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Abstract: We show that a general semi-annihilation scenario, in which a pair of dark

matter (DM) particles annihilate to an anti-DM, and an unstable state that can mix with

or decay to standard model states, can lead to particle anti-particle asymmetry in the DM

sector. The present DM abundance, including the CP-violation in the DM sector and the

resulting present asymmetry are determined entirely by a single semi-annihilation process

at next-to-leading order. For large CP-violation in this process, we find that a nearly

complete asymmetry can be obtained in the DM sector, with the observed DM density

being dominated by the (anti-)DM particle. The presence of additional pair-annihilation

processes can modify the ratio of DM and anti-DM number densities further, if the pair-

annihilation is active subsequent to the decoupling of the semi-annihilation. For such a

scenario, the required CP-violation for generating the same present asymmetry is generi-

cally much smaller, as compared to the scenario with only semi-annihilation present. We

show that a minimal model with a complex scalar DM with cubic self-interactions can give

rise to both semi- and pair-annihilations, with the required CP-violation generated at one-

loop level. We also find that the upper bound on the DM mass from S-matrix unitarity in

the purely asymmetric semi-annihilation scenario, with maximal CP-violation, is around

15 GeV, which is much stronger than in the WIMP and previously considered asymmetric

DM cases, due to the required large non-zero chemical potential for such asymmetric DM.
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1 Introduction and summary

The production mechanism for dark matter (DM) particles in the early Universe span a

broad range of possibilities, ranging from processes in the thermal bath, to non-thermal

mechanisms. If the DM states were in local kinetic and chemical equilibrium in the cosmic

plasma at some epoch, its number-changing reactions would determine its final abundance

observed today. Such number changing interactions can take place either entirely within

the dark sector, or may involve the standard model (SM) particles as well. Here, we

assume the existence of some conserved discrete or continuous global symmetry that can

distinguish between the two sectors.

The DM states can in general be either self-conjugate or have a distinct anti-particle.

In the latter case, the number densities of DM particles and anti-particles can be different,

if there is a conserved charge carried by the DM states which has a non-zero density in

the Universe [1]. The generation of such an asymmetry requires DM number violating

interactions, processes that violate charge conjugation (C) and charge conjugation-parity

(CP ), and departures from thermal equilibrium in the early Universe. Such Sakharov

conditions [2] are known to be realized in different ways in baryogenesis mechanisms to

produce matter-antimatter asymmetry in the SM sector [3–9]. In general, the asymmetries

in the dark sector and visible sector may or may not be related, and in the latter case the

asymmetry generation in the dark sector can be independently studied. A large number of

mechanisms have been proposed for generating asymmetric DM, many of which connecting

the asymmetries in the visible and dark sectors [10, 13–21].1

Among the DM number changing topologies, the simplest topologies with two DM, or

two anti-DM, or one DM and one anti-DM particles in the initial state can involve either

zero or one (anti-)DM particle in the final state, if there is a conserved stabilizing symme-

try. The former final state corresponds to the standard pair-annihilation employed in the

1For a comprehensive reviews see refs. [11, 12].
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Figure 1. Effective interactions for the semi-annihilation (left) and pair-annihilation (right) pro-

cesses. The former violates DM number by three units (and hence can generate a DM anti-DM

asymmetry), while the latter conserves DM number.

weakly interacting massive particle (WIMP) scenario, while the latter is the so-called semi-

annihilation process [22]. If we assign a DM number of nχ = 1 to the DM particle (χ) and

nχ = −1 to the anti-DM state (χ†), then the annihilation of a χχ† pair does not change DM

number ∆nχ = nfinal
χ − ninitial

χ = 0. On the other hand, a semi-annihilation process, for ex-

ample, χ+χ→ χ†+φ, where φ is an unstable state not in the dark sector that can mix with

or decay to SM states, can in general violate DM number (in the above reaction ∆nχ = −3).

Thus, in the presence of semi-annihilations, the first Sakharov condition of DM number

violation may easily be satisfied. We illustrate these effective interactions in figure 1.

CP−violation in DM annihilation processes requires both the presence of residual

complex phases in the Lagrangian (that cannot be removed by field re-definitions), as well

as the interference between tree and loop level graphs, where the loop amplitudes develop

a non-zero imaginary piece with intermediate states going on-shell. As we shall see in the

subsequent discussion, the most minimal scenario with a complex scalar field dark matter

with cubic self-interactions can satisfy both these requirements. This is one of the primary

results of this paper. We compute the CP−violation that can be generated using this

minimal setup, including the relevant loop-level amplitudes.

The final Sakharov condition of out-of-equilibrium reactions can easily be realized in

an expanding Universe, since the reaction time scales may become larger than the inverse

Hubble scale at a given temperature, thereby leading to a departure from local thermal

equilibrium. In our scenario, we achieve the out-of-equilibrium condition through the

semi-annihilation process. As this process freezes out, a net difference in DM and anti-DM

number densities is generated, starting from a symmetric initial condition. We formulate

the set of coupled Boltzmann equations for the DM and anti-DM states, and study the

evolution of their number densities as a function of the temperature scale to determine the

resulting asymmetry, as well as the present net DM number density.
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As we shall see in the following, it is sufficient to have only the semi-annihilation process

to generate a nearly maximal asymmetry in the DM sector with the required abundance,

in which either only the DM or only the anti-DM survives in the present epoch. This

is realized when the CP-violation in the process is large. For smaller CP-violation, the

generated asymmetry is a partial one, with an unequal mixture of both DM and anti-DM

states surviving. Thus in a scenario in which only the semi-annihilation process changes DM

number in the thermal bath, or changes it sufficiently fast to achieve chemical equilibrium,

this process entirely determines all the properties of asymmetric DM.

However, even in simple scenarios that realize the semi-annihilation process, including

CP-violation through the interference of one-loop graphs with tree level ones, additional

fast DM number-changing processes may also be present. In this class of models, there will

be an interplay of semi-annihilation with these other processes in chemical equilibrium,

such as the pair-annihilation process. In particular, if the semi-annihilation freezes out

before the pair-annihilation, then the resulting ratio between DM and anti-DM co-moving

number densities may be further enhanced. This results in the possibility that even with a

tiny CP-violation in the DM sector, a maximal asymmetry may be achieved. Thus in this

latter scenario one generically requires lower CP-violation for any amount of asymmetry,

compared to the scenario in which only semi-annihilation is present.

