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1 Introduction

The emergence of quantum gravity from a gauge theory is one of the most fascinating

issues that can be addressed with the AdS/CFT correspondence. Since the work of [1] it

has been clear that not every conformal field theory (CFT) in the large N limit can be

dual to a gravitational theory described by a two derivative Einstein-Hilbert action. For

instance, for four dimensional CFTs a necessary condition is that the two central charges

coincide in the large N limit, a = c [1]. For instance, this property is satisfied by N = 4

super Yang-Mills, but it is not satisfied by N = 2 SU(N) with nF = 2N hypermultiplets

in the fundamental representation, thus ruling out that the large N limit of this CFT has

a holographic dual well described by gravity.

Since the early days of the holographic correspondence, it has been important to find

further examples of CFTs with holographic duals, beyond the original example of N = 4

SYM. Four dimensional quiver gauge theories with N = 2 superconformal symmetry satisfy

an ADE classification [2], and for certain values of the marginal couplings, they are orbifolds

of N = 4 SYM and have a gravity dual [3, 4]. These quiver gauge CFTs constitute thus

an interesting laboratory, as variation of their marginal couplings allows to connect CFTs

with and without gravity duals in the large N limit [5–12].

In this work we will considerN = 2 SCFTs with gauge group a product of SU(N)s, pay-

ing special attention to the simplest case, the Â1 theory, with gauge group SU(N)×SU(N).

This theory has two marginal couplings (g1, g2) and varying them one can reach an orbifold

of N = 4 SYM and N = 2 SU(N) SQCD. Our main technical tool will be supersymmetric

localization [13]. Thanks to this tool, the planar free energy and expectation value of the

1/2 BPS circular Wilson loop are known to all orders in the ’t Hooft coupling for the

limiting theories mentioned above N = 4 SYM and N = 2 SU(N) SQCD [14–19].
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Four dimensional N = 2 quiver CFTs have already been studied using localization [7,

10–12, 20]. The novelty of this work is that we evaluate various quantities of these theories

in the planar limit, to all orders in the ’t Hooft couplings λi. We do so by applying the

same strategy developed for CFTs with simple gauge groups in [19]. For these quiver

CFTS, supersymmetric localization [13] reduces the evaluation of various quantities to

matrix integrals. Compared to the case of N = 2 SCFTs with a simple gauge group, the

main novelty is that the resulting matrix models are multi-matrix models. In the simplest

case, the model to solve is a two-matrix model. As in our recent work [19], we rewrite the

1-loop factor as an effective action involving an infinite number of double-trace terms, in

the fundamental representation of the respective gauge groups. We then show that this

double-trace form of the potential implies that the perturbative series considered admit a

combinatorial formulation, as sums over tree graphs.

While we will present results valid for all N = 2 quiver CFTs, we will pay special

attention to the simplest theory, Â1. This theory has a Z2 symmetry exchanging the two

nodes of the quiver. Since the ranks of the gauge groups are equal, this Z2 symmetry

amounts to exchanging g1 ↔ g2. We will be particularly interested in observables that

transform nicely under this symmetry: the free energy and particular linear combinations

of the usual 1/2 BPS circular Wilson loop defined for each node [7].

In section 2, after introducing the theories we will consider, we derive the perturbative

series of the planar free energy, to all orders in the ’t Hooft couplings λi. Let’s present

here the answer for the Â1 theory. It is convenient to define F0(λ1, λ2) = F0(λ1, λ2) −

F0(λ1)
N=4 − F0(λ2)

N=4. The perturbative series is given by a sum over tree graphs,

F0(λ1, λ2) =
∞∑

m=1

(−2)m
∞∑

n1,...,nm=2

ζ(2n1 − 1) . . . ζ(2nm − 1)

n1 . . . nm
(−1)n1+···+nm

×
n1−1∑

k1=1

(
2n1

2k1

)
· · ·

nm−1∑

km=1

(
2nm

2km

) ∑

unlabeled trees
with m edges

1

|Aut(T)|

m+1∏

i=1

V̄i ,

(1.1)

where the product at the end of the last line runs over the vertices of a tree, and V̄i are

factors to be defined below. This expression is formally identical to the one found for

N = 2 SQCD in [19], except for the fact that now the factors V̄i depend on two ’t Hooft

couplings, λ1 and λ2. The terms in (1.1) with a single value of the ζ function have already

appeared in [20]. In the perturbative expansion of F0(λ1, λ2) above, each product of values

of the ζ function is accompanied by a polynomial in λ1 and λ2, that can be rewritten as a

palindromic polynomial in λ2/λ1. Intriguingly, up to the order we have checked explicitly,

all such polynomials have all roots on the unit circle of the complex λ2/λ1 plane. This is of

course reminiscent of the seminal work by Lee and Yang [21] for the zeros of the partition

function of the ferromagnetic Ising model on a graph. We are able to prove this property for

all the terms in (1.1) with a single value of ζ, and formulate two conjectures for general trees.

In section 3, we compute the planar limit of the expectation value of the 1/2 BPS

circular Wilson loop defined for the gauge group in one of the two nodes of the Â1 theory,

and in the fundamental representation. The answer is now given as a sum over rooted
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trees. This Wilson loop is defined for one of the two nodes of the quiver, so it does

not transform nicely under the Z2 symmetry of the theory. For this reason we consider

〈W 〉± = 〈W1〉 ± 〈W2〉 (with the N = 4 results subtracted). For 〈W 〉± we find again that,

up to the orders we have checked explicitly, all the polynomials in λ2/λ1 that appear have

all roots on the unit circle.

In the appendices, we write the first terms in the explicit expansion of the planar free

energy and expectation value of various Wilson loop operators.

This work leaves open a number of interesting problems. First, there are general

arguments that the perturbative series of the planar limit of quantum field theories have

finite radius of convergence [22]. We have been able to determine the domain of convergence

of just a small subset of the perturbative series found in this paper - see also [20] - but

rigorously determining the full domain of convergence of the full perturbative series seems

like a much harder problem. Second, in the main text we formulate two conjectures on the

zeros of the polynomials that appear in the perturbative series of the planar free energy

and expectation values of Wilson loops. It would be interesting to prove these conjectures,

and further investigate if this property is related to the integrability of these theories, that

has been encountered both in the planar limit [6, 9, 23, 24] and in the full theory [25, 26].

2 The partition function of N = 2 quiver CFT

In this section we introduce the theories we are going to study, and recall how supersym-

metric localization reduces the evaluation of selected quantities to matrix integrals. In

particular, we will study first the planar free energy of the theory. Following [27–29], the

integrals are performed over the full Lie algebra instead of restricting to a Cartan subalge-

bra, and the 1-loop factor is rewritten as an effective action. We will focus on the planar

limit and in this limit, as in [19], we will unravel the underlying graph structure of the

perturbative expansion.

