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1 Introduction

Perturbation theory is a widely used tool in the Standard Model (SM), New Physics (NP)
models and many other areas. In a given perturbative expansion, the first non-vanishing
term, sometimes called the leading order contribution, is often simple to compute. However,
when a calculation simultaneously involves many perturbative expansions, it can be more
challenging to identify the “leading” or dominant contribution.

In this manuscript, we study perturbative expansions in the Lepton Flavour Chang-
ing (LFV) part of the Lagrangian [1, 2] of the Standard Model Effective Field Theory
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(SMEFT). We restrict to LFV operators for two reasons; firstly, they must exist because
the observations of neutrino oscillations demonstrate that leptons change flavour (for a
review of LFV in the µ↔ e sector, see [3]). And secondly, LFV operators are simpler than
generic operators, because SM loop effects, included via Renormalisation Group Equations
(RGEs), cannot change lepton flavour, so the flavour of at least two legs of each operator
remains fixed.

There are many perturbative expansions in SMEFT: the EFT expansion in the ratio
of weak to New Physics scales v2/Λ2

NP , as well as the SM expansions in loops, in the O(1)
gauge and Higgs self-couplings and in the exceptionally hierarchical Yukawa couplings, and
also in mixing angles. So it is not obvious to find the leading effects. For example, it was
noticed long ago by Bjorken and Weinberg [4], in the SM extended with a second Higgs H
with LFV couplings Yµe ¯̀

µHPRe, that the one-loop amplitude for µ→ eγ is suppressed by
two lepton Yukawas, so is smaller than two-loop (“Barr-Zee” [5]) contribution:

A1−loop ∝
eyµY

∗
µµYµe

16π2M2
H

, A2−loop ∝
eytg

3Yµe
(16π2)2M2

H

.

However, this leading (although two-loop) contribution was missed in part of the subsequent
literature.

Various powercounting schemes have been introduced to organise perturbative calcu-
lations in flavour physics. For instance, in the quark flavour sector below the weak scale,
the Wolfenstein parametrisation of the CKM matrix [6] in powers of Cabibbo’s λ ∼ 0.22,
allows to guess the order of diagrams [7, 8]. And above the weak scale, there are schemes
such as Frogatt-Nielsen charges [12] and Minimal Flavour Violation [13](see also the more
general framework introduced in [14] for B-anomalies). Below the weak scale, a power-
counting recipe for flavour is sufficient to organise a calculation, because the mass scales
for the EFT are known, and the remaining couplings are few: in the RGEs for four-quark
operators, QED effects can be included at appropriate subleading order in the expansion
in αs log [7, 9]. For LFV below the weak scale, the “leading order” operators and RGEs
have been assembled: observables can be parametrised with three and four-point functions,
which correspond to operators of dimensions five to eight (see eg [10] for a list), and the
“leading order” RGEs, which include two-loop vector to dipole mixing, are given in [11].
However, above the weak scale, the situation is complicated by the dynamical Higgs and
SU(2) gauge bosons, which introduce more particle mixing in the RGEs, and also by our
ignorance of the mass scale of new particles, ΛNP.

In this manuscript, we suppose that New Physics is “beyond the LHC”, which is taken
to mean ΛNP > 4TeV, and introduce in section 2 a generalisation of the Wolfenstein
counting1 that parametrises the expansions in all the SM parameters of SMEFT, as well
as the scale ratio v/ΛNP, in terms of a single power-counting parameter λ ∼ 0.2. For
any operator, this scheme allows to identify the “leading” contribution to a given process
among those that could arise at different orders in the multiple perturbative expansions.
It also allows to classify the contributions of various operators to a process according to

1We thank Junji Hisano for proposing the original scheme.
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the order in λ, and estimate when a process can have sensitivity to an operator. So in
section 3, the power-counting scheme is used to address four questions:

1. Are dimension six operators sufficient to parametrise LFV, or can observables be
sensitive to dimension eight operators?

2. Does one need two-loop anomalous dimensions in the RGEs?

3. Are LFV observables sensitive to the effects of CKM angles in the RGEs, or can the
quark Yukawa matrices be approximated as diagonal?

4. If the dimension six operator H†H`He is present, it contributes to the charged lepton
mass matrix when the Higgs has a vev, so the lepton mass eigenstates are not the
eigenstates of the lepton Yukawa matrix Ye that appears in the RGEs. How should
this be accounted for?

The results are summarised in section 4. The powercounting suggests that in the
µ ↔ e sector, upcoming data could be sensitive to some dimension eight operators, and
some O(log /(16π2)2) effects, for ΛNP . 50 → 100 TeV (see the estimates2 in tables 5
and 6). The relevant dimension eight operators are listed in appendix A, and their (tree-
level) matching onto the EFT below mW is given in appendix B. For ΛNP & 50(→ 100)TeV
in the µ ↔ e sector, and for all considered scales in the τ ↔ ` sector (ΛNP & 4TeV), the
powercounting suggests that the one-loop RGEs for dimension six operators are sufficient.

2 Power-counting

We want to connect low-energy LFV processes with the operator coefficients in the SMEFT.
In a top-down sense, this means we want to estimate the “leading” or largest contribution of
each operator coefficient to each observable, or equivalently from a bottom-up perspective,
the best sensitivity of each observable to each operator.

2.1 Notation

We write the SM Lagrangian in notation similar to [15, 16]; the differences are that the index
order on Yukawas is doublet-singlet, and λ will be the small power counting parameter,
rather than the Higgs self-coupling.

Operators that change lepton flavour (but not number) arise at dimension ≥ 6 in
SMEFT, and are added to the Lagrangian in the basis of [1, 2], with coefficients written
as a dimensionless C divided by appropriate factors of a mass scale Λ:

LSMEFT = LSM +
{

1
Λ2

∑
I

CζIO
ζ
I + 1

Λ4

∑
K

(8)C ζ
KO

(8) ζ
K + h.c.+ . . .

}
(2.1)

where Λ is v = 174GeV in the experimental constraints on coefficients (1/v2 = 2
√

2GF ),
but it is sometimes convenient in the powercounting to take Λ to be the scale ΛNP of New

2Only a few µ→ e operators involving t̄t, such as H†H(µσPRe)(qtσPRt), could contribute up to ΛNP .
100TeV.
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LFV Physics. So for Λ = v, the powers of v2/Λ2
NP are included the coefficients C. The

coefficient subscripts label the gauge structure, and the superscript ζ is the flavour of the
fermions composing the operator in order of appearance(sometimes the LFV indices are
suppressed when they are obvious). The dimension six and eight operators are respectively
labelled and normalised as in [2]3 and [17].

The operators {OI} represent LFV contact interactions among SM particles. Loop
corrections to the operators generically diverge, so after renormalisation in MS, the oper-
ator coefficients depend on the renormalisation scale µ and satisfy Renormalisation Group
Equations (RGEs). These can be written for dimension six operators as

µ
∂

∂µ
~C = 1

16π2
~CΓ̃ + . . . (2.2)

where the operator coefficients are lined up in the row vector ~C, and the matrix elements of
Γ̃ are the anomalous dimensions multiplied by SM couplings, currently known at one-loop
(see eg [15, 16]). The matrix Γ̃ can be improved by including higher-loop contributions to
the anomalous dimensions, and the equation can be extended by adding higher-dimensional
operators (which changes its structure [18]). Eq. (2.2) can be solved numerically, or solved
analytically as a “scale-ordered” exponential, or approximated by neglecting the running
of SM couplings and exponentiating Γ̃:

~C(µ2) ' ~C(µ1) + ~C(µ1) Γ̃
16π2 ln

(
µ2
µ1

)
+ . . . (2.3)

This last approximation can be improved by including the running of some SM couplings,
and selected O(ln2 /(16π2)2) terms. The power-counting scheme introduced below is dia-
grammatic, so makes estimates in the spirit of an improved eq. (2.3), and aims to assist in
determining which improvements should be included in the RGEs.

2.2 The power-counting scheme

The aim here is to construct a power-counting scheme allowing to organise the perturbative
expansions that arise in Renormalisation Group running in the SMEFT above mW . The
input to this power-counting scheme should be the experimental sensitivities of one or
several observables, and a list of operator coefficients. But since one of the expansion
parameters, v2/Λ2

NP, is unknown, we only bound it from above, and quantify the order of
a coefficients contribution to an observable, as the scale up to which an O(1) coefficient
could be probed.

We introduce a small parameter
λ ' 0.2 (2.4)

by analogy to the λ parameter of the CKM matrix. The numerical value of powers λk is
given in table 1. The various dimensionless expansion parameters that occur in SMEFT
can be associated to powers of λ as discussed below (the recipe is summarised in table 2).

3The hermitian operators are here defined with a 1/2, since the hermitian conjugates are included in
eq. (2.1).
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k = 1 3 4 5 6 7 8 10 12
λk = .2 .008 1.6× 10−3 3.2× 10−4 6.4× 10−5 1.28× 10−5 2.56× 10−6 1.02× 10−7 4× 10−9

ΛNP(TeV) 4.3 22 109 540 2700

Table 1. The second line gives the numerical value of λk, for λ = 0.2 and k from the first line.
The third line gives the value of ΛNP, in TeV, such that (v/ΛNP)2 = λk (where v = 174GeV).

