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1 Introduction

Correlation functions of local operators are among the most basic quantities of interest in
any quantum field theory, yet in most cases their evaluation is prohibitively difficult. This
state of affairs can improve in theories with additional symmetries, like conformal invariance
and/or supersymmetry. In this work we are going to study a particular instance of such
tractable correlation functions, the so-called extremal n-point functions of chiral primary
operators (CPOs) of four dimensional Lagrangian N “ 2 superconformal field theories
(SCFTs) [1]. For these correlation functions, the coupling and spacetime dependences
factorize, and the spacetime dependence is completely fixed, thus reducing the problem to
the — still very difficult — determination of the dependence on the marginal coupling.

In recent years, the study of these correlation functions has been approached from
different angles, often in combination. A first approach [2–5] uses a 4d analog of the tt˚

equations [1]. More recently, it has been shown [6, 7] that the evaluation of closely related n-
point functions on S4 can be reduced through supersymmetric localization to matrix model
computations; in turn, a Gram-Schmidt orthogonalization procedure applied to these S4

correlators yields the correlators on R4 [8–13]. Alternatively, the large R-charge limit [14]
of these correlation functions has been studied in [15–20].

In the current work, we will focus on the planar limit of some of these extremal corre-
lators. For concreteness, we will present explicit results for single-trace operators of N “ 2
SU(N) SYM with NF “ 2N massless hypermultiplets in the fundamental representation,
sometimes referred to as N “ 2 SQCD. The techniques we will use, however, can be
easily extended to any other Lagrangian N “ 2 SCFT that admits a planar limit, and
to correlation functions of multi-trace chiral operators. It was argued in [3] that extremal
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n-point functions are determined in terms of 2- and 3-point functions, so we will restrict
our attention to these. We obtain what we believe are the first known all-order analytic
expressions for coefficients in the perturbative expansion of the planar limit of these 2- and
3- point functions. En route to deriving these results, we deduce a combinatorial expres-
sion for the planar free energy of the relevant matrix model, and combinatorial expressions
for the planar 2- and 3- point functions on S4. In the rest of the introduction we briefly
sketch a summary of these results and the methods used to derive them, and point out
some possible extensions of the present work.

Four dimensional N “ 2 SCFTs theories have various subsets of distinguished operators
(see [21] for a thorough discussion on N “ 2 SCFTs short multiplets). In particular, chiral
primary operators (CPOs) are defined as being annihilated by all right chiral supercharges;
similarly, anti-chiral operators are annihilated by all left chiral supercharges. CPOs have
conformal dimension ∆ fixed by their Up1qR R-charge, ∆ “ R{2 and are SUp2qR singlets.
Anti-chiral primary operators have ∆ “ ´R{2. We will consider CPOs that are Lorentz
scalars, so they are characterized by their conformal dimension ∆. On R4, correlation
functions of CPOs and anti-CPOs can be non-zero only if the sum of their R-charges is
0. In particular, this implies that n-point functions of chiral primary operators (with no
anti-chirals) are zero. The simplest non-trivial case are the extremal correlation functions,
involving n´ 1 CPOs Oi and a single anti-chiral operator Ō

〈
O∆1px1q . . . O∆n´1pxn´1qŌ∆̄pyq

〉
“

〈
O∆1 . . . O∆n´1Ō∆̄

〉
pτ, τ̄q

|x1 ´ y|2∆1 . . . |xn´1 ´ y|2∆n´1
(1.1)

with ∆1 ` . . .∆n´1 “ ∆̄. The position-independent coefficients
〈
O∆1 . . . O∆n´1Ō∆̄

〉
pτ, τ̄q

are non-holomorphic functions of the complexified coupling τ “ 2θ
π ` i

4π
g2

YM
and their deter-

mination is the driving question for this work.
In this paper we restrict to Lagrangian SCFTs. The CPOs we will consider are single-

trace operators involving the complex scalar φ of the N “ 2 vector multiplet, Om9Tr φm.
Om has dimension ∆ “ m. In the planar limit of theories with a single gauge coupling,
extremal 2- and normalized 3- point functions on R4 are of the form

〈
OkĎOk

〉
“ k

´

λ

16π2

¯k
«

1`
8
ÿ

m“1

8
ÿ

n1,...,nm“2
akpn1, . . . ,nmqζ2n1´1 . . . ζ2nm´1

´

λ

16π2

¯n1`¨¨¨`nm

ff

(1.2)〈
Ok1Ok2Ōk1`k2

〉
n

a

k1 ¨k2 ¨pk1`k2q
“

1
N

«

1`
8
ÿ

m“1

8
ÿ

n1,...,nm“2
bk1,k2pn1, . . . ,nmqζ2n1´1 . . . ζ2nm´1

´

λ

16π2

¯n1`¨¨¨`nm

ff

(1.3)

with ζi values of the ζ function, λ “ g2
YMN the ’t Hooft coupling and akpniq and

bk1,k2pn1, . . . , nmq rational numbers. For N “ 2 SQCD, we have computed akpnq explicitly
for k “ 2, 4, 6, and the expressions we find suggest the following conjecture

xOkŌky
?
“ k

ˆ

λ

16π2

˙k
˜

1´2k
8
ÿ

n“2

ζ2n´1
n

ˆ

´λ

16π2

˙nˆ2n
n

˙„

p´1qk
ˆ

2n
n`k

˙

`

ˆ

2n
n`1

˙

´n



`. . .