Let us start by briefly reviewing the classification and field content of N = 2 su-

perconformal quiver gauge theories with SU(N) gauge groups. They are in one-to-one

correspondence with simply-laced affine Lie algebras ÂDE, and thus follow an ADE clas-

sification [2]. The gauge sector and matter content are encoded in the extended Cartan

matrix of the affine Lie algebra. The gauge group is
∏

i

SU(niN) , (2.1)

where ni is the Dynkin index of the i-th node of the affine Dynkin diagram. The hyper-

multiplets transform in the representations

⊕ aij
(
niN,njN

)
, (2.2)

where aij is the adjacency matrix of the Dynkin diagram.

These theories have a marginal coupling for each gauge group and, in the particular

case where the complexified couplings satisfy

τi = niτ , (2.3)

– 3 –



J
H
E
P
0
8
(
2
0
2
0
)
1
6
1

the quiver theory can be obtained as an orbifold of N = 4 SU(N) super Yang-Mills by the

discrete subgroup Γ of SU(2) [2], which also follow an ADE classification. These theories

can be engineered in string theory via a suitable brane configuration and even more, in

a suitable limit, they admit a weakly curved gravity dual in terms of the AdS5 × S5/Γ

geometry [3, 4]. On the other hand, when all the couplings are set to zero except one, say

g1, the quiver theory reduces to N = 2 SQCD.

After having reviewed N = 2 superconformal quiver theories, let’s discuss supersym-

metric localization for them. Following [13] it is possible to localize the ÂDE theories on

S4. It is also possible to localize the theory on a squashed sphere of parameter b for which

in the limit b → 1 we recover the sphere, in such configuration the exact partition function

is given by

Z =

∫
daI Z1-loop(aI , b)| Zinst(aI , b)|

2e
−

∑n
I=1

8π2

g2
I

Tra2
I
, (2.4)

where aI denotes the eigenvalues of the vector-multiplet scalars ΦI restricted to the constant

mode on S4. In what follows we will be mostly interested in quantities that are relevant

in the b ≃ 1 limit, such as the Wilson loop operator, or even more just observables defined

on the sphere. As usual we will restrict our analysis to the zero-instanton sector, thus

neglecting |Zinst|2, and expanding (2.4) in b we obtain

Z =

∫
daI Z1-loop(aI) e

−
∑n

I=1

8π2

g2
I

Tra2
I
+O((b− 1)2) , (2.5)

higher order terms in b were studied before in [10] and we refer the reader there for more

details. The factor Z1-loop is the 1-loop contribution determined by the matter content.

For instance for the Ân−1 theory it is given by

Z1-loop =
n∏

I=1

∏
i<j H

2(iaIi − iaIj )∏
i,j H(iaIi − iaI+1

j )
, (2.6)

where we identify the node n+1 with the first one and H(x) is the Barnes function whose

expansion is given by

logH(x) = −(1 + γ)x2 −
∞∑

n=2

ζ(2n− 1)

n
x2n . (2.7)

Following the previous works [27–29] the strategy will be once again to interpret the

matter content as an effective action

Sint = − logZ1-loop . (2.8)

Given that the theory is conformal for arbitrary values of the couplings, the quadratic

terms in (2.7) will exactly cancel and the effective action will start at order g4i .

Let us first illustrate the process with the Â1 quiver since the extension to the gen-

eral case is straightforward. In this case the field content of the Â1 quiver consists of

– 4 –
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two vector multiplets in the adjoint: (AI
µ,Φ

I ,Φ
′I), I = 1, 2, and bi-fundamental matter:

(X,Y,X†, Y †) : DµX = ∂µX +A1
µX −XA2

µ. The l-loop factor reduces to

Z1-loop =

∏
i<j H

2(ia1i − ia1j )H
2(ia2i − ia2j )∏

i,j H
2(ia1i − ia2j )

. (2.9)

Following the procedure presented in [19] and using (2.7) it is possible to arrive to the

effective action, obtaining

Sint =
∞∑

n=2

ζ(2n− 1)(−1)n

n

×

[
n−1∑

k=1

(
2n

2k

)(
Tr a

2(n−k)
1 Tr a2k1 +Tr a

2(n−k)
2 Tr a2k2 − 2Tr a

2(n−k)
1 Tr a2k2

)

−
n−2∑

k=1

(
2n

2k + 1

)(
Tr a

2(n−k)−1
1 Tr a2k+1

1 +Tr a
2(n−k)−1
2 Tr a2k+1

2

− 2Tr a
2(n−k)−1
1 Tr a2k+1

2

)]
, (2.10)

where all traces are in the fundamental representation of the respective gauge group. Let’s

comment upon a couple of features of this result: first, as we already encountered in

our previous work for theories with simple gauge groups [19], the effective action involves

infinite sums of double-trace terms, that split into even and odd powers. By the same

large N counting arguments as in [19], the odd powers will not contribute to the planar

computations, so we discard such terms in what follows. Second, the pattern of double-

trace terms in (2.10) is dictated by the Cartan matrix of Â1,

1

2
C =

(
1 −1

−1 1

)
. (2.11)

This shouldn’t be a surprise, since for N = 2 quiver superconformal field theories, the mat-

ter content is fixed by the 1-loop β functions, which are captured by the generalized Cartan

matrix [2]. This last observation allows us to generalize (2.10) to arbitrary N = 2 super-

conformal quiver theory. The effective action, keeping just the terms with even powers, is

Sint =
1

2

∑

I,J

CIJ

∞∑

n=2

ζ(2n− 1)(−1)n

n

n−1∑

k=1

(
2n

2k

)
Tra

2(n−k)
I Tra2kJ , (2.12)

where CIJ is the Cartan matrix of the corresponding affine Lie algebra.

2.1 Planar free energy

We turn now to the large N limit of the free energy on S4, F (λi, N) = logZS4 . In

fact, as usual, we will compute the difference of free energy with the Gaussian model,
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F(λi, N) ≡ F (λi, N) −
∑

i F (λi)
N=4. Our goal is to determine the leading term in the

large N expansion, i.e. F (λi, N) = F0(λi)N
2 + · · · . In general we have

F (λi, N) = logZS4 =
∞∑

m=1

(−1)m+1

m

(
∞∑

k=1

(−1)k

k!
〈Sk

int〉

)m

, (2.13)

the free energy scales like N2 in the planar limit, so there are many cancellations in (2.13)

and we need to fully identify the N2 terms from (2.13) that survive these cancellations.

