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1 Introduction

Entanglement entropy in quantum field theories (QFTs) was studied [1, 2] to understand
the black hole entropy known as the Bekenstein-Hawking entropy S = A/4GN . In the
context of the AdS/CFT correspondence, this entropy formula was generalized to the Ryu-
Takayanagi formula [3, 4] (see also the covariant generalization [5]): area of an extremal
surface in the AdS space is related to the entanglement entropy for a dual CFT on the
boundary as SCFT

EE = A/4GN (when the classical Einstein gravity is a good description
in the bulk). It was proposed in [6] (see also [7]) that we can generalize this formula to
include quantum corrections in the bulk as SCFT

EE = Sbulk
gen , where Sbulk

gen is the generalized
entropy of a quantum extremal surface in the bulk and roughly given by the area of the
quantum surface plus the bulk entanglement entropy like Sbulk

gen ∼ 〈A〉 /4GN + Sbulk
EE .1

1Explicit computations of the bulk generalized entropy are done, e.g., in [8–10].
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It was proposed in [11] that the bulk generalized entropy for any region enclosed by
codimension-two surfaces, which are not restricted to the extremal surfaces, is given by the
target space entanglement entropy in the holographically dual description.2 Entanglement
entropy in QFTs usually means the geometric entropy, i.e., the base space entanglement
entropy. The base space entanglement entropy in a (1 + d)-dimensional QFT (d ≥ 1) is
defined by partitioning the d-dimensional base space, where quantum fields live, into a
subregion and its complement. We instead consider the entanglement in the target space.

We have an issue when we define the target space entanglement. The Hilbert space
is generally not tensor-factorized with respect to the target space. An alternative method
is adopted to resolve this issue [15, 16]. This is based on an algebraic approach [17]
(for reviews see also [18, 19]). We usually assume that our total Hilbert space is a tensor
product as H = HA⊗HĀ and then consider the entanglement between subsystem A and Ā.
However, total Hilbert spaces sometimes cannot take such simple tensor-factorized forms.
It means that we cannot define the reduced density matrix by taking a partial trace over a
subsystem in the usual manner. In the algebraic approach, we instead restrict observables3

and consider the “reduced” density matrix associated with the subalgebra generated by
the selected observables. It allows us to define entanglement in general situations as we
will review in section 2. This algebraic approach is used to define entanglement entropies
for identical particles [21–23] and also in (lattice) gauge theories [18].

A typical example is the BFSS model [24]. This is a supersymmetric matrix quantum
mechanics describing D0-branes and conjectured to provide a non-perturbative formulation
of M-theory. The notion of the base space is meaningless for the quantum mechanics, that
is, (1 + 0)-dimensional QFTs. While we cannot divide the zero-dimensional “base space”
into subregions, we can the target space. The target space entanglement of matrix quantum
mechanics is investigated in [11, 25, 26].

In this paper, we consider a simple matrix quantum mechanics: one-matrix models.
The dynamical variables are a single N ×N hermitian matrix and the model has SU(N)
symmetry. The singlet sector described by the eigenvalues can be mapped to a quantum
mechanics of non-relativistic non-interacting fermions [27]. A two-dimensional string theory
can be non-perturbatively formulated by a double scaling large N limit of a one-matrix
quantum mechanics with a potential containing a quadratic maximum like an inverted
harmonic oscillator [28] (for reviews see, e.g., [29, 30]). Thus, the one-matrix quantum
mechanics is a tractable model of holography. The entanglement entropy in the model is
computed in [31, 32] based on the second-quantized picture of fermions.

The aim of this paper is to develop the target space entanglement of one-matrix quan-
tum mechanics based on the algebraic approach. Since the models can be regarded as a
system of non-interacting fermions, we investigate the cases where the wave functions are
given by the Slater determinants. In the algebraic approach, the entanglement entropy

2See also [12] where it is also conjectured that the entanglement entropy for general surfaces in quantum
gravity is given by the Bekenstein-Hawking formula at the leading order. In the AdS/CFT correspondence,
the Bekenstein-Hawking formula for general surfaces are also considered to be dual to the differential entropy
in the boundary theory [13, 14].

3See also [20] for a similar idea.
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consists of the classical part and the quantum one as S = Scl + Sq. The classical part Scl
represents the classical Shannon entropy for a probability distribution where each proba-
bility is assigned to each selection sector. For the Slater determinant wave functions with
N fermions, we show that the maximum value of Scl is O(logN) at large N . On the
other hand, we show that the max of the total entropy Scl + Sq is linear in N . This linear
behavior indicates the volume law of the entropy. However, the volume law is not satisfied
by specific states such as ground states. We indeed confirm that the entanglement entropy
for a ground state scales as logN . It implies that the area law holds for the ground states
of local Hamiltonians as in local QFTs.

We explicitly confirm that the target space entanglement entropy reduces to the usual
entanglement entropy in the second quantized picture. The entanglement of non-relativistic
free N fermions are already studied, e.g. in [33, 34] (see also [35]). In particular, the
large N result of entanglement entropy of the single interval is obtained using a technique
developed in [36, 37]. We extend this analysis to the two-interval case and obtain the leading
expression of the general Rényi entropy and the mutual information in the large N limit.

This paper is organized as follows: in section 2, for the sake of completeness, we re-
view the algebraic approach of entanglement and the definition of the (Rényi) entropy for
first-quantized indistinguishable particles (bosons and fermions). In section 3, we espe-
cially investigate the case of fermions with the Slater determinant wave functions. We find
that the target space (Rényi) entanglement entropies are given by the independent sum of
classical Shannon (Rényi) entropies [see eqs. (3.27), (3.31)]. These formulae are the same
as those derived in [33, 34] based on the second quantized picture. It means that the target
space entanglement agrees with the usual base space entanglement in the second quantized
picture. We will show this fact explicitly in subsection 3.2. We present more details on
the second-quantized picture in appendix A. In section 4, we compute numerically and
analytically the target space entanglement entropy and target space mutual information in
the case without potentials on a one-dimensional space with the periodic boundary condi-
tion. To obtain the analytical large N result, we use the Fisher-Hartwig conjecture. The
detailed computations are written in appendix C. We also consider the Dirichlet boundary
condition in appendix B.

2 Review of entanglement entropy for first-quantized indistinguishable
particles

For (1 + d)-dim QFTs, we consider subregion A and its complement in the base space, and
usually assume that the total Hilbert space H is a tensor product asH = HA⊗HĀ. We then
define the reduced density matrix on A by taking the partial trace over HĀ. This ordinary
procedure cannot be applied directly to quantum mechanics, or (1 + 0)-dimensional QFTs.

The algebraic approach enables us to define the notion of entanglement without such
a simple tensor product structure. Let us summarize this approach here. First, we give an
algebraic viewpoint of the reduced density matrix for ordinary cases where the total Hilbert
space is a tensor product H = HA ⊗HĀ. Let ρ be the total density matrix. The reduced
density matrix ρA := trĀ ρ on the subsystem A satisfies trA(ρAOA) = tr[ρ(OA ⊗ 1Ā)] for
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any operator O ∈ L(HA).4 It means that if we introduce the following operator ρA ∈ L(H);

ρA = ρA ⊗
1Ā

dim(HĀ) , (2.1)

we have tr(ρAO) = tr(ρO) for any operator O in the subalgebra A = L(HA)⊗1Ā ⊂ L(H),
which is the set of operators localized on A. Thus, we can regard ρA as an effective density
matrix for observers who can access only observables in the subalgebra A.

The above characterization of the reduced density matrix ρA can be applied to any
subalgebra even when the total Hilbert space is not a tensor product. Let A be a subalge-
bra5 in L(H). We define the reduced density matrix ρA associated with the subalgebra A
from the total density matrix ρ as a positive semi-definite operator in A satisfying

tr(ρAO) = tr(ρO) (2.2)

for any OA ∈ A. Unlike the above example, a general subalgebra A cannot take a tensor-
factorized form like L(HA)⊗ 1Ā. Nevertheless, for any choice of A, one can show that the
total Hilbert space can be uniquely decomposed into a direct sum of tensor products as6

H =
⊕
k

HAk ⊗HĀk (2.3)

such that A is tensor-factorized in each sector as

A =
⊕
k

L(HAk)⊗ 1Āk . (2.4)

From this structure we can construct the reduced density matrix ρA satisfying the
property (2.2) as follows. Let Πk be the projection onto the sector HAk⊗HĀk in the direct
sum (2.3). We define a real number pk associated with each sector as

pk := tr(ΠkρΠk). (2.5)

The set {pk} can be regarded as a probability distribution because we have 0 ≤ pk ≤ 1 and∑
k pk = 1. These properties follow from the fact that the total density matrix ρ is positive
4Here L(X) denotes the set of all linear operators on a vector space X.
5A subalgebra A is a subset of L(H) closed under operations such that

• 1H ∈ A,

• ∀x ∈ C, ∀O ∈ A ⇒ xO ∈ A,

• ∀O1,O2 ∈ A ⇒ O1 +O2, O1O2 ∈ A,

• ∀O ∈ A ⇒ O† ∈ A,

where 1H is the identity operator on H.
6This property can be proved if the Hilbert space H is a finite dimensional space (see, e.g., [19]).

