y3

t g
2
3), it therefore reproduces the 3-loop

term ŷ6
t ĝ

2
3x

7
t ⊂ λ̂SM to a very good numerical precision.

λ̂SM at ŷ4
b ŷ

2l
t (At/MS)l(tanβ)4+l: now we discuss these mixed Yukawa expressions

which are beyond the terms listed in table 3, as they do not contain any QCD coupling
g3. This analysis is in line with the resummation of O(ŷb(ŷ2

tAt tan β/MS)l) in the MSSM
bottom Yukawa coupling presented in refs. [33, 36, 38, 39]. Here we derive a simultaneous
resummation of these terms in yb and λ̂SM. It is sufficient in our analysis to include the
following 1-loop thresholds corrections

∆λ ⊃ (ybcβ)4c(4,0,yb)x
4
b , (4.14a)

∆yb ⊃ (ybcβ)y2
t a(b,t)xt tan β, (4.14b)

where a(b,t) and c(4,0,yb) are independent of xq and tan β. Following the reparametrization
prescription of eq. (4.1), the included corrections to λ̂SM are

λ̂SM
∣∣∣
ŷ4
b
ŷ2l
t x

l
tx

4
b

tanl β
= ŷ4

b

c(4,0,yb)[
1 + ŷ2

t

s2
β
a(b,t)xt tan β

]4x
4
b . (4.15)

Expressed in terms of At and tan β, the terms in (4.15) are of O(ŷ4
b ŷ

2l
t (At/MS)l(tan β)4+l).

In consequence, eq. (4.15) resums terms leading in powers of (At tan β/MS).
Now we argue why no explicit multi-loop contributions to eq. (4.14) exist which may af-

fect the terms in eq. (4.15). As discussed in the items of section 4.1, the only mechanism to
introduce contributions ∝ tan β at O(y4

by
2k
t ) is through the sbottom-mixing parameter xb.

In order to give rise to corrections to eq. (4.15), the diagrams would be of O(y4
bx

k+4
b y2k

t x
k
t ),

for k > 1. But as stated in section 2.3, the analysis in section 2.1 forbids such (un-
suppressed) terms explicitly, because the xb parameter cannot appear with higher powers
than ryb.

We note in passing, that the resummation covers terms as x4+l
b xlt but not x4

bx
2l
t , where

the same overall power in xq is distributed differently among xt,b. Clearly, for tan β � xt
the resummed terms in eq. (4.15), at O(ŷ4

b ŷ
2l
t ) are dominant.

Resummation of flavor violating stop-scharm-Higgs soft parameter in λ̂SM. As
announced in the comments of section 2.3 there exist constraints for flavor-violating tri-
linear parameters. Now we use such a constraint to derive a resummation of stop-scharm-
Higgs couplings, which are not listed in table 3 as they are not associated to the third
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generation only. In the style of eq. (4.4), we present an all-order equation of enhanced
flavor violating contributions from soft-breaking A-terms.

The impact of mixing effects between the second and third generation of squarks onto
the Higgs mass has been studied for example in refs. [64–68] at 1-loop and in ref. [69] at 2-
loop. It was shown that among all sources of flavor violation the trilinear chirality changing
interactions can particularly contribute to the Higgs mass without being in conflict with
other observables.

In this section we work in the weak basis for quarks and squarks and with mass
eigenstates of the scalar Higgs sector. The interaction of interest is induced by the (real)
soft SUSY-breaking trilinear coupling

Lsoft ⊃ −T
u
23sβ√

2
h c̃†Lt̃R −

T u32sβ√
2

h t̃†Lc̃R +−T
u
33sβ√

2
h t̃†Lt̃R + h.c. , (4.16)

where we decompose the T uij coupling in a product of the (i,j) entries of the up-type Yukawa
(3× 3)-matrix yuij and of the MS-enhanced matrix Auij , i.e. T uij = yuijA

u
ij .

