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Abstract: String theory realisations of the QCD axion are often said to belong to the
anthropic window where the decay constant is around the GUT scale and the initial mis-
alignment angle has to be tuned close to zero. In this paper we revisit this statement by
studying the statistics of axion physics in the string landscape. We take moduli stabilisation
properly into account since the stabilisation of the saxions is crucial to determine the phys-
ical properties of the corresponding axionic partners. We focus on the model-independent
case of closed string axions in type IIB flux compactifications and find that their decay
constants and mass spectrum feature a logarithmic, instead of a power-law, distribution.
In the regime where the effective field theory is under control, most of these closed string
axions are ultra-light axion-like particles, while axions associated to blow-up modes can
naturally play the role of the QCD axion. Hence, the number of type IIB flux vacua with
a closed string QCD axion with an intermediate scale decay constant and a natural value
of the misalignment angle is only logarithmically suppressed. In a recent paper we found
that this correlates also with a logarithmic distribution of the supersymmetry breaking
scale, providing the intriguing indication that most, if not all, of the phenomenologically
interesting quantities in the string landscape might feature a logarithmic distribution.
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1 Introduction

The Peccei-Quinn mechanism is without any doubt the most elegant solution to the strong
CP problem. It postulates the existence of an anomalous global U(1)PQ symmetry which
is spontaneously broken at fa. The corresponding Goldstone boson is the so-called QCD
axion a which enjoys a continuous shift symmetry. QCD instantons lift the axionic di-
rection and provide a minimum where CP is conserved. The QCD axion develops a
mass of order ma ∼ Λ2

QCD/fa and naturally contributes to the dark matter (DM) abun-
dance. The phenomenologically allowed window for the axion decay constant fa is given
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by 109 GeV . fa . 1012 GeV, where the lower bound is due to astrophysical and direct ob-
servations while the upper bound comes from the requirement to avoid DM overproduction
if the initial misalignment angle takes natural O(1) values.

This scenario for the solution of the strong CP problem relies on some assumptions
which have to be checked in a UV complete embedding. Some crucial questions which need
to be answered are: (i) What is the origin of the axion shift symmetry?; (ii) What dynamics
breaks U(1)PQ spontaneously and sets the value of fa?; (iii) Is fa related to other important
physical quantities like the Planck scale Mp, the string scale Ms, the GUT scale MGUT,
the Kaluza-Klein scale MKK or the scale of soft supersymmetry breaking terms Msoft?; (iv)
what dynamics breaks U(1)PQ explicitly and sets the value of ma?; (v) Is ma generated by
QCD instantons or by other effects?: (vi) How many axion-like particles (ALPs) can arise
from UV physics?; (vii) What is the allowed range of fa and ma for these ALPs?

Several studies performed during the last 15 years revealed that string theory can pro-
vide a successful answer to many, if not all, of the previous questions [1–4]. However string
theory admits a plethora of 4D solutions which goes under the name of string landscape.
Even if all 4D string vacua share some generic features about axion physics, the number of
axions and the corresponding values of fa and ma take different values in different string
vacua. In order to make contact with observations, it is therefore crucial to perform a sta-
tistical analysis of the distribution in the string landscape of phenomenologically relevant
quantities like fa and ma which determine the axion DM abundance.

As stressed in our recent paper [5] where we derived the distribution of the supersym-
metry breaking scale in the string landscape, these statistical studies need to be based on
a solid understanding of moduli stabilisation. In the case of axion physics, the motivation
is the following. We shall focus on the type IIB flux compactifications which provide a
well-defined subset of the string landscape. A model-independent origin of 4D axions is
provided by the higher-dimensional gauge form C4 which gives rise to pseudoscalars with
a continuous shift symmetry when reduced on internal 4-cycles Σi

4: θi =
∫

Σi4
C4. These

axions are the imaginary parts of the Kähler moduli Ti = τi+i θi whose real parts τi control
the volume of Σi

4 in string units. Due to a combination of supersymmetry, scale invariance
and the axionic shift symmetry, at tree-level each Ti is a flat direction [6]. The axionic
directions θi are lifted by instantons which preserve only a discrete shift symmetry. On the
other hand, the saxions τi can be stabilised either at perturbative or at non-perturbative
level. Let us comment on the implications of these two situations for axion physics:

• If a given saxion τ is fixed by non-perturbative physics as in KKLT models [7], the
stabilisation is at leading order supersymmetric, implying mθ ∼ mτ ∼ m3/2. Given
that the absence of any cosmological moduli problem requires mτ & O(50)TeV [8]
and m3/2 sets the mass of the superpartners which cannot be lower than the TeV-
scale, in this case the axion θ is generically very heavy, and so cannot play the role
of the QCD axion [4].

• If τ is stabilised by perturbative physics (such as α′ and/or string loop corrections
to the Kähler potential), at this level of approximation mτ ∼ m3/2 while mθ = 0. In
the regime where the effective field theory (EFT) is under control, i.e. where non-
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perturbative contributions are exponentially suppressed with respect to perturbative
terms, instanton effects will lift θ while inducing negligible corrections to the stabili-
sation of τ . This would produce the mass hierarchy mθ � mτ ∼ m3/2 which identifies
θ as a promising QCD axion candidate with θ ' a/fa.

Besides focusing on models where τ is fixed at perturbative level, the other conditions
to be checked to get a viable QCD axion are that θ couples to the QCD sector coming
from stacks of D7-branes,1 and that stringy instantons generate a mass mθ,str for θ which
is smaller than the one developed by QCD instantons, i.e. mθ,str � Λ2

QCD/fa.
If all these conditions are satisfied, one has still to derive the value of fa which deter-

mines all the main phenomenological properties of the QCD axion: its mass, its couplings
and its contribution to the DM abundance. Depending on the topology of the 4-cycle Σ4,
fa can be either of order MKK for bulk cycles, or of order Ms for blow-up modes [2, 4].
In a given moduli stabilisation framework, these two fundamental scales can be explic-
itly written down in terms of the underlying parameters (like the string coupling gs and
the vacuum expectation value of the tree-level superpotential W0) which depend on flux
quanta. By exploiting the known distributions of gs and W0 in the flux landscape [10], one
can therefore derive the distribution of fa. We shall perform this analysis by focusing on
the Large Volume Scenario (LVS) [11, 12] which fixes some Kähler moduli at perturbative
level, and find that fa features a logarithmic distribution.

We shall consider two possible realisations of the QCD axion: (i) axions associated
to blow-up modes, and (ii) axions associated to bulk cycles. In case (i) fa is indepen-
dent on the Standard Model (SM) gauge coupling, while in case (ii) the decay constant is
fixed around the GUT scale by the requirement of reproducing the observed visible sector
gauge coupling αSM. Hence, once we focus on phenomenologically relevant vacua with
α−1

SM ∼ O(10-100), only axions associated to blow-up modes feature a logarithmic distribu-
tion of fa. However we consider this to be the generic situation for vacua where the EFT
is under control since axions from bulk cycles require an anisotropic shape of the extra
dimensions which corresponds to a tuned situation for moduli stabilisation. The reason is
the interplay between two conflicting conditions: the low-energy 4D EFT can be trusted
only for large values of the internal Calabi-Yau (CY) manifold, while α−1

SM ∼ O(10-100)
implies that the 4-cycle supporting the SM brane system cannot be too large.

This result confirms the naive expectation that a generic 4D string model is charac-
terised by a QCD axion with a GUT scale decay constant which would overproduce DM
if the initial misalignment angle θin is not tuned close to zero. However it also shows that
string vacua with a QCD axion with an intermediate scale fa and an O(1) value of θin are
not so rare since the number of flux vacua grows with fa only as a logarithm, instead of a
power-law.

Interestingly, in [5] we found that also the distribution of the gravitino mass in the flux
landscape is logarithmic,2 providing the intriguing indication that most, if not all, of the

1Notice that when the QCD sector lives on D3-branes at singularities, C4-axions are eaten up by anoma-
lous U(1) and the QCD axion arises from open string modes [9].

2To be more precise, in [5] we concluded that the distribution of the gravitino mass is logarithmic in LVS
models and power-law in KKLT scenarios. However recent explicit constructions of KKLT models [13–15]
might indicate a logarithmic distribution also for the KKLT case.
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phenomenologically interesting quantities in the string landscape might feature a logarith-
mic distribution. Once the distributions of more than one phenomenological quantity are
known, it is important to look at potential correlations among them. In our case, we find
that vacua with an intermediate scale fa are also characterised by TeV-scale soft-terms, as
typical of LVS models [16].

Let us finally mention that a generic CY gives rise to many Kähler moduli in the
4D EFT. If several of them are stabilised by perturbative effects, only one of them will
play the role of the QCD axion while all the others would behave as ALPs which tend to
be ultra-light in the regime where the computational control over the EFT is solid. These
ALPs have interesting applications to DM [17], dark radiation [18–21] and astrophysics [22,
23]. We shall therefore derive also the distribution in the flux landscape of the decay
constants, the mass spectrum and the DM contribution of stringy ALPs, finding again a
logarithmic dependence.

One may wonder whether our findings provide a trustable representation of the generic
situation for axion physics in the flux landscape since they are based on the LVS framework
while other moduli stabilisation mechanisms at perturbative level have been proposed [24].
However recent studies of the Kähler cone of CY manifolds with a large number of Kähler
moduli h1,1 revealed that, in the regime where the volume of each holomorphic curve is
larger than the string scale so that the α′ expansion is under control, the overall volume
in string units grows as V & (h1,1)7 [25]. This clearly implies that for a generic CY with
h1,1 ∼ O(100), the EFT can be under control only if the moduli are fixed at V & O(1014).
Given that only LVS models yield an exponentially large CY volume which can naturally
account for such a large value of V, we believe that the genericity of our results is rather
robust. Ref. [26] presented an explicit LVS moduli stabilisation procedure which can lead
to an exponentially large CY volume for arbitrarily large h1,1 exploiting instantons on del
Pezzo divisors and O(α′3) corrections at O(F 2) and O(F 4) (where F denotes an F-term).
This moduli stabilisation scenario leads to several ultra-light axions in agreement with the
expectation of [25].

Moreover, refs. [27, 28] derived the distributions of the axion decay constants and
masses for different values of h1,1 but at a given point in the moduli space, focusing in
particular on the tip of the so-called stretched Kähler cone, i.e. the point closest to the
origin which allows to keep the EFT under control. Interestingly, they found that the mean
value of fa decreases as h1,1 increases. Our results are complementary to the ones of [27, 28]
since we included moduli stabilisation and worked out the distribution of fa and ma as a
function of flux quanta, i.e. moving in the moduli space at fixed h1,1. The results of [27, 28]
can be integrated with ours since they provide the boundaries of the region in moduli
space where the EFT is under control and our logarithmic distributions can be trusted,
i.e. our logarithmic distributions are valid for fa . fa,max(h1,1) or ma . ma,max(h1,1) with
fa,max(h1,1) and ma,max(h1,1) as given in [27, 28] as a function of the number of Kähler
moduli h1,1.

Similar considerations apply to the comparison of our findings with the ones of [29]
which noticed that, in the presence of N � 1 ALPs which are effectively massless, there
is just a linear combination of them which couples to photons. Ref. [29] derived the
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distribution of the corresponding ALP-photon coupling gaγγ as a function of N (with N ∼
h1,1) at a fixed point in moduli space, choosing again the tip of the stretched Kähler cone.
For type IIB flux vacua, they found gaγγ(N) ∼ 10−21N4 GeV−1 which, according to our
previous considerations, can be considered as a lower bound for a logarithmic distribution
of gaγγ as a function of different flux vacua at fixed N , when moduli stabilisation is taken
into account along the lines of our paper.