The argument to extract those terms is exactly the same as in our recent work [19]: for

a disconnected 2m-point function, the pieces that scale like N2 are products of m + 1

connected correlators. These connected correlators in the planar limit are given by [30]

(see also [31] for a more recent derivation)

〈Tr a2k1Tr a2k2 . . .Tr a2kn〉c = V(k1, . . . , kn)λ̃
dN2−n, λ̃ =

λ

16π2
, (2.14)

with

V(k1, . . . , kn) =
(d− 1)!

(d− n+ 2)!

n∏

i=1

(2ki)!

(ki − 1)!ki!
, d =

n∑

i=1

ki. (2.15)

The products of m + 1 connected correlators that contribute to the planar free energy

are those where the 2m traces are distributed in a way that can be characterized by a

tree graph [19]: for each correlator introduce a vertex, and join them by an edge if they

have operators from the same double-trace. The contributions to F0(λ) at fixed order in

the number of values of ζ function are then obtained following a similar procedure as in

our recent work [19], but with a couple of modifications. Terms with m values of the ζ

function have m pairs of traces, coming from m double-trace terms, which are of the form

CIJTr a
2(n−k)
I Tr a2kJ .

To find the contribution to the planar free energy at this order, first draw all the

trees with m edges. For every tree, assign each of the m double-traces to one of the m

edges; this labels the m edges of the tree, turning it into a edge-labeled tree. Next, add

an arrow to each of the m edges, turning the tree into a directed edge-labeled tree. Assign

Tr a
2(n−k)
I to the vertex at the start (i.e. origin of the arrow) of the i-th edge. Assign Tr a2kJ

to the vertex at the end (i.e. end of the arrow) of the i-th edge. This procedure assigns

to each of the m + 1 vertices a number of traces equal to its degree αj , i.e. the number

of edges connected to that vertex. For each vertex, consider now the connected correlator

of all its trace operators and assign it its numerical factor Vj , eq. (2.15), times λ̃
dj
j , with

j = 1, . . . ,m + 1. For the connected correlator to be nonzero, all traces at a given vertex

must be of the same matrix, and this enforces that they have the same index. Finally,

multiply the contribution of this tree graph by a product of m components of the Cartan

matrix, one per edge, with the indices fixed by those at the vertices of each edge. Summing

– 6 –
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over all the possible choices, we arrive at

F0(λ̃1, . . . , λ̃n) =
∞∑

m=1

(−1)m

m!

∞∑

n1,...,nm=2

ζ(2n1 − 1) . . . ζ(2nm − 1)

n1 . . . nm
(−1)n1+···+nm

×
n1−1∑

k1=1

(
2n1

2k1

)
· · ·

nm−1∑

km=1

(
2nm

2km

)
1

2m

∑

directed trees
with m labeled edges

∑

I,J

CI1J1 . . . CImJm

m+1∏

i=1

λ̃di
Ii
Vi .

(2.16)

This expression is the perturbative series for the planar free energy of any N = 2 supercon-

formal quiver theory, with quiver determined by the affine Lie algebra with Cartan matrix

C. In what follows, we will discuss mostly the simplest quiver theory, Â1, that has gauge

group SU(N)×SU(N), and Cartan matrix (2.11). This means that double-traces where

both operators belong to the same gauge group, e.g. Tr a
2(n−k)
1 Tr a2k1 are weighted with a

+1, while mixed double-traces, e.g. Tr a
2(n−k)
1 Tr a2k2 are weighted with a −1. The overall

sign of a given product of correlators is then −1 raised to the number of mixed double-

traces. These signs can be transferred from the edges to the vertices: just assign an extra

factor (−1)αj to all vertices of the tree corresponding to correlators of, say, the second gauge

group (this choice is arbitrary and the final result is independent of it). To convince oneself

that these two rules are the same, write every sign on top of the edges of the tree: if it is a

−1 assign it to the vertex with operators of the second gauge group. If it is a +1, and it is

joining two vertices with operators of the second gauge group, just write +1 = (−1)(−1)

and again assign one −1 to each vertex. Then each vertex contributes a factor

V̄(x1, . . . , xα) = V(x1, . . . , xα)
(
λ̃
∑

i xi

1 + (−1)αλ̃
∑

i xi

2

)
, (2.17)

and the generic expression (2.16) simplifies to

F0(λ̃1, λ̃2) =
∞∑

m=1

(−1)m

m!

∞∑

n1,...,nm=2

ζ(2n1 − 1) . . . ζ(2nm − 1)

n1 . . . nm
(−1)n1+···+nm

×
n1−1∑

k1=1

(
2n1

2k1

)
· · ·

nm−1∑

km=1

(
2nm

2km

) ∑

directed trees
with m labeled edges

m+1∏

i=1

V̄i .

(2.18)

Finally, by exactly the same arguments as in our previous paper [19], the last sum can be

reduced to a sum over unlabeled trees

F0(λ̃1, λ̃2) =
∞∑

m=1

(−2)m
∞∑

n1,...,nm=2

ζ(2n1 − 1) . . . ζ(2nm − 1)

n1 . . . nm
(−1)n1+···+nm

×
n1−1∑

k1=1

(
2n1

2k1

)
· · ·

nm−1∑

km=1

(
2nm

2km

) ∑

unlabeled trees
with m edges

1

|Aut(T)|

m+1∏

i=1

V̄i .

(2.19)

Let’s mention a further property of F0(λ̃1, λ̃2). Since F0(λ̃2, λ̃1) = F0(λ̃1, λ̃2) and

F0(λ̃1, λ̃1) = 0, it follows that F0(λ̃1, λ̃2) has a double zero,

F0(λ̃1, λ̃2) = (λ̃1 − λ̃2)
2f(λ̃1, λ̃2) , (2.20)

– 7 –
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this implies that at the orbifold point λ1 = λ2 - see comment below (2.3) - not just the

free energy, but also its first derivative with respect to λ coincides with the N = 4 result.

To see that this property is implied by our result (2.19), we are going to prove that the

contribution of every tree to (2.19) is of the form

(λ̃1 − λ̃2)
vodd p(λ̃1, λ̃2) , (2.21)

where vodd is the number of vertices of the tree with odd degree, and p(λ̃1, λ̃2) is a symmetric

polynomial in λ̃1 and λ̃2 with positive coefficients. This follows from inspection of the factor

attached to each vertex, (2.17). When the degree α of a vertex is odd, λ̃1 = λ̃2 is a simple

root of that factor. After pulling out these factors, what is left is a polynomial with positive

coefficients. As a check, notice that vodd is always even: for a tree with m + 1 vertices,∑m+1
i=1 αi = 2m, and since

∑
i α

even
i is even,

∑
i α

odd
i must be even also, which implies that

vodd is even. This concludes the argument for (2.21). Now, since every tree has at least

two vertices of degree one, vodd ≥ 2, and (2.20) follows.

