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1 Introduction

In the absence of direct observation of new physics at the LHC, precision physics remains
a crucial tool to search for phenomena beyond the Standard Model. With the recent
developments in multi-loop calculations in Quantum Chromodynamics (QCD), theoretical
uncertainties in several key observables are now dominated by the errors on the fundamental
QCD parameters, namely the quark masses and the strong coupling, αs. It is therefore
essential to achieve an excellent control over these quantities. With the forthcoming e+e−

facilities that should aim at Higgs and top-quark mass precise measurements, a good control
of αs as well as the charm-, bottom-, and top-quark masses will remain central for the
determination of constraints on the Standard Model and searches for physics beyond it.

One of the most frequently used tools for the precise extraction of the charm- and
bottom-quark masses are QCD sum rules [1, 2], where theory predictions are related to
measurements of the inclusive hadronic e+e− cross-section through weighted integrals over
the Rqq̄(s) ratio. The inverse moments defined as

MV
q,n =

∫ ∞
sth

ds
sn+1Rqq̄(s) , (1.1)
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with n ≥ 1 and q = c, b, are highly sensitive to the heavy quark mass and play a central
role in this program. With the use of analyticity and unitarity constraints, these moments
can be related to the coefficients of the small-momentum (below threshold) expansion of
the quark vector-current correlator. These coefficients, in turn, can be calculated reliably
in perturbative QCD (pQCD) for not too large values of n. This type of sum-rules has
been, for a long time, the basis for precise determinations of the charm- and bottom-quark
masses (mc and mb) [3–9].

Recently, it has been shown that dimensionless ratios of roots of moments MV
q,n are

also an important source of reliable information about αs [10, 11]. Given the present status
of the experimental measurements, and the fact that αs extractions at low energies often
result in accurate predictions for α(nf=5)

s (mZ), the ratios of charm-quark moments lead to
a particularly precise determination of the strong coupling. Ratios of this type had already
been exploited in determinations of αs and mc from the pseudo-scalar current moments by
several lattice groups [12–16].

In all studies of this type, it is essential to reliably estimate the theoretical uncertainties
associated with missing higher orders in the respective perturbative series. The pQCD
expansion of the first three physical moments is known, at present, up to O(α3

s) [19–23].
The error stemming from lacking higher orders must therefore be carefully assessed through
conservative renormalisation-scale variations and/or estimates of higher-order coefficients.
Alternative treatments of these perturbative errors lead to discrepancies in the magnitude
of the final uncertainties quoted by different groups [5–9].

In many cases, the final error on the extracted parameters receives an important con-
tribution from the theoretical error associated with the truncation of perturbation theory.
The appraisal of the different prescriptions for the computation of these errors can bene-
fit from partial knowledge about the yet unknown higher-order coefficients of the pQCD
expansion of the moments MV

q,n. In this context, the large-β0 limit of QCD is an impor-
tant tool. In this approximation, one first considers the limit of a large number of quark
flavors, nf , while keeping αsnf ∼ O(1). The leading-nf terms of the pQCD series, which
correspond to QED-like diagrams, are calculated to all orders in αs. Then, through the
procedure known as naive non-abelianization [25–27], the fermionic contribution to the
leading-order (LO) QCD β function is replaced by the full coefficient, β0, thereby effec-
tively introducing a set of non-abelian terms. This results in a series that is known to all
orders in the coupling and whose Borel transform can be studied exactly. The singularities
of the Borel transform arising from IR and UV regions of loop subgraphs are the renor-
malons of perturbation theory, which govern the divergent behaviour of the series at high
orders. In QCD, IR renormalons play a particularly important role since in many cases
they are in one-to-one correspondence with non-perturbative QCD condensates arising in
the operator product expansion. In some situations, the large-β0 limit provides a good
estimate of higher-order coefficients. However, even when this is not the case, it contains
important information about the renormalons of perturbation theory, whose position is
unchanged in the full QCD result.

The result for the small-momentum expansion of the vector correlator in the large-β0
limit is available since the work of Grozin and Sturm [28]. Here, we confirm their result
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and calculate, for the first time, the small-momentum expansion of the scalar, pseudo-
scalar, and axial-vector correlators at O(1/β0). From a phenomenological point of view,
the main focus is on the vector and pseudo-scalar correlators, since their small- momentum
expansion is the input for the precise extraction of mc, mb, and αs from data on the Rqq̄(s)
ratio, in the vector case, and for the determination of mc and αs from lattice data for the
pseudo-scalar correlator. (Lattice data for the vector and axial-vector charm moments also
exist, see e.g. [13], but are not as competitive as the lattice pseudo-scalar moments.)

Our results for the vector and pseudo-scalar correlators are then employed in a study
of the perturbative behaviour of the ratios of moments used for the extraction of αs. We
obtain their Borel transform in closed form, study their renormalon content, and show that
these ratios benefit from a partial cancelation of the leading UV renormalon, as well as
a reduction of the leading IR pole residue. This softening of the leading singularities is
behind the good perturbative behavior of these moments. Additionally, the knowledge of
the renormalon singularities provides us with new information that can be used to design
combinations of moments that exihibit stronger cancellations of the leading renormalons.

This work is structured as follows. In section 2 we define the correlators we are
interested in, their moments, and the ratios of moments. In section 3 we describe and
present the calculation of the small-momentum expansion of the quark-current correlators
at O(1/β0). Then, in section 4, these results are used to obtain the large-β0 expansion
of the ratios of vector and pseudo-scalar moments employed in αs analyses. We discuss
the leading renormalon contribution to the ratios and show that partial cancellations take
place, which is one of the main results of this paper. We also discuss how to combine
ratios of moments so as to obtain better-behaved perturbative series. Our conclusions are
presented in section 5. Finally, details about the small-momentum expansion of the relevant
two-loop integrals and a number of explicit results from our calculations are relegated to
appendices A and B, respectively.

2 Theory overview

In this section we define the correlators that will be calculated in section 3 and discuss
their small-momentum expansion, which, in the vector case, is related to the moments of
eq. (1.1). We also define the dimensionless ratios of moments whose perturbative behaviour
will be studied in section 4.

Even though our main focus is on the vector and pseudo-scalar correlators, given the
phenomenological application of their small-momentum expansion as already discussed, for
completeness we will present results for the vector (V ), axial-vector (A), scalar (S), and
pseudo-scalar (P ) correlators which we define as

(q2gµν − qµqν)Πδ(s)− qµqνΠδ
L(s) = −i

∫
dx eiq·x〈Ω|Tjδµ(x)jδ †ν (0)|Ω〉 , (2.1)

for δ = V,A whereas

Πδ(s) = i

∫
dx eiq·x〈Ω|Tjδ(x)jδ †(0)|Ω〉 , (2.2)
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for δ = S, P . In the equations above q2 = s and the bilinear quark currents are

jVµ (x) = q̄(x)γµq(x) , jAµ (x) = q̄(x)γµγ5q(x) ,
jS(x) = 2mq q̄(x)q(x) , and jP (x) = 2imq q̄(x)γ5q(x) . (2.3)

The mass factor in the scalar and pseudo-scalar currents, which in this context corresponds
to the bare mass, is introduced to ensure renormalisation group invariance [29]. The longi-
tudinal contribution to the vector correlator ΠV

L is zero due to the vector Ward identity. In
the case of the axial-vector current, ΠA

L can be obtained by applying the projector qµqν or
using the axial Ward identity, which relates this contribution to the pseudo- scalar corre-
lator [22, 23].1 When using dimensional regularisation for loop computations, the currents
that contain γ5 must be carefully extended to d dimensions; we employ the prescription
described in ref. [30].2

With the usual definition of the experimentally accessible Rqq̄(s) ratio

Rqq̄(s) = 3s
4πα2(s)σe+e−→ qq̄+X(s) '

σe+e−→ qq̄+X(s)
σe+e−→µ+µ−(s) , (2.4)

where α is the effective electromagnetic coupling constant, the corresponding moments of
eq. (1.1) can be related to the coefficients of the Taylor expansion of the vector-current
correlator around s = 0 using analyticity and unitarity as

MV
q,n =

∫ ∞
sth

ds
sn+1Rqq̄(s) =

12π2Q2
q

n!
dn
dsnΠV

q (s)
∣∣∣
s=0

. (2.5)

We will generalize this definition beyond the vector current and define the moments

M δ
q,n =

12π2Q2
q

n!
dn
dsnΠδ

q(s)
∣∣∣
s=0

. (2.6)

As will be discussed in the next section, we restrict the analysis to physical moments,
i.e. those that do not require a scheme-dependent subtraction besides coupling and mass
renormalisation. For vector and axial-vector correlators this means n ≥ 1. For δ = P, S in
eq. (2.6) we must have n ≥ 0.3 In all cases, the description in terms of standard perturbative
QCD supplemented with OPE condensate contributions breaks down for large values of n,
when a non-relativistic treatment becomes imperative, since the moments in this case are
dominated by the resonant contributions. Therefore, our phenomenological analysis will
be restricted to values of n ≤ 4.