This paper is organised as follows. In section 2 we discuss in depth the interplay
between axion physics and moduli stabilisation. We first describe in detail an example
with h1,1 = 4 where the QCD axion can arise from either a bulk or a blow-up cycle,
and then we discuss a more general example with arbitrarily large h1,1. In section 3 we
derive the distribution in the type IIB flux landscape of several quantities of axion physics
relevant for phenomenology: decay constants, masses, DM abundance, axion couplings to
gauge bosons and axion dark radiation in Fibre Inflation models [26, 30–36]. We discuss
our results and present our conclusions in section 4. Three appendices are devoted to
provide technical details: appendix A gives the details of the axion canonical normalisation;
appendix B provides a few benchmark points which reproduce the observed fuzzy DM
abundance for ultra-light stringy ALPs; appendix C shows the distribution of additional
quantities relevant for phenomenology, like moduli masses and the reheating temperature
from moduli decay, which also feature a logarithmic distribution in the flux landscape.

2 Axions and moduli stabilisation

As explained in section 1, axions can be light (i.e. much lighter than the gravitino and the
soft terms) only if supersymmetry is broken and the corresponding saxions are fixed at
perturbative level. Moreover models with a large number of Kähler moduli require a huge
CY volume to keep control over the α′ expansion. These two considerations single out type
IIB LVS models as the best framework to study the interplay between axion physics and
moduli stabilisation.

We shall now describe moduli stabilisation for a toy-model which can feature up to 3
light axions. This model is, at the same time, simple enough to perform moduli stabilisation
in full detail, and rich enough to be a good representative of a more generic situation. In
fact, it has 1 axion which becomes as heavy as the gravitino because of non-perturbative
stabilisation, 1 ultra-light bulk axion which plays the role of an ALP, and 2 QCD axion
candidates arising from the reduction of C4 over a bulk or a local 4-cycle.

2.1 The geometry

The total number of Kähler moduli is h1,1(X) = 4 and the CY X features a K3 or T 4

divisor D1 fibred over a P1 base contained in a second divisor D2, and two additional rigid
divisors D3 and D4 with only self-intersections. The Kähler form can be expanded in a
basis of (1, 1)-forms as J = t1D̂1 + t2D̂2 − t3D̂3 − t4D̂4 where the ti are 2-cycle volumes
and the negative signs have been chosen to ensure that all 2-cycle volumes are positive (in
particular those dual to rigid divisors). The only non-vanishing intersection numbers are
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k122, k333 and k444. Explicit examples with these properties can be found in [31, 32, 37].
Thus the CY volume form looks like:

V = 1
6

∫
X
J ∧ J ∧ J = 1

2k122 t1t
2
2 −

1
6k333 t

3
3 −

1
6k444 t

3
4 . (2.1)

The 4-cycle moduli τi = 1
2
∫
X D̂i ∧ J ∧ J become:

τ1 = 1
2k122t

2
2 , τ2 = k122t1t2 , τ3 = 1

2k333 t
2
3 , τ4 = 1

2k444 t
2
4 . (2.2)

These relations can be inverted and V can be written in terms of 4-cycle moduli as:

V = α
(√

τ1τ2 − γ3τ
3/2
3 − γ4τ

3/2
4

)
, (2.3)

where α = 1√
2k122

, γ3 = 2
3

√
k122
k333

and γ4 = 2
3

√
k122
k444

.
Before dwelling on the details of moduli stabilisation, let us outline the main features

of this representative model. We assume that the SM is built on stacks of D7-branes
wrapping a 4-cycle in the geometric regime. As typical of LVS models, the internal volume
is stabilised at exponentially large values. On the other hand, the 2 blow-up modes τ3 and
τ4 are fixed at small values, and so the volume can be approximated as V ' α√τ1τ2. Given
that V is controlled by 2 moduli, we can consider 2 different regimes in moduli space:

1. Isotropic limit with SM on a local cycle: in this case τ1 ∼ τ2 � τ3 ∼ τ4. Both τ1 and
τ2 are exponentially large, and so none of them can be wrapped by the SM D7-stack
since the corresponding gauge coupling α−1

SM = τi, i = 1, 2, would be hyper-weak.
Hence the SM lives on a D7-stack wrapping the local divisor D3. τ4 and θ4 are fixed
by instantons which make both of them as heavy as the gravitino. τ1 and τ2 are fixed
by a combination of α′ and gs effects, and so the corresponding axions θ1 and θ2 are
ultra-light ALPs. τ3 is stabilised by a combination of D-terms, F-terms of matter
fields and string loops. The associated axion θ3 plays the role of the QCD axion with
a decay constant of order Ms which is around the intermediate scale for TeV-scale
soft terms.

2. Anisotropic limit with SM on a bulk cycle: in this case τ2 � τ1 ∼ τ3 ∼ τ4. τ1 and τ2
are again frozen by perturbative corrections to the Kähler potential, and τ3 by non-
perturbative contributions to the superpotential. Contrary to the previous case, τ3 is
instead stabilised by non-perturbative physics. Given that τ1 is hierarchically smaller
than τ2, the underlying CY has an anisotropic shape with 2 extra dimensions much
larger than the other 4. Thus the SM can live on the bulk divisor D1. θ1 becomes
the QCD axion with a decay constant set by the Kaluza-Klein scale associated to the
fibre divisor D1 which turns out to be of order the GUT scale. The mass of θ3 and
θ4 is around m3/2, whereas θ1 plays again the role of an ultra-light ALP.

2.2 Moduli stabilisation: leading results

The model-independent closed string moduli involve the axion dilaton S = e−φ + iC0,
h1,2(X) complex structure moduli Ua, and h1,1(X) = 4 Kähler moduli Ti = τi + i θi.

– 6 –
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Dimensional reduction yields the following tree-level Kähler potential:3

Ktree = −2 lnV − ln
(
S + S̄

)
+ ln

(
−i
∫
X

Ω ∧ Ω̄
)
. (2.4)

S and the U -moduli are fixed at tree-level by turning on the 3-form flux G3 = F3 + iSH3
which generates the superpotential:

Wtree =
∫
X
G3 ∧ Ω(U) , (2.5)

where Ω(U) is the U -dependent holomorphic (3, 0)-form of X. The complex structure
moduli and the axio-dilaton develop a mass of order m3/2, and so the associated axions
are too heavy to be relevant for low-energy phenomenology.

Because of the no-scale cancellation, the T -moduli remain flat at semi-classical order.
These directions are lifted by including non-perturbative corrections to (2.5) and perturba-
tive corrections to (2.4). Focusing just on the Kähler sector and including only the leading
order α′ effects and instanton contributions, K and W become:

K = −2 ln
(
V + ξ

2g3/2
s

)
, W = W0 +A4 e

−a4T4 , (2.6)

where ξ = −χ(X)ζ(3)
2(2π)3 with χ(X) the Euler number of X and ζ(3) ' 1.2, W0 is the vacuum

expectation value of (2.5), A4 ∼ O(1) and a4 = 2π for an ED3 wrapping D4, while
a4 = 2π/n4 for gaugino condensation on a stack of n4 D7-branes on D4.

Plugging (2.6) into the standard form of the 4D N = 1 supergravity F-term scalar
potential, we end up with (up to an overall S and U -dependent factor):

V = 8
3α2 a

2
4A

2
4

√
τ4
V

e−2a4τ4 + 4a4A4τ4 cos(a4θ4)W0
V2 e

−a4τ4 + 3ξ
4g3/2
s

W 2
0
V3 . (2.7)

Minimising (2.7) with respect to the 3 moduli V, τ4 and θ4 results in:

〈V〉= 3α
4a4A4

√
〈τ4〉W0 e

a4〈τ4〉, 〈τ4〉=
1
gs

(
ξ

2α

)2/3
, 〈θ4〉= (2k+1) π

a4
k∈Z . (2.8)

This vacuum is AdS but there exist several mechanisms to uplift it to a dS solution [38–41].
The order of magnitude of the induced moduli masses is:

mτ4 ' mθ4 ' m3/2 =
√
gs
2π

W0Mp

V
, mV ' m3/2

√
m3/2
Mp

, (2.9)

showing that the axion θ4 becomes too heavy to be relevant for low-energy phenomenology
since m3/2 sets also the order of magnitude of the soft terms, Msoft ' m3/2, which cannot
be below the TeV-scale. At this level of approximation all the other Kähler moduli are
still flat.

3Here and in the following we setMp = 1 but we will reinsert the correct powers ofMp in the main results.
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2.3 Moduli stabilisation: subleading results and axion physics

Let us now describe the stabilisation of the remaining Kähler moduli by including additional
contributions to K and W which are subdominant with respect to those considered in
section 2.2. The small parameters controlling the gs and α′ expansions are respectively
eφ � 1 and V−1/3 � 1. We shall consider the isotropic and anisotropic limits separately.

2.3.1 Isotropic limit with SM on a local cycle

In this case the SM lives on D7-branes wrapped around the ‘small’ rigid divisor D3. Because
of the well-known tension between chirality and non-perturbative effects [42], τ3 cannot be
stabilised by instantons, and so θ3, contrary to θ4, remains light and can play the role of
the QCD axion. Let us see this important issue in detail.

Moduli stabilisation. The total world-volume fluxes on the SM D7-stack and an ED3
instanton (similar considerations apply to gaugino condensation) on D3 look like:

FSM = fSMD̂3 + 1
2D̂3 −B , FED3 = 1

2D̂3 −B , (2.10)

where fSM ∈ Z and the half-integer contributions are due to Freed-Witten anomaly cancel-
lation on non-spin divisors [43, 44]. In order to obtain an O(1) instanton which contributes
to W , the B-field has to chosen as B = 1

2D̂3 so that FED3 = 0. This, in turn, gives:

FSM = fSMD̂3 , FED3 = 0 . (2.11)

The number of chiral intersections between the ED3 and the SM D7-stack is then given by:

ISM−ED3 =
∫
X

(FSM −FED3) ∧ D̂3 ∧ D̂3 = k333fSM . (2.12)

These zero modes can kill the ED3 contribution to W if they develop vanishing vacuum
expectation values, as expected for visible sector fields in order not to break any of the
SM gauge symmetries at high energies. In fact, the gauge flux FSM in (2.11) induces the
following U(1)-charge for the modulus T3:

qT3 =
∫
X
FSM ∧ D̂3 ∧ D̂3 = k333fSM , (2.13)

and W has to be gauge invariant. This implies that the prefactor of the non-perturbative
W has also to depend on charged matter fields. Considering for simplicity just a single
open string field φ, the relevant U(1) transformations are:

δφ = iqφφ , δT3 = i qT3

2π . (2.14)

Thus the non-perturbative superpotential (including the possibility of gaugino condensa-
tion):

WED3 = A3 e
−a3T3 with A3 = Aφn and a3 = 2π

n3
, (2.15)
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transforms under the anomalous U(1) as:

δWED3 = WED3

(
n
δφ

φ
− 2π

n3
δT3

)
= iWED3

(
n qφ −

qT3

n3

)
, (2.16)

implying that WED3 can be gauge invariant if n = qT3/(n3qφ). As can be clearly seen
from (2.15), A3 = 0 if 〈φ〉 = 0 (for n > 0).

This problem comes along with the following correlated issue. A non-zero gauge flux on
the D7-stack generates also a moduli-dependent Fayet-Iliopoulos term of the form [45, 46]:

ξSM = 1
4πV

∫
X
J ∧ FSM ∧ D̂3 = −qT3

4π
t3
V

= −fSM
√

2k333
4π

√
τ3
V

. (2.17)

If 〈φ〉 = 0, a vanishing D-term potential requires ξSM = 0 which, in turn, implies τ3 → 0,
causing the collapse of the divisor D3 to a singularity. This shrinking can be avoided in 2
ways: (i) by considering a slightly different geometry where the 2 rigid divisors D3 and D4
intersect each other so that ξSM = 0 would just fix τ3 in terms of τ4; (ii) by considering
the case where φ is a SM gauge singlet (like a right handed sneutrino) which can develop
a non-zero vacuum expectation value by D-term cancellation.

In what follows we shall focus on the option (ii) since in the case (i) the anomalous
U(1) would become massive by eating up a combination of the θ3 and θ4, leaving no light
closed string axions to behave as the QCD axion.