To illustrate (2.19), let’s work out the first terms. The m = 1 terms in (2.19) are terms

with a single value of ζ [20]. To write them, it is convenient to first recall the definition of

the Narayana numbers

N(n, k) =
1

n

(
n

k

)(
n

k − 1

)
, (2.22)

and the Narayana polynomials

Cn(t) =
n−1∑

k=0

N(n, k + 1)tk , (2.23)

that satisfy Cn(1) = Cn with Cn the Catalan numbers. At this order, we have to consider

trees with two vertices. There is just one such tree, and both vertices have degree one.

Then,

F0(λ̃1, λ̃2)|ζ = −
∞∑

n=2

ζ(2n− 1)

n
(−1)n

n−1∑

k=1

(
2n

2k

)
Cn−kCk

(
λ̃n−k
1 − λ̃n−k

2

)(
λ̃k
1 − λ̃k

2

)

= −
∞∑

n=2

ζ(2n− 1)

n
(−1)nCnλ̃

n
1

[(
1 +

λ̃n
2

λ̃n
1

)
Cn+1 − 2Cn+1

(
λ̃2

λ̃1

)]
, (2.24)

where to avoid confusion, the first term in the parenthesis involves the Catalan number

Cn+1, and the second one the Narayana polynomial Cn+1(λ̃2/λ̃1). A first question we can

ask about this series is what is its domain of convergence in C2. As pointed out in [19, 20],

when λ2 = 0 it is straightforward to prove that the radius of convergence is λ1 = π2, and

the same holds, mutatis mutandi, when λ1 = 0. When both couplings are different from

zero, since F0(λ1, λ1) = 0 the series trivially converges when both couplings are equal.

When the two couplings are different, one of them is larger, say λ1, applying the quotient

criterion it follows that for any |λ2| < |λ1| ≤ π2, the series is convergent. All in all, this

series is convergent in |λ1| ≤ π2, |λ2| ≤ π2 plus the λ1 = λ2 line.

For N = 2 superconformal field theories with a simple gauge group, terms with a

fixed number of values of the ζ function form an infinite series. In [19] we sketched an
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argument that all these series have the same radius of convergence. It seems possible that

this property extends to quiver theories.

Let’s work out a couple more of terms in (2.19). Terms with two values of the ζ

function are given by a sum over trees with two edges. There is just one tree with two

edges, and its vertices have degrees (1, 2, 1). As a last example, terms with three values of

the ζ function are given by a sum over trees with three edges. There are two such unlabeled

trees. The degrees are (1, 2, 2, 1) for the first tree, and (3, 1, 1, 1) for the second, all these

trees are despicted in figure 1 and 2. Up to this order,

F0(λ̃1,λ̃2)=−
∞∑

n=2

ζ(2n−1)

n
(−1)n

n−1∑

k=1

(
2n

2k

)
V(n−k)V(k)(λ̃n−k

1 −λ̃n−k
2 )(λ̃k

1−λ̃k
2) (2.25)

+
1

2

∞∑

ni=2

ζ(2ni−1)

n1n2
(−1)n1+n2

ni−1∑

ki=1

(
2ni

2ki

)
4V(k1)V(n1−k1,n2−k2)V(k2)

×(λ̃k1
1 −λ̃k1

2 )(λ̃n1−k1+n2−k2
1 +λ̃n1−k1+n2−k2

2 )(λ̃k2
1 −λ̃k2

2 )

−
1

3!

∞∑

ni=2

ζ(2ni−1)

n1n2n3
(−1)n1+n2+n3

ni−1∑

ki=1

(
2ni

2ki

)
8
[
3V(n1−k1)V(k1,n2−k2)

×V(k2,n3−k3)V(k3)(λ̃
n1−k1
1 −λ̃n1−k1

2 )(λ̃k1+n2−k2
1 +λ̃k1+n2−k2

2 )

×(λ̃k2+n3−k3
1 +λ̃k2+n3−k3

2 )(λ̃k3
1 −λ̃k3

2 )+V(n1−k1,n2−k2,n3−k3)V(k1)V(k2)V(k3)

×(λ̃n1−k1+n2−k2+n3−k3
1 −λ̃n1−k1+n2−k2+n3−k3

2 )(λ̃k1
1 −λ̃k1

2 )(λ̃k2
1 −λ̃k2

2 )(λ̃k3
1 −λ̃k3

2 )
]

+O(ζ4).

As a first check, when either of the two couplings vanishes, we recover the result of N = 2

SCQD presented in [19]. Also, in this expression we can see rather explicitly that at every

order the contribution has at least a double zero (λ̃1− λ̃2)
2. In appendix A we have written

the outcome of these sums, up to order λ̃6.

2.2 The Lee-Yang property of the planar free energy expansion

We would like to discuss one further property of the perturbative expansion (2.19). Notice

that the contribution of a given tree is obtained by summing over all the possible ways

to assign one gauge group, 1 or 2, to each vertex in the tree, see figures 1 and 2. This is

reminiscent of the Ising model defined on that tree, where on each vertex we can have a spin

up or down. It is indeed possible to construct a generalized Ising-type model, with inho-

mogeneous external magnetic field, whose partition function yields each tree contribution

in (2.19). This generalized Ising model is admittedly a bit contrived, but following the clas-

sical work by Lee and Yang [21], it motivates the study of the zeros of its partition function.

In more detail, every tree graph contributes to the planar energy in (2.19) a homo-

geneous polynomial in λ1 and λ2. Being homogeneous, these polynomials can be thought

of as polynomials of a single variable λ2/λ1. Inspired by the classical work by Lee and

Yang [21] on the ferromagnetic Ising model, we are going to put forward two conjectures

regarding the zeros of these polynomials: first, that for a given tree, all the zeros of the
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corresponding polynomial are on the unit circle in the complex λ2/λ1 plane. Second, that

when we sum the contributions from different trees with the same number of nodes, the

same property holds.

To provide context, let’s start by briefly recalling the definition of the Ising model on a

graph and the Lee-Yang theorem. Let G be a finite graph, E its set of edges and V its set

of vertices. The Ising model on G is defined by assigning to each vertex i ∈ V , a σi = ±1

(spin up/down). The Hamiltonian is

H = −J
∑

i−j∈E

σiσj −H
∑

i∈V

σi , (2.26)

with J the coupling among spins and H the external magnetic field. The partition function

can be written as

Z(βJ, βH) =
∑

all states

e−βH = eβJ |E|−βH|V |
∑

all states

e−2βJe± e2βHv↑ , (2.27)

where e± is the number of edges connecting different spins, and v↑ the number of spins up

in a given configuration. Define τ = e−2βJ , x = e2βH . The last sum defines a polynomial

palindromic in x,

P (τ, x) =
∑

all states

τ e± xv↑ . (2.28)

In [21], Lee and Yang proved that for τ ∈ [−1, 1], the polynomials P (τ, x) have all their

x roots on the unit circle. In fact, they proved it for arbitrary ferromagnetic couplings

Jij ≥ 0, and different magnetic fields per site Hi.