¸

(1.4)
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where the dots stand for terms with products of two or more values of the ζ function.
Similarly, we have computed

〈
O2O2Ō4

〉
n
and

〈
O2O4Ō6

〉
n
and the results obtained suggest

the following conjecture for even k1, k2

xOk1Ok2Ōk1`k2yn
a

k1 ¨k2 ¨pk1`k2q

?
“

1
N

«

1´
8
ÿ

n“2

ˆ

´λ

16π2

˙n

ζ2n´1

ˆ

2n
n

˙

(1.5)

ˆˆ

2n
n`k1

˙

`

ˆ

2n
n`k2

˙

`

ˆ

2n
n`k1`k2

˙

`pn´1qpCn´2q
˙

`. . .

ff

where again the dots stand for terms with products of two or more values of the ζ function
and Cn are Catalan numbers. If we assign transcendality n to ζn and in general n1`¨ ¨ ¨`nm
to ζn1 . . . ζnm , then at every order in the planar perturbative series, our conjectures refer
to the term with maximal transcendality. The two analytic expressions we propose are
strikingly simple, and certainly simpler than the intermediate results used to arrive at
them. This suggests that there may be a more direct way to obtain them than the one
pursued in this work. We will come back to this point at the end of the introduction.

The technical tool that we have used to derive (1.4) and (1.5) is supersymmetric
localization [22]. Supersymmetric localization has produced a plethora of exact results for
supersymmetric quantum field theories in various dimensions (see [23] for a review) by
reducing the evaluation of selected observables to matrix model computations. It is thus
natural to try to apply it to the computation of chiral correlation functions. For CPOs
with ∆ “ 2, it was argued in [6] that this 2-point function can be obtained directly from
the partition function of the CFT on S4. For more general CPOs, the situation is more
complicated: it was argued in [7] that correlation functions of CPOs on S4 can be extracted
from the S4 partition function of a deformed theory. Furthermore, correlation functions
on S4 differ from those on R4; to obtain the latter from the former, one needs to apply the
Gram-Schmidt orthogonalization procedure [7].

The path described above has been followed already in a number of papers [3–5, 8–13].
The novel ingredient that we introduce in this work is an alternative way of evaluating the
free energy and correlators of the relevant matrix models, which allows us to obtain all-
order analytic expressions in the planar limit. Usually, Hermitian matrix model integrals
are solved by reducing them to a Cartan subalgebra, which reduces the number of integrals,
at the price of introducing a non-trivial Jacobian, the Vandermonde determinant. Instead,
it is possible to tackle them in the original full Lie algebra formulation, an approach that
in the context of supersymmetric localization has been pioneered in [10, 24–26]. In this
approach, the relevant matrix models for genuinely N “ 2 SCFTs can be rewritten in terms
of an action with infinitely many single and double trace terms [26–28]. Furthermore, in
the planar limit, it has been argued [27, 28] that the full perturbative series in λ for
various observables can be written in terms of a sum over tree graphs. In this work, when
applying this strategy to the relevant matrix model, the main novelty compared to [27] is
that now the single-trace terms in the matrix model action also contribute to the planar
limit, complicating the analysis. Nevertheless, the resulting expressions for the planar free
energies and correlation functions still involve sums over tree graphs.
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This work leaves open a number of questions. First, it would be completely straightfor-
ward but rather tedious to extend the computations presented here to the terms involving
a product of two values of ζ or higher in (1.2) and (1.3). In this work, we have focused on
the terms with maximal transcendality; it might be possible to find analytic formulas for
the coefficients of ofher terms with simple patterns, like those with just powers of ζ3, as
in [29]. It should also be possible to extend the analysis presented here for N “ 2 SCQD
to extremal correlators of other Lagrangian N “ 2 SCFTs [11–13, 30]. A very interesting
problem would be to prove our conjectures (1.4) and (1.5). Conceivably, a proof might just
extend our computations for arbitrary values of the conformal dimensions; after all, the
relevant ingredients are the coefficients of the correlators on S4, and the Gram-Schmidt
relation to correlation functions on R4, and both of these are known. A potentially more
illuminating proof might bypass the relation to S4 correlators, and work directly on R4.
Indeed, the factor

`

´λ
16π2

˘n `2n
n

˘ ζ2n´1
n that appears in (1.4) and (1.5) coincides with the val-

ues of a certain family of Feynman diagrams considered in closely related work [11, 12] (see
also [31]), so the form of (1.4) and (1.5) suggest that they can be proven by a combina-
torial argument, counting the ways in which those particular Feynman diagrams enter the
evaluation of

〈
OkŌk

〉
and

〈
Ok1Ok2Ōk1`k2

〉
.

The structure of the paper is the following. In section 2 we consider a Hermitian ma-
trix model with an action containing infinitely many single and double trace terms with
arbitrary coefficients; we extend the analysis of [27], and manage to write the planar free
energy and the planar 2- and 3-point functions as sums over tree graphs. In section 3 we
consider the evaluation of correlation functions of N “ 2 SCFTs on S4 through supersym-
metric localization. We argue that the relevant matrix model is a particular case of the one
considered in section 2, thus obtaining expressions for the planar 2- and 3-point functions
on S4. Finally, in section 4 we apply the Gram-Schmidt procedure to the S4 correlation
functions found in the previous section, to obtain correlation functions on R4. The ma-
nipulations become quite involved, thus preventing us from obtaining closed expressions
for the full planar 2- and 3-point functions. Nevertheless, by focusing on the terms with
a single value of ζ, we compute them for operators of small conformal dimensions, and
conjecture the formulas (1.4) and (1.5) for planar correlation functions of arbitrary single
trace CPOs.

2 Matrix model with single and double traces

One of the main technical tools that we will use in the following sections to compute
extremal correlation functions of CPOs is supersymmetric localization. As we will argue,
the resulting matrix models can be written in terms of an action involving infinitely many
single and double trace term deformations, the latter having very specific coefficients. In
this section we study this type of matrix model with arbitrary coefficients, to highlight the
generality of our arguments.

