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1 Introduction

Non-leptonic decays are a challenging playground for the Standard Model (SM), partic-
ularly for non-perturbative approaches to quantum chromodynamics (QCD). A question
which is often neglected in the literature is how much new physics can hide in these decays?
In particular, given the present constraints from complementary new physics searches at
low and high energies, what is the allowed deviation from the SM predictions? To address
this question, we exploit dijet resonance searches at high-pT colliders as a complementary
probe of the hypothetical new physics entering non-leptonic decays.

We imagine a bosonic mediator X coupled to quarks which, on the one hand, modifies
the low-energy meson decays, while on the other hand, can be directly produced and (or)
decayed at the LHC by the same interactions. Several challenges are stemming from the
lack of knowledge of the underlying microscopic theory beyond the SM. Firstly, there is a
broad range of relevant masses that needs to be covered. Here we consider mX up to 5TeV
relying crucially on the latest experimental progress on dijet resonance searches by ATLAS
and CMS collaborations [1–4]. Secondly, there is a variety of possible representations and
flavor couplings of the mediator X, for which the expected signal rates in pp collisions
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differ. One of the main outcomes of our study is the reinterpretation of the existing
dijet resonance searches in a general form applicable to flavor physics. Note that, in the
narrow-width approximation, the presence of several couplings can only add up in the total
pp → X → jj rate. This is a very useful feature for flavor physics. Non-leptonic meson
decays depend on the product of two couplings when the resonance X is integrated out at
tree level. The absence of the signal in the dijet resonance searches sets limits on all Xqiqj

couplings simultaneously, thus also on their product.
In order to exemplify the importance of these results, we investigate potential new

physics (NP) effects in the branching ratio of B̄s → D
(∗)+
s π and B̄ → D(∗)+K decays. These

decays are mediated by the underlying b → cūdi quark-level transitions, where di = d, s,
rendering their SM theory predictions amongst the most reliable in the sector of non-
leptonic decays and are obtained in the framework of QCD factorisation (QCDF) [5]. Since
the quarks entering in these decays are distinguishable, topologies like penguin contribution
or weak annihilation do not contribute, rendering the description of these decays rather
clean. The most up-to-date predictions for the branching ratios have been presented in
ref. [6]. Next-to-leading power corrections, arising at order O(ΛQCD/mb), are found to
be subleading compared to the leading-power ones, strengthening the predictive power of
QCDF for these channels.

The possibility of NP effects in four-quarks operators has been already entertained,
with the focus on low-energy inclusive observables, see for example refs. [7–12]. Interest-
ingly, the aforementioned update uncovered an intriguing tension with the data, not yet
thoroughly analyzed in the NP context. A fit to all the available experimental information
concerning B̄s → D

(∗)+
s π and B̄ → D(∗)+K decays is performed, and the current combi-

nation of the experimental measurements for their branching ratios is extracted [6]. The
comparison with the respective theory predictions shows that the latter always overesti-
mate the former, with a combined discrepancy of about 4.4σ [6]. This trend has already
been observed in the literature (see for example refs. [5, 12–14]) but has become more
apparent due to the updated theory results in ref. [6].

A satisfactory explanation of this puzzle is not yet articulated. On the theory side,
the hypothesis of a big deviation due to the missing subleading contributions in QCDF
seems to be unlikely, since they overshoot the current estimates by at least one order of
magnitude. Hence, it seems motivated to entertain the possibility of this deviation being
due to NP. In this paper, we try to understand to which extend the NP solution is viable,
especially in connection with bounds from related processes, most notably dijet searches at
high-pT . The bounds that we obtain from dijet searches can be applied to a broader class
of four quark operators, beyond the ones mediating b→ cūd(s) transitions [10, 15–34].

The paper is organised as follows. In section 2 we study dijet searches at the LHC
to set generic constraints on hypothetical new resonances. In section 2.1 we discuss the
constraints on the pair production pp → XX → (jj)(jj) from gauge interactions and
subsequent decay into jets, while in section 2.2 we discuss the single dijet resonance pro-
duction pp → X → jj. In section 3 we present a complete leading-order effective field
theory (EFT) analysis of b → cūdi transitions. In section 4 we consider all simplified
tree-level mediator models able to explain the aforementioned anomaly and confront the
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Figure 1. Representative Feynman diagrams for the pair production pp → XX → (jj)(jj) (left
diagram) and the single production pp→ X → jj (right diagram) of a dijet resonanceX at the LHC.
The constraints from the existing searches are reported in section 2 for different representations and
flavor interactions.

relevant parameter space against the high-pT collider constraints. The ∆F = 2 transitions
are typically induced alongside and require a specific structure to comply with the present
bounds while giving sufficient contribution to non-leptonic decays. For two explicit models,
color-sextet scalar and colorless weak-doublet scalar, we perform a thorough study of the
flavor phenomenology to find the parameter space consistent with the stringent bounds
from ∆F = 2 and other observables, while still being capable to address the anomaly.
Nevertheless, we show that the remaining parameter space is (almost) entirely ruled out
by the dijet searches from section 2 pushing the models towards a strongly coupled regime
featuring broad resonances beyond the validity of perturbation theory. This serves as a
practical example of complementarity between low-energy flavor physics and the high-pT
searches at the LHC. Finally, many details of the calculations are left for appendices, and
we conclude in section 5.

2 Dijet searches at high-pT

In this section we reinterpret the latest ATLAS and CMS dijet searches in terms of con-
straints on a generic resonance X coupled to a pair of SM quarks of an arbitrary flavor,
decaying predominantly into jets. There are two inevitable production mechanisms of X
at high-energy hadron colliders. First, when X is charged under a nontrivial SM gauge
representation it can be pair produced via gauge interactions. Second, the dijet resonance
can be singly produced directly from quark collisions. The representative diagrams of the
two production mechanisms are shown in figure 1. The left one corresponds to QCD pair
production, in the case of a colored resonance, which is fairly large at hadron colliders
(other diagrams are not shown for simplicity), while the diagram on the right represents
the single dijet resonance production. In the most general case, when additional (sizeable)
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interactions are present, the resonance decays (promptly) to either dijet, charged leptons,
top quark, electroweak gauge bosons, or exotic charged particles. For comparable rates,
the dijet final state is hardest to detect at hadron colliders due to the overwhelming QCD
background. The constraints in this section are obtained assuming B(X → jj) = 1. While
the rescaling for different B is straightforward, if other decay channels are present it might
be worth considering the constraints from the corresponding searches since they may be
stronger than those from dijets.

The total decay width to mass ratio ΓX/mX is a crucial parameter in resonance
searches. We will focus mostly on models featuring narrow resonances in which perturba-
tive calculations are fully under control. By the optical theorem, the total decay width
is related to loop corrections to the propagator. Collider searches for narrow resonances
typically imply the following condition, ΓX/mX . 0.1, due to the limited detector resolu-
tion. In the second part of the study, where we focus on the NP explanation of b → cūdi
anomalies, the narrow width approximation is valid in a broad mass range assuming the
minimal set of couplings. Nonetheless, we will comment on how much the collider bounds
can be relaxed for a broad resonance, with an increased ΓX/mX ratio, while being cautious
about the validity of the calculation.

The resonances from new dynamics may or may not be within the kinematical reach
of the LHC. If the resonance mass mX is above the reach for on-shell production at the
LHC, its effect can be studied in the high-pT dijet tails in terms of four-quark contact
interactions. From the experimental point of view, this requires a qualitatively different
approach since it is no more possible to fit the data with a resonance-like signal over a
smooth background. Other observables, such as the angular distributions of the two jets,
are instead employed. For example, see ref. [35] for an ATLAS search and ref. [36] for and
EFT analysis in terms of flavor-universal contact interactions. We leave the analysis of the
full set of flavor-dependent four-quark contact interactions for future work, focusing here
on on-shell narrow resonances. The non-leptonic decays studied in the second part of the
paper focus on the weakly coupled ultraviolet (UV) completions for which the resonance
searches are sufficient, while contact interactions will be relevant for strongly coupled UV
completions.

2.1 Pair production of dijet resonances

Even when the couplings to quarks are small, the resonance X is pair-produced by gauge
interactions, as in the left diagram of figure 1. The pair production rate is robustly set
by the resonance mass mX and its gauge representation. We further assume X undergoes
a prompt decay to a dijet final state. The LEP-II bounds rely on QED production in
e+e− → XX̄ and apply for all electrically charged resonances. A narrow scalar resonance
exclusively decaying to jj is ruled out, unless

(LEP− II) mX±1/3 & 80 GeV , mX±1 & 95 GeV , (2.1)

see figure 9 (c) in [37]. Similar limits apply for vector resonances.
Tevatron and LHC bounds require QCD interactions to be effective and thus apply

only to colored resonances. QCD pair production of colored resonances at hadron colliders
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is overwhelming. The main challenge in these searches is to suppress the large multijet
background. Nonetheless, the most recent ATLAS and CMS searches at 13TeV with
about 36 fb−1 can robustly exclude pair-produced colored resonances decaying exclusively
to jj [38, 39]. In particular, the experimental limits on the complex scalars, for different
color and weak representations under (SU(3)c, SU(2)L), are

Scalar (3,1) (6,1) (8,1)

mX >
410GeV (ATLAS) 820GeV (ATLAS) 1050GeV (ATLAS)

520GeV (CMS) 950GeV (CMS) 1000GeV (CMS)
Scalar (3,3) (6,3) (8,2)

mX >
620GeV (ATLAS) 1200GeV (ATLAS) 1200GeV (ATLAS)

750GeV (CMS) 1200GeV (CMS) 1200GeV (CMS)

Here we report the upper edge of the exclusion mass window, while the lower edge ex-
tends down to the LEP-II exclusions. In other words, the combination of all experiments
robustly excludes a resonance X with the mass smaller from what is reported in the ta-
ble above. The limits on the color triplet and octet are directly based on the stop and
sgluon benchmarks, respectively. Note that the color octet is a complex field, which dou-
bles the sgluon cross section used in [38]. We neglect small differences in the acceptance
times efficiency for resonances of a different color (and spin), such that representations not
considered by the experimental collaborations are constrained by comparing the predicted
production cross sections with the 95% confidence level (CL) observed limits from figure
9 of ref. [38] and figure 11 of ref. [39]. This is validated comparing the exclusion limits on
stop, sgluon, and coloron from ref. [38]. For the color sextet, we calculate the cross sec-
tion using MadGraph5_aMC@NLO [40] and the UFO model from the FeynRules [41] repository
based on the implementation of [42].

The limits on the vector resonances depend on the UV completion. For example,
a vector color triplet can have an additional non-minimal coupling of the type L ⊃
−igsκX†µT aXνG

aµν . If the resonance is a massive gauge boson left after the breaking
of extended gauge symmetry, the Yang-Mills (YM) case κ = 1 applies. Another example
is the minimal coupling (MC) case κ = 0, which usually leads to conservative colliders
constraints. Reinterpreting the searches [38, 39] for these two cases, we find

Vector (3) YM MC

mX >
1150GeV (ATLAS) 700GeV (ATLAS)

1150GeV (CMS) 800GeV (CMS)

The appropriate cross sections are calculated using the UFO model from ref. [43]. As
shown in this example, the limits on vector resonances are extremely sensitive to the UV
completion. Nonetheless, the exclusions are typically stronger compared to their scalar
counterparts.

As a final comment, when a resonance has sizeable couplings to valence quarks, there is
an additional contribution to production qq̄ → XX̄ with t-channel quark exchange. Since
the overall rate is dominated by the gluon fusion, the (potential) negative interference with
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the sub-dominant qq̄ diagram has no practical impact on the limits. On the other hand,
when the coupling gets larger, the total cross section is increased, and the previously quoted
exclusions become even more stringent. (For a related study see figure 3 in ref. [44].)

2.2 Dijet resonance

The coupling of the field X to an arbitrary pair of quarks necessarily leads to a resonant
production of X in pp collisions at high enough energies, followed by a dijet decay signature
as shown in figure 1 (right). Experiments have searched for a new dijet resonance, and
set competitive constraints over a wide range of mX . We can use these null results to set
robust upper limits on the size of the X coupling to any quark pair, as a function of mX .
The idea is the following — the different flavor channels qiq′j → X add up incoherently
in the total cross section — thus an upper limit on pp → X → jj simultaneously bounds
the absolute values of all Xqiq′j couplings. We carry out a general analysis of the latest
ATLAS and CMS dijet searches [1–4] in the mass range mW ′ ∈ (450, 5000)GeV for all
possible spin-zero and spin-one mediators considering the most general flavor structure for
the couplings.