In the following we elaborate how a 1-loop analysis allows for the inclusion of contri-
butions which are of highest power in (Au23A

u
33/M

2
S) in leading QCD order. We consider

matching of Green functions Γt̄th, Γt̄ch and Γh4 , where the external quarks c and t are the
up-type quarks of the second and third generation defined in the weak basis. Analogous to
eq. (2.7) the matching results in a relation of the Yukawa couplings in the SM and MSSM
which is expanded in loops, ŷuij = sβy

u
ij +∆yuij . As in eq. (4.3), 1-loop threshold corrections

for the Yukawa couplings ŷu33, ŷu23 and the quartic λ̂ include enhancements by the trilinear
parameters Auij . We focus on 1-loop contributions which contain Au33/MS and Au23/MS

∆yu33|Au33
= sβy

u
33g

2
3a(t̃,t̃)

Au33
MS
⊃ t

t̃R t̃L

t
g̃

h

+ · · · , (4.17)

∆yu23|Au23
= sβy

u
23g

2
3a(t̃,c̃)

Au23
MS
⊃ t

t̃R c̃L

c
g̃

h

+ · · · , (4.18)

∆λ|(Au33A
u
23)2 = s4

β(yu33 y
u
23)2c(t̃,c̃)

(
Au33A

u
23

M2
S

)2

⊃

h h
t̃R

t̃L

h h
t̃R

c̃L + · · · , (4.19)

where the coefficients a(...) and c(...) are independent of Auij and β. Solving the matching
equation for the MSSM coupling yuij , including 1-loop corrections from eqs. (4.17), (4.18),
results in a power series in (g2n

3 (Au33, A
u
23)n). In consequence, the expansion of ∆λ in
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eq. (4.19) in terms of SM couplings leads to a series of (unsuppressed) highest power
contributions in Au33 and Au23

λ̂SM
∣∣∣
(ŷu33ŷ

u
23)2ĝ2l

3
= (ŷu33 ŷ

u
23)2

(
Au33A

u
23

M2
S

)2
c(t̃,c̃)[

1 + ĝ2
3a(t̃,t̃)

Au33
MS

]2 [
1 + ĝ2

3a(t̃,c̃)
Au23
MS

]2 . (4.20)

Now we ask if there exist explicit multi-loop corrections to ∆λ or to ∆yuij (in full-model
parametrization) which modify terms in eq. (4.20) (EFT-parametrization). Indeed, as in
all previous cases we can apply the arguments given in section 2.2 and conclude that the
power of Aij is maximally the power of the Yukawa coupling yij in the threshold correction:

In full-model parametrization, the highest power contributions to threshold corrections
∆λ and ∆yuij are of order O(g2n

3 (yu33A
u
33/MS)nt(yu23A

u
23/MS)ntc), for all positive integers n,

nt, ntc > 0.
This means that terms in eq. (4.20) do not receive any corrections from higher orders

and are resummed.
Similar conclusions apply for contributions to λ̂SM with no ŷu33 enhancement and more

powers in ŷu23, i.e the inclusion of 1-loop contributions O((yu23A
u
23)4) to ∆λ results in a re-

summation of O((ŷu23)4ĝ2l
3 (Au23/MS)l+4) in λ̂SM. Clearly, the discussion of the Au32 coupling

is identical.

4.3 What cannot be resummed

So far we have mainly focused on the resummation of QCD-enhanced terms ĝ2n
3 xnq . Now

we discuss, whether it is possible to resum terms ∝ ŷ2n
q x2n

q , where the powers of xq are
related to the powers of Yukawa couplings. Such terms are of particular interest, since
at a given loop order they are of higher power in xq than the g3-enhanced terms. The
answer is no. As derived in section 2.2, the maximal power of xq (unsuppressed) in explicit
contributions to threshold corrections is given by the power of Yukawa couplings yq. Thus,
the reparametrization of threshold corrections in terms of EFT couplings alone cannot
completely capture highest-power terms of O((ŷtxt)nt(ŷbxb)nb). If no other restrictions
are invoked, our analysis has implications on the limits of reorganizing the perturbative
expansion:

• one cannot resum O((ŷtxt)nt(ŷbxb)nb) in corrections yq,

• one cannot resum O((ŷtxt)nt(ŷbxb)nb) in corrections λ̂SM.

