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1 Introduction

Our understanding of theoretical physics has always been shaped by experimental obser-
vations on the one side, and by the construction of a theoretical framework which may
allow us to compute, compare and study relevant observables on the other side. Some
questions having to do with the fundamental behaviour and self-consistency of a physical
theory are much more easily answered when we can compute as many observables as pos-
sible exactly, without resorting to truncations, approximations or simulations. The study
of exactly solvable systems is by now a large branch of physics. In the quantum world,
it encompasses integrable spin-chains, lattice models, two-dimensional conformal field the-
ories (CFTs) and integrable quantum field theories (IQFTs). Most recently, this found
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applications to string theory (which is indeed defined on a two-dimensional worldhseet) as
well as their holographic duals in the AdS/CFT correspondence.

One of the best understood examples of AdS/CFT is the correspondence between su-
perstrings on AdS5×S5 and the N = 4 supersymmetric Yang-Mills theory in D = 4 (N = 4
SYM) [1–3]. This is the AdS/CFT setup with the maximal amount of supersymmery. De-
spite that, both the string theory and the gauge theory look like tough nuts to crack: on the
worldsheet, the superstring theory is supported by Ramond-Ramond fluxes, which makes
it hard to describe it as a CFT; in the dual, the gauge theory appears to be as involved
as any four-dimensional Yang-Mills theory. A remarkable simplification appears in the
planar limit [4] (or large-N limit, where N is the number of colours), as it was first noticed
by Minahan and Zarembo [5]: the one-loop spectrum of anomalous dimensions of certain
operators is exactly solvable in terms of a Bethe ansatz [6, 7]. In fact, this can be extended
to the all-loop planar spectrum of all local operators, though a complete understanding
of the problem requires to overcome the issue of wrapping corrections. To this end it is
crucial to reformulate the problem on the string worldsheet [8] and to introduce a mirror
model [9]. Eventually, the whole spectral problem could be encoded in a powerful system
of equations known as the quantum spectral curve [10]. We refer the reader to refs. [11, 12]
for reviews of the AdS5/CFT4 spectral problem. Quite remarkably, integrability survives
even beyond the strict N →∞ limit. In particular, the hexagon tessellation program was
introduced in reference [13] as a way to turn the computation of three-point functions of
generic (non-protected) operators into the computation of an integrable form factor. In
broad strokes, the idea is that we may entirely constrain, by symmetry arguments, the
relevant form factor for the case of one and two particles, and bootstrap it for arbitrar-
ily many particles. The resulting form factor takes a relatively simple form [13] in terms
of the S matrix that was found by Beisert [14] for the spectral problem. Accounting for
wrapping corrections is more problematic and, up to date, an open issue. It is possible to
account for Lüscher-type [15, 16] order-by-order corrections to wrapping, see for instance
refs. [13, 17–19], but it seems to be hard to push these computations much further, at least
for generic functions. On the other hand, it is possible to extend such computations to more
complicated correlation functions: to higher-point planar correlation functions [20, 21], as
well as to non-planar correlators [22–24]. The main aim of this paper is to extend this very
promising program beyond the case of AdS5/CFT4.

Another extremely interesting holographic setup is the AdS3/CFT2 correspondence [1].
In terms of superstring backgrounds, there are three families of backgrounds that one may
consider: AdS3 × S3 × T4, AdS3 × S3 × K3 and AdS3 × S3 × S3 × S1. Each of these
preserves sixteen real supersymmetries, half of the amount of AdS5 × S5. The focus of
this paper is on what is arguably the simplest of these setups, AdS3 × S3 × T4. The
case of K3 follows to a large extent from that, at least for orbifold K3s, while the case of
AdS3× S3× S3× S1 is interesting in its own right, but beyond the scope of our discussion.
For these backgrounds there are effectively two parameters that determine the spectrum in
the planar limit: loosely speaking, this is because the background can be supported by a
combination of Ramond-Ramond (RR) and Neveu-Schwarz-Neveu-Schwarz fluxes (NSNS),
which affect the spectrum very differently — see ref. [25] for a discussion of the moduli
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of this background and their effect on the spectrum. When there is no NSNS flux, the
background is most similar to the case of AdS5 × S5. When there is no RR flux, the
spectrum becomes very degenerate, and a continuum appears corresponding to the so-
called long strings. For such a background (and only in this case), a simple worldsheet
CFT description exists in the Ramond-Neveu-Schwarz formalism. For the AdS3 part it can
be given in terms of a supersymmetric sl(2,R) level-k Wess-Zumino-Witten model [26–28],
which can then be coupled to an su(2) WZW model and free Bosons to account for the
remaining compact spaces. The special case k = 1 requires slightly different worldsheet-
CFT techniques [29], but it is very interesting because it seems to be the only point of the
whole moduli space where one has a firm handle on the CFT dual [30–34], which should be
the symmetric-product orbifold CFT of four free Bosons and as many Fermions, SymN (T4).

Remarkably, both the pure-RR and pure-NSNS background, as well as anything in
between, are classically integrable [35, 36]. Integrability, expressed in terms of factorised
scattering, seems also to hold at the quantum level. Largely by analogy with the case of
AdS5× S5, it was first understood for pure-RR backgrounds, see ref. [37] for a review, and
then extended to mixed-flux backgrounds [38–40]. Also in this case, wrapping corrections
are not entirely under control [41]. A notable exception is the case of pure-NSNS back-
grounds, where the spectrum was computed by means of integrability and showed to match
with the WZW prediction [42, 43], including at the special value of the level k = 1 [44].

It is natural to ask whether we may use integrability to compute three- and higher-
point correlation functions of generic operators on AdS3 × S3 × T4. For anything but
pure-NSNS background, this would be a major advance as there is currently no technique
to do so. Conversely, for pure-NSNS backgrounds, this could yield a nice comparison
with the worldsheet-CFT (or RNS) approach, and possibly shine new light on how the
hexagon approach relates to the CFT machinery. This is particularly interesting because
the hexagon approach is formulated in terms of the target-space Fermions, and hence
should be closer to the dual theory. (Worldsheet functions have recently been studied in
ref. [45] at level k = 1 precisely to map them to the their holographic counterparts.) We
will see below that indeed, the hexagon approach can be used also for AdS3×S3×T4, with
arbitrary background fluxes. We will also work out the hexagon form factor for one- and
two-particle states, based on symmetry, and use a factorisation principle to bootstrap the
form factor for arbitrarily-many particles. This lays the basis for a systematic investigation
of correlation function in the whole moduli space of AdS3 × S3 × T4.

The article is structured as it follows. We decided to dedicate section 2 to a rather
detailed review of AdS3×S3×T4 integrability, given that we will need many results for the
spectral problem which are somewhat scattered over the literature; we take this occasion to
try to fix some conventions and correct some minor misprints that are floating in the older
literature. The main part of the paper is section 3 where we set up the hexagon program
for AdS3× S3×T4. In section 4 we check our construction against a result easily available
in the literature, i.e. the three-point functions of certain protected operators; it should be
stressed that here, unlike in AdS5 × S5, the spectrum of protected operators is quite rich,
and their correlation functions quite non-trivial. Finally, we discuss our result and outlook
in section 5. We also have spelled out the full AdS3 × S3 ×T4 S matrix in appendix A for
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the readers’ convenience (again, the whole result was not explicitly written in any given
article to the best of our knowledge).

2 Review of integrability for AdS3×S3×T4

The AdS3 × S3 × T4 metric superisometries are given by

psu(1, 1|2)⊕ psu(1, 1|2) , (2.1)

where each copy contains eight real supercharges and a Bosonic subalgebra su(1, 1)⊕su(2).
In total, the Bosonic subalgebra is then [su(1, 1)⊕su(1, 1)]⊕[su(2)⊕su(2)] ∼= so(2, 2)⊕so(4).
The factorisation of the isometries like in eq. (2.1) is a key feature of the AdS3/CFT2
duality. In particular, each of the two copies of the non-compact subalgebra su(1, 1) ∼=
sl(2,R) correpsonds to the chiral and antichiral part of the global conformal algebra in
the dual CFT2. In addition to these isometries, we have a four shift isometries u(1)⊕4

corresponding to the T4 directions. Finally, the flat manifold T4 enjoys a local so(4)T4

rotational symmetry, which for later convenience we also decompose as so(4)T4 ∼= su(2)•⊕
su(2)◦. This is not a symmetry of the whole theory (it is broken by the boundary conditions
of the T4 fields) but it will play an important role nonetheless, for two reasons. First of all,
locally the Killing spinors will be charged under so(4)T4 , which will make this algebra useful
to group the symmetry generators; secondly but importantly, states with no momentum
or winding along T4 are blind to its global features, and as long as we restrict to those (as
we will do), this rotational isometry will be important.

The complete type IIB superstring background features additional fields beyond the
AdS3 × S3 × T4 metric. Generically, the background will involve Neveu-Schwarz-Neveu-
Schwarz (NSNS) and Ramond-Ramond (RR) fluxes. To be concrete, we will consider a
background with a NSNS three-form flux H = dB proportional to the volume form of
AdS3× S3 and a RR three form flux F also proportional to the same volume form. Such a
background can be thought of as arising from the F1-NS5-D1-D5 system. Its dynamics is
dominated by two parameters: the amount of NSNS fluxes and the amount of RR fluxes
(in units where the AdS3 radius is set to one). Within this two-parameter space, there are
two interesting limits: the case where RR fluxes are absent, which can be described by a
supersymmetric sl(2,R) WZW model and corresponds to the F1-NS5 system, and the case
where H = B = 0 which corresponds to the D1-D5 system. The latter is most similar to
AdS5×S5. The whole two-parameter case is classically integrable [35, 36] and is believed to
be integrable at the quantum level, see [37] for a review. It is worth emphasising that the
F1-NS5-D1-D5 system has more moduli than the two we just introduced [46]. However, in
the near horizon limit and when restricting to states with no momentum or winding along
T4, only these two modules end up being important, see ref. [25] for a detailed discussion.

The classical integrability of strings on AdS3 × S3 ×T4 was discussed in [35, 36]. The
study of the integrable S matrix was initiated in [39, 47] and completed, for the matrix part,
in refs. [40, 48, 49]. The dressing factors were studied in [50–52] for backgrounds without
NS-NS fluxes. The S matrix (including dressing factors) for the case of NS-NS fluxes only,
is also known and was worked out in [42, 43], where it was also shown that the resulting
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mirror TBA reproduces the WZW spectrum. It is worth emphasising that taking the pure-
NSNS limit in the S matrix is subtle because all excitations become massless then. Besides,
the dressing factors for the generic mixed-flux backgrounds are not known (see [53] for work
in this direction). Even if most of the integrability construction is reviewed in [37], some
details and especially the latest developments are scattered over the literature. Hence we
find it useful to review its main features below and collect some formulae in the appendices.

2.1 Supersymmetry algebra

The supersymmetry algebra is given by two copies of psu(1, 1|2) as in eq. (2.1). The first
copy, which we label “left”, is given by eight supercharges Qmαa (α = ±, a = ±,m = ±),
three su(2) (R-symmetry) generators Jα (α = ±, 3) and three su(1, 1) generators Lm
(m = ±, 0). Notice that the supercharges carry an index a = ±, due to the fact that
they transform in the fundamental representation of an su(2) automorphism. In fact, it
can be seen geometrically [49] that such an automorphism is a subalgebra of so(4)T4 , and
in what follows we will label it su(2)•. The second copy, which we call “right” and denote
with tildas, is given by Q̃ṁα̇a, J̃α̇ and L̃ṁ. Note however that these charges are charged
under the same su(2)• automorphism as the “left” ones. The names “left” and “right”
correspond to the interpretation of these charges as symmetries of the two-dimensional
dual superconformal symmetry with N = (4, 4) symmetry. As remarked above, the two
(R-symmetry) su(2) algebras give the isometries of the three sphere, su(2)⊕ su(2) ∼= so(4),
and the two su(1, 1) give the AdS3 isometries, su(1, 1)⊕ su(1, 1) ∼= so(2, 2).

2.1.1 Matrix realisation and Weyl-Cartan basis for the “left algebra”

A convenient matrix realisation of su(1, 1|2) is given by (2|2) supermatrices, which can be
written as blocks

M =

m θ

η n

 , (2.2)

where Latin letters are bosonic blocks and Greek ones are fermionic. The matrix M must
satisfy

M † + ΣM Σ = 0 , Σ = diag = (1,−1, 1, 1) . (2.3)

We can introduce the following explicit parametrisations for the complexified algebra

L0 = 1
2


−1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , L+ =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , L− =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , (2.4)

J3 = 1
2


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1

 , J+ =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , J− =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

 , (2.5)
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Q−−1 =


0 0 0 0
0 0 0 0
0 0 0 0
0 −1 0 0

 , Q++2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , (2.6)

Q++1 =


0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

 , Q−−2 =


0 0 −1 0
0 0 0 0
0 0 0 0
0 0 0 0

 , (2.7)

Q+−1 =


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 , Q−+2 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , (2.8)

Q−+1 =


0 0 0 0
0 0 0 0
0 −1 0 0
0 0 0 0

 , Q+−2 =


0 0 0 0
0 0 −1 0
0 0 0 0
0 0 0 0

 , (2.9)

These satisfy the commutation relations

[L0,L±] = ±L± , [L+,L−] = 2L0 ,

[J3,J±] = ±J± , [J+,J−] = 2J3 ,

[L0,Q±αA] = ±1
2Q±αA , [L±,Q∓αA] = Q±αA ,

[J3,Qa±A] = ±1
2Qa±A , [J±,Qa∓A] = Qa±A ,

{Q±+A,Q±+B} = ±εABL± , {Q+±A,Q−±B} = ∓εABJ± ,

(2.10)

and finally
{Q+±A,Q−∓B} = εAB

(
− L0 ± J3

)
. (2.11)

The Weyl-Cartan basis of the algebra is as it follows:

[hi, hj ] = 0 , [ei, fj ] = δijhj , [hi, ej ] = Aijej , [hi, fj ] = −Aijfj , (2.12)

with
h1 = −L0 − J3, e1 = +Q+−1 f1 = +Q−+2,

h2 = 2J3, e2 = +J+ f2 = +J−,
h3 = −L0 − J3, e3 = +Q+−2 f3 = −Q−+1 ,

(2.13)

with Cartan matrix

A =


0 −1 0
−1 +2 −1
0 −1 0

 . (2.14)
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2.1.2 BPS condition and “left Hamiltonian”

In this notation, the BPS condition for the algebra is

− L0 − J3 ≥ 0 . (2.15)

This positive-semidefinite operator can therefore be used to define a “Hamiltonian” for the
left algebra. Indeed it can be shown that this is precisely the contribution of left charges
to the light-cone Hamiltonian [47, 49]

H ≡ −L0 − J3 . (2.16)

The supercharges that commute with H are

Q1 ≡ f1 = +Q−+2, Q2 ≡ f3 = −Q−+1,

S1 ≡ e1 = +Q+−1, S2 ≡ e3 = +Q+−2.
(2.17)

They form the algebra psu(1|1)⊕2 ⊕ u(1){
QA, SB

}
= δAB H ≥ 0 . (2.18)

The charges satisfy the Hermiticity conditions

(Q+−1)† = +Q−+2 , (Q−+2)† = +Q+−1 ,

(Q−+1)† = −Q+−2 , (Q+−2)† = −Q−+1 ,
(2.19)

or equivalently
(QA)† = SA, (SA)† = QA, (2.20)

2.1.3 Weyl-Cartan basis for the “right algebra”

Let us now come to the second copy of psu(1, 1|2), the “right” algebra. The construction of
the matrix representation is identical. We will however pick a slightly different Weyl-Cartan
basis. Denoting the generators by tildes, we have

h̃1 = +L̃0 + J̃3, ẽ1 = +Q̃−+1 f̃1 = +Q̃+−2,

h̃2 = −2L̃0, ẽ2 = +L̃+ f̃2 = −L̃−,
h̃3 = +L̃0 + J̃3, ẽ3 = +Q̃−+2 f̃3 = −Q̃+−1 ,

(2.21)

with Cartan matrix

Ã =


0 +1 0

+1 −2 +1
0 +1 0

 . (2.22)

Running a little ahead of ourselves, let us motivate this choice. Given that the algebra (2.1)
is factorised, we can choose the positive roots in either copy of the algebra independently.
It will turn out however that, when considering a certain class of “off-shell” observables,
the symmetries will be extended by two central charges that couple the left and right
algebras [50]. In that case, our choice of positive roots will prove convenient.
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2.1.4 BPS condition and “right Hamiltonian”

Once again we define
H̃ ≡ −L̃0 − J̃3 ≥ 0 , (2.23)

and
Q̃1 ≡ +e1 = +Q̃−+1, Q̃2 ≡ +e3 = +Q̃−+2,

S̃1 ≡ −f1 = −Q̃+−2, S̃2 ≡ −f3 = +Q̃+−1,
(2.24)

so that
{Q̃A, S̃B} = δA

B H̃ ≥ 0 . (2.25)

Like before we have that
(Q̃A)† = S̃A, (S̃A)† = Q̃A. (2.26)

2.2 Centrally extended off-shell symmetry algebra

Much like in the case of AdS5/CFT4 [14, 54], the algebra relevant for integrability features
a central extension with respect to the superisometry algebra. This central extension
annihilates all physical states. However, it acts nontrivially on the individual worldsheet
excitations that make up a physical state (or, in spin-chain language, on the magnons that
make up the Bethe state). We refer the reader to [11, 12] for reviews of the construction
in the AdS5/CFT4 setup.

For our purposes, it will be sufficient at this stage to recall [47] how the algebra of
symmetries commuting with H and H̃ may be extended. In the notation just introduced,
the algebra is {

QA, SB
}

= H δAB ,
{
Q̃A, S̃B

}
= H̃ δA

B , (2.27)

This allows for a central extension. It is possible to check semiclassically that the cen-
tral extension appears for AdS3 × S3 × T4 backgrounds with Ramond-Ramond flux [49].
Introducing two central charges P and K we have{

QA, Q̃B

}
= P δAB ,

{
SA , S̃B

}
= K δA

B , (2.28)

where the reality conditions discussed above imply that for a unitary representation K† = P
and P† = K. In presence of this central extension, our choice of simple roots (2.17)
and (2.24) appears natural. Since K is central, if QA is a negative root, then Q̃A needs to
be a positive root, and similarly for S̃A and SA.

2.2.1 Factorisation of the centrally extended algebra

The algebra above is psu(1|1)⊕4 centrally extended, which plays a role similar to su(2|2)⊕2

in AdS5/CFT4. In the latter case, the factorisation in su(2|2)⊕2 was quite useful in sim-
plifying many computations: in particular, it was sufficient to work out a su(2|2)-invariant
S matrix [14] which served as a building block of the full su(2|2)⊕2-invariant S matrix. To
emphasise the similarity in the factorised structure, we introduce the psu(1|1)⊕2 centrally
extended algebra, given by{

q, s
}

= H,
{
q̃, s̃

}
= H̃ ,

{
q, q̃

}
= P,

{
s, s̃
}

= K , (2.29)
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The algebra in eq. (2.29) plays the role that su(2|2) plays for AdS5/CFT4. We can then
obtain the larger algebra by setting

Q1 ≡ q ⊗ 1 , Q2 ≡ Σ⊗ q, S1 ≡ s⊗ 1 , S2 ≡ Σ⊗ s , (2.30)

where Σ is the graded identity, Σ = δij(−1)Fj and (note the lowered indices)

Q̃1 ≡ q̃ ⊗ 1 , Q̃2 ≡ Σ⊗ q̃, S̃1 ≡ s̃⊗ 1 , S̃2 ≡ Σ⊗ s̃ . (2.31)

To show that this gives the same psu(1|1)⊕4 centrally extended as above, note that on any
supercharge we have e.g.