To construct an Ising-type model whose partition function yields the polynomials that

appear in (2.19), proceed as follows. Take the graph G to be a tree T,

1. Assign a positive integer ni to each of the e edges of the tree graph.

2. For every edge, split ni into two positive integers, ni = ki + (ni − ki) and assign each

of these two integers to one of the vertices at the ends of that edge.

3. Then, if a vertex has degree dj this procedure assigns to that vertex dj integers. Let

mj be the sum of these integers at a given vertex; the magnetic field at that vertex

is then mjH.

So far, for a fixed partition of all ni, this is a peculiar way to assign external magnetic

fields that are different at each vertex. This defines

P (τ, x, ki, ni) =
∑

all states

τ e±
∏

vertices
with spin up

xmj , (2.29)

Lee and Yang already proved (lemma in appendix II of [21]) that all the zeros of these

polynomials are on the unit circle. Finally, consider the sum over all the partitions of each

of the ni into two

P (τ, x, n1, . . . , ne) =

n1−1∑

k1=1

· · ·
ne−1∑

ke=1

ρ(ki, ni)
∑

all states

τ e±
∏

vertices
with spin up

xmj , (2.30)
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Figure 1. Trees contributing to the first and second order expansion of the free energy.

where ρ(ki, ni) is a distribution that weights different configurations. The contribution

of every tree to the planar free energy in (2.19) is obtained from the free energy of this

Ising-type model, by setting τ = −1, x = λ2/λ1, and the distribution

ρ(ki, ni) =

(
2n1

2k1

)
. . .

(
2nm

2km

) m∏

i=1

Vi . (2.31)

The main reason we have defined this family of Ising-type models is that there is numerical

evidence that suggests that they share the Lee-Yang property with the original Ising model.

This leads us to formulate the following two conjectures:

Conjecture 1. For any tree with e edges, any fixed positive integers n1, . . . , ne and

arbitrary ρ(ki, ni) > 0 the polynomials P (τ, x, n1, . . . , ne) have all their x roots on the unit

circle.

Conjecture 2. If we sum the polynomials of all the trees with the same number of edges,

the resulting polynomial still has the Lee-Yang property.

We can prove the first conjecture in the particular case of the simplest tree. In this

case, (2.30) is simply

P (τ, x, k, n) = xn + τxn−k + τxk + 1 , (2.32)

that for |τ | ≤ 1 has its roots on the unit circle. Then

P (τ, x, k, n) =
n−1∑

k=1

ρ(n, k)
(
xn + τxn−k + τxk + 1

)
, (2.33)

with arbitrary ρ(n, k) > 0. To prove that these polynomials have their roots on the unit

circle, we make use of the following theorem [32]: if P (x) = Anx
n+An−1x

n−1+· · ·+A1x+A0

is a palindromic polynomial and 2|An| ≥
∑n−1

j=1 |Aj |, then all its zeros are in the unit circle.

In our case, the inequality in the theorem is satistifed as long as |τ | ≤ 1, so the result follows.

Back to the free energy of the quiver theory, one can check indeed that the polynomials in

the expansion (2.24) have the Lee-Yang property.

We haven’t been able to prove these two conjectures for arbitrary tree graphs. After

the seminal work [21], the proof of the Lee-Yang unit circle theorem has been extended

to many other systems, see e.g. [33, 34]. It would be interesting to see if any of these

arguments can be adapted to prove our conjectures.
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(a) (b)

Figure 2. The two trees with three edges: (a) Tree with vertices of degrees (1,2,2,1). (b) Tree with

vertices of degrees (3,1,1,1). There are 16 ways to color each of them.

3 Wilson loop in the large N limit

For each of the gauge groups of the quiver theory, we can define a 1/2 BPSWilson loop, with

circular contour in Euclidean signature. The evaluation of its expectation value reduces to

a matrix integral thanks to supersymmetric localization. We will now evaluate the planar

limit of this expectation value and show that the perturbative series involves a sum over

rooted trees. While the Wilson loop can be defined for arbitrary representations of the

gauge group, in order to take advantage of the results of [19, 31], we will restrict its study

to the fundamental representation

〈W I〉 = 〈
1

N
TrFP exp

∮

C
ds
(
iAI

µ(x)ẋ
µ +ΦI(x)|ẋ|

)
〉 , (3.1)

where I = 1, · · · , n. The theory can be localized [13] on the sphere with squashing param-

eter b, where b = 1 corresponds to S4, in such case the vev of the 1/2 BPS Wilson loop

reduces to

〈W±
I 〉 =

1

Z

∫
daITr

(
e−2πb±aI

)
e
−

∑n
I=1

8π2

g2
I

Tra2
I
Z1-loop(aI , b)|Zinst(aI , b)|

2 , (3.2)

now ± represents the two different trajectories in which we can compute the Wilson loop

on the squashed sphere [11]; from now on we will avoid the ± to make the notation less

cumbersome, bearing in mind that in order to switch between trajectories we need to make

the replacement b → b−1 in the following results. Once again we will consider the 1-loop

contribution as an effective action, given by (2.10), and as discussed on the previous section

we will compute the large N limit of this interacting theory while restricting ourselves to

the zero-instanton sector. We are interested in observables that are only sensitive to the

linear dependence of 〈Wb〉 in (b−1), and since the dependence of Z1-loop(aI , b) is quadratic

in b− 1, for our purposes we can compute 〈Wb〉 directly on S4 [35],

〈W±
I 〉 =

1

Z

∫
daITr

(
e−2πb±aI

)
e
−

∑n
I=1

8π2

g2
I

Tra2
I
Z1-loop(aI) +O((b− 1)2) . (3.3)

Let us expand the Wilson loop insertion

〈WI〉 =
∞∑

l=0

(4π2b2)l

(2l)!

〈N−1Tr a2lI e
−S〉

〈e−S〉
. (3.4)

As argued in our recent work [19], the large N expansion of this expectation value scales

like N0, so given the overall normalization factor 1/N , the relevant terms to keep from
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〈Tr a2lI S
m〉 are products of m+1 connected correlators. Now there are 2m+1 traces to be

distributed in m+ 1 correlators, but since 〈Tr a2lI 〉 can’t be by itself, we effectively have to

distribute 2m traces into the m+1 connected correlators, which is the by now familiar sign

that the possibilities are given by tree graphs. As in [19], one of the vertices is singled out by

the presence of 〈Tr a2lI 〉, so these are rooted trees. The correlator that contains 〈Tr a2lI 〉 is a

correlator of aI operators, so it involves the λI coupling; by convention, the root vertex cor-

responding to this correlator will be referred as the vertex 1. The remaining m correlators

can be either products of aI traces or aJ traces. As we found in the evaluation of the planar

free energy in the previous section, this is accounted for by modifying the numerical factor of

the correlator by a weighted sum over the coupling. eq. (2.17). All in all, for the case of Â1

〈W1〉−〈W1〉0=
∑

l=1

(2πb)2l

(2l)!