The D-term potential reads (taking, without loss of generality, φ as a canonically
normalised field):

VD = g2
SM
2
(
qφ|φ|2 + ξSM

)2
. (2.18)

A vanishing D-term potential then fixes the open string field at:

〈|φ|2〉 = n

4π
t3
V

= c

√
τ3
V

with c = n

4π

√
2
k333

. (2.19)

The anomalous U(1) becomes massive by eating up a combination of θ3 and the phase θφ
of φ = |φ| eiθφ . Its mass is given by:

M2
U(1) ' g

2
SMM

2
p

(
f2

op + f2
cl

)
, (2.20)

where:
f2

op = 〈|φ|2〉 = c

√
τ3
V

, (2.21)

is the decay constant of the open string axion θφ, while fcl is the decay constant of the
closed string axion θ3. This last quantity can be derived from the kinetic terms:

Lkin ⊃
1
4
∂2K

∂τ2
3
∂µθ3∂

µθ3 = 1
2∂µa∂

µa , (2.22)

where a ' θ3fcl is the canonically normalised axion, implying:

f2
cl = 1

2
∂2K

∂τ2
3

= 1
8

√
k122
k333

1
V√τ3

. (2.23)
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Comparing (2.21) with (2.23), it is easy to see that fop � fcl for τ3 � 1, signaling that
the combination of θ3 and θφ eaten up by the anomalous U(1) is mostly given by the
open string axion θφ since the largest contribution to MU(1) in (2.20) comes from fop [9].
Thus θ3 survives in the low-energy theory and can play the role of the QCD axion a. The
corresponding saxion τ3 develops a potential via 2 effects:

1. The F-term potential of the matter field φ generated by supersymmetry breaking
effects, after writing |φ| in terms of τ3 using (2.19):

Vmatter = m2
3/2|φ|

2 = c
W 2

0
√
τ3

V3 . (2.24)

2. The potential generated by string loop corrections to the Kähler potential due to
the exchange of Kaluza-Klein modes between the D7-stack wrapped around D3 and
O7-planes or D3-branes [47, 48]:

Vloop = cloop
W 2

0
V3√τ3

, (2.25)

where cloop is expected to be an O(1−10) coefficient which depends on the U -moduli.

The potential Vmatter+Vloop admits a minimum at 〈τ3〉 = cloop/c ∼ O(10) which reproduces
the correct order of magnitude of the SM gauge coupling g−2

SM ' 〈τ3〉. It can be easily
checked that the saxion τ3 develops a mass of order m3/2 similarly to τ4 and θ4.

Notice that T3-dependent instanton corrections to W as in (2.15) would generate a
potential of the form (using (2.19) and setting θφ = 0 and n3 = 1):

V = 32Acπ2

3α2
τ

(1+n)/2
3
V1+n e−4πτ3 + 8πAcn/2τ1+n/4

3 cos(2πθ3) W0
V2+n/2 e

−2πτ3 . (2.26)

For n = qT3/qφ ≥ 2 and 2πτ3 � 1 (i.e. the limit where higher-order instanton corrections
can be neglected), the potential (2.26) is exponentially suppressed with respect to Vmatter +
Vloop, and so it produces just a tiny shift of the minimum for τ3. On the other hand, it
would generate a mass for θ3 of order:

mθ3 '
√
K−1

33 Vθ3θ3 ∼
(
m3/2
Mp

)n−2
4

m3/2 e
−πτ3 , (2.27)

which for n ≥ 2, m3/2 . O(1010)GeV and τ3 = α−1
SM ' 25 is always subdominant with

respect to the contribution from QCD instantons ma ' Λ2
QCD/fa for any possible fa .Mp.

This guarantees that θ3 is a good QCD axion candidate.
The only saxion which remains to be fixed is the fibre modulus τ1. This field develops

a potential via string loop corrections which experience an ‘extended no-scale cancellation’
that suppresses them with respect to the leading α′ correction [49]. The resulting scalar
potential for τ1 reads [30]:4

Vgs =
(
g2
s

A

τ2
1
− B

V√τ1

)
W 2

0
V2 , (2.28)

4We neglected loop corrections suppressed by additional powers of gs � 1.
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where A and B are flux-dependent parameters. The minimum of (2.28) is located at:

〈τ1〉 = λg4/3
s 〈V〉2/3 = αλ3/2g2

s〈τ2〉 , λ ≡
(4A
B

)2/3
. (2.29)

This result has 3 important implications:

1. For α ' λ ' O(1) and gs ' O(0.1), τ1 is roughly of the same order as τ2, implying
that the CY volume is isotropic. Without loss of generality, in what follows we shall
consider αλ3/2g2

s = 1, i.e. 〈τ1〉 = 〈τ2〉.

2. The scalar potential (2.28) scales as V−10/3, and so for V � 1 it is indeed suppressed
with respect to the leading order LVS potential (2.7) which scales as V−3.

3. For V � 1 the SM cannot live either on τ1 or on τ2 since the resulting gauge coupling
would be too small. Hence the SM has to be supported by τ3.

Notice that the axions θ1 and θ2 are lifted only by tiny non-perturbative corrections to the
superpotential of the form:

W ⊃ A1 e
−a1T1 +A2 e

−a2T2 . (2.30)

with A1 ' A2 ' O(1), and ai = 2π/ni for i = 1, 2. Given that τ1 ' τ2 � 1, these effects
would make θ1 and θ2 2 ultra-light, i.e. almost massless, ALPs.

Mass spectrum and decay constants. The mass spectrum of the 3 moduli fixed at
leading order, V, τ4 and θ4 has been given in (2.9). The mass of the remaining moduli
turns out to be:

mτ3 ' m3/2 , mτ1 ' m3/2

(
m3/2
Mp

)2/3

,

mθ3 ≡ ma '
Λ2

QCD
fθ3

, mθ1 'Mp e
−πτ1/n1 , mθ2 'Mp e

−πτ2/n2 . (2.31)

Notice that α′ effects are under control when V ' τ3/2
1 ' τ3/2

2 & 103 since the corresponding
expansion parameter is V−1/3 . 0.1. In this regime the 2 ALPs θ1 and θ2 are almost
massless, mθ1 ∼ 0 and mθ2 ∼ 0, since their mass would turn out to be smaller than the
present value of the Hubble constant, H0 ' 10−33 eV, for n1 = n2 = 1. Larger values of
n1 and n2 can however raise mθ1 and mθ2 above H0, with interesting application to fuzzy
DM [17]. In what follows we shall therefore consider θ1 and θ2 as ultra-light.

The decay constants of the QCD axion θ3 and the 2 ALPs θ1 and θ2 can be derived
from canonical normalisation and take the generic form (see [4] and appendix A.1):

fθi ≡
(
ni
2π

)√
2λiMp , (2.32)

where λi is the i-th eigenvalue of the Kähler metric and ni determines the periodicity of the
cosine potential which enjoys a discrete shift symmetry (with n3 = 1 for the QCD axion).
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The details of canonical normalisation for this explicit example are provided in appendix A.
The eigenvalues of the Kähler metric (A.5) are given by 1

2τ2
2
, 1

4τ2
1
and 3αγ3

8
1
V√τ3

, and so the
decay constants become:

fθ3 ≡ fa = c3
〈τ3〉1/4

Mp√
〈V〉

, fθ1 = c1
Mp

〈τ1〉
= c1α

2/3 Mp

〈V〉2/3
, fθ2 = c2

Mp

〈τ2〉
= c2α

2/3 Mp

〈V〉2/3
,

(2.33)
where the ci’s are moduli-independent coefficients:

c3 =
√

3αγ3
4π , c1 = n1

2π
√

2
, c2 = n2

2π . (2.34)

Notice that the QCD axion decay constant scales as the string scale, fa ' Ms ' Mp/
√
V,

while the decay constants of the 2 ultra-light ALPs behave as the Kaluza-Klein scale,
fθ1 ' fθ2 'MKK 'Mp/V2/3.

The order of magnitude of all these mass scales is set by the overall volume V. An
interesting regime in moduli space is the one where W0 ∼ O(1 − 10) and V ∼ O(1014−15)
which leads to TeV-scale supersymmetry, Msoft ∼ m3/2 ∼ O(1−10)TeV, and a QCD axion
decay constant at intermediate scales, fa ∼ Ms ∼ O(1010 − 1011)GeV. Smaller values of
the CY volume, like V ∼ O(103 − 104), would push Msoft to intermediate scales and fa
around the GUT scale.

Axion couplings to gauge bosons. Other quantities which are relevant for phenome-
nology are the couplings of the axions to the gauge fields of the visible and hidden sectors.
We shall focus just on the couplings of the QCD axion and the 2 ultra-light ALPs which
we will express in terms of the corresponding canonically normalised fields a3 ≡ a, a1
and a2 (see appendix A for the details of canonical normalisation). The visible sector
lives on D3 while the hidden sector involves 2 intersecting stacks of D7-branes wrapped
around D1 and D2. Knowing that the gauge kinetic function of each sector is given by
the corresponding unnormalised Kähler modulus, and denoting the field strengths of the
canonically normalised gauge bosons respectively as Fvis, F1 and F2, we obtain:

Lax−gauge = a

fa

[
λ1
〈τ3〉

F̃visFvis +
√
〈τ3〉
〈V〉

(
λ2F̃1F1 + λ3F̃2F2

)]
+ λ4

a1
Mp

F̃1F1 + λ5
a2
Mp

F̃2F2,

(2.35)
where the λi’s are numerical O(1) coefficients. Notice that the QCD axion a has a stronger
than Planckian coupling to the visible gauge bosons while its coupling to hidden sector
degrees of freedom is very suppressed. On the other hand, the 2 ALPs have a standard
O(1/Mp) coupling to hidden gauge bosons but they are decoupled from the visible sector.
These results are due to the combination of two effects: (i) the visible sector lives on
a shrinkable del Pezzo D3 which has no intersection with the bulk divisors D1 and D2;
(ii) the axions θ1 and θ2 are in practice massless.

2.3.2 Anisotropic limit with SM on a bulk cycle
In LVS scenarios the SM can be realised on a stack of D7-branes wrapped around a bulk
cycle only if the underlying geometry has an anisotropic shape. In this case the overall
volume can be exponentially large in agreement with a SM gauge coupling which is not
too small.
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Moduli stabilisation. We focus on the case where the SM lives on the K3 or T 4 fibre
D1. Hence the visible sector gauge coupling is given by α−1

SM = τ1 ' O(10-100). Given
that V ' α√τ1τ2 is exponentially large, the internal geometry needs to be anisotropic with
2 extra dimensions much larger than the other 4. This can be achieved via the following
moduli stabilisation procedure:

• V, τ4 and θ4 are stabilised as in (2.8) and the CY volume becomes exponentially large
in string units.

• Given that D3 is not wrapped by the SM D7-stack, the non-perturbative superpo-
tential (2.15) is not suppressed anymore due to chiral intersections with visible sector
states. Hence the freezing of τ3 and θ3 is completely similar to the stabilisation of τ4
and θ4. Contrary to the isotropic scenario, in this case θ3 acquires a mass of order
m3/2 and plays no role for low-energy physics.

• The fibre divisor τ1 is stabilised by string loop corrections as in (2.29) but with
αλ3/2 = 1 and gs � 1.5 This results in the following hierarchy:

〈τ1〉 = g2
s 〈τ2〉 � 〈τ2〉 . (2.36)

• T1-dependent non-perturbative corrections to W would be very suppressed due to:
(i) the presence of chiral intersections as for T3-dependent instantons in the isotropic
case; (ii) the fact that D1 is a non-rigid cycle with extra fermionic zero modes which
tend to kill instanton contributions. Therefore the closed string axion θ1 is a perfect
QCD axion candidate which becomes massive via standard QCD instantons.