Σ q Σ = −q . (2.32)

Indices are raised and lowered with the Levi-Civita symbol with ε12 = −ε12 = 1.

2.3 Short representations of the light-cone symmetry algebra

Having identified the algebra that commutes with the left and right Hamiltonians H and H̃,
as well as its central extension, it is time to construct its short representation. Worldsheet
excitations will transform in these representations [49, 50]. It is convenient to start from
the smaller algebra (2.29).

2.3.1 Short representations of psu(1|1)⊕2 centrally extended

We are interested in the short representations of the smaller algebra (2.29). Let |φ〉 be a
highest weight state, and let us say that q is a lowering operator. Then it must be s |φ〉 = 0,
because s is a raising operator. From the commutation relation involving P we see that q̃
must also act as a raising operator on q |φ〉. The representation is short if we can assume
that q̃ |φ〉 = 0 and s̃(q |φ〉) = 0, so that no new states are generated and the representation
is two-dimensional. In that case we can write

0 =
[
s̃q̃q − s̃q̃q

]
|φ〉 =

[
(s̃q̃ + q̃s̃)q − q̃s̃q − s̃(q̃q + qq̃)

]
|φ〉

=
[
H̃q − q̃s̃q − s̃P

]
|φ〉 =

[
H̃q − s̃P

]
|φ〉 .

(2.33)

By taking the anti-commutator of this expression with s we can find a condition which
depends only on the central charges and therefore applies to the whole representation (not
only to |φ〉).

H H̃ = P K , on the representation. (2.34)

Interestingly, if P = 0 it must be either H = 0 or H̃ = 0, i.e., the representation is
chiral. (When H = H̃ = 0 the representation decomposes in two unidimensional singlet
representations.) We will see that such chiral representations appear for all physical states,
as well as for any state in a theory with no RR fluxes. In conclusion, the only short
representations (besides singlets) are two dimensional, they consist of a Boson and one
Fermion, and we indicate them as (1|1).

A short representation with highest weigth state |φ〉 is parametrised by the eigenvalues
of the central charges, (P,K,H, H̃). The shortening condition (2.34) implies that, if the
representation is unitary,

P K ≥ 0 . (2.35)
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For this reason for unitary representations we will henceforth indicate

C ≡ P , C† ≡ K . (2.36)

The representation has the form

q |φ〉 = a |ϕ〉, s |ϕ〉 = a∗ |φ〉, s̃ |φ〉 = b∗ |ϕ〉, q̃ |ϕ〉 = b |φ〉 , (2.37)

where a, b ∈ C. Note that on this representation

|φ〉 = highest-weight state , |ϕ〉 = lowest-weight state , (2.38)

Note that |φ〉 and |ϕ〉 must have opposite statistics. We get two distinct type of represen-
tations by setting |φ〉 to be a Boson or a Fermion,

φ→ φB ≡ Boson , ϕ→ ϕF ≡ Fermion , (2.39)

or viceversa
φ→ φF ≡ Fermion , ϕ→ ϕB ≡ Boson. (2.40)

Finally the central charges take the form:

C = C 1 = ab1, C† = C∗ 1 = (ab)∗ 1,
H = H 1 = |a|2 1, H̃ = H̃ 1 = |b|2 1.

(2.41)

One can solve for a, b as a functions of (C,H, H̃).

2.3.2 Physical values of the central charges

We can parametrise the central charges themselves in terms of the coupling constants and
the momentum p of the magnon [47]

C = +ih2 (eip − 1)e2iξ , C∗ = −ih2 (e−ip − 1)e−2iξ , (2.42)

where ξ is a representation coefficient related to an automorphism of the algebra. As
explained in ref. [11], ξ arises from the boundary conditions of the fields, and is important
to establish the coproduct of the algebra. Notice that C = C∗ = 0 when p = 0 mod2π,
which is the case for physical states. Here h ≥ 0 is a property of the background: the
amount of RR background flux. In what follows, we will be interested in the “most-
symmetric coproduct” [47], and we will set

C = C∗ = −h sin(p/2) . (2.43)

Coming to the remaining central charges, let us consider the combinations

E ≡ H + H̃ = −L0 − L̃0 − J3 − J̃3 ≥ 0 ,
M ≡ H− H̃ = −L0 + L̃0 − J3 + J̃3 ,

(2.44)

– 10 –



J
H
E
P
0
8
(
2
0
2
1
)
0
4
9

For physical states (p = 0 mod2π), the eigenvalues of M should be quantised in integers.
For Bosonsic states this is obvious as the AdS3 and S3 spins are integer. For Fermionic
states, both spins are half-integer, so that the total spin in M is integer. It turns out that
it is [39, 40]

M = |a|2 + |b|2 = k

2πp+m, m ∈ Z . (2.45)

Here k = 1, 2, 3, . . . is a property of the string background and measures the amount of
NSNS flux, which is quantised. In the special case where h = 0 and k > 0, then k is
precisely the level of the supersymmetric WZW model describing the worldsheet theory.
Before commenting more on m, let us use the shortening condition (2.34) to express the
last central charge E as

E2 = M2 + |C|2 , E =

√(
m+ k

2πp
)2

+ h2 sin2 p

2 . (2.46)

It is clear that m plays the role of a mass in the dispersion relation. Therefore we introduce
the following nomenclature:

• m = 0: we call the representation massless. Here we have that E = 0 at p = 0 for
any value of h and k.

• m = +1,+2, . . . : we call these representations “left” because at p = 0 we have that
E = m and M = m, which implies H = m > 0 and H̃ = 0.

• m = −1,−2, . . . : we call these representations “right” because at p = 0 we have that
E = −m and M = m, which implies H = 0 and H̃ = −m > 0.

We can further distinguish the case |m| = 1 which corresponds to fundamental particles,
from the case of |m| = 2, 3, . . . , which corresponds to bound states thereof [39, 50]. It is
worth emphasising that, unlike what happens in AdS5×S5, bound-state modules have the
same dimension as fundamental particle modules — they are two-dimensional.

2.3.3 Four irreducible representations of psu(1|1)⊕2 c.e.

Four irreducible representations will be important in what follows. We denote them by

ρL = (φB
L |ϕF

L) , ρR = (φF
R|ϕB

R) , ρo = (φB
o |ϕF

o ) , ρ′o = (φF
o |ϕB

o ) , (2.47)

where the first state is always the highest-weight state,

|φ∗∗〉 = highest-weight state , |ϕ∗∗〉 = lowest-weight state . (2.48)

The representations take the same form up to relabeling the representation coefficients:

q |φB
L〉 = aL |ϕF

L〉, s |ϕF
L〉 = a∗L |φB

L〉, s̃ |φB
L〉 = b∗L |ϕF

L〉, q̃ |ϕF
L〉 = bL |φB

L〉 ,

q |φF
R〉 = aR |ϕB

R〉, s |ϕB
R〉 = a∗R |φF

R〉, s̃ |φF
R〉 = b∗R |ϕB

R〉, q̃ |ϕB
R〉 = bR |φF

R〉 ,

q |φB
o 〉 = ao |ϕF

o 〉, s |ϕF
o 〉 = a∗o |φB

o 〉, s̃ |φB
o 〉 = b∗o |ϕF

o 〉, q̃ |ϕF
o 〉 = bo |φB

o 〉 ,

q |φF
o 〉 = ao |ϕB

o 〉, s |ϕB
o 〉 = a∗o |φF

o 〉, s̃ |φF
o 〉 = b∗o |ϕB

o 〉, q̃ |ϕB
o 〉 = bo |φF

o 〉 .

(2.49)
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The explicit form of the representation coefficients can be given in terms of Zhukovski
variables, much like in AdS5. We will be able to describe all representation parameters by
introducing different sets of Zhukovsky variables:

aL = eiξηL,p , bL = −eiξ e
−ip/2

x−L,p
ηL,p , a∗L = e−iξe−ip/2ηL,p , b∗L = −e−iξ 1

x+
L,p
ηL,p,

bR = eiξηR,p , aR = −eiξ e
−ip/2

x−R,p
ηR,p , b∗R = e−iξe−ip/2ηR,p , a∗R = −e−iξ 1

x+
R,p
ηR,p,

ao = eiξηo,p , bo = −eiξ e
−ip/2

x−o,p
ηo,p , a∗o = e−iξe−ip/2ηo,p , b∗o = −e−iξ 1

x+
o,p
ηo,p.

(2.50)

The η parameter is always

η∗,p = eip/4

√
ih

2 (x−∗,p − x+
∗,p) , (2.51)

where we indicated with “∗” the symbols L, R, o. The Zhukovsky variables, instead, satisfy

x+
L,p + 1

x+
L,p
− x−L,p −

1
x−L,p

=
2i
(
1 + k

2πp
)

h
,

x+
R,p + 1

x+
R,p
− x−R,p −

1
x−R,p

=
2i
(
1− k

2πp
)

h
,

x+
o,p + 1

x+
o,p
− x−o,p −

1
x−o,p

=
2i
(
0 + k

2πp
)

h
,

(2.52)

and can be parametrised as it follows

x±L,p = e±ip/2

2h sin
(
p
2

)((1 + k

2πp
)

+

√√√√(1 + k

2πp
)2

+ 4h2 sin2
(
p

2

))
,

x±R,p = e±ip/2

2h sin
(
p
2

)((1− k

2πp
)

+

√√√√(1− k

2πp
)2

+ 4h2 sin2
(
p

2

))
,

x±o,p = e±ip/2

2h sin
(
p
2

)((0 + k

2πp
)

+

√√√√(0 + k

2πp
)2

+ 4h2 sin2
(
p

2

))
.

(2.53)

It satisfies (2.52) as well as

x+
∗,p −

1
x+
∗,p
− x−∗,p + 1

x−∗,p
= 2i E

h
. (2.54)

It is worth noting that the left and right representation are not simply related by
sending m → −m as one may have naïvely expected. Instead, the paramterisation of the
representation coefficients and of the Zhukovski variables is genuinely different. This is
done so that |x±∗,p| ≥ 1 for physical particles [55, 56].
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Notice further that for the massless representation we have defined

ao = lim
m→0

aL , bo = lim
m→0

bL , x±o,p = lim
m→0

x±L,p , (2.55)

We could have used the right representation instead. Practically, this amounts to flipping
the sign of p in (2.53) and switching ao ↔ bo in (2.50). This is actually allowed and
does not introduce any new physics because the central charges, and in particular M in
eq. (2.45), are unchanged. Hence the two representations obtained in the two limits must be
isomorphic. This may be seen through a change of basis, e.g. by rescaling the lowest-weight
state (but not the highest-weight one) as it follows:

|ϕ〉 → σp |ϕ〉 , σp ≡
[
aL

aR

]
m→0

= −sgn
[

sin p/2
]
. (2.56)

It is also useful to note the following identity

lim
m→0

(
x±L (p)x∓R (p)

)
= 1 , (2.57)

which is valid for any k and generalises the fact, valid at k = 0, that x+
o (p) = 1/x−o (p).

Let us finally comment on the h → 0 limit, which corresponds to the WZW model.
The Zhukovsky variables are divergent in this limit

x±∗,p = e±ip/2

h sin(p/2)
M + |M |

2 +O(h0) , ηp = eip/4

√
M + |M |

2 +O(h1) , (2.58)

The leading order in h of the Zhukovsky variables depends on the sign of (2πm+ kp), i.e.
on the branch of the dispersion relation

E(p) =
∣∣∣∣m+ k

2πp
∣∣∣∣ . (2.59)

Therefore, particles moving in the same or in opposite directions have starkly different
limits [42].

2.3.4 Parametrisation after crossing

It will be useful in what follows to consider particles whose momentum analytically is
continued to the crossed region, i.e.

p→ −p , E(p)→ −E(p) . (2.60)

This is the analogue of going from the s- to the t- channel in a relativistic theory. Following
the notation of ref. [13] we indicate the crossed momentum as p2γ . This is justified by the
fact that pγ represents the continuation of momentum to the mirror region [9] which loosely
speaking corresponds to “half crossing”. For a comprehensive discussion of the mirror
and crossed regions we refer the readers to [11] and, in the context of AdS3 × S3 × T4,
to [40, 50, 51]. Under the crossing transformation we have [40]

x±L (p2γ) = 1
x±R (p)

, x±R (p2γ) = 1
x±L (p)

. (2.61)
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AdS3 Bosons S3 Bosons T4 Bosons Fermions
Left, m = +1 Z(p) Y (p) ΨA(p)
Right m = −1 Z̃(p) Ỹ (p) Ψ̃A(p)
Massless m = 0 TAȦ(p) χȦ(p), χ̃Ȧ(p)

Table 1. The fundamental particles of AdS3 × S3 × T4 are eight Bosons and eight Fermions. In
this table we arrange them according to which representation they belong (this depends on the sign
of the central charge M at momentum p = 0, m = M|p=0) and to their geometrical interpretation.

Hence, the Zhukovsky variables and any rational function thereof map to themselves under
a 4γ-shift. Instead, the functions ηL(p) and ηR(p) behave as it follows,

ηL(p±2γ) = ±i
x+

R (p)
ηR(p) , ηR(p±2γ) = ±i

x+
L (p)

ηL(p) . (2.62)

Crossing for massless modes is essentially given by the m → 0 limit of the massless case
and by recalling the identity (2.57). We have

x±o (p2γ) = x∓o (p) , ηo(p±2γ) = ∓iσp e−ip/2ηo(p) . (2.63)

2.4 Particle content of the theory

The fundamental particle content of the theory is summarised in table 1. They can be ar-
ranged in representations constructed out of the ρ±, ρ0, ρ′0 representations discussed above.
Let ρ be any short representation of psu(1|1)⊕2 c.e., which as we saw is two dimensional
and takes the form (1|1). We want to use it to construct representations of psu(1|1)⊕4 c.e.,
which we call %. Clearly we can set % = ρ± ⊗ ρ±, or % = ρ0 ⊗ ρ0 (or indeed, in this last
formula, swap ρ0 for ρ′0, as it will turn out to be the case). However, a representation of
the form e.g. % = ρ± ⊗ ρ∓ or % = ρ± ⊗ ρ0 would not be a representation of the algebra in-
troduced in section 2.2. Indeed to obtain a valid representation it is necessary that the two
psu(1|1)⊕2 representations appearing in the tensor product have the same central charge.

2.4.1 The left representation

To construct the left representation we consider

%+ = ρ+ ⊗ ρ+ . (2.64)

We define the following states

|Y (p)〉 = |φB
L(p)⊗ φB

L(p)〉 ,
|Ψ1(p)〉 = |ϕF

L(p)⊗ φB
L(p)〉 , |Ψ2〉 = |φB

L(p)⊗ ϕF
L(p)〉 ,

|Z(p)〉 = |ϕF
L(p)⊗ ϕF

L(p)〉 ,
(2.65)
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By using this definition we see that the supercharges act is as it follows

|Y (p)〉

|Ψ1(p)〉 |Ψ2(p)〉

|Z(p)〉

Q1, S̃1 Q2, S̃2

Q2, S̃2 Q1, S̃1

(2.66)

To avoid cluttering the figure we only indicated the lowering operators, and not the raising
ones. By using the definitions of section 2.2.1 we get the following action of the super-
charges:

QA|Y (p)〉 = aL(p) |ΨA(p)〉 , QA|ΨB(p)〉 = εABaL(p) |Z(p)〉 ,
SA|ΨB(p)〉 = δA

B a∗L(p) |Y (p)〉 , SA|Z(p)〉 = −εAB a∗L(p) |ΨB(p)〉 ,
S̃A|Y (p)〉 = b∗L(p) |ΨA(p)〉 , S̃A|ΨB(p)〉 = εABb∗L(p) |Z(p)〉 ,

Q̃A|ΨB(p)〉 = δA
B bL(p) |Y (p)〉 , Q̃A|Z(p)〉 = −εAB bL(p) |ΨB(p)〉 ,

(2.67)

where we omitted the vanishing actions and we recall our convention ε12 = −ε12 = +1.

2.4.2 The right representation

For the right representation
%− = ρ− ⊗ ρ− , (2.68)

and we define

|Z̃(p)〉 = |φF
R(p)⊗ φF

R(p)〉 ,
|Ψ̃1(p)〉 = |ϕB

R(p)⊗ φF
R(p) , |Ψ̃2(p)〉 = −|φF

R(p)⊗ ϕB
R(p)〉 ,

|Ỹ (p)〉 = |ϕB
R(p)⊗ ϕB

R(p)〉 ,
(2.69)

where the reason for the minus sign is that “right” supercharges are canonically defined
with lower su(2)• indices, see section 2.2.1. Arranging the representation in this way we
see that the lowering operator act in the same fashion as above

|Z̃(p)〉

|Ψ̃1(p)〉 |Ψ̃2(p)〉

|Ỹ (p)〉

Q1, S̃1 Q2, S̃2

Q2, S̃2 Q1, S̃1

(2.70)

– 15 –



J
H
E
P
0
8
(
2
0
2
1
)
0
4
9

where the representation takes the form

QA|Z̃(p)〉 = bR(p) |Ψ̃A(p)〉 , QA|Ψ̃B(p)〉 = −εABbR(p) |Ỹ (p)〉 ,
SA|Ψ̃B(p)〉 = δA

B b∗R(p) |Z̃(p)〉 , SA|Ỹ (p)〉 = εAB b
∗
R(p) |Ψ̃B(p)〉 ,

S̃A|Ỹ (p)〉 = a∗R(p) |Ψ̃A(p)〉 , S̃A|Ψ̃B(p)〉 = −εABa∗R(p) |Z̃(p)〉 ,
Q̃A|Ψ̃B(p)〉 = δA

B aR(p) |Ỹ (p)〉 , Q̃A|Z̃(p)〉 = εAB aR(p) |Ψ̃B(p)〉 .