For infinite dimensional Hilbert spaces, we need a more careful treatment. Although the Hilbert spaces
of particles which we consider this paper are actually infinite dimensional spaces, we will see that the
decomposition (2.3) is valid in this case. In this paper we will not further address the issue of infinite
dimensional spaces.
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semi-definite and normalized tr ρ = 1. We also define the restricted density matrix ρk on
each sector as

ρk := 1
pk

ΠkρΠk (2.6)

which is normalized as tr ρk = 1. ρk can be regarded as the density matrix on the sector
HAk ⊗ HĀk because it is sandwiched by the projection operators Πk. Since each sector
HAk ⊗HĀk is a tensor product, we can take the partial trace of ρk over HĀk as

ρk,A := trĀk ρk. (2.7)

Then, the reduced density matrix ρA associated with A is defined as7

ρA :=
⊕
k

pk ρk,A ⊗
1Āk

dim(HĀk) , (2.8)

which is normalized as tr ρA = 1. Eq. (2.8) is a generalization of (2.1). The desired
property, tr(ρAO) = tr(ρO) for all operators O ∈ A, holds because the subalgebra A
takes the form (2.4).

We can also define the reduced density matrix ρA acting on the space HA :=
⊕

kHAk
as

ρA :=
⊕
k

pk ρk,A. (2.9)

The entanglement entropy associated with the subalgebra A is defined as the von Neumann
entropy of this ρA;

S(ρ,A) := − trHA ρA log ρA (2.10)

= −
∑
k

pk log pk +
∑
k

pkSAk(ρk), (2.11)

where SAk(ρk) is the entanglement entropy of subsystem HAk for the k-th sector ‘total’
density matrix ρk on HAk⊗HĀk , that is, SAk(ρk) is nothing but the von Neumann entropy
of the k-th sector reduced density matrix ρk,A = trĀk ρk as

SAk(ρk) = S(ρk,A) = − trAk ρk,A log ρk,A. (2.12)

The entanglement entropy given by (2.11) consists of two parts. The first term is

Scl(ρ,A) = −
∑
k

pk log pk (2.13)

called a classical part because it is the Shannon entropy of the classical probability distri-
bution {pk}. The second term is

Sq(ρ,A) =
∑
k

pkSAk(ρk) (2.14)

7This is a formal expression if the dimension of HĀk
is infinite.
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called a quantum part, which is the expectation value of the entanglement entropies SAk(ρk)
with probabilities pk. This quantum part is also called operationally accessible entangle-
ment entropy [38, 39]. Indeed, if the decomposition (2.9) into each sector is associated with
a symmetry such as the projection Πk is that into a specific charged sector of the symmetry,
the entropy (2.10) is nothing but the symmetry resolved entanglement entropy [40, 41]. We
will see that this is the case for indistinguishable particles, and the decomposition (2.9)
will be done based on the particle numbers in the subsystem A as done in [42].

The Rényi entropy is also defined as

S(n)(ρ,A) := log trHA ρnA
1− n =

log
(∑

k p
n
k trAk ρnk,A

)
1− n . (2.15)

In the limit n→ 1, the entanglement entropy is obtained;

lim
n→1

S(n)(ρ;A) = S(ρ;A). (2.16)

We will apply the algebraic definition of entanglement to the quantum mechan-
ics of multi identical particles on a generic manifold M . Although M can be any
curved manifold with arbitrary dimension, we will represent it for notational simplic-
ity as one-dimensional flat space, e.g., we will write the integration on a d-dimensional
M with metric g just as

∫
M dx instead of

∫
M ddx

√
g. We also use the vector nota-

tion ~x = (x1, · · · , xN ) to represent the set of coordinates of N particles. Each xi
(i = 1, · · · , N) denotes the d-dimensional coordinates of a particle on M . The N × d

integrals
∫
ddx1

√
g(x1) · · ·

∫
ddxN

√
g(xN )ψ(x1, · · · , xN ) will be denoted by

∫
dNxψ(~x) for

brevity.

2.1 Single-particle system

Let us begin with the quantum mechanics of a single particle on a manifold M . Let H(1) be
the entire Hilbert space. For a normalized state |ψ〉 ∈ H(1), we represent the wave function
by ψ(x) = 〈x|ψ〉, where it is normalized as

∫
M dx|ψ(x)|2 = 1.

We divideM into a subregion A and its complement Ā, and consider the entanglement
between the two regions A and Ā. The obstacle is that the total Hilbert space H(1) does
not take a tensor product form with respect to the two regions. Thus, we cannot use the
ordinary definition of the reduced density matrix, and will take the algebraic approach. It
is convenient to introduce the projection operators onto the region A and also Ā as

ΠA =
∫
A
dx |x〉〈x| , ΠĀ =

∫
Ā
dx |x〉〈x| . (2.17)

The total Hilbert space H(1) is decomposed into a direct sum as H(1) = ΠAH(1)⊕ΠĀH(1).
Explicitly, a state |ψ〉 is decomposed into

|ψ〉 =
∫
A
dxψ(x) |x〉+

∫
Ā
dxψ(x) |x〉 . (2.18)

We write the two projected space as

H1 := ΠAH(1), H0 := ΠĀH
(1). (2.19)

– 6 –
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We thus have

H(1) =
1⊕

k=0
Hk. (2.20)

Note that H1 is the set of states where the particle number in region A is one, and H0
means no particle in region A. Using the notation in (2.3), we have

H(1) =
1⊕

k=0
HAk ⊗HĀk , (2.21)

where HA1 = H1, HĀ0
= H0, and HA0 ,HĀ1

are the trivial one-dimensional space C.
A natural subalgebra associated with region A is the set of operators acting on the

particle in region A. We thus define the subalgebra A(A) as

A(A) = Span
[{∣∣x〉〈x′∣∣ ∣∣∣x, x′ ∈ A} ∪ {∫

Ā
dx |x〉〈x|

}]
. (2.22)

Operators in A(A) take the forms∫
A
dxdx′O(x, x′)

∣∣x〉〈x′∣∣+ c

∫
Ā
dx |x〉〈x| (c ∈ C). (2.23)

Note that the subalgebra is tensor-factorized in each sector as

A(A) =
1⊕

k=0
L(HAk)⊗ 1Āk . (2.24)

Since we have specified the subalgebra A(A), we can define the reduced density matrix
ρA from a given total density matrix ρ following the definition (2.9). First, we obtain the
probability distribution {p0, p1} as

p0 = tr ΠĀρΠĀ, p1 = tr ΠAρΠA. (2.25)

If ρ is pure as ρ = |ψ〉 〈ψ|, we have

p0 =
∫
Ā
dx|ψ(x)|2, p1 =

∫
A
dx|ψ(x)|2. (2.26)

Thus, p1 (or p0 = 1 − p1) is the probability that we find the particle in the region A (or
Ā). Next, the reduced density matrix in each sector, defined by (2.6), is given by

ρ0 = 1
p0

ΠĀρΠĀ, ρ1 = 1
p1

ΠAρΠA. (2.27)

The partial traces over HĀk are

ρ0,A = trĀ0
ρ0 = 1, ρ1,A = trĀ1

ρ1 = ρ1. (2.28)

We therefore obtain the reduced density matrix ρA;

ρA = p0 + p1ρ1. (2.29)

– 7 –
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The entanglement entropy of the state ρ associated with the subalgebra A(A), which
we will represent by S(ρ;A), is given by

S(ρ;A) = −
1∑
i=0

pi log pi − p1 trA1 ρ1 log ρ1. (2.30)

The first term is the classical part, and the second term −p1 trA1 ρ1 log ρ1 is the quantum
part. Note that this quantum part vanishes if the original state ρ is pure. Indeed, if ρ is
pure, ρ1 is also, and then trA1 ρ1 log ρ1 = 0. For general mixed ρ, the quantum part does
not vanish.

The Rényi entropy is

S(n)(ρ;A) = log (pn0 + pn1 trA1 ρ
n
1 )

1− n . (2.31)

If ρ is pure, the Rényi entropy is that of the classical distribution {p0, p1}, that is,

S(n) = log [pn1 + (1− p1)n]
1− n (2.32)

where p0 = 1− p1.

2.2 Multi-particle systems of bosons or fermions

We now consider N -particle systems of bosons or fermions. Let H(N) be the Hilbert space.
It is obtained by symmetrized or anti-symmetrized of the N -fold tensor products of one-
particle system H(1):

H(N) = S±[(H(1))⊗N ]. (2.33)

Here S+ denotes symmetrization for bosons and S− does anti-symmetrization for
fermions as

S±[|ψ1〉 · · · |ψN 〉] = 1√
N !