• The remaining closed string axion θ2 is an almost massless ALP which develops a
tiny mass via non-perturbative corrections to W which are exponentially suppressed
in terms of the large 4-cycle τ2.

Mass spectrum and decay constants. The mass of V, τ4 and θ4 is again given by (2.9).
The mass spectrum of the other moduli instead reads:

mτ3 ' mθ3 ' m3/2 , mτ1 . m3/2

√
m3/2
Mp

,

mθ1 ≡ ma '
Λ2

QCD
fθ1

, mθ2 'Mp e
−πτ2/n2 . (2.37)

The decay constants of the QCD axion θ1 and the ALP θ2 now become:

fθ1 ≡ fa = c1
Mp

〈τ1〉
= c1αSMMp , fθ2 = c2

Mp

〈τ2〉
= c2αSMg

2
sMp , (2.38)

5To be more precise, we envisage a situation similar to the explicit CY cases discussed in [32] where
the volume (neglecting blow-up modes) is V '

√
τ1τ2τ̃2. Due to the intersection between τ2 and τ̃2, the

Fayet-Iliopoulos term induced by gauge fluxes fixes τ2 ∝ τ̃2 for vanishing VEVs of open string fields.
An appropriate combination of closed string axions is eaten up by the corresponding anomalous U(1).
Substituting τ2 ∝ τ̃2 in V, one obtains effectively the same expression that we are considering: V ' √τ1τ2.
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where c1 and c2 are again given by (2.34) with n1 = 1 for the QCD axion θ1. Notice that
the QCD axion decay constant is proportional to the visible sector gauge coupling since
α−1

SM = 〈τ1〉 and so α−1
SM ∼ O(10 − 100) implies a GUT-scale decay constant fa ' MGUT.

Contrary to the isotropic scenario where the SM was supported on a local cycle and the
QCD axion decay constant could take different values from MGUT to intermediate scales
depending on the value of V, in this case the QCD axion decay constant is fixed at MGUT
by the requirement of reproducing the observed value of the SM gauge coupling.

Moreover, for gs . 0.1 and 〈τ1〉 & 10, (2.36) yields 〈τ2〉 & 103 which, in turn, implies
that the ALP θ2 is ultra-light, i.e. mθ2 ∼ 0. The decay constant of this ALP is set by the
Kaluza-Klein scale of the effective 6D theory since:

M6D
KK '

Ms√
t1
' Mp

ατ2
' fθ2 . (2.39)

Interestingly, this scale is one order of magnitude above the gravitino mass since:

m3/2 '
Mp

V
'
√
αSMM6D

KK ∼ O(0.1)M6D
KK . (2.40)

The decay constant fθ2 can take different values depending on the order of magnitude of
τ2. Varying τ2 corresponds to varying V which is mainly controlled by gs, as can be seen
from (2.8). The string coupling affects also the relation (2.36) where however τ1 has to
remain fixed to get the right SM gauge coupling. This can be achieved by varying W0 as
well. Hence (2.8), (2.36) and τ1 = α−1

SM ∼ O(10−100) imply an interesting relation between
W0 and gs (ignoring O(1) numerical factors):

W0 ∼
(
α−1

SM
gs

)3/2

e
− a4
gs ∼ O(103) g−3/2

s e−1/gs . (2.41)

Thus this class of constructions can reproduce the right visible sector gauge coupling only
for flux vacua which satisfy the relation (2.41). This implies that larger scales are more
natural since fθ2 ' 1014 GeV can be obtained for gs ' O(0.1) and W0 ' O(1), but
fθ2 ' 1012 GeV needs gs ' O(0.01) that would require a severe tuning of W0 down to
values of order W0 ' O(10−38). We conclude that this scenario naturally predicts a QCD
axion decay constant around the GUT scale, an almost massless ALP with decay constant
around 1014 GeV and supersymmetry at intermediate scales.

Axion couplings to gauge bosons. Let us now focus on the coupling of the canonically
normalised QCD axion a1 ≡ a and ALP a2 to gauge bosons belonging to the visible sector
on D1 and hidden sectors on D2 and D3. In fact, SM particles are not charged under
the gauge symmetries of the D7-stack wrapping D3 since D3 does not intersect with D1.
Similar considerations apply to D4, and so we shall ignore the possibility of a hidden sector
on D4 since it would have the same features of the hidden sector on D3. On the other
hand, the SM degrees of freedom can be charged under the gauge group on D2 since there
is an intersection among D1 and D2. However this would still be a hidden sector since τ2
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is a big cycle, and so the corresponding gauge coupling would be hyper-weak. Thus the
relevant couplings are (see appendix A for the details of canonical normalisation):

Lax−gauge = a

Mp

[
µ1 F̃visFvis + µ2

〈τ3〉3/2

〈V〉
F̃2F2 + µ3

(
ma

mθ3

)2
F̃3F3

]
+ µ4

a2
Mp

F̃2F2 , (2.42)

where the µi’s are O(1) numerical coefficients. Notice that the QCD axion a has a standard
Planckian coupling to visible gauge bosons since it arises from a bulk cycle. On the other
hand its coupling to the hidden gauge bosons on D2 is V-suppressed, while a is essentially
decoupled from the hidden sector on D3 since (ma/mθ3)2 ∝ (ΛQCD/Mp)4 ' 10−76. The
ALP a2 features instead an O(1/Mp) coupling to hidden gauge bosons on D2 but it is de-
coupled from the other sectors. These results are again due to the fact that a2 is essentially
massless and D3 has no intersection with D1 and D2.

2.4 An example with arbitrary h1,1

A generic CY threefold is characterised by hundreds of Kähler moduli, i.e. h1,1 ∼ O(100),
and so one may wonder whether the axion physics of this more complicated case would
display features similar to the ones of the relatively simple case with h1,1 = 4 analysed
above. As we have stresses, this depends on the details of moduli stabilisation. In this
section we shall describe how to freeze all Kähler moduli for arbitrary h1,1 following [26].
We will obtain an LVS vacuum where V can be taken large enough to trust the α′ expansion.

The only requirement on the geometry is the presence of 2 blow-up modes, the first,
DSM, to host the SM and the second, Dnp, to support non-perturbative effects. This condi-
tion is not too restrictive since del Pezzo divisors arise very frequently in CY constructions.
We shall therefore consider an internal volume of the form:

V = 1
6

N∑
i,j,k=1

kijktitjtk − γSMτ
3/2
SM − γnpτ

3/2
np , with N = h1,1 − 2� 1 . (2.43)

As explained in section 2.2, the leading contributions to the scalar potential in a large-V
expansion arise from O(α′3) corrections to K and Tnp-dependent non-perturbative correc-
tions to W as in (2.6), which stabilise τnp ∼ g−1

s , θnp ∼ π/anp and V ∼ e1/gs . Similarly
to the isotropic case studied in section 2.3.1, the SM cycle τSM is instead fixed by the
interplay of D-terms, F-terms of matter fields and τSM-dependent loop corrections. This
stabilisation procedure ensures that the internal volume can be exponentially large while
τSM = α−1

SM ∼ O(10 − 100) can reproduce the observed value of the SM gauge coupling.
Moreover the axion θSM behaves as a perfect QCD axion candidate with a decay constant
of order the string scale.

At this level of approximation, there are still (N − 1) saxionic and N axionic flat
directions (without considering the QCD axion θSM which we assume to be lifted by QCD
instantons). All the (N − 1) flat saxions can be lifted by including subdominant α′ effects.
In 10D the first higher derivative corrections which modify the 4D scalar potential upon
dimensional reduction, arise at O(α′3) and scale as G2

3R
3. In 4D they generate the term

proportional to ξ in (2.7). Additional 10D O(α′3) terms scale as G4
3R

2, G6
3R and G8

3, and
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they give rise in 4D to higher F-term contributions to the scalar potential which scale
respectively as F 4, F 6 and F 8 [50]. When the superspace derivative expansion is under
control [51], these terms represent just negligible corrections to the LVS potential (2.7).
However they can be the leading effects to lift any remaining flat direction. In particular,
the form of O(α′3) F 4 corrections for an arbitrary CY X has been determined to be [50]
(ignoring the dependence on del Pezzo moduli):

VF 4 = λW 4
0

V4

N∑
i=1

Πiti , (2.44)

where λ ∝ g
−1/2
s is a positive coefficient [52] and the Πi’s are O(1) topological quantities

which can be expressed in terms of the second Chern class c2 as Πi =
∫
X c2 ∧ D̂i [50].

Notice that Πi ≥ 0 ∀i = 1, . . . , N in a basis of the Kähler cone where ti ≥ 0. The total
potential can thus be written schematically as:

Vtot = VLVS(V) + VF 4(V, ti) , (2.45)

where we have highlighted the moduli-dependence of each contribution. Extremising with
respect to the 2-cycle moduli, we obtain:

∂Vtot
∂ti

=
(
∂VLVS
∂V

− 4λW 4
0 Πktk
V5

)
τi + λW 4

0 Πi

V4 . (2.46)

Using tiτi = 3V, it is easy to realise that ti∂tiVtot = 0 implies:

∂VLVS
∂V

= 11λW 4
0

3V5 Πiti . (2.47)

Plugging this result in (2.46) we find:

Πktk
3V = Πi

τi
∀i = 1, . . . , N . (2.48)

This relation fixes (N − 1) moduli in terms of one of them, say τN , as:

τj = Πj

ΠN
τN , ∀j = 1, . . . , N − 1 . (2.49)

The positivity of λ and the Πj ’s ensures that this is a well-behaved minimum [26]. Substi-
tuting (2.49) in (2.43), we obtain:

τN = hN (kijk,Πi)V2/3 , ⇒ τi = hi(kijk,Πi)V2/3 , ∀i = 1, . . . , N , (2.50)

where hi(kijk,Πi) are functions of the intersection numbers and the topological quantities
Πi. The overall volume V is fixed by solving (2.47) which would yield just a subleading
shift of the standard LVS solution (2.8). For V ∼ e1/gs and hi ∼ O(1 − 10) ∀i, the
minimum (2.50) leads to an isotropic CY where all divisor volumes are large enough to
trust the α′ expansion.
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Given that this stabilisation is purely perturbative, at this level of approximation
N axions are still flat. They can be lifted by including non-perturbative corrections to
W which however tend naturally to give rise to axion masses below the present Hubble
constant for V & (h1,1)7 & 1014. Let us stress that for such a large value of V the SM is
naturally expected to be supported on a blow-up mode since matching τ∗ = α−1

SM ∼ O(10-
100) for a bulk cycle τ∗ would need from (2.49) a very unnatural hierarchy between Π∗ and
ΠN of order 10−8 for τN ∼ V2/3 ∼ 1010.

Mass spectrum and decay constants. The mass of the 3 moduli fixed at leading order,
V, τnp and θnp is given in (2.9). The mass spectrum of the remaining moduli becomes:

mτSM ' m3/2 , mτj ' m3/2

(
m3/2
Mp

)5/6

, ∀j = 1, . . . , N − 1 ,

mθSM ≡ ma '
Λ2

QCD
fθSM

, mθi 'Mp e
−πτi/ni ∼ 0 , ∀i = 1, . . . , N , (2.51)

where all the ALPs θi’s are essentially massless. The decay constants scale as in the
isotropic case with h1,1 = 4 analysed in section 2.3.1:

fθSM ≡ fa = cSM
〈τSM〉1/4

Mp√
〈V〉

, fθi = ci
Mp

〈τi〉
= ci
hi

Mp

〈V〉2/3
, ∀i = 1, . . . , N , (2.52)

where cSM and the ci’s are O(1) moduli-independent coefficients. The decay constant of
the QCD axion θSM scales again as the string scale, whereas the decay constant of each
ultra-light ALP is controlled by the Kaluza-Klein scale. Contrary to the case with h1,1 = 4
where values of V of order V ∼ O(103 − 104) could still be compatible with an EFT under
control, for h1,1 ∼ O(100) we should focus only on the region V & O(1014). Thus we are
naturally led to the region with TeV-scale supersymmetry and an intermediate scale QCD
axion decay constant.