(2.71)

Notice that there is a discrete left-right symmetry [40, 55] when swapping the particles

|Y 〉 ↔ |Ỹ 〉 , |ΨA〉 ↔ |Ψ̃A〉 , |Z〉 ↔ |Z̃〉 . (2.72)

2.4.3 The massless representations

There are actually two massless representations, which carry a charge under another su(2)
algebra, which commutes with all symmetries thus far introduced. This is the su(2)◦ that
emerged from the decomposition of so(4)T4 . We write

%Ȧ0 =
(
ρ0 ⊗ ρ′0

)
⊕
(
ρ′0 ⊗ ρ0

)
, Ȧ = 1, 2 , (2.73)

with the understanding that the two modules ρ0⊗ρ′0 and ρ′0⊗ρ0 must also fit into a doublet
of su(2)◦. This is not in contradiction with the fact that su(2)◦ commutes with psu(1|1)⊕4

centrally extended because, as psu(1|1)⊕4 c.e. representations, ρ0 ⊗ ρ′0 ∼= ρ′0 ⊗ ρ0. In fact,
in reference [48] the same representation ρ0⊗ ρ′0 was used for both Ȧ = 1 and Ȧ = 2. This
amounts to a change of basis. We now have eight states

|χ1̇(p)〉 = |φB
0 (p)⊗ φF

0(p)〉 ,

|T 1̇1(p)〉 = |ϕF
0(p)⊗ φF

0(p)〉 , |T 1̇2(p)〉 = |φB
0 (p)⊗ ϕB

0 (p)〉 ,

|χ̃1̇(p)〉 = |ϕF
0(p)⊗ ϕB

0 (p)〉 ,

(2.74)

and

|χ2̇(p)〉 = i|φF
0(p)⊗ φB

0 (p)〉 ,

|T 2̇1(p)〉 = i|ϕB
0 (p)⊗ φB

0 (p)〉 , |T 2̇2(p)〉 = −i|φF
0(p)⊗ ϕF

0(p)〉 ,

|χ̃2̇(p)〉 = −i|ϕB
0 (p)⊗ ϕF

0(p)〉 ,

(2.75)

Note that we have introduced an overall i in the latter representation. This is a matter
of convenience that can be also addressed by introducing suitable normalisations later on.
Arranging the representation in this way we see that the lowering operator act in the same
fashion as above for either module

|χȦ(p)〉

|T Ȧ1(p)〉 |T Ȧ2(p)〉

|χ̃Ȧ(p)〉

Q1, S̃1 Q2, S̃2

Q2, S̃2 Q1, S̃1

(2.76)
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and regardless of the value of the index Ȧ = 1, 2 the representation takes the form

QA|χȦ(p)〉 = ao(p) |T ȦA(p)〉 , QA|T ȦB(p)〉 = εABao(p) |χ̃Ȧ(p)〉 ,

SA|T ȦB(p)〉 = δA
B a∗o(p) |χȦ(p)〉 , SA|χ̃Ȧ(p)〉 = −εAB a∗o(p) |T ȦB(p)〉 ,

S̃A|χȦ(p)〉 = b∗o(p) |T ȦA(p)〉 , S̃A|T ȦB(p)〉 = εABb∗o(p) |χ̃Ȧ(p)〉 ,

Q̃A|T ȦB(p)〉 = δA
B bo(p) |χȦ(p)〉 , Q̃A|χ̃(p)〉 = −εAB bo(p) |T ȦB(p)〉 .

(2.77)

2.5 Scattering matrix

Up to the dressing factors, the S matrix of AdS3 × S3 × T4 can be constructed by ten-
soring two S matrices of psu(1|1)⊕2 c.e., which in turn can be determined by imposing
commutation with the symmetries discussed above [47]. All in all, this closely resembles
what happens with AdS5 × S5, with two main differences: firstly, rather than dealing with
the algebra su(2|2) c.e. we have here psu(1|1)⊕2 c.e.; secondly, instead of dealing with a
single irreducble representation here we have four irreducible representations. (Recall that
in AdS5 × S5 we have four-dimensional representations of su(2|2) leading to 42 = 16 di-
mensional representations of su(2|2)⊕2; here we start from two-dimensional representations
instead.) As a result of having four irreducible representations, the S matrix will consist of
sixteen blocks with as many dressing factors. Fortunately unitarity and other symmetries
reduce the number of independent dressing factors to four.

For the reader’s convenience, we introduce below the scattering matrices between
psu(1|1)⊕2 c.e. representations that play a role in what follows.

2.5.1 Left-left scattering

Here we report the scattering matrix for particles in the ρL representation of psu(1|1)⊕2

centrally extended,

S|φB
L,pφ

B
L,q〉 = ALL

pq |φB
L,qφ

B
L,p〉, S|φB

L,pϕ
F
L,q〉 = BLL

pq |ϕF
L,qφ

B
L,p〉+ CLL

pq |φB
L,qϕ

F
L,p〉,

S|ϕF
L,pϕ

F
L,q〉 = F LL

pq |ϕF
L,qϕ

F
L,p〉, S|ϕF

L,pφ
B
L,q〉 = DLL

pq |φB
L,qϕ

F
L,p〉+ ELL

pq |ϕF
L,qφ

B
L,p〉,

(2.78)

where the matrix elements are determined up to an overall prefactor ΣLL
pq ,

ALL
pq = ΣLL

pq , BLL
pq = ΣLL

pqe
− i

2p
x+

L,p − x+
L,q

x−L,p − x+
L,q

,

CLL
pq = ΣLL

pqe
− i

2pe+ i
2 q
x−L,q − x+

L,q

x−L,p − x+
L,q

ηL,p

ηL,q
, DLL

pq = ΣLL
pqe

+ i
2 q
x−L,p − x−L,q
x−L,p − x+

L,q
,

ELL
pq = Cpq , F LL

pq = −ΣLL
pqe
− i

2pe+ i
2 q
x+

L,p − x−L,q
x−L,p − x+

L,q
.

(2.79)

Notice that we include a minus sign in F LL
pq to account for the Fermion permutation (in other

words, in the free-theory limit our S matrix reduces to the graded permutation operator).
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2.5.2 Right-right scattering

Here we have

S|ϕB
R,pϕ

B
R,q〉 = ARR

pq |ϕB
R,qϕ

B
R,p〉, S|ϕB

R,pφ
F
R,q〉 = BRR

pq |φF
R,qϕ

B
R,p〉+ CRR

pq |ϕB
R,qφ

F
R,p〉,

S|φF
R,pφ

F
R,q〉 = FRR

pq |φF
R,qφ

F
R,p〉, S|φF

R,pϕ
B
R,q〉 = DRR

pq |ϕB
R,qφ

F
R,p〉+ ERR

pq |φF
R,qϕ

B
R,p〉,

(2.80)

with

ARR
pq = ΣRR

pq , BRR
pq = ΣRR

pq e
− i

2p
x+

R,p − x+
R,q

x−R,p − x+
R,q

,

CRR
pq = ΣRR

pq e
− i

2pe+ i
2 q
x−R,q − x+

R,q

x−R,p − x+
R,q

ηR,p

ηR,q
, DRR

pq = ΣRR
pq e

+ i
2 q
x−R,p − x−R,q
x−R,p − x+

R,q
,

ERR
pq = Cpq , FRR

pq = −ΣRR
pq e
− i

2pe+ i
2 q
x+

R,p − x−R,q
x−R,p − x+

R,q
.

(2.81)

2.5.3 Left-right scattering

Here we have

S|φB
L,pϕ

B
R,q〉 = ALR

pq |ϕB
R,qφ

B
L,p〉+BLR

pq |φF
R,qϕ

F
L,p〉, S|φB

L,pφ
F
R,q〉 = CLR

pq |φF
R,qφ

B
L,p〉,

S|ϕF
L,pφ

F
R,q〉 = ELR

pq |φF
R,qϕ

F
L,p〉+ F LR

pq |ϕB
R,qφ

B
L,p〉, S|ϕF

L,pϕ
B
R,q〉 = DLR

pq |ϕB
R,qϕ

F
L,p〉,

(2.82)

with

ALR
pq = ΣLR

pq e
− i

2p
1− x+

L,px
−
R,q

1− x−L,px−R,q
, BLR

pq = ΣLR
pq e
− i

2pe−
i
2 q

2i
h

ηL,pηR,q

1− x−L,px−R,q
,

CLR
pq = ΣLR

pq , DLR
pq = ΣLR

pq e
− i

2pe−
i
2 q

1− x+
L,px

+
R,q

1− x−L,px−R,q
,

ELR
pq = −ΣLR

pq e
− i

2 q
1− x−L,px+

R,q

1− x−L,px−R,q
, F LR

pq = −BLR
pq .

(2.83)

2.5.4 Right-left scattering

The right-left S matrix is related to the left-right one by unitarity. It reads

S|ϕB
R,pφ

B
L,q〉 = ARL

pq |φB
L,qϕ

B
R,p〉+BRL

pq |ϕF
L,qφ

F
R,p〉, S|ϕB

R,pϕ
F
L,q〉 = CRL

pq |ϕF
L,qϕ

B
R,p〉,

S|φF
R,pϕ

F
L,q〉 = ERL

pq |ϕF
L,qφ

F
R,p〉+ FRL

pq |φB
L,qϕ

B
R,p〉, S|φF

R,pφ
B
L,q〉 = DRL

pq |φB
L,qφ

F
R,p〉,

(2.84)

with

ARL
pq = ΣRL

pq e
+ i

2 q
1− x+

R,px
−
L,q

1− x+
R,px

+
L,q

, BRL
pq = ΣRL

pq

2i
h

ηR,pηL,q

1− x+
R,px

+
L,q

,

CRL
pq = ΣRL

pq e
+ i

2pe+ i
2 q

1− x−R,px−L,q
1− x+

R,px
+
L,q

, DRL
pq = ΣRL

pq ,

ERL
pq = −ΣRL

pq e
+ i

2p
1− x−R,px+

L,q

1− x+
R,px

+
L,q

, FRL
pq = −BRL

pq .

(2.85)
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2.5.5 Massless scattering

Because the massless representation coefficients may be obtained either from ρL or ρR

by taking the m → 0 limit, so can the relevant S-matrix elements (up to the dressing
factor: those do not follow immediately from symmetry, so that a more cautious analysis
is required [50, 51]). Here we will choose to obtain the massless S-matrix elements from
the left-left scattering. The only additional caution in this case is relative to the statistics
of the exictations, since in massless representations we may encounter Fermionic highest-
weight states. This leads to different signs, which we spell out here, starting by recalling
the standard scattering matrix.

S|φB
o,pφ

B
o,q〉 = ALL

pq |φB
o,qφ

B
o,p〉, S|φB

o,pϕ
F
o,q〉 = BLL

pq |ϕF
o,qφ

B
o,p〉+ CLL

pq |φB
o,qϕ

F
o,p〉,

S|ϕF
o,pϕ

F
o,q〉 = F LL

pq |ϕF
o,qϕ

F
o,p〉, S|ϕF

o,pφ
B
o,q〉 = DLL

pq |φB
o,qϕ

F
o,p〉+ ELL

pq |ϕF
o,qφ

B
o,p〉,

(2.86)

When both particles are in the ρ̃L representation we have, instead

S|ϕB
o,pϕ

B
o,q〉 = −F LL

pq |ϕB
o,qϕ

B
o,p〉, S|ϕB

o,pφ
F
o,q〉 = DLL

pq |φF
o,qϕ

B
o,p〉 − ELL

pq |ϕB
o,qφ

F
o,p〉,

S|φF
o,pφ

F
o,q〉 = −ALL

pq |φF
o,qφ

F
o,p〉, S|φF

o,pϕ
B
o,q〉 = BLL

pq |ϕB
o,qφ

F
o,p〉 − CLL

pq |φF
o,qϕ

B
o,p〉.

(2.87)

Note that we could have also defined, in analogy with the above, AL̃L̃ ≡ −F LL, BL̃L̃ ≡ DLL,
C L̃L̃ ≡ −ELL, DL̃L̃ ≡ BLL, EL̃L̃ ≡ −CLL, and F L̃L̃ ≡ −ALL. Similarly, in the mixed case we
have

S|φB
o,pϕ

B
o,q〉 = BLL

pq |ϕB
o,qφ

B
o,p〉 − CLL

pq |φF
o,qϕ

F
o,p〉, S|φB

o,pφ
F
o,q〉 = ALL

pq |φF
o,qφ

B
o,p〉,

S|ϕF
o,pφ

F
o,q〉 = −DLL

pq |φF
o,qϕ

F
o,p〉+ ELL

pq |ϕB
o,qφ

B
o,p〉, S|ϕF

o,pϕ
B
o,q〉 = −F LL

pq |ϕB
o,qϕ

F
o,p〉,

(2.88)

and finally

S|ϕB
o,pφ

B
o,q〉 = DLL

pq |φB
o,qϕ

B
o,p〉+ ELL

pq |ϕF
o,qφ

F
o,p〉, S|ϕB

o,pϕ
F
o,q〉 = −F LL

pq |ϕF
o,qϕ

B
o,p〉,

S|φF
o,pϕ

F
o,q〉 = −BLL

pq |ϕF
o,qφ

F
o,p〉 − CLL

pq |φB
o,qϕ

B
o,p〉, S|φF

o,pφ
B
o,q〉 = ALL

pq |φB
o,qφ

F
o,p〉.

(2.89)

2.5.6 Mixed-mass scattering

In a similar way as the above, we may obtain the mixed-mass S matrix by considering the
massless limit of the representation parameters only for one of the variables. Additionally,
we have to account for the various signs that may arise due to the grading of the highest
weight state. Below we list those related to the ρ′0 ⊗ ρ− and ρ− ⊗ ρ′0 representations, since
the ones related to ρ′0⊗ρ+ and ρ+⊗ρ′0 are the same as eqs. (2.89) and (2.88), respectively.
We have

S|ϕB
R,pϕ

B
o,q〉 = +CRo

pq |ϕB
o,qϕ

B
R,p〉, S|ϕB

R,pφ
F
o,q〉 = +ARo

pq |φF
o,qϕ

B
R,p〉 −BRo

pq |ϕB
o,qφ

F
R,p〉,

S|φF
R,pφ

F
o,q〉 = −DRo

pq |φF
o,qφ

F
R,p〉, S|φF

R,pϕ
B
o,q〉 = −ERo

pq |ϕB
o,qφ

F
R,p〉+ FRo

pq |φF
o,qϕ

B
R,p〉,

(2.90)

and (correcting a misprint in [49])

S|ϕB
o,pϕ

B
R,q〉 = +DoR

pq |ϕB
R,qϕ

B
o,p〉, S|ϕB

o,pφ
F
R,q〉 = −EoR

pq |φF
R,qϕ

B
o,p〉 − F oR

pq |ϕB
R,qφ

F
o,p〉,

S|φF
o,pφ

F
R,q〉 = −CoR

pq |φF
R,qφ

F
o,p〉, S|φF

o,pϕ
B
R,q〉 = +AoR

pq |ϕB
R,qφ

F
o,p〉+BoR

pq |φF
R,qϕ

B
o,p〉.

(2.91)

– 19 –



J
H
E
P
0
8
(
2
0
2
1
)
0
4
9

2.5.7 Dressing factors

The pre-factors introduced above must obey crossing and unitarity constraints, besides
having the correct analytic structure to give a sensible S-matrix for the full psu(1|1)⊕ c.e.
S matrix. It is possible to write the solutions in the form [50, 51]

(
ΣLL
pq

)2
=
(
ΣRR
pq

)2
= ei(p−q)

σ∗∗(p, q)2
x−∗,p − x+

∗,q

x+
∗,p − x−∗,q

1− 1
x−

∗,px
+
∗,q

1− 1
x+

∗,px
−
∗,q

,

(
ΣLR
pq

)2
= eip

σLR(p, q)2
1− x−L,px−R,q
1− x+

L,px
+
R,q

1− 1
x−

L,px
+
R,q

1− 1
x+

L,px
−
R,q

,

(
ΣRL
pq

)2
= e−iq

σRL(p, q)2
1− x+

R,px
+
L,q

1− x−R,px−L,q

1− 1
x−

R,px
+
L,q

1− 1
x+

R,px
−
L,q

.

(2.92)

and for the massless case

(
Σoo
pq

)2
= − e

i
2 (p−q)

σoo(p, q)2
x−o,p − x+

o,q

x+
o,p − x−o,q

. (2.93)

Notice that our normalisation differs by an overall minus sign from that of [40]. This does
not affect the crossing equations and leads to a consistent limit in the near-BMN expansion.
For the mixed-mass cases we have

Σ•◦Lo(p, q)2 = e+i p2
x−L,p − x+

o,q

x+
L,p − x+

o,q
ζ(p, q) 1

σ•◦Lo (p, q)2 ,

Σ◦•oL(p, q)2 = e−i
q
2
x−o,p − x+

L,q

x−o,p − x−L,q
ζ(p, q) 1

σ◦•oL (p, q)2 ,

Σ•◦Ro(p, q)2 = e−i(
p
2 +q) (1− x−R,px+

o,q)(1− x+
R,px

+
o,q)

(1− x−R,px−o,q)2 ζ̃(p, q) 1
σ•◦Ro(p, q)2 ,

Σ◦•oR(p, q)2 = e+i(p+ q
2 ) (1− x−o,px+

R,q)(1− x−o,px−R,q)
(1− x+

o,px
+
R,q)2 ζ̃(p, q) 1

σ◦•oR(p, q)2 ,

(2.94)

where we introduced the functions

ζ(p, q) =

√√√√x−∗,p − x−∗,q
x+
∗,p − x−∗,q

x+
∗,p − x+

∗,q

x−∗,p − x+
∗,q
,

ζ̃(p, q) =

√√√√1− x+
∗,px

+
∗,q

1− x+
∗,px

−
∗,q

1− x−∗,px−∗,q
1− x−∗,px+

∗,q
.

(2.95)

All of the above formulae are written in terms of some functions σ∗∗ which have branch
cuts on the Zhukovski plane. The transformations of the Zhukovski variables are given in
section 2.3.4, while for the detailed description of the cuts of the dressing factors we refer
the reader to the review [37] and the original literature [50, 51]. In what follows we will not
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use the explicit form of the dressing factors, but we will use their properties under crossing
and unitarity. We have

σLL(p+2γ , q)2σRL(p, q)2 = gRL(p, q) , σLL(p, q)2σRL(p+2γ , q)2 = g̃LL(p, q) ,
σRR(p+2γ , q)2σLR(p, q)2 = gLR(p, q) , σRR(p, q)2σLR(p2γ , q)2 = g̃RR(p, q) ,

σLL(p, q−2γ)2σLR(p, q)2 = 1
g̃LL(q2γ , p) , σLL(p, q)2σLR(p, q−2γ)2 = 1

gRL(q2γ , p) ,

σRR(p, q−2γ)2σRL(p, q)2 = 1
g̃RR(q2γ , p) , σRR(p, q)2σRL(p, q−2γ)2 = 1

gLR(q2γ , p) ,

(2.96)

where the rational functions g(p, q) and g̃(p, q) are given by

g∗∗(p, q) = e−2iq

(
1− 1

x+
∗,px

+
∗,q

)(
1− 1

x−
∗,px

−
∗,q

)
(

1− 1
x+

∗,px
−
∗,q

)2
x−∗,p − x+

∗,q

x+
∗,p − x−∗,q

,

g̃∗∗(p, q) = e−2iq (x−∗,p − x+
∗,q)2

(x+
∗,p − x+

∗,q)(x−∗,p − x−∗,q)

1− 1
x−

∗,px
+
∗,q

1− 1
x+

∗,px
−
∗,q

.

(2.97)

Similarly, for the massless phase we have that

σoo(p2γ , q)2σoo(p, q)2 =
x+

o,p − x−o,q
x+

o,p − x+
o,q

x−o,p − x+
o,q

x−o,p − x−o,q
, (2.98)

and for the mixed-mass phases,

σ•◦Ro(p2γ , q)2σ•◦Lo (p, q)2 =
x−L,p − x+

o,q

x+
L,p − x+

o,q

x+
L,p − x−o,q
x−L,p − x−o,q

= σ◦•oL (q2γ , p)2σ◦•oL (q, p)2 ,

σ•◦Lo (p2γ , q)2σ•◦Ro(p, q)2 =
1− 1

x+
R,px

+
o,q

1− 1
x+

R,px
−
o,q

1− 1
x−

R,px
−
o,q

1− 1
x−

R,px
+
o,q

= σ◦•oR(q2γ , p)2σ◦•oR(q, p)2 .