W ′ example. To set up the stage, let us consider a benchmark example. The partial
decay width for a spin-one colorless W ′ resonance with the interaction Lagrangian

L ⊃ xij ūiLγµd
j
L W

′
µ + h.c. , (2.2)

is given by
ΓW ′→uid̄j = mW ′

8π |xij |
2 . (2.3)

The leading-order cross section for the production of a narrow positively-charged resonance
W ′ in the quark fusion (uid̄j →W ′) at the LHC is determined by the partial decay width
of the inverse process,

σ(pp→W ′) = 8π2

3s0

ΓW ′→uid̄j
mW ′

∫ 1

τ
dx

1
x
fp
ui

(x) fp
d̄j

(τ/x) , (2.4)

where τ = m2
W ′/s0 with √s0 the collider energy, and fpq (x) are the parton distribution

functions evaluated at the factorisation scale µF = mW ′ . In the considered mass range the
higher-order radiative corrections of the inclusive production cross section are expected
to be of O(10%). In our numerical calculations we use MMHT14 NNLO central PDF
set [45]. Analogous expressions are for the charged-conjugate process.

Upper limits on the coupling as a function of the mass are extracted from the ATLAS
and CMS exclusions on a specific flavor-universal Z ′ benchmarks [1–4]. These analyses
hunt for a resonance in the invariant mass of the two highest-pT jets consistent with the
inclusive pp → Z ′ → jj kinematics.1 The coupling versus mass limits are adapted to our

1Instead, dedicated searches for the low-mass resonances target pp → Z′j → (jj)j process [46, 47].
These probe the parameter space untouchable by previous experiments at lower energies (see e.g. CDF [48]
and UA2 [49]). However, the presence of the additional jet complicates the reinterpretation of the bounds
for other spin and flavor cases due to the huge QCD corrections from gq and gg induced diagrams [50]. In
section 4.2 we recast [46] to set limits on a H ′ model example.
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SU(3)c 1 3 6 8
δC 1 2 2 4/3
γC 1 2/3 1/3 1/6

spin 0 1
δS 1/2 1
γS 3/2 1

Table 1. Production cross sections (δ) and decay widths (γ) rescaling factors for resonances X of
different color and spin with Xud couplings. For more details see section 2.2 and figure 2. The
interaction Lagrangians are defined in appendix B.

cases by equating the total production cross sections for two models in the fiducial region.
Figure 2 (top panel) shows exclusions on a W ′ coupled to first-generation quarks, xud 6= 0.
The plot shows 95% CL upper limits on |xud| in the mass range mW ′ ∈ (450, 5000)GeV.
The vertical axis on the right shows the corresponding partial decay width ΓW ′/mW ′ in
eq. (2.3), justifying the narrow-width approximation.

Xud couplings. Let us now reinterpret these bounds for a bosonic complex resonance
X (scalar or vector) of any color representation r ∈ (1,3,6,8). We define the coupling of
X to up and down quarks of arbitrary flavors i and j as xij in the interaction Lagrangians
in eq. (B.1).2

Dijet searches do not discriminate well between different diquark and quark-antiquark
resonances, see the discussion in ref. [1]. In other words, theW ′ results can be reinterpreted
for other mediators X with different color, spin, and flavor couplings. Comparing the
production cross sections for the same coupling xij , we find

σ(pp→ X)
σ(pp→W ′) = δCδS , (2.5)

where the color and spin δ factors are reported in table 1. For convenience, we also report
the color and spin γ factors for resonances X, defined as

ΓX→uidj
mX

= γCγS
ΓW ′→uid̄j
mW ′

. (2.6)

The exclusions on the couplings for other cases are obtained by rescaling those in figures 2
(top panel) with the appropriate ratio of parton luminosity functions. The generic con-
straints are shown in figures 2 (bottom panel) when combining all experimental searches.
Dashed lines are for qq → X while solid lines are for qq̄ → X. The two are different only
for the ud versus ud̄ case as expected for valence quarks. The first set should be used for
color triplet and sextet resonances, while the second for color singlets and octets.

Xuu and Xdd couplings. Also in this case we define the interaction Lagrangian in
eq. (B.1), assuming both quarks are either up-type or down-type. We describe electrically
neutral resonances with real fields, see the footnote below eq. (B.1). The constraints are
summarized in figure 3 for the flavor diagonal couplings (top plot), as well as, for the flavor
violating (bottom plot). The rescaling factors δC and δS are the same as in table 1. The
δx factor equals 1 with the exception of the diagonal couplings for spin-1 color singlet and

2We do not consider non-renormalisable derivative interactions.
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Figure 2. Experimental limits on a narrow dijet resonance from the LHC searches at 13TeV [1–
4]. Top panel is for a spin-1 colorless W ′ coupled to a single flavor combination of chiral quarks,
xud 6= 0. The plot shows upper limits at 95% CL on the absolute value of the coupling from several
CMS and ATLAS searches. The vertical axis on the right-hand side is the corresponding partial
decay width ΓW ′/mW ′ from eq. (2.3). Bottom panel shows the combined dijet limits on resonances
of different spin and color, as well as, arbitrary flavor couplings ij. Dashed lines are for diquark
resonances (color triplets and sextets) while solid lines are for quark-antiquark resonances (color
singlets and octets). The multiplicative rescaling factors for color (δC) and spin (δS) are reported
in table 1. This plot assumes B(X → jj) = 1 and is valid when the total decay width to mass ratio
is ΓX/mX . 10%.
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Figure 3. Same as figure 2 but for a pair of up or a pair of down quarks. The top figure is for
the flavor diagonal couplings while the bottom one is for the flavor changing. For more details see
section 2.2.

octet δx = 1/2, the off-diagonal couplings for spin-0 color triplet and sextet δx = 4, and
the diagonal couplings for spin-0 color sextet δx = 2.

Discussion. We study the variance of the pp → X → jj kinematics for different spins
and flavor couplings and their impact on the reinterpretation of the ATLAS and CMS
bounds derived in a specific model. To this purpose we use MadGraph5_aMC@NLO [40] to
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simulate the process at the partonic level. Dedicated UFO models for vector and scalar
resonances are obtained with FeynRules [41]. Motivated by the signal acceptance criteria
in ref. [4], we impose the following partonic-level cuts pT (j1) > 200 GeV, pT (j2) > 100 GeV,
and |η1,2| < 2.8. We also require the pseudorapidity difference |η1− η2| < 1.2 and the dijet
invariant mass m(jj) > 450GeV. We study the benchmark point mX = 0.75TeV and
ΓX/mX = 0.06. We find that the cut efficiency for the scalar is about 15% larger than
for the vector. This comes from the pseudorapidity cuts, in particular, for the scalar,
the 2 → 2 differential partonic cross section dσ/dt does not depend on the Mandelstam
variables t and u, while for the vector, it is proportional to t2 or u2. Thus, our bounds
on the scalar resonances are somewhat conservative since the collaborations model the
signal with the vector resonance. The above exercise was performed for the coupling with
the first generation only. We repeat the simulation for the scalar resonance for all flavor
combinations of incoming partons: ud, us, ub, cd, cs, and cb. The difference in the signal
acceptance is at most a few percent between different flavors.

Theoretical uncertainties on the production cross section are due to higher-order ra-
diative corrections, as well as limited knowledge of parton luminosity functions. The most
important NLO QCD corrections depend on the mediator representation and typically in-
crease the rate by O(10%), see example ref. [42] for the color sextet scalar. In this respect,
our leading-order calculation gives somewhat conservative bounds on the coupling. Note
that the relative error on the upper bound on |xij | is half of the relative error on the
cross section.

The other source of uncertainties comes from the determination of the parton luminos-
ity functions. Relative uncertainties on the parton luminosities (the integral in eq. (2.4))
are shown in figure 5.10 of ref. [51] for three different PDF collaborations: NNPDF3.1 [51],
CT14 [52] and MMHT14 [45]. These uncertainties are at the level of few to ten per-
cent across the entire mass range except for the heaviest resonances. In particular, when
mX & 3TeV, the relative error from NNPDF3.1 quickly becomes O(1), while the other two
collaborations do not exhibit this behavior and their relative errors are under control in the
entire mass range of figures 2 and 3. We numerically compare MMHT14 and NNPDF3.1
sets breaking down the luminosities by the flavor content. The difference between sets is
particularly prominent for some flavor combinations, for example, sc̄ fusion, and less rele-
vant for others. Hence, this feature of the NNPDF3.1 set questions the robustness of the
limits shown in figures 2 and 3 formX & 3TeV which will be resolved by the future updates.

In the analysis above, we always assume B(X → jj) = 1 as expected in the realistic
case for non-leptonic decays given their present sensitivity. This also provides conservative
bounds, as any other final state (e.g. leptons) would be easier to detect. The most important
caveat concerns the total width of the resonance. The typical detector resolution of the dijet
invariant mass is at the level of 10% [1–4]. Therefore, a narrow resonance is experimentally
defined by ΓX/mX . 10%. This criterion has to be satisfied to apply the bounds from
figure 2.

When the resonance X is a bit broader, the dijet limits weaken but do not disappear
completely. Figure 10 of ref. [3] shows how the cross section times acceptance drops when
increasing the total decay width. For example, assuming mX = 4TeV, and increasing the
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width from 1% to 10% and 40%, the limit on the cross section relaxes by a factor ∼ 3
and ∼ 15, respectively. The effect is less pronounced for lighter resonances, for example,
when mX = 2.2TeV, these factors are ∼ 1.6 and ∼ 8, respectively. To conclude, the limits
on the couplings of a broad resonance will be relaxed by at most O(1) factor from those
in figure 2, before the control over the calculation is lost and the strongly-coupled regime
is entered.

3 General EFT analysis of b→ cudi

In this section we study NP effects in non-leptonic B meson decays adopting a bottom-up
approach to keep the discussion as general as possible. To this purpose, we utilize the
methods of effective field theory (EFT). After presenting the data, we perform the fit in
the weak effective Hamiltonian to identity the preferred parameter space. The results are
then interpreted in the context of the EFT above the electroweak scale (SMEFT).

Measurements. The experimental values for the branching fractions for b→ cūdi decays
are obtained by fitting all available data and are compared with the most up-to-date SM
predictions based on QCDF [6]. The main difference between the results in ref. [6] with
respect to previous analyses (see e.g. ref. [14]) is the use of updated inputs for CKM
elements, decay constants and form factors for B̄q → D

(∗)+
q transitions [53–55], causing

shifts in the central values (the largest one for B̄s → D∗+s π decay) and generally a reduction
of the uncertainties on the branching ratios. From the experimental point of view, the non-
leptonic B̄s → D

(∗)+
s π and B̄ → D(∗)+K decays are often measured as part of ratios with

other decay channels in order to reduce experimental errors.
To be conservative we choose to employ the experimental fit in the third column of

table II of ref. [6] (without QCDF inputs but with the LHCb measurements of fs/fd
from semileptonic decays). Let us define the ratio of the measured branching ratio to the
respective SM prediction as

R(X → Y Z) ≡ B(X → Y Z)/B(X → Y Z)SM . (3.1)

Combining the measurements and SM predictions, including correlations in both experi-
mental and theoretical uncertainties,3 we obtain the following result:

R(B̄0
s → D+

s π
−) = 0.704± 0.074

R(B̄0 → D+K−) = 0.687± 0.059

R(B̄0
s → D∗+s π−) = 0.49± 0.24

R(B̄0 → D∗+K−) = 0.66± 0.13

, ρ =


1 0.36 0.16 0.092

0.36 1 0.072 0.16
0.16 0.072 1 0.40
0.092 0.16 0.40 1

 , (3.2)

where ρ is the correlation matrix and, by definition all R = 1 in the SM. The observed
branching ratios are consistently smaller than the QCDF predictions [6].