The expansion of the moments M δ
q,n in perturbative QCD can be cast in the following

general form

M δ
q,n = 1

[2mq(µm)]2n
∑
i=0

[
αs(µα)
π

]i i∑
a=0

[i−1]∑
b=0

c
δ,(n)
i,a,b lna

[
µm

mq(µm)

]
lnb
[

µα
mq(µm)

]
, (2.7)

1The axial-vector moments are defined with respect to the small momentum expansion of the transverse
contribution.

2No finite renormalisation of the axial and pseudo-scalar currents is required in our case.
3Care must be taken when comparing with other papers since in some cases the 2mq factor is not

included in the S and P quark currents and a q2 appears on the left-hand side of eq. (2.2). Effectively, this
shifts the values of n by one unit for δ = S, P and our moment MP

q,n corresponds to the moment with the
n+ 1 in the conventions of ref. [23]. (Here we follow more closely the definitions of [8, 9].)
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where we define [i − 1] ≡ max(i − 1, 0), αs(µα) ≡ α
(nf )
s (µα) and mq(µm) ≡ m

(nf )
q (µm),

with nf the number of active quark flavours.4 Here mq(µm) and αs(µα) are the quark
mass and strong coupling, respectively, in the MS scheme. The independent (or non-log)
coefficients cδ,(n)

i,0,0 must be calculated in perturbative QCD, while the logarithms can be
generated with renormalisation group equations. For notational simplicity we also omit
the quark charge dependence (through a global factor of 9Q2

q/4) and the nf dependence
of the coefficients cδ,(n)

i,0,0 . The expansion is exactly known in QCD up to O(α3
s) for the

first three physical moments for the four correlators we consider here thanks to a huge
computational effort [17–23]. The fourth moment of the pseudo-scalar and vector currents
are also known exactly [23, 24] while higher moments have been estimated [31–34]. To be
fully general, we allow for different renormalisation scales in the mass and the coupling.
The leading logarithm in eq. (2.7) appears already at order αs.

Only the vector moments can be determined from experimental data. Sum rules with
the vector moments of eq. (2.5) are the basis for precise extractions of mc and mb from
Rqq̄(s) experimental data [3–9]. The first few charm pseudo-scalar moments have been
determined from lattice simulations with good precision by several groups [12–16] and
analogous sum rules for the pseudo-scalar moments have been used in the extraction of
mc from these lattice results. The 0-th pseudo-scalar moment, due to its reduced mass
dependence, has also been used for αs determinations.

It is also useful to work with dimensionless ratios of roots of moments (with n > 0).
In these ratios the mass dependence almost completely disappears, entering only through
α2
s-suppressed logarithms. We define the following dimensionless ratios

Rδq,n ≡
(
M δ
q,n

) 1
n(

M δ
q,n+1

) 1
n+1

, (2.8)

where δ = V, P . This type of ratios of moments was first introduced for the analysis of
pseudo-scalar lattice data [12, 15]. Their use in the case of the vector current was introduced
in refs. [10, 11] where it was shown that they can be employed for precise extractions of αs
thanks to their reduced mass dependence and to the fact that these ratios can be accurately
determined from Rqq̄(s) experimental data, benefiting from positive correlations between
the moments MV

q,n and MV
q,n+1.

The general structure of the perturbative expansion of the moments Rδq,n is

Rδq,n =
∑
i=0

[
αs(µα)
π

]i [i−1]∑
k=0

[i−2]∑
j=0

r
δ,(n)
i,j,k lnj

[
µm

mq(µm)

]
lnk
[

µα
mq(µm)

]
, (2.9)

where the mass dependence in the prefactor of M δ
q,n is explicitly canceled by construction

and the coefficients rδ,(n)
i,j,k can be obtained from the cδ,(n)

i,j,k upon re-expansion of the ratios.
Since the ratios are dimensionless, the residual mass dependence appears only in the argu-
ments of the logarithms, and now start to contribute only at O(α2

s) [10]. When comparing
4In full QCD one has nf = n` + 1, with n` the number of massless quarks, but since heavy-quark mass

loops are 1/β0 suppressed, in the large-β0 one effectively has nf = n`.
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the results in large-β0 and QCD it will be convenient to consider the scale dependent αs
coefficients of eq. (2.9) that we define as

r̄δi,n(µα, µm) =
[i−1]∑
k=0

[i−2]∑
j=0

r
δ,(n)
i,j,k lnj

[
µm

mq(µm)

]
lnk
[

µα
mq(µm)

]
. (2.10)

Finally, we remark that the dimensionless combinations of moments are certainly not
unique. In fact, with the knowledge about the renormalon singularities in large-β0 obtained
here, we are in a position to design other dimensionless combinations of moments that
could display a better perturbative behaviour due to stronger renormalon cancellation. We
discuss this possibility in section 4.3.

3 The moments M δ
q,n in the large-β0 limit

In this section we will present the results for the small-momentum expansion of the vector,
axial-vector, scalar, and pseudo-scalar correlators in the large-β0 limit of QCD. We will
cast the expansion of the renormalised correlators in this limit in the following form

Π̂δ(q2) = Nc

16π2

∞∑
n=nδ

[
s

4m2
q(µ)

]n
N δ
n C

δ
n(µ) , (3.1)

where Nc = 3 is the number of colours and N δ
n is the O(α0

s) (one-loop) result in d = 4
dimensions.5 With this normalisation, the perturbative expansion of Cδn(µ) starts as 1.
We are interested in physical moments, i.e. those that do not have an UV divergence after
coupling and mass renormalisation which would require a scheme-dependent subtraction.
Accordingly, we remove from the definition of Π̂δ(q2) in eq. (3.1) the unphysical terms
setting nA = nV = 1 and nS = nP = 0. The moments are characterised by the non-trivial
reduced moments Cδn(µ), for which we will obtain a Borel representation. They retain a
quark-mass dependence through the ratio µ/mq(µ), which appears in logarithms in the
perturbative expansion. From the definition of the moments M δ

q,n given in eq. (2.5), one
obtains

M δ
q,n = 9

4Q
2
q

N δ
n

[4m2
q(µ)]nC

δ
n(µ) . (3.2)

For the calculation of Cδn(µ) in the large-β0 limit, given that renormalisation is required,
we rely on the formalism described in detail in ref. [36], which was employed in the original
calculation of the small-momentum expansion of the vector correlator in this limit [28].
(This formalism was recently generalised to the case of quantities with cusp anomalous
dimension in [37].)

To obtain Cδn(µ) in the large-β0 limit one starts from the insertion of massless quark
bubbles in the gluon propagators that appear in two-loop diagrams, as depicted in figure 1.