(2.99)

3 Integrability for three-point functions and the hexagon operator

It was proposed that, for AdS5×S5 superstrings, three- [13] and higher-point functions [20,
21] of generic operators may be constructed using integrability techniques. The setup is eas-
iest to understand for three-point functions [13] by bearing in mind the approach used for
the spectral problem. In the spectral problem, one goes from a closed string (a finite-volume
worldsheet) to a decompactified worldsheet where the S matrix may be defined [11]. For
three-point functions, too, one wants to consider a decompactification of the “pair of pants”
topology by cutting it open in two hexagonal patches. Without reviewing this construction
in full detail (we refer the reader to [13]) it suffices to say that either patch contains a piece
of each of the three closed-string states whose correlator we are interested in computing, see
figure 1. We are interested in representing each hexagonal patch as an ordinary worldsheet
where a non-local “hexagon” operator has been inserted, see figure 2. What is remarkable
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Figure 1. The main idea of ref. [13] is to “cut open” the three-point function in string theory to
get two patches of worldsheet with six distinct edges (hexagon tesellation). This is the analogue
of considering the infinite-volume worldsheet theory for the spectral problem (i.e., cutting open a
cylinder into a plane).

is that, in the case of AdS5×S5, it is possible [13] to bootstrap the form factors of these op-
erators starting from the light-cone gauge symmetries that helped determine the S matrix.
It is therefore natural to ask whether a similar construction may be applied to more general
setups, and in particular to AdS3 × S3 × T4. This is what we will discuss in this section.

3.1 Symmetries of the three-point function

In the case of the S matrix, the original psu(1, 1|2)⊕2 supersymmetry was broken by gauge
fixing. Such a gauge fixing relies on the choice of a 1/2-BPS geodesic and, in the dual
CFT, amounts to picking a reference two-point function involving one 1/2-BPS operator
O(0) and its conjugate O†(∞). In the case of three-point functions we need three-operator,
sitting at three distinct points. It is useful to construct such an operator following ref. [57],
starting from a reference BPS operator and considering its image under translation.

3.1.1 The supertranslation operator

Given a 1/2-BPS operator O(0) at z = 0, we are interested in constructing translated
operators O(z). To be concrete, let us say that O(0) is a 1/2-BPS scalar operator which is
the highest-weight state in the representation with

− L0 = J3 = j , −L̃0 = J̃3 = j , (3.1)

see section 2.1. In terms of the psu(1, 1|2)⊕2 generators, translations are given by

T = iL− + iL̃− . (3.2)

We are interested in constructing three such operators in such a way as to preserve as much
(super)symmetry as possible. We expect this to break some of the psu(1|1)⊕4 centrally ex-
tended symmetry described in section 2.2. It is easy to see that this requires combining the
translation with an R-symmetry rotation [13, 57]. Hence we introduce the supertranslation
generator

Tκ = iL− + iL̃− + κJ− + κ J̃− , (3.3)
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Figure 2. We can represent each hexagonal worldsheet patch as an ordinary two-dimensional
theory with the insertion of a non-local “hexagon operator” which creates an excess angle (the red
zig-zag line). This operators may absorb excitations (like particle a in the figure) yielding a non-zero
result — its form factor. This form factor is what we are interested in determining starting from
the symmetries preserved by the configuration of three operators O1, O2 and O3.

where κ ∈ C is some constant to be determined. It is worth noting that, while we may
introduce a distinct κ and κ̃ for the left and right part of the algebra, we will be able to
carry out the bootstrap procedure with a single κ = κ̃. Using Tκ we may construct a one
parameter family of operators starting from O(0), namely

Ot,κ = etTκ O(0) e−tTκ , (3.4)

which by construction sits at position t. At the same time, we have that the operator
is t-rotated in R-symmetry space. For instance, taking t = ∞ yields O†(∞). A generic
configuration of images of O(0) sitting at t1, t2, t3, . . . will be jointly annihilated by the
stabilizer of Tκ in psu(1|1)⊕4 centrally extended. By direct inspection, this supertranslation
operator preserves four supercharges in psu(1|1)⊕4, namely

Q+−A −
i

κ
Q−+A = SA −

i

κ
εAB QB,

Q̃+−A −
i

κ
Q̃−+A = −εABS̃B − i

κ
Q̃A .

(3.5)

3.1.2 The hexagon subalgebra

It is convenient to introduce the notation

QA = SA −
i

κ
εAB QB,

Q̃A = Q̃A − iκ εAB S̃B ,
(3.6)

to indicate the four supercharges that commute with the supertranslation generator
Tκ (3.3). By direct inspection, using the relations of section 2.2, we find

{QA,QA} = 0, {Q1,Q2} = − i
κ

(
{S1, ε21Q1}+ {ε12Q2,S2}

)
= 0 . (3.7)

Moreover, we have

{
QA, Q̃B

}
= −iκ{SA, εBC S̃C} − i

κ
{εACQC , Q̃B} = − i

κ
εAB

(
P− κ2K

)
(3.8)
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Here P and K are the central extensions of the psu(1|1)⊕4 algebra which are not in
psu(1, 1|2)⊕2. In fact, for a unitary representation of the psu(1|1)⊕4 algebra we should
take P and K to be Hermitian conjugate to each other; in fact, as reviewed in section 2.2 it
is possible and convenient to take them to be real, cf. (2.43). Introducing the central charge

C ≡ − i
κ

(
P− κ2K

)
, (3.9)

we have that on a multi-excitation state involving momenta p1, . . . pN ,

C |p1, . . . pN 〉 = (κ2 − 1)h
iκ

sin
(
p1 + · · ·+ pN

2

)
|p1, . . . pN 〉 . (3.10)

3.1.3 Bootstrap principle

Let us now specialise to the case of three-point functions. We therefore want to consider
three images of the 1/2-BPS operator O(0). For this purpose — without loss of generality
owing to conformal symmetry — we may take the images under superstranslation with
t = 0, t′ = 1 and t′′ = ∞. The first operator will be precisely O(0), sitting at z = 0 (and
being the highest-weight state in its R-symmetry multiplet). The third operator will be
O†(∞), sitting at z = ∞ and being the lowest weight state in the R-symmetry multiplet.
The second operator will be sitting at z = 1 and it will be neither the highest- nor the
lowest-weight state in the R-symmetry multiplet. The symmetry algebra preserved by this
configuration is generated by the four supercharges (QA, Q̃A). Following Basso, Komatsu
and Vieira [13] we shall assume that this is the symmetry preserved by the “hexagon
operator”. In other words, denoting the hexagon operator by h,

[h,QA] = 0 , [h, Q̃A] = 0 . (3.11)

Indicating the form factor of h with any state Ψ as 〈h|Ψ〉, it follows that

〈h|QA|Ψ〉 = 0 , 〈h|Q̃A|Ψ〉 = 0 , 〈h|C|Ψ〉 = 0. (3.12)

The equality follows by letting (QA, Q̃A) — or, for the third equations, a suitable anticom-
mutator thereof — act on the state. Vice versa, letting the (super)charges act on the ket
we obtain a set of linear constaints that the hexagon form factor must obey.

3.1.4 Vanishing of the central extension

The bootstrap condition (3.12) takes a particular simple form in the case of the central
charge C, because this acts diagonally and independently on the particles flavour. We
see from (3.10) that, whenever the Ramond-Ramond coupling h 6= 0, C only annihilates
physical states — just as is the case for P and K in the spectral problem — unless κ2 = 1.
Let us recall that κ is a free parameter in our construction, see (3.3); it is up to us to
choose the value of κ most suitable for the bootstrap procedure. Following the reasoning
of [13], we must require κ2 = 1, because, if not, the hexagon form factor in (3.12) would
annihilate all non-physical states, which would be too strong a requirement. In fact, we
want to define an off-shell object which, like the S matrix, may act on just a subset of the
excitations that define a physical state. Henceforth we will take

κ = 1 . (3.13)
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3.2 Bootstrapping the hexagon form factor from symmetry

Here we will use the bootstrap principle of eq. (3.12) to fix as much as possible of the
hexagon form factor. We will consider in particular the case where |Ψ〉 consists of a single
particle, and when it consists of two. We will then propose a self-consistent ansatz for
multi-particle states.

3.2.1 One-particle states

As discussed in section 2.4, we can represent the excitations of the theory, which transform
under psu(1|1)⊕4 c.e., in terms of tensor products of excitations in psu(1|1)⊕2 c.e. — for
instance, for the left massive representation we have that |Y 〉 = |φB

L⊗φB
L〉, |Ψ1〉 = |ϕF

L⊗φB
L〉,

|Ψ2〉 = |φB
L ⊗ϕF

L〉 and |Z〉 = |ϕF
L ⊗ϕF

L〉. It is useful to rewrite the supercharges of eq. (3.12)
in terms of the same decomposition,

Q1 = s⊗ 1 + iΣ⊗ q, Q2 = Σ⊗ s− iq ⊗ 1,
Q̃1 = q̃ ⊗ 1 + iΣ⊗ s̃, Q̃2 = Σ⊗ q̃ − i s̃⊗ 1,

(3.14)

where Σ is the Fermion sign operator. Imposing now one instance of the bootstrap equa-
tion (3.12) we get

〈h|Q1|Y (p)〉 = 0 ⇒ 〈h|Ψ2(p)〉 = 0 . (3.15)

Similarly, it is easy to find (as expected from su(2)• symmetry) that 〈h|Ψ1(p)〉 = 0. We
note that, naïvely, we have more bootstrap equations than undetermined one-particle form
factors. However, they all result is one single constraint between

〈h|Y (p)〉 = i
aL(p)
aL(p)∗ 〈h|Z(p)〉 = i 〈h|Z(p)〉 , (3.16)

where aL(p) is the representation coefficient introduced in section 2.3. Note that, since the
equations that we are imposing are linear, we will not be able to fix the overall normalisation
of the form factor, but at best only the ratio of different elements. Working on the other
representations, we find analogous results:

〈h|Yp〉 = i 〈h|Zp〉, 〈h|Z̃p〉 = −i 〈h|Ỹp〉,

〈h|χ1̇
p〉 = i 〈h|χ̃1̇

p〉, 〈h|χ2̇
p〉 = −i 〈h|χ̃2̇

p〉,
(3.17)

while the remaining form factors vanish,

〈h|ΨA
p 〉 = 0 , 〈h|Ψ̃A

p 〉 = 0 , 〈h|T̃AȦp 〉 = 0 . (3.18)

Without loss of generality, we normalise the form factor so that

〈h|Yp〉 = 1 , 〈h|Zp〉 = −i , 〈h|Ỹp〉 = 1 , 〈h|Z̃p〉 = −i ,

〈h|χ1̇
p〉 = 1 , 〈h|χ̃1̇

p〉 = −i , 〈h|χ2̇
p〉 = 1 , 〈h|χ̃2̇

p〉 = −i .
(3.19)
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3.2.2 Two-particle states

We can determine the hexagon form factor for two-particle states by explicitly evaluating
the eq. (3.12). At this point it is worth observing that the symmetry algebra that we are
exploiting is a “diagonal” (in the sense of the tensor product decomposition of section 2.2.1)
psu(1|1)⊕2 subalgebra in psu(1|1)⊕4. In this sense it is not surprising that the two-particle
form-factor may be expressed in terms of the only non-trivial intertwiner of two short
psu(1|1)⊕2 representations, i.e. the Borsato-Ohlsson-Sax-Sfondrini S matrix [55]. This is
completely analogous to what happens for the AdS5 × S5 hexagon in terms of the Beisert
S matrix. A solution of all bootstrap equations for the two-particle form factor may be
written explicitly in terms of the S-matrix elements of section 2.5. Note that, as expected,
we are unable to fix one overall prefactor for each choice of irreducible representations;
below we shall denote such prefactors as h(p, q) and postpone their discussion to section 3.4.

Form factor for two massive excitations. We may distinguish two cases depending
on whether the two exitations are left or right. When they are both left we have

〈h|YpYq〉 = +ALL
pq , 〈h|ZpZq〉 = +F LL

pq ,

〈h|YpZq〉 = −iBLL
pq , 〈h|ZpYq〉 = −iDLL

pq ,

〈h|Ψ2
pΨ1

q〉 = +iCLL
pq , 〈h|Ψ1

pΨ2
q〉 = −iCLL

pq .

(3.20)

When both particles are right we get

〈h|ỸpỸq〉 = +ARR
pq , 〈h|Z̃pZ̃q〉 = +FRR

pq ,

〈h|ỸpZ̃q〉 = −iBRR
pq , 〈h|Z̃pỸq〉 = −iDRR

pq ,

〈h|Ψ̃1
pΨ̃2

q〉 = −iCRR
pq , 〈h|Ψ̃2

pΨ̃1
q〉 = +iCRR

p,q .

(3.21)

In the case of mixed chirality, we distinguish two cases depending on the ordering of the
particles. Firstly, for left-right we have

〈h|YpỸq〉 = +ALR
pq , 〈h|Ψ1

pΨ̃2
q〉 = −F LR

pq ,

〈h|Ψ2
pΨ̃1

q〉 = −BLR
pq , 〈h|ZpỸq〉 = −iDLR

pq ,

〈h|YpZ̃q〉 = −iCLR
pq , 〈h|ZpZ̃q〉 = +ELR

pq .

(3.22)

Finally, for right-left we have

〈h|ỸpYq〉 = +ARL
pq , 〈h|Ψ̃2

pΨ1
q〉 = −FRL

pq ,

〈h|Ψ̃1
pΨ2

q〉 = −BRL
pq , 〈h|Z̃pYq〉 = −iDRL

pq ,

〈h|ỸpZq〉 = −iCRL
pq , 〈h|Z̃pZq〉 = +ERL

pq .

(3.23)

One massless and one massive particle. In this case we can distinguish excitations
on whether they are left or right (for the massive particle) and depending on their su(2)◦
charge (for the massless particle). Moreover, we can also distinguish their order. It turns
out that we may write more compact formulae by explicitly making use of the one-particle
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form factor 〈h|χȦ〉. For instance, in the case of one left-massive particle and one massless
particle we obtain

〈h|YpχȦq 〉 = +ALo
pq , 〈h|Zpχ̃Ȧq 〉 = +F Lo

pq ,

〈h|Ypχ̃Ȧq 〉 = −iBLo
pq , 〈h|ZpχȦq 〉 = −iDLo

pq ,

〈h|Ψ2
pT

Ȧ1
q 〉 = +iCLo

pq , 〈h|Ψ1
pT

Ȧ2
q 〉 = −iCLo

pq .

(3.24)

Similarly, for one-right massive particle and one massless particle we have

〈h|ỸpχȦq 〉 = +ARo
pq , 〈h|Ψ̃2

pT
Ȧ1
q 〉 = −FRo

pq ,

〈h|Ψ̃1
pT

Ȧ2
q 〉 = −BRo

pq , 〈h|Z̃pχȦq 〉 = −iDRo
pq ,

〈h|Ỹpχ̃Ȧq 〉 = −iCRo
pq , 〈h|Z̃pχ̃Ȧq 〉 = +ERo

pq .

(3.25)

The possibility of writing formulae in such a compact way is a first sign of an underlying
symmetry structure of the form factor which we shall investigate in the next section. To
conclude here, we list the mixed-mass form factors when particles are in the reversed order,

〈h|χȦp Yq〉 = +AoL
pq , 〈h|χ̃Ȧp Zq〉 = +F oL

pq ,

〈h|χȦp Zq〉 = −iBoL
pq , 〈h|χ̃Ȧp Yq〉 = −iDoL

pq ,

〈h|T Ȧ2
p Ψ1

q〉 = −iCoL
pq , 〈h|T Ȧ1

p Ψ2
q〉 = +iCoL

pq ,

(3.26)

and finally
〈h|χȦp Ỹq〉 = +AoR

pq , 〈h|T Ȧ1
p Ψ̃2

q〉 = +F oR
pq ,

〈h|T Ȧ2
p Ψ̃1

q〉 = +BoR
pq , 〈h|χ̃Ȧp Ỹq〉 = −iDoR

pq ,

〈h|χȦp Z̃q〉 = −iCoR
pq , 〈h|χ̃Ȧp Z̃q〉 = +EoR

pq .

(3.27)

Note that the form factor is blind to the su(2)◦ index Ȧ, which is unsurprising as the
algebra which we are using to constrain it commutes with su(2)◦.

Two massless particles. In this case we can compactly write

〈h|χȦp χḂq 〉 = +Aoo
pq, 〈h|χ̃Ȧp χ̃Ḃq 〉 = +F oo

pq ,

〈h|χȦp χ̃Ḃq 〉 = −iBoo
pq, 〈h|χ̃Ȧp χḂq 〉 = −iDoo

pq,

〈h|T Ȧ1T Ḃ2〉 = +iCoo
pq, 〈h|T Ȧ2T Ḃ1〉 = −iCoo

pq,

(3.28)

which again is blind to su(2)◦.
To conclude the discussion of two-particle form factors, it is important to note that

the equations (3.12) we have imposed are linear, so that we may obtain new solutions by
multiplying each block (for instance, left-left, or left-right, etc.) by an arbitrary function.
In other words, the prefactors ΣLL

p,q, ΣLR
p,q, etc., which appear in the S matrix elements can

be changed with no effect (3.12). We shall see later how they may be further constrained,
see section 3.4.
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3.2.3 General form of the two-particle hexagon form factor

It is possible to summarise the form of the two-particle form factor in a way that encom-
passes the various representations encountered thus far. Let us denote a generic psu(1|1)⊕4

excitation in the tensor product form of section 2.2.1 as

Ξaá ≡ ξa ⊗ ξ́á , (3.29)

where the second entry of the tensor product is distinguished by a “prime”. Here ξa and ξ́á
could transform under any of the relevant representations which we encountered, i.e. ρ±,
ρ0 or ρ′0; we absorb the information of the representation into the indices a and á to keep
the notation a little lighter. Then, using this notation, we have that

〈h|Ξaáp Ξbb́q 〉 = KpKq(−1)(Fa+Fá)Fb
[
|ξbqξap〉 ⊗ S|ξ́áp ξ́b́q〉

]
= (−1)(Fa+Fá)Fb Sáb́

d́ć
(p, q)KpKq

[
|ξbqξap〉 ⊗ |ξ́d́q ξ́ćp〉

]
,

(3.30)

where we have introduced the “contraction operator”

Kp ≡
(
hY

∂

∂φ́B
L(p)

∂

∂φB
L(p) + hZ

∂

∂ϕ́F
L(p)

∂

∂ϕF
L(p)

)
+
(
hỸ

∂

∂ϕ́B
R(p)

∂

∂ϕB
R(p) + hZ̃

∂

∂φ́F
R(p)

∂

∂φF
R(p)

)
+
(
hχ1

∂

∂φ́F
o (p)

∂

∂φB
o (p) + hχ̃1

∂

∂ϕ́B
o (p)

∂

∂ϕF
o (p)

)
+
(
hχ2

∂

∂φ́B
o (p)

∂

∂φF
o (p) + hχ̃2

∂

∂ϕ́F
o (p)

∂

∂ϕB
o (p)

)
,

(3.31)

where hY = 〈h|Y 〉, etc., are the values of the one-particle hexagon form factors of eq. (3.19).
Let us explain what we mean by this notation. We begin to note that Kp simply picks
out the one-particle states with a non-trivial hexagon form factor and assigns them the
value thereof, i.e. Kp|Ξaá(p)〉 = 〈h|Ξaá〉. The reason why we go through the trouble of
introducing this operator — something not necessary in AdS5×S5 — is that here the one-
particle hexagon form factors in the massless representations are nonvanishing for particles
with Fermionic statistics. This creates a potential ambiguity for massless particles whenever
we want to contract multi-particle states: note that indeed the commutator [Kp,Kq] does
not vanish for massless particles due to the statistics. Realising the contractions in terms of
the graded differential operator Kp will make it easier to properly account for this statistics.
Armed with this operator, let us go back to eq. (3.30). In the first equality we rearrange
the excitations to factor out the pieces of the tensor product related to either factor of the
diagonal symmetry algebra (distinguished here by the absence or presence of the prime),
picking up Fermion signs as appropriate. To this end we defined

Fa =

0 if ξa is a Boson
1 if ξa is a Fermion

and Fá =

0 if ξ́á is a Boson
1 if ξ́á is a Fermion

(3.32)
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We then scatter the “primed” particles by using the psu(1|1)⊕c.e. S matrix in the appropriate
representation (for instance, ρL ⊗ ρL, ρL ⊗ ρ′o, etc.). We pick up the relative S matrix
elements, which now contain a irrep-dependent prefactor háb́(p, q). Lastly, we act with the
contraction operator, again keeping track of the statistics, perfectly reproducing the results
which we listed above. It is worth stressing that this prescription can also be applied to
AdS5 × S5, yielding a result identical to ref. [13].