3We thank Martin Jung for providing the associated correlation matrix.
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QijklVLL
= (ūiLγµd

j
L)(d̄kLγµulL) Q′ijklVLL

= (ūiLγµTAd
j
L)(d̄kLγµTAulL)

QijklVRR
= (ūiRγµd

j
R)(d̄kRγµulR) Q′ijklVRR

= (ūiRγµTAd
j
R)(d̄kRγµTAulR)

QijklVLR
= (ūiLγµd

j
L)(d̄kRγµulR) Q′ijklVLR

= (ūiLγµTAd
j
L)(d̄kRγµTAulR)

QijklSRL
= (ūiLd

j
R)(d̄kRulL) Q′ijklSRL

= (ūiLTAd
j
R)(d̄kRTAulL)

QijklSLR
= (ūiRd

j
L)(d̄kLulR) Q′ijklSLR

= (ūiRTAd
j
L)(d̄kLTAulR)

QijklSRR
= (ūiLd

j
R)(d̄kLulR) Q′ijklSRR

= (ūiLTAd
j
R)(d̄kLTAulR)

QijklTRR
= (ūiLσµνd

j
R)(d̄kLσµνulR) Q′ijklTRR

= (ūiLσµνTAd
j
R)(d̄kLσµνTAulR)

Table 2. Low-energy operators relevant for b→ cūdi transitions.

Low-energy effective field theory. The most general theoretical framework for short-
distance NP effects in b→ cūdi (i = 1, 2) transitions is the low-energy effective field theory
(LEFT) [56]. Here we perform a NP analysis including the full set of relevant operators Oi
in the basis of ref. [56] (for the list see eq. (A.1) of appendix A). These operators, however,
are not in a convenient form to evaluate the hadronic matrix elements we are interested
in. Therefore, we Fierz them to the Q(′)

i listed in table 2, where

LNP =
7∑
i=1

(aiQi + a′iQ′i) + h.c. . (3.3)

The corresponding matching relations between the two bases are reported in eq. (A.3).
The operators QcbiuVLL

and Q′cbiuVLL
correspond to the SM color-allowed and color-suppressed

operators Q2 and Q1 of the CMM basis [57], respectively. In these conventions, the SM
Wilson coefficients are

(acbiuVLL
)SM = −C2

4GFVcbV ∗ui√
2

, (a′cbiuVLL
)SM = −C1

4GFVcbV ∗ui√
2

, (3.4)

where C2 = +1.010 and C1 = −0.291 [58]. The hadronic matrix elements for the NP
operators are evaluated at leading order in αs and leading power in 1/mb. As in the
SM, the NP operators can be grouped in color-allowed and color-suppressed ones. As a
consequence of color algebra, we have

〈D+(∗)
q P−|Q′i|B̄q〉 = 0 +O(αs/Nc) , (3.5)

regardless of the chirality structure of Q′i operators. Introducing αs corrections generates
contributions from the color-suppressed operators proportional to αs/Nc. These contribu-
tions in the SM are small compared to the leading ones since they are further suppressed by
the Wilson coefficient C1 � C2. A recent computation of color-suppressed topologies [12]
showed that they are even more subleading than what naively expected, compared to
color-allowed ones. This strengthens our hypothesis of disregarding color-suppressed Q′i
operators for this NP analysis. Furthermore, we stress that this choice does not affect the
constraining power of dijet resonance searches.
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The non-zero matrix elements give rise to the following decay amplitudes for B̄q →
D

+(∗)
q P− (see appendix A for details):

A(B̄q → D+
q P
−) =A(B̄q → D+

q P
−)SM

×
{

1 + 1
2
√

2GFVcbV ∗uiC2

[(
− acbiuVLL

+ acbiuVRR
+ acbiuVLR

− auibcVLR

)
+ m2

P

(mu +mdi)(mb −mc)
(
acbiuSRL

− acbiuSLR
− acbiuSRR

+ auibcSRR

)]}
,

(3.6)

A(B̄q → D∗+q P−) =A(B̄q → D∗+q P−)SM

×
{

1 + 1
2
√

2GFVcbV ∗uiC2

[(
− acbiuVLL

− acbiuVRR
+ acbiuVLR

+ auibcVLR

)
+ m2

P

(mu +mdi)(mb +mc)
(
acbiuSRL

+ acbiuSLR
− acbiuSRR

− auibcSRR

)]}
,

(3.7)

where i = d, s corresponds to P− = π−,K−, respectively.

Fit to the data. These decay amplitudes are used to calculate the ratio of the branching
fractions to the respective SM prediction in eq. (3.1) as

R(X → Y Z) = |A(X → Y Z)|2

|A(X → Y Z)SM|2
, (3.8)

from which we perform a fit using eq. (3.2) and eqs. (3.6)–(3.7). Only half of the NP
coefficients contributing to the amplitudes in eq. (3.6) and eq. (3.7) can simultaneously
explain the observed suppression in both final states with a D+

q or a D+∗
q meson. These

are acbiuVLL
, acbiuVLR

, acbiuSRR
and acbiuSRL

. The other half can not fit the data well. Regarding the
flavor structure, new interactions with both strange and down quarks are needed.

The results of the fits are shown in figures 4. The left (right) panel is for new vector
(scalar) interactions. The horizontal and the vertical axes are for the couplings to down and
to strange quarks, respectively. The dashed and solid green lines describe the boundaries of
the 68% and 95% CL regions. The discrepancy between SM predictions and measurements
manifests as a shift of the preferred region from the origin. The best-fit point in the left
(right) plot improves the fit to data with respect to the SM by χ2

SM − χ2
best−fit ≈ 36 (35)

and corresponds to

vector:
{
acbduVLL

− acbduVLR
≈ 0.23Vud TeV−2 , acbsuVLL

− acbsuVLR
≈ 0.24Vus TeV−2 ,

scalar:
{
acbduSRR

− acbduSRL
≈ 0.26Vud TeV−2 , acbsuSRR

− acbsuSRL
≈ 0.31Vus TeV−2 .

(3.9)

The preferred size of the effective operators suggests ultraviolet completion not far above
the TeV scale. Furthermore, we observe that in both cases the fits are compatible with a
CKM-like flavor structure, with the operators involving the strange quark being Cabibbo-
suppressed with respect to those with the down quark, as shown with the gray dotted lines
in figure 4. This is a desirable trait from the flavor model building perspective.
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Figure 4. Low-energy EFT fit to B̄q → D
+(∗)
q P− decays. Dashed and solid lines show 68% and

95% CL regions for vector operators (left panel) and scalar operators (right panel). The gray dotted
line is consistent with the relative size following the CKM ratio Vus/Vud.

[O(1)
qq ]ijkl = (q̄iLγµq

j
L)(q̄kLγµqlL) [O(3)

qq ]ijkl = (q̄iLσaγµq
j
L)(q̄kLσaγµqlL)

[O(1)
ud ]ijkl = (ūiRγµu

j
R)(d̄kRγµdlR) [O(8)

ud ]ijkl = (ūiRTAγµu
j
R)(d̄kRTAγµdlR)

[O(1)
qd ]ijkl = (q̄iLγµq

j
L)(d̄kRγµdlR) [O(8)

qd ]ijkl = (q̄iLTAγµq
j
L)(d̄kRTAγµdlR)

[O(1)
qu ]ijkl = (q̄iLγµq

j
L)(ūkRγµulR) [O(8)

qu ]ijkl = (q̄iLTAγµq
j
L)(ūkRTAγµulR)

[O(1)
quqd]ijkl = (q̄iLu

j
R)(iσ2)(q̄kLdlR) [O(8)

quqd]ijkl = (q̄iLTAu
j
R)(iσ2)(q̄kLTAdlR)

Table 3. SMEFT operators relevant for b→ cūdi transitions.

Standard model effective field theory. The EFT coefficients in figures 4 are reported
at scale µR = mb. To establish connections with possible UV completions, these results
have to be appropriately extrapolated to high energies. The low-energy EFT coefficients
are evolved up to the EW scale and then matched at tree-level to the SMEFT. These
are finally evolved to the UV scale (see appendix A for details). In the SMEFT, the
theory is supplement with a series of gauge-invariant irrelevant operators of increasing
canonical dimension. Among all possible dimension-six SMEFT coefficients, we focus on
the dimension-six four-fermion operators that either contribute directly at tree-level to
b → cūdi or strongly mix with such operators. In table 3, we list all these operators.
Other tree-level effects in the SMEFT, such asW -vertex corrections, are better constrained
elsewhere, and can not give sizable effect to B̄q → D

(∗)+
q {π,K} decays.

4 Simplified models

The SMEFT operators identified in the previous section can be generated already at tree-
level by integrating out a new bosonic field X coupled to quark currents. Here we list
the complete set of new scalar and vector mediators which generate the relevant operators
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shown in figure 4 at tree-level with renormalisable interactions [59], without also necessarily
inducing dangerous ∆F = 2 transitions at tree-level

spin-0:

Φ1 = (1,2, 1/2), Φ8 = (8,2, 1/2),

Φ3 = (3̄,1, 1/3), Ψ3 = (3̄,3, 1/3), Φ6 = (6,1, 1/3),

spin-1:
{
Q3 = (3,2, 1/6), Q6 = (6̄,2, 1/6) .

(4.1)

Here, the SM gauge representations are reported in the format (SU(3)c, SU(2)L,U(1)Y ).
Among other mediators that generate at tree-level the effective operators listed in eq. (A.9),
colored vectors (3,2,−5/6) and (6̄,2,−5/6) are not viable since the coefficients acbiuSLR

do
not fit the anomaly. On the other hand, the vector triplet W ′ = (1,3, 0), vectors (8,1, 0)
and (8,3, 0), and the scalar (6,3, 1/3) mediate a neutral meson mixing at tree-level even
with the minimal set of couplings required to fit the anomaly. Hence, we do not consider
them further given the stringent constraints on ∆F = 2 transitions. We refer to ref. [60]
for a more detailed discussion of the W ′ case.

The main goal of this section is to show how the high-pT searches at the LHC, specif-
ically those from dijet signatures, can test the solutions of the anomaly for all viable
mediators. We separate the discussion into two subsections based on the pair production
dijet resonance searches from section 2.1. In particular, in section 4.1 we focus on colored
resonances which receive important constraints from the pair production at the LHC, while
the colorless doublet Φ1 is studied in isolation in section 4.2. The colorless mediator can
in principle be much lighter since the relevant bound comes only from the LEP-II collider.

The single dijet resonance searches derived in section 2.2 can be used in both cases.
Non-leptonic meson decays depend on the product of two couplings when the resonance
is integrated out at tree level. In particular, the product of the couplings entering those
decays satisfies

|xqiqj x∗qkql | = |xqiqj | × |xqkql | , (4.2)

where both terms on the right-hand side are simultaneously constrained from non-
observation of σ(pp → X → jj) at high-pT . Using this inequality, we can limit NP
contributions in B̄q → D

(∗)+
q {π,K} decays.4

4.1 Colored mediators

As discussed in section 2.1, the QCD-induced pair production at the LHC sets robust lower
limits on the masses of the colored mediators in the range 0.5TeV to 1.15TeV, depending on
the representation. Note that, complementary to the pair production, the single mechanism
is effective for heavy resonances. The combination of single and pair production dismisses
all these mediators as the explanation of the anomaly, see figure 5.

In the following we show the interplay between the dijet bounds and the fit to the
anomaly for each mediator, leaving the details on the models and their EFT matching to
appendix B.

4We only consider scenarios in which the anomaly is attributed to a single new mediator. One
could explore a possibility of several mediators, each passing the dijet bounds, while adding up in
B̄q → D

(∗)+
q {π,K}.
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Figure 5. High-pT constraints from the single dijet resonance production (gray) and the QCD-
induced pair production of dijet resonances (brown) compared with the best-fit region from non-
leptonic B decays. The constraints are imposed on the product of the two relevant couplings as
a function of the mass for colored mediators listed in eq. (4.1). Note that the constraints from
section 2.2 are strictly applicable for ΓX/mX . 10% which is not necessarily the case in the upper
parts of the plot, depending on the relative sizes of the couplings. The anomaly in B̄q → D

+(∗)
q P−

selects the best-fit region at 68% CL (green) and 95% CL (yellow). Shown with the red dashed
lines in the top-left plot (Φ6) are the limits from the meson mixing for two representative choices
of yR13 coupling. For more details see section 4.1.