1. the gauge couplings gs, g2 and g′ (of respectively QCD, SU(2) and hypercharge) are
counted ∼ O(1), and sometimes retained in the estimates (because e3 ∼ λ2).

2. With a Lagrangian normalised as eq. (2.1) with Λ = v = 174GeV, the ratio vn−4/Λn−4
NP

is absorbed into the coefficients (where n is the operator dimension). In discussing
dimension eight operators, we assume a New Physics scale beyond the reach of the
LHC:

ΛNP & 4 TeV ⇒ v2

Λ2
NP

. λ4

however we leave ΛNP > v undetermined in estimating the relevance of two-loop or
CKM effects.

3. to each loop is attributed a factor

1
16π2 ∼ λ

3 ,
log

16π2 ∼ λ
2

where the loops that appear in the RGEs are accompanied by a log, so counted with
one less power. (For reference, ln mW

mµ,τ
' 6.7, 3.85, and ln 4TeV

mW
' 3.91.)

4. anomalous dimensions are counted as O(1), despite that some can be large (this may
sometimes compensate for counting gauge couplings ∼ 1).

5. In the lepton sector, we work in the mass eigenstate basis for charged leptons. This
would be the eigenbasis of Ye in the SM, but can differ in the presence of non-
renormalisable operators [19]. For instance, the operator [CeH ]ij/Λ2

NP H†H ¯̀
iHej

contributes to the charged lepton mass matrix

[me]ij = [Ye]ijv − [CeH ]ij v3

Λ2
NP
. (2.5)

However, there is a factor of 3 in the Feynman rule of OeH , such that the coupling
of leptons to the SM Higgs is

[Ỹ ]ij = 1√
2v

(
[m]ij − 2[CeH ]ij v3

Λ2
NP

)
(2.6)

so in the charged lepton mass basis, flavour-changing higgs decays probe the off-
diagonal coefficients of CeH .
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The LHC measures the yukawas of the τ and the µ to be consistent with SM expecta-
tions [20–23], and constrains the τ → ` flavour-changing interactions of the 125-GeV
Higgs [24, 25]:

v2

Λ2
NP

√
|CµτeH |

2 + |CτµeH |
2
< 1.00× 10−3 ,

v2

Λ2
NP

√
|Ceτ
eH |

2 + |Cτe
eH |

2 < 1.60× 10−3.

(2.7)
For µ→ e flavour change, the MEG bound [26] on BR(µ→ eγ) could probe couplings
as small as [10]

v2

Λ2
NP
CµeeH ,

v2

Λ2
NP
CeµeH ∼ 7.5× 10−7 (2.8)

(larger values could be allowed if they cancel against other contributions). These
bounds imply that in the charged lepton mass eigenstate basis, the off-diagonal ele-
ments of Ye are small (they are comparable to the LFV coefficients CijeHv2/Λ2

NP — see
eq. (2.5)), so the two largest eigenvalues of Ye can approximately be obtained from mτ

and mµ. Assuming that the magnitude of the electron Yukawa is ≤ ye|max = me/v,
one obtains that in the mass eigenstate basis,

[Ye] =

≤ 2.9× 10−6 < 10−6 < 10−3

< 10−6 6.0× 10−4 < 10−3

< 10−3 < 10−3 1.0× 10−2

 ≈
 λ

8 λ9 λ4

λ9 2λ5 λ4

λ4 λ4 λ3

 (2.9)

6. In the quark flavour sector, the mass and Yukawa matrices select eigenbases when
they are diagonalised in the generation spaces of the SM fermions. Since this
manuscript is focussed on LFV, operators such as H†Hq̄Hd or H†Hq̄H̃u are not
considered, and the quark masses are assumed to arise from Yukawa couplings. So
the eigenvalues of Yd and Yu, evaluated at mW , are taken as:

(yb, ys, yd) ≈ (1.7× 10−2, 3.5× 10−4, 1.7× 10−5) ≈ (λ2/2, λ5, λ7) (2.10)
(yt, yc, yu) ≈ (1.0, 4.0× 10−3, 6.7× 10−6) ≈ (1, λ3/2, λ7/2).

where yf ≡ mf (mW )/v, with mf (mW ) obtained from one-loop RGEs — eg for
quarks:

m(mW ) = m(µ)
[
αs(mW )
αs(µ)

]4/β

with β = (33− 2Nf )/3 ' 8, and m(µ) is from the PDB [27] with µ = mb,mc for the
b, c and 2GeV otherwise.4

The CKM matrix is approximated in terms of λ in the usual way:

VCKM =

 Vud Vus VubVcd Vcs Vcb
Vtd Vts Vtb

 =

 0.974 0.224 −0.004
−0.22 0.99± 0.02 0.042
0.008 −0.04 1.0

 '
 1 λ λ3/2
−λ 1 λ2

λ3/2 −λ2 1


(2.11)

4At mW , this gives mb = 3.0 GeV, mc = 0.7 GeV, ms = 62 MeV, md = 3.0 MeV, mu = 1.2 MeV.
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loop 1
16π2 λ3

loop*log log
16π2 λ2

lepton yukawas yτ , yµ, ye λ3, 2λ5, λ8

` flavour change see eq. (2.9)
d-quark yukawas yb, ys, yd λ2/2, λ5, λ7

u-quark yukawas yt, yc, yu 1, λ3/2, λ7/2
q flavour change see eq. (2.11)

Table 2. Power-counting scheme for the perturbative expansion of the SMEFT.

We will always work in the mass eigenstate bases of the singlet quarks, and the u-type
components of the doublet quarks. So in the RGEs, the up Yukawa is a diagonal
matrix Du, and Yd = VCKMDd. We choose the {uL} basis for quark doublets above
mW for two reasons. First, flavour change in the RGEs is therefore suppressed by
CKM and the small d-type Yukawas. Secondly, at dimension six in SMEFT, there is
only a tensor operator for us (O`equ(3)), so this basis diagonalises the large mixing of
this tensor to the dipole operator.
The CKM matrix is included also in matching at mW , when the low-energy operators
involving d-type quarks are expressed as SMEFT operators.

The above power-counting scheme is summarised in table 2, and should allow to estimate
the contribution of any operator coefficient to any observable. The accuracy of the scheme
is discussed at the end of the next subsection, by comparing to the solutions of the RGEs.

2.3 Examples

This section gives explicit examples of how the powercounting estimates are made, and
compares them to the solutions of the RGEs.

We first consider µ→ e processes because the most restrictive experimental constraints
on LFV arise in this sector, and upcoming experiments aim to improve the sensitivities by
several orders of magnitude (see table 3; indeed, there are plans to reach a conversion ratio
. 10−18 for µA→ eA [43]). The Branching Ratios can be expressed (see eg [3, 10, 42]) in
terms of the coefficients, evaluated at the experimental scale, of operators which contribute
at tree level. For instance, the low-energy operators

δL = 2
√

2GF (CD,Lmµeσ · FPLµ+ CD,Rmµeσ · FPRµ) (2.12)

contribute to µ→ eγ [26] as

BR(µ→ eγ) = 384π2(|CD,R|2 + |CD,L|2) < 4.2× 10−13 (2.13)

which gives the experimental bounds, translated into our power counting parameter (Λ ∼ v
in eq. (2.1))

|CD,R|, |CD,L| < 1.05× 10−8 ∼ λ11. (2.14)

– 7 –
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process bound on BR sensitivity to C
µ→ eγ < 4.2× 10−13 [26] → 6× 10−14 [28] CD ∼ λ11 → λ12

µ→ eēe < 1.0× 10−12 [29] → 10−16 [30] CS ∼ λ8 → λ11

CV ∼ λ8.5 → λ11.5

µA→ eA < 7× 10−13 [31–33] → 10−16 [34–36] CV,D ∼ λ9.5 → λ12

CS ∼ λ10.5 → λ14

K0
L → µē < 4.7× 10−12 CP ∼ λ11.5

CA ∼ λ9.5

B0
d → µ±e∓ < 1× 10−9 CP ∼ λ7.5

B+
d → π+µ̄e < 1.7× 10−7 CV ∼ λ7

B0
s → µ±e∓ < 5.4× 10−9 CP ∼ λ7.5

B+ → K+µ̄e < 9.1× 10−8 CV ∼ λ6.5

D0 → µ±e∓ < 1.3× 10−8 CP ∼ λ6

D+ → π+µ̄e < 1.7× 10−7 CV ∼ λ4

τ → `γ < 3.3× 10−8 [37] CD ∼ λ7.5

τ → ` ¯̀̀ . 2× 10−8 [38] →. 10−9 [39] CV ∼ λ5 → λ5.5

CS ∼ λ4.5 → λ5

τ → `π0 < 8.0× 10−8 [40] CS ∼ λ4.5

τ → `η < 6.5× 10−8 [40] CS ∼ λ4.5

τ → `ρ < 1.2× 10−8 [41] CV ∼ λ4.5

B0
d → eτ < 2.8× 10−5 [27] CP ∼ λ5

CA ∼ λ4.5

Table 3. Some current and upcoming experimental bounds on LFV Branching Ratios (τ ↔ µ

results are similar to τ ↔ e). The third column gives the order of magnitude of dimension six
operator coefficients that reproduce the experimental numbers, in powers of λ ' 1/5. The listed
coefficients CLor contribute to the process at tree level, are labelled by the operator’s Lorentz
structure, and are normalised to a scale Λ = v = 174 GeV in eq. (2.1). The meson decay bounds
are from [27], the coefficient sensitivities from [10, 42, 44].