Note that the discussion around eq. (4.15) leads to a resummation for pure Yukawa
orders unrelated to QCD, which is consistent with the given remarks.

5 Conclusions

In this paper we established all-order statements on the appearance of the parameters xq in
MSSM Green functions and threshold corrections between MSSM and SM couplings in the
context of minimal subtraction schemes DR and MS. We focused particularly on the quartic
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Higgs coupling λ. The optimum setting for the statements is full-model parametrization,
i.e. perturbative expansion in terms of MSSM couplings including, if needed, truncation of
the expansion at fixed order in terms of these couplings.

In full-model parametrization our first main statements are constraints on the thresh-
old corrections ∆yq and ∆λ, see eqs. (2.9) and (2.11), stating which powers in the xq
parameters are forbidden. These statements generalize results from the literature focusing
on constraints for powers of tan β in ∆yb [33, 70]. Our second set of statements are con-
straints on powers of xq in the Green functions Γq̄qh and Γh4 , see eqs. (3.1) and (3.3). These
constraints are weaker than the ones on threshold corrections; the higher-power xq contri-
butions to the Green functions originate from an integration region where the internal loop
momenta are soft. The consistency of the constraints on ∆λ and Γh4 has been illustrated
by an explicit matching calculation of Γh4 in the broken phase in section 3.2. There the
cancellation of powers x≥4

q contributions at O(y4
qg

10
3 ) was explicitly demonstrated.

We remark that the constraints presented here are specific to minimal subtraction
schemes. For example, the appearance of xnq -terms in Green-functions renormalized in the
on-shell scheme is different, see e.g. [70].

One practical relevance of the threshold constraints is that they often lead to an ef-
fective resummation of (sub-)leading xq-contributions: many calculations are done in a
context where the Yukawa couplings are fixed by low-scale parameters. This requires the
full-model Yukawa coupling yq to be determined in terms of the EFT coupling ŷq. This
procedure inverts and combines fixed-order relations and thereby generates terms of higher
orders in loops and in xq. Using the derived constraints one can prove that certain tow-
ers of terms are actually correct, i.e. “resummed” at all orders. In section 4.1 we gave a
general description of the towers of the resummed terms in xq, or in the context of related
parameters such as Aq and tan β. As a special case we identified that the well-known
tan β-resummation in the bottom Yukawa coupling works analogously for λ̂ and therefore
for the Higgs mass. In section 4.2 we explored a plethora of multi-loop structures which
are subject to this parameter resummation. We gave analytic expressions for all-order
contributions to λ̂ for the dominant parameter-enhanced terms, i.e. (sub)leading powers of
tan β, Aq or xq.

Here we summarize the relevant properties why this resummation of highest power
terms in the BSM parameter xq is possible.

• Matching in full-model parametrization: the matching of Green functions at a fixed
order yields threshold corrections where each factor of xq is necessarily accommodated
by a factor of full-model Yukawa coupling yq.

• Decoupling of yq and xq through reparametrization: the threshold corrections are then
reparametrized in terms of EFT parameters. Because of the structure of the Yukawa
matching, reparametrizing decouples the maximal power of xq from the power in the
EFT Yukawa coupling ŷq. As a result the threshold corrections contain terms of
O(ŷq(ĝ2

3xq)n), i.e. terms where each additional order in g2
3 is accompanied by a factor

of xq.
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• Correctness of the reparametrization terms with higher power in xq: by following the
arguments given in section 2.2 (or in section 3.1), one can check that such terms,
which are leading or subleading in xq, are correctly “resummed” for any n, even
though they are generated from a fixed-order calculation via reparametrization.