Color-sextet diquark Φ6. The SM is extended with the singlet sextet diquark scalar
Φ6 = (6,1, 1/3). The relevant interaction Lagragian is:

LΦ6 ⊃ yLijΦ
αβ†
6 q̄c

(α|
Li (iσ2)q|β)

Lj + yRijΦ
αβ†
6 ūc

(α|
Ri d

|β)
Rj + h.c. , (4.3)

where ψ(α|
i ψ

|β)
j = 1

2(ψαi ψ
β
j +ψβi ψαj ), and yL is an antisymmetric matrix. The components of

the sextet representations are given as Φαβ
6 ≡ SiαβΦi

6, where i = 1, . . . , 6 and the symmetric
color matrices Siαβ are given in eq. (B.2). The anomaly can be addressed by switching on
only two couplings:

yL =

 0 yL12 0
−yL12 0 0

0 0 0

 , yR =

 0 0 yR13
0 0 0
0 0 0

 . (4.4)
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It is worth noticing that the structure of the left-handed couplings yL of eq. (4.4) is com-
patible with the approximate U(2)q symmetry of the SM Lagrangian, where the first two
families transform as a doublet while the third as a singlet [61]. Indeed, since the anti-
symmetric combination of the qi=1,2

L doublets transforms as a singlet, the U(2)q symmetry
would predict yL12 ∼ O(1) while yL13, y

L
23 � 1. Regarding the right-handed couplings, the

U(2)u×U(2)d symmetry would predict yR33 ∼ 1 while all other terms should be suppressed.
By introducing a spurion Vu = (au, 0), with au � 1, transforming as a doublet of U(2)u
it is possible to generate a small value of yR13 ∼ au � 1. This spurion is not required by
the minimal breaking of the symmetry necessary to generate the SM Yukawas. We thus
conclude that this setup could be compatible with a non-minimally broken U(2)5 flavor
symmetry if yL12 ∼ 1, yR33 ∼ 1 and yR13 � 1.

In the following, we considering the minimal set of couplings introduced in eq. (4.4).
The non-vanishing aX coefficients for B̄ → D

(∗)
q P− decays are

acbduSRR
≈ 2

3κ
S
RGEVcs

yL∗12 y
R
13

M2
Φ6

≈ 0.26Vcs
TeV2 , acbsuSRR

≈ −2
3κ

S
RGEVcd

yL∗12 y
R
13

M2
Φ6

≈ −0.31Vcd
TeV2 , (4.5)

where κSRGE ≈ 1.65 (1.85) for MΦ6 = 1 (5) TeV. The 1σ and 2σ regions from the anomaly
fit in the plane of the product of the two couplings and the mediator mass is shown as a
green and yellow band in the top-left panel of figure 5, respectively. This state contributes
to precisely measured flavor-violation processes at one-loop level. We study the relevant
constraints in appendix C, which place an upper limit on yL12 as function of the mass. The
stronger bound comes from D0 and K0 mixing, and the limit is shown in figure 5 (top-left)
as dashed and dotted red lines, for two different assumptions on the right-handed coupling
yR13. As shown in the plot, these complementary constraints from low-energy measurements
are not able to probe the interesting parameter space.

The dijet resonance limits become less effective when the resonance is broader,

ΓΦ6

MΦ6

= 8|yL12|2 + |yR13|2

16π & 0.1 , (4.6)

but the perturbativity of the model comes into question. Fixing the best-fit value for the
product of the two couplings, the condition above is always violated for MΦ6 & 2TeV. The
strongest dijet constraints on the two couplings yL12 and yR13 entering eq. (4.5), arise from
the processes us→ Φ6 and ub→ Φ6, respectively. The product of the two couplings, that
contributes directly to the anomaly, is bounded since |yL12y

R
13| < |yL12|max|yR13|max. Compared

to the generic Lagrangian in eq. (B.1) the couplings are given by xij = 2yLij for the left-
handed quarks and xij = yRij for the right-handed ones. As shown in figure 5 (top-left), the
region preferred by the anomaly is excluded by the dijet searches for all masses where the
theory is perturbative.

Color-triplet diquark Φ3. The scalar triplet Φ3 = (3̄,1, 1/3) couples to the SM
quarks as

LΦ3 ⊃ y
qq
ij εαβγΦα

3 q̄
β
Li(iσ2)qc γLj + yduij εαβγΦα

3 d̄
β
Riu

c γ
Rj + h.c. , (4.7)
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where yqqij is a symmetric matrix. Baryon number conservation must be imposed to suppress
the couplings to quark and leptons, that would otherwise mediate proton decay. The
coupling structure that allows fitting the anomaly with least suppression demands three
non-vanishing couplings ydu∗31 , yqq12, and y

qq
22, such that

acbduSRR
= −2.6y

qq
12y

du∗
31

M2
Φ3

≈ 0.26Vud
TeV2 , acbsuSRR

= (−2.6yqq22 + 0.60yqq12)ydu∗31
M2

Φ3

≈ 0.31Vus
TeV2 . (4.8)

A good fit requires the relation yqq22 ≈ 0.50yqq12.
The partonic processes that give the strongest constraints on the couplings relevant to

this model are the same as in the scalar sextet case, as well as the relations between the
y
qq/du
ij and xij couplings. As shown in figure 5 (top-right), the dijet searches firmly exclude
the parameter space relevant for the anomaly in all the perturbative range of the model.

Potentially strong limits from loop-induced flavor-violating processes might require a
particular coupling structure. We do not discuss them further since the dijet searches are
already quite restrictive. The case of the scalar Ψ3 = (3̄,3, 1/3) is discussed in the appendix
and shares analogous features as the scenario where Φ3 only couples to LH quarks. This
scenario is not so advantageous for the anomaly since it involves a sizable coupling to the
top quark, which implies stronger collider constraints. For this reason, we do not consider
it separately, referring to appendix B for more details.

Color-octet scalar Φ8 = (8, 2, 1/2). The scalar octet Φ8 couples to quarks with the
Lagrangian

LΦ8 ⊃ y
qu
ij Φα†

8 iσ2q̄
T
LiT

αuRj + ydqij Φα†
8 d̄RiT

αqLj + h.c. . (4.9)

In order to fit the anomaly with minimal CKM suppression and least possible effect in
dijet searches we consider the following non-vanishing couplings: ydq31, y

dq
32, and yqu21 . The

low-energy coefficients induced by these couplings are:

acbiuSRR
≈ 0.44Vcs

ydq∗3i y
qu
21

M2
Φ8

, (4.10)

where i = 1, 2. We take ydq∗32 = Vus/Vud y
dq∗
31 in order to be consistent with the relative

effect observed in K and π channels. In the case of the color-octet representation, the lim-
its from QCD pair production are particularly strong, forbidding masses below ∼ 1TeV.
Furthermore, the relatively small numerical factor in the low-energy coefficients acbiuSRR

re-
quires larger couplings to fit the anomaly compared to the previous models. These facts,
combined, exclude a successful explanation of the observed deviation with this setup, as
shown in figure 5 (bottom-left).

VectorsQ3 andQ6. The triplet and sextet vectorsQ3 = (3,2, 1/6) andQ6 = (6̄,2, 1/6)
interact with SM quarks as

LQ ⊃ gQ3
ij Q

αµ†
3 εαβγ d̄

β
Riγµ(iσ2)qcγLj + 1

2g
Q6
ij Q

αβµ†
6 d̄

(α|
Ri γµ(iσ2)qc|β)

Lj + h.c. . (4.11)
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The tree-level contribution to the low-energy EFT coefficients relevant for the anomalies
is given by

acbiuSRL
= 4

3κ
S
RGEV

∗
uiVcj

(
gQ3∗

3i gQ3
ij

M2
Q3

−
gQ6∗

3i gQ6
ij

M2
Q6

)
, (4.12)

where κSRGE ≈ 2.23 for a scale of 1TeV. The two states give the same contribution, up to
a sign change for one coupling. The combination which has a weaker CKM suppression is
obtained with these three couplings only: gQ,dq31 , gQ,dq12 , and gQ,dq22 . In particular,

acbduSRL
≈ 3.0VcsV ∗ud

M2
Q

gQ∗31 g
Q
12 ≈ −

0.26Vud
TeV2 , acbsuSRL

≈ 3.0VcsV ∗ud
M2
Q

gQ∗31 g
Q
22 ≈ −

0.31Vus
TeV2 . (4.13)

To fit the anomaly, we impose the relation gQ22 = gQ12V
∗
us/V

∗
ud.

In this scenario the leading partonic processes for dijet production are dc → Q−1/3∗
3 ,

du → Q−1/3∗
3 (Cabibbo-suppressed), and ds → Q2/3∗

3 , induced by gQ12, and bu → Q−1/3∗
3

and bd→ Q2/3∗
3 , induced by gQ31. The strongest limits are from the ds (du in the high-mass

region) and bu induced ones. Also, in this case, the dijet constraints exclude a weakly-
coupled solution of the anomaly, see figure 5 (bottom-right).

4.2 Colorless scalar doublet model

The scalar doublet Φ1 = (1,2, 1/2) is among the possible tree-level mediators capable to fit
the anomaly, eq. (4.1). It is, however, a unique mediator in the list since it is not charged
under QCD and therefore not sufficiently constrained by the pair production at the LHC.
For generic Yukawa couplings, its neutral component will mediate ∆F = 2 transitions
at tree-level. This can be avoided by a suitable alignment in flavor space. While such
alignment is theoretically rather unappealing, it is still motivated to consider this option
as it opens up a qualitatively different region of parameter space where the mediator mass
is comparable to the heaviest particles in the SM. In the case of colored mediators discussed
above, pp→ XX → (jj)(jj) searches imply a mass gap from the SM states, and to fit the
anomaly, this means larger couplings, such that pp → X → jj becomes important. For
this reason, we study the simplified Φ1 model in details.

Having the same quantum numbers as the SM Higgs boson, the two states will mix
in general. This would disrupt the precise flavor alignment required to pass the meson
mixing constraints and must be forbidden. For the sake of this simplified analysis, we
just assume that Φ1 is the mass eigenstate corresponding to the doublet which does not
take a vacuum expectation value and that no mixing is present at tree-level. Regarding
its Yukawa couplings, we consider two different benchmark scenarios, designed ad-hoc to
avoid tree-level contributions to meson mixing.

Benchmark I. The couplings of the extra scalar Φ1 are exclusively to the right-handed
down quarks and are diagonal in the down-quark mass basis,

LYuk
Φ1 = ydi Φ†1d̄iRqiL + h.c., (4.14)

where qiL = (V ∗jiu
j
L, d

i
L)T . A possible mechanism behind this alignment is discussed in [62–

64]. Integrating out the scalar Φ1, the LEFT operators LV 1(8),LR
ud are generated at low
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Φ1 H

b
q1L

uR/dR

Figure 6. Radiative corrections to the SM Higgs Yukawa couplings from the desired Φ1
interactions.

energies, which contribute to the aijklSRL
coefficients as

acbiuSRL
= κRGEVcbV

∗
ui

yd∗3 ydi
M2

Φ1

, (4.15)

where κRGE ≈ 2.0 for MΦ1 = 200GeV, derived using DsixTools 2.0 [65]. This structure is
compatible with the fit in the right panel of figure 4, where the relation yd1 = yd2 allows to
simplify the analysis.

Benchmark II. The couplings of Φ1 are aligned to the right-handed bottom quark and
to the right-handed up quark:

LYuk
Φ1 = yd3 Φ†1b̄Rq3

L + yu1 ¯̃q1
LuR Φ̃1 + h.c., (4.16)

where q3
L = (V ∗jbu

j
L, bL)T , q̃1

L = (uL, VujdjL)T , and yu1 and yd3 are complex numbers. In
this setup the relevant LEFT coefficients generated at low energies are LS1,RR

uddu , which
contribute as

acbiuSRR
= κRGEVcbVui

yd∗3 yu1
M2

Φ1

, (4.17)

where κRGE ≈ 2.07 for MΦ1 = 200GeV. Also this benchmark fits very well the excess in
the hadronic B decays.

Let us now briefly discuss the stability of this alignment under radiative corrections.
The couplings of Φ1 with fermions induce at one loop mixing with the SM Higgs. With the
coupling structures outlined above, the largest contribution in both benchmarks arise from
the bottom-quark loop, giving a mixing angle ∼ yd3Yb/(16π2) ∼ O(10−4). In Benchmark
I (II) this induces a correction to the down (up) quark Yukawa, as in figure 6, with an
estimated size of

δYd(u) ∼
yd1(yu1 )yd3Yb

16π2
m2
H

M2
Φ1

∼ 0.3Yd(0.6Yu), (4.18)

where we used the best-fit values from the fits to the anomaly. Due to the small expected
size of this effect and the Φ1 couplings being flavor-diagonal, no fine tuning against radiative
corrections is required to keep this alignment and to avoid tree-level FCNC. Nonetheless,
the odd flavor alignments still remain to be justified.
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Figure 7. The compilation of the high-pT collider constraints on the Φ1 model (Benchmark I)
together with the best-fit region from non-leptonic B decays. See section 4.2 for details.