Axion couplings. We assume that the SM can be realised with a stack of magnetised D7-
branes wrapped around DSM. On the other hand, the ‘big’ divisors Di, i = 1, . . . , N , can in
principle host several hidden sectors. The coupling of the QCD axion and the N ultra-light
ALPs to visible and hidden gauge bosons can be derived from the moduli-dependence of the
corresponding gauge kinetic functions. Denoting the canonically normalised QCD axion as
a, the ALPs as ai (the results of appendix A can be easily generalised to the isotropic case
with many bulk Kähler moduli), and the field strengths as Fvis and Fi, we end up with:

Lax−gauge = a

fa

[
λSM
〈τSM〉

F̃visFvis +
√
〈τSM〉
〈V〉

N∑
i=1

λ̃iF̃iFi

]
+

N∑
i=1

λ̂i
ai
Mp

F̃iFi , (2.53)

where again λSM, the λ̃i’s and the λ̂i’s are numerical O(1) coefficients. The coupling of the
QCD axion a to visible gauge bosons is enhanced with respect to 1/Mp while the coupling
to hidden degrees of freedom is V-suppressed. This is due again to the fact that DSM is a
shrinkable del Pezzo divisor and the vanishing of the mass of the N ALPs.
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3 Statistics of axion physics in the flux landscape

Building on our previous results [5], we investigate the statistical distribution in the type
IIB flux landscape of various quantities of axion physics which are phenomenologically
interesting. To this end, we first express these quantities in terms of the microscopic
parameters, as we did in section 2 via moduli stabilisation, and we then exploit their
distributions. In particular the shall consider the following distributions for the underlying
flux-dependent parameters gs andW0, and the rank n of the condensing gauge group which
generates non-perturbative corrections to the superpotential:

• The distribution of the string coupling gs is taken to be uniform. This result was
explicitly checked in [5] for rigid CY manifolds and is believed to hold for more general
cases as well [53]. Hence in the following we shall take dN ' dgs where N is the
number of flux vacua.

• Based on the seminal work [10], the tree-level superpotential W0 is assumed to be
uniformly distributed as a complex variable, resulting in dN ' |W0|d|W0|. Note
that this distribution might be different in regions where |W0| is exponentially small
since recent constructions of KKLT vacua obtained |W0| ∼ e−1/gs [13–15]. However,
as explained in section 1, KKLT vacua feature only heavy axions with a mass of
order m3/2, and so we shall focus just on regions where |W0| ∼ O(1-10) where its
distribution can be taken as uniform.

• The distribution of the rank of the condensing gauge group n in the type IIB flux
landscape is still poorly understood. All globally consistent type IIB CY models
which have been constructed so far feature contributions to the superpotential which
arise from just gaugino condensation in a pure SO(8) sector (corresponding to n = 6)
and ED3 instantons (with n = 1). It is therefore still unclear if an actual distribution
of n exists. If so, we argue that it should scale as dN ' −n−rdn with r > 0, since
the number of flux vacua N is expected to decrease when n increases as D7-tadpole
cancellation is easier to satisfy for smaller values of n.

3.1 Axion decay constants

Let us start with the axion decay constants. After evaluating the decay constants at the
minimum of the scalar potential, we compute their distributions in the flux landscape using
the scaling of the number of vacua N with the underlying parameters gs, W0 and n.

Isotropic limit. The axion decay constants in the isotropic limit are given in (2.33).
Being exponentially large, the main quantity which controls their distribution is the overall
volume V. Using (2.8), we can therefore approximate the axion decay constants as:

fa ∼Mp e
− c
gsn4 , fθ1 ∼ fθ2 ∼Mp e

− 4c
3gsn4 with c = π

(
ξ

2α

)2/3
. (3.1)
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Notice that, at leading order, the decay constants do not depend on W0. Hence we can
vary them with respect to just gs and n4, obtaining:

df = ∂f

∂gs
dgs + ∂f

∂n4
dn4 '

f

(gsn4)2 (n4 dgs + gs dn4)

' f
[
ln
(
Mp

f

)]2
(n4 dgs + gs dn4) , (3.2)

where f can be any of the 3 decay constants, fa, fθ1 and fθ2 , and in the last step we have
introduced Planck units. Using dgs ' dN and dN ' −n−r4 dn4 with r > 0, (3.2) takes the
form:

df ' n4 f

[
ln
(
Mp

f

)]2
1− c̃ nr−2

4

ln
(
Mp

f

)
 dN , (3.3)

where c̃ = c for fa and c̃ = 4c/3 for fθ1 and fθ2 . Ignoring subdominant logarithmic effects,
we therefore obtain that the distributions of the decay constants of both the QCD axion
and the 2 ultra-light ALPs scale as:

N(fa) ∼ ln
(
fa
Mp

)
and N(fθi) ∼ ln

(
fθi
Mp

)
, i = 1, 2 . (3.4)

Let us stress 3 important points:

1. Isotropic models with the SM localised on a blow-up cycle feature only a mild loga-
rithmic preference for higher values of the axion decay constants.

2. As can be seen from (3.3), for f �Mp and 0 < r ≤ 2, the distribution of f is driven
mainly by the distribution of gs. Moreover the final result (3.4) is unchanged if the
distribution of gs is taken to be power-law.

3. As can be seen again from (3.3), the unknown distribution of n4 would start being
important only for r > 2. However it is reassuring to notice that it would affect only
the form of subleading logarithmic corrections to (3.4).

Anisotropic limit. For the anisotropic case the axion decay constants are given in (2.38).
As already observed in section 2.3.2, the QCD axion decay constant is fixed around the
GUT scale, fa ∼ MGUT, by the need to match the correct SM gauge coupling. If this
phenomenological condition is dropped, however fa would feature a logarithmic distribution
as in (3.4). The same is true for the distribution of the decay constant of the ALP θ2.
However in this case the phenomenological requirement α−1

SM = τ1 ' O(10-100) still leaves
some freedom to vary fθ2 in the flux landscape since from (2.38) we have fθ2 ' n2g

2
sMGUT.

Notice that the ALP decay constant does not depend on W0 which has however to respect
the relation (2.41) to keep τ1 = α−1

SM constant when gs is varied. Differentiating fθ2 with
respect to gs and n2 we thus obtain:

dfθ2

fθ2

= ∂fθ2

∂gs

dgs
fθ2

+ ∂fθ2

∂n2

dn2
fθ2

= 2 dgs
gs

+ dn2
n2

. (3.5)
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Using again dgs ' dN and dN ' −n−r2 dn2 with r > 0, (3.5) reduces to:

dfθ2 '
√
n2
√
fθ2 MGUT

(
1− gs

2 nr−1
2

)
dN . (3.6)

For 0 < r ≤ 1, n2 ≥ 1 and gs � 1, the second term in brackets in (3.6) is always smaller
than unity. This term could instead become larger than 1 for r > 1. However, for gs . 0.1,
this would require large values of n2 which are hard to realise in explicit examples (the
largest value obtained so far is n2 = 6 for gaugino condensation in a pure SO(8) gauge
theory which would however still yield a second term of O(1) for r ≤ 3). We shall therefore
consider the term in brackets in (3.6) of order unity, and obtain:

N(fθ2) ∼
√

fθ2

MGUT
. (3.7)

Let us make 2 important observations:

1. Interestingly, we obtained now a power-law distribution for the ALP decay constant
whose scaling is however very similar to the logarithmic case due to the mild square
root dependence.

2. The distribution (3.7) holds as long as W0 can be tuned to satisfy the relation (2.41)
which implies W0 ∼ e−1/gs . In the absence of a dynamical mechanism which fixes
the flux superpotential in terms of dilaton-dependendent non-perturbative effects,
this relation would however not hold anymore when gs is taken very small. A good
estimate for the lowest value of the ALP decay constant for which (3.7) still applies,
can be obtained for gs ' 0.01 which would give fθ2 & 1012 GeV.

Model with arbitrary h1,1. As shown in section 2.4, the results of the isotropic case
with the SM on a blow-up cycle can be generalised to models with an arbitrarily large
number of Kähler moduli where all saxions can be explicitly stabilised by α′ corrections to
the scalar potential. In this case the axion decay constants are given in (2.52), and they
scale with the CY volume as in the isotropic case discussed above. Hence we expect again
a logarithmic distribution in the type IIB flux landscape as in (3.4):

N(fa) ∼ ln
(
fa
Mp

)
and N(fθi) ∼ ln

(
fθi
Mp

)
, ∀i = 1, . . . , N . (3.8)

Let us comment on the regime of validity of these distributions. They hold at fixed h1,1

when moving in the Kähler moduli space by varying microscopic parameters like gs after the
decay constants are written in terms of them thanks to moduli stabilisation. These results
are complementary to the ones of [27, 28] (see also [29] for qualitatively similar findings)
which found an approximate log-normal distribution for the axion decay constants of a
given CY model focusing at the tip of the stretched Kähler cone. Moreover they found
that the mean value of the fθi ’s decreases when h1,1 increases.

Given that the tip of the stretched Kähler cone corresponds to the smallest values
of the Kähler moduli which are compatible with a controlled α′ expansion, and the ax-
ion decay constants are inversely proportional to 4-cycle volumes, the values of the fθi ’s
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Figure 1. Distribution of the number of flux vacua as a function of the mean value of the axion
decay constants f and h1,1 with the constraint f . Mp/(h1,1)3. At fixed h1,1, N(f) ' ln(f/Mp).
The plot on the right hand side shows a logarithmic scale for f .

obtained by [27, 28] represent the largest values of the axion decay constants compati-
ble with a trustable EFT. These values would therefore provide an upper bound for the
regime of validity of our logarithmic distributions (3.8) which can be integrated with the
results of [27, 28] to describe how the number of flux vacua changes has a function of both
fθi and h1,1.

As an illustrative example, we consider the distribution N(f, h1,1) where f is the
mean value of the axion decay constants. As derived in [25], the requirement to trust
the α′ expansion implies that the volume of each 4-cycle grows with h1,1 as τi & (h1,1)3

∀i = 1, . . . , h1,1 (at least for basis elements obtained from generators of the cone of effective
divisors). On the other side, as we have seen in section 2, the axion decay constants
scale as fθi ' Mp/τi. Combining the two results gives a qualitative understanding of
the fact the mean value f of the log-normal distribution found in [27, 28] decreases as
h1,1 increases. Moreover, we can obtain an explicit estimate of the upper bound for our
logarithmic distributions:

f . fmax(h1,1) ' Mp

(h1,1)3 , (3.9)

where, for a given h1,1, f can take different values by moving in the stretched Kähler cone
in a way compatible with moduli stabilisation, and f = fmax at the tip. Hence we expect
the following distribution for the number of type IIB flux vacua as a function of f and h1,1

(see figure 1):

N(f, h1,1) ∼ ln
(
f

Mp

)
with f .

Mp

(h1,1)3 . (3.10)

3.2 Axion masses

Let us now compute the distribution of axion masses in the flux landscape. As in the
previous section we first compute the differential of the masses and then use the known
scaling of the parameters gs, W0 and n in order to determine the distribution.
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Isotropic limit. The mass spectrum of the isotropic case with SM on a blow-up cycle
is summarised in (2.31). Using (3.3) which can be approximated as dfa ' fa dN , the
distribution of the mass of the QCD axion takes the form:

dma ' −
ma

fa
dfa ' −ma dN ⇒ N(ma) ∼ − ln

(
ma

Mp

)
. (3.11)

On the other hand, the distributions of the masses of the two ultra-light ALPs can be easily
derived by noticing that their masses can be expressed in terms of the corresponding decay
constants as:

mθ1 'Mp e
− Mp

2
√

2fθ1 and mθ2 'Mp e
− Mp

2fθ2 . (3.12)

This result implies:

dmθi ' mθi

Mp

fθi

dfθi
fθi
' mθi ln

(
Mp

mθi

)
dN ∀ i = 1, 2 , (3.13)

which yields the following distribution (neglecting subdominant logarithmic corrections):

N(mθi) ∼ ln
(
mθi

Mp

)
∀ i = 1, 2 . (3.14)

Notice that we find again a logarithmic distribution for the mass of both the QCD axion
and the 2 ultra-light ALPs. However (3.11) and (3.14) have a different sign, implying that,
in the QCD axion case, the type IIB flux landscape has a mild logarithmic preference for
low scale masses, while the ALP case features more vacua at large mass values.