3.2.4 Many-particle states

Nothing stops us from imposing eq. (3.12) for three- and higher-particle states. However,
while for two-particle states we managed to fix the form factor completely (up to an un-
avoidable scalar prefactor for each choice of representations), for higher number of particles
we will only be able to fix relatively few coefficients. A better approach, following [13], is
to exploit the fact that the two-particle solution can be written in terms of a factorised
S matrix [48, 55]. Then the Yang-Baxter equation allow us to write down a self-consistent
ansatz with is guaranteed to satisfy all symmetry requirements. We set

〈
h
∣∣Ξa1á1
p1 Ξa2á2

p2 . . .ΞaN áNpN

〉
≡

≡ (−1)F12···N K12···N
[∣∣ξaNpN . . . ξa2

p2 ξ
a1
p1

〉
⊗ S12···N

∣∣ξ́á1
p1 ξ́

á1
p1 . . . ξ́

áN
pN

〉]
.

(3.33)

where
F12···N ≡

∑
1≤i<j≤N

(Fai + Fái)Faj , K12···N ≡ Kp1Kp2 · · ·KpN , (3.34)

and S12···N is the N -particle S matrix, which as we remarked may be factorised owing
to the Yang-Baxter equation. Again, it is worth remarking that this formula can also be
applied to the case of AdS5 × S5 and, despite the apparent difference from the proposal of
ref. [13], is perfectly equivalent to that.

3.3 Representations of the hexagon algebra and crossing

In this section we will look more closely at the structure of the hexagon symmetry algebra,
which is given by psu(1|1)⊕2 without any central extension. This emerges as a sort of
diagonal subalgebra of psu(1|1)⊕4 c.e., see for instance eq. (3.6). On the other hand, we
have found in section 3.2.2 that the two-particle hexagon form factor features the Borsato-
Ohlsson-Sax-Sfondrini psu(1|1)⊕2 c.e. S matrix [48, 55]. This motivates us to investigate
the tensor product decomposition of these representations more closely.

Recall that the AdS3 × S3 × T4 symmetries and representations may be factorised as
described in section 2.2.1. For what concerns the representations, let us use again the
short hand notation introduced above. We indicate a psu(1|1)⊕4 state as Ξaá and a generic
psu(1|1)⊕2 state as either ξ or ξ́á depending on how it is embedded in the (psu(1|1)⊕2)⊗2

decomposition,
|ξ〉 ≡ |ξ ⊗ 1〉 , |ξ́〉 ≡ |1⊗ ξ́〉 . (3.35)
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Let us now recall the form of the generators of the hexagon symmetry algebra (QA, Q̃A)
in terms of this factorisation. Rewriting slightly eq. (3.14) we get

Q1 = s⊗ 1 + iΣ⊗ q, iQ2 = q ⊗ 1 + iΣ⊗ s,
Q̃1 = q̃ ⊗ 1 + iΣ⊗ s̃, iQ̃2 = s̃⊗ 1 + iΣ⊗ q̃,

(3.36)

where we multiplied Q2 and Q̃2 by i for later convenience. In fact, it will be slightly easier
— and completely equivalent — to look at the representations of the algebra generated by
(Q1, iQ2, Q̃1, iQ̃2).

3.3.1 Massive representations

We want to act with the generators (3.36) on massive excitations on either side of the
tensor product. We first consider states of the type |ψ ⊗ 1〉 where ψ ∈ ρL or ψ ∈ ρR is a
massive psu(1|1)⊕2 excitation. In the notation of eq. (3.35) we have

Q1 |ϕF
L〉 = a∗L |φB

L〉 , Q1 |ϕB
R〉 = a∗R |φF

R〉 ,
iQ2 |φB

L〉 = aL |ϕF
L〉 , iQ2 |φF

R〉 = aR |ϕB
R〉 ,

Q̃1 |ϕF
L〉 = bL |φB

L〉 , Q̃1 |ϕB
R〉 = bR |φF

R〉 ,
iQ̃2 |φB

L〉 = b∗L |ϕF
L〉 , iQ̃2 |φF

R〉 = b∗R |ϕB
R〉 .

(3.37)

Comparing with the psu(1|1)⊕2 c.e. representations reviewed in section 2.3.3, we see that
these are precisely ρL and ρR. This, of course, involves identifying q = iQ2, q̃ = Q̃1,
s = Q1 and s̃ = iQ̃2 — as it can readily be seen from eq. (3.36). Things are less trivial if
we consider instead excitations of the form |ψ́〉 = |1⊗ ψ〉. Here we find

Q1
∣∣∣φ́F

R

〉
= iaR |ϕ́B

R〉 , Q1
∣∣∣φ́B

L

〉
= iaL |ϕ́F

L〉 ,

iQ2 |ϕ́B
R〉 = ia∗R

∣∣∣φ́F
R

〉
, iQ2 |ϕ́F

L〉 = ia∗L

∣∣∣φ́B
L

〉
,

Q̃1
∣∣∣φ́F

R

〉
= ib∗R |ϕ́B

R〉 , Q̃1
∣∣∣φ́B

L

〉
= ib∗L |ϕ́F

L〉 ,

iQ̃2 |ϕ́B
R〉 = ibR

∣∣∣φ́F
R

〉
, iQ̃2 |ϕ́F

L〉 = ibL

∣∣∣φ́B
L

〉
.

(3.38)

By using the definition of the crossing transformation, see section 2.3.4, we notice that the
representations of eq. (3.38) are actually the analytic continuation of those in eq. (3.37).
Denoting crossing (respectively, anti-crossing) of a particle of momentum p as p2γ (re-
spectively, p−2γ), we have that e.g. a∗L(p±2γ) = ∓iaR(p) and bL(p±2γ) = ∓ib∗R(p). As a
consequence of these identifications we find that |φ́F

R〉 and |ϕ́B
R〉 transform as the analytic

continuation of ρL, while φ́B
L and ϕ́F

L transform as the analytic continuation of ρR. More
specifically, we may identify∣∣∣φ́B

L(p)
〉

=
∣∣∣ϕB

R(p−2γ)
〉
, |ϕ́F

L(p)〉 =
∣∣∣φF

R(p−2γ)
〉
,∣∣∣φ́F

R(p)
〉

=
∣∣∣ϕF

L(p−2γ)
〉
, |ϕ́B

R(p)〉 =
∣∣∣φB

L(p−2γ)
〉
.

(3.39)

It is worth observing that the psu(1|1)⊕2 c.e. representations are not invariant under 4γ-
shift, but instead they pick up some minus sign [37]. This is essentially due to the fact that
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the representation parameter η∗(p) (2.51) is not 4γ-periodic because it is not a meromorphic
function of the Zhukovski variables, see again section 2.3.4. In practice this means that
after 4γ we pick up a minus sign for the Fermions,

φB
L(p2γ) = +φB

L(p−2γ) , ϕF
L(p2γ) = −ϕF

L(p−2γ) ,
ϕB

R(p2γ) = +ϕB
R(p−2γ) , φF

R(p2γ) = −φF
R(p−2γ) .

(3.40)

Such monodromies are well known from the study of the AdS5 × S5 S matrix [11].
We can now consider the true massive excitations of AdS3 × S3 × T4, those that lie

in the %L = ρL ⊗ ρL and%R = ρR ⊗ ρR representations. We can certainly act directly with
the diagonal generators (3.36) on this representation. Alternatively, we have seen that
we can identify this diagonal algebra as the Borsato-Ohlsson-Sax-Sfondrini psu(1|1)⊕2 c.e.
and the representations as the tensor products ρL⊗ ρ−2γ

R and ρR⊗ ρ−2γ
L . In hindsight, this

identification is quite natural because it guarantees that the central charge of psu(1|1)⊕2

c.e. vanishes on the tensor product representations as desired. Explicitly, we write

Yp = φB
L,p ϕ

B
R,p−2γ , Z̃p = φF

R,p ϕ
F
L,p−2γ ,

Ψ1
p = ϕF

L,p ϕ
B
R,p−2γ , Ψ̃1

p = ϕB
R,p ϕ

F
L,p−2γ ,

Ψ2
p = φB

L,p φ
F
R,p−2γ , Ψ̃2

p = φF
R,p φ

B
L,p−2γ ,

Zp = ϕF
L,p φ

F
R,p−2γ , Ỹp = ϕB

R,p φ
B
L,p−2γ .

(3.41)

Using these identifications, and noting the automorphism that relates 4γ-shifted representa-
tions (3.40), we obtain the crossing rule for the physical particles. For the left representation
we have

Yp = φB
L,p ϕ

B
R,p−2γ

2γ−→ Yp2γ = φB
L,p2γ ϕB

R,p = +ϕB
R,p φ

B
L,p−2γ = +Ỹp ,

Ψ1
p = ϕF

L,p ϕ
B
R,p−2γ

2γ−→ Ψ1
p2γ = ϕF

L,p2γ ϕB
R,p = −ϕB

R,p ϕ
F
L,p−2γ = −Ψ̃1

p ,

Ψ2
p = φB

L,p φ
F
R,p−2γ

2γ−→ Ψ2
p2γ = φB

L,p2γ φF
R,p = +φF

R,p φ
B
L,p−2γ = −Ψ̃2

p ,

Zp = ϕF
L,pφ

F
R,p−2γ

2γ−→ Zp2γ = ϕF
L,p2γ φF

R,p = +φF
R,p ϕ

F
L,p−2γ = +Z̃p .

(3.42)

Similarly, for the right representation we get

Z̃p2γ = Zp , Ψ̃1
p2γ = Ψ1

p , Ψ̃2
p2γ = Ψ2

p , Ỹp2γ = Yp . (3.43)

Notice that these signs look different from the ones in (3.42).

3.3.2 Massless representations

The argument above may be repeated for the massless representations of section 2.3. Indeed
we may obtain the massless representations as the m → 0 limit of either the right or the
left representation [51]. In particular we have

Q1 |ϕF
o 〉 = a∗o |φB

o 〉 , Q1 |ϕB
o 〉 = a∗o |φF

o 〉 ,
iQ2 |φB

o 〉 = ao |ϕF
o 〉 , iQ2 |φF

o 〉 = ao |ϕB
o 〉 ,

Q̃1 |ϕF
o 〉 = bo |φB

o 〉 , Q̃1 |ϕB
o 〉 = bo |φF

o 〉 ,
iQ̃2 |φB

o 〉 = b∗o |ϕF
o 〉 , iQ̃2 |φF

o 〉 = b∗o |ϕB
o 〉 ,

(3.44)
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while for the other half of the tensor product we have

Q1
∣∣∣φ́F

o

〉
= iao |ϕ́B

o 〉 , Q1
∣∣∣φ́B

o

〉
= iao |ϕ́F

o 〉 ,

iQ2 |ϕ́B
o 〉 = ia∗o

∣∣∣φ́F
o

〉
, iQ2 |ϕ́F

o 〉 = ia∗o

∣∣∣φ́B
o

〉
,

Q̃1
∣∣∣φ́F

o

〉
= ib∗o |ϕ́B

o 〉 , Q̃1
∣∣∣φ́B

o

〉
= ib∗o |ϕ́F

o 〉 ,

iQ̃2 |ϕ́B
o 〉 = ibo

∣∣∣φ́F
o

〉
, iQ̃2 |ϕ́F

o 〉 = ibo

∣∣∣φ́B
o

〉
.

(3.45)

We can then identify

φ́B
o (p) = −σp ϕF

o (p−2γ) , ϕ́B
o (p) = −σp φF

o (p−2γ) ,
φ́F

o (p) = ϕB
o (p−2γ) , ϕ́F

o (p) = φB
o (p−2γ) .

(3.46)

This is the analogue of what we saw above for massive representations, with one important
difference: in the massive case, crossing linked left to right representations. Here, by
taking the m → 0 limit we have that the left and right representation are isomorphic,
so that we can link the massless representation to itself up to keeping track of the sign
σ(p) = −sgn[sin(p/2)] which appears in the isomorphism. More precisely, we would have
σ(p−2γ) appearing in eq. (3.46), but this can be simplified to −σ(p). Moreover, the massless
representation parameter ηo(p) (2.51) is 4γ-periodic, see section 2.3.4. Hence, we do not
pick up a minus sign for the Fermions after 4γ,

φB
o (p2γ) = +φB

o (p−2γ) , ϕF
o (p2γ) = +ϕF

o (p−2γ) ,
ϕB

o (p2γ) = +ϕB
o (p−2γ) , φF

o (p2γ) = +φF
o (p−2γ) .

(3.47)

Therefore we can write

χ1̇
p = φB

o,p ϕ
B
o,p−2γ , χ2̇

p = −iσpφF
o,p ϕ

F
o,p−2γ ,

T 1̇1
p = ϕF

o,p ϕ
B
o,p−2γ , T 2̇1

p = −iσpϕB
o,p ϕ

F
o,p−2γ ,

T 1̇2
p = −σpφB

o,p φ
F
o,p−2γ , T 2̇2

p = −iφF
o,p φ

B
o,p−2γ ,

χ̃1̇
p = −σpϕF

o,p φ
F
o,p−2γ , χ̃2̇

p = −iϕB
o,p φ

B
o,p−2γ .

(3.48)

Using these identifications, we obtain the following crossing rule for the physical particles:

χ1̇
p = φB

o,p ϕ
B
o,p−2γ

2γ−→ χ1̇
p2γ = φB

o,p2γ ϕB
o,p = iχ̃2̇

p ,

T 1̇1
p = ϕF

o,p ϕ
B
o,p−2γ

2γ−→ T 1̇1
p2γ = ϕF

o,p2γ ϕB
o,p = iσpT

2̇1
p ,

T 1̇2
p = −σpφB

o,p φ
F
o,p−2γ

2γ−→ T 1̇2
p2γ = −σp2γφB

o,p2γ φF
o,p = iσpT

2̇2
p ,

χ̃1̇
p = −σpϕF

o,pφ
F
o,p−2γ

2γ−→ χ̃1̇
p2γ = −σp2γϕF

o,p2γ φF
o,p = −iχ2̇

p .

(3.49)

Similarly, we find

χ2̇
p2γ = iχ̃1̇

p , T 2̇1
p2γ = iσpT

1̇1
p , T 2̇2

p2γ = iσpT
1̇2
p , χ̃2̇

p2γ = −iχ1̇
p . (3.50)
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Figure 3. The Watson equation relates two expressions for the form factor, one of which involves
the full S matrix of the theory, complete with dressing factors — in this case, SAdS3×S3×T4(p, q).

3.4 Constraining the scalar factors

By using the diagonal psu(1|1)⊕2 symmetry we have fixed the two-particle hexagon form
factor, up to a scalar factor for each pair of irreducible representations. For instance, in
the case of two left representations we have a prefactor hLL(p, q) which plays a role similar
to that of ΣLL(p, q) in the S matrix. We picked our conventions so that we may, essentially,
use the S matrix elements given in section 2.5 up to replacing Σ with h. Namely, we have
the normalisation

〈h|YpYq〉 = hLL(p, q) , 〈h|ỸpỸq〉 = hRR(p, q) ,
〈h|YpZ̃q〉 = hLR(p, q) , 〈h|Z̃pYq〉 = hRL(p, q) ,

(3.51)

for massive particles. It is convenient to already impose left-right symmetry [55] which
halves the number of independent scalar factors like in [50]. We set

h••(p, q) ≡ hLL(p, q) = hRR(p, q) , (3.52)

which ensures that 〈h|YpYq〉 = 〈h|ỸpỸq〉, and so on, and

h̃••(p, q) ≡ hLR(p, q) = e
i
2 (p+q) 1− x−R,px−L,q

1− x+
R,px

+
L,q
hRL(p, q) , (3.53)

which ensures that 〈h|YpZ̃q〉 = 〈h|ỸpZq〉, and so on. For massless particles, we shall assume
that the prefactors are blind to the su(2)◦ structure like it is the case for the prefactors of
the S matrix [48, 49]. (Strictly speaking, this is something that would need to be verified
against perturbative results.) In this case, we have a single massless dressing factor, which
appears as

〈h|χȦp χḂq 〉 = h◦◦(p, q) . (3.54)

Finally, we have a pair of dressing factors related to processes that involve one massive and
one massless particle, namely

〈h|YpχȦq 〉 = 〈h|ỸpχȦq 〉 = h•◦(p, q) , 〈h|χȦp Yq〉 = 〈h|χȦp Ỹq〉 = h◦•(p, q) , (3.55)

where we exploited both su(2)◦ and left-right symmetry. We will see below how additional
physical constraints allow us to make a proposal for these five prefactors.
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Figure 4. The decoupling condition. When the particles in the form factor feature a particle-
antiparticle pair (here, those with momenta p1 and p2, the latter in the crossed channel), those
decouple: the form factor diverges as a simple pole whose residue is the form factor of the remaining
particles (q1, . . . , qn in the figure).

3.4.1 The Watson equation

The first physical constraint that we consider is the Watson equation which relates the
original psu(1|1)⊕4 S matrix and the hexagon form factor, see figure 3. In formulae it says
that we may swap a pair of particles in the form factor by means of the S matrix,

〈h|Ξa1á1
p1 · · ·Ξaj ájpj Ξaj+1áj+1

pj+1 · · · 〉 = 〈h|SAdS3×S3×T4

j,j+1 |Ξa1′a1
p1 · · ·Ξaj ájpj Ξaj+1áj+1

pj+1 · · · 〉 , (3.56)

where SAdS3×S3×T4 is the full psu(1|1)⊕4 S matrix of [48] (see also appendix A) complete
with its dressing factors. Clearly, owing to our factorised ansatz, it is sufficient to impose
the constraint for the two-particle form factor. The constraint is a matrix equation, whose
only non-trivial part is the overall normalisation — though it is well worth to check the
whole matrix equation to ensure that the form factor and the psu(1|1)⊕4 S matrix are
compatible, i.e. are written in the same basis. We find the following conditions

h••(p, q)
h••(q, p) =

[
Σ••(p, q)

]2
,

h̃••(p, q)
h̃••(q, p)

=
[
Σ̃••(p, q)

]2
,

h◦◦(p, q)
h◦◦(q, p) = −

[
Σ◦◦(p, q)

]2
,

h•◦∗ (p, q)
h◦•∗ (q, p) =

[
Σ•◦∗ (p, q)

]2
,

h◦•∗ (p, q)
h•◦∗ (q, p) =

[
Σ◦•∗ (p, q)

]2
,

(3.57)

where the subscript ∗ stands for either L or R. Here the minus sign for masless modes can
be understood by recalling that, when looking at highest-weight states, we are scattering
Fermions. All in all, these condition are akin to the antisymmetry conditions that braiding
unitarity imposes on Σ.