Although studies on generating particle anti-particle asymmetries in both the matter

sector and the dark matter sector have largely focussed on generating the asymmetries

through CP-violating out-of-equilibrium decay of a particle (or multiple particles), asym-

metry generation through CP-violating 2 → 2 annihilations has also been explored. This

includes studies in baryogenesis and leptogenesis [23–25] and baryogenesis through WIMP

annihilations [26–29], where the DM sector remains symmetric. In most previous studies on

asymmetric DM, the primordial DM asymmetry is taken to be an input parameter, which

is then evolved through the pair-annihilation process, using a set of coupled Boltzmann

equations [30–34].

The general possibility of generating particle anti-particle asymmetry in the dark sector

from annihilations was studied in refs. [35, 36]. In particular, in ref. [35] the general

considerations of CPT and unitarity were imposed on a toy model involving two Dirac

fermion fields in the dark sector pair-annihilating to the SM sector. In our study, however,

we show that a minimal scenario with one complex scalar in the DM sector can lead to

asymmetry generation through the semi-annihilation process. Furthermore, in ref. [35], the

symmetric component of the DM was large at the end of asymmetry production, and it was

necessary to introduce large particle antiparticle pair-annihilation cross-sections to remove

this component. As discussed above, in our scenario, the pair-annihilation is not necessary

to generate a DM asymmetry with the required abundance, but may be present in addition.

We now summarize the contents and the primary results of the subsequent sections.

In section 2, we describe a model independent setup that encapsulates the role of the semi-

annihilation process in generating a DM and anti-DM asymmetry in the present universe.

We formulate a coupled set of Boltzmann equations involving the thermally averaged semi-

annihilation rate, and a thermal average of the semi-annihilation rate times a suitably

defined CP-violation parameter. We find that for a large CP-violation, semi-annihilation

– 3 –
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alone gives rise to nearly complete asymmetry in the DM sector, with no symmetric com-

ponent surviving at its decoupling. For a given DM mass, larger the CP-violation, a cor-

respondingly larger value of the semi-annihilation rate is required to satisfy the observed

DM relic density. Using S-matrix unitarity to bound the semi-annihilation rate from above,

we obtain an upper bound of 15 GeV on the DM mass in this scenario, for maximal CP-

violation and asymmetry.

In section 3 we then introduce an additional number changing mechanism in the DM

sector, namely the pair-annihilation process, and obtain the modified set of Boltzmann

equations for this scenario to study the interplay of the two annihilation processes. We then

go on to find a simple estimate of the present relic abundance in terms of the CP-violation,

the annihilation rates and the dark matter mass. We obtain these estimates first in the

case in which the symmetric component is completely annihilated away, and then compare

it with results in which part of the symmetric component survives in the present Universe.

We find that in the presence of subsequent pair-annihilations, the required CP-violation to

generate a complete DM asymmetry is much smaller, compared to the first scenario above

with only semi-annihilation. The required values of the pair-annihilation rates are also

generically higher than in the standard WIMP scenario. Imposing S-matrix unitarity to

bound the pair-annihilation rate from above, we obtain an upper bound of around 25 TeV

on the DM mass, for a completely asymmetric scenario, which is to be contrasted with the

result for only semi-annihilation above. We show that a simple phase-diagram in the plane

of the two annihilation rates summarizes the occurrence of symmetric and asymmetric DM,

depending upon the values of these two rates.

Finally, in section 4 we describe a minimal example DM scenario that can lead to

asymmetric DM production through the semi-annihilation mechanism, involving a complex

scalar DM particle with a cubic self-interaction. The interplay of the semi- and pair-

annihilation processes is realized in this scenario. We compute the CP-violation parameter

explicitly in this model at one-loop level, and compare its values, and the correlation of

the CP-violation parameter with the DM annihilation rates, with the ones obtained in the

model-independent setup. We find that the required values of the physical parameters that

can satisfy the observed DM abundance can be reproduced in this minimal scenario.

2 Asymmetric dark matter from semi-annihilation

To illustrate the main idea, we shall first consider the model independent parametrization

of an example scenario involving only the semi-annihilation process, in which asymmetric

dark matter through DM annihilations can be realized. The minimal number of DM

degrees of freedom with which this can be implemented involves a complex scalar field

(χ). As mentioned in the Introduction, in the semi-annihilation process, two dark matter

particles annihilate to produce an anti-dark matter particle and a neutral unstable state

φ: χ+ χ → χ† + φ. Here the state φ is not in the dark sector and can mix with or decay

to standard model states. For production of on-shell φ particles from non-relativistic DM

annihilation, we require mφ < mχ. We shall parametrize the next-to-leading-order cross-

section for this process by σS , evaluated including the tree-level and one-loop diagrams.

– 4 –
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The corresponding CP-conjugate process is χ† + χ† → χ + φ, with cross-section σS , also

evaluated at next-to-leading order. In general, since CP can be violated in the semi-

annihilation process from the interference of the tree-level and one-loop graphs, σS 6= σS .

For temperatures T > TS , where TS is the freeze-out temperature of the semi-

annihilation process, using the conditions of detailed balance for the reactions χ+χ→ χ†+φ

and χ†+χ† → χ+φ, we obtain the relation between the chemical potentials µχ = µχ† = µφ.

For the cases when µφ = 0, this implies that µχ = µχ† = 0. During the freeze-out of the

semi-annihilation, the third Sakharov condition of out-of-equilibrium is satisfied, and a DM

anti-DM asymmetry may be generated. Since in this scenario for T < TS , the DM parti-

cles are not in chemical equilibrium through any reactions, we do not assign it a chemical

potential for these temperatures, but a pseudo-chemical potential may be defined as shown

below in eq. (2.3). Furthermore, in this case, since no other number-changing processes

are active for T < TS , the present particle anti-particle number density ratio (n0
χ/n

0
χ†) is

entirely determined by the semi-annihilation process.

In addition to the cross-section σS , the other relevant parameters that determine the

DM abundance are the mass of χ (mχ) and a CP-violation parameter ε. Here, the CP-

violation parameter is defined as:

ε =
|M |2

χχ→χ†φ
− |M |2

χ†χ†→χφ
|M |2

χχ→χ†φ
+ |M |2

χ†χ†→χφ
, (2.1)

where |M |2 denotes the matrix element for the process. As for the cross-section difference

between the CP-conjugate processes, the interference of the tree and one-loop amplitudes

for the semi-annihilation process determines the value of ε.