Let’s consider a Hermitian matrix model

Z “

ż

da e´
1

2gTrpa2q
e´Sint (2.1)
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where a is a Hermitian N ˆ N matrix, da is the flat measure and g is the matrix model
coupling. The interacting part of the action consists of (possibly infinitely many) single
and double trace terms,

Sint “ N
ÿ

pě3
cpTr ap `

ÿ

mn

cmnTr amTr an . (2.2)

with the coefficients cp, cmn N-independent and otherwise arbitrary. Particular examples
of this family of models have appeared in the study of two-dimensional quantum grav-
ity [32–36], and as reviewed in [37], they have also appeared in many other contexts, from
two-dimensional statistical mechanics, to three-dimensional gauge theories, or M-theory.
Without the N factor in front of the single-trace terms, they are relevant [26, 27] in the
application of supersymmetric localization to four dimensional undeformed N “ 2 super
Yang-Mills theories.

Our goals in this section are twofold: first, we will deduce the planar free energy for
this family of models, as a function of the ’t Hooft coupling and the coefficients cp, cij .
Then, in preparation for the next section, we will consider the coefficients cp as external
sources; this will allow us to obtain the planar 2- and 3-point functions of single trace
operators of the matrix model (2.2) with just double-trace terms, by taking derivatives
against the cp and then turning them off.

As shown in [37], the planar free energy of these models can be deduced recursively,
using the method of orthogonal polynomials. We will present an alternative expression
for the planar free energy as a sum over tree graphs, generalizing [27]. More specifically,
the matrix model considered in [27] was similar to (2.2), but without the power of N in
front of the single trace terms, rendering them irrelevant in the planar limit. On the other
hand, the matrix model we will encounter in the next section is precisely of the form (2.2).
Nevertheless, we will show that the resulting planar free energy can still be written as a
sum over tree graphs, albeit a more complicated one.

To study the planar limit of (2.2), start by defining the matrix model ’t Hooft coupling
by λ̃ “ gN.1 In the large N limit, the free energy of the matrix model admits an expansion
of the form

Fpλ̃, Nq “ ´ log Z “ ´

8
ÿ

m“1

p´1qm`1

m

˜

8
ÿ

k“1

1
k!
〈
p´Sintq

k
〉¸m

“ F0pλ̃qN
2 ` ¨ ¨ ¨ , (2.3)

where the N2 contribution is given by the planar free energy F0pλ̃q. At a given order we
will have all the possible factorizations of a general correlator of the form xSminty, thus the
terms contributing to the planar free energy will be those that scale as N2 and survive
all the cancellations arising from the logarithm. We wish then to characterize this set of
terms. In particular, let’s consider a term with m´ k single traces and k double trace; its
contribution is of the form

Nm´kxTr ap1 . . .Tr apm´kTr am1Tr an1 . . .Tr amkTr anky, (2.4)
1This matrix model ’t Hooft coupling λ̃ differs by a constant from the Yang-Mills ’t Hooft coupling

λ “ 16π2λ̃, to be introduced in the next section.
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Since the planar free energy scales like N2, we want to extract the part of the correlator that
scales like N2´m`k. Consider a contribution given by the product of s connected correlators
of sizes r1, . . . , rs. This product scales like N2s´pr1`¨¨¨`rsq, and since r1 ` ¨ ¨ ¨ ` rs “ m` k,
we find that s “ k ` 1.

We have learned that when there are k double traces in xSmy, the terms that scale as
N2 are products of k` 1 connected correlators. As in [27], we can associate a graph to this
product of connected correlators, with one vertex per correlator and one edge per double
trace. Not all these terms contribute to the free energy, they must survive the logarithm.
The argument from [27] still goes through, and the terms that survive are those whose
graph is a tree, see [27] for the details of the argument.

However, there are various differences with respect to the case of a potential with just
double traces. Now at order xSmy we must consider trees with 0 ď k ď m edges. The
case k “ 0 corresponds to the connected correlator of just single traces; the term k “ m

corresponds to the case with just double traces. So, for fixed k, we must sum over all the
ways to distribute the m ´ k single traces in the k ` 1 correlators. More explicitly, the
planar Free Energy for the family of theories such as (2.2) is given by2

F “

8
ÿ

m“1

p´1qm

m!

m
ÿ

k“0

ˆ

m

k

˙

ÿ

p1,...,pm´k

cp1 . . . cpm´k
ÿ

i1,...,ik
j1,...,jk

ci1j1 . . . cikjk

ÿ

directed trees with
k labeled edges

ÿ

single trace
insertions

k`1
ź

i“1
Vi

(2.5)

where Vi is the planar connected correlator on the i-th vertex on the tree, that contains
the following operators: tr ais if the directed edge labelled s leaves that vertex; tr ajs if
the directed edge labelled s arrives at that vertex; any single trace operators inserted on
that vertex.

It is worth comparing this result with the one obtained in [27], valid for potentials
with only double trace contributions in the large N limit. First, as already mentioned,
now the sum at order m involves trees with k ď m edges. Second, in the case of just
double-trace terms in the action, it is easy to argue [27] that double traces of odd powers
don’t contribute to the planar limit. The argument was based on the fact that a planar
connected correlator must involve an even number of odd powers. However, the argument
doesn’t apply now, because the single traces in (2.2) can also have odd powers. So (2.5)
includes also contributions coming from double traces of odd powers.

We have succeeded in writing the planar free energy as a sum over products of planar
connected correlators of the free Gaussian model. To proceed, we need the explicit form
of these planar connected correlators. They are known in some cases, but not all. For an
arbitrary n-point function of even-power operators [38, 39]

xTra2k1 ¨ ¨ ¨Tra2knyc “ λ̃d
pd´ 1q!

pd´ n` 2q!

n
ź

i“1

p2kiq!
ki!pki ´ 1q!N

2´n (2.6)

2Note that we are not including the free energy of the Gaussian model in this expression.
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where d “
ř

ki. Let us introduce some notation for the numerical coefficients

Vpk1, ¨ ¨ ¨ , knq “
pd´ 1q!

pd´ n` 2q!

n
ź

i“1

p2kiq!
ki!pki ´ 1q! . (2.7)

The planar 2-point function of odd operators is

xTra2k1`1Tra2k2`1yc “
λ̃k1`k2`1

k1 ` k2 ` 1
p2k1 ` 1q!
pk1!q2

p2k2 ` 1q!
pk2!q2 (2.8)

A general formula is also known for the case of correlators involving and arbitrary number
of even operators with two odd insertions [38, 39]. Finding the generalization to more than
two odd insertions is an interesting open question.