3.4.2 Decoupling condition and crossing

One further condition that we may impose on the form factor is that, whenever two particles
form a singlet, they decouple. Note that in order to have a singlet, the particles’ momenta
p1 and p2 cannot both be physical. The singlet must in particular be annihilated by the
momentum and energy operators, which means that p1 +p2 = 0 and E(p1)+E(p2) = 0, i.e.
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one of the momenta is crossed, p1 = p±2γ
2 . Then, when the momenta satisfy the bound-state

condition, the form factor has a pole whose residue is

Res
p2→p2γ

1
〈h|Ξa1á1

p1 Ξa2á2
p2 · · ·ΞaN áNpN

〉 = Ca1á1,a2á2〈h|Ξa3á3
p3 · · ·ΞaN áNpN

〉 , (3.58)

where Ca1á1,a2á2 projects onto the singlet representation. Crucially, Ca1á1,a2á2 must be
independent of p3, . . . pN . Using the factorised form of the hexagon form factor (3.33) one
can see that this boils down to the requirement that for the psu(1|1)⊕2 S matrix scattering
with the singlet is inconsequential,

S12S23
(
Cá1,á2 |ξ́á1(p1)ξ́á2(p2γ

1 )ξ́á3(p3)〉
)

= Cá1,á2 |ξ́á3(p3)ξ́á1(p1)ξ́á2(p2γ
1 )〉 , (3.59)

where the scattering phase on the right-hand side is precisely equal to one. This is the
crossing equation for the psu(1|1)⊕2 S matrix as derived in ref. [55]; the relationship be-
tween the psu(1|1)⊕2 projector Cá1,á2 and the psu(1|1)⊕4 projector Ca1á1,a2á2 was discussed
in ref. [47]. In other words, the hexagon form factor will satisfy the decoupling condition as
long as the psu(1|1)⊕2 S matrix, normalised in terms of h(p, q)s, satisfies the crossing equa-
tion. This gives the following constraints of the hexagon prefactors in the massive sector,

h••(p, q)h̃••(p2γ , q) = h••(p, q)h̃••(p, q−2γ) =
[
e−

i
2p
x+
∗,p − x−∗,q
x−∗,p − x−∗,q

]−1

,

h••(p2γ , q)h̃••(p, q) = h••(p, q−2γ)h̃••(p, q) =
[
e−

i
2p

1− x+
∗,px

+
∗,q

1− x−∗,px+
∗,q

]−1

,

(3.60)

which like in the case of the psu(1|1)⊕2 S matrix has non-trivial double crossing equations.
For instance, by crossing the first line by 2γ and dividing it by the second line we have

h̃••(p4γ , q)
h̃••(p, q)

=
1− x+

∗,px
+
∗,q

1− x−∗,px+
∗,q

1− x−∗,px−∗,q
1− x+

∗,px
−
∗,q
, (3.61)

i.e., a non-trivial monodromy. Similarly, h••(p4γ , q) 6= h••(p, q). In the massless sector we
have

hoo(p, q)hoo(p2γ , q) =
[
e
i
2 q
x+

o,p − x−o,q
x+

o,p − x+
o,q

]−1

,

hoo(p, q)hoo(p, q−2γ) =
[
e−

i
2p
x+

o,p − x−o,q
x−o,p − x−o,q

]−1

,

(3.62)

and in the mixed-mass sector

h•◦Ro(p2γ , q)h•◦Lo(p, q) = e−i
q
2
x+

L,p − x+
o,q

x+
L,p − x−o,q

,

h◦•oL(p2γ , q)h◦•oL(p, q) = e−i
q
2
x+

o,p − x+
L,q

x+
o,p − x−L,q

,

h•◦Lo(p2γ , q)h•◦Ro(p, q) = e−i
q
2

1− x−R,px+
o,q

1− x−R,px−o,q
,

h◦•oR(p2γ , q)h◦•oR(p, q) = e+i q2
1− x+

o,px
−
R,q

1− x+
o,px

+
R,q

.

(3.63)
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Figure 5. Consistency conditions for the hexagon construction. Left: cyclically relabeling the
edges of the hexagon amount to “move” all excitations by 2γ in the sense of section 3.3. Right: we
can also move one or more individual particles by 6γ in such a way to obtain a different ordering
of momenta, which in turn can be simplified using the Watson equation (see above).

3.4.3 Cyclic invariance

One last set of conditions can be found by using the fact that none of the three operators
appearing in the three-point function should play any special role. In the hexagon formal-
ism, it is postulated that “moving” an excitation from an edge to another amounts to a
2γ crossing transformation. Hence we should have that the scalar factor (as well as the
matrix part of the S matrix) remain invariant under 2γ-shifting all momenta, in particular

h••(p, q) = h••(p2γ , q2γ) , (3.64)

see figure 5 left, and similarly for other sectors. This, as well as the other similar conditions,
are actually a consequence of the crossing equations above, as it can be seen by using the
first equality in (3.60). Similar conditions for other processes can be similarly proved, also
using the monodromies of the matrix part of the psu(1|1)⊕2 S matrix [55], cf. [11].

A more interesting condition arises if we pick a two-particle process and we cycle only
the second particle all around the hexagon, see figure 5 right. In the case of the massive
left representation, this gives for the highest-weight states

〈h|Y (p)Y (q)〉 = 〈h|Ỹ (q6γ)Y (p)〉 , (3.65)

where we used eqs. (3.42) and (3.43). Evaluating this explicitly, we get

h••(p, q) = e−iq/2
x−L (p)− x+

L (q)
x−L (p)− x−L (q)

h̃••(q6γ , p) , (3.66)

this formula may be further simplified by using the monodromy condition (3.61) and the
crossing equation itself (3.60), yielding finally

h••(p, q)h••(q, p) = x+
L (p)− x+

L (q)
x−L (p)− x+

L (q)
x−L (p)− x−L (q)
x+

L (p)− x−L (q)
. (3.67)

Combining this equation with the Watson equation (3.57) one can fix h••(p, q) up to an
overall sign.

Similarly, h̃••(p, q) should remain invariant under 2γ-shiftings

h̃••(p, q) = h̃••(p2γ , q2γ) , (3.68)
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The highest-weight state form-factor leads to

〈h|Y (p)Z̃(q)〉 = 〈h|Z(q6γ)Y (p)〉 , (3.69)

which can be written explicitly as

h̃••(p, q) = eip/2
1− x−L (p)x−R (q)
1− x+

L (p)x−R (q)
h••(q6γ , p) , (3.70)

Using the crossing equations, this leads to

h̃••(p, q)h̃••(q, p) = 1− x+
L (p)x−R (q)

1− x−L (p)x−R (q)
1− x−L (p)x+

R (q)
1− x+

L (p)x+
R (q)

. (3.71)

This condition takes care of all cyclicity requirements on the hexagon for massive particles.
In the massless case we have

〈h|χ(p)χ(q)〉 = i〈h|χ̃(q6γ)χ(p)〉 , (3.72)

which reads explicitly

h◦◦(p, q) = eip/2
x−o (p)− x+

o (q)
x+

o (p)− x+
o (q) h

◦◦(q6γ , p) . (3.73)

Using the crossing equation for h◦◦(p, q) leads to

h◦◦(p, q)h◦◦(q, p) = x+
o (p)− x+

o (q)
x+

o (p)− x−o (q)
x−o (p)− x−o (q)
x−o (p)− x+

o (q) . (3.74)

It is interesting to note that, in this case, upon cycling the massless Bosons, we sometimes
pick up an overall minus sign. This is not surprising because, for an odd number of particles,
the Hexagon has Fermion statistic. As a result, when cycling a massless Boson around a
Fermionic number of objects with an overall Fermion statistic, we must account for an
additional minus sign.

For the remaining dressing factors, one finds similar equations, namely

h•◦Lo(p, q)h◦•oL(q, p) = x+
L (p)− x+

o (q)
x−L (p)− x+

o (q)
x−L (p)− x−o (q)
x+

L (p)− x−o (q)
, (3.75)

and

h•◦Ro(p, q)h◦•oR(q, p) = 1− x−R (p)x+
o (q)

1− x+
R (p)x+

o (q)
1− x+

R (p)x−o (q)
1− x−R (p)x−o (q)

. (3.76)

Once again, when cycling a massless Boson around a Fermion-statistic object we pick up
a minus sign.
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3.4.4 Solution for the scalar factors

We can now put together the conditions we encountered to write down a solution for the
square of the various pre-factors h∗∗(p, q). Taking the square root, we write

h••(p, q) = ei(p+q)/2

σ••(p, q)

√
[x+
∗ (p)− x+

∗ (q)][x−∗ (p)− x−∗ (q)]
[x+
∗ (p)− x−∗ (q)]2

√√√√√1− 1
x−

∗ (p)x+
∗ (p)

1− 1
x+

∗ (p)x−
∗ (p)

,

h̃••(p, q) = e−i
q
2

σ̃••(p, q)
1− 1

x−
∗ (p)x+

∗ (q)

1− 1
x+

∗ (p)x+
∗ (q)

,

(3.77)

where we have chosen the branches so that in the BMN limit (schematically, k = 0, p ∼ p/h,
and h→∞) the prefactor reduces to plus one. The non-trivial monodromy of the prefactor
is due to σ••(p, q), which is known for pure-Ramond-Ramond backgrounds and was given
in ref. [50].

Similarly, in the massless sector we find

h◦◦(p, q) = ei(p−q)/4

σ◦◦(p, q)

√
[x+

o (p)− x+
o (q)][x−o (p)− x−o (q)]

[x+
o (p)− x−o (q)]2 . (3.78)

In the mixed-mass sector we find the prefactors

h•◦Lo(p, q) = e+i p4

√
x−L (p)− x+

o (q)
x−L (p)− x−o (q)

ζ(p, q) 1
σ•◦Lo (p, q) ,

h◦•oL(p, q) = e−i
q
4

√
x+

o (p)− x+
L (q)

x+
o (p)− x−L (q)

ζ(p, q) 1
σ◦•oL (p, q) ,

h•◦Ro(p, q) = e−i(
p
4 + q

2 )

√
[1− x−R (p)x+

o (q)][1− x+
R (p)x+

o (q)]
[1− x−R (p)x−o (q)]2

ζ̃(p, q) 1
σ•◦Ro(p, q)

,

h◦•oR(p, q) = e+i( p2 + q
4 )

√
[1− x−o (p)x+

R (q)][1− x−o (p)x−R (q)]
[1− x+

o (p)x+
R (q)]2

ζ̃(p, q) 1
σ◦•oR(p, q) ,

(3.79)

where we introduced the functions

ζ(p, q) =

√√√√x−∗,p − x−∗,q
x+
∗,p − x−∗,q

x+
∗,p − x+

∗,q

x−∗,p − x+
∗,q
,

ζ̃(p, q) =

√√√√1− x+
∗,px

+
∗,q

1− x+
∗,px

−
∗,q

1− x−∗,px−∗,q
1− x−∗,px+

∗,q
.

(3.80)

4 Some protected three-point functions

As a test of our proposal it is good to compute some explicit result and compare it with
the literature. For generic (non-protected) operators, we would only be able to carry out
such a comparison in the case of pure-NS-NS backgrounds. Things are much simpler if
we consider three-point functions of protected (half-BPS) operators, which are themselves
protected by supersymmetry [58].
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4.1 Definition of the correlation functions

Let us start by reviewing the structure of the half-BPS states, which is substantially richer
here than for AdS5 × S5 (because overall here we have less supersymmetry).

4.1.1 Structure of protected operators

While in AdS5 × S5 we have exactly one BPS operator for each value of the “orbital”
R-charge J (with energy J owing to the BPS bound) this is not the case here. First of
all, we have two su(2) (left and right) orbital quantum numbers, which we indicate by
(J, J̃). These are the eigenvalues of the highest-weight state in the BPS representation
under (J3, J̃3), respectively. Recall that the psu(1, 1|2)⊕2 BPS bound gives −L0 = J3 and
−L̃0 = J̃3. Then, for every positive integer value of j we have the following diamond of
BPS multiplets, indicated here by the charge of their highest-weight states:(

j − 1
2 ,

j − 1
2

)
(
j

2 ,
j − 1

2

)Ȧ (
j − 1

2 ,
j

2

)Ȧ
(
j + 1

2 ,
j − 1

2

) (
j

2 ,
j

2

)ȦḂ (
j − 1

2 ,
j + 1

2

)
(
j + 1

2 ,
j

2

)Ȧ (
j

2 ,
j + 1

2

)Ȧ
(
j + 1

2 ,
j + 1

2

)

(4.1)

for a total of 16 multiplets. The dotted indices indicate that some of these states transform
in the 2 or 2⊗2 representation su(2)◦. This structure can be related to the Hodge diamond
of T4 or to a Clifford module generated by four Fermion zero-modes. In particular, looking
at the dual CFT, these multiplets may be identified with those arising from the symmetric-
product orbifold CFT of T4, SymNT4. Using the notation of ref. [59] (which will be
convenient for what follows), the diamond looks like this:

V−−j
VȦ−j V−Ȧj

V+−
j VȦḂj V−+

j

V+Ȧ
j VȦ+

j

V++
j

(4.2)

where the subscript index j in V∗∗j denotes the length of the permutation cycle of the
operator.

In the language of integrability that we have so far used, one state is the BMN vacuum
|0〉, featuring no particles at all, while the remaining can be constructed by inserting on top
of the vacuum the massless Fermions χȦ(p) and χ̃Ȧ(p) at zero momentum [60]. The zero-
modes which we can use have charges under (J3, J̃3) as in table 2 [43] and, owing to Pauli’s
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Magnon J3 J̃3

limp→0+ |χ1(p)〉 −1
2 0

limp→0− |χ2(p)〉 0 +1
2

limp→0+ |χ̃1(p)〉 +1
2 0

limp→0− |χ̃2(p)〉 0 −1
2

Table 2. The su(2)L ⊕ su(2)R charge of massless particles. The Fermions |χȦ(p)〉 have su(2) spin
under (J3−J̃3) equal to −1/2, while |χ̃Ȧ(p)〉 have +1/2. Given that they all haveM = 0, the su(1, 1)
spin (−L0+L̃0) follows, cf. (2.44). This is also consistent with the fact that |χ̃Ȧ(p)〉 = Q1Q2|χȦ(p)〉.
However, the particles are chiral depending on the sign of sin(p/2), cf. (2.46). Hence, in different
momentum regions they will be annihilated by either −L0 and J3 or by −L̃0 and J̃3. Keeping that
into account, we propose the following identification of the massless modes.

principle, yield precisely 16 states. Note that, unlike the zero-modes of massive states, the
zero-modes of χȦ(p) and χ̃Ȧ(p) do not yield psu(1, 1|2)⊕2 descendants, but genuinely new
psu(1, 1|2)⊕2 multiplets. Based on table 2, the highest-weight states can be identified as it
follows:

|χ1χ̃2〉(
|χ1χ̃1χ̃2〉, |χ̃2〉

) (
|χ1〉, |χ1χ2χ̃2〉

)
|χ̃1χ̃2〉 |0〉 ⊕

(
|χ1χ̃1〉, |χ1χ̃1χ2χ̃2〉, |χ2χ̃2〉

)
|χ1χ2〉(

|χ̃1〉, |χ2χ̃1χ̃2〉
) (

|χ1χ2χ̃1〉, |χ2〉
)

|χ2χ̃1〉

(4.3)

where in the middle of the Hodge diamond we have distinguished the 0 and 3 representation
of su(2)◦. It should be emphasised that the number of magnons (the “length” of the
operators) is not a quantum number here, and it is not preserved by the su(2)◦ action.
All various magnons are at zero momentum as in table 2. Despite the nice structure,
we should be careful with identifying multiplets from (4.2) to (4.3). From the above we
see that most of the half-BPS multiplets can mix among themselves when going from the
integrability description. In fact, there are several multiplets with the exact same charge.
For instance, the states V−−j+1, εȦḂVȦḂj and V++

j−1 have the same charges and therefore, we
cannot distinguish the relative multiples just by their quantum numbers. All of them could
in principle mix with |0〉, |χ2χ̃1〉 and |χ1χ̃2〉. Fortunately, the multiplets V+−

j and V−+
j do

not mix — neither among themselves nor with any other half-BPS multiplet — so that it
is quite convenient to focus on them.

4.1.2 The correlation functions

We focus on the three-point functions that may be constructed out of operators in the
multiplets of V+−

j and V−+
j for appropriate values of j. Broadly, speaking, they fall in two

categories: three-point functions involving all operators from the same type of multiplets,
and those involving three-point functions with two operators from one type of multiplet
and the third from the other — the other combinations follow from exchanging the left and
right algebra. These correlation functions are well-known in the literature [59, 61, 62]. We
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take a look at the result as written in ref. [59], which has the advantage of being presented
quite compactly and including the Clebsch-Gordan coefficients. Recall from section 3.1
that in our construction we want one of the operators to be the highest-weight state, one
to be the lowest-weight state, and one to have zero magnetic su(2) quantum number —
i.e., to be the su(2) descendant “in the middle” of the multiplet.

The result of [59] reads, in particular

〈V−+
j1

V−+
j2

V−+
j3
〉 = − 1

4
√
N
DJ1J2J3DJ̃1J̃2J̃3

(j1 + j2 + j3 − 1)(j1 + j2 + j3 + 1)√
j1j2j3

,

〈V−+
j1

V−+
j2

V+−
j3
〉 = − 1

4
√
N
DJ1J2J3DJ̃1J̃2J̃3

(j1 + j2 − j3 − 1)(j1 + j2 − j3 + 1)√
j1j2j3

,

(4.4)

where in the first line Jk = jk + 1 and J̄k = jk − 1, and in the second line the same holds
except for operator 3, for which instead J3 = j3 − 1 and J̄3 = j3 + 1. The factors DJ1J2J3

and DJ̃1J̃2J̃3
depend also on the magnetic su(2) charges, i.e. on the J3 and J̃3 charges of

the operators, respectively. Recall that operator 1 is a highest-weight state, operator 3 is
a lowest weight state, and operator 2 has vanishing orbital quantum numbers. All in all,
for our configuration of states are simply given by

DJ1J2J3 = (−1)J2+2J3 J2!√
(2J2)!

. (4.5)

The prefactor 1/
√
N is an overall normalisation common to all three-point functions — N

is the number of copies in the symmetric product orbifold CFT SymN (T4). Note that in
practice, for the three-point function to be non-vanishing, we want to specialise (4.4) to
the case J3 = J1, J̃3 = J̃1.

4.2 Hexagon computation

We will describe here how to use the formalism which we developed in order to reproduce
the result (4.4). It should be stressed that the integrability machinery is suitable to compute
non-protected correlation functions — this is just intended as a relatively simple check of
our proposal.