Anisotropic limit. The masses for the anisotropic geometry with SM on the bulk divisor
D1 are summarised in (2.37). As already pointed out in the previous section, this model
is strongly constrained by the requirement to match the observed SM coupling. This sets
the QCD axion decay constant around the GUT scale, fa 'MGUT, without a distribution.
Thus the QCD axion mass would also be fixed at ma ' Λ2

QCD/fa ' 1 neV.
The mass of the ALP θ2 can instead take different values in the flux landscape with a

distribution which is again logarithmic. This result can be easily inferred by first writing
mθ2 as in (3.12) and then differentiating as below:

dmθ2 ' mθ2
Mp

fθ2

dfθ2

fθ2

' mθ2

[
ln
(
Mp

mθ2

)]3/2
dN , (3.15)

where we used (3.5) approximated as:

dfθ2

fθ2

' dgs
gs
'
√
Mp

fθ2

dN '
√

ln
(
Mp

mθ2

)
dN . (3.16)

Barring subleading logarithmic effects, (3.15) therefore implies:

N(mθ2) ∼ ln
(
mθ2

Mp

)
. (3.17)
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This distribution, similarly to the one of fθ2 derived in (3.7), holds as long as W0 can be
tuned to satisfy the condition (2.41) which keeps τ1 = α−1

SM fixed at the right SM gauge
coupling. In the case of the ALP decay constant, we estimated that its distribution is
valid for fθ2 & 1012 GeV. Using (3.12), this gives however a lower bound for the ALP mass
which can be safely ignored since it would be much smaller than today’s Hubble constant:
mθ2 & e−106

Mp � H0.

Model with arbitrary h1,1. The mass spectrum for the model with a generic number
of Kähler moduli is given in (2.51). Following the discussion of the distribution of the axion
decay constants, the results for the distribution of the axion masses for the model with
arbitrary h1,1 would again be qualitatively similar to the isotropic case. Hence we expect
logarithmic distributions of the form:

N(ma) ∼ − ln
(
ma

Mp

)
and N(mθi) ∼ ln

(
mθi

Mp

)
∀ i = 1, . . . , N . (3.18)

As for the case of the axion decay constants discussed above, the results of [27, 28] can be
combined with ours to give an upper bound for the regime of validity of the distributions
of the ALP masses as a function of h1,1, i.e. mθi . mmax

θi
(h1,1).

3.3 Dark matter abundance

Let us now study the distribution of the axion DM abundance produced via the standard
misalignment mechanism. We distinguish between the case where the DM particle is the
QCD axion and the case where it is an ultra-light ALP. In the QCD axion case, the DM
abundance is given by:

ΩQCDh
2

0.112 ' 6.3 ·
(

fa
1012 GeV

)7/6 (θin
π

)2
, (3.19)

while for the case of an ALP θi, it reads:

ΩALPh
2

0.112 ' 1.4 ·
(
mθi

1 eV

)1/2 ( fθi
1011 GeV

)2 (θi,in
π

)2
. (3.20)

For natural O(π) values of the initial misalignment angles θin and θi,in, the QCD axion can
reproduce the observed DM adundance for fa ' 1011 GeV, while an ALP would require
mθi ' 5 · 10−21 eV for fθi ' 1016 GeV (see appendix B for a detailed scan through the
underlying parameter space and some benchmark points).

Isotropic limit and model with arbitrary h1,1. In the isotropic case with SM on
a blow-up cycle, the distribution of QCD axion DM abundance can be computed deriv-
ing (3.19) with respect to fa and then using the result (3.3) which, at first approximation,
implies dfa ' fa dN . Hence we end up with:

d
(
ΩQCDh

2
)

= 7
6
(
ΩQCDh

2
) dfa
fa
'
(
ΩQCDh

2
)
dN , (3.21)
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which gives:
N
(
ΩQCDh

2
)
∼ ln

(
ΩQCDh

2
)

(3.22)

This result is very important since it implies that the number of type IIB flux vacua which
can reproduce the correct value of the DM abundance for θin ∼ O(π) is only logarithmically
suppressed with respect to what has been considered so far as the typical stringy case with
fa ∼MGUT and a tuned initial misalignment angle.

The isotropic case features 2 ultra-light ALPs, θ1 and θ2. Both of them can behave
as cold DM. Noticing from (3.12) that the microscopic model sets a correlation between

mθi and fθi of the form mθi 'Mp e
−βi

Mp
fθi with βi ∼ O(1) ∀i = 1, 2, the distribution of the

ALP DM abundance (3.20) is mainly controlled by mθi . We can therefore derive (3.20)
just with respect to mθi and obtain:

d
(
ΩALPh

2
)

=
[1

2
dmθi

mθi

+2dfθi
fθi

](
ΩALPh

2
)
' dmθi

mθi

(
ΩALPh

2
)
'
(
ΩALPh

2
)
dN ∀ i= 1,2 ,

(3.23)
where we used (3.13) approximated as dmθi ' mθi dN . This implies for both θ1 and θ2:

N
(
ΩALPh

2
)
∼ ln

(
ΩALPh

2
)
. (3.24)

Thus we realise that also the distribution of the ALP DM abundance features a logarithmic
behaviour. As already explained, this result should apply also to the distribution of the
DM abundance of each ultra-light ALP of the model with arbitrarily large h1,1.

Anisotropic limit. In the anisotropic limit with the SM on the fibre divisor, the value
of the QCD axion decay constant is fixed around the GUT scale once we focus just on
vacua which match the SM coupling. Hence this would represent a typical stringy case
which has been considered as ‘anthropic’ since for fa ∼ MGUT ∼ 1016 GeV (3.19) would
reproduce the correct DM abundance only for θin ∼ 0.001π.

The DM abundance associated to the ultra-light ALP θ2 would instead be distrib-
uted as:

d
(
ΩALPh

2
)
' dmθ2

mθ2

(
ΩALPh

2
)
'
(
ΩALPh

2
)
dN ⇒ N(ΩALPh

2)∼ ln
(
ΩALPh

2
)
, (3.25)

where we used dmθ2 ' mθ2 dN from (3.15). Similarly to the isotropic case, we find again
a logarithmic distribution with however the difference, as already pointed out, that in the
anisotropic case all expressions, (3.20) included, are valid only for fθ2 & 1012 GeV (while
we have seen that any value of mθ2 is allowed).

3.4 Axion couplings to gauge bosons

Let us now study the distribution of the couplings between axions and gauge fields. Fol-
lowing the analysis of the previous sections, we first evaluate the couplings at the minimum
of the scalar potential and we then determine their distribution in the flux landscape.
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Isotropic limit and model with arbitrary h1,1. We start with the couplings in the
isotropic case which are summarised in (2.35). The axion couplings to visible and hidden
gauge bosons feature a similar behaviour also in the model with arbitrarily many Kähler
moduli, as can be seen from (2.53). Hence the results which we will obtain for the isotropic
case can be directly extended to the more general case with arbitrarily large h1,1 and SM
built with a stack of D7-branes wrapped around a local del Pezzo divisor.

Interestingly, each ultra-light ALP couples in practice just to the corresponding hidden
gauge fields with a coupling that is fixed at Planckian strength without a distribution in
the landscape. This is a typical stringy behaviour, as expected for the imaginary part of
a standard bulk modulus. On the other hand, the coupling between the QCD axion a

and SM gauge fields γ is controlled by the string scale Ms ∼ Mp/
√
V since it is inversely

proportional to fa:
gaγγ = λ1

〈τ3〉 fa
∼ 1
Ms

. (3.26)

Thus the distribution of gaγγ takes the form:

dgaγγ ' −gaγγ
dfa
fa
' −gaγγ dN ⇒ N(gaγγ) ∼ − ln (gaγγ) . (3.27)

where we used (3.3) approximated as dfa ' fa dN . Notice the mild logarithmic preference
for smaller couplings. The coupling of the QCD axion to hidden gauge bosons γh living on
stacks of D7-branes wrapped around the bulk divisors D1 and D2, is instead weaker than
Planckian since these two divisors do not intersect with the del Pezzo 4-cycle D3:

gaγhγh = λi
√
〈τ3〉

〈V〉 fa
∼
(
fa
Mp

)
1
Mp
� 1

Mp
∀i = 1, 2 . (3.28)

Hence, using dfa ' fa dN ' gaγhγh dN , the distribution of the coupling between the QCD
axion and hidden gauge bosons scales as:

dgaγhγh ' dfa ' gaγhγh dN ⇒ N(gaγhγh) ∼ ln (gaγhγh) . (3.29)

Contrary to the coupling to visible gauge fields, in this case the flux landscape features a
logarithmic preference for larger couplings.

Anisotropic limit. The axion-gauge couplings for the anisotropic case are summarised
in (2.42). Contrary to the isotropic case, the coupling of the QCD axion to visible sector
gauge fields does not show a distribution since it is fixed at 1/Mp, as typical of a string
modulus. The difference with the isotropic case in this regard is due to the different
topological origin of the QCD axion which in the isotropic case arises from the reduction
of C4 on a local del Pezzo 4-cycle while in the anisotropic case it is associated to the bulk
divisor D1. The behaviour of the ultra-light ALP a2 is instead similar to the one of the 2
ALPs in the isotropic case since a2 couples just to hidden degrees of freedom on D2 with
a fixed strength of order 1/Mp.

In the anisotropic case, the only couplings which can take different values in the flux
landscape are the couplings of the QCD axion to the gauge bosons of the hidden sectors
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on D2 and D3, which we denote respectively as γ2 and γ3. The coupling gaγ2γ2 scales as:

gaγ2γ2 = µ2
Mp

〈τ3〉3/2

〈V〉
∼
(
fθ2

Mp

)
1
Mp

. (3.30)

As we have already estimated, in this case 1012 GeV . fθ2 . 1016 GeV, which implies
10−6 . gaγ2γ2 Mp . 10−2. In this regime of validity, the distribution of the coupling gaγ2γ2

turns out to be:

dgaγ2γ2 ' dfθ2 '
√
gaγ2γ2 dN ⇒ N(gaγ2γ2) ∼ √gaγ2γ2 , (3.31)

where dfθ2 '
√
fθ2 dN from (3.6). Hence the coupling of the QCD axion to hidden gauge

fields on D2 is weaker than Planckian with a mild (due to the square root) power-law
preference for couplings close to 0.01/Mp. The QCD axion is instead almost decoupled
from the degrees of freedom of the hidden D7-stack wrapping D3 since gaγ3γ3 scales as:

gaγ3γ3 = µ3
Mp

(
ma

mθ3

)2
∼
(

Λ2
QCD

MGUTfθ2

)2
α−1

SM
Mp

, (3.32)

where mθ3 ' m3/2 '
√
αSM fθ2 from (2.37) and (2.40), and ma ' Λ2

QCD/MGUT.
For α−1

SM ' 100 and 1012 GeV . fθ2 . 1016 GeV, this coupling would be of order
10−66 . gaγ2γ2 Mp . 10−58, and so we can safely set it to zero in the whole flux landscape.

3.5 Dark radiation in Fibre Inflation

A generic feature of models where reheating occurs due to the decay of a closed string
modulus is the production of ultra-light bulk axions which yield extra dark radiation [18–
21]. This happens also in the interesting case of type IIB Fibre Inflation models [26, 30–36]
where the CY volume takes the same form as in (2.3) and the fibre modulus τ1 plays the
role of the inflaton. The inflationary potential is generated by perturbative corrections
to the Kähler potential and the CY volume is fixed around V ' 103-104 by the need
to reproduce the observed amplitude of the density perturbations generated by inflaton
fluctuations during inflation. In order to have an efficient production of SM degrees of
freedom at reheating, the SM D7-stack has to wrap the fibre divisor D1. Hence a viable
realisation of Fibre Inflation models requires to focus on the anisotropic case.