As a check of (2.5), consider the expansion up to m “ 2 in the case of just even traces

F “´
ÿ

p

c2p
p2pq!

pp`1q!p! λ̃
p´

ÿ

ij

c2i2j
p2iq!p2jq!

pi`1q!i!pj`1q!j! λ̃
i`j`

1
2
ÿ

p,q

c2p c2q
p`q

p2pq!p2qq!
pp´1q!p!pq´1q!q! λ̃

p`q

`2
ÿ

p

ÿ

ij

c2p c2i2j
p`i

p2pq!
pp´1q!p!

p2iq!
pi´1q!i!

p2jq!
pj`1q!j! λ̃

p`i`j

`2
ÿ

i,j,k,l

c2i,2j c2k,2l
j`k

p2iq!
pi`1q!i

p2jq
pj´1q!j!

p2kq!
pk´1q!k!

p2lq!
pl`1q!l! λ̃

i`j`k`l`. . . (2.9)

this model is now the one in appendix B of [37] and the expression above reproduces all
the relevant terms in [37].

2.1 2- and 3-point functions

In preparation for the next section, we now compute the planar 2- and 3- point functions
of the matrix model with interaction terms (2.2). Note that the expression (2.5) contains
a sum over directed trees with k labeled edges and by taking a derivative with respect to
any coupling we are selecting from the sum the trees that contain, in one of the vertices,
an insertion of the operator associated to the aforementioned coupling. This distinguishes
one of the vertices from the rest, turning the tree into a rooted tree, where the root vertex
indicates the correlator that contains the selected operator. In the case of higher point
functions we will have as many roots as operators we wish to consider, while bearing in
mind that we can have multiple roots in the same vertex of the tree.3

Let us be more explicit for the correlation functions that we are interested in. For
2-point functions (2.5) reduces to

xTrapTraqy “
8
ÿ

m“0

p´1qm

m!
ÿ

i1,...,im
j1,...,jm

ci1j1 ¨ ¨ ¨ cimjm
ÿ

double rooted
directed trees

with m labeled edges

m`1
ź

i“1
Vi , (2.10)

with the understanding that the tree with m “ 0 edges is just a single vertex, corresponding
to the connected Gaussian two-point function, xTrapTraqyc. The two distinguished vertices

3This is similar to a coloring of a given tree, but in that case it is not possible to paint the same vertex
with multiple different colors.
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— roots — of the tree correspond to the insertions of Tr ap and Tr aq (they can be inserted
in the same vertex). The derivation of this formula guarantees its validity for p ą 2, q ą 2,
but it is possible to check that it is also valid for p “ 2 and/or q “ 2 by using this relation

xTra2Tra2k2 . . .Tra2knyc “
2
N λ̃

2Bλ̃xTra
2k2 . . .Tra2knyc (2.11)

which follows from (2.6). To illustrate (2.10), let’s compute the first terms. We as-
sume that cpq “ cqp. In the even-even case,

〈
Tra2mTra2n〉 the first non-trivial con-

tribution comes from two types of products of planar connected Gaussian correlators:〈
Tra2mTra2nTra2p〉

c

〈
Tra2q〉, and 〈Tra2mTra2p〉

c

〈
Tra2qTra2n〉

c. Both types of products cor-
respond to a tree with a single edge and two vertices; in the first case, the two single trace
operators are both inserted in the same vertex, and in the second case, each single trace
operator in inserted in a different vertex. All in all,〈
Tra2mTra2n

〉
“

1
m` n

p2mq!
pm´ 1q!m!

p2nq!
pn´ 1q!n! λ̃

m`n (2.12)

´ 2
ÿ

p,q

c2p,2q
λ̃p`q`n`mp2pq!p2qq!p2mq!p2nq!

p!pp´ 1q!q!pq ´ 1q!m!pm´ 1q!n!pn´ 1q!

ˆ

1
pp` 1qp `

1
pp` nqpq `mq

˙

` ¨ ¨ ¨

The odd-odd two-point function works similarly, with the difference that now when both
single trace insertions are in different correlators, the double trace must be odd-odd, and
if they are in the same correlator, the double-trace must be even-even,〈
Tra2m`1Tra2n`1

〉
“
λ̃m`n`1

m`n`1
p2m`1q!p2n`1q!
pm!q2pn!q2

´2λ̃m`n`1 p2m`1q!p2n`1q!
n!2m!2

ÿ

ij

˜

c2i`1,2j`1
λ̃i`j`1p2i`1q!p2j`1q!

pm`i`1qpi!q2pn`j`1qpj!q2

`c2i,2j
λ̃i`jp2iq!p2jq!

pi!qpi´1q!pj`1q!j!

¸

`¨¨ ¨ (2.13)

In the case of 3-point functions we have

xTrapTraqTraly “ N´1
8
ÿ

m“0

p´1qm

m!
ÿ

i1,...,im
j1,...,jm

ci1j1 ¨ ¨ ¨ cimjm
ÿ

triple rooted
directed trees

with m labeled edges

m`1
ź

i“1
Vi (2.14)

This formula applies to the two non-trivial cases: three even powers, and two odd powers
and an even one. Let’s illustrate it with the first case,

xTra2pTra2qTra2ly “ N´1 p2pq!p2qq!p2lq!
p!pp´ 1q!q!pq ´ 1q!l!pl ´ 1q! λ̃

p`q`l (2.15)
«

1´ 2
ÿ

ij

c2i,2j λ̃
i`j p2iq!p2jq!

i!pi´ 1q!j!pj ´ 1q!