∑
σ∈SN

(±)σ
∣∣∣ψσ(1)

〉
· · ·
∣∣∣ψσ(N)

〉
(2.34)

where SN is the symmetric group, and (±)σ is a sign function of permutations as (+)σ = 1
and (−)σ = sgn σ. We also introduce the projection operator P± as

P± |ψ1〉 · · · |ψN 〉 = 1
N !

∑
σ∈SN

(±)σ
∣∣∣ψσ(1)

〉
· · ·
∣∣∣ψσ(N)

〉
. (2.35)

It is easy to check that (P±)2 = P± and P± is the identity operator on H(N). Arbitrary
normalized states |ψ〉 in H(N) can be written as

|ψ〉 =
∫
dNxψ(x1, · · · , xN ) |x1, · · · , xN 〉 (2.36)

with the conditions

ψ(xσ(1), · · · , xσ(N)) = (±)σψ(x1, · · · , xN ), (2.37)∫
dNx|ψ(x1, · · · , xN )|2 = 1. (2.38)

– 8 –
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We will sometimes use the following notation: ψ(~x) = ψ(x1, · · · , xN ), ψ(~xσ) =
ψ(xσ(1), · · · , xσ(N)), and also |~x〉 = |x1, · · · , xN 〉, |~xσ〉 =

∣∣∣xσ(1), · · · , xσ(N)
〉
.

We introduce the projection operators onto states where k particles are in the region
A and the others in the complement Ā as

Πk(A) :=
(
N

k

)
P±

(
Π⊗kA ⊗Π⊗(N−k)

Ā

)
P±, (2.39)

where ΠA,ΠĀ are defined in (2.17). We have Π2
k = Πk and ΠkΠk′ = 0 for k 6= k′. We can

also show that

N∑
k=0

Πk(A) = P± (2.40)

by noticing P± = P±(ΠA ⊕ΠĀ)⊗NP± because (ΠA ⊕ΠĀ)⊗N is the identity on (H(1))⊗N .
The projection operators {Π0(A), · · · ,ΠN (A)} decompose the total Hilbert space H(N) into
N + 1 sectors as

H(N) =
N⊕
k=0
Hk, (2.41)

where Hk := Πk(A)H(N).
We now define the subalgebra A(A) associated with the region A. First, general

operators O in L(H(N)) can be written as

O =
∫
dNxdNx′O(~x, ~x′)

∣∣∣~x〉〈~x′∣∣∣ (2.42)

with (anti-)symmetrization O(~xσ, ~x′σ′) = (±)σσ′O(~x, ~x′). The projected operators
Πk(A)OΠk(A), which can be regarded as operators in L(Hk), are computed as

Πk(A)OΠk(A) =
(
N

k

)2

P±
∫
A
dkydky′

∫
Ā
dN−kzdN−kz′O(~y, ~z, ~y′, ~z′)

∣∣∣~y, ~z〉〈~y′, ~z′∣∣∣P±, (2.43)
where ~y, ~y′ represent the k components of ~x, ~x′ restricted in A as ~y = (x1, · · · , xk), and ~z, ~z′
represent the (N − k) components of ~x, ~x′ in Ā as ~z = (xk+1, · · · , xN ). In general, these
operators mix particles in region A and Ā. We then define the subalgebra Ak(A) ⊂ L(Hk)
as operators nontrivially acting only on particles in region A;

Ak(A) := Span
{
P±

∫
Ā
dN−kz

∣∣∣~y, ~z〉〈~y′, ~z∣∣∣P± ∣∣∣ ~y, ~y′ ∈ A}. (2.44)

The subalgebra A(A) ⊂ L(H(N)) is defined as the direct sum of Ak(A);

A(A) :=
N⊕
k=0
Ak(A). (2.45)

– 9 –
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We can schematically write A(A) as the set of operators taking the forms

A(A) =
N⋃
k=0

{
P±

∫
A
dkydky′

∫
Ā
dN−kz Õk,A(~y, ~y′)

∣∣∣~y, ~z〉〈~y′, ~z∣∣∣P±} . (2.46)

Note that Πk(A) are included in A(A) by taking Ok(~y, ~y′) =
(N
k

)
δ(~y − ~y′), and thus the

identity P± is too.
For the projected operators Ok ≡ Πk(A)OΠk(A) ∈ L(Hk) taking the form (2.43), we

define the partial trace trĀ as

trĀOk :=
(
N

k

)∫
A
dkydky′

∫
Ā
dN−kz O(~y, ~z, ~y′, ~z)

∣∣∣~y〉〈~y′∣∣∣ , (2.47)

while we also define

trA[trĀOk] :=
∫
A
dky 〈~y|trĀOk|~y〉 . (2.48)

The binomial factor
(N
k

)
in (2.47) represents the ways to choose (N−k) particles restricted

in Ā from N particles and is needed so that the matrix elements are given by

〈
~y
∣∣∣trĀOk∣∣∣~y′〉 =

∫
Ā
dN−kz

〈
~y, ~z

∣∣∣Ok∣∣∣~y′, ~z〉
(

=
(
N

k

)∫
Ā
dN−kz O(~y, ~z, ~y′, ~z)

)
(2.49)

for the expression (2.43). The definition ensures trOk = trA[trĀOk].
For a given total density matrix ρ, the probability distribution {pk} is obtained by

pk = tr[Πk(A)ρΠk(A)]. (2.50)

For pure states, pk are given by

pk =
(
N

k

)∫
A
dky

∫
Ā
dN−kz |ψ(~y, ~z)|2. (2.51)

pk is the probability that k particles are in the region A for the wave function ψ(~x).
The restricted density matrix on each sector Hk (see the general definition (2.6)) is

given by

ρk = 1
pk

Πk(A)ρΠk(A). (2.52)

The reduced density matrix on A is defined by

ρk,A = trĀ ρk. (2.53)

More explicitly, for the total density matrix ρ written in the position basis as

ρ =
∫
dNxdNx′ρ(~x, ~x′)

∣∣∣~x〉〈~x′∣∣∣ (2.54)
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with ρ(~xσ, ~x′σ′) = (±)σσ′ρ(~x, ~x′), we have

ρk,A =
(N
k

)
pk

∫
A
dkydky′

∫
Ā
dN−kz ρ(~y, ~z, ~y′, ~z)

∣∣∣~y〉〈~y′∣∣∣ . (2.55)

The reduced density matrix associated with the subalgebra A(A) is given by8

ρA(A) :=
N⊕
k=0

pk

(N
k

)
tr Πk(A)Πk(A) [ρk,A ⊗ trA Πk(A)] Πk(A). (2.56)

One can confirm the desired property tr(Oρ) = tr
(
OρA(A)

)
for any operator O ∈ A(A).

The reduced density matrix on region A is

ρA =
N⊕
k=0

pkρk,A. (2.57)

The entanglement entropy is given by

S(ρ;A) = Scl(ρ;A) + Sq(ρ;A) (2.58)

with

Scl(ρ;A) = −
N∑
k=0

pk log pk, (2.59)

Sq(ρ;A) = −
N∑
k=0

pk trA ρk,A log ρk,A. (2.60)

Note that ρ0,A = 1. The decomposition (2.58) is the same as that done in [42] based on
the particle number conservation. The classical part Scl is the entropy for the fluctuation
of the particle numbers in the subsystem A, and the quantum part Sq is the configura-
tional entanglement entropy which is the weighed sum of the entanglement entropy for
each particle-number sector [42]. Eq. (2.58) is also regarded as the symmetry resolved
entanglement entropy [40, 41] where the conserved charge is now the particle number.

We can also consider the Rényi entropy as

S(n)(ρ;A) =
log

(∑N
k=0 p

n
k trA ρnk,A

)
1− n . (2.61)

For a single-particle system, we have seen that the entanglement entropy and the Rényi
entropy are just those for the classical probability distribution {pk} if the state is pure.
This is not the case for multi-particle systems. We generally have quantum contributions
even if the state is pure. The above Rényi entropy is also the same as the symmetry
resolved Rényi entropy [40, 41] with the conserved charge is the particle number.

8This is a formal expression because tr Πk(A) is not finite. This is not problematic when we compute
the expectation value tr

(
OρA(A)

)
for O ∈ A(A).
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3 Entanglement for the Slater determinants

We have presented the general definitions of the reduced density matrix and the (Rényi)
entanglement entropy for indistinguishable particles in the previous section. We now ex-
plicitly compute them for fermionic particles with the Slater determinant wave functions.
Although the Slater determinant wave functions are typical eigenfunctions for Hamiltoni-
ans without multi-body interactions, we here do not assume anything about Hamiltonians
and just develop the formula of the (Rényi) entanglement entropy for the given Slater de-
terminant wave functions. It will turn out that the entanglement entropy is given just by
a sum of classical Shannon entropy as

S =
N∑
i=1

H(λi). (3.1)

Here λi (i = 1, · · · , N) are real numbers in the range 0 ≤ λi ≤ 1, which are determined
from the given Slater determinant, and H(λ) is the Shannon entropy of the probability
distribution {λ, 1− λ} (the Bernoulli distribution), i.e.,

H(λ) := −λ log λ− (1− λ) log(1− λ). (3.2)

More generally, we will show that the Rényi entropy is given by a sum of that for the N
independent Bernoulli distributions as

S(n) =
N∑
i=1

H(n)(λi), (3.3)

where H(n)(λ) is the classical Rényi entropy of the Bernoulli distribution defined as

H(n)(λ) := log[λn + (1− λ)n]
1− n . (3.4)

In other words, the (Rényi) entanglement entropy is effectively the same as that for N
distinguishable particles.