Clearly, similar analyses may be carried out for other BSM parameters if similar proper-
ties apply.
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A Leading contributions from LME and effective vertices

In this appendix we list the effective vertices appearing in a large mass expansion (LME)
of diagrams with at least one heavy internal propagator. First, we analyze the relevant
Higgs-fermion interactions which lead to non-trivial xq contributions. Second, we discuss
gluon interactions by invoking arguments from SU(3)C BRST invariance. We are interested
in vertices which have a non-negative mass dimension and no v/MS-suppression. Thus, the
selection of effective vertices we have to inspect is finite. We further focus on contributions
with minimal powers in the Yukawa coupling and maximal powers in the QCD gauge
coupling. For such contributions we inspect the highest power xq contributions which are
unsuppressed i.e. ∝ (v/MS)0.

A.1 Effective vertices with fermions and the quartic interaction of Higgs
bosons

The procedure of a LME naturally produces the structure of an EFT. The effective vertices
arise from applying Taylor operations on one-light-particle irreducible (1LPI) diagrams.
Here we carry out a dimensional analysis of the effective vertices arising in this way, with
focus on the appearance of xq. Symbolically our notation of the expressions is given as

T{m,p}



l

l

l

l


=

l

l

l

l

≡ ∆vl4 ⊃ x≤jq , (A.1)

where the blob on the left-hand side denotes a 1LPI Green function with light external
fields l of mass scale m and with external momenta p. The symbol T denotes the Taylor
operator with respect to the indicated variables, which by definition acts on the Feynman
integrand. On the right-hand side, ∆vl4 represents the effective vertex, which is a power
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series in 1/MS . Furthermore, in eq. (A.1) the notation “∆v ⊃ x≤jq ” specifies that only
terms with x≤jq appear in the effective vertex, while terms with x>jq are absent.

As outlined in section 2, the diagrammatic contributions enhanced by the squark mix-
ing parameter xq arise in two ways:

• by the trilinear coupling of the Higgs bosons with the left- and right-handed squarks
in eq. (2.1) which is accompanied by a factor of the Yukawa coupling

• by the chirality flip vertex, induced by the off-diagonal entry in the squark-mass
matrix eq. (2.4), which is accompanied by a factor of quark mass mq ∝ m and the
scale MS .

At leading QCD order there are no internal vertices with a Yukawa coupling and hence no
internal Higgs boson propagators. Therefore, trilinear squark-Higgs vertices are only pos-
sible at couplings with the external Higgs lines, and the number of possible xq enhanced
trilinear vertices is bounded by the number of external Higgs lines associated with the
effective vertex ∆v. In stark contrast, the chirality flip vertex in the internal squark propa-
gator could be inserted arbitrarily often at any fixed loop order. Nonetheless, dimensional
analysis can be applied in order to establish a relation between the number of chirality flips
and the power of the mass suppression factor m/MS as follows.

For the detailed analysis we fix ∆v to be an effective vertex with nh external Higgs
boson lines of mass dimension nd, i.e. [∆v] = [mass]nd . Furthermore, we allow for nI
chirality flip insertions in the squark lines. For this case, the highest-power xq contribution
to the effective vertex is given by

∆v ⊃ (yqxqMS)nh (mMSxq)nI
∫
k
T{m,p}f(m, p,MS , k) , (A.2)

where the common appearances of xq and the Yukawa coupling, the mass m and MS has
been made explicit. The evaluation of the leading term in the Taylor expansion leads to a
loop integral function which depends on the physical scale MS only 16

∆v ⊃ (yqxqMS)nh (mMSxq)nI pnpI(MS)
[
const +O

(
m, p

MS

)]
, (A.3)