Collider constraints. Despite different flavor structures, the two benchmarks share a
similar collider phenomenology. We focus on one of them for simplicity. The leading
high-pT constraints on the first benchmark are complied in figure 7 for the entire valid
range of mΦ1 . The limits from single dijet resonance searches, compared with the region
preferred by the non-leptonic B decays, firmly exclude masses above mΦ1 & 450GeV as
the explanation of the anomaly. These are obtained by applying the general results from
figure 3 using eq. (4.2) for the charge-neutral component of the SU(2)L doublet. Note that
this component exclusively decays to a dijet final state for all mΦ1 , unlike the charged one,
which has a significant branching ratio to a top quark and a jet when mΦ1 > mt. The
introduction of large mass splitting between the two SU(2)L components potentially helps
to avoid bounds on the neutral component. However, this is very well constrained by the
electroweak precision tests, see for example [66]. While the single dijet searches at the
LHC are as effective as for other mediators, on the contrary, we find the pair-produced
dijet searches do not probe the leftover parameter space of interest. The reason for this
is that the pair production cross section for uncolored particles at the LHC is not large
enough to match the current sensitivity. The lower limit on the mass comes only from
LEP-II as discussed in section 2.1, in particular, mΦ1 & 95GeV.

We are left with the mass range mΦ1 ∈ [95 − 450]GeV. To attack this parameter
space, let us consider the CMS search for a light dijet resonance reported in ref. [46]. The
resonance has a large pT as it recoils from another jet in the production, i.e. pp → Xj

process. The X decay products are collimated leading to a fat jet topology. The signal
model used in this analysis is a leptophobic Z ′ with flavor universal vector-like couplings
to quarks. The collaboration performed a simulation of Z ′+jet(s) with the parton-level
filter HT > 400GeV (for details see [46]). The events are selected by asking for at least
one AK8 jet (anti-kT with R = 0.8) with pT > 525GeV for mX < 175GeV or CA15 jet
(Cambridge-Aachen with R = 1.5) with pT > 575GeV for mX > 175GeV. In both cases,
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the pseudorapidity is |η| < 2.5. The exclusion limits are reported on the coupling g′q as a
function of the Z ′ mass, see figure 4 in [46]. To translate these limits to our case, we perform
the MadGraph5_aMC@NLO [40] partonic level simulation of pp → H ′j → (jj)j imposing the
same HT , η, and pT cuts, as well as, ∆R < 0.8 (1.5) for the resonance decay products. We
repeat the same procedure for the Z ′ model used by the CMS collaboration. The translation
is done by comparing the two fiducial cross sections for several benchmark masses.5

In addition to this, important constraints come from the top sector. In particular,
searches for Φ1 → tb, when mΦ1 > mt, and for t → bΦ1, when mΦ1 < mt, exclude most
of the remaining parameter space except for a small window around mΦ1 ≈ mt, where
the two processes are kinematically suppressed (see figure 7). The bounds on yd3 from top
decays are extracted from the dedicated ATLAS search [67]. The exclusion shown in red
color in figure 7 is the product of this bound with the dijet bound from [46]. Similarly, the
exclusion limits shown in blue color are a combination of the ATLAS search in the tt̄b final
state [68], the CDF search for a resonance in pp→ tb [69, 70] and the dijet search [46].

In conclusion, there is a blind spot around mΦ1 ≈ mt which needs a dedicated collider
search to be covered. We used MadGraph5_aMC@NLO [40] to calculate processes with off-
shell Φ1 and/or top quark. We identify the following signatures at the LHC which could
further squeeze the interesting parameter space: tt̄Φ1, single top, and V Φ1 where V =
W,Z. Further improvements of the light dijet resonance searches such as [46] would also
be beneficial.

Flavour constraints. Concerning constraints from low-energy observables, we note that
in Benchmark II flavor changing processes from a b to lighter down-type quarks are always
proportional to yu1 and are then suppressed by the up-quark mass. Similar arguments can
be applied to charm physics, where only the coupling yd3 enters. However, in this case,
the strong suppression comes from the CKM. Therefore we conclude that Benchmark II is
insensitive to flavor constraints. In the case of Benchmark I, it is not straightforward to
draw analogous conclusions. In appendix D we investigate a specific parameter-space point
for mφ1 ≈ mt and ydi , finding that also Benchmark I cannot be excluded by low-energy
flavour constraints. Small variations around this point do not change our conclusions.

5 Conclusions

The size of potential new physics effects in non-leptonic B meson decays is restricted by
complementary processes. A typical example is neutral meson mixing, which is predicted
to accompany non-leptonic decays in many extensions of the SM. ∆F = 2 transitions
are usually the leading constraints on such models, implying unobservable effects in non-
leptonic decays. It is, however, not difficult to find exceptions to this prevalent expectation.
In this work, we provide examples of untuned models owning specific flavor structure
and dynamical content, that are safe on all complementary processes in flavor physics.

5This procedure will be followed to derive bounds for mediators with different spins and representations
in the future study. Also, the partonic-level simulation gives only an estimate of the difference in the signal
acceptance between H ′ and Z′ models and will be superseded by a full-fledged detector-level simulation.
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Nevertheless, we also find that such cases are severely constrained by the dijet resonance
searches at high-pT colliders. Intuitively, new mediators have to compete with the tree-
level W boson exchange, and to have an appreciable effect, their masses and couplings
turned out to be perfectly suited for high-pT searches at the LHC. The connection is even
more profound since the minimal set of couplings needed to generate the desired effect in
non-leptonic decays can not be neglected in high-pT dijet searches, unlike for example in
∆F = 2 where the effect can be loop-induced and flavor-suppressed.

Recognising the importance of dijet searches for non-leptonic decays, we reinterpret the
existing ATLAS and CMS searches as a constraint on a generic narrow spin-0 and spin-1
resonance, which can be a color singlet, triplet, sextet, or octet, coupled to a diquark or a
quark-antiquark pair with an arbitrary flavor composition. The pair production of colored
resonances pp→ XX → (jj)(jj) decaying dominantly to jets sets a robust lower limit on
their mass as explained in section 2.1. The single dijet resonance production pp→ X → jj

is discussed in section 2.2 and the main results are summarised in figures 2 and 3. Since
different flavor channels do not interfere, the absence of the signal imposes limits on all
of them simultaneously. The results derived in this section go beyond B̄q → D

(∗)+
q {π,K}

decays and can be used to limit new physics contributions in other hadronic decays.

Regarding B̄q → D
(∗)+
q {π,K} decays, we perform a full EFT analysis for arbitrary new

physics at leading-order in αs, see section 3. The main results are shown in figure 4. The
discrepancy between the SM theory prediction and measurements observed in ref. [6] leads
to the best-fit region favoring new physics. We find this as an excellent opportunity to test
the importance of dijet constraints. Based on the EFT analysis, we write an exhaustive list
of simplified mediator models which can be matched to the best-fit region at low energies.
These are reported in eq. (4.1).

Assuming pragmatically the minimal set of couplings needed to fit the anomaly, we
study the collider limits for every viable tree-level mediator. For colored mediators, in
section 4.1, we show that the combination of pair and single production of dijet resonances
excludes weakly-coupled new physics explanations of the anomalies, as illustrated in fig-
ure 5. The pair production is effective for light resonances, while the single production
excludes heavier resonances. Besides, we also carry out a thorough study of flavor phe-
nomenology for the color-sextet scalar model to show that other low-energy bounds such
as ∆F = 2 can naturally be avoided, see appendix C. Thus, the high-pT dijet constraints
are crucial to dismiss this model as the origin of the discrepancy.

Finally, we study the colorless weak-doublet scalar Φ1 in section 4.2 which is not
sufficiently constrained by the pair production at the LHC. However, we show that the
consistency of flavor data requires a specific flavor alignment, predicting sizeable couplings
with the top quark. As a consequence, top-quark physics rules out the interesting parameter
space for all hypothetical mΦ1 apart from a narrow window around the top mass, see
figure 7. This blind point is quite resilient on flavor bounds which are carefully checked
in appendix D, and will likely be covered by the future collider studies involving the top
quark, as well as by further progress in dijet resonance searches.
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A Details of the EFT analysis

Hadronic matrix elements for the NP operators. The set of operators in the LEFT
that we consider is:

[OV 1,LL
ud ]ijkl = (ūiLγµu

j
L)(d̄kLγµdlL) , [OV 8,LL

ud ]ijkl = (ūiLγµTAu
j
L)(d̄kLγµTAdlL) ,

[OV 1,RR
ud ]ijkl = (ūiRγµu

j
R)(d̄kRγµdlR) , [OV 8,RR

ud ]ijkl = (ūiRγµTAu
j
R)(d̄kRγµTAdlR) ,

[OV 1,LR
ud ]ijkl = (ūiLγµu

j
L)(d̄kRγµdlR) , [OV 8,LR

ud ]ijkl = (ūiLγµTAu
j
L)(d̄kRγµTAdlR) ,

[OV 1,LR
du ]ijkl = (d̄iLγµd

j
L)(ūkRγµulR) , [OV 8,LR

du ]ijkl = (d̄iLγµTAd
j
L)(ūkRγµTAulR) ,

[OV 1,LR
uddu ]ijkl = (ūiLγµd

j
L)(d̄kRγµulR) , [OV 8,LR

uddu ]ijkl = (ūiLγµTAd
j
L)(d̄kRγµTAulR) ,

[OS1,RR
ud ]ijkl = (ūiLu

j
R)(d̄kLdlR) , [OS8,RR

ud ]ijkl = (ūiLTAu
j
R)(d̄kLTAdlR) ,

[OS1,RR
uddu ]ijkl = (ūiLd

j
R)(d̄kLulR) , [OS8,RR

uddu ]ijkl = (ūiLTAd
j
R)(d̄kLTAulR) (A.1)

In order to evaluate the necessary matrix elements, apply Fierz transformation to get the
following set of operators:

Q′ijklVLL
= (ūiLγµTAd

j
L)(d̄kLγµTAulL) , QijklVLL

= (ūiLγµd
j
L)(d̄kLγµulL) ,

Q′ijklVRR
= (ūiRγµTAd

j
R)(d̄kRγµTAulR) , QijklVRR

= (ūiRγµd
j
R)(d̄kRγµulR) ,

Q′ijklVLR
= (ūiLγµTAd

j
L)(d̄kRγµTAulR) , QijklVLR

= (ūiLγµd
j
L)(d̄kRγµulR) ,

Q′ijklSRL
= (ūiLTAd

j
R)(d̄kRTAulL) , QijklSRL

= (ūiLd
j
R)(d̄kRulL) ,

Q′ijklSLR
= (ūiRTAd

j
L)(d̄kLTAulR) , QijklSLR

= (ūiRd
j
L)(d̄kLulR) ,

Q′ijklSRR
= (ūiLTAd

j
R)(d̄kLTAulR) , QijklSRR

= (ūiLd
j
R)(d̄kLulR) ,

Q′ijklTRR
= (ūiLσµνTAd

j
R)(d̄kLσµνTAulR) , QijklTRR

= (ūiLσµνd
j
R)(d̄kLσµνulR) , (A.2)
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The relation between the two sets of operators is given by

a′ijklVLL
= 2 [LV 1,LL

ud ]ilkj −
1
3 [LV 1,LL

ud ]ilkj ,

aijklVLL
= 1

3 [LV 1,LL
ud ]ilkj + 4

9 [LV 1,LL
ud ]ilkj ,

a′ijklVRR
= 2 [LV 1,RR

ud ]ilkj −
1
3 [LV 1,RR

ud ]ilkj ,

aijklVRR
= 1

3 [LV 1,RR
ud ]ilkj + 4

9 [LV 1,RR
ud ]ilkj ,

a′ijklVLR
= [LV 1,LR

uddu ]ijkl ,

aijklVLR
= [LV 1,LR

uddu ]ijkl ,

a′ijklSRL
= −4 [LV 1,LR

ud ]ilkj + 2
3 [LV 1,LR

ud ]ilkj ,

aijklSRL
= −2

3 [LV 1,LR
ud ]ilkj −

8
9 [LV 1,LR

ud ]ilkj ,

a′ijklSLR
= −4 [LV 1,LR

du ]kjil + 2
3 [LV 1,LR

du ]kjil ,

aijklSLR
= −2

3 [LV 1,LR
du ]kjil −

8
9 [LV 1,LR

du ]kjil ,

a′ijklSRR
= −[LS1,RR

ud ]ilkj + 1
6 [LS8,RR

ud ]ilkj + [LS8,RR
uddu ]ijkl ,

aijklSRR
= −1

6 [LS1,RR
ud ]ilkj −

2
9 [LS8,RR

ud ]ilkj + [LS1,RR
uddu ]ijkl ,

a′ijklTRR
= −1

4 [LS1,RR
ud ]ilkj + 1

24 [LS8,RR
ud ]ilkj ,

aijklTRR
= − 1

24 [LS1,RR
ud ]ilkj −

1
18 [LS8,RR

ud ]ilkj (A.3)