ˆ

p` q ` l ` i´ 1
pj ` 1qj `

1
p` j

`
1

q ` j
`

1
l ` j

˙

` . . .

ff

In the next section, we will evaluate these generic expressions for the specific matrix
model of N “ 2 SQCD. As we will see, they reproduce and generalize known results [12],
thus providing a non-trivial check of their validity.
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3 Chiral correlators on S4

In this section we derive planar 2- and 3- point functions of single-trace chiral primary
operators of N “ 2 SQCD on S4, using the results derived in the previous section.

Let us first quickly recall some basic facts about 4d N “ 2 SCFT theories and their
chiral primary operators [21]. The generators of the superconformal algebra are given by the
bosonic generators Pµ,Kµ,Mµν , D, the supercharges Qaα, Q̄a9α, its superconformal partners
Saα, S̄

a
9α and the generators of the SUp2qˆUp1q R-symmetry. Highest weight representations

are labelled by the quantum numbers p∆; jl, jr; s;Rq of the highest weight state under
dilatations, the Lorentz group and the SU2q ˆ Up1q R-symmetry group. These highest
weight states are created by superconfornal primary operators, annihilated by all Saα, S̄a9α.

Among all of the superconformal primaries, there exists an interesting class given by
the ones that are chiral, defined as rQ̄a9α, Os “ 0. CPOs have jr “ s “ 0 and ∆ “ R{2.
For Lagrangian SCFTs, one can further argue that jl “ 0, so they are Lorentz scalars [40].
Anti-chiral primary operators Ō are similarly defined, and satisfy ∆ “ ´R{2. We will
denote chiral operators on S4 by Ω, reserving O for chiral operators on R4.

3.1 N “ 2 SCFTs on S4

It is possible to place any N “ 2 SCFT on S4. Supersymmetric regularization of the
resulting divergences implies that the theory preserves a subalgebra ospp2|4q of the flat
space supersymmetry algebra [41]. In particular, the flat space Up1qR symmetry is broken
on S4 [41]. As a consequence, there is no Up1qR selection rule for correlation functions on
S4: one-point functions are not vanishing, and similarly, two-point functions of operators
of different dimension can also be non-zero. In [6] it was shown that the partition function
on S4 can be identified with the Kähler potential for the Zamolodchikov metric of the
conformal manifold of the theory. Thus, the two-point function of CPOs with ∆ “ 2 can
be obtained by taking derivatives of this partition function on S4.

Supersymmetric localization allows to evaluate efficiently this partition function, and
consequently this very particular two-point function of CPOs, by reducing it to a matrix
model integral [22],

ZS4pτYMq “

ż

da e
´ 8π2
g2

YM
Trpa2q

Z1´looppaq |Zinstpa, τq|
2 (3.1)

where Z1´loop a factor arising from a 1-loop computation and Zinst is the instanton con-
tribution, that it is usually assumed to be negligible in the large N limit.

These results were extended in [7], where a method to exactly compute correlation
functions of chiral primary operators on S4 was developed. The starting point is to consider
a deformation of the theory on S4 that involves new couplings, one per generator of the
chiral ring of the theory. This deformed SCFT still preserves ospp2|4q. It was argued
in [7] that extremal correlators on S4 of the undeformed theory can be obtained by taking
derivatives of the partition function of the deformed theory.

Again, supersymmetric localization allows to efficiently evaluated this new partition
function, and thus arbitrary extremal correlators. Indeed, it was proven in [7] that the
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deformed partition function can be obtained from a matrix model integral of the form

ZS4 “

ż

da |ei
řm
n“1 π

n{2τnTrpanq|2Z1´looppaq |Zinstpa, τ, τnq|
2 (3.2)

with τn a holomorphic coupling and τ2 “ τYM “ θ
2π `

4πi
g2 . Note that the 1-loop partition

function does not depend on the new couplings τn, but the instanton partition function
does. The key point is that correlation functions of chiral operators on S4 are given by
correlation functions of this matrix model,

〈ΩpΩq〉S4 “ 〈TrapTraq〉MM (3.3)

and similarly for higher n-point functions. This fixes the normalization of the CPOs.
In this work, we focus on the large N limit of these correlators, and that implies a

number of simplifications: first, we can restrict the terms we add to the action to single-
trace CPOs; second, we will neglect the instanton contribution, setting Zinstpa, τ, τnq “ 1.
We thus rewrite the deformation as

S “ ´i
m
ÿ

n“2
π
n
2 pτn ´ τ̄nqTran “

8π2

g2 Tra2 ´ i
m
ÿ

n“3
π
n
2 pτn ´ τ̄nqTran , (3.4)

where now we can identify g “ g2
YM

16π2 and we recognize the single trace deformation to be
the one in (2.2). Following [10, 25–27] it is possible to rewrite Z1´loop “ e´Sint , with Sint
given by a sum of single and double trace terms. For N “ 2 SQCD

Sint“
8
ÿ

n“2

ζp2n´1qp´1qn

n

«

n´1
ÿ

k“1

ˆ

2n
2k

˙

Tra2pn´kqTra2k´
n´2
ÿ

k“1

ˆ

2n
2k`1

˙

Tra2pn´kq´1Tra2k`1

ff

,

(3.5)
To sum up, the deformation of the N “ 2 SCFT, together with the rewriting of the 1-loop
determinant as an effective action, show that the relevant matrix model is of the type (2.2)
analyzed in the previous section.