=(yqxq)nh(xqm)nd−nppnp
(
xq

m

MS

)nI+np−nd [
const +O

(
m, p

MS

)]
, (A.4)

where np represents the minimum power in the external momentum p required for the
effective vertex (the precise Lorentz structure of the effective vertex can be ignored and is
not specified). In the last equation we used the fact that ∆v is of mass dimension [mass]nd .
For nd > nI the dimensional analysis does not forbid contributions to the effective vertex
with positive powers in MS .17

The previous equations elucidate that for a fixed vertex function (with fixed nh, nd,
np), each additional internal squark chirality flip results in an additional mass suppression

16We want to stress that terms with less powers in xq have been neglected.
17Additional arguments have to be invoked in order to inspect all diagrammatic contributions to an

effective vertex without spurious MS enhancement related to chiral symmetry, gauge symmetry or SUSY.
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factor m/MS . For the especially interesting case np = 0, the maximal power of xq without
mass suppression is realized for nd = nI , and this maximal power is xnd+nh

q ⊂ ∆v.
Eq. (A.2) implies that a product of effective vertices Πn

i=1∆vi behaves the same way
as the expression on the r.h.s. of eq. (A.4), i.e. the product of effective vertices can be
expressed with indices n′h, n′I and n′d obtained from the respective sum of the indices (nh)i,
(nI)i and (nd)i of the individual effective vertices ∆vi.

We note that the reasoning does not depend on the number of fermions coupled to
Higgs bosons by the effective vertex ∆v. Furthermore, the arguments are also independent
of the specific order in the QCD coupling g3.

In the following we list the results from analyzing diagrammatic contributions with
non-negative mass dimension by this procedure. The following results thus correspond to
explicit versions of eq. (A.4), specialized to these vertices. On the r.h.s. we always specify
only the leading terms and suppress possible factors

[
const +O

(
m,p
MS

)]
. As in section 3 we

will denote effective vertices which contain unsuppressed xq contributions by gray squares.
In contrast, effective vertices without xq enhancement are represented by white squares.

(1) effective Higgs-quark vertex ∆vq̄qh:

q q

h

⊃ yqg2k
3 x≤1

q

(
xq

m

MS

)nI
(A.5)

(2) effective quark propagator insertion ∆vq̄q:

q q
≡ ∆vq̄q = ∆vm + ∆v/p (A.6)

∆vm ⊃ g2k
3 mx≤1

q

(
xq

m

MS

)nI−1
(A.7)

∆v/p ⊃ g2k
3 /p x

0
q

(
xq

m

MS

)nI
(A.8)

(3) effective quartic Higgs vertex ∆vh4 :

h

h

h

h

⊃ y4
qg

2k
3 x≤4

q

(
xq

m

MS

)nI
(A.9)

(4) effective gluon-quark vertex ∆vgq̄q:

q q

g

⊃ g2k+1
3 x0

q

[
γµ +O

(
pµ,mγµ

MS

)](
xq

m

MS

)nI
.

(A.10)
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(5) effective vertex for gluon interactions ∆vg3 and ∆vg4 : by covariant decomposition
and dimensional analysis it follows that xq enhanced contributions are suppressed as

g g

g

⊃ g2k+1
3 (ηµνpσ)

(
xq

m

MS

)nI
, (A.11)

g

g

g

g
⊃ g2k+1

3 ηµνησρ
(
xq

m

MS

)nI
. (A.12)

A.2 Effective vertices with gluons, ghosts and Higgs bosons

For the following effective vertices involving external gluons and Higgs bosons, we extend
the reasoning by arguments based on BRST invariance and its consequences. To exemplify
why this is helpful, we consider a diagrammatic contribution to the gluon propagator Γgg.
Based on a Taylor expansion (at leading order) and dimensional analysis one might evaluate
individual diagrams as

T
g g

⊃ g2k
3 (MS +m)2ηµν +O(pµpν , ηµνp2), (A.13)

where the T denotes that the corresponding loop integrand is Taylor expanded in m and
p. The leading term in the LME absorbs UV contributions from heavy fields (MS � m)
in the effective vertices of light fields present in the EFT. Thus, the effective vertex can be
regarded as a construction of decoupling coefficients of operators in the EFT Lagrangian
of the SM which in turn is invariant under SU(3)C BRST transformations.