The Boltzmann equation for the evolution of the DM number density nχ can be ex-

pressed in terms of the squared matrix elements of the above processes as follows:

dnχ
dt

+3Hnχ =−
∫ 4∏

i=1

d3pi
(2π)32Epi

g2
χ(2π)4δ(4)(p1 +p2−p3−p4)

[
2fχ(p1)fχ(p2)|M |2χχ→χ†φ

−2fχ†(p3)fφ(p4)|M |2χ†φ→χχ−fχ†(p1)fχ†(p2)|M |2χ†χ†→χφ

+fχ(p3)fφ(p4)|M |2χφ→χ†χ†

]
, (2.2)

where gχ denotes the number of internal degrees of freedom of χ, and |M |2 is the squared

matrix element for the given process, summed over final spins, and averaged over initial

spins, with appropriate factors for identical initial or final state particles included. We

can also write a similar Boltzmann equation for the evolution of the anti-particle number

density n†χ, by replacing the symbol χ with the symbol χ† everywhere in eq. (2.2). The

distribution functions fi(p) in the above equation take the standard form

fi(p, t) = e−
Ei
T e

µi(t)

T , (2.3)

where we have set the Boltzmann constant kB = 1. The pseudo-chemical potential µi(t)

parametrizes the small departure from the equilibrium distribution for the particle species

– 5 –
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i, and it approaches the chemical potential of the particle in chemical equilibrium [37].

We note that CPT conservation can be used to relate the matrix elements for different

processes above. For example, we have |M |2
χ†φ→χχ = |M |2

χ†χ†→χφ, where, since we are

dealing with scalar particles only, the helicities of the states do not appear.

Using energy conservation for the initial and final state particles, and defining dimen-

sionless variables (namely, Yi = ni/s and x = mχ/T , where s is the entropy density per

comoving volume), the coupled set of Boltzmann equations for the dark matter particle

and anti-particle number densities take the following form:

dYχ
dx

= − s

Hx

[
AS

(
Y 2
χ +

Y0Yχ
2

)
−BS

(
Y 2
χ†

2
+ Y0Yχ†

)]
(2.4)

dYχ†

dx
= − s

Hx

[
BS

(
Y 2
χ† +

Y0Yχ†

2

)
−AS

(
Y 2
χ

2
+ Y0Yχ

)]
.

Here, H is the Hubble constant. We have also defined AS = 〈σv〉S + 〈εσv〉S and

BS = 〈σv〉S − 〈εσv〉S , with 〈σv〉S and 〈εσv〉S being the thermally averaged cross-sections

for the semi-annihilation process, without and with the asymmetry factor ε(pi) included,

respectively. In particular,

〈εσv〉s =

∫ ∏4
i=1

d3pi
(2π)32Epi

(2π)4δ(4)(p1 + p2 − p3 − p4)ε(pi)|M0|2f0(p1)f0(p2)∫ d3p1

(2π)3

d3p2

(2π)3
f0(p1)f0(p2)

(2.5)

with f0(p) = e−
E
T being the equilibrium distribution function when the chemical potential

vanishes, and

|M0|2 = |M |2χχ→χ†φ + |M |2χ†χ†→χφ. (2.6)

Finally, Y0 is defined as Y0 = 1
s

∫ d3pi
(2π)3

gχf0(p). We have assumed that throughout the

evolution of the χ and χ† particles until the freeze-out of the semi-annihilation processes,

the φ particle is in thermal equilibrium with the SM plasma with a vanishing chemical

potential. We note that the equilibrium distribution with zero chemical potential Y0 is not

a solution of the coupled eqs. (2.4). This is because only the CP-violating process χχ→ χ†φ

and its conjugate have been included while writing the collision term here. In other words,

eqs. (2.4) are valid when all the other processes in the thermal bath involving the χ and

χ† particles have decoupled, by which time Y0 is no longer a solution to the Boltzmann

equations by the Boltzmann H-theorem [38]. At even higher temperatures there must be

other such processes with the same initial states, in order for the T-matrix element sum

rules to be consistent with the requirements of CPT and S-matrix unitarity.

2.1 Results

In order to determine the DM relic abundance in a model-independent setup, we consider

the thermally averaged cross-section for the semi-annihilation process (〈σv〉S) as a free

parameter. In addition, we define an effective CP-violation parameter εeff = 〈εσv〉S/〈σv〉S .

– 6 –
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Figure 2. Dark matter (Yχ) and anti-dark matter yields (Yχ†) as a function of x = mχ/T , for

the scenarios with no CP-violation (ε = 0) and nearly maximal CP-violation (ε = 0.998). The

individual yields are shown in the left figure, while their sum and difference are shown in the right.

See text for details.

Therefore, there are three parameters appearing in the Boltzmann equations determining

the DM and anti-DM number densities, as shown in eqs. (2.4), namely, mχ, 〈σv〉S and

εeff . We see from eq. (2.1) that 0 < ε < 1, whereby ε = 0 corresponds to no CP-violation

in the semi-annihilation process, and ε = 1 to maximal CP-violation. We note that in

general since ε is a function of the four-momenta of the particles, ε and εeff are different.

However, when the annihilation rates are dominated by the s-wave contributions, they

become equal, and independent of the temperature. We shall work in this approximation

in the model-independent analyses in section 2 and section 3.

We numerically solve the coupled Boltzmann equations in eqs. (2.4) to understand the

parameter space in which the observed relic density of DM can be obtained. In figure 2 (left

panel), we show the dark matter (Yχ) and anti-dark matter yields (Yχ†) as a function of x =

mχ/T , for the scenarios with no CP-violation (ε = 0, red dashed line) and nearly maximal

CP-violation (ε = 0.998, pink and blue solid lines for DM and anti-DM respectively).

