Erratum: Hints of unitarity at large N in the $O(N)^{3}$ tensor field theory

Dario Benedetti, ${ }^{a}$ Razvan Gurau, ${ }^{a, b}$ Sabine Harribey ${ }^{a}$ and Kenta Suzuki ${ }^{a}$
${ }^{a}$ CPHT, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France
${ }^{b}$ Perimeter Institute for Theoretical Physics, 31 Caroline St. N, Waterloo, ON, N2L 2Y5, Canada
E-mail: dario.benedetti@polytechnique.edu, rgurau@cpht.polytechnique.fr, sabine.harribey@polytechnique.edu, kenta.suzuki@polytechnique.edu

Erratum to: JHEP02(2020)072
ArXiv ePrint: 1909.07767

The measure in equation (2.11) contains a wrong normalization factor, and it should be multiplied by $2^{1-d} \Gamma(d-1) / \Gamma(d / 2)^{2}$. Therefore, the correct result reads

$$
\begin{aligned}
\mu_{\Delta_{\phi}}^{d}(h, J)= & \left(\frac{1+(-1)^{J}}{2}\right) \frac{\Gamma\left(J+\frac{d}{2}\right)}{\Gamma(J+1)} \\
& \times \frac{\Gamma\left(\frac{d}{2}-\Delta_{\phi}\right)^{2} \Gamma\left(\frac{2 \Delta_{\phi}-d+h+J}{2}\right) \Gamma\left(\frac{2 \Delta_{\phi}-h+J}{2}\right) \Gamma(h-1) \Gamma(d-h+J) \Gamma\left(\frac{h+J}{2}\right)^{2}}{\Gamma\left(\Delta_{\phi}\right)^{2} \Gamma\left(\frac{2 d-2 \Delta_{\phi}-h+J}{2}\right) \Gamma\left(\frac{d-2 \Delta_{\phi}+h+J}{2}\right) \Gamma\left(h-\frac{d}{2}\right) \Gamma(h+J-1) \Gamma\left(\frac{d-h+J}{2}\right)^{2}} .
\end{aligned}
$$

This error does not affect any qualitative result, but it alters several equations which should be multiplied by the same factor. The concerned equations are: (1.5), (1.6), (3.11), (3.12), (3.14), (3.16), (3.18), (3.23), (3.24), (3.25), (A.1), (A.4), (A.6), (B.3).

A similar normalization error affects also the special $d=1$ case in section 3.4, where equations (3.28), (3.31), (3.32), and the second line of (3.33) should be multiplied by a factor $2 \pi / 3$.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