We can now evaluate the hadronic matrix elements for the operators Qi at leading power
in 1/mb and leading order in αs. We note that, due to color algebra, the matrix elements
〈P−D+

q | Q′i |B̄q〉 = 0 at leading order in αs. We further notice that 〈P−D+
q | Q

(′)
TRR
|B̄q〉 = 0

at any order.
For a pseudoscalar D+

q in the final state we obtain:

〈P−D+
q | QcbiuVLL

|B̄q〉 = − i4fP (m2
Bq −m

2
D∗q

)F B̄q→Dq0 ,

〈P−D+
q | QcbiuVRR

|B̄q〉 = + i

4fP (m2
Bq −m

2
Dq)F

B̄q→Dq
0 ,

〈P−D+
q | QcbiuVLR

|B̄q〉 = + i

4fP (m2
Bq −m

2
Dq)F

B̄q→Dq
0 ,

〈P−D+
q | QuibcVLR

|B̄q〉 = − i4fP (m2
Bq −m

2
Dq)F

B̄q→Dq
0 ,

〈P−D+
q | QcbiuSRL

|B̄q〉 = + i

4fP (m2
Bq −m

2
Dq)F

B̄q→Dq
0

m2
P

(mu +mdi)(mb −mc)
,
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〈P−D+
q | QcbiuSLR

|B̄q〉 = − i4fP (m2
Bq −m

2
Dq)F

B̄q→Dq
0

m2
P

(mu +mdi)(mb −mc)
,

〈P−D+
q | QcbiuSRR

|B̄q〉 = − i4fP (m2
Bq −m

2
Dq)F

B̄q→Dq
0

m2
P

(mu +mdi)(mb −mc)
,

〈P−D+
q | QuibcSRR

|B̄q〉 = + i

4fP (m2
Bq −m

2
Dq)F

B̄q→Dq
0

m2
P

(mu +mdi)(mb −mc)
,

〈P−D+
q | QcbiuTRR

|B̄q〉 = 0 ,

〈P−D+
q | QTRR |B̄q〉 = 0 , (A.4)

where fP is the decay constant of the P− meson and F0 is the scalar form factor for
B̄q → D+

q decay as in ref. [53]. For a vector D∗+q in the final state we obtain:

〈P−D∗+q | QcbiuVLL
|B̄q〉 = + i

4fP
√
λP A

B̄q→D∗q
0 ,

〈P−D∗+q | QcbiuVRR
|B̄q〉 = + i

4fP
√
λP A

B̄q→D∗q
0 ,

〈P−D∗+q | QcbiuVLR
|B̄q〉 = − i4fP

√
λP A

B̄q→D∗q
0 ,

〈P−D∗+q | QuibcVLR
|B̄q〉 = − i4fP

√
λP A

B̄q→D∗q
0 ,

〈P−D∗+q | QcbiuSRL
|B̄q〉 = − i4fP

√
λP A

B̄q→D∗q
0

m2
P

(mu +mdi)(mb +mc)
,

〈P−D∗+q | QcbiuSLR
|B̄q〉 = − i4fP

√
λP A

B̄q→D∗q
0

m2
P

(mu +mdi)(mb +mc)
,

〈P−D∗+q | QcbiuSRR
|B̄q〉 = + i

4fP
√
λP A

B̄q→D∗q
0

m2
P

(mu +mdi)(mb +mc)
,

〈P−D∗+q | QuibcSRR
|B̄q〉 = + i

4fP
√
λP A

B̄q→D∗q
0

m2
P

(mu +mdi)(mb +mc)
,

〈P−D∗+q | QcbiuTRR
|B̄q〉 = 0 ,

〈P−D∗+q | QuibcTRR
|B̄q〉 = 0 , (A.5)

where A0 is the scalar form factor for B̄q → D+∗
q decay as in ref. [53], and λP = m4

Bq
+

m4
D∗q

+m4
P − 2m2

P (m2
Bq

+m2
D∗q

)− 2m2
Bq
m2
D∗q

.

LEFT RGE. Here we give the one-loop renormalization group equations for the LEFT
coefficients. We run from the bottom mass scale up to the EW scale with 5 quark flavors.
The solutions to the one-loop RGE is ~L(mb) = U(mb,mZ)~L(mZ), where the vector of EFT
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coefficients is

~L =



[LV 1,LL
ud ]21i3

[LV 8,LL
ud ]21i3

[LV 1,RR
ud ]21i3

[LV 8,RR
ud ]21i3

[LV 1,LR
uddu ]23i1

[LV 8,LR
uddu ]23i1

[LV 1,LR
uddu ]1i32

[LV 8,LR
uddu ]1i32

[LV 1,LR
ud ]21i3

[LV 8,LR
ud ]21i3

[LV 1,LR
du ]i321

[LV 8,LR
du ]i321

[LS1,RR
uddu ]23i1

[LS8,RR
uddu ]23i1

[LS1,RR
ud ]21i3

[LS8,RR
ud ]21i3

[LS1,RR
uddu ]1i32

[LS8,RR
uddu ]1i32

[LS1,RR
ud ]123i

[LS8,RR
ud ]123i



(A.6)

and, using one-loop anomalous dimensions of LEFT operators [71] implemented in Dsix-
Tools 2.0 [65, 72] we get

U(mb,mZ) =

1.03 −0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−0.47 1.18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1.03 −0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −0.47 1.18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1.03 0.13 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.57 1.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1.03 0.13 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.57 1.7 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1.02 0.13 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.57 1.68 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1.02 0.13 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.57 1.68 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1.82 −0.04 −0.44 −0.17 0 0 0 0.
0 0 0 0 0 0 0 0 0 0 0 0 −0.42 0.82 0.34 −0.13 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −0.44 −0.17 1.84 −0.04 0 0 0 0.
0 0 0 0 0 0 0 0 0 0 0 0 0.32 −0.13 −0.42 0.84 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.82 −0.04 −0.44 −0.17
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −0.42 0.82 0.34 −0.13
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −0.44 −0.17 1.84 −0.04
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.32 −0.13 −0.42 0.84


(A.7)
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SMEFT operators and matching to LEFT. The SMEFT operators relevant to this
process are

LSMEFT =
∑
i

CiOi , (A.8)

with

[O(1)
qq ]ijkl = (q̄iLγµq

j
L)(q̄kLγµqlL) , [O(3)

qq ]ijkl = (q̄iLσaγµq
j
L)(q̄kLσaγµqlL) ,

[O(1)
ud ]ijkl = (ūiRγµu

j
R)(d̄kRγµdlR) , [O(8)

ud ]ijkl = (ūiRTAγµu
j
R)(d̄kRTAγµdlR) ,

[O(1)
qd ]ijkl = (q̄iLγµq

j
L)(d̄kRγµdlR) , [O(8)

qd ]ijkl = (q̄iLTAγµq
j
L)(d̄kRTAγµdlR) ,

[O(1)
qu ]ijkl = (q̄iLγµq

j
L)(ūkRγµulR) , [O(8)

qu ]ijkl = (q̄iLTAγµq
j
L)(ūkRTAγµulR) ,

[O(1)
quqd]ijkl = (q̄iLu

j
R)(iσ2)(q̄kLdlR) , [O(8)

quqd]ijkl = (q̄iLTAu
j
R)(iσ2)(q̄kLTAdlR) . (A.9)

Tree-level matching between the LEFT and the SMEFT, in the down-quark mass basis:

[LV 1,LL
ud ]prst = VpiV

∗
rj

(
[C(1)
qq ]ijst + [C(1)

qq ]stij − [C(3)
qq ]ijst − [C(3)

qq ]stij

+ 2
Nc

([C(3)
qq ]itsj + [C(3)

qq ]sjit)
)

[LV 8,LL
ud ]prst = 4VpiV ∗rj

(
[C(3)
qq ]itsj + [C(3)

qq ]sjit
)

[LV 1,RR
ud ]prst = [C(1)

ud ]prst

[LV 8,RR
ud ]prst = [C(8)

ud ]prst

[LV 1,LR
ud ]prst = 4VpiV ∗rj [C

(1)
qd ]ijst

[LV 8,LR
ud ]prst = 4VpiV ∗rj [C

(8)
qd ]ijst

[LV 1,LR
du ]prst = [C(1)

qu ]prst

[LV 8,LR
du ]prst = [C(8)

qu ]prst (A.10)

[LV 1,LR
uddu ]prst = 0

[LV 8,LR
uddu ]prst = 0

[LS1,RR
ud ]prst = Vpi[C(1)

quqd]irst

[LS8,RR
ud ]prst = Vpi[C(8)

quqd]irst

[LS1,RR
uddu ]prst = −Vpi[C(1)

quqd]stir

[LS8,RR
uddu ]prst = −Vpi[C(8)

quqd]stir
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The SMEFT coefficients must then be RG evolved from the EW scale up to the scale at
which the heavy states are integrated out. To this aim we use DsixTools [65, 72].

As example we show the case of the diquark benchmark model, for which the only
relevant operators are [O(1)

quqd] and [O(8)
quqd]. The four coefficients contributing to the process

from the matching in eq. (B.5) and only non-vanishing couplings yL12 y
R
13 are

~C =
(
[C(1)
quqd]1123, [C(8)

quqd]1123, [C(1)
quqd]2113, [C(8)

quqd]2113
)t

. (A.11)

They evolve from mZ up to mΦ6 as ~C(mZ) = U(mZ ,mΦ6) ~C(Φ6), with

U(mZ ,MΦ6) =


1.39 −0.03 0.18 0.08
−0.2 0.92 −0.18 0.08
0.18 0.08 1.39 −0.03
−0.18 0.08 −0.2 0.92


1 TeV

,


1.67 −0.04 0.33 0.12
−0.35 0.88 −0.33 0.12
0.33 0.12 1.67 −0.04
−0.33 0.12 −0.35 0.88


5 TeV

(A.12)

where we show the evolution for two values of the diquark mass. In the case of the
scalar doublet more operators are generated and the RG evolution has been performed
using DsixTools.

B Details on the tree-level mediators

Conventions for dijet limits. Let us define here the couplings xij of a bosonic resonance
X with quark bilinears used in the dijet analysis. For a given representation of the resonance
(spin, SU(3)c) and a coupling to qiq′j , with q(′) = u, d of arbitrary flavors i, j, we define the
interaction Lagrangians as6

(0,1) : L ⊃ xij X q̄iPXq
′
j + h.c. ,

(0,3) : L ⊃ xij Xα εαβγ q̄c
β
i PXq

′γ
j + h.c. ,

(0,6) : L ⊃ xij Xm Smαβ q̄
c(α|
i PXq

′|β)
j + h.c. ,

(0,8) : L ⊃ xij XA q̄iT
APXq

′
j + h.c. ,

(1,1) : L ⊃ xij Xµ q̄iγ
µPXq

′
j (+h.c.) ,

(1,3) : L ⊃ xij Xα
µ εαβγ q̄

cβ
i γ

µPXq
′γ
j + h.c. ,

(1,6) : L ⊃ xij Xm
µ Smαβ q̄

c(α|
i γµPXq

′|β)
j + h.c. ,

(1,8) : L ⊃ xij XA
µ q̄iT

AγµPXq
′
j (+h.c.) ,

(B.1)

where the chirality projector PX can be either PL/R for left/right spinors. Also, TA are
the generators of SU(3)c, ψ(α|

i ψ
|β)
j = 1

2(ψαi ψ
β
j + ψβi ψ

α
j ), and Smαβ are the symmetric color

6Flavor matrices xij are arbitrary complex matrices unless q = q′ when xij is symmetric for scalar sextet,
anti-symmetric for scalar triplet, and Hermitian for real vector singlet and octet where +h.c. is removed
from the lagrangian.
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matrices

S1 =

 1 0 0
0 0 0
0 0 0

 , S2 = 1√
2

 0 1 0
1 0 0
0 0 0

 , S3 =

 0 0 0
0 1 0
0 0 0

 ,

S4 = 1√
2

 0 0 0
0 0 1
0 1 0

 , S5 =

 0 0 0
0 0 0
0 0 1

 , S6 = 1√
2

 0 0 1
0 0 0
1 0 0

 ,

(B.2)

which satisfy the matrices satisfy

TrSmS̄n = δmn ,
∑
m

SmαβS̄
γδ
m = 1

2(δδαδ
γ
β + δγαδ

δ
β) . (B.3)

where the conjugate matrices are given by S̄αβm = Smαβ .