The inflaton τ1 is the lightest Kähler modulus and its perturbative decay after the end
of inflation produces SM particles together with the QCD axion θ1 and the ultra-light ALP
θ2 which are both relativistic and yield a gs-dependent contribution to the effective number
of relativistic species Neff [54]. One can thus exploit the known distribution of gs to derive
the distribution of extra dark radiation in the flux landscape of Fibre Inflation models.
The amount of extra dark radiation is parameterised by ∆Neff which is determined by the
ratio of the inflaton branching ratio into hidden and visible degrees of freedom [54]:

∆Neff = 43
7

Γhid
Γvis

(
g∗(Tdec)
g∗(Trh)

)1/3
' 0.6
γ2 , (3.33)
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where the parameter γ controls the coupling of the inflaton to visible sector gauge bosons
and depends on the string coupling:

γ = αSMτ1 = g4/3
s αSMV2/3 , (3.34)

where we have used (2.36) with α = 1 in the volume form (2.3). Let us stress that in Fibre
Inflation models the CY volume is fixed around V ' 103 by the need to reproduce the
observed amplitude of the density perturbations generated by inflaton fluctuations during
inflation. Hence in (3.34) V should be considered as constant. When varying gs, this can
be achieved by an appropriate choice of W0 (see (2.8)). Moreover gs should be varied by
keeping the SM coupling fixed at its phenomenological value. Given that αSM reads:

α−1
SM = τ1 −

h(F)
gs

= γ α−1
SM −

h(F)
gs

, (3.35)

where h(F) ≥ 0 is a non-negative function of the intersection numbers and the gauge flux
F on the SM D7-brane stack, this implies that any variation of γ (by varying gs) should
be compensated by a suitable change of h(F) by considering a different choice of F (if
this is allowed by the discreteness of the gauge flux quanta and by tadpole cancellation).
Notice that h(F) vanishes for F = 0, implying from (3.35) γ = 1 and ∆Neff fixed at
∆Neff ' 0.6 [54]. However h(F) > 0 for F 6= 0, and so in this case ∆Neff features a
distribution in the flux landscape due to its dependence on gs. We can estimate the regime
of validity of this distribution by setting in (3.34) α−1

SM = 25, V = 5 · 103 and gs . 0.25 to
trust perturbation theory, which gives ∆Neff & 0.17. We can also obtain an upper bound
on ∆Neff by requiring τ1 ≥ α−1

SM from (3.35) since h(F) > 0. This gives γ ≥ 1 from (3.34),
and so ∆Neff . 0.6.

Varying now (3.33) with respect to γ using (3.34) and dgs ' dN , we obtain:

d(∆Neff)
∆Neff

' −dγ
γ
' −dgs

gs
' −∆N3/8

eff dN ⇒ N(∆Neff) ∼ ∆N−3/8
eff . (3.36)

which gives a power-law distribution for extra dark radiation:

N(∆Neff) ∼ ∆N−3/8
eff for 0.17 . ∆Neff . 0.6 . (3.37)

Interestingly we find that the flux landscape of Fibre Inflation models features more vacua
around ∆Neff ' 0.17 which helps to satisfy current bounds on extra relativistic species.
We stress again that this distribution is valid only for values of ∆Neff corresponding to
values of gs which are compatible with a choice of h(F) that keeps αSM constant.

4 Discussion and conclusions

In this paper we studied the statistics of axion physics in the type IIB flux landscape
focusing on the model-independent case of closed string axions coming from the dimensional
reduction of C4. We argued that a proper understanding of moduli stabilisation is crucial
in order to derive the main features of the low-energy phenomenology of stringy axions.
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In KKLT-like scenarios all axions are as heavy as the corresponding saxions due to
non-perturbative stabilisation. If the saxion masses are larger than O(50)TeV in order to
avoid cosmological problems, each axion is thus too heavy to behave as the QCD axion or
as a very light ALP for fuzzy DM. On the contrary, moduli stabilisation schemes which
rely on perturbative corrections are characterised by axion masses which are exponentially
suppressed with respect to saxion masses. This singles out LVS models as the best case
scenarios for analysing axion physics since they also yield an exponentially large CY volume
which allows to keep the EFT under control even for a large number of Kähler moduli.

Hence we focused on an LVS model with h1,1 = 4 which is simple enough to perform
moduli stabilisation in full detail but, at the same time, rich enough to show all the main
features of axion physics which we consider to be valid in general for models with more
Kähler moduli. We considered two regimes: (i) the isotropic limit with the SM on D7-
branes wrapping a local blow-up cycle, and (ii) the anisotropic limit where the SM lives on
a D7-stack wrapped around a bulk divisor. In both cases all phenomenologically interesting
quantities, like axion decay constants, axion masses, contributions to the DM abundance
and axion-gauge bosons couplings, feature a logarithmic distribution in the flux landscape.
In the isotropic case however, the request to reproduce the correct SM gauge coupling
selects a subset of the underlying parameter space where some distributions turn into a
mild power-law behaviour.

Regarding the QCD axion, in the isotropic case it comes from the reduction of C4 on
a blow-up mode, whereas in the anisotropic case it is associated to a bulk cycle. In the last
case its decay constant is fixed around the GUT scale by the need to match αSM. On the
other hand, in the first case fa is distributed logarithmically with just a mild preference
for GUT-scale values in comparison with cases where fa is around intermediate scales. We
consider this case to be more generic in the string landscape since realisations of the QCD
axion from bulk cycles require an anisotropic moduli fixing which would require a good
amount of tuning for relatively large values of V, while the case of a blow-up QCD axion
can work with either isotropic or anisotropic models. We therefore conclude that what
has been so far claimed to be the typical stringy situation with a GUT-scale QCD axion
decay constant and a tuned initial misalignment angle to avoid DM overproduction, could
be not so predominant in the flux landscape with respect to more natural cases where
fa ∼ O(1011)GeV and θin ∼ O(π).

On top of the QCD axion, the isotropic and anisotropic scenarios feature either 1 or
2 ultra-light ALPs. In agreement with previous studies [25, 27–29], we argued that the
presence of several ultra-light ALPs is a general characteristic of 4D string models where
the EFT is under control, as we have shown explicitly in a model with arbitrary h1,1 where
full moduli stabilisation can be achieved by exploiting higher derivative α′ corrections
following [26]. Interestingly, we found that the decay constants, the mass spectrum and
the contribution to the DM abundance of all these ultra-light ALPs are also logarithmically
distributed in the type IIB flux landscape.

In our recent paper [5] we found that the number of flux vacua is also a logarith-
mic function of the gravitino mass and the supersymmetry breaking scale. Moreover in
appendix C we showed that other quantities relevant for phenomenology, as the moduli
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masses and the reheating temperature from moduli decay, share the same statistical prop-
erties. We are therefore tempted to argue that most, if not all, of the low-energy properties
of the string theory landscape seem to obey a logarithmic distribution once moduli sta-
bilisation is properly taken into account. Apart from the particular case of extra dark
radiation in Fibre Inflation models, the only exception which we have encountered so far
seems to be the supersymmetry breaking scale in KKLT scenarios which might be char-
acterised by a power-law distribution. However its statistical significance is still unclear
since this result relies on the assumption that W0 is uniformly distributed [10] also in the
exponentially small regime where however it is very hard to built explicit examples. The
only ones which have been constructed so far feature W0 = 0 and a flat direction at pertur-
bative level [13–15]. The flat direction is lifted by non-perturbative physics which generates
dynamically an exponentially small W0 ∼ e−1/gs . Exploiting the uniform distribution of
the string coupling, this relation would again produce a logarithmic distribution of the
gravitino mass.

It is worth stressing that these distributions follow from moduli stabilisation which
applies only to corners of the string landscape where the EFT is under control thanks to
supersymmetry and weak couplings. In order to judge their genericity one would have
therefore to be able to control the EFT beyond the regime of validity of these approxi-
mations. Despite the difficulty to achieve this goal, scaling arguments and approximate
symmetries inherited from the 10D theory [6] could be used as a powerful guideline to shed
light on larger portions of the string landscape. This top-down analysis of the statistical
properties of quantities relevant for phenomenology is crucial to provide more theoreti-
cal guidance to recent bottom-up approaches to understand naturalness and string theory
predictions for several observables [55–60].

We finally comment on the fact that the relative flatness of logarithmic distributions
in the string landscape might be seen at first sight as an indication of a difficulty to
make sharp predictions from string theory. However a key-feature of string theory is the
correlation between different low-energy phenomenological quantities due to the underlying
UV framework. It is this interplay which should be used to sharpen the predictions of the
string landscape. As an example, we mention the fact that in LVS models an intermediate
scale QCD axion decay constant would correlate with TeV-scale soft terms and a volume
mode mass around 1MeV. Thus, in the absence of a mechanism to avoid cosmological
problems associated to the presence of such a light modulus [61], a natural QCD axion
DM situation with fa ∼ O(1011)GeV and θin ∼ O(π) would not be viable even if the
number of vacua with these features is only logarithmically suppressed with respect to
the number of vacua with a GUT-scale decay constant. We leave the important study of
the UV correlation between different particle physics and cosmological observables with
logarithmic distributions for future work.
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A Canonical normalisation

In this appendix we shall perform the canonical normalisation of the axion fields.

A.1 A single axion

Let us start with the simple case with a single closed string modulus T = τ + iθ where it
is easy to identify the correct definition of the axion decay constant and periodicity. We
start with the following Lagrangian:

L = KT T̄∂µθ∂
µθ − 1

4Re(f)Fµνb F bµν −
1
4Im(f)Fµνb F̃ bµν + Λ4 cos

(2π
n
θ

)
, (A.1)

where b is a non-Abelian index and the gauge kinetic function is given by f = T/(2π).
Expressing L in terms of the canonically normalised axion a =

√
2KT T̄ θ and Yang-Mills

field strength Gbµν =
√

Re(f)Fµνb , we end up with:

L = 1
2∂µa∂

µa− 1
4G

µν
b Gbµν −

αb
4

a√
2KT T̄

Gµνb G̃bµν + Λ4 cos
(

2π
n

a√
2KT T̄

)
, (A.2)

where we used the fact that τ = α−1
b . This expression suggests the definition of the axion

decay constant fa as (inserting the appropriate power of Mp):

fa ≡
(

n

2π

)√
2KT T̄ Mp , (A.3)

since L would simplify to the standard expression:

L = 1
2∂µa∂

µa− 1
4G

µν
b Gbµν −

a

fa

nαb
8π Gµνb G̃bµν + Λ4 cos

(
a

fa

)
. (A.4)

A.2 A more general case with 3 axions

Without loss of generality we shall consider the volume form (2.3) with τ4 = 0. The Kähler
metric and its inverse take the following form at leading order in a large-V expansion:

K =


1

4τ2
1

γ3
4

τ
3/2
3

τ
3/2
1 τ2

2
−3γ3

8

√
τ3

τ
3/2
1 τ2

γ3
4

τ
3/2
3

τ
3/2
1 τ2

2

1
2τ2

2
−3γ3

4

√
τ3√
τ1τ2

2

−3γ3
8

√
τ3

τ
3/2
1 τ2

−3γ3
4

√
τ3√
τ1τ2

2

3γ3
8

1√
τ3τ1τ2

 , (A.5)

and:

K−1 =


4τ2

1 4γ3
√
τ1τ

3/2
3 4τ1τ3

4γ3
√
τ1τ

3/2
3 2τ2

2 4τ2τ3

4τ1τ3 4τ2τ3
8

3γ3

√
τ3τ1τ2

 . (A.6)

Let us now consider the isotropic and anisotropic limits separately.
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Isotropic limit. In the isotropic limit θ1 and θ2 are essentially massless while θ3 develops
a potential via QCD instantons of the form V (θ3) = −Λ4

QCD cos(2πθ3). Hence the only
non-zero entry of the axionic Hessian is V33 = (2π)2Λ4

QCD. Multiplying the inverse Kähler
metric (A.6) by the axionic Hessian we find the mass-squared matrixM2 = 1

2K
−1Vij which

becomes:

M2 =

0 0 2τ1τ3
0 0 2τ2τ3
0 0 4

3γ3

√
τ3τ1τ2

 (2π)2Λ4
QCD . (A.7)

The eigenvalues ofM2 are (reinstating appropriate powers of Mp):

m2
1 = 0 , m2

2 = 0 , m2
3 = 4

3γ3

√
τ3τ1τ2(2π)2 Λ4

QCD
M2
p

, (A.8)

and the corresponding eigenvectors read:

~v1 =

1
0
0

 n1
2π

Mp

f1
, ~v2 =

0
1
0

 n2
2π

Mp

f2
, ~v3 =


3γ3
2

√
τ3τ1
τ2

3γ3
2

√
τ3
τ1

1

 Mp

2πf3
, (A.9)

where f1, f2 and f3 are the axion decay constants which can be obtained by requiring
~vTi K~vj = 1

2δij . We find (at leading order in a large-V approximation):

f1 = n1
2π

Mp√
2τ1

, f2 = n2
2π

Mp

τ2
, f3 =

√
3αγ3
4π

Mp

τ
1/4
3
√
V
. (A.10)

Therefore the QCD axion mass in (A.8) can correctly be written also as m3 = Λ2
QCD/f3.