In fact, these formulae are already obtained following the usual definition of the base
space entanglement entropy in the second quantized picture [34, 43]. It means that the
target space entanglement entropy defined in the previous section agrees with the usual
base space entanglement entropy in the second quantized picture. We will see this fact
explicitly in subsection 3.2.

3.1 General formulae of entanglement entropy and the Rényi entropy

We consider the following Slater determinant wave function for N fermions:

〈~x|ψ〉 = ψ(~x) = 1√
N !

det(χi(xj)) = 1√
N !

∑
σ∈SN

(−)σχ1(xσ(1)) · · ·χN (xσ(N)), (3.5)

where χi(x) are the one-body wave functions normalized as∫
M
dxχi(x)χ∗j (x) = δij . (3.6)
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It is convenient to introduce the following N ×N overlap matrices:

Xij(A) :=
∫
A
dxχi(x)χ∗j (x), (3.7)

X̄ij(A) := Xij(Ā) =
∫
Ā
dxχi(x)χ∗j (x) = δij −Xij(A). (3.8)

Matrix X(A) is generally not diagonal for subregion A because χi(x) are orthonormalized
only over the entire region M as (3.6). We can diagonalize it by taking an appropriate
basis. Because Xij is an Hermitian matrix, it is diagonalized by a unitary matrix U as
Xij = (U−1ΛU)ij where Λ is a diagonal matrix whose diagonal components are denoted by
λi. We represent the one-body wave functions in the new basis by χ̃i(x) which are related
to the original wave functions as χ̃i(x) = Uijχj(x). In terms of the new wave functions,
N -body wave function ψ(~x) is given by

ψ(~x) = 1√
N ! detU

det(χ̃i(xj)). (3.9)

Note that the eigenvalues λi are probabilities that we find a particle in region A for the
one-body wave functions χ̃i;

λi =
∫
A
dx |χ̃i(x)|2, (3.10)

and λi are in the range 0 ≤ λi ≤ 1.
Since the state is specified, we can compute the probability distribution {pk} given

by (2.51) as

pk =
(N
k

)
N !

∑
σ,σ′∈SN

(−)σσ′
k∏
i=1

[∫
A
dyiχ̃σ(i)(yi)χ̃∗σ′(i)(yi)

]N−k∏
j=1

[∫
Ā
dzjχ̃σ(j+k)(zj)χ̃∗σ′(j+k)(zj)

]
=
∑
I∈Fk

∏
i∈I

λi
∏
j∈Ī

(1− λj) , (3.11)

where Fk is the set of all subsets of k different integers selected from {1, 2, · · · , N}. For
example, if N = 3, k = 2, we have F2 =

{
{1, 2}, {2, 3}, {1, 3}

}
. For a subset I ∈ Fk, Ī

represents the complement: Ī = {1, 2, · · · , N} \ I. Let us introduce the following notation

λI :=
∏
i∈I

λi , λ̄I :=
∏
j∈Ī

(1− λj) . (3.12)

For example, if N = 4 and I = {1, 2}, we have λI = λ1λ2 and λ̄I = (1 − λ3)(1 − λ4). In
this notation, pk are simply written as

pk =
∑
I∈Fk

λI λ̄I . (3.13)

The probability distribution {pk}Nk=0 is the Poisson binomial distribution with success
probabilities λ1, · · · , λN . That is, pk is the probability that we find k particles in region
A when each particle is found in region A with probability λi. The classical part of the
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entanglement entropy (2.59) is the Shannon entropy of this distribution. It is known that,9

if we fix N and the mean success probability 1
N

∑
i λi ≡ λ, the Shannon entropy is bounded

from above [45, 46] by that of the binomial distribution B(N,λ), which is the special case of
the Poisson binomial distribution with λ1 = · · · = λN = λ. We thus have the upper bound

Scl(λ1, · · · , λN ) ≤ Scl[B(N,λ)]. (3.14)

The large N behavior of the Shannon entropy of the binomial distribution B(N,λ) is
known as

Scl[B(N,λ)] = 1
2 log[2πNλ(1− λ)] + 1

2 +O(1/N). (3.15)

In fact, by the central limit theorem (or the de Moivre-Laplace theorem), distribution
B(N,λ) at large N is approximated well by the normal distribution as

pk ' ρ(k) := 1√
2πNλ(1− λ)

e
− (k−Nλ)2

2nλ(1−λ) . (3.16)

The Shannon entropy (or the differential entropy10) of this normal distribution reproduces
the large N behavior (3.15) as

−
∫ ∞
−∞
dk ρ(k) log ρ(k) = 1

2 log[2πNλ(1− λ)] + 1
2 . (3.17)

Therefore, at large N , the classical part of the entanglement entropy is bounded as11

Scl(ρ;A) . O(logN). (3.18)

On the other hand, we will see that the quantum part (2.60) can take a much larger value
as Sq(ρ;A) . O(N) in general.

In order to obtain the quantum part Sq(ρ;A) given by (2.60), we compute the reduced
density matrices ρk,A for k = 0, · · · , N . The matrix elements in the position basis are
given by

〈
~y
∣∣∣ρk,A∣∣∣~y′〉 =

(N
k

)
pk

∫
Ā
dN−kz ψ(~y, ~z)ψ∗(~y′, ~z), ~y, ~y′ ∈ A. (3.19)

Recall that we introduced, around (3.11), the set Fk, which is the set of all the possible
sets of k integers. We now introduce k-body wave functions associated with the subset
I = {i1, · · · , ik} in Fk as

ψI(~y) = 1√
λI

∑
σ∈Sk

(−1)σ√
k!

χ̃iσ(1)(y1) · · · χ̃iσ(k)(yk). (3.20)

9The Shannon entropy of the Poisson binomial distribution is a concave function of success probabilities
λ1, · · · , λN [44].

10The differential entropy in information theory is the continuous extension of the Shannon entropy to
continuous distributions. Do not confuse it with the differential entropy in holography [13, 14].

11A similar result is obtained in [33]. In fact, if we fix the mean and also the variance and suppose that
the support of the distribution can be approximated well by the continuous region (−∞,∞), the upper
bound is given by the entropy of the normal distribution which agrees with the large N behavior.
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The wave functions are orthonormalized as∫
A
dky ψI(y)ψ∗J(y) = δI,J for I, J ∈ Fk , (3.21)

since χ̃i satisfy
∫
A dy χ̃i(y)χ̃∗j (y) = λiδi,j . Using these k-body wave functions, we can find

that the matrix elements (3.19) are written as〈
~y
∣∣∣ρk,A∣∣∣~y′〉 = 1

pk

∑
I∈Fk

λI λ̄IψI(~y)ψ∗I (~y′). (3.22)

We also have 〈
~y
∣∣∣ρnk,A∣∣∣~y′〉 = 1

pnk

∑
I∈Fk

(λI λ̄I)n ψI(~y)ψ∗I (~y′). (3.23)

These expressions mean that the quantum part of the entanglement entropy Sq(ρ,A)
is computed as

Sq(ρ;A) = −
N∑
k=0

pk
∑
I∈Fk

λI λ̄I
pk

log λI λ̄I
pk

=
N∑
k=0

pk log pk −
N∑
k=0

∑
I∈Fk

λI λ̄I log
(
λI λ̄I

)
. (3.24)

The first term is the minus of the classical part Scl = −
∑N
k=0 pk log pk. The total entan-

glement entropy is thus given by

S(ρ;A) = Scl + Sq = −
N∑
k=0

∑
I∈Fk

λI λ̄I log
(
λI λ̄I

)
. (3.25)

Furthermore, we have the identity, which can be easily shown by induction,

−
N∑
k=0

∑
I∈Fk

λI λ̄I log
(
λI λ̄I

)
=

N∑
i=1

H(λi), with H(λ) := −λ log λ− (1− λ) log(1− λ).