3.2 Chiral correlators in N “ 4

As a warm-up, let’s first recover the planar chiral 2- and 3- point functions of N “ 4 SUpNq
SYM on S4 with our techniques. In this case, supersymmetric localization reduces to the
Gaussian matrix model, since the one-loop and the instanton contributions are trivial,
Z1´loop “ 1, Zinst “ 1. Thus, the planar 2- and 3-point functions on S4 are just particular
cases of (2.6) and (2.8). Recalling the relation 16π2λ̃ “ λ between the matrix model and
the Yang-Mills ’t Hooft couplings, we have

〈Ω2nΩ2m〉 “
ˆ

λ

16π2

˙n`m 1
n`m

p2mq!
m!pm´ 1q!

p2nq!
n!pn´ 1q!

〈Ω2n`1Ω2m`1〉 “
ˆ

λ

16π2

˙m`n`1 1
m` n` 1

p2m` 1q!
pm!q2

p2n` 1q!
pn!q2 (3.6)

〈Ω2mΩ2nΩ2p〉 “
ˆ

λ

16π2

˙m`n`p
p2mq!

m!pm´ 1q!
p2nq!

n!pn´ 1q!
p2pq!

p!pp´ 1q!N
´1 (3.7)

which agrees with the results obtained in [8].
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3.3 Chiral operators in truly N “ 2 theories

Turning now our attention to truly N “ 2 theories, we can identify the coefficients cij
in (2.2) with the ones appearing in the effective action (3.5) as

cpq “

ˆ

2p` 2q
2p

˙

ζp2p` 2q ´ 1qp´1qp`q

p` q
(3.8)

For Lagrangian N “ 2 SCFTs theories, the planar free energy (2.5) was explicitly computed
in [27], and for N “ 2 SQCD it was found to be given by

F0pλq “
1
2 log λ`

8
ÿ

n“2

ˆ

´
λ

16π2

˙n
ÿ

compositions of n
not containing 1

p´2qm ζp2n1 ´ 1q . . . ζp2nm ´ 1q
n1 . . . nm

n1´1
ÿ

k1“1

ˆ

2n1
2k1

˙

. . .
nm´1
ÿ

km“1

ˆ

2nm
2km

˙

ÿ

unlabeled trees
with m edges

1
|Aut(T)|V1 . . .Vm`1 (3.9)

Let us first note that we can obtain 〈Ω2Ω2〉 by taking two derivatives of the free energy
with respect to the exactly marginal coupling gYM of the theory. We obtain

〈Ω2Ω2〉“ 2λ2

p4πq4`
4λ2

p4πq4
8
ÿ

n“2
npn`1q

ˆ

´
λ

16π2

˙n
ÿ

compositions of n
not containing 1

p´2qm ζp2n1´1q . . . ζp2nm´1q
n1 . . .nm

n1´1
ÿ

k1“1

ˆ

2n1
2k1

˙

. . .
nm´1
ÿ

km“1

ˆ

2nm
2km

˙

ÿ

unlabeled trees
with m edges

1
|Aut(T)|V1 . . .Vm`1 (3.10)

where by expanding we see that the first terms match with eq. (4.13) of [12].
For the general planar 2- and 3-point functions on S4 we can now use the results

derived last section from the matrix model, eqs. (2.10), (2.14)

xΩpΩqy “

8
ÿ

m“0

p´1qm

m!
ÿ

i1,...,im
j1,...,jm

ci1j1 ¨ ¨ ¨ cimjm
ÿ

double rooted
directed trees

with m labeled edges

m`1
ź

i“1
Vi , (3.11)

xΩpΩqΩly “ N´1
8
ÿ

m“0

p´1qm

m!
ÿ

i1,...,im
j1,...,jm

ci1j1 ¨ ¨ ¨ cimjm
ÿ

triple rooted
directed trees

with m labeled edges

m`1
ź

i“1
Vi (3.12)

While in most of this work we explicitly display terms with a single value of the ζ
function, our formulas capture also all terms with products of two or more values of ζ. To
illustrate this point (see the appendix for further examples), let’s compute the ζ2

3 term for
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the 2-point function of two even single trace CPOs,

〈Ω2mΩ2n〉 “ 1
m` n

p2mq!
pm´ 1q!m!

p2nq!
pn´ 1q!n!

ˆ

λ

16π2

˙m`n

´ 12ζ3

ˆ

λ

16π2

˙m`n`2
pmn`m` n` 3qp2mq!p2nq!

pm` 1q!pm´ 1q!pn` 1q!pn´ 1q!

` 72ζ2
3

ˆ

λ

16π2

˙m`n`4
p3`m` nqp5`m` n`mnqp2mq!p2nq!

pm` 1q!pm´ 1q!pn` 1q!pn´ 1q!

(3.13)

which agrees with (4.33), (4.34), (4.35) of [8].

4 Chiral correlators on R4

In the previous section, we have provided combinatorial expressions for the full planar
perturbative series of 2- and 3- point functions of N “ 2 superconformal theories on S4.
As discussed above, it is not straightforward to read off the chiral correlators on R4 directly
from the previous results. In order to do so we need to disentangle the mixing induced
by the conformal anomaly through a Gram-Schmidt orthogonalization procedure [7]. In
general, a given operator of dimension ∆n will mix with all the operators with ∆m such
that m ă n differs from n by an even integer. To find the relation between R4 and S4

operators, first introduce the matrix of two point functions on S4 defined by

Cn,m “ 〈ΩnΩm〉, (4.1)

then, the R4 operator On is given by

Onpaq “ Ωnpaq ´
ÿ

p,q

Cn,p

´

C´1
pnq

¯p,q
Ωqpaq , (4.2)

While in the previous section we provided a combinatorial expression for planar chiral
correlators on S4, for the analogous correlators on R4 obtained through the Gram-Schmidt
procedure, a combinatorial description is no longer apparent. As discussed before, corre-
lators of ∆ “ 2 operators can be extracted directly from the partition function of N “ 2
theories [6] which in turn admits an exact combinatorial expression [27] so let’s start dis-
cussing 2-point functions on R4.