Moreover the original axions θi’s can be expressed in terms of the canonically normalised
axions ai’s as:

θ1 = n1
2π

a1
f1

+ 3γ3
4π

√
τ3τ1
τ2

a3
f3
,

θ2 = n2
2π

a2
f2

+ 3γ3
4π

√
τ3
τ1

a3
f3
, (A.11)

θ3 = 1
2π

a3
f3
.

Anisotropic limit. In the anisotropic limit θ3 develops a potential via non-perturbative
corrections to W , θ2 is essentially massless while θ1 becomes massive via QCD instantons.
Hence the axionic Hessian at the minimum takes the form:

Vij =


(2π)2Λ4

QCD 0 0
0 0 0
0 0 3αa2

3τ
3/2
3

W 2
0
V3

 . (A.12)

Thus the mass-squared matrixM2 = 1
2K
−1Vij now becomes:

M2 =


8π2τ2

1 Λ4
QCD 0 6αa2

3τ1τ
5/2
3

W 2
0
V3

8γ3π
2√τ1τ

3/2
3 Λ4

QCD 0 6a2
3τ

5/2
3 τ

−1/2
1

W 2
0
V2

8π2τ1τ3Λ4
QCD 0 4a2

3γ
−1
3 τ2

3
W 2

0
V2

 . (A.13)
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The leading order expressions of the eigenvalues of M2 are (inserting suitable powers
of Mp):

m2
1 = 8π2τ2

1
Λ4

QCD
M2
p

, m2
2 = 0 , m2

3 = 4a2
3τ

2
3

γ3

(
W0
V

)2
M2
p , (A.14)

and the corresponding eigenvectors read:

~v1 =


1

−γ3
2

(
τ3
τ1

)3/2

−γ3n2
3

2
τ1
τ3
V2

W 2
0

Λ4
QCD

 n1
2π

Mp

f1
, ~v2 =


0

1

0

 n2
2π

Mp

f2
, ~v3 =


3αγ3

2

√
τ3τ1
V

3γ3
2

√
τ3
τ1

1

 n3
2π

Mp

f3
,

(A.15)
where f1, f2 and f3 are the axion decay constants which can be obtained by requiring
~vTi K~vj = 1

2δij . We obtain (at leading order in a large-V approximation):

f1 = 1
2
√

2π
Mp

τ1
, f2 = n2

2π
Mp

τ2
, f3 = n3

√
3αγ3

4π
Mp

τ
1/4
3
√
V
. (A.16)

Therefore the QCD axion mass in (A.14) can correctly be written also as m1 = Λ2
QCD/f1.

Moreover the original axions θi’s can be expressed in terms of the canonically normalised
axions ai’s as:

θ1 = 1
2π

a1
f1

+ 3αn3γ3
4π

√
τ3τ1
V

a3
f3
,

θ2 = − γ3
4π

(
τ3
τ1

)3/2 a1
f1

+ n2
2π

a2
f2

+ 3n3γ3
4π

√
τ3
τ1

a3
f3
, (A.17)

θ3 = − 1
2π

τ3
τ1

(
m1
m3

)2 a1
f1

+ n3
2π

a3
f3
.

B Benchmark points for ALP dark matter

In this appendix we present some benchmark points for ALP DM generated by the mis-
alignment mechanism. In this case the DM relic abundance is given by (3.20). We focus
on the bulk axion θ2 which behaves as an ultra-light ALP for both the isotropic and the
anisotropic case. Its mass and decay constant can be written in terms of the underlying
parameters as:

mθ2 =
√

1
2K
−1
22 Vθ2θ2 = 4π

αn
3/2
2

√
gsA2W0

√
τ2
τ1
e
− π

n2
τ2 Mp , fθ2 = n2

2π
Mp

τ2
. (B.1)

In the isotropic case τ1 = τ2, while in the anisotropic limit τ1 = g2
s τ2 = α−1

SM. After writing
τ1 in terms of τ2, τ2 can in turn be expressed as a function of the microscopic parameters
using (2.8) with V ' α√τ1τ2. The expression (3.20) for the ALP DM abundance becomes
then just a function of 9 UV parameters: gs, W0, n2, n4, A2, A4, α, ξ and θ2,in. In what
follows we shall restrict our numerical search for benchmark examples to a 4D subregion of
this parameter space by focusing on natural values A2 = A4 = 1 and θ2,in = π. Moreover
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n2 n4 gs W0 τ2 mθ2 (eV) fθ2 (GeV)
1 1 0.250 2.05 · 10−11 32.39 2.62 · 10−21 1.18 · 1016

1 1 0.100 4.46 · 10−32 24.97 1.02 · 10−21 1.53 · 1016

1 1 0.075 1.58 · 10−43 20.97 4.79 · 10−22 1.82 · 1016

1 10 0.250 3.66 36.36 4.29 · 10−21 1.05 · 1016

1 10 0.100 2.08 · 10−2 35.42 3.87 · 10−21 1.08 · 1016

1 10 0.075 1.32 · 10−3 34.96 3.61 · 10−21 1.09 · 1016

10 1 0.250 6.32 · 10−10 318.47 2.54 · 10−21 1.20 · 1016

10 1 0.100 1.37 · 10−30 244.35 9.70 · 10−22 1.56 · 1016

10 1 0.075 4.81 · 10−42 204.47 4.35 · 10−22 1.87 · 1016

10 10 0.250 113.2 358.27 4.00 · 10−21 1.07 · 1016

10 10 0.100 0.643 348.90 3.62 · 10−21 1.09 · 1016

10 10 0.075 4.07 · 10−2 344.27 3.37 · 10−21 1.11 · 1016

Table 1. Benchmark points which match the observed ALP DM abundance for the isotropic case
setting A2 = A4 = 1, θin,2 = π, α = 1/6 and ξ = 0.46.

n2 n4 gs W0 τ2 mθ2 (eV) fθ2 (GeV)
1 1 0.833 0.108 36.03 4.53 · 10−21 1.06 · 1016

1 10 0.822 48.93 37.00 4.61 · 10−21 1.03 · 1016

6 1 0.352 1.11 · 10−6 201.66 3.06 · 10−21 1.14 · 1016

6 10 0.339 47.88 217.80 4.36 · 10−21 1.05 · 1016

10 1 0.277 4.05 · 10−9 325.35 2.82 · 10−21 1.17 · 1016

10 10 0.263 36.15 360.61 4.22 · 10−21 1.06 · 1016

30 1 0.168 1.06 · 10−16 883.67 1.79 · 10−21 1.30 · 1016

30 10 0.153 9.75 1063.23 3.88 · 10−21 1.08 · 1016

Table 2. Benchmark points which match the observed ALP DM abundance for the anisotropic
case setting A2 = A4 = 1, θin,2 = π, α = 1/6 and ξ = 0.46. All benchmark points satisfy the
phenomenological constraint τ1 = α−1

SM = 25.

we shall set the topological quantities α = 1/6 and ξ = 0.46 as in the explicit toric
constructions of [31]. In tables 1 and 2 we present some benchmark points which reproduce
the observed DM abundance for different values of W0, gs, n2 and n4, for the isotropic and
anisotropic cases respectively.

Notice that in both cases the typical values of the mass and the decay constant are
respectively mθ2 ' 5 · 10−21 eV and fθ2 ' 1016 GeV. In the isotropic case we have chosen
n2, n4 and gs freely (focusing on values of gs which keep perturbation theory under control)
and we have derived the value of W0 which matches the observed DM abundance. Notice
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that natural O(1-10) values of W0 require n4 & 10 since from (2.8) τ2 ∼ W
2/3
0 ek/n4 for

an appropriate k, and so n4 ∼ O(1) would give a value of τ2 which is too large to match
ΩALPh

2 ' 0.112 due to the exponential suppression mθ2 ∼ e
− π

n2
τ2 Mp in (B.1). This

relation explains also why larger values of τ2 correspond to larger values of n2. Let us
finally stress that in the anisotropic case we have chosen freely only n2 and n4 since gs is
fixed by the phenomenological constraint τ1 = g2

s τ2 = α−1
SM = 25. As can be seen from

table 2, this condition tends to push the string coupling close to 1 unless n2 & 10 since
g2
sτ2 = 25 can be satisfied for gs ' 0.1 only for large values of τ2 which, as we have already
pointed out, need large values of n2.

C Other distributions relevant for phenomenology

In this appendix we shall show that other phenomenologically interesting quantities feature
also a logarithmic distribution in the type IIB flux landscape.

C.1 Moduli masses

Let us investigate the distribution of moduli masses in the flux landscape. For all cases,
the isotropic and anisotropic cases with h1,1 = 4 and the model with arbitrarily large h1,1,
the mass of each Kähler modulus scales with the CY volume as:

mτi '
W0
Vpi

Mp with pi > 0 ∀i = 1, . . . , h1,1. (C.1)

Following the same logic as in section 3, we find again a logarithmic distribution for each
mτi since these masses are controlled by the exponentially large volume V:

N(mτi) ∼ ln
(
mτi

Mp

)
, ∀i = 1, . . . , h1,1. (C.2)

For the anisotropic case one has just to make sure that the bound gs & 0.01 (coming from
the ability to tune W0 to satisfy (2.41)) does not set a lower bound on mτi for the regime
of validity of the distribution (C.2). However this bound is negligible since combining (2.8)
with (2.41) one would find m3/2 & 10−45Mp ' 10−16 eV for gs & 0.01.

C.2 Reheating temperature

Using the moduli masses we can study the distribution of the reheating temperature coming
from moduli decay [54, 62]. The reheating temperature due to the perturbative decay of
the i-th Kähler modulus is given by [54]:

Trh,i =
( 40cvisctot
π2g∗(Trh)

)1/4√
ΓτiMp , (C.3)

where cvis and cvis control the strength the interaction of the modulus τi with the visible
and the hidden sector respectively, ctot = cvis + chid, and the decay rate Γτi looks like:

Γτi = 1
48π

m3
τi

M2
p

. (C.4)
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Thus using (C.2) we obtain again a logarithmic distribution for all cases:

Trh,i ∼ mτi

√
mτi

Mp
⇒ dTrh,i

Trh,i
∼ dmτi

mτi

⇒ N(Trh) ∼ ln
(
Trh
Mp

)
. (C.5)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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