(3.26)

Therefore, we obtain the formula

S(ρ;A) =
N∑
i=1

H(λi). (3.27)

The Rényi entropy is also computed as

S(n)(ρ;A) =
log

(∑N
k=0 p

n
k trA ρnk,A

)
1− n =

log
(∑N

k=0
∑
I∈Fk(λI λ̄I)n

)
1− n , (3.28)

because we have

trA ρnk,A =
∑
I∈Fk

(
λI λ̄I
pk

)n
. (3.29)
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Similarly to (3.26), the following identity holds

N∑
k=0

∑
I∈Fk

(λI λ̄I)n =
N∏
i=1

[λni + (1− λi)n]. (3.30)

Therefore, we obtain the formula for the Rényi entropy,

S(n)(ρ;A) =
N∑
i=1

H(n)(λi), (3.31)

where

H(n)(λ) := log[λn + (1− λ)n]
1− n . (3.32)

It is clear that the entanglement entropy (3.27) is obtained in the limit n→ 1 in (3.31).
Recall that λi is the probability that we find a particle in region A for the one-body

wave function χ̃i(x), and then the (Rényi) entanglement entropy for this single-particle
system is given by the Shannon entropy H(n)(λi) as we have seen in section 2.1. Thus,
the formulae (3.27) and (3.31) indicate that the (Rényi) entropy is effectively the same
as the sum of the entropies of N distinguishable particles. More explicitly, the (Rényi)
entanglement entropy is the same as that of the following density matrix:

ρeff =
N⊗
i=1

ρ(i), ρ(i) :=
(
λi 0
0 1− λi

)
. (3.33)

This structure is explicit in the second-quantized picture (see appendix A).
We can obtain the upper bound of the (Rényi) entropy from the formulae (3.27)

and (3.31). Since the Rényi entropy function H(n)(λ) takes the maximum value log 2
at λ = 1/2, the Rényi entropy is bounded independently of n as

S(n)(ρ;A) ≤ N log 2. (3.34)

This means that the quantum part of the entanglement entropy can be O(N) unlike the
classical part which is bounded as Scl . O(logN) as shown in (3.17).

The bound (3.34) means that the (Rényi) entropy is always finite if N is finite un-
like QFTs where the entanglement entropy is generally UV divergent. The bound is also
independent of the dimension of the target space M where particles live. This finiteness
is similar to a N qubit system. However, it should be remarked that the dimension of
the Hilbert space of the N particle system is infinite because particles live in a continuum
space, while the dimension of the N qubit system is a finite value 2N .

The maximum value N log 2 in the bound (3.34) can be interpreted as follows; this
maximum value is realized when all λi are equal to 1/2. It means that all the possible 2N

configurations where N particles are assigned to either A or Ā have the equal probability
1/2N . The entropy is S = N log 2.

We should also comment that the upper bound is too generic like the volume law of
entropy in QFTs. It is known for QFTs that the volume law of entropy is satisfied by generic
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states but not by physically interesting states like the ground states of local Hamiltonians
(or spin systems with local interactions). They follow the area law. This is also the case
for quantum mechanics. We will see that the entanglement entropy for the ground state of
free fermions in a finite one-dimensional region behaves as S ∼ O(logN), not O(N). This
is a counterpart of the area law in quantum mechanics of particles.

3.2 Consistency with the second-quantized picture

The formula of entanglement entropy (3.27) can be written in terms of the N ×N overlap
matrix X, defined in (3.7), as

S(ρ;A) = − tr[X logX + (1N −X) log(1N −X)]. (3.35)

It resembles the formula (see [47–49]) of free fermions on lattice (or for continuum field
theories) given by

S(ρ;A) = − trA[G logG+ (1L −G) log(1L −G)]. (3.36)

Here we consider the entanglement entropy for the subsystem A containing L lattice sites,
and G is the correlation matrix restricted on A as

Gab := tr
(
c†acb ρ

)
= trA(c†acb ρA), a, b ∈ A, (3.37)

where c†a, ca are the creation and annihilation operators of fermions at site a. G and 1L
are L × L matrices. Their size is infinite if we consider the continuum space L → ∞ as
in the present paper, while the size of the overlap matrix X is finite. Thus, for general
cases, the formulae (3.35) and (3.36) are different. Nevertheless, they give the same result,
if the number of particles is fixed to N and the state is given by the Slater determinant.
We will show that (3.36) indeed reduces to (3.35). Indeed, the formula (3.35) is already
obtained in this way in [34, 43] although in these references the algebraic approach and
the target space entanglement are not mentioned.12 Other detailed computations on the
second quantization are presented in appendix A.

In the second-quantized picture, N -body pure states can generally be written as

|ψ〉 = 1√
N !

∫
dNxψ(x1, · · · , xN )c†(x1) · · · c†(xN ) |0〉 (3.38)

by acting fermionic ladder operators satisfying

{c(x), c†(y)} = δ(x− y) (3.39)

on the Fock vacuum |0〉. We introduce the two-point correlation function

G(x; y) := 〈ψ| c†(x)c(y) |ψ〉 , (3.40)

which is computed as

G(x; y) = N

∫
dN−1wψ∗(x,w1, · · · , wN−1)ψ(y, w1, · · · , wN−1). (3.41)

12The equivalence of the first and second quantization is also shown in [11, 15].

– 17 –



J
H
E
P
0
8
(
2
0
2
1
)
0
4
6

If the wave function ψ is given by the Slater determinant as (3.5), G is further simpli-
fied as

G(x; y) =
N∑
i=1

χ∗i (x)χi(y). (3.42)

We are also able to compute multi-point functions using Wick’s theorem. The proof of
Wick’s theorem is given in appendix A. This Wick’s theorem ensures the formula (3.36).

Note that, in our continuum space case, the label of sites a, b in (3.37) correspond to
coordinates y1, y2 ∈ A, and the identity matrix 1L is now the delta function δ(y1, y2). In
this matrix notation, the matrix product of G restricted on A is given by

G2(y1; y2) :=
∫
A
dy G(y1; y)G(y; y2) =

N∑
i,j=1

χ∗i (y1)Xijχj(y2), (3.43)

which means trAGk = trXk. Using this fact, we can show that the r.h.s. of (3.36) becomes

S(ρ;A) = − tr[X logX + (1N −X) log(1N −X)]. (3.44)

It is hard to numerically compute the r.h.s. of (3.36) when the number of lattice sites
L is large because we have to treat L× L correlation matrix G. The equivalence of (3.35)
and (3.36) means that we do not have to compute the correlation matrix if we know the
form of the Slater determinant. The direct use of the formula (3.35) is more efficient
for N � L, in particular, when we consider finite particles on a continuum space like
one-matrix quantum mechanics with a finite rank.

4 Entanglement for the ground state of N free fermions in one-
dimensional space

We will explicitly compute the (Rényi) entanglement entropy for the ground state of N
non-interacting fermions in one-dimensional space without a potential. We consider a finite
region to make the spectrum discrete. In this section, we take a circle (−L/2 ≤ x ≤ L/2)
with length L as the entire space. In appendix B, we also consider a finite interval with
the Dirichlet boundary condition. The result for large N is similar to the periodic case if
the subregion does not touch the boundary of the interval. We can think that the result
obtained here is independent of the boundary condition. Thus, we can regard the result as
that for the matrix quantum mechanics.

Energy eigenfunctions of a single particle on the circle are given by

χi(x) = 1√
L
e

2πi
L
nix, (4.1)

where ni are integers as

n1 = 0, n2 = −1, n3 = 1, n4 = −2, n5 = 2, · · · , (4.2)

which can be written using the floor function as ni = (−1)i+1
⌊
i
2

⌋
.
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To avoid the degeneracy, we suppose that the total particle number N is odd. Then,
the ground state of the N -body system is unique. The wave function is given by the Slater
determinant

ψ(~x) = 1√
N !

∑
σ∈SN

(−)σχ1(xσ(1)) · · ·χN (xσ(N)). (4.3)

4.1 Single interval

We first consider the case where subregion A is an interval; A = (aL, bL) (−1/2 ≤ a <

b ≤ 1/2). This is considered in [34] (based on the second-quantized picture), and the
large N result is analytically obtained. In fact, the problem to find the eigenvalues of the
overlap matrix X(A) defined in (3.7) for a single interval is exactly the same as finding
the eigenvalues of the correlation matrix for an N -spin subsystem of the XX spin chain
model. The single-interval entanglement entropy of the spin chain is analytically computed
for large N in [36, 37].

The overlap matrix X(A) is a function of a, b:

Xij(a, b) =
∫ bL

aL
dxχi(x)χ∗j (x) = e2πi(ni−nj)b − e2πi(ni−nj)a

2πi(ni − nj)
. (4.4)

Note that X(a, b) does not depend on the length of the circle L. In addition, the eigenvalues
of X(a, b) are invariant under translation a→ a+ c, b→ b+ c, because we have

X(a+ c, b+ c) = U(c)X(a, b)U †(c), (4.5)

where U(c) is a diagonal unitary matrix with the components Uij(c) = e2πinicδij . Thus,
the (Rényi) entanglement entropy for a single interval is translation invariant and depends
only on (b− a).

Illustration. For an illustration, let us begin with N = 3 and consider the case where
the subregion A is a half region of the circle, A = (−L/2, 0).