On R4 the Up1qR selection rule implies that the only non-zero two-point functions
are

〈
OkŌk

〉
. Since

〈
O2Ō2

〉
is the same as on S4, in this case we do have a full planar

perturbative expression

〈
O2Ō2

〉
“

4λ2

p4πq4
8
ÿ

n“2
npn` 1q

ˆ

´
λ

16π2

˙n
ÿ

compositions of n
not containing 1

p´2qm ζp2n1 ´ 1q . . . ζp2nm ´ 1q
n1 . . . nm

n1´1
ÿ

k1“1

ˆ

2n1
2k1

˙

. . .
nm´1
ÿ

km“1

ˆ

2nm
2km

˙

ÿ

unlabeled trees
with m edges

1
|Aut(T)|V1 . . .Vm`1 (4.3)
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In the appendix we present the first few orders, that match with the results eq. (4.13)
of [12]. For future reference, we note that all the terms in xO2Ō2y with a single value of
the ζ function can be rewritten as follows

xO2Ō2y“ 2
ˆ

λ

16π2

˙2
˜

1´4
8
ÿ

n“2

ζ2n´1
n

ˆ

´λ

16π2

˙nˆ2n
n

˙„ˆ

2n
n`2

˙

`

ˆ

2n
n`1

˙

´n



`. . .

¸

(4.4)

To evaluate xOkŌky on R4 for k ą 2 we need to run the Gram-Schmidt procedure (4.2).
Let us consider the first non-trivial case.

O4 “ Ω4 ´
C4,2
C2,2

Ω2 (4.5)

thus in order to compute xO4Ō4y we require

xO4Ō4y “ xΩ4Ω4y ´
C2

4,2
C2,2

(4.6)

The fact that xΩ2Ω2y appears in the denominator complicates the task of finding a closed
expression for xO4Ō4y. For concreteness, we will limit ourselves to present all the terms
with a single value of the ζ function. Collecting all such terms we deduce

xO4Ō4y“ 4
ˆ

λ

16π2

˙4
˜

1´8
8
ÿ

n“2

ζ2n´1
n

ˆ

´λ

16π2

˙nˆ2n
n

˙„ˆ

2n
n`4

˙

`

ˆ

2n
n`1

˙

´n



`. . .

¸

(4.7)

We can repeat the same procedure for xO6Ō6y. A longer computation yields

xO6Ō6y“ 6
ˆ

λ

16π2

˙6
˜

1´12
8
ÿ

n“2

ζ2n´1
n

ˆ

´λ

16π2

˙nˆ2n
n

˙„̂

2n
n`6

˙

`

ˆ

2n
n`1

˙

´n



`. . .

¸

(4.8)

As a first test, these expressions reproduce the terms with a single value of ζ in [12].
While we are not writing them down, one can also check that the first terms with a
product of two ζ also agree with the result of [12]. Now, looking at the explicit expres-
sions (4.4), (4.7), (4.8) a pattern appears to emerge, so we are led to put forward the
following conjecture for generic even k,

xOkŌky
?
“ k

ˆ

λ

16π2

˙k
˜

1´2k
8
ÿ

n“2

ζ2n´1
n

ˆ

´λ

16π2

˙nˆ2n
n

˙„ˆ

2n
n`k

˙

`

ˆ

2n
n`1

˙

´n



`. . .

¸

(4.9)

where the dots stand for terms with two or more values of ζ. Using the Mathematica
notebook available in [12], we have checked that this conjecture reproduces the first terms
of xO8Ō8y. As for

〈
OkŌk

〉
for odd k, a bit of trial and error with the results available

in [12] leads to the following generalized conjecture

xOkŌky
?
“ k

ˆ

λ

16π2

˙k
˜

1´2k
8
ÿ

n“2

ζ2n´1
n

ˆ

´λ

16π2

˙nˆ2n
n

˙„

p´1qk
ˆ

2n
n`k

˙

`

ˆ

2n
n`1

˙

´n



`. . .

¸

(4.10)
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The conjecture (4.10) is appealingly simple. The terms in square brackets has a k-
dependent contribution, that is non-vanishing only at orders n ě k, plus a universal,
k-independent, contribution. Furthermore, the factor

ζ2n´1
n

ˆ

´λ

16π2

˙nˆ2n
n

˙

coincides with the planar value of certain Feynman diagrams identified in section 7.3 of [11]
(see also [12]). These ingredients hint at a diagrammatic derivation of (4.10). Finally, let
us mention that [11, 13] have developed very efficient techniques to obtain analytic results
for certain N “ 2 SCFTs, which currently don’t include N “ 2 SCQD. In these works, a
crucial role is played by an infinite matrix that can be written as an integral over Bessel
functions. It is straightforward to check that our conjecture (4.10) can be written similarly,

8
ÿ

n“2

ζ2n´1
n

ˆ

´λ

16π2

˙nˆ2n
n

˙„

p´1qk
ˆ

2n
n` k

˙

`

ˆ

2n
n` 1

˙

´ n



“

ż 8

0
dw

Jkp
w
?
λ

π q2 ´ J1p
w
?
λ

π q2 ` w
?
λ

2π J1p
w
?
λ

π q

2w sinh2w

(4.11)

It would be interesting to extend the techniques of [11, 13] to arbitrary N “ 2 Lagrangian
SCFTs; this would allow to prove (4.10) and extend it to terms with two or more values of ζ.

Let’s now switch to the determination of planar 3-point functions on R4, repeating the
same procedure. The first non trivial extremal 3-point function is given by

xO2O2Ō4y “ xΩ2Ω2Ω4y ´
C4,2
C2,2

xΩ2Ω2Ω2y , (4.12)

Upon collecting all the terms with a single ζ we obtain

xO2O2Ō4y“N´1 16λ4

p4πq8

˜

1´2
8
ÿ

n“2
ζ2n´1

´

´λ

16π2

¯n
ˆ

2n
n

˙ˆ

p2n`1q!pn2
`3n`12q

pn`3q!n! ´pn`3q
˙

¸

`. . .