The operators of interest are those related to V−+
j and V+−

j , namely

V−+
j ∼ lim

p→0+
lim
q→0−

|χ̃1(p)χ̃2(q)〉 , V−+
j ∼ lim

p→0+
lim
q→0−

|χ1(p)χ2(q)〉 , (4.6)

constructed over a vacuum of total R-charge j. The expression above stresses that the
zero-momentum magnons described above should be treated with some care — we will see
that indeed singularities may arise from the p, q → 0 limit. This is not surprising, given
that among other things the dispersion relation is singular at that point, see eq. (2.46). It
turns out that things may be simplified a little, namely we can take the limit on the two
momenta symmetrically,

V+−
j ∼ lim

p→0+
|χ̃1(p)χ̃2(−p)〉 , V−+

j ∼ lim
p→0+

|χ1(p)χ2(−p)〉 , (4.7)
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Figure 6. We represent schematically some of the terms contributing to the hexagon computation
of the three-point function. We cut the three-point functions in two hexagons, one corresponding
to the “front” of it and one to the “back” (the cut runs parallel to the surface of the page). Then,
we have to sum over all possible ways of distributing each pair of particles over the two patches,
for a total of (22)3 = 64 possibilities; in the figure we only write the first 22 = 4 terms relative
to moving around {p1,−p1} (in blue), and one term relative to moving {p2,−p2} (in green). The
various terms have to be weighted as in eq. (4.10).

We are interested in inserting three such operators on the three distinguished edges of
the hexagon, which we have labeled with 0γ, 2γ and 4γ. Hence we have to consider the
following excitations

〈V−+
j1

V−+
j2

V−+
j3
〉 ∼

(
{χ1(p1), χ2(−p1)}, {χ1(p2), χ2(−p2)}, {χ1(p3), χ2(−p3)}

)
. (4.8)

Here and from now on, we leave the pjs generic. We will see later how to take the limit.
Similarly, we have

〈V−+
j1

V−+
j2

V+−
j3
〉 ∼

(
{χ1(p1), χ2(−p1)}, {χ1(p2), χ2(−p2)}, {χ̃1(p3), χ̃2(−p3)}

)
. (4.9)

The hexagon prescription [13] requires us to partition the three sets of excitations
identified above in all possible ways over the two hexagonal patches of worldsheet, see fig-
ure 6. Let us consider the case of (4.8). Then we have three sets X1 = {χ1(p1), χ2(−p1)},
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X2 = {χ̃2(p2), χ̃1(−p2)} and X3 = {χ1(p3), χ2(−p3)}. Accordingly, we sum over all parti-
tions of the form Xj = αj ∪ ᾱj obtaining( 3∏

j=1

∑
Xj=αj∪ᾱj

(−1)ᾱjwαj ,ᾱj

)
〈h|α4γ

1 α2γ
2 α0γ

3 〉 〈h|ᾱ
4γ
2 ᾱ2γ

1 ᾱ0γ
3 〉 , (4.10)

where the different ordering of the partitions is due to the different orientation of the two
hexagonal patches (which is necessary to glue them back to give a three-point function).
Accordingly, we have also indicated how the particles have to be analytically continued
on the various edges. It is worth emphasising that, following the rules of section 3.3, a
2γ-shift results in a flavour change, e.g. χ1(p2γ) = iχ̃2(p). Finally, the sum is weighted by
the factor wα,ᾱ, which takes the form

wα1,ᾱ1 =



1 α = {χ1(p1)χ2(−p1)}, ᾱ = ∅
ei(−p1)`12 α = {χ1(p1)}, ᾱ = {χ2(−p1)}
Sχχ(p1,−p1)ei(p1)`12 α = {χ2(−p1)}, ᾱ = {χ1(p1)}
ei(p1−p1)`12 = 1 α = ∅, ᾱ = {χ1(p1)χ2(−p1)}

(4.11)

The expression further simplifies in the small-p limit because Sχχ(p,−p) → 1. Here we
have introduced the “bridge length” [13] `23; we have

`12 = j1 + j2 − j3
2 , `23 = j2 + j3 − j1

2 , `13 = j1 + j3 − j2
2 . (4.12)

Similar formulae hold for the weight factors for the other partitions, up to cycling the indices
1, 2 and 3. Furthermore, it is also true that Sχ̃χ̃(p,−p)→ 1. Finally, it should be noted that
there is some confusion in the literature concerning the signs which should be assigned to a
given partition, especially when the permuted particles are Fermionic [13, 63]. In our case
we will impose that the signs satisfy all relevant self-consistency and symmetry conditions,
at which point we will be able to obtain the result and match the existing literature.

4.2.1 Limit procedure

As we have mentioned, the limit pj → 0 will require some care. We can expect two types
of singular behaviour: one arises because of possible singularities at p = 0, while the other
is due to a pair of momenta approaching each other, pj = pk. Recall from the discussion
of crossing (section 3.3) that a particle-antiparticle pair results in a pole; this is what
will happen when, e.g., p2 → p1 in our setup. There is one further complication that
we should bear in mind: the hexagon formalism should not depend on the details of how
we construct the external states — for instance, it should not depend on the ordering of
the particles within each state. This is indeed the case, but only as long as the particles
in each state satisfy the Bethe equations. In other words, in order to have a consistent
formalism we need to require p1, p2 and p3 to obey the Bethe equations. These are very
simple in our setup, because we are interested in a limit where particles behave as free,
i.e. Sχχ(p,−p) = Sχ̃χ̃(p,−p) = 1. Still, they do impose three non-trivial conditions,

eipkjk = 1 ⇒ pk = 2πνk
jk

, νk ∈ Z , k = 1, 2, 3 . (4.13)
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This discrete structure calls for a little more care in taking the coincident-momenta limit.
To this end we introduce a small ε > 0 and three real numbers εk and redefine

jk →
jk

1 + ε εk
, pk → pk(1 + ε εk) , (4.14)

which leaves the Bethe equations (4.13) unchanged. In this language, we can get the
coincident-momenta limit by setting

p1 = p2 = p3 , ε→ 0 . (4.15)

This will also provide us with a check of our construction: the limit should be independent
from ε1, ε2 and ε3.

In practice, in our computation it will be useful to consider one additional limit. The
structure constants for the three-point correlation functions of protected operators are
themselves protected [64]. As a result, we may choose any value of h, k that we want.
From eq. (2.53) we note that, for massless particles, kinematics only depends on the ratio
h/k (up to an overall factor of k which washes out of all S-matrix elements). Hence it is
convenient to take the limit h/k → 0 with k arbitrary. The upshot is that, in this way, we
may rewrite all the ingredients necessary for the computation in terms of the new variables

y±(p) ≡ e±i
p
2

sin
(
p
2

)
p
2

, (4.16)

which play the role of x±o . In terms of these, we can easily rewrite the various S-matrix
elements necessary for the hexagon computation, including the relevant scalar factor. For
instance, we have

h◦◦(p2γ
2 , p0γ

3 )A(p2γ
2 , p0γ

3 ) → h̃23e
i
4 (p2+p3) (y−3 − y−2 ) ,

h◦◦(p2γ
2 , p0γ

3 )B(p2γ
2 , p0γ

3 ) → h̃23e
i
4 (p3−p2) (y−3 − y+

2 ) ,
h◦◦(p2γ

2 , p0γ
3 )C(p2γ

2 , p0γ
3 ) → h̃23γ̃2 γ̃3 ,

h◦◦(p2γ
2 , p0γ

3 )D(p2γ
2 , p0γ

3 ) → h̃23e
i
4 (p2−p3) (y+

3 − y
−
2 ) ,

h◦◦(p2γ
2 , p0γ

3 )E(p2γ
2 , p0γ

3 ) → h̃23γ̃2 γ̃3 ,

h◦◦(p2γ
2 , p0γ

3 )F (p2γ
2 , p0γ

3 ) → h̃23 e
− i

4 (p2+p3) (y+
2 − y

+
3 ) ,

(4.17)

when both momenta have the same sign. Here

γ̃j :=
√
i(y−j − y+

j ) , h̃23 = sgn(p2 − p3)√
(y−2 − y−3 )(y+

2 − y
+
3 )

. (4.18)

The expressions become even simpler when momenta have opposite signs: in that case the
reflection part of the S matrix vanishes (C = E = 0) and one is left with a free S matrix,
up to frame factors — exactly how it was argued in refs. [43, 65].
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4.2.2 Computation of the form factor

We now turn to the computation of the hexagon form factors for the two correlators of
interest (4.8)–(4.9). For the correlator involving three identical states, we can expect a
singularity when any pair of momenta become singular. Hence the most singular part
of (4.8) should go like

1
ε6

1
(ε1 − ε2)2(ε2 − ε3)2(ε1 − ε3)2 . (4.19)

Conversely, for the correlator of eq. (4.9) we expect a pole from the decoupling condition
only for operators one and two — the third operators being different — so that it will go like

1
ε2

1
(ε1 − ε2)2 . (4.20)

A first obvious issue to address is how to resolve this mismatch, given that both correlators
should eventually give a finite result, possibly up to an overall factor. Let us start from
the completely symmetric case of eq. (4.8). Among all various ways of partitioning the
particles, the one yielding the highest O(ε−6) singularity occurs when the three particles
with positive momenta {p1, p2, p3} sit on one hexagon, {−p1,−p2,−p3} sit on the other, or
when they all sit on the same hexagon. In the former case, when e.g. {p1, p2, p3} are on the
“front” hexagon we pick up a numerator proportional to the following polynomial P in y±k :

P = +y−1 y−2 y+
1 − y

−
2 y
−
3 y

+
1 − y

−
1 y
−
3 y

+
2 + y−2 y

−
3 y

+
2 − y

−
2 y

+
1 y

+
2 + y−3 y

+
1 y

+
2

− y−1 y
−
2 y

+
3 + y−1 y

−
3 y

+
3 − y

−
1 y

+
1 y

+
3 + y−2 y

+
1 y

+
3 + y−1 y

+
2 y

+
3 − y

−
3 y

+
2 y

+
3 .

(4.21)

Conversely, when {p1, p2, p3} are on the “back” hexagon we pick the complex conju-
gate P∗, which is obtained from P by swapping y±k ↔ y∓k . Repeating the computation
for {−p1,−p2,−p3} we come to the conclusion that the full result is proportional to PP∗;
similarly, when all particles are on the same hexagon we get P2 or (P∗)2. It is useful to
introduce the quantity

∆∓ij ≡ y∓i − y∓j , (4.22)

in terms of which we can encode the y±k dependence in all but one variable, say y±1 . Then
we have

P = (∆−12∆+
12 −∆−12∆+

13 + ∆−13∆+
13) y−1 − (∆−12∆+

12 −∆−12∆+
13 + ∆−13∆+

13) y+
1

−∆−12∆−13∆+
12 + ∆−13∆+

12∆+
13 ,

(4.23)

and similarly for P∗. We see that in the coincidence limit when p2 → p1 and p3 → p1, the
numerator goes like O(ε4). In conclusion, the term which naïvely would be the most diver-
gent (4.19) eventually goes like O(ε−2), exactly like eq. (4.20). By way of example, if e.g.
the particle with momentum +p1 is moved from the partition {p1, p2, p3}, {−p1,−p2,−p3}
into the other hexagon such as to obtain {p2, p3}, {p1,−p1,−p2,−p3} the back hexagon
runs up only a simple pole, while the front one still is maximally singular. On the other
hand, we lose P from the back hexagon, while P∗ will still arise on the front one. Again,
the result has only a second order pole.
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Carrying out the computation to the end, we find that in the coincident-momenta limit
the result for the symmetric correlator (4.8) is proportional to

(
j1 + j2 + j3

)2 (y− − y+)4

(y−y+)2 (1− y−)(1− y+)

− (8 d2 − d4 − 10 d2s+ d4s− 8 s2 + 7 d2s2 + 12 s3 − 2 d2s3 − 6 s4 + s5)2

64 (y−y+)2 (1− y−)3(1− y+)3 ,

(4.24)

with s = y− + y+, d = y− − y+. Notice that this expression is real. In the limit p → 0
this finally gives

4
(
j1 + j2 + j3 − 1

)(
j1 + j2 + j3 + 1

)
p2 + . . . , (4.25)

as expected from eq. (4.4). In a similar way we can compute the hexagon form factor for
the correlator (4.9), where the third operator is different from the other two. In this case,
the result is proportional to

(
2 `12

)2 (y− − y+)4

(y−y+)2 (1− y−)(1− y+)

− (8 d2 − 4 d4 − 16 d2s+ d4s− 8 s2 + 10 d2s2 + 12 s3 − 2 d2s3 − 6 s4 + s5)2

64 (y−y+)2 (1− y−)3(1− y+)3 .

(4.26)

The resulting p→ 0 limit is

− 4 (1− 2 `12)(1− 2 `12) p2 + . . . , (4.27)

which matches with (4.4). In particular, if we disregard the overall normalisations, we find
that the ratio of the two families of correlation functions match for arbitrary j1, j2 and j3.

We have not mentioned a selection rule concerning the results (4.24) and (4.26) and
their limits: in the whole discussion it was assumed that the Ji are such that the lij are
integer as suggested by perturbative field theory. Further, we have to distinguish the cases∑
νk ∈ 2Z for which formulae (4.24), (4.26) are valid, and ∑ νk ∈ 2Z + 1 for which the

correlators actually vanish.
To conclude this discussion, we note that our result only relied on the “asymptotic” part

of the hexagon, without accounting for wrapping effects. This can be done in this formalism
order by order [13, 17–19] by considering Lüscher-type corrections. It is natural to ask why
our result nonetheless matches those in the literature. This is because we are dealing
with half-BPS states, or equivalently precisely with states that are composed of zero-
momentum excitations only. The argument was first noted in refs. [60, 66] in the context
of the computation of the spectrum for the very same operators. Essentially, the transfer
matrix appearing in the computation of (arbitrarily high) wrapping effects only involves
zero-momentum excitations. As such it get precisely the same and opposite corrections for
Fermionic and Bosonic wrapping effect, leading to a complete cancellation of wrapping.

5 Conclusions and outlook

In this article we have seen that the hexagon approach for the computation of three-point
functions by integrability set out in ref. [13] can also be applied to AdS3×S3×T4. This is
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the first example of an integrable superstring background with this feature other than the
original AdS5 × S5. The main aim of this paper was to perform the bootstrap procedure
for the hexagon form factor, check its internal consistency and perform a basic check of
the resulting machinery. In this regard, we have been successful. There are now many
interesting directions that should be studied.

Our framework can be used to study background with a mixture of NSNS and RR
background fluxes. In a sense, the case of pure-RR background fluxes seems simplest
because in that case we know all the dressing factors [50, 51] and much of the intuition
from AdS5 × S5 may be exploited; this is also the case that naturally corresponds to the
D1-D5 brane systems, which is of interest in holography. Conversely, the pure-NSNS case
would also be very interesting to study, as in that case we should be able to make contact
with the computation of correlation functions by worldsheet CFT techniques [28]. The main
obstacle in this case is that we do not know the scalar factors; however, given the relative
simplicity of the system at the pure-NSNS point — which is quite apparent when studying
the spectral problem [42, 43] — it is possible that we could make an educated guess for them.

The last few years saw a spectacular development in the use of worldsheet-CFT ap-
proaches to understand pure-NSNS backgrounds, which is particularly powerful for the
level k = 1 theory [30–34]. Most of these new development deal with the “long-string”
part of the WZW spectrum, i.e. with the part emerging from continuous representations
— at k = 1, this actually constitutes the whole spectrum. Conversely, our analysis here
applies to short strings, which emerge from discrete representations. This is not surprising
because our analysis is generically valid for RR-flux or mixed-flux backgrounds; for these
backgrounds, there are no long strings. It would be extremely interesting to take the NSNS
limit and try to recover the long-string spectrum from the short-string one. Recently, this
was argued at the level of the spectrum in ref. [44]. It would be very interesting to do
this for correlation functions. It is curious how the long-string spectrum, which can be
studied in amazing detail with CFT techniques at k = 1 [33, 34] (owing to the existence of
a free-field representation) is so subtle to incorporate in the integrability description: it is
certainly something worthy of further investigation.

The most-general case of mixed-flux backgrounds will possibly be the most challenging,
as once again the scalar factors are unknown and probably highly nontrivial, see also
ref. [53].

Another interesting point is how to incorporate finite-size (“wrapping”) effects, which
is the bane of most integrability approaches. In AdS5 × S5 this can be done order-by-
order [13, 17–19]. Here it is likely that things are more complicated, at least in general,
due to the presence of massless modes [41]. However, we expect that in the pure-NSNS
case we should be able to deal quite easily with all wrapping effects, due to the simple
structure highlighted in ref. [43]. In fact, studying wrapping effect in this context may well
be a training ground for incorporating them in more general backgrounds.

It is worth emphasising that the hexagon formalism may be used also to construct
higher-point correlation functions [20, 21] as well as non-planar correlators [22–24]. This
gives another setup in which wrapping may be manageable, namely the correlation func-
tions of BPS operators. The simplest case is that of a four-point function, which would
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show a very non-trivial dependence on the conformal and R-symmetry cross-ratios. In
AdS5 × S5 it is possible to study this in quite some detail at small ’t Hooft coupling, see
refs. [21, 67]. Can we perform a similar study here? If so, this would undoubtedly shed new
lights on the structure of interactions at generic points of at AdS3/CFT2 moduli space [68].

Finally, it is natural to wonder which other backgrounds are amenable to this bootstrap
approach. Two natural candidates from the point of view of integrability are AdS4 ×
CP3 [69] and AdS3× S3× S3× S1 [70]. The main obstacle which we encounter here is that
neither of these backgrounds has a factorised symmetry algebra — unlike the case of AdS5×
S5 where one could identify a diagonal su(2|2), and of AdS3 × S3 × T4 where we found a
diagonal su(1|1)⊕2. All the same, these backgrounds are all integrable as far as the spectral
problem is concerned, and their integrable structure is remarkably similar. It would almost
seem unnatural if their correlation functions cannot be bootstrapped. The same goes for the
various integrable deformations of all these setups that one may consider. Among those, it
would be particularly interesting to consider “quantum” deformations [71], whose geometric
description [72, 73] was recently shown to include a consistent string background [74, 75].