The wave functions χ̃i(x) diagonalizing the overlap matrixX are explicitly computed as

χ̃1(x) = 1√
2

[χ2(x) + χ3(x)] =
√

2√
L

cos
(2πx
L

)
, (4.6)

χ̃2(x) = 1√
2
χ1(x) + i

2[−χ2(x) + χ3(x)] = 1√
2L
− 1√

L
sin
(2πx
L

)
, (4.7)

χ̃3(x) = 1√
2
χ1(x)− i

2[−χ2(x) + χ3(x)] = 1√
2L

+ 1√
L

sin
(2πx
L

)
. (4.8)

They are orthogonal to each other on the half space as∫ 0

−L2
dx χ̃i(x)χ̃∗j (x) = λiδij (4.9)

with λ1 = 1
2 , λ2 = 1

2 +
√

2
π ∼ 0.95, λ3 = 1

2 −
√

2
π ∼ 0.05. χ̃1(x) is an even function and thus

the probability that we find a particle in region A is λ1 = 1
2 . χ̃2(x) and χ̃3(x) are almost

localized in region A and Ā, respectively.
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Figure 1. Entanglement entropy for the half region. The red dots are the entanglement entropy
S(N) for N = 1, 3, · · · , 101. The blue curve represents the large N result (4.14) with r = 1/2.

Since we have obtained the probabilities λi, the Rényi entropy is computed as

S(n)(N = 3) =
3∑
i=1

H(n)(λi) = log 2 + 2
1− n log

[(
1
2 +
√

2
π

)n
+
(

1
2 −
√

2
π

)n]
. (4.10)

In particular, the entanglement entropy is S(N = 3) ∼ 1.09.

Large N results. We can numerically compute the entanglement entropy for arbitrary
N by finding the eigenvalues λi of N ×N overlap matrix X. The results for the half region
with N = 1, 3, · · · , 101 are shown in figure 1.

We can also analytically obtain the asymptotic large N results for any single inter-
val [36, 37]. Because of the translational invariance, we can move the center of the interval
to the origin. Hence we consider the interval I1 = (−rL/2, rL/2) with arbitrary r. Then,
by permuting the indices appropriately (see (C.5)), we can find that the matrix (4.4) can
be written as

Xjk(I1) = sin[π(j − k)r]
π(j − k) . (4.11)

This is a Toeplitz matrix. This Toeplitz matrix also appears in the correlation matrix (3.37)
for the tight binding model (which is equivalent to the XX spin chain model13) [36, 50],
and the asymptotic large N behavior of the determinant of the Toeplitz matrix can be
obtained [36, 37] if we use the Fisher-Hartwig conjecture [51, 52]. The detailed computa-
tions are given in [36, 37]. We also give computations for the case of two intervals using
the Fisher-Hartwig conjecture in appendix C. Here we just write the result of the (Rényi)
entanglement entropy for the interval I1 = (−rL/2, rL/2);

S(n)(I1) ∼ 1
6

(
1 + 1

n

)
log[2N sin(πr)] + Υn, (4.12)

13The parameter r in (4.11) is related to the Fermi energy in the tight binding model and to the magnetic
field in the XX model.
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where we only kept the leading part O(logN) and the subleading part O(N0). The last
term Υn denotes a real number defined by the following integral:

Υn := n

i(1− n)

∫ ∞
−∞

dw[tanh(πnw)− tanh(πw)] log
Γ
(

1
2 + iw

)
Γ
(

1
2 − iw

) . (4.13)

In particular, the entanglement entropy is

S(I1) ∼ 1
3 log[2N sin(πr)] + Υ1 (4.14)

with

Υ1 = i

∫ ∞
−∞

dw
πw

cosh2(πw)
log

Γ
(

1
2 + iw

)
Γ
(

1
2 − iw

) ∼ 0.495018. (4.15)

This asymptotic result fits well with the numerical results as shown in figure 1. For
example, if the subspace is a half region, a function of the form S = c

3 log(2N) + d gives
us a good fit14 even for small N .

The logarithmic behavior in N shows that the entanglement entropy for the ground
state is very small compared to the maximum value N log 2. This is similar to the area law
of entanglement entropy in local QFTs. Indeed, as we mentioned above, the result (4.14) is
the same as that in the XX model which is described in the continuum limit by a conformal
field theory (c = 1 free fermions). The CFT predicts that the entanglement entropy for an
interval with length rL in the circle with length L is given by (see, e.g., [53])

S(I1) = 1
3 log

[
L

δ
sin(πr)

]
+ c′ (4.16)

where δ is a UV regulator and c′ is a non-universal constant depending on the UV regu-
larization. Hence, we can interpret N as a UV cutoff like N ∝ δ−1.

Bosons. Let us also comment on the result for bosons. The ground state wave function
of N bosons is given by a constant function,

ψboson
0 (~x) = 1

L
N
2
. (4.17)

The probabilities pk for subregion A with the total length rL are15

pk =
(
N

k

)
rk (1− r)N−k . (4.18)

Thus, the classical part of the entanglement entropy is given by the Shannon entropy for
the binomial distribution B(N, `/L). The reduced density matrix ρk,A for each sector is

14The fit using the data for N = 1, · · · , 101 indicates c = 1.0082 and d = 0.4824. The fit using a large N
region, N = 61, · · · , 101, indicates c = 1.0000 and d = 0.4950.

15Here A is not restricted to a single interval. It can be any union of multiple intervals.
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pure, and then the quantum part of the entanglement entropy vanishes Sq = 0. The total
entanglement entropy is

S(ρ;A) = Scl[B(N, r)]. (4.19)

The large N behavior is

S(ρ;A) = 1
2 log [2πNr (1− r)] + 1

2 +O(1/N). (4.20)

The boson system also has a logarithmic behavior of N but the coefficient is different from
that of fermions.

4.2 Two intervals and mutual information

We next consider two intervals I1 = (a1L, b1L), I2 = (a2L, b2L) which are not overlapped.
The matrix X in (3.7) satisfies

Xij(I1 ∪ I2) = Xij(I1) +Xij(I2). (4.21)

In general, two matrices X(I1) and X(I2) cannot be diagonalized simultaneously. Hence
the mutual information

I(I1; I2) := S(I1) + S(I2)− S(I1 ∪ I2) (4.22)

and more generally the Rényi mutual information

I(n)(I1; I2) := S(n)(I1) + S(n)(I2)− S(n)(I1 ∪ I2) (4.23)

can be nonzero. We consider the case that the two intervals have the same length rL, and
take the parameters as (a1, b1) = (−d/2−r/2,−d/2+r/2), (a2, b2) = (d/2−r/2, d/2+r/2).
Note that the distance between the centers of the intervals is min(dL, (1 − d)L). The
condition that I1 and I2 do not share a region is r ≤ d ≤ 1− r.

The Rényi entropy for the two intervals, S(n)(I1∪ I2), can be computed in the large N
limit using the Fisher-Hartwig conjecture like the single interval case. The computations
are given in the appendix C. The result up to the subleading order O(N0) is as follows:

S(n)(I1 ∪ I2) ∼ 1
6

(
1 + 1

n

)[
2 log[2N sin(πr)] + log sin[π(d+ r)] sin[π(d− r)]

sin2(πd)

]
+ 2Υn,

(4.24)

where Υn is a constant defined by (4.13).
Thus, the (Rényi) mutual information in the large N limit is

I(n)(I1; I2) ∼ 1
6

(
1 + 1

n

)
log sin2(πd)

sin[π(d+ r)] sin[π(d− r)] . (4.25)

In particular, the mutual information (n = 1) is given by

I(I1; I2) ∼ 1
3 log sin2(πd)

sin[π(d+ r)] sin[π(d− r)] . (4.26)

– 22 –



J
H
E
P
0
8
(
2
0
2
1
)
0
4
6

0.2 0.4 0.6 0.8 1.0

0.002

0.004

0.006

0.008

0.010

Figure 2. Mutual information for two intervals. We take N = 101 and set the parameter r as
r = 0.01 (length of the intervals is rL). The red dots represent the mutual information for some
values of d. The blue curve represents the large N result (4.26).

The (Rényi) mutual information is finite even in the large N limit, while the (Rényi)
entanglement entropy diverges as O(logN). This reflects the UV finiteness of the mutual
information in QFTs. Eq. (4.25) agrees with the result in [53] (see also comments on the
Calabrese-Cardy result [53] in [54, 55]).

In figure 2, we show the numerical results of the mutual information obtained by the
direct diagonalization of Xij(I1 ∪ I2), and compare them with the large N result (4.26).

5 Concluding remarks

We have investigated the target space entanglement, by the algebraic approach, for fermions
with the Slater determinant wave functions, which is the same as those of singlet sectors in
one-matrix quantum mechanics. The entanglement entropy is given by eq. (3.27), and the
Rényi entropy is (3.31). We have shown that the classical part of the entanglement entropy
scales as O(logN) but the quantum part is generally linear in N . This is the volume law
of entropy for general states. However, the entropy for the ground state follows the area
law such that it behaves as O(logN). We have confirmed the area law for free fermions
without potentials on a periodic circle. The computation of the entanglement entropy for
the single interval is exactly the same as that in the XX spin chain. The leading term of
the entropy is given by S ∼ 1

3 logN at large N . Unlike QFTs, the entropy is finite (if N is
finite), and N plays a role of UV cutoff.