Here, the semi-annihilation rate has been fixed to be 〈σv〉S = 10−6 GeV−2, with the

DM mass mχ = 5 GeV, to reproduce the observed central value of the DM relic density

Ωh2 = 0.12 [39]. To contrast the results of this section with the ones in the next, in

which we shall introduce DM pair-annihilation as a possible additional number-changing

reaction, we have explicitly noted in this figure that the pair-annihilation rate vanishes in

this scenario, i.e., 〈σv〉A = 0. In the left panel, we also show the corresponding equilibrium

abundance Yeq for the zero chemical potential scenario (µ = 0, black dashed line).

In the right panel, we see that for ε = 0.998, the
(
Yχ + Yχ†

)
(orange solid) and |Yχ−Yχ† |

(black dashed) lines almost identically trace each other. This demonstrates that for large

O(1) CP-violation, the generated asymmetry is nearly maximal, and therefore the (anti-

)dark matter dominates the net yield. We also see from this figure that the total DM and

anti-DM yield in the large CP-violation scenario (ε = 0.998) is larger than the yield for

the CP-conserving case (ε = 0, red dashed line), for the same semi-annihilation rate 〈σv〉S .

This is because of the large non-zero DM chemical potential in the CP-violating case.

Therefore, in order to reproduce the observed relic abundance, we require correspondingly

larger values of the semi-annihilation rate in the scenario with CP-violation.

– 7 –
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Figure 3. Contour in the mχ − ε plane (left panel, red solid line) in which the central value of the

DM relic density Ωh2 = 0.12 is reproduced, for a fixed value of the semi-annihilation rate. Same

contours in the 〈σv〉S− ε plane for two different values of mχ (right panel, red and pink solid lines).

Also shown in both panels are contours of constant values of the relative abundance of DM and anti-

DM, parametrized as η = (Yχ(∞) + Yχ†(∞))/Yχ†(∞), with η → 1 being completely asymmetric

DM. Only the semi-annihilation process has a non-zero rate in both the figures. See text for details.

In figure 3 (left), we show the contour in the mχ − ε plane (red solid line) in which

the central value of the DM relic density Ωh2 = 0.12 is reproduced. For this figure, we

have fixed the value of the semi-annihilation rate to be 〈σv〉S = 10−8 GeV−2. As before,

for both the figures 〈σv〉A = 0. We also show contours in the mχ − ε parameter space for

constant values of the relative abundance of DM and anti-DM, parametrized as

η =
Yχ(∞) + Yχ†(∞)

Yχ†(∞)
, (2.7)

where, the yield Yχ(x) is evaluated at the present epoch with x→∞. Since for ε > 0, only

the χ† states survive for a scenario in which the symmetric component is completely anni-

hilated away, in this limit, η → 1. In scenarios in which the symmetric component partially

survives, 1 < η < 2. As we can see from this figure, for a fixed value of 〈σv〉S , higher values

of ε imply a lower DM mass mχ in which the relic density is reproduced. This is because,

higher the CP-violation ε, the higher is the difference in the number densities of the DM

and anti-DM particles, which in turn implies a large pseudo-chemical potential. For a fixed

value of the semi-annihilation rate, this also implies that the resulting frozen out number

densities are higher, thus requiring a lower DM mass to saturate the same DM abundance.

As is also clear, higher ε implies values of the relative abundance parameter η closer to 1.

For a fixed DM mass, if we in turn keep increasing the CP violation ε, the reaction

rate 〈σv〉S also needs to be correspondingly higher, for the same reason as described above.

This is shown in figure 3 (right), where for two fixed values of mχ (5 GeV and 10 TeV), we

show the contours in the 〈σv〉S − ε plane (red and pink solid lines respectively) in which

the central value of the DM relic density Ωh2 = 0.12 is reproduced. The approach to ε = 1

– 8 –
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Figure 4. Contours in the mχ−ε plane in which the central value of the DM relic density Ωh2 = 0.12

is reproduced, with the semi-annihilation rate fixed at its s-wave upper bound implied by S-matrix

unitarity, 〈σv〉S = 〈σv〉uni = (4π/m2
χ)(xF /π)1/2. The η parameter is the same as defined for figure 3,

with η → 1 being completely asymmetric DM. The right panel is the zoomed in version of the left

panel focussing on a narrower region in the CP-violation parameter ε. See text for further details.

in this figure is asymptotic, where the small numerical differences are not clear from the

plot shown (which, however, we have checked numerically). For ε → 1, we see from this

figure that η → 1, with the surviving DM state being almost entirely the anti-DM.

How high can we go in the rate 〈σv〉S? We can use partial-wave S-matrix unitarity to

bound the semi-annihilation cross-section from above. This in turn will also translate into

an upper bound for possible values of the dark matter mass. The maximum allowed value of

the cross-section determines the lowest possible number density of dark matter today, which

in turn determines the highest possible mass, if this single dark matter component saturates

the observed abundance. In figure 4 we impose the unitarity bound on 〈σv〉S = 〈σv〉uni,

where, for s-wave annihilation the unitarity upper bound is given by [40, 41]:

〈σv〉uni = (4π/m2
χ)(xF /π)1/2. (2.8)

Here, xF = mχ/TF , with TF being the freeze-out temperature of the corresponding process.

For both the plots in figure 4, xF = 20 is set as a benchmark value. With the semi-

annihilation cross-section set at the s-wave unitarity upper bound, we show the contour in

the mχ − ε plane (blue solid line) for which in Ωh2 = 0.12 is reproduced in the left plot of

figure 4. This figure shows the maximum possible DM mass allowed for a particular value

of ε, and as discussed earlier, higher values of ε imply that the upper bound on the DM

mass is stronger. In order to understand the approach towards ε → 1 better, we show in

the right panel of figure 4 a narrower region along the ε axis. From this figure we observe

a number of important results:

1. With the semi-annihilation process alone, one can obtain a scenario giving rise to

a nearly complete asymmetry in the DM sector, in which only the (anti-)DM state
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survives today. This is obtained for a large value of the CP violation parameter ε.

Smaller values of ε correspond to scenarios with a mixed present abundance of DM,

with both the particle and anti-particle states present.

2. As mentioned above, here we explicitly observe that the approach to ε→ 1 is asymp-

totic, and correspondingly to η → 1.

3. For ε→ 0, the upper bound on the DM mass is obtained to be 80 TeV, which is the

bound for purely symmetric semi-annihilation scenario, with no CP-violation.