The dipole is a special case, because the operators contain not only fields, but also a built-
in parametric suppression factor mµ. This is the usual operator definition, and makes
sense because in SMEFT the operator has a Higgs leg which frequently attaches to the
muon line. However, in some loop diagrams (for instance Barr-Zee) the Higgs is attached
to a heavier particle in a loop, so such diagrams would gain a factor 1/(2λ5) in our power-
counting scheme. For a different normalisation of the dipole operator, the power-counting
sensitivity would change. For instance,

δL = 2
√

2GF (CD,Lveσ · FPLµ+ CD,Rveσ · FPRµ) (2.15)

gives |CD,R|, |CD,L| . λ16.
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Figure 1. On the left, a diagram mixing the tensor operator to the dipole (the Higgs leg is
replaced by a mass insertion in the EFT below mW ). On the right, one of the diagrams mixing
tensor operators to scalars (the gauge boson can attach to any two legs not belonging to the same
bilinear).

Figure 2. Representative diagrams allowing two-loop mixing of vector operators to the dipole.

f Power Counting Running
e ∼ 20 TeV ∼ 13 TeV
µ ∼ 300 TeV ∼ 190 TeV
τ ∼ 103 TeV ∼ 1.1× 103 TeV
u ∼ 50 TeV ∼ 71 TeV
d ∼ 50 TeV ∼ 73 TeV
s ∼ 200 TeV ∼ 330 TeV
c ∼ 103 TeV ∼ 1.7× 103 TeV
b ∼ 2× 103 TeV ∼ 2× 103 TeV

Table 4. Powercounting estimates of the mixing from tensor to dipole operators below mW ,
compared to the solutions of the RGEs [10, 11].

The sensitivity of µ → eγ to other operators can be estimated in our power-counting
scheme by drawing diagrams. For instance, tensor operators mix to the dipole via the
left diagram of figure 1. Below the electroweak scale and normalizing as in eq. (2.12), the
contribution to the dipole coefficient is of order

∆CD
mµ

v2 ∼ e
log

16π2C
ff
T

mf

Λ2
NP
⇒ ∆CD ∼ eλ2CffT

yf
yµ

v2

Λ2
NP

(2.16)

where f = u, d, s, c, b, e, µ, τ , and the estimate in our power-counting scheme can be ob-
tained using table 2.
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Scalar and vector operators can contribute to the dipole via two-loop diagrams, that
arise either as one-loop mixing into the tensor, or direct mixing to the dipole at two-loop.
Below the weak scale, the scalar to tensor mixing is via diagrams like the right figure 1,
where the gauge boson is a photon, which gives

∆CD ∼ e3 log2

(16π2)2C
ff
S

yf
yµ

v2

Λ2
NP

(2.17)

where now f = u, d, s, c, b, τ . The vector to dipole mixing is via diagrams such as figure 2.
We estimate the diagrams on the left and right as

∆CD ∼ e3 log
(16π2)2CV

(
v

ΛNP

)2
×
{

1
yd
yµ

(2.18)

so there is sensitivity to vector coefficients for scales below 10 TeV (which is consistent
with the bound in [10, 11]).

Approximating physical predictions in terms of powers of some parameter is always
somewhat arbitrary and erroneous (Indeed, although we count in λ, we allow for

√
λ in

table 3). In order to test our recipe, in table 4 we compare our power-counting estimates to
the solutions of the RGEs; this estimate is obtained in the EFT below mW , for which the
solution of the “leading order” RGEs is given in [10, 11]. The table shows that our estimate
of the scale ΛNP where CffT would be ∼ 1, (obtained by combining eq. (2.16) with column
three of table 3), differs by at most

√
3 from the solution of the RGEs (this corresponds

to a factor ≤ 3 ∼ 1/
√
λ for C, so less than an order of magnitude in the rate). For the

second-order/two-loop mixing of eqns (2.17), (2.18) we find that the powercounting can
mis-estimate ΛNP by a factor 2-3.

3 Questions

This section uses the power-counting proposal of the previous section to study what physics
should be included at “leading order”, in the SMEFT RGEs for LFV operators. In the
first sections, the focus is on µ ↔ e flavour change, due to the sensitivity of current
and upcoming experiments; the importance of dimension eight operators and two-loop
anomalous dimensions for τ -LFV is briefly discussed in section 3.5.

3.1 Dimension eight operators

This section explores when which dimension eight operators are required, and whether
their RGEs are required.

We suppose that the New Physics responsable for LFV is beyond the reach of the LHC,
so ΛNP & 4TeV. In the normalisation convention of table 3, this implies that coefficients
of dimension eight operators are suppressed by ∼ λ8:

f(gNP , . . .)
(4 TeV)4 O

(8) =
(8)C

v4 O
(8) ⇒ (8)C .

v4

(4 TeV)4 ' λ
8 (3.1)

– 10 –
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Comparing to the tree-level sensitivities given in table 3, one sees that kaon and muon
decays are generically sensitive to dimension eight operators induced by new particles in
the interesting mass range just beyond the reach of the LHC. Pushing the New Physics scale
above 20TeV would give (8)C . λ12, making most dimension eight operators irrelevant.

There are thousands of LFV dimension eight operators [17, 45], so it would be attractive
to include only some of them in a first approximation. Indeed, in a bottom-up perspective,
only the dimension eight operators to which observables are sensitive are required. So we
reject derivative operators such as

Dα(eγβµ)Dα(fγβf)

because their contribution to low-energy S-matrix elements should be suppressed by
{s, t, u}/v2, suggesting that K and µ processes have no sensitivity to dimension eight
derivative operators. We also neglect operators with more than four legs after electroweak
symmetry-breaking, on the assumption that they do not contribute (at tree level) to our
low-energy observables.

There remain about four dozen µ↔ e operators (given in appendix A in the notation
of [17]):

1. four-particle operators which are forbidden at dimension 6 due to gauge invariance.

2. dimension six SMEFT operators with an additional H and H†, such as
(HH†)¯̀HσαβeFαβ or (¯̀

eHσ
αβµ)(q̄iH̃σαβuj). It may seem unlikely that the dimen-

sion eight contribution could be relevant given the possibility of a dimension six term;5
however, being agnostic could be appropriate in EFT, and dimension eight operators
are considered, for instance, in studies of Non-Standard neutrino Interactions [46].

These operators are schematically listed in tables 5 and 6, along with the scale below they
could contribute to observables with a coefficient C . 1. So they should be considered in
the EFT parametrisation of any model constructed below this scale.

The effects of these operators can be partially accounted for by matching the model
onto them at ΛNP, and then including them in the matching at the weak scale onto the
low energy EFT. These matching conditions for LFV operators are given in appendix B
(at tree level).

Many of these operators contribute to observables via loops, so including them in
RGEs is relevant. Since they match at mW onto low-energy four-particle interactions, the
Renormalisation Group running below mW is known and will occur automatically once
they are included in the matching.

The RG running in SMEFT is missing. Above mW , the Higgs and W bosons can
mix operators differently from the gluon and photon, for instance by modifying the SU(2)
contractions (see eg the RGEs for a subset of dimension eight operators in [48]). Dimension
eight four-fermion operators involving two tops pose a particular problem, because their

5The dimension six coefficient could perhaps be suppressed by additional loops or small couplings with
respect to dimension eight.
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operator ΛNP (in TeV) process
(`eHeµ)(qdHdd) 55 µA→ eA

(`eHeµ)(uuH̃†qu) 55 µA→ eA

(`eHeµ)(qsHds) 26 µA→ eA

(`eHσeµ)(qdHσdd) 25 µA→ eA

(`eHσeµ)(qbHσdb) 25 µA→ eA

(`eHeµ)GG 20 µA→ eA

(`eHσeµ)(`τHσeτ ) 20 µ→ eγ

(`eHeµ)(`eHee) 15 µ→ eēe

(`eHeµ)(ucH̃†qc) 15 µA→ eA

(`eHσeµ)(qsHσds) 15 µA→ eA

(`eHeµ)(utH̃†qt) 10 µ→ eγ

(`eHeµ)(qbHdb) 10 µA→ eA

(`eHeµ)(`µHeµ) 8 µ→ eγ

(`eHeµ)FF 3 µA→ eA

Table 5. Dimension eight operators which induce at low energy four-particle contact interactions
that do not arise at dimension six. The operators are represented schematically in the first column,
and the second column gives the scale ΛNP up to which the process of the third column (with
upcoming sensitivity) could probe coefficients . 1. (The estimate for (`eHeµ)FF is from [47].) .

leading contribution to low energy LFV is likely to arise from the unknown RG running
in SMEFT. Fortunately, many of these top operators are dimension six operators with an
extra H† and H (only the operator ∼ (ePRµ)(tPLt) arises first at dimension eight), so one
could hope that models dominantly generate dimension six operators. Alternatively, one
could envisage to add the coefficients of dimension eight top operators to the dimension six
coefficients at ΛNP, and evolve them with the SMEFT RGEs at dimenson six, which will
include a subset of the loops. We leave calculating the anomalous dimensions for a later
project.