Individual diagrams indeed behave in the way shown in eq. (A.13). However, after
the inclusion of all diagrams to Γgg the entire contribution has to be proportional to the
transverse projector Tµν ∝ pµpν − p2ηµν . Relying on the existence of a BRST invariant
EFT implies transversality also after Taylor expansion, i.e. the full result in eq. (A.13) is
independent of the (MS +m)2 term at each order,

∑
heavy lines≥1

g g
T ≡

g g
∝ g2k

3 Tµν . (A.14)

In the following we continue our list of effective vertices. In each case we now as-
sume a summation over all contributing diagrams to ensure the cancellation of spurious
contributions analogous to the ones on the r.h.s. in eq. (A.13).

(6) gluon-gluon effective vertex ∆vgg: having discussed the transverse structure of the
effective vertex, we can link the contributions in eq. (A.14) to the master formula in
eq. (A.4). In that formula the transversality now implies the momentum dependence
np ≥ 2, and as a result the xq appearance can be characterized as

g g
⊃ g2k

3 Tµν
(
xq

m

MS

)nI
. (A.15)
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(7) effective Higgs-gluon vertex ∆vggh and ∆vgghh: the Higgs-gluon interactions can be
associated to dimension 6 (or higher) operators in the corresponding EFT and as
before we obtain np ≥ 2 in eq. (A.4). Therefore, these effective interactions are
constrained as follows,

g g

h

⊃ y2
qg

2k
3 (p2)µν

(
v

M2
S

)(
xqmq

MS

)nI
, (A.16)

g

g

h

h
⊃ y2

qg
2k
3 (p2)µν

(
1
M2
S

)(
xqmq

MS

)nI
, (A.17)

where (p2)µν represents a vertex-dependent bilinear combination of the external mo-
menta. Importantly, both contributions are suppressed by large MS .

(8) effective ghost-antighost vertex ∆vc̄c: the effective vertices involving ghosts can be
discussed in a similar way. Due to BRST invariance, the effective QCD ghost-
antighost vertex ∆vc̄c obeys a proportionality to the squared external momentum
p2, resulting in suppressed xq-enhanced contributions

c c
⊃ g2k

3 p2
(
xqm

MS

)nI
. (A.18)

(9) effective ghost-gluon vertex ∆vgc̄c: this effective vertex can be directly evaluated by
covariant decomposition and dimensional analysis as

c c

g

⊃ g2k+1
3 pµ

(
xqm

MS

)nI
. (A.19)

There are further QCD related interactions, trilinear and quartic, involving Higgs, ghosts
and gluons, which we do not list. Because of BRST invariance such interactions are associ-
ated with higher dimensional operators in the EFT and are necessarily suppressed at least
by a factor of p/MS .

In summary, using eq. (A.4) we have established the properties that are necessary for
classification of eqs. (3.8), (3.9), (3.10):

• The crucial behavior of the effective vertices in eq. (3.8) is characterized by nd < 0.
Eq. (A.4) implies, irrespectively of the specific xq appearance, that any contribution
is suppressed at least by a factor of v/MS .

• The effective vertices in eq. (3.9) are described by nd = np and nh = 0. Therefore,
no positive xq power can originate at O((v/MS)0).

• The central effective vertices in eq. (3.10) which introduce positive powers of xq arise
in two ways. On the one hand the two-quark vertex in eq. (A.7) has the property
nd > np and on the other hand the effective vertices in eqs. (A.5), (A.9) feature
nh ≥ 0 and nd = np.
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