5Specifically, with our conventions we have, for the vector case, NV
1 = 16/15, NV

2 = 16/35, and
NV

3 = 256/945. (with the conventions of ref. [28] the NV
n would be divided by 4n.) For the pseudo-scalar

moments we have NP
0 = 4/3, NP

1 = 8/15, and NP
2 = 32/105. The one-loop normalization for S and A

moments can be found in the accompanying file [35].
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The insertion of these fermion loops amounts, essentially, to the calculation of the two-loop
correction with the gluon propagator in the Landau gauge analytically regularized [27, 36].

Quite generally, a Borel representation for the renormalised functions Cδn(µ) can be
written in the following form

Cδn(µ) = 1 + 1
β0

[∫ αs(µ)

0

dα
α

(2πγ(α)
α

− γ0
2

)
+
∫ ∞

0
du e−

u
aµ Sδn(u)

]
+O

( 1
β2

0

)
, (3.3)

where

aµ = β0αs(µ)
4π , (3.4)

with β0 the one-loop coefficient in the perturbative expansion of the QCD β function,
defined as

µ
dαs(µ)

dµ = −2αs(µ)
∑
n=0

βn

[
αs(µ)

4π

]n+1
≡ β(αs(µ)) . (3.5)

In the conventions we are following β0 = 11Nc/3 − 4TFn`/3, where TF = 1/2 and n` is
the number of light-quark flavors. We remind that the running of αs(µ) is to be performed
with one-loop accuracy.

The first integral in eq. (3.3) over γ, the anomalous dimension of Cδn(µ), is present only
in quantities that require additional subtractions beyond the massless fermion bubble renor-
malisation in the dressed gluon propagator [27, 36]. Here, besides the coupling renormalisa-
tion, the renormalisation MS-mass factor in the expansion brings an extra renormalisation
constant,6 given by Z2n

m , and therefore the anomalous dimension for the quantities Cδn(µ) is

γ(α) = −4nγm(α) , (3.6)

where γm(α) is the MS mass anomalous dimension at O(1/β0) accuracy [36, 38]

γm(α) = − CFaµ(3 + 2aµ)Γ(4 + 2aµ)
3β0(2 + aµ)Γ(1− aµ)Γ(2 + aµ)3 +O

( 1
β2

0

)
, (3.7)

and aµ is given in eq. (3.4). Our definition of the mass anomalous dimension is

µ

mq(µ)
dmq(µ)

dµ = 2γm[αs(µ)] = 2
∑
k=0

γ(k)
m

[
αs(µ)

4π

]k
, (3.8)

with γ
(0)
m = −3CF = −4. In ref. [37] a recursive formula to efficiently obtain γ

(k)
m was

provided. The solution to the RG equation in the large-β0 limit is simple and if expanded
strictly to O(1/β0) can be written as

mq(µ) = mq

{
1− 1

β0

∫ αs(µ)

αs(mq)

dα
α

(4πγm(α)
α

− γ(0)
m

)
− γ

(0)
m

β0
log
[
αs(µ)
αs(mq)

]}
, (3.9)

where here and in what follows mq ≡ mq(mq).
6Since we express the bare quark mass in terms of the MS mass, in practice this amounts to dropping

all 1/εn divergent terms in the series. The dropped factor is precisely Z−2n
m − 1 ≈ −2n(Zm − 1).
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Figure 1. Feynman diagrams for the calculation of the heavy-quark correlators in the large-β0
limit. The rightmost diagram must be counted twice. Dashed lines represent gluon propagators
with light-quark bubble insertions. Crosses stand for the insertion of the currents of eq. (2.3).

The functions Sδn(u) in eq. (3.3) are, therefore, the Borel transforms of Cδn(µ). From
the Borel representation of the functions Cδn(µ) it is straightforward to extract their αs
expansion in the large-β0 limit as

Cδn(µ) =
[
1 + 1

β0

∞∑
k=1

(
dk−1Sδn
duk−1

∣∣∣∣
u=0

βk0 −
2nγ(k)

m

k

)[
αs(µ)

4π

]k
+O

( 1
β2

0

)]
. (3.10)

Explicit analytic expressions for Sδn(u) are obtained as

Sδn(u) = F δn(0, u)− F δn(0, 0)
u

, (3.11)

where the auxiliary functions F δn(ε, u) are given by [36]

F δn(ε, u) = u eγEεaδn(1 + u− ε, ε)µ2uD(ε)
u
ε
−1. (3.12)

In the last expression, D(ε) is the massless fermionic correction to the gluon propagator
in d = 4− 2ε dimensions and aδn(1 + u− ε, ε) are the coefficients in the small-momentum
expansion of the two-loop correction with the Landau-gauge gluon propagator analytically
regularised, i.e. with the denominator 1/(−p2) modified to 1/(−p2)(1+u−ε)

aδ(1 + u− ε, ε) =
∑
n

(
q2

4m2
q

)n
N δ
n(ε) aδn(1 + u− ε, ε) , (3.13)

where N δ
n(ε) ensures the result of aδn is normalised to the LO result and at this point mq

is still the bare mass.
The result of eq. (3.13) is obtained computing the Feynman diagrams shown in figure 1.

After calculating the Dirac trace, all terms in the numerator can be written in terms of
propagators, which reduces the problem to the study of scalar two-loop integrals given
explicitly in eq. (A.1) of appendix A. The scalar two-loop integrals are then expanded
around q2 = 0 using the method of ref. [39] as described in detail in appendix A and, after
setting q2 = 0, one is left with single-scale tadpole integrals that can be solved analytically.

3.1 Results

Following the procedure outlined above, we performed the calculation of the small-
momentum expansions of vector, axial-vector, scalar, and pseudo-scalar correlators in the
large-β0 limit.

– 8 –
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For the vector correlator, we computed the functions SVn (u) up to n = 12, finding
agreement with the results presented in ref. [28], which were given up to n = 2. The
results for the scalar, pseudo-scalar, and axial-vector current correlators are obtained here
for the first time. Here we quote explicitly the results for the first three physical moments
of each current, but obtaining the functions Sδn(u) for higher values of n is, essentially, just
a matter of computational time. (We remind that for the vector and axial-vector current
correlators n starts at 1, while for the pseudo-scalar and scalar correlators n starts at 0.)

The results can be conveniently cast in terms of polynomials of u, P δn(u), which must
be determined case by case, in the following form

SVn (u) = 6CFn
u
− 3CF

[
e5/3µ2

m2
q(µ)

]u 4nΓ(2− u)Γ(u)Γ(2 + n+ u)2

(n+ u)Γ(3 + 2n+ 2u) P Vn (u) , (3.14a)

SAn (u) = 6CFn
u
− 3CF

[
e5/3µ2

m2
q(µ)

]u 4nΓ(2− u)Γ(u)Γ(2 + n+ u)2

(n+ u)(1 + n+ u)Γ(3 + 2n+ 2u)P
A
n (u) , (3.14b)

SSn (u) = 6CFn
u
− 3CF

[
e5/3µ2

m2
q(µ)

]u 4nΓ(2− u)Γ(u)Γ(1 + n+ u)2

(3 + 2n+ 2u)Γ(2 + 2n+ 2u) P
S
n (u) , (3.14c)

SPn (u) = 6CFn
u
− 3CF

[
e5/3µ2

m2
q(µ)

]u 4nΓ(2− u)Γ(u)Γ(2 + n+ u)2

(1 + n+ u)Γ(3 + 2n+ 2u) PPn (u) . (3.14d)

The first few polynomials P δn(u) are available in appendix B.1. Additional results can be
found in the accompanying file [35]. As we are working at leading order in 1/β0, one can
replace mq(µ) by mq in these relations, since the running of the quark mass produces terms
that are 1/β2

0 and beyond, as per eq. (3.9). With this replacement it is easy to show exact
µ-independence of the Borel integrals of the moments in the large-β0 limit.