∞∑

m=1

(−2)m
∞∑

n1,...,nm=2

ζ(2n1−1)...ζ(2nm−1)

n1 ...nm
(−1)n1+···+nm

×
n1−1∑

k1=1

(
2n1

2k1

)
···

nm−1∑

km=1

(
2nm

2km

) ∑

unlabeled rooted trees
with m edges

1

|Aut(T)|
λ̃d1
1 V1

m+1∏

i=2

V̄i , (3.5)

In the language of Ising-type models on trees introduced in the previous section, we can

think of the Wilson loop insertion as a spin that is pinned to be up, at the rooted vertex.

To illustrate this result, let’s expand it up to second order,

〈W1〉−〈W1〉0=
∞∑

l=1

(4π2b2)l

(2l)!

{
−

∞∑

n=2

ζ(2n−1)

n
(−1)n

n−1∑

k=1

(
2n

2k

)
2V(l,n−k)V(k)λ̃l+n−k

1

(
λ̃k
1−λ̃k

2

)

+
1

2

∞∑

n1,n2=2

ζ(2n1−1)ζ(2n2−1)

n1n2
(−1)n1+n2

ni−1∑

ki=1

(
2n1

2k1

)(
2n2

2k2

)
(3.6)

×

[
8V(l,n1−k1)V(k1,n2−k2)V(k2)λ̃

l+n1−k1
1

(
λ̃k1+n2−k2
1 +λ̃k1+n2−k2

2

)(
λ̃k2
1 −λ̃k2

2

)

+4V(l,n1−k1,n2−k2)V(k1)V(k2)λ̃
l+n1−k1+n2−k2
1

(
λ̃k1
1 −λ̃k1

2

)(
λ̃k2
1 −λ̃k2

2

)]}
,

for which the corresponding rooted trees can be seen in figure 3.

In appendix B, we present the result of these sums up to order λ̃7. We have checked

that they reproduce the results of [10, 11]. Contrary to what happened for the free energy,

the expectation value of this Wilson loop does not have nice properties under the exchange

λ̃1 ↔ λ̃2. The reason is obvious, the Wilson loop is defined for one of the two gauge groups

in the quiver, thus breaking the Z2 symmetry. For this reason, let’s consider the linear

combinations 〈W1〉 ± 〈W2〉, which were referred in [7] as twisted and untwisted. These are

symmetric and antisymmetric under the λ̃1 ↔ λ̃2 exchange, so we can introduce

〈W1〉+ 〈W2〉 − 〈W1〉0 − 〈W2〉0 = (λ̃1 − λ̃2)
2w+(λ̃1, λ̃2) , (3.7)

〈W1〉 − 〈W2〉 − 〈W1〉0 + 〈W2〉0 = (λ̃1 − λ̃2)w−(λ̃1, λ̃2) , (3.8)

with w± symmetric under λ̃1 ↔ λ̃2. What is more, to the orders we have checked explicitly,

again all the polynomials that appear in the expansion of w± have all their roots in the unit
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(a)

(b)

Figure 3. Rooted trees corresponding to the Wilson loop in the large N , we see that inserting the

operator selects from figure 1 trees with the same color as the operator that we are inserting, trees

containing two different colors arise from interaction terms in (2.10). (a) Terms corresponding to

V(l, n1−k1)V(k1). (b) Trees corresponding to V(l, n1−k1)V(k1, n2−k2)V(k2) and V(l, n1−k1, n2−

k2)V(k1)V(k2).

circle of the complex λ̃2/λ̃1 plane. We again conjecture that this is true for the polynomials

generated by every tree.

For the polynomials that appear in w+(λ̃1, λ̃2), this would follow from our first conjec-

ture if it is true. In particular, since in the previous section we proved the first conjecture

for the simplest tree, it follows that it holds also for w+, for the simplest tree. For w−

the argument does not apply immediately, since 〈W1〉 − 〈W2〉 − 〈W1〉0 + 〈W2〉0 produces

antipalindromic polynomials.

To conclude, we can use these results to compute the one-point function of the energy-

momentum tensor with these 1/2 BPS Wilson loops. This one-point function is fixed up

to a coefficient hW [36], which can be obtained from the expectation value of the deformed

Wilson loop 〈Wb〉 by the formula [35, 37]

hW =
1

12π2
∂b ln 〈Wb〉|b=1 . (3.9)

finally, we can also compute the Bremsstrahlung function B [38] using the relation B =

3hW [35, 39, 40], valid for any N = 2 superconformal field theory [41]. The results we

obtain agree with those of [11].
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A Planar free energy up to 6th order

Here we present the explicit form of the planar free energy in terms of λ̃i =
λi

16π2

F0(λ̃1, λ̃2)= (λ̃1− λ̃2)
2
[
−3ζ3+20ζ5

(
λ̃1+ λ̃2

)
−70ζ7

(
2λ̃2

1+3λ̃1λ̃2+2λ̃2
2

)

+84ζ9

(
λ̃1+ λ̃2

)(
13λ̃2

1+10λ̃1λ̃2+13λ̃2
2

)

−154ζ11

(
61λ̃4

1+116λ̃3
1λ̃2+141λ̃2

1λ̃
2
2+116λ̃1λ̃

3
2+61λ̃4

2

)

+36ζ23

(
λ̃2
1+ λ̃2

2

)
−240ζ3ζ5

(
λ̃1+ λ̃2

)(
3λ̃2

1−2λ̃1λ̃2+3λ̃2
2

)

+840ζ3ζ7

(
8λ̃4

1+5λ̃3
1λ̃2+2λ̃2

1λ̃
2
2+5λ̃1λ̃

3
2+8λ̃4

2

)

+200ζ25

(
19λ̃4

1+12λ̃3
1λ̃2+4λ̃2

1λ̃
2
2+12λ̃1λ̃

3
2+19λ̃4

2

)

−144ζ33

(
5λ̃4

1−2λ̃3
1λ̃2+6λ̃2

1λ̃
2
2−2λ̃1λ̃

3
2+5λ̃4

2

)]
+O(λ̃7).

(A.1)

Up to the order we have explicitely checked, the polynomials have all unimodular roots.