3.2 2-loop anomalous dimensions?

This section aims to identify relevant mixing that could arise from the two-loop RGEs of
SMEFT, so we are looking for two-loop diagrams that would not be generated at second
order in the one-loop RGEs.

One can see why these could be interesting, by considering the QED×QCD-invariant
EFT below mW , where at one-loop, vector operators mix among themselves, and the
dipoles+scalars+tensors mix among themselves, but there are no divergent one-loop di-
agrams mixing vectors and non-vectors. Therefore, to all orders in the one-loop RGEs,
the vectors evolve separately from the others. However, vector to dipole mixing occurs at
two-loop, and is encoded in the two-loop RGEs [49]; a few diagrams are given in figure 2.
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operator ΛNP (in TeV) process
(H†H)(`eσeµ)(qtσut) 100 µ→ eγ

(HH†)(¯̀
eeµ)(d̄dqd) 55 µA→ eA

(HH†)(¯̀
eeµ)ε(q̄uuu) 55 µA→ eA

(HH†)(¯̀
eeµ)(d̄sqs) 25 µA→ eA

(HH†)(¯̀
eγ
α`µ)(q̄uγαqu) 22 µA→ eA

(HH†)(¯̀
eγ
α`µ)(ūuγαuu) 22 µA→ eA

(HH†)(¯̀
eγ
α`µ)(q̄dγαqd) 22 µA→ eA

(HH†)(¯̀
eγ
α`µ)(d̄dγαdd) 22 µA→ eA

(HH†)¯̀
eHσ

αβeµFαβ 20 µ→ eγ

(HH†)(¯̀
eγ
α`µ)(¯̀

eγα`e) 18 µ→ eēe

(HH†)(¯̀
eγ
α`µ)(ēeγαee) 18 µ→ eēe

(HH†)(ēeγαeµ)(ēeγαee) 18 µ→ eēe

(HH†)(¯̀
eeµ)ε(q̄cuc) 15 µA→ eA

(HH†)(¯̀
eeµ)(d̄bqb) 10 µA→ eA

Table 6. Dimension eight operators which induce low energy contact interactions that do arise at
dimension six. In the first column the operators are represented schematically(other distributions of
the Higgses, or triplet constractions, could be possible), and the second column gives the scale ΛNP
up to which the process of the third column (with upcoming sensitivity) could probe coefficients . 1.
.

Figure 3. Vector mixing to the tensor via Higgs exchange.

So we are looking for two-loop diagrams that allow operator O to mediate process P, when
O cannot mediate P via the one-loop RGEs.

In SMEFT, there can be 1-loop vector to tensor mixing by exchanging a Higgs, as
illustrated in figure 3. Closing the quark legs gives a contribution to the dipole. For
instance, considering the vector O(1)

`q we find

∆CD ∼ e
( log

16π2

)2
C

(1)eµnm
`q [YuY †u ]nm

v2

Λ2
NP
∼ eλ4C

(1)eµnm
`q [YuY †u ]nm

v2

Λ2
NP

(3.2)

which results in a sensitivity to C(1)eµtt
`q up to ΛNP ∼ 50 TeV. Estimates similar to eq. (3.2)

hold for all vector operators which can mix to the u-type tensor.
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operator 2loop V→ D(ΛNP in TeV) V→T→D(ΛNP in TeV)
O(1)eµtt
`q 10 50
OeµffV 10
Oeµdd`edq 5 —
Oeµss`edq 20 —
Oeµbb`edq 100 —

Table 7. Operators which contribute to µ → eγ via two-loop mixing in the RGEs, and in the
second column, our powercounting estimate for the scale ΛNP up to which coefficients . 1 could be
probed. The third column gives the estimated sensitivity obtainable via the one-loop RGEs. OeµffV

schematically refers to all the dimension six vector four-fermion operators with f 6= t. .

Vector operators also can mix directly to the dipole in the 2-loop RGEs through gauge
interactions, as illustrated by the diagram on the left of figure 2. The powercounting
estimate for these diagrams

∆CD ∼ e3 log
(16π2)2CV

v2

Λ2
NP

(3.3)

suggests that there is sensitivity to vector coefficients for scales below 10 TeV — which is
larger than the vector→tensor→ dipole contribution for all operators not involving a top
quark, see table 7.

There could also be two-loop mixing of the OLEDQ scalar to the dipoles. For com-
paraison, at one loop the u quark scalar operator OLEQU mixes to the tensor, which mixes
to the dipole, and due to Yukawa enhancement and large anomalous dimensions, this
second-order process in the one-loop RGEs is important. In the d-quark sector, there is
no dimension six tensor, so no equivalent process occurs; however the diagrams are there,
and OLEDQ can be Fierzed to the vector −1

2(`γαq)(dγαe) which mixes at two-loop to the
dipole [49]. The powercounting estimate is

∆CD ∼ eg2λ5Cij`edq[Yd]ij
v2

Λ2
NP

(3.4)

which suggests that µ→ eγ could be sensitive to coefficients . 1 up to the scales given in
table 7.

These results show that the two-loop vector to dipole mixing can be relevant, and
often dominates over the mixing involving a Higgs loop, which occurs at second-order in
the one-loop RGEs. It would be desirable to include these two-loop anomalous dimensions.
However, although they are known in QCD and QED [11, 49, 50], a complete computation
in SMEFT is currently missing in the literature [51].

3.3 CKM

CKMmixing angles can appear in various places in SMEFT: in matching of the higher scale
theory onto SMEFT, in the RG running of operator coefficients and of SM couplings, and in
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ij\pr bb bs bd ss sd dd
tt λ5 λ9.5 λ13 λ14 λ17.5 λ21

tc λ7 λ7.5 λ10.5 λ12 λ15 λ18.5

tu λ8.5 λ8.5 λ9.5 λ13 λ14 λ17.5

cc λ9 λ9.5 λ12.5 λ10 λ13 λ16

cu λ10.5 λ10.5 λ11.5 λ11 λ12 λ15

uu λ12 λ12 λ13 λ12 λ13 λ14

Table 8. Estimates for the Yukawa and CKM suppression (' V ipCKMydpV
jr
CKMydr ) of the mixing

between operators containing (qiγαqj) into operators containing (dpγαdr). The indices ij are given
in the left column, and pr in the top line.

matching the SMEFT operators at mW onto the QED×QCD-invariant low energy theory.
Including CKM in matching at mW is straightforward, but it could be conceptually simpler
to set VCKM = 1 in the RGEs for the operator coefficients. This section explores the errors
that could arise from this approximation, by allowing one non-zero operator at a time at
ΛNP, and estimating the magnitude of low-energy coefficients that it generates at one-loop
∝ [VCKM ]ij , i 6= j. If no experiment has sensitivity to the contributions proportional to
CKM mixing angles, then one can conclude that VCKM = 1 is an acceptable approximation
in the RGEs.

The CKM matrix also appears in the RGEs of the renormalisable SM couplings, where
it causes the eigenbases of YdY †d and YuY †u to rotate with scale. This is due to wavefunction
corrections. Since wavefunction diagrams also decorate the operators, we assume this is a
“universal” effect, automatically included by working in the rotating YuY †u eigenbasis, and
do not powercount the associated diagrams.6

Recall that we work in the Yd eigenbasis for the {dR}, and the Yu eigenbasis for the
{uR} and {qL}. So VCKM only appears in Higgs loops, at vertices ∝ Yd = VCKMDd. It
therefore enters the one-loop RGEs of OLQ1,OLQ3, OLD, OED OEQ and OLEDQ.

Consider first operators at ΛNP with a doublet quark bilinear (qiγαqj), where i, j ∈
{u, c, t}. Higgs exchange between the quark legs can dress this quark bilinear to generate

(qiγαqj)→ V ip
CKMydpV

jr
CKMydr

log
16π2 (dpγαdr) (3.5)

where the approximate magnitude of V ip
CKMydpV

jr
CKMydr , for all possible flavours of the

doublet and singlet lines, is given in table 8. If the CKM matrix is approximated as the
identity, then only the diagonal components of the table would remain.