The general structure of the functions Sδn(u) fulfils the expectations of typical results
in large-β0. Terms with the factor [e5/3µ2/m2

q(µ)]u lead to a Borel integral that is scheme
and scale invariant [27]. However, here, since renormalisation is required, the functions
Sδn(u) have a 1/u term without this factor, which is a reminder of the renormalisation
scheme and scale dependence of the quark mass [26, 27]. In fact, quite generally, this first
term can be written as −2nγ(0)

m /u. There is, however, no singularity at u = 0 thanks
to an exact cancellation when both terms in eqs. (3.14) are added up. The scheme and
scale dependence arising from the 1/u term is canceled by the integral over the anomalous
dimension and the global mass prefactor in eq. (3.2).

There are several non-trivial tests that we have performed to ensure the correctness of
our results:

• In all cases, the leading-n` power at each order in αs in the perturbative expansion
of the moments M δ

q,n should be correctly reproduced. We have checked that this is
the case for results that are known in QCD from refs. [19–23].

• The functions Sδn(u) written in terms of the MS quark mass have simple poles of
IR origin on the positive u axis at u = 2, 3, 4, . . .; no pole at u = 1 is present.
This is expected, since the leading condensate contribution is the dimension-4 gluon
condensate [27], which corresponds to the pole at u = 2. (We have checked that
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rewriting these Borel transforms in the on-shell scheme, the pole mass renormalon
at u = 1/2 becomes the leading IR singularity, followed by an additional u = 1 pole,
again as expected [26]. The contribution of the pole mass to the IR singularities is
however not related to the OPE condensates.)

• A third rather non-trivial test is also related to the gluon-condensate contribution.
The gluon condensate coefficient is known for the four currents at NLO [40]. In one
specific case, namely the moment n = 2 of the pseudo-scalar correlator, this coefficient
vanishes at lowest order. Accordingly, we find that for the SP2 (u), and only in this
case, the IR singularity at u = 2 is absent, because PP2 (u) has a zero at u = 2 as can
be seen in eq. (B.2), in agreement with the expectation that the IR renormalons in
the MS scheme are in one-to-one correspondence with OPE contributions.

• Finally, we have verified that the axial Ward identity relating the longitudinal part
of ΠA

L(u) and ΠP (u) is verified at O(1/β0).

Because of the existence of the IR poles, the Borel integral in eq. (3.3) is not well
defined and a prescription to deal with the singularities along the positive real axis must
be adopted. Here we use the principal value prescription, such that the Borel integral
acquires an imaginary part whose value (divided by π) is commonly considered to be a
good estimate for the ambiguity of the Borel integral. The contribution of each pole to
this ambiguity scales as a non-perturbative correction. At the scales we consider here,
the ambiguity of the Borel integral is numerically quite small, as we will show in the next
sections, which simply reflects the fact that the non-perturbative corrections in the OPE,
dominated by the gluon condensate contribution, are rather small. This is particularly true
for bottom quark moments, where the non-perturbative contributions can be neglected for
all practical purposes [9, 11].

Apart from the IR renormalon poles that we already mentioned, the functions Sδn(u)
have UV poles at u = −1,−2,−3, . . . as well, which lie on the negative real axis. In the
functions Sδn(u) all IR singularities are simple poles, stemming from Γ(2 − u). For the
UV poles the pattern that emerges is a little more intricate. There are poles at negative
u from Γ(u) as well as from squared gamma functions in the numerator. The UV poles
can be simple or double plus simple depending on the structure of the denominator. The
functions SVn (u), for instance, have singularities with a double- plus simple-pole structure
at u = −n,−(n + 2),−(n + 3), . . . while all other UV poles are simple. For δ = P, S

the double poles start at u = −(n + 1). There can be exceptions, though. For example,
u = −7 is a root of PP0 (u) [ see eq. (B.2) ], and the UV pole at u = −7 becomes simple
in SP0 (u). We will not speculate about the physical origin of this pattern, but the leading
UV renormalons will be discussed in more detail in the context of the ratios Rδq,n in the
remainder of this paper.

Our calculation of the momentsM δ
q,n for δ = P , S, A in the large-β0 limit is a new result

in the literature. From the expansion of these results one can obtain their perturbative
expressions in large-β0 and read off the coefficients of the αks nk−1

` terms, which must be
the same as in full QCD. To expand the various gamma functions efficiently one can use
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the following compact form, valid for n ≥ 0

Γ(n+ u) = (n− 1)! exp
{
u
(
H

(1)
n−1 − γE

)
+
∞∑
k=2

[(−u)k
k

(
ζk −H

(k)
n−1

)]}
, (3.15)

with H(k)
n ≡

∑n
i=1 n

−k the harmonic number of order k and γE Euler’s constant. Using the
formula above, all gamma functions appearing in eq. (3.14) and the µ-dependent prefactor
can be combined into a single exponential, which is afterwards expanded using eq. (6.5) of
ref. [37]. Finally, the expanded exponential is easily combined with the (already expanded)
accompanying finite polynomials into a single expansion using

∑
i=n

aix
i
N∑
j=m

bjx
j =

∑
i=n+m

xi
min(N,i−n)∑

j=m
ai−jbj , (3.16)

where both sums over i run all the way to infinity. Exemplarily we work out analytically
the main steps of the expansion for SVn (u):

SVn (u)
3CF

=2n
u
− 4n[(n+ 1)!]2
nu(2n+ 2)! exp

{
u

[
2(H(1)

n+1 −H
(1)
2n+2) + 2

3 −
1
n

+ log
(

µ2

m2
q(µ)

)]
(3.17)

+
∞∑
k=2

uk

k

[(−1)k
nk

− 1− 2(−1)kH(k)
n+1 + (−2)kH(k)

2n+2

+
(
(−1)k

(
3− 2k

)
+ 1

)
ζk

]}
P Vn (u) ,

which implies the constraint P Vn (0) = 21−2nn2(2n + 2)!/[(n + 1)!]2 satisfied by eq. (B.1).
The asymptotic expansion concerning IR poles is

SVn (u)
∣∣
IR

3CF
� 4n

∞∑
m=2

[
−e

5/3µ2

m2
q(µ)

]m (m− 1)[(1 +m+ n)!]2
(m+ n)(2 + 2m+ 2n)!

P Vn (m)
u−m

, (3.18)

SAn (u)
∣∣
IR

3CF
� 4n

∞∑
m=2

[
−e

5/3µ2

m2
q(µ)

]m (m− 1)[(m+ n)!]2
2(m+ n)(1 + 2m+ 2n)!

PAn (m)
u−m

,

SSn (u)
∣∣
IR

3CF
� 4n

∞∑
m=2

[
−e

5/3µ2

m2
q(µ)

]m (m− 1)[(m+ n)!]2
(3 + 2m+ 2n)(1 + 2m+ 2n)!

PSn (m)
u−m

,

SPn (u)
∣∣
IR

3CF
� 4n

∞∑
m=2

[
−e

5/3µ2

m2
q(µ)

]m (m− 1)[(m+ n)!]2
2(1 + 2m+ 2n)!

PPn (m)
u−m

,

where � means singular part of. The above expressions are very useful to carry out
the Borel integral with the principal value prescription, and are responsible for the total
ambiguity of the Borel sum. Due to the more complicated pattern of UV singularities it is
not easy to find the corresponding asymptotic expansions for arbitrary values of n.