Scalar color-sextet Φ6 = (6, 1, 1/3). Let us start the study of the tree-level mediators
listed in eq. (4.1) with the singlet sextet diquark Φ6 = (6,1, 1/3). This state has also been
studied in [42, 73]. The relevant interaction Lagragian is:

L ⊃ yLijΦ
αβ†
6 q̄

c,(α|
Li (iσ2)q|β)

Lj + yRijΦ
αβ†
6 ū

c(α|
Ri d

|β)
Rj + h.c. , (B.4)

where yL is an antisymmetric matrix. The components of the sextet representations are
given as Φαβ

6 ≡ SmαβΦm
6 , where m = 1, . . . , 6 and the symmetric color matrices Smαβ are

given in eq. (B.2). The conjugate representation is given by Φαβ†
6 = S̄αβm Φm∗

6 = SmαβΦm
6 .

Matching Φ6 to the SMEFT at tree-level one has [59]:

[C(1)
qq ]ijkl = [C(3)

qq ]ilkj =
yL∗ik y

L
jl

4M2
Φ6

,

[C(1)
ud ]ijkl = 2

3[C(8)
ud ]ijkl =

yRjly
R∗
ik

3M2
Φ6

,

[C(1)
quqd]ijkl = 2

3[C(8)
quqd]ijkl = 4

yLkiy
R∗
jl

3M2
Φ6

.

(B.5)

In terms of the a EFT coefficients at the mb scale:

acbαuVLL
= −4

3κ
V
RGE

∑
i 6=α; j=1,2

VciV
∗
uj

(yL∗αi yLj3)
M2

Φ6

,

acbαuVRR
= 1

3κ
V
RGE

(yR∗2α y
R
13)

M2
Φ6

,

acbαuSRR
= 2

3κ
S
RGE

∑
i 6=α

Vci
yL∗αi y

R
13

M2
Φ6

,

auαbcSRR
= −2

3κ
S
RGE

∑
i=2,3

Vui
yL∗i3 y

R
2α

M2
Φ6

,

(B.6)

where we already imposed that yL is antisymmetric and κV,SRGE describe the effect of RGE
from mΦ6 to mb. For instance κSRGE ≈ 1.65 (1.85) for mΦ6 = 1 (5) TeV.
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Scalar color-triplet Φ3 = (3̄, 1, 1/3). The interaction Lagragian to SM quarks is:7

LΦ3 ⊃ y
qq
ij εαβγΦα

3 q̄
β
Li(iσ2)qc γLj + yduij εαβγΦα

3 d̄
β
Riu

c γ
Rj + h.c. , (B.7)

where yqqij is a symmetric matrix. Matching to the Φ3 to the SMEFT at tree-level one
has [59]:

[C(1)
qq ]ijkl = −[C(3)

qq ]ilkj =
yqqik y

qq∗
lj

2M2
Φ3

,

[C(1)
ud ]ijkl = −1

3[C(8)
ud ]ijkl =

yduki y
du∗
lj

3M2
Φ3

,

[C(1)
quqd]ijkl = −1

3[C(8)
quqd]ijkl = 4

yqqkiy
du∗
lj

3M2
Φ3

.

(B.8)

No ∆F = 2 processes are generated at tree-level. In terms of the a’s coefficients, one has
(keeping into account the symmetricity of yqq):

acbαuVLL
= −4

3κ
VLL
RGEVciV

∗
uj

yqq∗j3 y
qq
iα

M2
Φ3

,

acbαuSRR
= −2

3κ
S
RGEVci

ydu∗31 yqqiα
M2

Φ3

,

acbαuSLL
= −2

3κ
S
RGEVui

ydu∗α2 y
qq
i3

M2
Φ3

,

(B.9)

where κVLLRGE ≈ 1.56 and κSRGE ≈ 4.02 for MΦ3 = 1 TeV. We consider two possible coupling
structures to fit the anomaly.

1) Benchmark VLL — Setting ydu = 0, we only generate the aVLL coefficients. To
minimise the impact of dijet bounds we must avoid a strong CKM suppression in the
low-energy coefficients. This can be achieved with three non-vanishing couplings:

acbduVLL
= −1.98y

qq∗
13 y

qq
12

M2
Φ3

≈ 0.23Vud
TeV2 , acbsuVLL

= −1.98yqq∗13 y
qq
22 + 0.46yqq∗13 y

qq
21

M2
Φ3

≈ 0.24Vus
TeV2 .

(B.10)
Note that the coupling to third generation yqq13 induces a decay of Φ3 to tops, which
will put a constraint on the model even stronger than the dijet one.

2) Benchmark SRR — If the only non-zero RH coupling is ydu31 , then acbαuSLL
= 0 and we

could get a good fit via the aSRR coefficients. A strong CKM suppression is avoided
with the couplings:

acbduSRR
= −2.6y

qq
12y

du∗
31

M2
Φ3

≈ 0.26Vud
TeV2 , acbsuSRR

= (−2.6yqq22 + 0.60yqq12)ydu∗31
M2

Φ3

≈ 0.31Vus
TeV2 .

(B.11)
7This state could also potentially couple to quarks and leptons, as a leptoquark [59]. Allowing for such

couplings, together with the diquark ones, would induce proton decay. To avoid this we must thus assign
baryon number B(Φ3) = 2/3 and impose at least B conservation.
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The best-fit for the anomalies is obtained for yqq22 ≈ 0.50yqq12. In this scenario the cou-
pling to the top quark is suppressed by Vts, strongly reducing the relative branching
ratio and thus the corresponding constraints. It is thus more favorable than the VLL
benchmark.

Scalar color-triplet Ψ3 = (3̄, 3, 1/3). This scalar couples to quarks as

LΨ3 ⊃ y
qq
ij εαβγΨAα

3 q̄βLiσ
A(iσ2)qc γLj + h.c. , (B.12)

where yqqij is an antisymmetric matrix. The SMEFT coefficients generated integrating out
this state at tree-level are [59]:

[C(1)
qq ]ijkl = 3[C(3)

qq ]ijkl = 3
yqqkiy

qq∗
lj

2M2
Ψ3

. (B.13)

No ∆F = 2 processes are generated at tree-level, since Φ3 couples up to down quarks only.
A potentially good benchmark to fit the anomaly is with two non-vanishing couplings yqq12
and yqq23, giving:

acbduVLL
= 4

3κ
VLL
RGEV

∗
usVcs

yqq∗23 y
qq
12

M2
Ψ3

, acbsuVLL
= 4

3κ
VLL
RGEV

∗
us

yqq∗23 (−Vcdyqq12 + Vcby
qq
23)

M2
Ψ3

. (B.14)

This setup is analogous to the VLL benchmark of Φ3, including a decay to top quarks
induced by yqq23. They share a similar phenomenology, except for the fact that the weak-
triplet has a stronger constraint from pair-production of dijet resonances, see section 2.1.
For these reasons we do not consider this model further.

Scalar color-singlet Φ1 = (1, 2, 1/2). This scalar has the same quantum numbers
as the SM Higgs. To avoid potentially very strong constraints while at the same time
being able to fit the observed low-energy anomaly we must avoid that this state mixes too
strongly with the SM Higgs and that it takes a non-zero vacuum expectation value. This
can be achieved by appropriately tuning the scalar potential.

The Yukawa couplings to quarks are

LYuk
Φ1 = yqdij Φ†1d̄iRq

j
L + yquij Φ†1εq̄iLu

j
R + h.c., (B.15)

Matching at tree-level to the SMEFT, the Yukawa couplings induce the following coeffi-
cients [59]:

[C(1)
quqd]ijkl = −

yquij y
dq∗
lk

M2
Φ1

,

[C(1)
qd ]ijkl = 1

6[C(8)
qd ]ijkl = −1

6
ydq∗li ydqkj
M2

Φ1

,

[C(1)
qu ]ijkl = 1

6[C(8)
qu ]ijkl = −1

6
yqu∗jk y

qu
il

M2
Φ1

.

(B.16)

While in general the neutral component can induce meson mixing at tree-level, this can be
avoided by a suitable alignment of the couplings. The two benchmarks we consider, and
the corresponding matching to the low-energy EFT, are discussed in section 4.2.
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Scalar color-octet Φ8 = (8, 2, 1/2). This state has the same electroweak quantum
numbers as the SM Higgs, but it is in the adjoint representation of SU(3)c. It contains a
neutral component that can potentially mediate meson mixing at tree-level. The interaction
Lagrangian is

LΦ8 ⊃ y
qu
ij ΦA†

8 iσ2q̄
T
LiT

AuRj + ydqij ΦA†
8 d̄RiT

AqLj + h.c. , (B.17)
Matching to the SMEFT at tree-level one has [59]:

[C(8)
quqd]ijkl = −

ydq∗lk yquij
M2

Φ8

,

[C(1)
qd ]ijkl = −4

3[C(8)
qd ]ijkl = −2

9
ydq∗li ydqkj
M2

Φ8

,

[C(1)
qu ]ijkl = −4

3[C(8)
qu ]ijkl = −2

9
yqu∗jk y

qu
il

M2
Φ8

.

(B.18)

The low-energy EFT coefficients relevant for a successful fit to the anomaly are given by

acbαuSRR
= 2

9κ
S
RGE

ydq∗bα Vciy
qu
iu

M2
Φ8

, (B.19)

where α = 1, 2 and κSRGE = 1.98(2.27) for a mass of 1TeV (5TeV). To minimise CKM
suppression and the effect of the dijet constraints one can consider the following non-
vanishing couplings: ydq31, y

dq
32, and y

qu
21 . With this choice there is no contribution to meson

mixing at tree level.

Vectors Q3 = (3, 2, 1/6) and Q6 = (6̄, 2, 1/6). The colored vectors Q3 and Q6
couple to SM quarks as

LQ ⊃ gQ3
ij Q

µ†
3 εABC d̄

B
Riγµ(iσ2)qcC)

Lj + 1
2g
Q6
ij Q

ABµ†
6 d̄

(A|
Ri γµ(iσ2)qc|B)

Lj + h.c. (B.20)

Matching to the SMEFT at tree-level one has [59], for Q3

[C(1)
qd ]ijkl = −1

3[C(8)
qd ]ijkl = 2

3
gQ3
ki g

Q3∗
lj

M2
Q3

, (B.21)

and for the Q6

[C(1)
qd ]ijkl = 2

3[C(8)
qd ]ijkl = 2

3
gQ6
ki g

Q6∗
lj

M2
Q6

, (B.22)

In terms of the low-energy EFT coefficients we have

acbαuSRL
= 4

3κ
S
RGEV

∗
uiVcj

(
gQ3∗

3i gQ3
αj

M2
Q3

−
gQ6∗

3i gQ6
αj

M2
Q6

)
, (B.23)

where κSRGE ≈ 2.23 for a UV mass scale of 1TeV. The two states give the same contribution,
up to a change of sign for one coupling, so we can focus on Q3 since it has weaker bounds
from QCD pair production. The combination with less CKM suppression is obtained with
these three couplings only: gQ3,dq

31 , gQ3,dq
12 , and gQ3,dq

22 :

acbduSRL
= 2.8VcsV ∗ud

M2
Q3

gQ3∗
31 gQ3

12 ≈ −
0.26Vud
TeV2 , acbsuSRL

= 2.8VcsV ∗ud
M2
Q3

gQ3∗
31 gQ3

22 ≈ −
0.31Vus
TeV2 . (B.24)

To fit the anomaly we take gQ3
22 = gQ3

12 V
∗
us/V

∗
ud.
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t t

Figure 8. Diagrams inducing ∆F = 2 processes in the sextet diquark model. The dashed line
represents the Φ6 propagator.