From the table 8, one sees that mixing induced by non-vanishing CKM angles is sup-
pressed by < λ7+2v2/Λ2

NP (where the additional λ2 is for the log /16π2 loop suppression).
Such contributions are clearly negligeable in the RGEs for τ → ` operators; to determine

6For instance, an off-diagonal [Yu]ct ∼ 3 log /(32π2)Vcby2
bVtbyt is generated by a Higgs loop on the qL

line. Inside the loop mixing OLEQU,3 → OD, this could give sensitivity to OeµctLEQU,3, in an unrotating basis
for qL.
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whether they should be included in the RGEs for µ ↔ e operators, we compare to the
sensitivity of upcoming experiments. In the case of p = r but i 6= j, the best sensitivity is
from µ→e conversion. We estimate that µA → eA could be sensitive to the mixing from
(qtγαqc) → (bγαPRb) for an experimental reach BR(µA → eA) . 10−16 v4

Λ4
NP

, and to the

cu→ ss, dd mixing for BR(µA→ eA) . 10−20 v4

Λ4
NP

. This suggests that the RGE-mixing of
operators involving (qiγαqj), into operators involving (dpγαdp), for i 6= j and p = q, is neg-
ligeable in the forseeable future. In the converse case, of RGE-mixing of flavour-diagonal
operators (qiγαqi), into quark flavour non-diagonal operators (dpγαdr), table 8 indicates
that the least suppressed mixings are tt, cc → bs ∝ λ9.5 v2

Λ2
NP

, and cc, uu → sd ∝ λ13 v2

Λ2
NP

,
which is beyond the sensitivity of the meson decay searches listed in table 3.

The CKM angles can also enter in the mixing of the singlet quark current (dpγαdp) into
doublets (qiγαqj). Similarly to the doublet to singlet mixing discussed above, the effects
of CKM are beyond upcoming experimental sensitivities. A novel feature in this case is
that approximating the CKM angles to vanish can generate flavour change when there is
none. For example, the sR leg of an operator could transform under RG running into a
left-handed doublet quark (due to Higgs exchange), which in the SM would be in the sL
direction. But in our approximation where YdY †d is diagonal in the YuY †u eigenbasis, it is
in the cL direction, so matches at mW onto ∑p V

cp
CKMdLp.

Finally, there are diagrams with one Higgs vertex on the quark line and one on a
lepton line, which eg mix vector and scalar operators. The mixing from scalar into vector
operators, such as OLEDQ → {O(1)

LQ,OEQ} can be neglected because the lepton Yukawas are
smaller than that of the b, so any quark-flavour-changing contribution is more suppressed
than the (dpγαdp)↔ (qiγαqj) mixing discussed above. It is also the case that quark-flavour-
changing mixing from vectors to scalars is below the sensitivity of upcoming experiments,
despite that the experimental sensitivity to scalar operators can be better than to vectors
(see table 3). In the case of µ ↔ e searches, this is because the mixing is suppressed by
yµ ∼ λ5, and for τ ↔ ` searches, the experiments are less sensitive.

So we conclude that CKM angles can be neglected in the SMEFT RGEs for LFV
operators, provided that one runs in the YuY †u eigenbasis for the {qL}, and that CKM
mixing is retained in matching at mW .

3.4 LFV Yukawa couplings

In the SM, the Yukawa matrix of the charged leptons is the only basis-choosing interaction
in the leptonic sector — the gauge interactions are “universal”, that is, proportional to the
identity matrix in generation space, so the eigenvectors do not choose directions. In the real
world (not described by the SM), the neutrino mass matrix provides another eigenbasis, but
the magnitude of neutrino masses is so small that their direct GIM-suppressed contribution
to LFV is irrelevant (instead, they provide motivation to search for LFV).

LFV operators that are added to the Lagrangian below the weak scale are inevitably
written in the mass eigenstate basis of the charged leptons. Above the weak scale in
SMEFT, there are two possibilities: the mass eigenstate basis, or the Yukawa eigenstate
basis — which may be different in the presence of the operator OeH . The physics, of course,
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cannot depend on a basis choice, but the calculation may be more intuitive and simple in
somes bases than in others. So which is the best choice?

Suppose one thinks top-down; then at ΛNP, the New Physics model is matched to
the SM +operators. The obvious basis in this case for SMEFT is the De-basis where the
lepton Yukawa matrix is diagonal: Ye = De = diag{ye, yµ, yτ}. This choice is motivated by
LFV being a NP effect, and ensures that the SMEFT RGEs, which describe SM dynamics,
cannot change the flavours of lepton legs.

However, when the Higgs gets a vev in the presence of the OeH operator, the De basis
may no longer be the mass eigenstate basis, due to additional off-diagonal contributions of
OeH to the mass matrix. So a basis rotation during the matching at mW would be required,
from theDe basis to the mass eigenstate basis in which the restrictive low-energy constraints
are expressed. Current constraints/sensitivities on the off-diagonal elements of OeH imply
that the angles of this rotation are small: estimating θij ∼ CijeHv

3/(Λ2
NPmax{mi,mj}) for

i 6= j gives
θ`τ , θτ` . λ , θeµ, θµe . λ4 (3.6)

where ` ∈ {e, µ}.
If the New Physics scale is sufficiently high that only dimension six operators are

relevant, one might hope to neglect this rotation in matching, because the angles are
∝ Cv2/Λ2

NP, so any effect on a NP operator would be O(1/Λ4
NP). (Below mW , there

are also contact interactions induces by the W,Z, h, which could becomes flavour-changing
under a basis rotation. However, the W and Z interactions are “universal”, so unconcerned
by basis rotations, and the higgs-mediated operators are suppressed by SM Yukawas, so
the dimension six flavour-changing operators induced by the rotation are unobservable.)
However, as previously discussed, LFV data can have sensitivity to operators suppressed
by O(1/Λ4

NP), and the mixing angles of eq. (3.6) are also enhanced by inverse Yukawas.
The power-counting rules suggest that flavour-diagonal coefficients at ΛNP ∼ 4TeV could
be rotated into τ ↔ ` operators suppressed by λ5, and into µ↔ e suppressed by λ8. This
is within current experimental sensitivities.

We advocate not making the transformation from the mass to Yukawa eigenstate basis
atmW . This is because the rotation is unknown, and the angles are insufficiently suppressed
(see eq. (3.6)). Instead, we remain in the mass eigenstate basis above the weak scale; this
is consistent with our bottom-up perspective, because it is the basis where the constraints
apply. The lepton Yukawa matrix can be off-diagonal in this basis(see eq. (2.9)), but the
off-diagonals ∼ θijyj are much smaller than the θijs of eq. (3.6) because they are suppressed
also by small lepton Yukawas. The powercounting suggests that they can be neglected in
the RGEs, for instance

[Ye]µe
log

16π2
v2

Λ2
NP

. λ15.

So in practise, we work in the mass eigenstate basis at all scales, but treat the lepton
Yukawa matrix as diagonal in the RGEs of SMEFT. The inconvenience of this choice is
that in matching a model onto the operators, one must identify the low energy lepton mass
eigenstate basis in the model, and obtain operator coefficients in that basis.
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3.5 LFV with τs

This section briefly discusses the ingredients required for a “leading order” SMEFT study
of LFV involving τs.

For the majority of τ LFV processes listed in table 3 there is sensitivity to Wilson
coefficients that are & λ5. Since a loop costs a factor λ2, loop effects in the τ sector could
be relevant for (v2/Λ2

NP) ≥ λ3, but this implies a New Physics scale within the LHC reach.
In the case of the more sensitive τ → e(µ)γ searches, the corresponding diagrams

can be power counted as for µ → eγ, replacing the muon leg with a tau leg. Since the
constraints concern dipole coefficients defined with a built-in yukawa of the heavier lepton,
we encounter two possibilities in the diagrams:

• either one Higgs leg is attached to the decaying lepton line and the power counting
estimate is the same,

• or no Higgs-heavy lepton vertex is present and the diagrams are suppressed by a
factor yµ/yτ = 2λ2 with respect to the corresponding µ→ eγ one.

In both cases, given the lesser sensitivity in the τ sector, we can conclude that any approx-
imation that we justify through power counting for µ-s is also valid for τ LFV processes.

As a result, two-loop anomalous dimensions should be irrelevant in τ ↔ ` processes,
due to the estimated suppression ∼ λ5 of two-loop diagrams. This should remain true even
in the case of τ → e(µ)γ.

Furthermore, the requirement of eq. (3.1) on 8-dimensional operator coefficients for
ΛNP & 4 TeV

(8)C . λ8

is sufficient to argue that any τ LFV observable is not sensitive to dimension eight operators.

4 Summary

Effective Field Theory can be envisaged from a bottom-up or top-down perspective. In
bottom-up EFT for Lepton Flavour Change(LFV), the aim is to map experimental con-
straints onto the correct sum of operator coefficients at the New Physics scale ΛNP, in order
to identify the area in coefficient space where BSM models must sit. From a top-down per-
spective, one can map a LFV model onto operator coefficients at ΛNP, calculate observables
using EFT, and this should correctly reproduce model predictions to within a calculable
uncertainty. In both perspectives, the EFT calculation must include correctly every oper-
ator coefficient that could contribute to an observable, irrespective of its dimension or of
the order in the loop or coupling expansions.