We collect in appendix B.2 the results for the leading n` terms in the αs expansions
of the combinations N δ

nC
δ
n of eq. (3.2) up to O(α4

s), which is the first unknown previous
to this work in the case of δ = P , S, and A. Additional terms in these expressions can be
easily generated from the results presented here.
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3.2 The ratios Rδq,n in the large-β0 limit

We turn now to a discussion of the moment ratios Rδq,n in the large-β0 limit. Using the defi-
nition of the dimensionless ratios, eq. (2.8), together with the Borel representation of Cδn(µ)
in eq. (3.3), by consistently re-expanding in 1/β0 one can obtain the Borel representation
of Rδq,n in the large-β0 limit as

Rδq,n =
(9

4Q
2
q

) 1
n(n+1) (N δ

n) 1
n

(N δ
n+1)

1
n+1

[
1 + 1

β0

∫ ∞
0

du e−
u
aµBδ

n(u) +O
( 1
β2

0

)]
, (3.19)

where Bδ
n(u) are the Borel transforms of Rδq,n, which can easily be written in terms of the

Sδn(u) functions as follows

Bδ
n(u) = Sδn(u)

n
−
Sδn+1(u)
n+ 1 . (3.20)

In obtaining the above result we are tacitly assuming that the non-perturbative corrections
in the OPE are smaller than the perturbative contribution such that they can be expanded
out. The knowledge of the gluon-condensate contribution shows that this is an excellent
approximation for the bottom and a very good one for the charm [10, 11]

Since the ratios Rδq,n are designed so as to cancel the explicit mass factor of eq. (2.7),
their Borel transforms do not have the term proportional to γ

(0)
m /u which vanishes in

eq. (3.20). Accordingly, the integral over the mass anomalous dimension in eq. (3.3) also
vanishes, and the integral of ratios of moments are scheme and scale invariant thanks to
the now global factor of [e5/3µ2/m2

q(µ)]u. In the perturbative expansion, the residual mass
dependence starting at O(n`α2

s) now enters only through 1/β0-suppressed logarithms. An
important comment is that changing the renormalisation scale (or scheme) of the running
quark mass brings corrections of order 1/β2

0 and superior, which are subleading in our
approximation and should consistently be dropped in a strict large-β0 expansion.

The fact that Bδ
n is given by a difference of two Borel transforms suggests that renor-

malon cancellations may take place. We find that the residues of the leading UV and
IR poles are significantly smaller in BV

n than their counterparts in SVn . For example, for
the leading UV pole, figure 2(a) shows that the residue at u = −1 of BV

3 is 31(38) times
smaller than that of SV3 (SV4 ). For the leading IR pole the residue of BV

3 at u = 2 is
only 16.0%(8.1%) that of SV3 (SV4 ). Furthermore, in absolute terms, the residue of RVq,n
at u = −1 decreases as n grows, as shown in figure 2(b), which leads to the expectation
of an exact cancellation in the limit of n → ∞. This can be corroborated by an analy-
sis of the residue of the leading UV pole for large n. For the vector current one has that
P Vn (−1) ' 0.7n3/2, while the rest of terms in the residue at u = −1 tend to 6CF e−5/3√π/n
(with µ = mq), such that the complete residue can be approximated by the linear expres-
sion 1.4CFn. This, in turn, implies the conjectured cancellation and vector moment ratios
have zero residue for n→∞ (decreasing as 1/n2). Very similar conclusions can be drawn
for the pseudo-scalar correlator.

A similar observation can be made for the leading IR pole at u = 2. This time,
however, even though the dependence of the residue with n is tamed for the moment
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Figure 2. (a) Absolute value of the residues of BV
n relative to those of SV

n for the leading UV and
IR poles at p = −1 and p = 2, respectively. (b) Absolute value of the residues of BV

n for the same
two poles.

ratios, it still grows (in absolute value) with n. This can be understood in the following
way: the polynomials P Vn (u) evaluated at u = 2 are all positive and grow approximately
like 2.1n7/2. At the sight of eq. (3.18) one concludes that the residue at u = 2 in the MS
scheme is always positive and, given that the rest of terms behave as (3/64)CF e10/3√π/n
for large n, can be approximated by 4.9CFn3. For moment ratios the residue becomes
negative and softened to a linear expression: −6.8CF (2.6 + n), as can be seen (in absolute
value) in figure 2(b).

We have also checked that if the quark mass is expressed in the pole scheme, the
residues of the Borel transform SVn at u = 2 for the first four physical moments are signifi-
cantly reduced. When switching to the pole scheme one gets a negative contribution to the
u = 2 renormalon of the form −ne10/3CF (common to all currents), that is, proportional to
n. This contribution is of similar size that the MS term in absolute value for n ≤ 3, trans-
lating into a significant cancellation (particularly strong for n = 1, 2). For larger values of
n the cancellation is less important, and becomes more and more irrelevant as n grows.
(A similar behaviour is expected in the case of the axial-vector current.) This decrease of
the u = 2 residue should be regarded as accidental and not related to a softening of the
non-perturbative contribution coming from the gluon condensate.

We observe that for the pseudo-scalar moments MP
c,n, changing to the pole mass does

not lead to a reduction in the residue of the leading IR pole. In this case, one has that
PPn (2) is negative for n < 2, positive for n > 2, and, as already discussed, vanishes at n = 2.
Furthermore, they rapidly grow in absolute value as n increases, and one can conjecture
again a n7/2 behaviour. At the sight eq. (3.18) one easily sees that the non-polynomial
terms yield a positive factor that for large n becomes again (3/64)CF e10/3√π/n. Therefore
one never has cancellations in this case because in the region where the two contributions
are of similar size they are both positive, and when signs become opposite the pole-mass
correction is already much smaller than the main term.
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Since the leading renormalon singularities in RVq,n are softened with respect to the
moments MV

q,n we can expect that the perturbative behaviour of the ratios should be
significantly improved. In particular, the partial cancellation of the leading UV pole should
lead to series that are better behaved, specially for larger n, postponing the onset of the
sign alternation pattern for the coefficients. For the moments and ratios of moments with
δ = P a very similar scenario for the leading renormalon singularities emerges and we
refrain from showing the equivalent of figure 2 for this case, but similar conclusions apply.7
We investigate the perturbative expansion of the ratios with δ = P and V in the light of
our findings for the renormalons in the next section.

4 Perturbative expansion of Rδ
q,n in the large-β0 limit

4.1 Higher order behavior of the perturbative series

Let us turn to a study of the perturbative series of the moments Rδq,n with δ = V , P
in the large-β0 limit. The perturbative coefficients for the αs expansions of these ratios
of moments can be obtained analytically from the expressions of Bδ

n(u) and the use of a
formula analogous to eq. (3.10) but without the terms proportional to γ(k)

m . In the large-β0
limit, the “true value” for the moments Rδq,n is known and given by the Borel integral of
eq. (3.19), with an imaginary ambiguity arising from the IR poles that is numerically quite
small in our case. This result is scheme and scale independent, as already discussed. We
restrict our analysis to ratios that involve moments with n ≤ 4 because for larger n the
series is, effectively, an expansion in αs

√
n [41] and we checked that our results have this

behaviour for n large, as expected.
In the perturbative expansion in powers of αs(µ) one has the usual freedom of vary-

ing the renormalisation scale µ, which is often used as a way to probe higher orders
and assess the uncertainty associated with the truncation of perturbation theory. One
should recall that in these series, since the quark mass appears only in the argument
of 1/β0-suppressed logarithms, the running of the MS quark mass, mq(µ), will generate
O(1/β2

0) or higher subleading terms. Therefore, here, we will use the fixed reference masses
mc = 1.28GeV and mb = 4.18GeV, which will not be RG-evolved in our phenomenological
explorations. For the strong coupling we use the reference value α(nf=5)

s (mZ) = 0.1179,
with mZ = 91.1876GeV [42], which yields α(nf=4)

s (mb) = 0.2245 and α(nf=3)
s (mc) = 0.3865

using the five-loop running coupling [43–46] and four-loop matching [47, 48] at the thresh-
olds, both in full QCD. These values have been obtained with REvolver [49]. The running
of αs(µ) in the large-β0 perturbative series is then performed at one-loop accuracy, for
consistency. In this limit they correspond to Λ(nf=4)

QCD = 145MeV and Λ(nf=3)
QCD = 210MeV.

In our large-β0 analyses we will use n` = 3 and n` = 4 active flavors for charm and
bottom moments, respectively. The results obtained in this section were implemented in
independent Mathematica and Python codes that agree to machine precision.