4. For ε→ 1, the upper bound on the DM mass is obtained to be around 15 GeV, which

is the bound for purely asymmetric semi-annihilation scenario, with maximal CP-

violation. We note that this is much stronger than the unitarity bounds obtained for

asymmetric DM scenarios where strong subsequent pair-annihilations are necessarily

present, which we consider in the next section [42]. The above upper bound of 15 GeV

is obtained for η ' 1.0002, which represents a scenario with a nearly complete present

asymmetry in the DM sector (2 particles in 10,000 anti-particles). We have checked

that if we reduce η further closer to 1, the consequent change in this upper bound on

the DM mass is very small.

5. We see that being entirely within the limits of maximal possible semi-annihilation rate

and the maximal possible value of CP-violation, we can indeed obtain a completely

asymmetric DM scenario, with no requirement of subsequent pair-annihilations to

remove the symmetric component. This is one of the primary important observations

of this paper.

3 The interplay of semi-annihilation and pair-annihilation

We now consider the second scenario, in which both the semi-annihilation and pair-

annihilation processes are active, and their interplay determines the resulting DM prop-

erties. In the latter process, a dark matter particle annihilates with an anti-dark matter

particle, creating a pair of unstable states φ, χ + χ† → φ + φ, where as earlier φ can mix

with or decay to the SM states. We shall parametrize the leading-order cross-section for

this process by σA, which is an additional parameter in this scenario.

We assume that initially at high enough temperatures, both the semi-annihilation and

the pair annihilation processes are in chemical equilibrium, with their freeze-out tempera-

tures being TS and TA respectively. If the freeze-out temperatures have the hierarchy TS >

TA, the semi-annihilation process freezes out earlier, as schematically shown in figure 5.

For temperatures T > TS > TA, using the conditions of detailed balance for the reactions

χ+χ→ χ†+φ, χ+χ† → φ+φ and χ†+χ† → χ+φ, we obtain the relation between the chem-

ical potentials µχ = µχ† = µφ. For the cases when µφ = 0, this implies that µχ = µχ† = 0.

For TA < T < TS , the semi-annihilation process freezes out, keeping only the pair

annihilation in chemical equilibrium. This would imply that µχ+µχ† = 2µφ, and if µφ = 0

we obtain µχ = −µχ† . Hence, in this temperature regime, the χ particle can have a

non-zero chemical potential, and therefore, a particle anti-particle asymmetry in the χ
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Figure 5. One of the two possible hierarchies of the freeze-out temperature for the semi-annihilation

(TS) and pair-annihilation (TA) processes, and the chemical potentials of the DM (µχ) and anti-DM

(µχ†) states at different temperature intervals.

sector is generically possible. Such an asymmetry is generated by the freeze-out of the

semi-annihilation process once all the Sakharov conditions are satisfied. In this case, since

the pair annihilation process is active for T < TS , the final particle anti-particle number

density ratio (n0
χ/n

0
χ†) is determined by both the reaction rates.

For the opposite hierarchy TS < TA, there cannot be any chemical potential for the

χ particle for temperatures T > TS , with µφ = 0. After the freeze-out of the semi-

annihilation, asymmetry may again be generated, as discussed in section 2 for the scenario

with only semi-annihilation. In particular, since the pair annihilation process is no longer

active for T < TS , the ratio (n0
χ/n

0
χ†) is entirely determined by the semi-annihilation

process. Thus this scenario is identical to the scenario considered in section 2 as far as the

present DM properties are concerned.

With the pair-annihilation process included in addition to the two CP-conjugate semi-

annihilation channels, there are now three relevant processes in the thermal bath that can

change the number of DM particles χ. Consequently, the Boltzmann equations (2.2) are

now modified to include an additional collision term as follows:

dnχ
dt

+ 3Hnχ = Csemi −
∫ 4∏

i=1

d3pi
(2π)32Epi

g2
χ(2π)4δ(4)(p1 + p2 − p3 − p4) (3.1)

×
[
|M |2χχ†→φφ

[
fχ(p1)fχ†(p2)− fφ(p3)fφ(p4)

]]
,

where Csemi is the collision term from the semi-annihilation processes given in the r.h.s. of

eq. (2.2), all other notations being the same as in eq. (2.2).

Following the same procedure as in the previous section, the coupled set of Boltzmann

equations for the dark matter particle and anti-particle co-moving number densities are

now modified to take the following form:

dYχ
dx

= − s

Hx

[
AS

(
Y 2
χ +

Y0Yχ
2

)
−BS

(
Y 2
χ†

2
+ Y0Yχ†

)
+ 〈σv〉A

(
YχYχ† − Y 2

0

)]
(3.2)

dYχ†

dx
= − s

Hx

[
BS

(
Y 2
χ† +

Y0Yχ†

2

)
−AS

(
Y 2
χ

2
+ Y0Yχ

)
+ 〈σv〉A

(
YχYχ† − Y 2

0

)]
Here, 〈σv〉A is the thermally averaged pair-annihilation cross-section. As before, we have

assumed that throughout the evolution of the χ and χ† particles until the freeze-out of the

semi-annihilation and the pair-annihilation processes, the φ particle is in thermal equilib-

rium with the SM plasma with a vanishing chemical potential.
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3.1 Estimate of relic abundance

Before proceeding to the discussion of the numerical solutions for the coupled Boltzmann

equations, we first provide a rough estimate of the relation between the DM relic density

(Ωχ), its mass (mχ), and the CP-violation parameter ε. For this estimate, we shall assume

that there is complete asymmetry between the dark matter and anti-matter states in the

current Universe, i.e., either only the particle or the anti-particle states survive. It then

follows that the present DM relic density ΩDM = mχs0

(
Y∞χ + Y∞

χ†

)
/ρc = mχs0Y

∞
χ /ρc,

in the scenario when only the χ particles survive today, where s0 and ρc are the present

entropy density and the critical density respectively.

After the freeze-out of the semi-annihilation process, in the absence of subsequent

pair-annihilations, both the χ and χ† co-moving number densities (Yχ and Yχ†) remain

constants. However, in the presence of subsequent pair annihilations, namely, the process

χχ† → φφ, at temperatures below mχ (when the backward process is not active), each

reaction reduces both χ and χ† numbers by one unit. Therefore, in this latter case, only Yχ−
Yχ† remains a constant, which we can, therefore, equate to Y∞χ , assuming the symmetric

part is completely annihilated, and only χ particles survive today. We now define the net

co-moving charge density in the dark matter sector at the temperature T to be ∆B(T ) =

Q
(
nχ(T )− nχ†(T )

)
, where Q is the charge assigned to one DM particle. We can then

express the present relic abundance of DM as

ΩDM =
mχs0∆B(TS)

ρc s(TS)Q
, (3.3)

where TS is the freeze-out temperature for the semi-annihilation process.