(4.13)
To get rid of the ambiguity associated to the normalization of the CPOs, it is convenient
to define the normalized 3-point functions,

xOk1Ok2Ōk1`k2yn “
xOk1Ok2Ōk1`k2y

N
b

xOk1Ōk1yxOk2Ōk2yxOk1`k2Ōk1`k2y
(4.14)

After doing so, we find

xO2O2Ō4yn
?

2¨2¨4
(4.15)

“N´1

«

1´
8
ÿ

n“2
ζ2n´1

ˆ

´λ

16π2

˙nˆ2n
n

˙„ˆ

2n
n`2

˙

`

ˆ

2n
n`2

˙

`

ˆ

2n
n`4

˙

`pn´1qpCn´2q


`. . .

ff
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Repeating all these steps for xO2O4Ō6yn we find

xO2O4Ō6yn
?

2¨4¨6
(4.16)

“N´1

«

1´
8
ÿ

n“2
ζ2n´1

ˆ

´λ

16π2

˙nˆ2n
n

˙„ˆ

2n
n`2

˙

`

ˆ

2n
n`4

˙

`

ˆ

2n
n`6

˙

`pn´1qpCn´2q


`. . .

ff

The first terms of these expressions reproduce the results presented in [5]. These two
computations suggest the following general conjecture for planar 3-point functions of even-
dimensional operators

xOk1Ok2Ōk1`k2yn
a

k1 ¨k2 ¨pk1`k2q

?
“N´1

«

1´
8
ÿ

n“2

ˆ

´λ

16π2

˙n

ζ2n´1

ˆ

2n
n

˙

(4.17)

ˆˆ

2n
n`k1

˙

`

ˆ

2n
n`k2

˙

`

ˆ

2n
n`k1`k2

˙

`pn´1qpCn´2q
˙

ff

`. . .

As a first check, this conjecture correctly reproduces for arbitrary even k1, k2 the
ζ3 term found in [5]. We have checked that it also correctly reproduces the first terms
of xO4O4 sO8yn and xO4O6 sO10yn.4 Again, we find the form of this conjecture remarkably
simple, and suspect that it hints at the existence of a direct derivation of these results, that
bypasses going through the route of computing first correlators on S4. Finally, it is also
possible to have a non-vanishing 3-point function involving two odd and one even operators.
Motivated by (4.10) a possible guess is that in this case the

` 2n
n`k

˘

factors in (4.17) pick up
a minus sign for odd k, but we haven’t checked explicitly.
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A Explicit expansions

In the main text, when writing explicit results, we have mostly restricted to displaying
only terms with a single value of the ζ function. Our techniques can equally well produce

4We have computed the frist terms of these 3-point functions explicitly, using the Gram-Schmidt proce-
dure. The results obtained agree with the conjecture (4.17). However, we do not agree with the coefficient
of ζ7 for xO4O6 sO10yn presented in [5].
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terms with products of ζs. In this appendix we present two examples, the planar limit of
xO2ĎO2y and xO2O2Ō4y on R4.

xO2ĎO2y“
2λ2

p4πq4

«

1´ 9
4ζ3

λ2

p2πq4`
15
2 ζ5

λ3

p2πq6

`
5
8
`

9ζ2
3´35ζ7

˘ λ4

p2πq8´
45
64 p60ζ3ζ5´91ζ9q

λ5

p2πq10

`
21
512

`

´360ζ3
3`3360ζ7ζ3`1900ζ2

5´4697ζ11
˘ λ6

p2πq12

`
7

256
`

20
`

ζ5
`

324ζ2
3´917ζ7

˘

´819ζ3ζ9
˘

`21879ζ13
˘ λ7

p2πq14

`
27

4096

˜

6048ζ4
3´94080ζ7ζ

2
3`528

`

427ζ11´200ζ2
5
˘

ζ3

`140
`

861ζ2
7`1744ζ5ζ9

˘

´289575ζ15

¸

λ8

p2πq16

´
15

16384

˜

560
`

ζ5
`

1296ζ3
3´9333ζ7ζ3´1750ζ2

5
˘

`9
`

1091ζ7´468ζ2
3
˘

ζ9
˘

`5775660ζ5ζ11`5513508ζ3ζ13´6804369ζ17

¸

λ9

p2πq18

´
11

32768

˜

326592ζ5
3´7257600ζ7ζ

3
3`4860

`

4697ζ11´2500ζ2
5
˘

ζ2
3

`300
`

80164ζ2
7`162876ζ5ζ9´173745ζ15

˘

ζ3´23481360ζ2
9

`525ζ7
`

51660ζ2
5´92851ζ11

˘

´53088750ζ5ζ13`61708504ζ19

¸

λ10

p2πq20

ff

(A.1)

xO2O2Ō4y“ 4N´1

˜

1´ 3ζ3λ
2

64π4 `
45ζ5λ

3

512π6 `
3p72ζ2

3´1085ζ7q

32768π8 λ4`
45p287ζ9´64ζ3ζ5q

131072π10 λ5

`
3
`

16164ζ3
3`19075ζ7ζ3`10500ζ2

5´65681ζ11
˘

λ6

2097152π12

´
15

`

ζ5
`

80550ζ2
3`36911ζ7

˘

`34272ζ3ζ9´99099ζ13
˘

λ7

16777216π14

`

´

3822336ζ4
3`47231184ζ7ζ

2
3`32

`

1633325ζ2
5`738969ζ11

˘

ζ3

`245
`

48493ζ2
7`100032ζ5ζ9´243672ζ15

˘

¯ 3λ8

2147483648π16`¨¨ ¨

¸

(A.2)
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