B Wilson loop up to λ̃
7

Here we present the explicit expansion of the circular Wilson loop corresponding to an

insertion in the first node of the quiver; it is possible to obtain the insertion in the second

node by making the change λ̃1 ↔ λ̃2. For simplicity, in the expansion we have set b = 1

and λ̃i =
λi

16π2 . If one wishes to restore the powers of b that appear in the perturbative

expansion of 〈Wb〉 evaluated on S4, one only needs to add in each term as many powers of

b as powers of π there are.

〈W1〉 − 〈W1〉0 =
(
λ̃1 − λ̃2

)[
− 24π2ζ3λ̃

2
1 − 32π4ζ3λ̃

3
1 − 16π6ζ3λ̃

4
1 −

64

15
π8ζ3λ̃

5
1 −

32

45
π10ζ3λ̃

6
1

+ 80π2ζ5λ̃
2
1

(
3λ̃1 + λ̃2

)
+

80

3
π4ζ5λ̃

3
1

(
13λ̃1 + 4λ̃2

)

+
32

3
π6ζ5λ̃

4
1

(
17λ̃1 + 5λ̃2

)
+

64

9
π8ζ5λ̃

5
1

(
7λ̃1 + 2λ̃2

)

− 280π2ζ7λ̃
2
1

(
8λ̃2

1 + 5λ̃1λ̃2 + λ̃2
2

)

−
112

3
π4ζ7λ̃

3
1

(
91λ̃2

1 + 55λ̃1λ̃2 + 10λ̃2
2

)

−
112

3
π6ζ7λ̃

4
1

(
49λ̃2

1 + 29λ̃1λ̃2 + 5λ̃2
2

)

+ 336π2ζ9λ̃
2
1

(
5λ̃1 + λ̃2

)(
13λ̃2

1 + 8λ̃1λ̃2 + 3λ̃2
2

)

+ 672π4ζ9λ̃
3
1

(
51λ̃3

1 + 41λ̃2
1λ̃2 + 17λ̃1λ̃

2
2 + 2λ̃3

2

)
(B.1)

− 3696π2ζ11λ̃
2
1

(
61λ̃4

1 + 56λ̃3
1λ̃2 + 36λ̃2

1λ̃
2
2 + 11λ̃1λ̃

3
2 + λ̃4

2

)

+ 288π2ζ23 λ̃
2
1

(
2λ̃2

1 − λ̃1λ̃1 + λ̃2
2

)

+ 192π4ζ23 λ̃
3
1

(
5λ̃2

1 − 3λ̃1λ̃2 + 2λ̃2
2

)

– 15 –



J
H
E
P
0
8
(
2
0
2
0
)
1
6
1

+ 192π6ζ23 λ̃
4
1

(
3λ̃2

1 − 2λ̃1λ̃2 + λ̃2
2

)

− 960π2ζ3ζ5λ̃
2
1

(
15λ̃3

1 − 5λ̃2
1λ̃2 + λ̃1λ̃

2
2 + 5λ̃3

2

)

− 320π4ζ3ζ5λ̃
3
1

(
77λ̃3

1 − 32λ̃2
1λ̃2 + λ̃1λ̃

2
2 + 20λ̃3

2

)

+ 3360π2ζ3ζ7λ̃
2
1

(
48λ̃4

1 − 7λ̃3
1λ̃2 − 7λ̃2

1λ̃
2
2 + 11λ̃1λ̃

3
2 + 11λ̃4

2

)

+ 1600π2ζ25 λ̃
2
1

(
57λ̃4

1 − 8λ̃3
1λ̃2 − 10λ̃2

1λ̃
2
2 + 14λ̃1λ̃

3
2 + 13λ̃4

2

)

− 3456π2ζ33 λ̃
2
1

(
5λ̃4

1 − 5λ̃3
1λ̃2 + 5λ̃2

1λ̃
2
2 − 3λ̃1λ̃

3
2 + 2λ̃4

2

)]
.

Note that we are inserting the operator in only one of the two nodes of the quiver thus

breaking the Z2 invariance of the theory. This is the reason why the vev (B.1) does not

exhibit the same properties as the free energy. It is possible to retain the Z2 invariance if

we consider the sum and the difference, for the case of the sum we have

w+(λ̃1, λ̃2) =

[
− 24π2ζ3

(
λ̃1 + λ̃2

)
− 32π4ζ3

(
λ̃2
1 + λ̃1λ̃2 + λ̃2

2

)

− 16π6ζ3

(
λ̃1 + λ̃2

)(
λ̃2
1 + λ̃2

2

)
−

64

15
π8ζ3

(
λ̃4
1 + λ̃3

1λ̃2 + λ̃2
1λ̃

2
2 + λ̃1λ̃

3
2 + λ̃4

2

)

−
32

45
π10ζ3

(
λ̃1 + λ̃2

)(
λ̃4
1 + λ̃2

1λ̃
2
2 + λ̃4

2

)
+ 80π2ζ5

(
3λ̃2

1 + 4λ̃1λ̃2 + 3λ̃2
2

)

+
80

3
π4ζ5

(
λ̃1 + λ̃2

)(
13λ̃2

1 + 4λ̃1λ̃2 + 13λ̃2
2

)

+
32

3
π6ζ5

(
17λ̃4

1 + 22λ̃3
1λ̃2 + 22λ̃2

1λ̃
2
2 + 22λ̃1λ̃

3
2 + 17λ̃4

2

)

+
64

9
π8ζ5

(
λ̃1 + λ̃2

)(
7λ̃4

1 + 2λ̃3
1λ̃2 + 7λ̃2

1λ̃
2
2 + 2λ̃1λ̃

3
2 + 7λ̃4

2

)

− 280π2ζ7

(
λ̃1 + λ̃2

)(
8λ̃2

1 + 5λ̃1λ̃2 + 8λ̃2
2

)

−
112

3
π4ζ7

(
91λ̃4

1 + 146λ̃3
1λ̃2 + 156λ̃2

1λ̃
2
2 + 146λ̃1λ̃

3
2 + 91λ̃4

2

)

−
112

3
π6ζ7

(
λ̃1 + λ̃2

)(
49λ̃4

1 + 29λ̃3
1λ̃2 + 54λ̃2

1λ̃
2
2 + 29λ̃1λ̃

3
2 + 49λ̃4

2

)

+ 336π2ζ9

(
65λ̃4

1 + 118λ̃3
1λ̃2 + 138λ̃2

1λ̃
2
2 + 118λ̃1λ̃

3
2 + 65λ̃4

2

)
(B.2)

+ 672π4ζ9

(
λ̃1 + λ̃2

)(
51λ̃4

1 + 41λ̃3
1λ̃2 + 68λ̃2

1λ̃
2
2 + 41λ̃1λ̃

3
2 + 51λ̃4

2

)

− 3696π2ζ11

(
λ̃1 + λ̃2

)(
61λ̃4

1 + 56λ̃3
1λ̃2 + 96λ̃2

1λ̃
2
2 + 56λ̃1λ̃

3
2 + 61λ̃4

2

)