7For the cases without a direct phenomenological application, namely δ = S and A, the singularities are
again softened in the ratios of moments, but the cancellation of the leading UV renormalon when n → ∞
is not apparent.
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Figure 3. Perturbative series of ratios of vector-current charm moments RV
c,n in the large-β0 limit

normalized to the real part of the Borel integral of RV
c,n. The gray band represents the ambiguity

of the Borel integral.

In figure 3 we show the perturbative expansion of the first three ratios RVc,n for three
choices of the scale µ. In these plots, we normalize the results to the real part of the
Borel integral of RVq,n such that all the series should approach unity. Since the UV poles
lie at negative values of the variable u, their residues grow for lower renormalisation scales
and it is expected that small µ will enhance these singularities, as can be clearly seen in
figure 3(a), where the series with µ = 1.5GeV shows the sign alternation pattern typical
of UV renormalons already at the first few orders of perturbation theory. For larger µ the
residue of the leading UV pole is smaller and this oscillation is postponed. Ratios RVc,n with
higher values of n have weaker UV renormalons, as shown in figures 3(b) and 3(c), which is
a consequence of the partial cancellation of the leading UV pole discussed in the previous
section. However, the series for higher n do not stabilize around the true value given by the
Borel integral. Instead, they cross this value with a fixed sign pattern and later run into
the asymptotic regime. This is typical of series that have a large IR renormalon [50, 51]
and is in full agreement with the discussion in section 3.2, namely that the residue of the
leading IR pole grows with n. Another salient feature of these results is that the partial
cancellation of the leading UV renormalon leads to series that are somewhat better behaved
but that do not necessarily approach the true value faster. In fact, it turns out that for
higher n the series truncated at α3

s are further away from the true result.
In figure 4 we show similar results for the pseudo-scalar current correlator. Here,

we start with the moment MP
c,0 which does not have the mass dependent pre-factor and is

therefore a quantity completely analogous to the ratios RPc,n. However, this moment cannot
benefit from the partial cancellation of renormalons that we discussed in the previous
section, since its Borel transform is given solely by eq. (3.14d). We see in figure 4(a) that
this moment has a very large contribution of the UV singularities, with sign alternation
clearly visible even for high values of µ. For the ratio RPc,1, we see in figure 4(b) that the
partial cancellation is now in place, but the sign alternation is still present at lower orders
and only for RVc,2 this behaviour starts to be tamed.
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Figure 4. Perturbative series of ratios of pseudo-scalar current charm moments RP
c,n in the large-

β0 limit normalized to the real part of the Borel integral of RP
c,n. The gray band represents the

ambiguity of the Borel integral.
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Figure 5. Perturbative series of ratios of vector-current bottom moments RV
b,n in the large-β0 limit

normalized to the real part of the Borel integral of RV
b,n.

Finally, in figure 5 we show the results for the first three bottom-quark vector correlator
ratios RVb,n. The main difference in this case is that, overall, all the series are much better
behaved, which simply reflects the fact that αs(µ) is now much smaller, postponing the
onset of the asymptotic regime to significantly higher orders. Again, for n = 1 with the
lowest value of scale, here µ = 5GeV, the effects of the leading UV pole are clearly seen in
the sign alternation of the series coefficients. For higher values of n, the partial cancellation
of the UV renormalon leads to series with a uniform approach to the true value. Albeit
very well behaved, all the series approach the true value somewhat slowly, and at O(α3

s) a
relatively large spread with scale variation is still visible. The ambiguity arising from IR
poles is tiny and not visible in the plots of figure 5. This reinforces that non-perturbative
effects are negligible in the vector bottom ratios RVb,n.
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4.2 From the large-β0 limit to QCD

Before we can use the large-β0 results for Rδq,n to derive consequences for their counterpart
in QCD, it is important to compare the results up to O(α3

s), the last order known in QCD,
and assess how close the two series are. Our goal here is not to use the large-β0 results
as an estimate of the unkown higher-order coefficients. Rather, we intend to derive more
general conclusions that could guide the phenomenological applications, with special focus
on the ratios Rδq,n with δ = V, P . In full QCD, we use four and five active flavors for
charm and bottom moments, respectively. Furthermore, to mimic as much as possible our
large-β0 analyses, we set µm = mq and identify µα = µ in eq. (2.9).

Let us start with a direct comparison of the series obtained in large-β0 and QCD for
three exemplary ratios of moments with µ ∼ 2mq. We see in the upper panels of figure 6
that the large-β0 results do capture most of the features of the QCD series. There is, how-
ever, a difference related to the leading UV renormalon. As we have shown, in large-β0,
for lower renormalisation scales the dominance of the UV singularity is established at very
low orders, which is manifest in the sign alternation of the perturbative series coefficients,
defined in eq. (2.10), which produces a large order-by-order oscillatory behavior in the asso-
ciated partial sum. In QCD, lowering the renormalisation scale does not produce the same
effect. Some of the coefficients do change sign, but no systematic sign alternation emerges,
as can be seen in the lower panels of figure 6. In particular in panels 6(d) and 6(e), the
coefficients flip sign at O(α2

s) but in QCD the coefficient remains negative for α3
s correc-

tions as well. This means that the UV renormalon is not as salient as in large-β0 and that,
likely, a competition between IR and UV renormalons persists at intermediate orders even
for significantly low renormalisation scales. (This has already been observed in the context
of the Adler function [52].) Therefore, the series coefficients at low renormalisation scales
can be significantly different between large-β0 and QCD. In particular, the independent
coefficients rδ,(n)

i,0,0 of eq. (2.9) are not well reproduced beyond α2
s, since they are evaluated

at µ = mq. However, for larger renormalisation scales, for which the dominance of the
UV pole has already subsided in large-β0, the series can be quite similar to full QCD up
to O(α3

s).
Another general observation of figure 6 is that, fortunately, the QCD series appear

to approach the data-based determinations of the ratios of moments faster than the series
in large-β0 approach the Borel sum. We also remark that the Borel sum in large-β0 is in
very good agreement with the data-based determination of the ratios of vector moments
as well as the lattice determination of the pseudo-scalar ratios of moments with, perhaps,
the exception of the ratios RVc,n, but even those are still marginally compatible since they
have larger uncertainties.

4.3 Combined ratios of moments

With the knowledge of the renormalon structure of the ratios of moments in large-β0 we
can construct new dimensionless combinations designed to further suppress or even exactly
cancel specific renormalons. Ideally, one should rely on combinations that involve, at
most, the first four physical moments, since these are well described within pQCD. From
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Figure 6. Perturbative series for exemplary ratios of moments in large-β0 and full QCD for
µ ∼ 2mq (upper panels) and µ ∼ mq (lower panels). The solid horizontal line represents the large-
β0 Borel sum while the dashed lines are the values of the ratios obtained from experimental data
RV

b,1 = 0.8502±0.0014, RV
c,1 = 1.770±0.017 [10, 11] or lattice simulations RP

c,1 = 1.199±0.004 [15].

the vector moments with n ≤ 4 and pseudo-scalar moments with 0 ≤ n ≤ 3, general
dimensionless combinations are given by8

R̂Vq (a, b, c) ≡ [RVq,1]a[RVq,2]b[RVq,3]c ,
R̂Pq (a, b, c) ≡ [MP

q,0]a[RPq,1]b[RPq,2]c , (4.1)

with arbitrary real parameters a, b, and c. The large-β0 limit of R̂δq is obtained by con-
sistently re-expanding in 1/β0 the given combination using the results of eq. (3.19). The
Borel transform of R̂δn can then be easily written in terms of Bδ

n(u).
The numerators of the leading IR and UV renormalons now become linear combinations

of the parameters a, b, c. Suitable choices of these values can lead to significant reductions of
renormalon contributions to the perturbative series. Reducing the contribution from the IR

8In principle, one can even consider combinations of vector and pseudo-scalar moments, but we do not
explore this possibility.
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Figure 7. Perturbative series of the combination R̂V
c (−1/3, 1,−1/3) in large-β0 normalised to the

real part of its Borel integral. The gray band represents the ambiguity of the Borel integral.

renormalon at u = 2 is of particular importance for charm correlators since it is responsible
for the runaway behaviour observed in the charm ratios Rδc,n displayed in figures 3 and 4,
as well as being directly connected with the non-perturbative contribution from the gluon
condensate. However, working with a combination that makes the u = 2 residue vanish can
lead to an enhancement of the u = −1 pole and accordingly to perturbative series highly
dominated by the leading UV renormalon with a sign-alternating behaviour already at low
orders, even for high values of µ. Therefore, one must achieve some compromise between
the suppression of the leading IR singularity and the enhancement of the leading UV.
For bottom ratios, given the tiny impact of the gluon condensate, finding a combination
with no u = −1 singularity seems the best strategy. Given that for n = 1 such pole
is double, the combination should be restricted to n = 2, 3 (that is, with a = 0). But
since αs determinations from bottom moments are, at present, severely afflicted by large
experimental errors we do not explore this possibility any further.