To ensure that we use SMEFT correctly for describing LFV, we introduced a power-
counting scheme, that allows to organise all the SMEFT perturbative expansions — in
loops, couplings, mixing angles and the ratio of the weak scale to the New Physics v/ΛNP
— in terms of a small “Cabibbo-Wolfenstein-like” parameter λ ≈ 0.2. This power-counting
scheme is described in section 2.2, and summarised in table 2. The future reach of various

– 18 –



J
H
E
P
0
8
(
2
0
2
1
)
0
0
2

experiments can be expressed in powers of λ (see table 3) — so for instance, the upcoming
MEGII experiment searching for µ→ eγ could probe dipole coefficients up to O(λ12). Then
one can draw diagrams, arising at various orders in the different perturbative expansions,
and do two things; first, compare different contributions of an operator to an observable,
to identify the leading one, (see eg section 2.3 and 3.2). And secondly, one can determine
which operators can affect which observables by comparing the power-counting estimates
to the future experimental sensitivity. Some examples are given in section 2.3.

For LFV operators, the SMEFT expansion in operator dimension can be written as an
expansion in v2/Λ2

NP, where the New Physics scale ΛNP plays two roles in our manuscript.
On one hand, it is the unknown mass of the lightest lepton flavour changing new particle (see
the Lagrangian of eq. (2.1)), which we take “beyond the reach of the LHC”: ΛNP & 4TeV
(so v2/Λ2

NP . O(λ4) in the powercounting scheme). However, since ΛNP is unknown, we
simultaneously count the order of an operators contribution by the scale it could probe
with a coefficient of O(1/Λ2n

NP).
In the SMEFT, there are already many operators at dimension six, and their RGEs

are only known at one-loop. So in section 3, we use the powercounting scheme to explore
whether dimension six operators and one-loop RGEs are sufficient to describe LFV at the
sensitivity of experiments under construction. Section 3.2 suggests that some two-loop
anomalous dimensions are required for µ ↔ e flavour change, when ΛNP . 20TeV. The
calculation of these anomalous dimensions is in progress [51].

Section 3.1 finds that upcoming µ↔ e data can be sensitive to dimension eight SMEFT
operators, about four dozen of them for ΛNP & 4TeV, but none at scales ΛNP & 100TeV.
The relevant dimension eight operators match onto three-or four-point interactions below
the weak scale, and can be divided into two sets: those which are the lowest-dimension
SMEFT operator inducing a given contact interaction below mW , and a second set that
induces low-energy contact interactions already present at dimension six. The scale ΛNP
up to which the operators can be relevant is given in tables 5 and 6. These dimension eight
operators are listed in appendix A, and are included in the matching onto operators below
mW in appendix B.

The power counting scheme can also be used to simplify and streamline calculations
with the existing SMEFT operators and RGEs, for instance by neglecting flavour-changing
SM interactions. We perform two such exercises; section 3.3 checks that CKM mixing can
be neglected in the RGEs for LFV operators, provided that it is included in matching,
and that the SMEFT RGEs run in the YuY †u eigenbasis for the {qL}. Section 3.4 explores
the case where operators of the form Cij(H†H)n`iHej , with i 6= j, are allowed to con-
tribute to the charged lepton mass matrix. This implies that in the charged lepton mass
eigenstate basis (where all experimental constraints are given), the charged lepton Yukawa
Ye has unknown off-diagonal elements. The power-counting suggests that if these flavour-
changing Yukawas are below current experimental sensitivities, they can be neglected in
the SMEFT RGEs.

In this manuscript, we estimated lower bounds on the scale ΛNP , such that the pre-
dictions of lepton flavour changing New Physics models from beyond ΛNP can be obtained
with the dimension six operators of SMEFT and their one-loop RGEs. These results could
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be used to motivate, or justify, SMEFT studies of LFV. It could be interesting to perform
a similar study in the EFT with a “non-linear realisation” of the Higgs sector [52–55], and
also to perform a more systematic expansion to ensure that the leading terms are identified.
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A Some LFV Operators of dimension eight

Section 3.1 showed that µ ↔ e processes can be sensitive to some SMEFT operators of
dimension eight, if these have O(1) coefficients at ΛNP & 4TeV. This appendix lists the
relevant operators, following the notation of [17].

The LFV operators given here are required to match onto low energy operators in-
volved in the processes of table 3, so derivative operators, and those involving more than
four particles at low energy, are neglected. In addition, operators of the form µ2

H× di-
mension six, where µ2

H is the Higgs mass2 term in the Lagrangian, are neglected because
in matching onto operators below mW , the potential minimisation condition relates µ2

H

to H†H. Furthermore, we restrict our list to operators that are µ ↔ e flavour changing
but flavour diagonal in the two other fermion legs, as the low energy observables constrain
operator with this flavour structure.

The four-fermion operators of dimension eight can be obtained by adding two Higgs
fields to dimension six four-fermion operators, or by multiplying two renormalizable La-
grangian terms. Dimension six operators can be multiplied by the singlet product (H†H),
but the Higgses can also contract with specific doublets; when the Higgs gets a vev, this
feature induces a low-energy operator involving only some SU(2) partners. For instance,
the dimension eight operator

(`αH̃γρH̃†`β)(qγρq)→ (ναγρνβ)(uγρu+ dγρd).

This operator induces “Non-Standard neutrino Interactions” [46], which can be searched for
at neutrino experiments, without inducing tree-level flavour-change among charged leptons.
Exploiting SU(2) identities, these operators can be expressed as linear combinations of
dim6×(H†H) and the following operator

(`ατ Iγρ`β)(qγρq)(H†τ IH).

Adopting the convention of [17], we retain the triplet contractions in the operator basis.
Since we are interested in the contribution of dimension eight operators to LFV observables,
we organize the operator list according to whether a dimension six version exists or does
not exist.

We display operators with “standard” flavour indices and we don’t include the permu-
tations that will be matched to the same low energy interaction, as discussed in appendix B.
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A.1 Dimension eight not present at dimension six

A.1.1 Four-fermion

SU(2) invariance and its chiral nature forbid SMEFT dimension six counterparts of some
four-fermion contact interaction of the QCD∗QED invariant Lagrangian, forcing their ap-
pearance at dimension eight. In the case of four-fermion operators with four-lepton legs
these are the tensor operators

O(4)eµkk
L2E2H2 = (l̄eHσαβeµ)(l̄kHσαβek)

where k ∈ {e, µ, τ}. They can be related to the scalars O(3)ijkl
L2E2H2 = (l̄iHej)(l̄kHel) of the

basis [17] thanks to the following Fierz identity

O(4)eµkk
L2E2H2 = −8O(3)ekkµ

L2E2H2 − 4O(3)eµkk
L2E2H2 .

Given that the tensors mix with the dipole, we retain both operators in the matching
conditions of appendix B, keeping in mind that we can remove the redundancy by means
of the above identity.

For four-fermion interaction involving two-lepton and two-quark legs, the dimension
eight operators that do not arise at dimension six are

O(3)eµnn
LEDQH2 = (¯̀

eHeµ)(q̄nHdn) O(4)eµnn
LEDQH2 = (¯̀

eσ
αβHeµ)(q̄nσαβHdn)

O(5)eµnn
LEQUH2 = (¯̀

eHeµ)(ūnH̃†qn).

where n is a quark generation index. In this case, the scalar and tensor operator for
down-type quarks are independent and cannot be related by means of Fierz identities.

A.1.2 Two-lepton operators

Two-lepton and two-gauge boson operators firstly appear at dimension eight

O(1)eµ
LEG2H = (¯̀

eHeµ)GAαβGAαβ O(2)eµ
LEG2H = (¯̀

eHeµ)GAαβG̃Aαβ

O(1)eµ
LEW 2H = (¯̀

eHeµ)W I
αβW

Iαβ O(2)eµ
LEW 2H = (¯̀

eHeµ)W I
αβW̃

Iαβ

O(1)eµ
LEB2H = (¯̀

eHeµ)BαβBαβ O(2)eµ
LEB2H = (¯̀

eHeµ)BαβB̃αβ

O(1)eµ
LEWBH = (¯̀

eτ
IHeµ)BαβW I

αβ O(2)eµ
LEWBH = (¯̀

eτ
IHeµ)BαβW̃ Iαβ

and provide the leading order matching contribution to the dimension seven two-
photon OFF,Y = (ēPY µ)FαβFαβ ,OFF̃ ,Y = (ēPY µ)FαβF̃αβ and two-gluon OGG,Y =
(ēPY µ)GAαβGAαβ , OGG̃,Y = (ēPY µ)GAαβG̃Aαβ operators of the low energy Lagrangian,
whose coefficients are constrained by searches of µ→ e conversion in nuclei.
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A.2 Dimension eight operators present at dimension six

A.2.1 Four-fermion

The four-fermion operators with four lepton legs that also appear at dimension six are

O(1)eµkk
L4H2 = (¯̀

eγ
α`µ)(¯̀

kγα`k)(H†H) O(2)eµkk
L4H2 = (¯̀

eγ
α`µ)(¯̀

kτ
Iγα`k)(H†τ IH)

O(1)eµkk
L2E2H2 = (¯̀

eγ
α`µ)(ēkγαek)(H†H) O(2)eµkk

L2E2H2 = (¯̀
eτ
Iγα`µ)(ēkγαek)(H†τ IH)

OeµkkE4H2 = (ēeγαeµ)(ēkγαek)(H†H),

where k = e, µ, τ .
In addition, the four-fermion operators containing two-lepton and two-quark legs are:

O(1)eµnn
L2Q2H2 =(¯̀

eγ
α`µ)(q̄nγαqn)(H†H) O(2)eµnn

L2Q2H2 =(¯̀
eτ
Iγα`µ)(q̄nγαqn)(H†τ IH)

O(3)eµnn
L2Q2H2 =(¯̀

eτ
Iγα`µ)(q̄nτ Iγαqn)(H†H) O(4)eµnn

L2Q2H2 =(¯̀
eγ
µ`µ)(q̄nτ Iγµqn)(H†τ IH)

O(5)eµnn
L2Q2H2 =εIJK(¯̀

eτ
Iγµ`µ)(q̄nτJγµqn)(H†τKH) O(1)eµnn

L2U2H2 =(¯̀
eγ
α`µ)(ūnγµun)(H†H)

O(2)eµnn
L2U2H2 =(¯̀

eτ
Iγα`µ)(ūkγαul)(H†τ IH) O(1)eµnn

L2D2H2 =(¯̀
eγ
α`µ)(d̄kγαdl)(H†H)

O(2)eµnn
L2D2H2 =(¯̀

eτ
Iγα`µ)(d̄nγαdn)(H†τ IH) O(1)eµnn

E2Q2H2 =(ēeγαeµ)(q̄nγαqn)(H†H)

O(2)eµnn
E2Q2H2 =(ēeγαeµ)(q̄nτ Iγαqn)(H†τ IH) OeµnnE2U2H2 =(ēeγαeµ)(ūnγαun)(H†H)

OeµnnE2D2H2 =(ēeγαeµ)(d̄nγαdn)(H†H) O(1)eµnn
LEDQH2 =(¯̀

eeµ)(d̄nqn)(H†H)

O(2)eµnn
LEDQH2 =(¯̀

eeµ)τ I(d̄nqn)(H†τ IH) O(1)eµnn
LEQUH2 =(¯̀

eeµ)ε(q̄nun)(H†H)

O(2)eµnn
LEQUH2 =(¯̀

eeµ)τ Iε(q̄nun)(H†τ IH) O(3)eµnn
LEQUH2 =(¯̀

eσ
αβeµ)ε(q̄nσαβun)(H†H)

O(4)eµnn
LEQUH2 =(¯̀

eσ
αβej)τ Iε(q̄nσαβun)(H†τ IH)

where n = 1, 2, 3 runs over the quark generation space.

A.2.2 Two-lepton operators

Two-lepton operators include the eight dimensional dipoles

O(1)eµ
LEWH3 = (¯̀

eτ
IHσαβeµ)W I

αβ(H†H)

O(2)eµ
LEWH3 = (¯̀

eHσ
αβeµ)W I

αβ(H†τ IH)
OeµLEBH3 = (¯̀

iHσ
αβej)Bαβ(H†H)

and the following operators

O(1)eµ
L2H4D = i(¯̀

eγ
α`µ)(H†

↔
DαH)(H†H)

O(2)eµ
L2H4D = i(¯̀

eτ
Iγα`µ)[(H†

↔
DI
αH)(H†H) + (H†

↔
DαH)(H†τ IH)]

OeµE2H4D = i(ēeγαeµ)(H†
↔
DαH)(H†H) OeµLEH5 = (¯̀

eHeµ)(H†H)2,
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where

iH†
↔
DµH ≡ iH†(DµH)− i(DµH

†)H

iH†
↔
DI
µH ≡ iH†τ I(DµH)− i(DµH

†)τ IH.

Following Electroweak Spontaneous Symmetry Breaking, the second set of operators are
matched onto four fermion contact interactions at low energy, after integrating out the
heavy Z, h bosons at mW .

B Tree matching at mW with LFV operators to dimension eight

This section presents the tree level matching conditions at mW of µ↔ e flavour-changing
SMEFT operators, including the dimension eight operators listed in the previous section,
but neglecting double-insertions of dimension six operators. The operator basis below mW

is given in the notation of [10, 56].

B.1 Dipoles and two-photon(gluon)

BelowmW , there are the dipole operators of two chiralities, and operators with two photons
or two gluons. Above mW , there is a dimension six dipole operator for hypercharge, and
another one for SU(2).

Since the photon is the combination Aµ = cos θWBµ + sin θWW 3
µ ≡ cWBµ + sWW

3
µ ,

the low energy dipole coefficient (on the left) is matched onto the dimension six and eight
SMEFT dipoles (on the right) as

CeµD,R = cW

(
CeµEB + v2

yµΛ2
NP
CeµLEBH3

)
− sW

[
CeµEW + v2

yµΛ2
NP

(
CeµLEWH3(1) + CeµLEWH3(2)

)]

CeµD,L = cW

(
Cµe∗EB + v2

yµΛ2
NP
Cµe∗LEBH3

)
− sW

[
Cµe∗EW + v2

yµΛ2
NP

(
Cµe∗LEWH3(1) + Cµe∗LEWH3(2)

)]

where the − sign is due to the τ3 matrix. In addition, since matching “at tree level” mean
tree-level in the low-energy theory, loop diagrams in the theory above mW composed of
heavy particles can be included. We follow [56] (see [57] for a more recent calculation),
and retain the two-loop Barr-Zee diagrams, in which a Higgs leg connect a W or t loop
with the neutral Higgs flavour changing vertex of eq. (2.6), and the one loop Z−exchange
diagram where one Z vertex is flavour changing. The former give the matching condition

∆CeµD,L(mW ) ' −Cµe∗EH(mW )
[

eα

16π3yµ

(
Q2
tNcY

2
t −

7
2

)]
' Cµe∗EH(mW )

[
eα

8π3yµ

]
, (B.1)

while the latter give

∆CeµD,L(mW ) ' e

16π2 g
e
LC

eµ
HE(mW )

∆CeµD,R(mW ) ' e

16π2 g
e
R

(
CeµHL(1)(mW ) + CeµHL(3)(mW )

)
, (B.2)
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where geL, geR are defined in the Feynman rule for Z couplings to leptons −i g
2cW (geLPL +

geRPR) as geR = 2s2
W , and geL = −1 + 2s2

W .
For the two-photon and two-gluon operators the matching conditions are

CeµFF,R = v

ΛNP

(
c2
WC

eµ
LEB2H(1) − sW cWC

eµ
LEWBH(1) + s2

WC
eµ
LEW 2H(1)

)
(B.3)

CeµFF,L = v

ΛNP

(
c2
WC

µe∗
LEB2H(1) − sW cWC

µe∗
LEWBH(1) + s2

WC
µe∗
LEW 2H(1)

)
(B.4)

Ceµ
F F̃ ,R

= v

ΛNP

(
c2
WC

eµ
LEB2H(2) − sW cWC

eµ
LEWBH(2) + s2

WC
eµ
LEW 2H(2)

)
(B.5)

Ceµ
F F̃ ,L

= v

ΛNP

(
c2
WC

µe∗
LEB2H(2) − sW cWC

µe∗
LEWBH(2) + s2

WC
µe∗
LEW 2H(2)

)
(B.6)

CeµGG,R = v

ΛNP
CeµLEG2H(1) CeµGG,L = v

ΛNP
Cµe∗LEG2H(1) (B.7)

Ceµ
GG̃,R

= v

ΛNP
CeµLEG2H(2) Ceµ

GG̃,L
= v

ΛNP
Cµe∗LEG2H(2) (B.8)

B.2 Four-Lepton

SMEFT operators with four-fermion legs are matched onto four-fermion contact interac-
tions in the low-energy effective theory as Electroweak symmetry is spontaneously broken
and the Higgs doublet is replaced by its vacuum expectation value. In addition, given that
the interesting LFV operators are µ↔ e flavour changing but otherwise flavour diagonal,
two-lepton µ ↔ e operators can be connected to a renormalizable vertex exchanging an
h or a Z, generating an effective four-fermion interaction when the heavy SM bosons are
integrated out at the Electroweak scale.