We have also considered the target space Rényi entropy and the mutual information
for two intervals. The large N expression is obtained as (4.24) and (4.25). It will be
interesting to consider the subleading corrections in the large N expansion (the corrections
for the single interval case is considered in [37]).

We have not considered the one-matrix model dual to a two-dimensional string theory
although the formulae (3.27), (3.31) can be applied in this case. In order to consider this
model, we have to add a potential and find the wave functions. This procedure is done
in [31, 32] at the leading order in the large N limit based on the second-quantized picture.
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Since the formula (3.27) is suited for finite N , it may be interesting to numerically compute
the entanglement entropy for finite N and compare the results with the large N ones.

Extensions to multi-matrix models are important future directions. The algebraic
approach could be more useful in the directions. However, since the multi matrices in
general cannot be diagonalized simultaneously, there are difficulties to define the subalgebra
corresponding to a subregion in the target space. Two gauge invariant definitions of the
subalgebra are proposed in [25] with the discussions on the ambiguities. One of them
is argued to be preferable in [26]. Anyway, we have not understood well the target space
entanglement of the BFSS model and other multi-matrix models, e.g., the BMN model [56],
so far. Many things remain to be explored.
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A Second quantization, Wick’s theorem and modular Hamiltonian

In this appendix, we present more detailed computations in the second-quantized pic-
ture. We have introduced fermionic ladder operators c(x), c†(x) in (3.39). They can be
expanded as

c(x) =
∑
i : all

χi(x)ci. (A.1)

Here, the label i in the sum runs over all modes, not restricted to i = 1, · · · , N , such that
χi(x) are complete orthogonal modes on the entire space M as∫

M
dxχi(x)χ∗j (x) = δij ,

∑
i : all

χi(x)χ∗i (y) = δ(x, y). (A.2)

Then, the second-quantized state

|ψ〉 = 1√
N !

∫
dNxψ(x1, · · · , xN )c†(x1) · · · c†(xN ) |0〉 (A.3)

with the Slater determinant wave function

ψ(x1, · · · , xN ) = 1√
N !

∑
σ∈SN

(−)σχ1(xσ(1)) · · ·χN (xσ(N)) (A.4)

can be written as

|ψ〉 = c†1 · · · c
†
N |0〉 . (A.5)

Using this representation, we can easily confirm Wick’s theorem. The two-point func-
tion can be computed as

G(x; y) := 〈ψ| c†(x)c(y) |ψ〉 =
∑
i,j : all

χ∗i (x)χj(y) 〈ψ| c†icj |ψ〉 =
N∑
i=1

χ∗i (x)χi(y). (A.6)

– 24 –



J
H
E
P
0
8
(
2
0
2
1
)
0
4
6

We also have

〈ψ| c†ik · · · c
†
i1
cj1 · · · cj` |ψ〉 = δk,`

∑
σ∈Sk

(−)σδiσ(1),j1 · · · δiσ(k),jk (A.7)

where i1, · · · , ik, j1, · · · , j` are restricted to 1, · · · , N . We thus obtain Wick’s contraction
rule:

〈ψ| c†(xk) · · · c†(x1)c(y1) · · · c(y`) |ψ〉 = δk,`
∑
σ∈Sk

(−)σ
[
G(xσ(1); y1) · · ·G(xσ(k); yk)

]
. (A.8)

For example, a four-point function

G4(x1, x2;x3, x4) := 〈ψ| c†(x1)c†(x2)c(x3)c(x4) |ψ〉 (A.9)

is computed as

G4(x1, x2;x3, x4) =
∑
i

χ∗i (x1)χi(x4)
∑
j

χ∗j (x2)χj(x3)−
∑
i

χ∗i (x1)χi(x3)
∑
j

χ∗j (x2)χj(x4)

= G(x1;x4)G(x2;x3)−G(x1;x3)G(x2;x4). (A.10)

We now show that the reduced density matrix on A effectively takes a form like (3.33).
To show this, it is useful to introduce effective ladder operators in the subregion A as

ceff(x) =
∑
i : all

ψi(x)di, (x ∈ A). (A.11)

This ceff(x) is different from c(x) in (A.1), but reproduces the same correlation functions
as (A.6), (A.8) for the state |ψ〉. Here d†i , di are fermionic ladder operators satisfying
{di, d†j} = δi,j , and ψi(x) are orthonormal wave functions in region A as∫

A
dxψi(x)ψ∗j (x) = δij ,

∑
i : all

ψi(x)ψ∗i (y) = δ(x, y). (A.12)

In particular, ψi(x) with i = 1, · · · , N are given by

ψi(x) = 1√
λi
χ̃i(x), (A.13)

i.e., ψi(x) (i = 1, · · · , N) are the wave functions defined in (3.20) with I = {i}.
Using the ladder operators d†i , di, we can represent the reduced density matrix on A as

ρ2nd
A =

N∏
i=1

e−εid
†
idi

1 + e−εi
(A.14)

with

εi = log 1− λi
λi

. (A.15)
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This is the realization of (3.33). It is easy to confirm that this reduced density matrix
reproduces the (Rényi) entanglement entropy (3.27) and (3.31). The form (A.14) means
that the modular Hamiltonian is quadratic

K =
N∑
i=1

εid
†
idi + (const.), (A.16)

and the entanglement spectrum is {ε1, · · · , εN}. This also explains that the effective di-
mension of the reduced Hilbert space is 2N and thus the maximum entropy is N log 2. Note
also that we have

λi = e−εi

1 + e−εi
. (A.17)

Let us now confirm that the reduced density matrix (A.14) reproduces the correct
correlation functions (A.6), (A.8) on subregion A. First, the two-point function is com-
puted as

tr
[
c†eff(x)ceff(y)ρ2nd

A

]
=
∑
i

λiψ
∗
i (x)ψi(y) =

∑
i

χ̃∗i (x)χ̃i(y) =
N∑
i=1

χ∗i (x)χi(y) = G(x; y)

(A.18)

for x, y ∈ A. Next, we have

tr
[
d†ik · · · d

†
i1
dj1 · · · dj`ρ

2nd
A

]
= δk,`

∑
σ∈Sk

(−)σδiσ(1),j1 · · · δiσ(k),jkλi1 · · ·λik , (A.19)

where i1, · · · , ik, j1, · · · , j` are restricted to 1, · · · , N . It leads to

tr
[
c†eff(xk) · · · c†eff(x1)ceff(y1) · · · ceff(y`)ρ2nd

A

]
= δk,`

∑
σ∈Sk

(−)σ
[
G(xσ(1); y1) · · ·G(xσ(k); yk)

]
= 〈ψ| c†(xk) · · · c†(x1)c(y1) · · · c(y`) |ψ〉 .

(A.20)

pk and ρk,A appeared in the first-quantized picture can also be obtained as follows. In
the Fock space with respect to the ladder operators di, d†i , k-particle states are spanned by

|I〉 :=
∏
i∈I

d†i |0〉 , I ∈ Fk. (A.21)

For example, for I = {1, 2}, we have |I〉 = d†1d
†
2 |0〉. In this basis, the reduced density

matrix is diagonal with the following components:

〈I| ρ2nd
A |J〉 =

(∏
i∈I

e−εi

1 + e−εi

)∏
j∈Ī

1
1 + e−εj

 δI,J = λI λ̄IδI,J . (A.22)

We define the identity operator 1̂k on the k-particle space as

1̂k :=
∑
I∈Fk

|I〉〈I| . (A.23)
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The probabilities pk that we find k particles in region A are given by

pk = tr
[
1̂k ρ2nd

A

]
=
∑
I∈Fk

λI λ̄I . (A.24)

ρ2nd
A can be decomposed into k-particle sectors as

ρ2nd
A =

N∑
k=0

pkρ
2nd
k,A, (A.25)

where

ρ2nd
k,A := 1

pk

∑
I∈Fk

λI λ̄I |I〉〈I| . (A.26)

We now compute the matrix elements of ρ2nd
k,A and they agree with (3.22). We define

position-basis states in the second-quantized picture as

|y1, · · · , yk〉 := 1√
k!
c†eff(y1) · · · c†eff(yk) |0〉 = 1√

k!
∑

i1,··· ,ik:all
ψ∗i1(y1) · · ·ψ∗ik(yk)d†i1 · · · d

†
ik
|0〉 .

(A.27)

When we compute matrix elements of ρ2nd
k,A, we can restrict the sum of indices ij onto

1, · · · , N as

|y1, · · · , yk〉 →
1√
k!