For illustration purposes we show in figure 7 the perturbative expansion of the com-
bined charm vector ratio R̂Vc (−1/3, 1,−1/3) for three values of µ. This choice for the
parameters reduces both the leading IR and UV residues by about 70%, while the double
UV pole present in RVc,1 is suppressed only by the value of the parameter a. A competition
between both renormalons remains such that the perturbative series is not fully dominated
by a fixed-sign or a sign-alternating behavior. When compared to RVc,2 shown in figure 3(b),
from which the main results of refs. [10, 11] are based, we see that the perturbative se-
ries of R̂Vc (−1/3, 1,−1/3) approaches faster the true value given by the Borel sum, has
a weaker dependence on the renormalisation scale, and does not present a run-away be-
haviour typically seen in series dominated by IR renormalons. We have also checked from
a direct comparison that the large-β0 series of R̂Vc (−1/3, 1,−1/3) reproduces the non-log
coefficients predicted by its QCD counterpart with great precision, and thus the large-β0
series captures the features of the QCD series even at low values of µ.
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4.4 Discussion

With the above observations we are in a position to draw a few conclusions and advance a
number of plausible hypothesis about the results in QCD and the impact on αs extractions.
Concerning the ratios Rδq,n with δ = V, P :

• We demonstrated that, in large-β0, these ratios benefit from partial cancellation of
the leading renormalons. In the case of QCD, the renormalon singularities become
branch cuts, but the similarities between the results in large-β0 and QCD allow us to
speculate that an analogous mechanism for the softening of the singularities seems
to be at work for QCD as well. This strengthens the case for the use of these ratios
in αs extractions.

• In large-β0, the perturbative series for the ratios with δ = V , P are well behaved
for not too low µ. However, a relatively large spread arising from scale variations
remains at O(α3

s). This spread is significantly reduced at O(α4
s) which indicates that

the perturbative uncertainty in QCD could be significantly reduced should the α4
s

corrections be available.

• The softening of the singularities that is observed in large-β0 leads to series that
approach their true value uniformly but somewhat slowly. The results for larger n
are further away from their true value which would translate into larger values of αs
for higher n in an extraction of the strong coupling. In refs. [10, 11] this behaviour
was found in the QCD analysis, and the partial renormalon cancellation that we
found in this work offers a plausible explanation for this trend.

• We should also point out that in large-β0 the charm pseudo-scalar and vector moment
ratios behave rather similarly with respect to scale variations. This is different from
what is observed in QCD, where results from the P correlator tend to have larger
perturbative errors [10, 11]. Therefore, it seems that what is causing this qualitative
difference is beyond the 1/β0 approximation.

• Finally, the results for the large-β0 limit of the ratios of moments can be used to
derive new combinations of Rδq,n guided by renormalon cancellations that optimize
the behaviour of the perturbative series. Reducing the spread of scale variations at
O(α3

s) could lead to significant reductions on the final error in αs determinations
based on heavy-quark current correlators.

5 Conclusions

We have obtained the small-momentum expansion of the vector, axial-vector, scalar, and
pseudo-scalar correlators in the large-β0 limit of QCD. The results for the vector correlator
for low values of n were known since the work of ref. [28] while the others are new.

We have used these results to gain understanding about general features of the pertur-
bative series for the ratios of moments Rδq,n of eq. (2.8). Ratios RPc,n have been used since
some time for the extraction of the strong coupling from lattice results for the pseudo-
scalar charm correlator, while ratios RVq,n with q = c, b were recently shown to lead to
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competitive and reliable extractions of αs from data for e+e− → (hadrons) with charm
or bottom flavour content. We identified partial renormalon cancellations that make the
series for these ratios of moments better behaved than the series of moments MV

q,n. These
cancellations, however, is accompanied by a slower convergence towards the expected re-
sults. This observation provides a plausible explanation for the tendency to larger values
of αs with increasing n observed in refs. [10, 11], although in QCD the effect appears to
be less pronounced than in large-β0.

Another observation that can be drawn from the large-β0 results is that the series at
O(α3

s) are still somewhat far from the expected values and still display a significant variation
with renormalisation scale. This means that having the O(α4

s) term for RVq,n would, very
likely, significantly improve the αs extractions from R

(V,P )
q,n in terms of both central values

and perturbative uncertainty. At present, we are aware of an ongoing calculation of the
O(α4

s) correction for MV
q,1 [53]. To obtain the ratios at this order, however, the results for

higher n would be required.
The renormalon structure of the ratios of moments obtained in the large-β0 limit

can also be used to design combinations of Rδq,n that display weaker scale variations and
that could approach the expected value faster. Provided that these combinations can be
reliably obtained from experimental and lattice data, they could be the basis for improved
determinations of αs from heavy-quark current correlators.

The results presented here can also have implications for the heavy-quark mass extrac-
tions from e+e− → (hadrons) and from lattice data for the pseudo-scalar charm correlator.
In the literature, the final perturbative uncertainty on the quark masses is estimated using
different prescriptions for the renormalisation scale variation. We intend to use the large-β0
results presented here to shed light on this aspect of the quark mass extractions. A pos-
sibility to be explored is the construction of combinations of roots of moments (M δ

n)1/2n,
linearly sensitive to the quark mass, in the same spirit as the discussion in section 4.3, aim-
ing at partial renormalon cancellations and better perturbative behavior at O(α3

s), with the
potential of improving the determinations of heavy-quark masses, but this is left for future
work. The results we have obtained should also allow for a connection with non-relativistic
QCD, since we were able to obtain the small-momentum expansion of the correlators for
large values of n, which leave the domain of the relativistic sum rules. The investigation of
this connection is also beyond the scope of this work and should be explored in the future.
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A Small-momentum expansion of the two-loop integrals

In the calculation of the Feynman diagrams of figure 1, after the trace is performed and the
powers of momenta in the numerator are written in terms of the propagators, the problem
is reduced to the study of the following two-loop generic scalar integral

J2(q2;n1, . . . , n5) (A.1)

=
∫ ddk1 ddk2

[(k1 + q)2 −m2
q ]n1 [(k2 + q)2 −m2

q ]n2 [k2
1 −m2

q ]n3 [k2
2 −m2

q ]n4 [(k2 − k1)2]n5
,

where n5, the exponent of the gluon propagator, acts as an analytic regulator and therefore
the integral must be carried out for a generic value of this parameter (ni with 1 ≤ i ≤ 4 are
always integer numbers). Because of this constraint, it is not possible to use integration-
by-parts [54] to reduce the problem to the calculation of a small set of master integrals
that can be expanded in q2 using modern techniques such as the Mellin-Barnes trans-
form [55]. Therefore, we perform the asymptotic small-momentum expansion by successive
applications of the d’Alembertian operator in momentum space

�q = ∂

∂qµ∂qµ
. (A.2)

The corresponding Taylor expansion can be cast as [39]:

J2(q2;n1, . . . , n5) =
∞∑
j=0

1
j!(d/2)j

(
q2

4

)j[
�j
qJ2(q2;n1, . . . , n5)

]
q=0 , (A.3)

where (a)j ≡ Γ(a + j)/Γ(a) is the Pochhammer symbol. The application of the
d’Alembertian operator on the integrals J2 results in

�qJ2 = 4
{
(n1 + n2 + 1− d/2)[n1 1+J2 + n22+J2]

+m2[n1(n1 + 1)1++J2 + n2(n2 + 1)2++J2]
+ n1n2[2m21+2+J2 − 1+2+5−J2]

}
, (A.4)

where we used the notation 1±J2(q2;n1, n2, n3, n4, n5) = J2(q2;n1 ± 1, n2, n3, n4, n5) and
analogously for 2± and 5±, with n++ ≡ (n+)2. Higher derivatives are obtained by
recursively applying the d’Alembertian operator. After setting q2 = 0, the remaining
tadpole single-scale integrals can be solved analytically [56]

J2(0;n1, . . . , n5) = − πd(−1)λ1+λ2+λ3(m2
q)d−λ1−λ2−λ3 (A.5)

× Γ(λ1 + λ3 − d/2)Γ(λ2 + λ3 − d/2)Γ(d/2− λ3)Γ(λ1 + λ2 + λ3 − d)
Γ(λ1)Γ(λ2)Γ(λ1 + λ2 + 2λ3 − d)Γ(d/2) ,

where λ1 ≡ n1 + n3, λ2 ≡ n2 + n4 and λ3 ≡ n5.

B Explicit results

B.1 Polynomials

In this appendix we give explicitly the first three polynomials P δn(u) for the four quark
currents considered in this work. Results for higher values of n for the vector and pseudo-
scalar currents are available in [35].
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Vector current:

P V1 (u) = 3 + 92u
27 + 29u2

27 + u3

9 , (B.1)

P V2 (u) = 10 + 2095u
162 + 7393u2

1296 + 2887u3

2592 + 7u4

54 + u5

96 ,

P V3 (u) = 315
16 + 54791u

1920 + 62653u2

3840 + 3039u3

640 + 1037u4

1280 + u5

10 + 19u6

1920 + u7

1920 .

Pseudo-scalar current:

PP0 (u) = −2u
3 (7 + u) , (B.2)

PP1 (u) = 6− 11u
18 −

49u2

12 − 8u3

9 − u4

12 ,

PP2 (u) = 2− u
2

(
u5

192 + 19u4

192 + 467u3

576 + 2311u2

576 + 2677u
288 + 15

2

)
.

Scalar current:

PS0 (u) = u

(
−61

27 + 235u
27 + 260u2

27 + 20u3

9 + 2u4

9

)
, (B.3)

PS1 (u) = 15 + 703u
36 + 2333u2

72 + 2539u3

72 + 305u4

18 + 197u5

48 + 7u6

12 + 5u7

144 ,

PS2 (u) = 105
2 + 41357u

480 + 15517u2

160 + 513613u3

5760 + 99889u4

1920 + 35993u5

1920

+ 1711u6

384 + 223u7

320 + u8

16 + 7u9

2880 .

Axial-vector current:

PA1 (u) = 6 + 661u
54 + 1423u2

108 + 271u3

36 + 205u4

108 + 7u5

36 , (B.4)

PA2 (u) = 30 + 2161u
36 + 8315u2

144 + 30793u3

864 + 1555u4

108 + 98u5

27 + 25u6

48 + u7

32 ,

PA3 (u) = 315
4 + 77507u

480 + 798u2

5 + 59687u3

576 + 337453u4

6912 + 580397u5

34560

+ 69961u6

17280 + 10969u7

17280 + 1973u8

34560 + 77u9

34560 .

B.2 Leading-n` coefficients

Here we give the leading-n` coefficients in the perturbative expansion of N δ
n C

δ
n, with µ =

mq, up to α4
s for the first four physical moments of each correlator. The coefficients of

order n3
`α

4
s for δ = P, S,A are new in the literature. In the results of this section we define9

C̃δn ≡ N δ
nC

δ
n , and as ≡

αs
π
. (B.5)

9Not to be confused with aµ defined in eq. (3.4).
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Vector correlator:

C̃V1 = 1.0667 + 2.5547 as + (· · ·+ 0.66228n`)a2
s (B.6)

+ (· · ·+ 0.096101n2
` )a3

s + (· · ·+ 0.096093n3
` )a4

s ,

C̃V2 = 0.45714 + 1.1096 as + (· · ·+ 0.45492n`)a2
s

+ (· · · − 0.01595n2
` )a3

s + (· · ·+ 0.036331n3
` )a4

s ,

C̃V3 = 0.27090 + 0.51940 as + (· · ·+ 0.42886n`)a2
s

+ (· · · − 0.039596n2
` )a3

s + (· · ·+ 0.033047n3
` )a4

s ,

C̃V4 = 0.18471 + 0.20312 as + (· · ·+ 0.42483n`)a2
s

+ (· · · − 0.052774n2
` )a3

s + (· · ·+ 0.033935n3
` )a4

s .

Pseudo-scalar correlator:

C̃P0 = 1.3333 + 3.1111 as + (· · ·+ 0.61729n`)a2
s (B.7)

+ (· · ·+ 0.37997n2
` )a3

s + (· · ·+ 0.22899n3
` )a4

s ,

C̃P1 = 0.53333 + 2.0642 as + (· · ·+ 0.28971n`)a2
s

+ (· · ·+ 0.070202n2
` )a3

s + (· · ·+ 0.035807n3
` ) a4

s ,

C̃P2 = 0.30477 + 1.2117 as + (· · ·+ 0.26782n`)a2
s

+ (· · ·+ 0.015357n2
` )a3

s + (· · ·+ 0.021840n3
` )a4

s ,

C̃P3 = 0.20318 + 0.71276 as + (· · ·+ 0.28628n`)a2
s

+ (· · · − 0.0091663n2
` )a3

s + (· · ·+ 0.021261n3
` ) a4

s .

Scalar correlator:

C̃S0 = 0.8 + 0.60247 as + (· · ·+ 0.58765n`)a2
s (B.8)

+ (· · ·+ 0.23981n2
` )a3

s + (· · ·+ 0.20536n3
` )a4

s ,

C̃S1 = 0.22857 + 0.42582 as + (· · ·+ 0.23664n`)a2
s

+ (· · ·+ 0.0039812n2
` )a3

s + (· · ·+ 0.030916n3
` )a4

s ,

C̃S2 = 0.10159 + 0.15356 as + (· · ·+ 0.15634n`)a2
s

+ (· · · − 0.018026n2
` )a3

s + (· · ·+ 0.017163n3
` )a4

s ,

C̃S3 = 0.055411 + 0.032800 as + (· · ·+ 0.12383n`)a2
s

+ (· · · − 0.020909n2
` )a3

s + (· · ·+ 0.013605n3
` ) a4

s .

Axial-vector correlator:

C̃A1 = 0.53333 + 0.84609 as + (· · ·+ 0.41317n`)a2
s (B.9)

+ (· · ·+ 0.047848n2
` )a3

s + (· · ·+ 0.069840n3
` )a4

s ,

C̃A2 = 0.15238 + 0.14166 as + (· · ·+ 0.19218n`)a2
s

+ (· · · − 0.020498n2
` )a3

s + (· · ·+ 0.017170n3
` )a4

s ,
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C̃A3 = 0.067725 − 0.012760 as + (· · ·+ 0.13562n`)a2
s

+ (· · · − 0.022336n2
` )a3

s + (· · ·+ 0.012418n3
` )a4

s ,

C̃A4 = 0.036941 − 0.057469 as + (· · ·+ 0.10678n`)a2
s

+ (· · · − 0.020499n2
` )a3

s + (· · ·+ 0.010501n3
` )a4

s .

Open Access. This article is distributed under the terms of the Creative Commons
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