In the semi-annihilation reaction, χχ→ χ†φ, the net change in χ charge per reaction

is negative (∆Q = −3Q), while in the CP-conjugate process χ†χ† → χφ, the net change

in χ charge per reaction is positive (∆Q = 3Q). Hence, the probability of having a

positive change is P+ = σS̄/ (σS + σS̄), while the probability for a negative change is

P− = σS/ (σS + σS̄). Therefore, ∆Q produced per semi-annihilation and its CP-conjugate

reaction is (3QP+ − 3QP−) = −3Qε, where ε is defined as in eq. (2.1). Here, we have

used the fact that the final state phase space elements are the same for the two CP-

conjugate processes. Finally, the net DM charge density produced is ∆B = −3εQneq
χ (TS),

assuming that the near-equilibrium distribution with zero chemical potential, neq
χ (TS), is

being maintained by fast pair-annihilation reactions, and therefore, neq
χ (TS) ' neq

χ†(TS).

Since this assumption is invalid for the scenario discussed in section 2, our estimate of the

relic abundance in this section does not apply for that scenario. In particular, with only the

CP-violating semi-annihilation reaction active in the thermal bath, for large CP-violation

(which is necessary to get a complete asymmetry with only semi-annihilation) the DM and

the anti-DM particles have large and different pseudo-chemical potentials, and therefore

do not follow the equilibrium distribution.

Plugging in the expression for ∆B as obtained above, we can now write the relic

abundance of DM particles today as follows

ΩDM =
3 mχs0|ε| neq

χ (TS)

ρc s(TS)
(completely asymmetric scenario). (3.4)
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Since we assumed the DM state χ to survive in the present Universe, ε < 0 in this case,

while if the anti-DM state χ† survives, ε > 0, as can be seen from eq. (2.1). We can re-write

the above expression in terms of a set of particular choices of the parameters as

ΩDMh
2 = 0.12×

(
mχ

100 GeV

)(
100

g∗S(xF )

) ( |ε| x3/2
S e−xS

10−9

)
. (3.5)

This shows that apart from the implicit dependence of ΩDM on mχ and ε through the value

of xS(= mχ/TS), there is an explicit linear proportionality with both these parameters ex-

pected. This is to be contrasted with the simple scenarios of asymmetry generation through

the out-of-equilibrium decay of a heavy particle, where the resulting particle density today

is proportional to ε only, and not to the mass of the decaying heavy particle [43]. Fur-

thermore, in the decay scenario, the asymmetry parameter ε is independent of the particle

momenta, unlike in the annihilation scenario [43]. For a typical value of xS = 20, we see

that |ε| ' 5.4 × 10−3 can reproduce the present DM abundance, for mχ = 100 GeV. In

contrast to the scenario with only semi-annihilation discussed in section 2, we see that the

CP-violation required to generate complete asymmetry here is very small.

Unlike in the previous case, for pair-annihilation cross-sections that are not sufficient

to completely remove the symmetric component, there is an explicit dependence of the

DM relic density on the pair-annihilation rate 〈σv〉A. In this case, the coupled Boltzmann

equations can be integrated piecewise in different temperature regimes, firstly near the

freeze-out of the semi-annihilation process, in which the pair-annihilation rate is not rele-

vant, and then near the freeze-out of the pair-annihilation process, but now with an initial

asymmetry in the DM sector generated by the earlier freeze-out of the semi-annihilation.

The resulting relic abundance can then be expressed as [32, 33]:

ΩDM =
s0

ρc
mχC coth

(
Cλ〈σv〉A

2xA

)
(partially asymmetric scenario), (3.6)

where, xA = mχ/TA, with TA being the freeze-out temperature of the pair-annihilation

process, C = Yχ(T )−Yχ†(T ), for all T < TS , and λ = 1.32MPlmχg
1/2
∗ . In the limit C → 0,

the above expression reduces to the well-known result for symmetric WIMP scenario

ΩDM =
2s0mχxA
ρcλ〈σv〉A

(symmetric WIMP scenario). (3.7)

3.2 Numerical results

We shall now solve the coupled Boltzmann equations (3.2) numerically, with four free pa-

rameters. The three parameters mχ, 〈σv〉S and εeff are the same as in section 2, with the ad-

ditional parameter being the pair-annihilation rate 〈σv〉A. Since we have already discussed

the role of the first three parameters in determining the DM properties in the previous

section, the primary aim of this section is to understand the impact of pair-annihilation,

in particular its interplay with the semi-annihilation process. Following our general discus-

sion above, therefore, the relevant temperature hierarchy is TS > TA, in which the semi-

annihilation freezes out earlier. The opposite hierarchy, TS < TA, is exactly equivalent to

the scenario in section 2, as far as the DM asymmetry and relic density today are concerned.
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Figure 6. Variation of the ratio of dark matter and anti-dark matter yields, Yχ/Yχ† , as a function

of mχ/T , for different values of the pair-annihilation rate, 〈σv〉A = 10−10 GeV−2 (red solid line)

and 〈σv〉A = 10−8 GeV−2 (blue solid line), with fixed values of mχ, 〈σv〉S and ε.

For TS > TA, the essential role of the pair-annihilation process is to remove the sym-

metric component of dark matter, as illustrated in figure 6. As we can see from this figure,

with fixed values of mχ, 〈σv〉S and ε, if we increase the value of the pair-annihilation rate

from 〈σv〉A = 10−10 GeV−2 (red solid line) to 〈σv〉A = 10−8 GeV−2 (blue solid line), the

ratio of dark matter and anti-dark matter yields Yχ/Yχ† decreases rapidly.