N∑
i1,··· ,ik=1

ψ∗i1(y1) · · ·ψ∗ik(yk)d†i1 · · · d
†
ik
|0〉 =

∑
I∈Fk

ψ∗I (~y) |I〉 , (A.28)

where ψI(~y) are the k-body wave functions defined in (3.20). Thus, the matrix elements
of ρ2nd

k,A in the position-basis are obtained as

〈
~y
∣∣∣ρ2nd
k,A

∣∣∣~y′〉 = 1
pk

∑
I∈Fk

λI λ̄IψI(~y)ψ∗I (~y′), (A.29)

which agree with (3.22).

B Interval with Dirichlet conditions

In section 4, the periodic boundary condition is imposed on particles. Instead, we consider a
finite interval −L/2 ≤ x ≤ L/2 and impose the Dirichlet boundary condition ψ(±L/2) = 0.
The eigenfunctions of a single particle are

χn(x) = 1√
2Lin−1

[
ei
nπx
L + (−1)n−1e−i

nπx
L

]
, (n = 1, 2, 3, · · · ). (B.1)

The (Rényi) entanglement entropy for a subregion A in the interval can be computed
by evaluating the eigenvalues of the overlap matrix X(A) in (3.7) for these wave functions.
We show the entanglement entropy for a single interval A = (−εL/2, εL/2) with ε = 0.01
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Figure 3. Entanglement entropy for an interval. The subregion is an interval A = (−εL/2, εL/2)
with ε = 0.01. The blue square markers are the entanglement entropy for the Dirichlet boundary
condition. The red round markers are for the periodic condition.

in figure 3. The result is similar to that for the periodic boundary condition. The results
imply that effects of the boundary conditions are negligible for small intervals, as expected.

The independence of boundary conditions holds even for the half region as shown in
figure 4. The entanglement entropy for the middle half region, A = (−L/4, L/4), with
the Dirichlet boundary condition at x = ±L/2 is almost the same at large N as that for
the half region on the circle. However, if the half region is attached to the boundary,
e.g. A = (−L/2, 0), the behavior of the entanglement entropy is different. In this case,
the degrees of freedom at the edge x = −L/2 of the subregion are frozen because of the
Dirichlet boundary condition. The entanglement entropy behaves as if the subregion has
only one entangling surface (edge). Thus, the entropy is smaller than that for the middle
subregion which has two entangling surfaces.

C Large N computations for entropy of two intervals via the Fisher-
Hartwig conjecture

In this appendix, we derive the large N result (4.24) of the (Rényi) entanglement entropy
for two intervals.

We have shown that if we know the eigenvalues λi of the overlap matrix X, we can
compute the Rényi entropy as

S(n) =
N∑
i=1

H(n)(λi) (C.1)

with H(n)(λ) = log[λn+(1−λ)n]
1−n . However, without directly diagonalizing the matrix X, we

can compute the entropy by a method developed in [36]. We first introduce the following
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Figure 4. Entanglement entropy for a half region. The blue square and green triangular markers are
the entanglement entropies for the left half subregion A = (−L/2, 0) and the middle half subregion
A = (−L/4, L/4), respectively, in the Dirichlet boundary condition. The red round markers are for
the half region in the circle (the periodic condition). The green triangular markers are almost the
same as the red round ones for large N .

matrix with a parameter z:

T (z) := z I −X. (C.2)

Then, the Rényi entropy can be expressed in terms of the determinant detT (z) =
∏N
i=1(z−

λi) as

S(n) = 1
2πi

∮
dz H(n) (z) d log detT (z)

dz
, (C.3)

where the integral contour encircles the interval [0, 1]. Thus, our task is to compute the
determinant detT (z).

If the overlap matrix X is a Toeplitz matrix such that the components Xjk depend only
on the difference (j − k), the matrix T (z) is too. The Fisher-Hartwig conjecture [51, 52]
predicts the determinant of a Toeplitz matrix at large N . For free N fermions on the circle
where each energy eigenfunctions are given by (4.1), the overlap matrix X for any numbers
of disjoint intervals can be written as a Toeplitz matrix as follows. Supposing that N is an
odd number as N = 2K + 1, the set of N energy eigenfunctions are{

ϕj(x) = 1√
L
e

2πi
L
jx
∣∣∣ j = −K, · · · ,K

}
. (C.4)

In this basis, the overlap matrix for a single interval I1 = ((−d− r)L/2, (−d+ r)L/2) is

Xjk(I1) =
∫ (−d+r)L/2

(−d−r)L/2
dxϕj(x)ϕ∗k(x) = e−πi(j−k)d

π(j − k) sin[π(j − k)r], (C.5)
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which is a Toeplitz matrix because the (j, k) elements depend only on j−k. Since the sum
of Toeplitz matrices is also a Toeplitz matrix, the overlap matrix for the union of disjoint
intervals is a Toeplitz matrix. In particular, for two intervals I1 = ((−d − r)L/2, (−d +
r)L/2) and I2 = ((d − r)L/2, (d + r)L/2), the overlap matrix is given by the following
Toeplitz matrix

Xjk(I1 ∪ I2) = 1
π(j − k) {sin[π(j − k)(d+ r)]− sin[π(j − k)(d− r)]} . (C.6)

We now see the large N behavior of detT (z) for T (z) = z − X(I1 ∪ I2). Since the
component Tjk depends only on j−k, we write it as tj−k := Tjk. Let’s consider the Fourier
transform of tn, (n = 0, · · · , N − 1);

tn =
∫ π

−π

dθ

2πe
inθt(θ). (C.7)

The function t(θ) has four discontinuities located at ±θ± with θ± = π(d± r) in the range
[−π, π] as

t(θ) =


z, θ ∈ [−π,−θ+] ∪ [θ+, π]
z − 1, θ ∈ [−θ+,−θ−] ∪ [θ−, θ+]
z, θ ∈ [−θ−, θ−]

. (C.8)

We also represent the positions of the discontinuities as θ1 = −θ+, θ2 = −θ−, θ3 = θ−, θ4 =
θ+. Then, t(θ) can also be written as

t(θ) = f0

4∏
p=1

eibp[θ−θp−π sgn(θ−θp)] (C.9)

where b1 = −b4 = β(z) +m1, b2 = −b3 = −β(z)−m2 and f0 = ze
2i
∑

j=1,2 θjbj with

β(z) = 1
2πi log z

z − 1 (C.10)

and m1,m2 are arbitrary integers.
The Fisher-Hartwig conjecture states that the large N asymptotic behavior of detT is

given by16

detT '
∑

m1,m2∈Z
fN0 N

−2b21−2b22
∏
i=1,2

[G(1 + bi)G(1− bi)]2
∏

1≤p 6=q≤4
(1− ei(θp−θq))bpbq , (C.11)

where G is the Barnes G-function defined as

G(1 + b) = (2π)b/2 exp
(
−b+ b2(1 + γ)

2

) ∞∏
k=1

{(
1 + b

k

)k
exp

(
b2

2k − b
)}

. (C.12)

We can show

Re[(β(z) +m)2] > Re[β(z)2] (C.13)
16Here we sum over the inequivalent solutions, namely, sum over m1,m2, following [37].
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for arbitrary nonzero integers m on the contours z = x ± iε (−1 < x < 1) with small but
nonzero ε > 0. Thus, m1 = m2 = 0 is the leading contribution in the sum in (C.11), and
we obtain

detT ' e2iN(θ1−θ2)β [4N2 sin(π(d+r)) sin(π(d−r))]−2β2
[ sin(πr)

sin(πd)

]−4β2

[G(1+β)G(1−β)]4.

(C.14)

Inserting this equation into (C.3), the Rényi entropy is

S(n)(I1 ∪ I2) ' Na(n)
0 + a

(n)
1 AN (d, r) + 2Υn, (C.15)

where

a
(n)
0 = N(θ1 − θ2)

π

∮
dzH(n)(z)dβ

dz
= 0, (C.16)

a
(n)
1 = − 1

πi

∮
dzH(n)(z)dβ

2

dz
, (C.17)

AN (d, r) = log[2N sin(π(d+ r))] + log[2N sin(π(d− r))] + 2 log
[ sin(πr)

sin(πd)

]
, (C.18)

Υn = 1
πi

∮
dzH(n)(z)d log[G(1 + β)G(1− β)]

dz
. (C.19)

The integrals also appear in the single interval case (see [36, 41]), and can be simplified as

a
(n)
1 = 1

π2

∮
dzH(n)(z) β(z)

z(1− z) =
∫ ∞
−∞

dw
2nw

(n− 1) [tanh(πnw)− tanh(πw)] = 1
6

(
1 + 1

n

)
,

(C.20)

Υn = n

i(1− n)

∫ ∞
−∞

dw[tanh(πnw)− tanh(πw)] log
Γ
(

1
2 + iw

)
Γ
(

1
2 − iw

) . (C.21)

Therefore, we obtain

S(n)(I1 ∪ I2) ' 1
6

(
1 + 1

n

)[
2 log[2N sin(πr)] + log sin[π(d+ r)] sin[π(d− r)]

sin2(πd)

]
+ 2Υn.

(C.22)
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