C Flavor constraints on the scalar sextet Φ6

Let us now discuss possible constraints from low-energy processes on the solution to the
anomaly obtained in the main text.

∆F = 2. Since the electric charge of Φ6 is 1/3, no ∆F = 2 processes are generated
at tree-level. However, meson mixing can arise at the loop level via the diagrams shown
schematically in figure 8. The boxes with two Φ6 propagators are proportional to the
structure (yLyL†) or (yRyR†). Given the effective Hamiltonian for down-quark ∆F = 2
processes,

H∆F=2 ⊃C
qiqj
V LL

(
q̄iLγµq

j
L

)2
+ C

qiqj
V RR

(
q̄iRγµq

j
R

)2

+ C
qiqj
LR1

(
q̄iLγµq

j
L

) (
q̄iRγ

µqjR

)
+ C

qiqj
LR2

(
q̄iRq

j
L

) (
q̄iLq

j
R

)
,

(C.1)

where q = u, d and color is always contracted within the same current. Integrating out the
diquark at one-loop level at the UV mass scale one has [73]:

C
didj
V LL ≈

3(y†LyL)2
ij

16π2M2
Φ6

− (V y∗L)3i(V ∗yL)3j(V ∗tiVtj)
8π2M2

Φ6

(
2m

2
W

v2 0.56 + m4
t

v4 1.48
)
,

C
didj
V RR =

3(y†RyR)2
ij

256π2M2
Φ6

,

C
didj
LR1 ≈

(y†LyL)ij(y†RyR)ij
64π2M2

Φ6

− (y†RyR)ij(V ∗tiVtj)
32π2M2

Φ6

(
m2
Wm

2
t

v4 1.48 + m2
t

v2 1.67
)
,

C
didj
LR2 ≈ −

10(y†LyL)ij(y†RyR)ij
64π2M2

Φ6

+ (y†RyR)ij(V ∗tiVtj)
32π2M2

Φ6

(
m2
Wm

2
t

v4 1.48 + m2
t

v2 1.67
)
, (C.2)
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Figure 9. 95% CL limit on yL12 from meson mixing (red), K+ → π+νν (purple), and (ε′/ε) (blue),
as a function of the diquark mass.

C
uiuj
V LL ≈

3(V y∗LyTLV †)2
ij

16π2M2
Φ6

,

C
uiuj
V RR =

3(y∗RyTR)2
ij

256π2M2
Φ6

,

C
uiuj
LR1 ≈

(V y∗LyTLV †)ij(y∗RyTR)ij
64π2M2

Φ6

,

C
uiuj
LR2 ≈ −

10(V y∗LyTLV †)ij(y∗RyTR)ij
64π2M2

Φ6

. (C.3)

Concerning the Wilson coefficient CdidjV LL, the loop functions for the mixed W − Φ6 contri-
butions have been computed explicitly, yielding

C
didj
V LL

∣∣∣∣
W−Φ6

= − (Nc − 1)(V y∗L)3i(V ∗yL)3j(V ∗tiVtj)
16π2

m2
W

v2 m2
t

×
[ 1

(m2
t −M2)(m2

t −m2
W )

+ m2
t

(m2
t −M2)2(M2 −m2

W )
log

(
M2

m2
t

)

+ m2
t

(m2
t −m2

W )2(M2 −m2
W )

log
(
m2
t

m2
W

)]
(C.4)

The effect of the RGE from the diquark to the electroweak scale is mainly due to the
QCD anomalous dimension. The CqiqjV LL operators are rescaled by the factor η6/21, where
η = αs(MΦ6)/αs(mt). The other anomalous dimensions are well known and can be seen
also in [73].

Particularly dangerous for a possible solution to the anomaly are the contributions
from the left-handed coupling yL. A way to avoid them is to require that (yLyL†) =
diag(x, x, y), which is indeed realised by the coupling structure fixed in eq. (4.4), which
gives (yLyL†) = diag(|yL12|2, |yL12|2, 0).
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With this choice, the two diquark boxes in the top row of figure 8 give zero contribution
to Kaon and Bd/s-mixing, while a strongly CKM-suppressed contribution to D-mixing.
The box with the W boson shown in the bottom row of figure 8 gives a non-vanishing
contribution only to Kaon mixing, which is also strongly CKM suppressed:

CsdV LL[MΦ6 ] = |y
L
12|2(V ∗tsVtd)2

8π2M2
Φ6

(
2m

2
W

v2 0.56 + m4
t

v4 1.48
)
,

CcuV LL[MΦ6 ] = −3|yL12|4(VcbV ∗ub)2

16π2M2
Φ6

.

(C.5)

Taking the low-energy matrix elements from [74] and the constraints from UTFit [75],8 we
get the limit on yL12 as a function of the diquark mass as shown as a red line in figure 9.
This bound is reported as an upper limit on the product yL∗12 y

R
13 as a function of mΦ6 of

figure 5 by setting yR13 to either its maximal possible value from perturbativity or to be
equal to yL12.

K+ → π+νν. The golden-channel Kaon decay can be described by the effective Hamil-
tonian [76]

Heff ⊃
GFV

∗
tsVtd√
2

α

π
CLνα(s̄LγµdL)(ν̄αγµ(1− γ5)να) + h.c. , (C.6)

where α = 1, 2, 3 is the neutrino flavor and we do not consider lepton flavor violation. The
SM contribution is given by

CL,SM
να = − 1

s2
W

(
Xt + V ∗csVcd

V ∗tsVtd
Xα
c

)
, (C.7)

where Xt ≈ 1.48, Xe
c = Xµ

c ≈ 1.053 × 10−3, and Xτ
c ≈ 0.711 × 10−3. The diquark

contribution is lepton flavor universal and is given by [73]

CL,Φ6
ν = 1

2s2
W

v2(V y∗L)32(V ∗yL)31
m2
WV

∗
tsVtd

IZ

(
m2
t

M2
Φ6

)
, (C.8)

where the loop function is

IZ(yt) = − yt
1− yt

− yt log yt
(1− yt)2 . (C.9)

The branching ratio is given by

Br(K+ → π+νν) = 2Br(K+ → π+νeνe)SM

∣∣∣∣∣1 + CL,Φ6
ν

CL,SM
νe

∣∣∣∣∣
2

+ Br(K+ → π+ντντ )SM

∣∣∣∣∣1 + CL,Φ6
ν

CL,SM
ντ

∣∣∣∣∣
2

, (C.10)

where Br(K+ → π+νeνe)SM = 3.06×10−11 and Br(K+ → π+ντντ )SM = 2.52×10−11. The
most recent measurement from NA62 is [77]9

Br(K+ → π+νν) = (11.0 +4.0
−3.5)× 10−11 (C.11)

The limit on yL12 as a function of the diquark mass is shown as a purple line in figure 9.
8We use the updated results shown by L. Silvestrini at the La Thuile conference in 2018.
9NA62 results on K+ → π+νν have been updated in a presentation at the ICHEP2020 conference.
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ε′/ε. The decay amplitude s → duū is induced at tree-level in our setup, the imaginary
part is strongly constrained by the direct CP violation effects in ε′/ε. A general master
formula of ε′/ε in terms of EFT coefficients evaluated at the EW scale has been obtained
in ref. [78]. With the active couplings yL12 and yR13, the relevant operators are the purely
left-handed vector-vector ones. In the notation of [78] one has

(ε′/ε)BSM =
∑

ui=u,c

(
P uiV LLIm [CuiV LL] + P̃ qV LLIm

[
C̃qV LL

])
, (C.12)

where the numerical coefficients are P uV LL ≈ −4.3, P̃ uV LL ≈ 1.5, P cV LL ≈ 0.7, and P̃ cV LL ≈
0.2. The rotation to the LEFT operator basis in eq. (A.1) is given by

NCuiV LL = [LV 1LL
ud ]ii21 −

1
6[LV 8LL

ud ]ii21 ,

N C̃uiV LL = 1
2[LV 8LL

ud ]ii21 ,
(C.13)

where N = (1 TeV)−2. Matching to the SMEFT, eq. (A.10), and then to the diquark
model using eq. (B.5) and keeping only yL12 we get:

(ε′/ε)BSM ≈ 1.3× 10−4 |yL12|2

M2
Φ6
/ TeV2 , (C.14)

where the phase is only due to the CKM. Using the approximate upper bound for the BSM
contribution of (ε′/ε)BSM . 10 × 10−4 we get the constraint shown in figure 9 as a blue
line, which is weaker than those discussed above.

D Flavor constraints on the colorless scalar Φ1

We discuss possible constraints from low-energy processes for the Φ1. In particular, we
focus on a specific benchmark point for the solution of the anomaly: MΦ1 ∼ mt, yd3 ∼ 0.6
and yd2 = yd1 ∼ 0.17.

∆F = 2. The scalar Φ1 generates contributions to neutral meson mixing at loop level
through box diagrams. In the notation of eq. (C.1), only the Wilson coefficients CqiqjV RR and
C
qiqj
LR2

are non-zero. Using the results in refs. [79, 80] we get

C
qiqj
V RR = 1

128π2M2
Φ1

(VtiV ∗tj)2(yd∗j )2(ydi )2ytI1(yt) , (D.1)

C
qiqj
LR2

= 1
16
√

2π2M2
Φ1

GFm
2
W (VtiV ∗tj)2(yd∗j )(ydi )F (yt, xt) , (D.2)

where yq = m2
q/M

2
Φ1
, xq = m2

q/m
2
w. Using our benchmark point and the expression of the

loop functions in refs. [79, 80], we have I1(1) = 1/3 and F (1, xt) = 8.09. We use the low-
energy matrix elements from [74], finding that our results for this scenario are compatible
with the current limits by UTFit [75] in both the Bd and Bs cases. Similar conclusions can
be drawn in the case of neutral K and D mixings.
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Z → bb̄. The contributions to Z → bb̄ decays come from penguin type diagrams. In
particular, the Φ1 generates right-handed vector interactions, which yield

gRb ≡ (gRb )SM −
(yd3)2

32π2

[
f1(yt) + αs

3πf2(yt)
]
. (D.3)

The loop functions f1(yt) and f2(yt) are reported in refs. [80, 81] and in our benchmark
point they assume the values f1(1) = 1/2 and f2(1) = −13/6. We compare with the current
value extracted by electroweak fits. In ref. [82], the fitted value of gRb = 0.0962± 0.0063 is
obtained. In this scenario, the contribution due to NP to gRb is well below the uncertainty
reported in ref. [82].

b→ s`+`−. The contributions to b→ s`+`− decays come from penguin type diagrams.
We follow the conventions for the effective low-energy Hamiltonian in ref. [83]. The Φ1
generates the NP Wilson coefficients C7′ , C9′ and C10′ , which are lepton-flavour universal.
Concerning C9′ and C10′ , using the results in [84], we get

C9′(µW ) = −C10′(µW ) = − 1
g2 sin2 θw

yd2y
d∗
3 B(yt) , (D.4)

where B(1) = −1/8 and µW = mW . At the low scale µb = mb we get

C9′(µb) = −C10′(µb) ∼ 0.13 . (D.5)

The best sensitivity to these Wilson coefficients is achieved in b→ sµ+µ− data, which show
interesting deviations w.r.t. the SM expectations. The current status is found in [85–88],
where several NP scenarios are analysed. Our predictions for C9′ and C10′ are not excluded,
but are also not able to explain the tensions in b→ sµ+µ− data.

The Φ1 generates also dipole operators and in particular O7′ receives mb enhanced
contributions. Following [89], we get

C7′(µW ) = −1
2y

d
2y
d
3
v2

M2
Φ1

[2
3F1(yt) + F2(yt)

]
, (D.6)

where F1(yt) = F2(yt)→ 1/24. The RGE evolution of C7′ is the same as for C7. At the low
scale µb = mb and at leading order in QCD, we have [90]

C7′(µb)
C7(µb)

= 1.6% , (D.7)

which is below the current bound in ref. [91].
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