In order to understand the typical values of the cross-sections required to reproduce

the observed relic abundance today, we show in figure 7 the regions in the 〈σv〉A and

mχ parameter space in which the central value of the DM relic density Ωh2 = 0.12 is

reproduced. For both the plots in this figure (left and right), the values of ε and 〈σv〉S
have been kept fixed. We show the results for ε = 0.01 and 〈σv〉S = 10−10 GeV−2 in the

left figure, and for ε = 10−4 and 〈σv〉S = 10−13 GeV−2 in the right figure. We also show

contours in the mχ − 〈σv〉A parameter space for constant values of the present relative

abundance of DM and anti-DM, parametrized by η, as defined in eq. (2.7).

As expected from our discussion in section 3.1, in particular eq. (3.5), as we increase ε,

the value of 〈σv〉S required to reproduce the relic density is also correspondingly increased.

This is primarily due to the exponential suppression of Ωh2 from xS , which is increased

for larger 〈σv〉S , thereby requiring larger ε. This estimate is applicable only in the case

when the symmetric component today is negligible, i.e., η ' 1. As we see in figure 7, in

the entire parameter space under consideration, η is close to 1. We also show the contour

for Ωh2 = 0.12, in the ε = 0 limit (black dashed line), which is found to overlap with the

corresponding contour (pink solid line) in the case in which only the pair-annihilation is

active (i.e., 〈σv〉S = 0 as well). This is not surprising, since for such small values of 〈σv〉S ,

which is at least an order of magnitude below the values of 〈σv〉A, semi-annihilation is

essentially not relevant in determining the present DM abundance as long as ε = 0.

The scenario, however, changes dramatically with the introduction of a small CP-

violation with a non-zero ε, when semi-annihilation becomes the key process in determining

the present density. The role of 〈σv〉A for non-zero ε is then to eliminate the symmetric

component of DM that is left over at the freeze-out of the semi-annihilation process. As
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Figure 7. Required values of the pair-annihilation cross-section 〈σv〉A as a function of the DM

mass mχ that can reproduce the observed DM relic abundance (red solid line). The results are

shown for different values of the CP-violation parameter ε and the semi-annihilation rate 〈σv〉S
(left and right plots). Corresponding results for the symmetric case (ε = 0) are also shown for

comparison, with semi-annihilation (black dashed line) and without it (pink solid line), the latter

case being the pure WIMP scenario. Also shown are the contours for the present DM relative

abundance parameter η. See text for details.

we have already seen in section 2, for large O(1) values of ε, no other number changing

process plays any role in determining the relic abundance. This is because such a scenario

leads to a large violation of CP in the DM sector, thereby producing an almost completely

asymmetric DM already at the freeze-out of the semi-annihilation process at temperature

TS . Since almost no symmetric component is left out in this case at T = TS , the pair-

annihilation process is not relevant.

In the limit η → 1, we see from eq. (3.5) that for a fixed value of xS (which in turn

is obtained for a fixed value of 〈σv〉S in this limit) and ε, the dark matter mass is also

fixed. In particular, as we see from figure 7, with ε = 0.01 and 〈σv〉S = 10−10 GeV−2, we

obtain mχ ∼ 4600 GeV, while for ε = 10−4 and 〈σv〉S = 10−13 GeV−2 , mχ ∼ 5 GeV. Away

from the region in the parameter space for which η → 1, we find it non-trivial to obtain a

semi-analytic solution to the Boltzmann equations. However, it is clear from figure 7 that

the DM mass is no longer uniquely fixed for such a case, but varies with 〈σv〉A. This is

essentially because the symmetric component is not completely removed in such scenarios.

We note in passing that the parameter values ε = 10−4 and 〈σv〉S = 10−13 GeV−2

predict a DM mass of around 5 GeV in the completely asymmetric DM limit. Since this

value of the DM mass is around five times the proton mass, we expect the current number

densities of the surviving DM particle and protons to be similar in this scenario. As is

well-known, such a DM mass is also expected in scenarios which dynamically relate the

DM and baryon number densities in the current Universe [11, 12]. Such a mechanism to

relate the two asymmetries might be possible through semi-annihilation.

In the pure WIMP scenario, with ε = 0 and 〈σv〉S = 0, in the freeze-out approximation,

the dependence of Ωh2 on the DM mass is logarithmic, while it is inversely proportional
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Figure 8. Contours in the mχ − ε plane in which the central value of the DM relic density

Ωh2 = 0.12 is reproduced, with the pair-annihilation rate fixed at its s-wave upper bound implied

by S-matrix unitarity, 〈σv〉A = 〈σv〉uni = (4π/m2
χ)(xF /π)1/2. The semi-annihilation cross-section is

fixed to ensure 〈σv〉S < 〈σv〉A, for all values of mχ considered in this figure, such that the freeze-out

temperature hierarchy TS > TA is satisfied.

to 〈σv〉A. Therefore, we see in figure 7 that the value of 〈σv〉A required (around 3.5 ×
10−9 GeV−2) to reproduce Ωh2 = 0.12 is largely independent of mχ (pink solid line in

both figures). As discussed above, this value remains unchanged with the introduction of

a small 〈σv〉S , when the CP-violation is zero (ε = 0). In the η → 1 limit, for non-zero ε,

the requirement of 〈σv〉A is larger, and it increases with increasing ε.

As in section 2, we can obtain an upper bound for possible values of the dark matter

mass by using partial-wave unitarity to bound the annihilation (or semi-annihilation) cross-

sections from above. For the scenario in which TS > TA, the annihilation cross-section must

be larger than the semi-annihilation cross-section, and therefore, we impose the unitarity

bound on 〈σv〉A = 〈σv〉uni, where, 〈σv〉uni is as given in eq. (2.8). In this case, we show

the resulting upper bound on the dark matter mass as a function of the CP-violation

parameter ε in figure 8. We have fixed the value of the semi-annihilation cross-section to

be 〈σv〉S = 10−13 GeV−2, which is chosen to ensure that 〈σv〉S < 〈σv〉A = 〈σv〉uni, for all

values of mχ considered in this figure.