As discussed in the text, a flavour changing vertex with the h Higgs boson appears as
the SMEFT operators OEH and OLEH5 contribute to the leptons mass

[me]ij = v

(
[Ye]ij − CijEH

v2

Λ2
NP
− CijLEH5

v4

Λ4
NP

)
, (B.9)

so that in the charged leptons mass basis the Yukawa coupling is off-diagonal

h√
2
ēiPRe

j

(
[Ye]ij − 3CijEH

v2

Λ2
NP
− 5CijLEH5

v4

Λ4
NP

)

= h√
2
ēiPRe

j

(
[me]ij − 2CijEH

v2

Λ2
NP
− 4CijLEH5

v4

Λ4
NP

) (B.10)

and the LFV Feynman rule with the neutral Higgs reads

− i
√

2ēiPRej
(
CijEH

v2

Λ2
NP

+ 2CijLEH5
v4

Λ4
NP

)
(B.11)

In SMEFT there are more distinct flavour structures which are matched into the same low
energy operators: for example OeµffLL , OffeµLL , OfµefLL and OeffµLL all match onto the below-
mW LFV operator OeµffLL . In the following, we suppress these permutations for brevity,
and write

Ceµfflow energy = CeµffSMEFT + perm.
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to indicate that these different flavour structures are to be summed on the right side of the
matching conditions. These are:

Ceµ``V,RR = Ceµ``EE + CeµHEg
e
R + v2

Λ2
NP

(
Ceµ``E4H2 + CeµE2H4Dg

e
R

)
+ perm. (B.12)

Ceµ``V,LR = Ceµ``LE + (CeµHL,3 + CeµHL,1)geR

+ v2

Λ2
NP

[
CeµllL2E2H2(1) + CeµllL2E2H2(2) +

(
CeµL2H4D(1) + 2CeµL2H4D(2)

)
geR

]
Ceµ``V,RL = C``eµLE + CeµHEg

e
L + v2

Λ2
NP

[
C``eµL2E2H2(1) + C``eµL2E2H2(2) + CeµE2H4Dg

e
L

]
(B.13)

Ceµ``V,LL = Ceµ``LL + (CeµHL,3 + CeµHL,1)geL

+ v2

Λ2
NP

[
Ceµ``L4H2(1) + Ceµ``L4H2(2) +

(
CeµL2H4D(1) + CeµL2H4D(2)

)
geL

]
+ perm.

Ceµ``S,RR = −m`C
eµ
EHv

m2
h

+ v2

Λ2
NP

(
Ceµ``L2E2H2(3) − 2

m`C
eµ
LEH5v

m2
h

)
+ perm. (B.14)

CeµττS,LR = −2CτµeτLE − mτC
µe∗
EHv

m2
h

− v2

Λ2
NP

[
2
(
CτµeτL2E2H2(1) + CτµeτL2E2H2(2)

)
+ 2

mτC
µe∗
LEH5v

m2
h

]
(B.15)

CeµττS,RL = −2CeττµLE − mτC
eµ
EHv

m2
h

− v2

Λ2
NP

[
2
(
CeττµL2E2H2(1) + CeττµL2E2H2(2)

)
+ 2

mτC
eµ
LEH5v

m2
h

]
(B.16)

Ceµ``S,LL = −m`C
µe∗
EHv

m2
h

+ v2

Λ2
NP

(
Cµe``∗L2E2H2(3) − 2

m`C
µe∗
LEH5v

m2
h

)
+ perm. (B.17)

CeµττT,RR = v2

Λ2
NP
CeµττL2E2H2(4) (B.18)

CeµττT,LL = v2

Λ2
NP
Cµeττ∗L2E2H2(4) (B.19)

where ` ∈ {e, µ, τ}. We see that lepton tensors are matched at tree level only at dimension
eight, and also that dimension eight operators could be significant for LL or RR scalars,
where the dimension six contribution is Yukawa-suppressed.

B.3 Two-lepton two-quark

Given that the low energy constraints are expressed in the quark mass eigenstate basis, in
the “bottom up” approach adopted here, the CKM matrix will act on SMEFT operator
coefficients in the matching conditions. As we work in the uL−basis, a CKM weighted sum
will appear in matching dL operators.(The CKM matrix is here written as V , rather than
the previously used VCKM .)
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Tree-level matching SMEFT dimension six and eight coefficients (on the right) onto
low energy coeffic ients (on the left) results in:

CeµununLL = CeµnnLQ(1) − C
eµnn
LQ(3) + guL(CeµHL(1) + CeµHL(3))

+ v2

Λ2
NP

[
CeµnnL2Q2H2(1) + CeµnnL2Q2H2(2) − C

eµnn
L2Q2H2(3) − C

eµnn
L2Q2H2(4)

+
(
CeµL2H4D(1) + 2CeµL2H4D(2)

)
guL

]
CeµdndnLL =

∑
jk

VjnV
∗
kn(CeµjkLQ(1) + CeµjkLQ(3)) + gdL(CeµHL(1) + CeµHL(3))

+ v2

Λ2
NP

[∑
jk

VjnV
∗
kn

(
CeµjkL2Q2H2(1) + CeµjkL2Q2H2(2) + CeµjkL2Q2H2(3) + CeµjkL2Q2H2(4)

)
+
(
CeµL2H4D(1) + 2CeµL2H4D(2)

)
gdL

]
(B.20)

CeµununRR = CeµnnEU + guRC
eµ
HE + v2

Λ2
NP

(
CeµnnE2U2H2 + CeµE2H4Dg

u
R

)
(B.21)

CeµdndnRR = CeµnnED + gdRC
eµ
HE + v2

Λ2
NP

(
CeµnnE2D2H2 + CeµE2H4Dg

d
R

)
(B.22)

CeµununLR = CeµnnLU + guR(CeµHL(1) + CeµHL(3))

+ v2

Λ2
NP

[
CeµnnL2U2H2(1) + CeµnnL2U2H2(2) +

(
CeµL2H4D(1) + 2CeµL2H4D(2)

)
guR

]
(B.23)

CeµdndnLR = CeµnnLD + gdR(CeµHL(1) + CeµHL(3))

+ v2

Λ2
NP

[
CeµnnL2D2H2(1) + CeµnnL2D2H2(2) +

(
CeµL2H4D(1) + 2CeµL2H4D(2)

)
gdR

]
(B.24)

CeµununRL = CeµnnEQ + guLC
eµ
HE + v2

Λ2
NP

[
CeµnnE2Q2(1) − C

eµnn
E2Q2(2) + CeµE2H4Dg

u
L

]
(B.25)

CeµdndnRL =
∑
jk

VjnV
∗
knC

eµjk
EQ + gdLC

eµ
HE

+ v2

Λ2
NP

∑
jk

VjnV
∗
kn

(
CeµjkE2Q2(1) + CeµjkE2Q2(2)

)
+ CeµE2H4Dg

d
L

 (B.26)

CeµununS,LL = −C∗µennLEQU −
munv

m2
h

Cµe∗EH −
v2

Λ2
NP

(
Cµenn∗LEQUH2(1) + Cµenn∗LEQUH2(2) + 2munv

m2
h

Cµe∗LEH5

)
(B.27)

CeµdndnS,LL = −mdnv

m2
h

Cµe∗EH + v2

Λ2
NP

∑
j

V ∗jnC
µejn∗
LEQDH2(3) − 2mdnv

m2
h

Cµe∗LEH5

 (B.28)

CeµununS,RR = −CeµnnLEQU −
munv

m2
h

CeµEH −
v2

Λ2
NP

(
CeµnnLEQUH2(1) + CeµnnLEQUH2(2) + 2munv

m2
h

CeµLEH5

)
(B.29)
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CeµdndnS,RR = −mdnv

m2
h

CeµEH + v2

Λ2
NP

∑
j

VjnC
eµjn
LEQDH2(3) − 2mdnv

m2
h

CeµLEH5

 (B.30)

CeµununS,LR = −munv

m2
h

Cµe∗EH −
v2

Λ2
NP

(
2munv

m2
h

Cµe∗LEH5 − Cµenn∗LEQUH2(5)

)
(B.31)

CeµdndnS,LR =
∑
j

VjnC
∗µenj
LEDQ −

mdnv

m2
h

Cµe∗EH

+ v2

Λ2
NP

∑
j

Vjn
(
Cµenj∗LEQDH2(1) + Cµenj∗LEQDH2(2)

)
− 2mdnv

m2
h

Cµe∗LEH5


CeµununS,RL = −munv

m2
h

CeµEH −
v2

Λ2
NP

(
2munv

m2
h

CeµLEH5 − CeµnnLEQUH2(5)

)
(B.32)

CeµdndnS,RL =
∑
j

V ∗jnC
eµnj
LEDQ −

mdnv

m2
h

CeµEH

+ v2

Λ2
NP

∑
j

V ∗jn

(
CeµnjLEQDH2(1) + CeµnjLEQDH2(2)

)
− 2mdnv

m2
h

CeµLEH5


CeµununT,LL = −C∗µennT,LEQU −

v2

Λ2
NP

(
Cµenn∗LEQUH2(3) + Cµenn∗LEQUH2(4)

)
(B.33)

CeµununT,RR = −CeµnnT,LEQU −
v2

Λ2
NP

(
CeµnnLEQUH2(3) + CeµnnLEQUH2(4)

)
(B.34)

CeµdndnT,RR = v2

Λ2
NP

∑
j

VjnC
eµjn
LEQDH2(5) (B.35)

CeµdndnT,LL = v2

Λ2
NP

∑
j

V ∗jnC
µejn∗
LEQDH2(5) (B.36)

where V is the CKM matrix, un ∈ {u, c}, dn ∈ {d, s, b}, and

guL = 1− 4
3s

2
W , guR = −4

3s
2
W , gdL = −1 + 2

3s
2
W , gdR = 2

3s
2
W . (B.37)

As anticipated, the low energy LFV tensors involving d−type quarks are matched at tree
level onto the SMEFT eight dimensional tensors. Dimension eight operators could also
be relevant for LL, RR scalars with d quarks and RL, LR scalars with u quarks, as the
dimension six contributions are suppressed by Yukawa couplings.
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any medium, provided the original author(s) and source are credited.
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