We hope to return in the near future to some of these intriguing questions.
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A Explicit form of the full S matrix

In order to check that the bootstrapped two-particle hexagon form factor obeys the Watson
equation, we must use the explicit form of the S-matrix in the different sectors. This is
know in the literature [40, 47] but the explicit expressions are somewhat scattered between
different papers that have slightly different notations. Hence we collect it here. The full
psu(1|1)4 S matrix can be obtained by taking the graded tensor product [47] of two copies
of the psu(1|1)2 S matrix of [55],

S = S⊗̂Ś, (A.1)

which can be defined in terms of the matrix elements by

(M⊗̂Ḿ)IÍ,JJ́
KḰ,LĹ

= (−1)FḰFL+FJFÍMIJ
KLḾÍ J́

ḰĹ
. (A.2)

We recall our convention for εab here

ε12 = −ε21 = −ε12 = ε21 = 1. (A.3)
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A.1 The massive sector

A.1.1 Left-left scattering

S|YpYq〉 = +ALL
pqA

LL
pq |YqYp〉,

S|ZpZq〉 = +F LL
pq F

LL
pq |ZqZp〉,

S|YpZq〉 = +CLL
pqC

LL
pq |YqZp〉+BLL

pqB
LL
pq |ZqYp〉 −BLL

pqC
LL
pq εab|Ψa

qΨb
p〉,

S|ZpYq〉 = +DLL
pqD

LL
pq |YqZp〉+ ELL

pqE
LL
pq |ZqYp〉 −DLL

pqE
LL
pq εab|Ψa

qΨb
p〉,

S|YpΨa
q〉 = +ALL

pqC
LL
pq |YpΨa

q〉+ALL
pqB

LL
pq |Ψa

qYp〉,
S|ZpΨa

q〉 = +ELL
pqF

LL
pq |ZpΨa

q〉 −DLL
pqF

LL
pq |Ψa

qZp〉,
S|Ψa

pYq〉 = +ALL
pqD

LL
pq |YqΨa

p〉+ALL
pqE

LL
pq |Ψa

qYp〉,
S|Ψa

pZq〉 = −BLL
pqF

LL
pq |ZqΨa

p〉+ CLL
pq F

LL
pq |Ψa

qZp〉,
S|Ψa

pΨb
q〉 = δabALL

pqF
LL
pq |Ψb

qΨa
p〉+ εab(CLL

pqD
LL
pq |YqZp〉+BLL

pqE
LL
pq |ZqYp〉)

+ (1− δab)(CLL
pqE

LL
pq |Ψa

qΨb
p〉 −BLL

pqD
LL
pq |Ψb

qΨa
p〉).

(A.4)

The last process can be further simplified by using the identity

CLL
pqE

LL
pq −BLL

pqD
LL
pq = ALL

pqF
LL
pq . (A.5)

A.1.2 Right-right scattering

S|ỸpỸq〉 = +ARR
pq A

RR
pq |ỸqỸp〉,

S|Z̃pZ̃q〉 = +FRR
pq F

RR
pq |Z̃qZ̃p〉,

S|ỸpZ̃q〉 = +CRR
pq C

RR
pq |ỸqZ̃p〉+BRR

pq B
RR
pq |Z̃qỸp〉 −BRR

pq C
RR
pq εab|Ψ̃a

qΨ̃b
p〉,

S|Z̃pỸq〉 = +DRR
pq D

RR
pq |ỸqZ̃p〉+ ERR

pq E
RR
pq |Z̃qỸp〉 −DRR

pq E
RR
pq εab|Ψ̃a

qΨ̃b
p〉,

S|ỸpΨ̃a
q〉 = +ARR

pq C
RR
pq |ỸpΨ̃a

q〉+ARR
pq B

RR
pq |Ψ̃a

q Ỹp〉,
S|Z̃pΨ̃a

q〉 = +ERR
pq F

RR
pq |Z̃pΨ̃a

q〉 −DRR
pq F

RR
pq |Ψ̃a

q Z̃p〉,
S|Ψ̃a

pỸq〉 = +ARR
pq D

RR
pq |ỸqΨ̃a

p〉+ARR
pq E

RR
pq |Ψ̃a

q Ỹp〉,
S|Ψ̃a

pZ̃q〉 = −BRR
pq F

RR
pq |Z̃qΨ̃a

p〉+ CRR
pq F

RR
pq |Ψ̃a

q Z̃p〉,
S|Ψ̃a

pΨ̃b
q〉 = δabARR

pq F
RR
pq |Ψ̃b

qΨ̃a
p〉+ εab(CRR

pq D
RR
pq |ỸqZ̃p〉+BRR

pq E
RR
pq |Z̃qỸp〉)

+ (1− δab)(CRR
pq E

RR
pq |Ψ̃a

qΨ̃b
p〉 −BRR

pq D
RR
pq |Ψ̃b

qΨ̃a
p〉).

(A.6)

The last process can be further simplified by using the identity

CRR
pq E

RR
pq −BRR

pq D
RR
pq = ARR

pq F
RR
pq . (A.7)
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A.1.3 Left-right scattering

S|YpỸq〉 = +ALR
pqA

LR
pq |ỸqYp〉 −BLR

pq B
LR
pq |Z̃qZp〉 −ALR

pqB
LR
pq εab|Ψ̃a

qΨb
p〉,

S|ZpZ̃q〉 = −F LR
pq F

LR
pq |ỸqYp〉+ ELR

pq E
LR
pq |Z̃qZp〉+ ELR

pq F
LR
pq εab|Ψ̃a

qΨb
p〉,

S|YpZ̃q〉 = +CLR
pq C

LR
pq |Z̃qYp〉,

S|ZpỸq〉 = +DLR
pqD

LR
pq |ỸqZp〉,

S|YpΨ̃a
q〉 = +ALR

pqC
LR
pq |Ψ̃a

qYp〉 −BLR
pq C

LR
pq |Z̃qΨa

p〉,
S|ZpΨ̃a

q〉 = −DLR
pq E

LR
pq |Ψ̃a

qZp〉+DLR
pq F

LR
pq |ỸqΨa

p〉,
S|Ψa

pỸq〉 = +ALR
pqD

LR
pq |ỸqΨa

p〉 −BLR
pq D

LR
pq |Ψ̃a

qZp〉,
S|Ψa

pZ̃q〉 = −CLR
pq E

LR
pq |Z̃qΨa

p〉+ CLR
pq F

LR
pq |Ψ̃a

qYp〉,
S|Ψa

pΨ̃b
q〉 = −CLR

pq D
LR
pq δ

ab|Ψ̃b
qΨa

p〉 − εab(ALR
pq F

LR
pq |ỸqYp〉 −BLR

pq E
LR
pq |Z̃qZp〉)

+ (1− δab)(ALR
pqE

LR
pq |Ψ̃b

qΨa
p〉 −BLR

pq F
LR
pq |Ψ̃a

qΨb
p〉).

(A.8)

The last process can be further simplified by using the identity

ALR
pqE

LR
pq −BLR

pq F
LR
pq = −CLR

pq D
LR
pq . (A.9)

A.1.4 Right-left scattering

S|ỸpYq〉 = +ARL
pqA

RL
pq |YqỸp〉 −BRL

pq B
RL
pq |ZqZ̃p〉+ARL

pqB
RL
pq εab|Ψa

qΨ̃b
p〉,

S|Z̃pZq〉 = −FRL
pq F

RL
pq |YqỸp〉+ ERL

pq E
RL
pq |ZqZ̃p〉 − ERL

pq F
RL
pq εab|Ψa

qΨ̃b
p〉,

S|ỸpZq〉 = +CRL
pq C

RL
pq |ZqỸp〉,

S|Z̃pYq〉 = +DRL
pqD

RL
pq |YqZ̃p〉,

S|ỸpΨa
q〉 = +ARL

pqC
RL
pq |Ψa

q Ỹp〉+BRL
pq C

RL
pq |ZqΨ̃a

p〉,
S|Z̃pΨa

q〉 = −DRL
pq E

RL
pq |Ψa

q Z̃p〉 −DRL
pq F

RL
pq |YqΨ̃a

p〉,
S|Ψ̃a

pYq〉 = +ARL
pqD

RL
pq |YqΨ̃a

p〉+BRL
pq D

RL
pq |Ψa

q Z̃p〉,
S|Ψ̃a

pZq〉 = −CRL
pq E

RL
pq |ZqΨ̃a

p〉 − CRL
pq F

RL
pq |Ψa

q Ỹp〉,
S|Ψ̃a

pΨb
q〉 = −CRL

pq D
RL
pq δ

ab|Ψb
qΨ̃a

p〉 − εab(ARL
pq F

RL
pq |YqỸp〉 −BRL

pq E
RL
pq |ZqZ̃p〉)

+ (1− δab)(ARL
pqE

RL
pq |Ψb

qΨ̃a
p〉 −BRL

pq F
RL
pq |Ψa

qΨ̃b
p〉).

(A.10)

The last process can be further simplified by using the identity

ARL
pqE

RL
pq −BRL

pq F
RL
pq = −CRL

pq D
RL
pq . (A.11)
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A.2 The mixed-mass sector

A.2.1 Left-massless scattering

S|ZpT Ȧaq 〉 = −DLo
pqF

Lo
pq |T Ȧaq Zp〉 − ELo

pqF
Lo
pq |χ̃Ȧq Ψa

p〉,

S|YpT Ȧaq 〉 = +ALo
pqB

Lo
pq |T Ȧaq Yp〉 −ALo

pqC
Lo
pq |χȦq Ψa

p〉,

S|Ψa
pχ̃

Ȧ
q 〉 = +BLo

pqF
Lo
pq |χ̃Ȧq Ψa

p〉+ CLo
pqF

Lo
pq |T Ȧaq Zp〉,

S|Ψa
pχ

Ȧ
q 〉 = −ALo

pqD
Lo
pq |χȦq Ψa

p〉+ALo
pqE

Lo
pq |T Ȧaq Yp〉,

S|Zpχ̃Ȧq 〉 = +F Lo
pq F

Lo
pq |χ̃Ȧq Zp〉,

S|YpχȦq 〉 = +ALo
pqA

Lo
pq|χȦq Yp〉,

S|ZpχȦq 〉 = +DLo
pqD

Lo
pq |χȦq Zp〉+ ELo

pqE
Lo
pq |χ̃Ȧq Yp〉+DLo

pqE
Lo
pqεab|T Ȧaq Ψb

p〉,

S|Ypχ̃Ȧq 〉 = +BLo
pqB

Lo
pq |χ̃Ȧq Yp〉+ CLo

pqC
Lo
pq |χȦq Zp〉+BLo

pqC
Lo
pq εab|T Ȧaq Ψb

p〉,

S|Ψa
pT

Ȧb
q 〉 = −δabALo

pqF
Lo
pq |T Ȧaq Ψb

p〉+ εab(CLo
pqD

Lo
pq |χȦq Zp〉+BLo

pqE
Lo
pq |χ̃Ȧq Yp〉)

+ (1− δab)(BLo
pqD

Lo
pq |T Ȧaq Ψb

p〉 − CLo
pqE

Lo
pq |T Ȧbq Ψa

p〉),

(A.12)

The last process can be further simplified by using the identity

CLo
pqE

Lo
pq −BLo

pqD
Lo
pq = ALo

pqF
Lo
pq . (A.13)

A.2.2 Massless-left scattering

S|T Ȧap Zq〉 = −BoL
pqF

oL
pq |ZqT Ȧap 〉+ CoL

pqF
oL
pq |Ψa

q χ̃
Ȧ
p 〉,

S|T Ȧap Yq〉 = +AoL
pqD

oL
pq |YqT Ȧap 〉+AoL

pqE
oL
pq |Ψa

qχ
Ȧ
p 〉,

S|χ̃Ȧp Ψa
q〉 = +DoL

pqF
oL
pq |Ψa

q χ̃
Ȧ
p 〉 − EoL

pqF
oL
pq |ZqT Ȧap 〉,

S|χȦp Ψa
q〉 = −AoL

pqB
oL
pq |Ψa

qχ
Ȧ
p 〉 −AoL

pqC
oL
pq |YqT Ȧap 〉,

S|χ̃Ȧp Zq〉 = +F oL
pq F

oL
pq |Zqχ̃Ȧp 〉,

S|χȦp Yq〉 = +AoL
pqA

oL
pq|YqχȦp 〉,

S|χȦp Zq〉 = +BoL
pqB

oL
pq |ZqχȦp 〉+ CoL

pqC
oL
pq |Yqχ̃Ȧp 〉 −BoL

pqC
oL
pq εab|Ψa

qT
Ȧb
p 〉,

S|χ̃Ȧp Yq〉 = +DoL
pqD

oL
pq |Yqχ̃Ȧp 〉+ EoL

pqE
oL
pq |ZqχȦp 〉 −DoL

pqE
oL
pqεab|Ψa

qT
Ȧb
p 〉,

S|T Ȧap Ψb
q〉 = −δabAoL

pqF
oL
pq |Ψb

qT
Ȧa
p 〉 − εab(BoL

pqE
oL
pq |ZqχȦp 〉+ CoL

pqD
oL
pq |Yqχ̃Ȧp 〉)

+ (1− δab)(DoL
pqB

oL
pq |Ψb

qT
Ȧa
p 〉 − EoL

pqC
oL
pq |Ψa

qT
Ȧb
p 〉),

(A.14)

The last process can be further simplified by using the identity

CoL
pqE

oL
pq −BoL

pqD
oL
pq = AoL

pqF
oL
pq . (A.15)
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A.2.3 Right-massless scattering

S|Z̃pT Ȧaq 〉 = −DRo
pqE

Ro
pq |T Ȧaq Z̃p〉+DRo

pqF
Ro
pq |χȦq Ψ̃a

p〉,

S|ỸpT Ȧaq 〉 = +ARo
pqC

Ro
pq |T Ȧaq Ỹp〉 −BRo

pqC
Ro
pq |χ̃Ȧq Ψ̃a

p〉,

S|Ψ̃a
pχ

Ȧ
q 〉 = −ARo

pqD
Ro
pq |χȦq Ψ̃a

p〉+BRo
pqD

Ro
pq |T Ȧaq Z̃p〉,

S|Ψ̃a
pχ̃

Ȧ
q 〉 = +CRo

pqE
Ro
pq |χ̃Ȧq Ψ̃a

p〉 − CRo
pq F

Ro
pq |T Ȧaq Ỹp〉,

S|Z̃pχȦq 〉 = +DRo
pqD

Ro
pq |χȦq Z̃p〉,

S|Ỹpχ̃Ȧq 〉 = +CRo
pqC

Ro
pq |χ̃Ȧq Ỹp〉,

S|Z̃pχ̃Ȧq 〉 = +ERo
pqE

Ro
pq |χ̃Ȧq Z̃p〉 − FRo

pq F
Ro
pq |χȦq Ỹp〉+ FRo

pq E
Ro
pq εab|T Ȧaq Ψ̃b

p〉,

S|ỸpχȦq 〉 = +ARo
pqA

Ro
pq |χȦq Ỹp〉 −BRo

pqB
Ro
pq |χ̃Ȧq Z̃p〉 −BRo

pqA
Ro
pq εab|T Ȧaq Ψ̃b

p〉,

S|Ψ̃a
pT

Ȧb
q 〉 = +CRo

pqD
Ro
pq δ

ab|T Ȧaq Ψ̃b
p〉+ εab(ARo

pqF
Ro
pq |χȦq Ỹp〉 −BRo

pqE
Ro
pq |χ̃Ȧq Z̃p〉)

+ (1− δab)(BRo
pqF

Ro
pq |T Ȧaq Ψ̃b

p〉 −ARo
pqE

Ro
pq |T Ȧbq Ψ̃a

p〉).

(A.16)

The last process can be further simplified by using the identity

BRo
pqF

Ro
pq −ARo

pqE
Ro
pq = CRo

pqD
Ro
pq . (A.17)

A.2.4 Massless-right scattering

S|T Ȧap Z̃q〉 = −CoR
pqE

oR
pq |Z̃qT Ȧap 〉+ CoR

pq F
oR
pq |Ψ̃a

qχ
Ȧ
p 〉,

S|T Ȧap Ỹq〉 = +AoR
pqD

oR
pq |ỸqT Ȧap 〉 −BoR

pqD
oR
pq |Ψ̃a

q χ̃
Ȧ
p 〉,

S|χȦp Ψ̃a
q〉 = −AoR

pqC
oR
pq |Ψ̃a

qχ
Ȧ
p 〉+BoR

pqC
oR
pq |Z̃qT Ȧap 〉,

S|χ̃Ȧp Ψ̃a
q〉 = +DoR

pqE
oR
pq |Ψ̃a

q χ̃
Ȧ
p 〉 −DoR

pqF
oR
pq |ỸqT Ȧap 〉,

S|χȦp Z̃q〉 = +CoR
pqC

oR
pq |Z̃qχȦp 〉,

S|χ̃Ȧp Ỹq〉 = +DoR
pqD

oR
pq |Ỹqχ̃Ȧp 〉,

S|χ̃Ȧp Z̃q〉 = +EoR
pqE

oR
pq |Z̃qχ̃Ȧp 〉 − F oR

pq F
oR
pq |ỸqχȦp 〉+ F oR

pq E
oR
pq εab|Ψ̃a

qT
Ȧb
p 〉,

S|χȦp Ỹq〉 = +AoR
pqA

oR
pq |ỸqχȦp 〉 −BoR

pqB
oR
pq |Z̃qχ̃Ȧp 〉 −AoR

pqB
oR
pq εab|Ψ̃a

qT
Ȧb
p 〉,

S|T Ȧap Ψ̃b
q〉 = +CoR

pqD
oR
pq δ

ab|Ψ̃a
qT

Ȧb
p 〉+ εab(AoR

pqF
oR
pq |ỸqχȦp 〉 −BoR

pqE
oR
pq |Z̃qχ̃Ȧp 〉)

+ (1− δab)(BoR
pqF

oR
pq |Ψ̃a

qT
Ȧb
p 〉 −AoR

pqE
oR
pq |Ψ̃b

qT
Ȧa
p 〉).

(A.18)

The last process can be further simplified by using the identity

BoR
pqF

oR
pq −AoR

pqE
oR
pq = CoR

pqD
oR
pq . (A.19)
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A.3 The massless sector

S|T Ȧap T Ḃbq 〉 = −Aoo
pqF

oo
pqδ

ab|T Ḃaq T Ȧbp 〉+ εab(Coo
pqD

oo
pq|χḂq χ̃Ȧp 〉+Boo

pqE
oo
pq|χ̃Ḃq χȦp 〉)

− (1− δab)(Coo
pqE

oo
pq|T Ḃaq T Ȧbp 〉 −Boo

pqD
oo
pq|T Ḃbq T Ȧap 〉),

S|T Ȧap χ̃Ḃq 〉 = −Boo
pqF

oo
pq |χ̃Ḃq T Ȧap 〉 − Coo

pqF
oo
pq |T Ḃaq χ̃Ȧp 〉,

S|χ̃Ȧp T Ḃaq 〉 = −Doo
pqF

oo
pq |T Ḃaq χ̃Ȧp 〉 − Eoo

pqF
oo
pq |χ̃Ḃp T Ȧap 〉,

S|T Ȧap χḂq 〉 = +Aoo
pqD

oo
pq|χḂq T Ȧap 〉 −Aoo

pqE
oo
pq|T Ḃaq χȦp 〉,

S|χȦp T Ḃaq 〉 = +Aoo
pqB

oo
pq|T Ḃaq χȦp 〉 −Aoo

pqC
oo
pq|χḂp T Ȧap 〉,

S|χ̃Ȧp χ̃Ḃq 〉 = −F oo
pqF

oo
pq |χ̃Ḃq χ̃Ȧp 〉,

S|χȦp χḂq 〉 = −Aoo
pqA

oo
pq|χḂq χȦp 〉,

S|χ̃Ȧp χḂq 〉 = −Doo
pqD

oo
pq|χḂq χ̃Ȧp 〉 − Eoo

pqE
oo
pq|χ̃Ḃq χȦp 〉 − Eoo

pqD
oo
pqεab|T Ḃaq T Ȧbp 〉,

S|χȦp χ̃Ḃq 〉 = −Boo
pqB

oo
pq|χ̃Ḃq χȦp 〉 − Coo

pqC
oo
pq|χḂq χ̃Ȧp 〉 −Boo

pqC
oo
pqεab|T Ḃaq T Ȧbp 〉.

(A.20)

The first process can be further simplified by using the identity

Coo
pqE

oo
pq −Boo

pqD
oo
pq = Aoo

pqF
oo
pq . (A.21)
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