+ 288π2ζ23

(
λ̃1 + λ̃2

)(
2λ̃2

1 − λ̃1λ̃2 + 2λ̃2
2

)

+ 192π4ζ23

(
5λ̃4

1 + 2λ̃3
1λ̃2 + 4λ̃2

1λ̃
2
2 + 2λ̃1λ̃

3
2 + 5λ̃4

2

)

+ 192π6ζ23

(
λ̃1 + λ̃2

)(
3λ̃4

1 − 2λ̃3
1λ̃2 + 4λ̃2

1λ̃
2
2 − 2λ̃1λ̃

3
2 + 3λ̃4

2

)

− 960π2ζ3ζ5

(
15λ̃4

1 + 10λ̃3
1λ̃2 + 6λ̃2

1λ̃
2
2 + 10λ̃1λ̃

3
2 + 15λ̃4

2

)

− 320π4ζ3ζ5

(
λ̃1 + λ̃2

)(
77λ̃4

1 − 32λ̃3
1λ̃2 + 78λ̃2

1λ̃
2
2 − 32λ̃1λ̃

3
2 + 77λ̃4

2

)
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+ 3360π2ζ3ζ7

(
λ̃1 + λ̃2

)(
48λ̃4

1 − 7λ̃3
1λ̃2 + 30λ̃2

1λ̃
2
2 − 7λ̃1λ̃

3
2 + 48λ̃4

2

)

+ 1600π2ζ25

(
λ̃1 + λ̃2

)(
57λ̃4

1 − 8λ̃3
1λ̃2 + 34λ̃2

1λ̃
2
2 − 8λ̃1λ̃

3
2 + 57λ̃4

2

)

− 3456π2ζ33

(
λ̃1 + λ̃2

)(
5λ̃4

1 − 5λ̃3
1λ̃2 + 8λ̃2

1λ̃
2
2 − 5λ̃1λ̃

3
2 + 5λ̃4

2

)]
.

For the case of the difference we have

w−(λ̃1, λ̃2)=

[
−24π2ζ3

(
λ̃2
1+ λ̃2

2

)
−32π4ζ3

(
λ̃3
1+ λ̃3

2

)
−16π6ζ3

(
λ̃4
1+ λ̃4

2

)

−
64

15
π8ζ3

(
λ̃5
1+ λ̃5

2

)
−
32

45
π10ζ3

(
λ̃6
1+ λ̃6

2

)

+80π2ζ5

(
λ̃1+ λ̃2

)(
3λ̃2

1−2λ̃1λ̃2+3λ̃2
2

)

+
80

3
π4ζ5

(
13λ̃4

1+4λ̃3
1λ̃2+4λ̃1λ̃

3
2+13λ̃4

2

)

+
32

3
π6ζ5

(
λ̃1+ λ̃2

)(
17λ̃4

1−12λ̃3
1λ̃2+12λ̃2

1λ̃
2
2−12λ̃1λ̃

3
2+17λ̃4

2

)

+
64

9
π8ζ5

(
7λ̃6

1+2λ̃5
1λ̃2+2λ̃1λ̃

5
2+7λ̃6

2

)

−280π2ζ7

(
8λ̃4

1+5λ̃3
1λ̃2+2λ̃2

1λ̃
2
2+5λ̃1λ̃

3
2+8λ̃4

2

)

−
112

3
π4
(
λ̃1+ λ̃2

)(
91λ̃4

1−36λ̃3
1λ̃2+46λ̃2

1λ̃
2
2−36λ̃1λ̃

3
2+91λ̃4

2

)

−
112

3
π6ζ7

(
49λ̃6

1+29λ̃5
1λ̃2+5λ̃4

1λ̃
2
2+5λ̃2

1λ̃
4
2+29λ̃1λ̃

5
2+49λ̃6

2

)

+336π2ζ9

(
λ̃1+ λ̃2

)(
65λ̃4

1−12λ̃3
1λ̃2+38λ̃2

1λ̃
2
2−12λ̃1λ̃

3
2+65λ̃4

2

)
(B.3)

+672π4ζ9

(
51λ̃6

1+41λ̃5
1λ̃2+17λ̃4

1λ̃
2
2+4λ̃3

1λ̃
3
2+17λ̃2

1λ̃
4
2+41λ̃1λ̃

5
2+51λ̃6

2

)

−3696π2ζ11

(
61λ̃6

1+56λ̃5
1λ̃2+37λ̃4

1λ̃
2
2+22λ̃3

1λ̃
3
2+37λ̃2

1λ̃
4
2+56λ̃1λ̃

5
2+61λ̃6

2

)

+288π2ζ23

(
2λ̃4

1− λ̃3
1λ̃2+2λ̃2

1λ̃
2
2− λ̃1λ̃

3
2+2λ̃4

2

)

+192π4ζ23

(
λ̃1+ λ̃2

)(
λ̃2
1+ λ̃2

2

)(
5λ̃2

1−8λ̃1λ̃2+5λ̃2
2

)

+192π6ζ23

(
3λ̃6

1−2λ̃5
1λ̃2+ λ̃4

1λ̃
2
2+ λ̃2

1λ̃
4
2−2λ̃1λ̃

5
2+3λ̃6

2

)

−960π2ζ3ζ5

(
λ̃1+ λ̃2

)(
15λ̃4

1−20λ̃3
1λ̃2+26λ̃2

1λ̃
2
2−20λ̃1λ̃

3
2+15λ̃4

2

)

−320π4ζ3ζ5

(
77λ̃6

1−32λ̃5
1λ̃2+ λ̃4

1λ̃
2
2+40λ̃3

1λ̃
3
2+ λ̃2

1λ̃
4
2−32λ̃1λ̃

5
2+77λ̃6

2

)

+3360π2ζ3ζ7

(
48λ̃6

1−7λ̃5
1λ̃2+4λ̃4

1λ̃
2
2+22λ̃3

1λ̃
3
2+4λ̃2

1λ̃
4
2−7λ̃1λ̃

5
2+48λ̃6

2

)

+1600π2ζ25

(
57λ̃6

1−8λ̃5
1λ̃2+3λ̃4

1λ̃
2
2+28λ̃3

1λ̃
3
2+3λ̃2

1λ̃
4
2−8λ̃1λ̃

5
2+57λ̃6

2

)

−3456π2ζ33

(
5λ̃6

1−5λ̃5
1λ̃2+7λ̃4

1λ̃
2
2−6λ̃3

1λ̃
3
2+7λ̃2

1λ̃
4
2−5λ̃1λ̃

5
2+5λ̃6

2

)]
.

The series w±(λ̃1, λ̃2) are symmetric. At the considered orders, the polynomials that

appear also have all unimodular roots.
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