In figure 8, the observed relic abundance Ωh2 = 0.12 is satisfied along the solid blue

line. As in figure 4, we see that as the CP-violation parameter ε decreases, the resulting

mass bound becomes stronger. Furthermore, higher values of ε lead to larger present

asymmetry in the dark matter sector, and therefore a value of η closer to 1. The general

result obtained in section 2 that the bound on mχ for asymmetric DM is stronger compared

to the symmetric DM scenario, continues to hold in this scenario as well. In the complete

asymmetric limit, i.e., η → 1, the upper bound on the DM mass is found to be around

25 TeV (numerically for η = 1.000001), while for η → 2 it’s around 90 TeV, assuming s-wave

annihilation. For the opposite hierarchy of the freeze-out temperatures, i.e., TS < TA, the

semi-annihilation cross-section must be larger than the pair-annihilation cross-section, and
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Figure 9. Phase diagram showing the interplay between the semi-annihilation and pair-annihilation

rates in determining the asymmetric DM properties. The observed relic abundance Ωh2 = 0.12 is

satisfied, with and without CP-violation, along the blue solid and black dashed lines, respectively.

The relative abundance parameter η → 2 represents the symmetric phase, while η → 1 represents the

asymmetric phase. Here, ADM, Semi DM and WIMP DM denote the dominantly asymmetric dark

matter, symmetric semi-annihilating DM and symmetric pair-annihilating DM phases, respectively.

See text for details.

therefore, the unitarity bound must be imposed on 〈σv〉S , which has already been discussed

in section 2, in particular in figure 4.

We can summarize our discussion of the interplay between the semi-annihilation and

pair-annihilation rates in determining the asymmetric DM properties using an instructive

phase diagram, as shown in figure 9. In this figure, we study the values of 〈σv〉S and

〈σv〉A for which the observed relic abundance Ωh2 = 0.12 is satisfied, with and without

CP-violation. When the CP-violation vanishes, i.e., with ε = 0, the relic abundance is

satisfied along the black dashed contour [22]. Since for ε = 0, both semi-annihilation and

pair-annihilation can reproduce the observed relic abundance, with either or both of them

contributing, we obtain an approximate upper bound of 10−8 GeV−2 for both the rates,

for a fixed DM mass of mχ = 100 GeV. In contrast, when CP-violation is turned on, i.e.,

for ε = 10−2 in figure 9, a symmetric phase and an asymmetric phase appear in which the

relic density is satisfied, as seen in the solid blue line. The two phases can be distinguished

by constant values of the DM relative abundance parameter η. The symmetric phase,

with η → 2 is identical to the ε = 0 scenario, and hence the blue solid line and the black

dashed lines overlap. In this phase, the pair-annihilation rate is not large enough to remove

the symmetric component efficiently. On the other hand, the asymmetric phase appears

when 〈σv〉A is larger than the previously obtained upper bound of around 10−8 GeV−2, for

mχ = 100 GeV. In contrast, 〈σv〉S is much smaller in this phase. Thus, to summarize, there

are two ways to produce asymmetric DM in the absence of any wash-out processes, namely,
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1. have a large CP-violation ε as in section 2, in which case semi-annihilation is sufficient

to create a complete DM asymmetry, and no subsequent number changing process is

necessary, or,

2. produce a small asymmetry through a small CP-violation ε, and then have a suffi-

ciently large pair-annihilation rate to remove the symmetric component, as shown in

this section, and as is clear from figure 9.

4 Complex scalar DM with cubic self-interaction

We now discuss a simple toy model in which the generic scenario described in section 3

with both the semi- and pair-annihilation processes can be realized. The minimal new field

content that can lead to a particle-antiparticle asymmetry through the semi-annihilation

process include a complex scalar χ which is charged under a Z3 symmetry (we assign the

charge ω to χ, where ω3 = 1) and a real scalar φ, which is a singlet under this symmetry, as

well as the SM gauge interactions. The SM fields are also singlets under the discrete Z3 sym-

metry. The Z3 symmetry ensures the stability of χ, making it the DM candidate. For earlier

studies involving different aspects of Z3 symmetric DM, see, for example, refs. [44–50]. The

effective low-energy interaction Lagrangian involving the χ and the φ particles is given by

L ⊃ 1

3!

(
µχ3 + h.c.

)
+

1

3!

(
λχ3φ+ h.c.

)
+
λ1

4

(
χ†χ

)2
+
λ2

2
φ2χ†χ+ µ1φχ

†χ+
µ2

3!
φ3 +

λ3

4!
φ4.

(4.1)

Here, the couplings µ and λ can be complex in general. However, one of the phases

can be rotated away by an appropriate re-definition of the field χ. Therefore, in this

general effective low-energy theory, there is one residual complex phase, which is necessary

to generate a CP-asymmetry in the DM sector. We take µ to be real, and λ to have

a non-zero imaginary part, with a phase θ. The parameters in the scalar potential in

eq. (4.1) can be suitably chosen to ensure that the χ field does not develop a VEV, thereby

ensuring that the Z3 symmetry is not spontaneously broken.

In addition to the interaction terms involving the χ and the φ fields in eq. (4.1), there

can be two dimension-four and one dimension-three couplings to the SM Higgs doublet H

as well, namely, λHχ (χ†χ|H|2) + λHφ (φ2|H|2) + µHφ (φ|H|2). For mχ > mH , the λHχ
term contributes in exactly the same way as the λ2 term in eq. (4.1), and therefore we do

not consider it separately here. Furthermore, the λHφ and µHφ terms lead to interactions

of the φ field with the H field, which will thermalize the φ field with the SM plasma.

Since we assume the φ particles to be in equilibrium with the SM bath with zero chemical

potential, the effect of these terms are also included.

The above interaction Lagrangian in eq. (4.1) leads to several class of 2 → 2, 2 → 3

and 3→ 2 processes. We find that in different regions of the multi-dimensional parameter

space, different class of diagrams (or combinations thereof) may dominate. Since in this

section we are presenting a toy model that realises the general features of the model-

independent setup discussed in the previous section, we shall focus on a restricted region

of the parameter space in which a subset of the 2 → 2 diagrams dominate. In particular,
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Figure 10. Relevant 2 → 2 tree-level and one-loop Feynman diagrams for the semi-annihilation

process χχ→ χ†φ.

we shall consider the values of the dimensionful parameters to be small compared to the

DM mass scale, i.e., µ/mχ � 1 and µ1/mχ � 1. We shall also take the cubic and quartic

self-couplings of the φ field to be small, which does not alter the qualitative features of the

scenario. A comprehensive study of the above toy model will be presented elsewhere [51].

The relevant tree-level and one-loop Feynman diagrams for the semi-annihilation pro-

cess χχ → χ†φ are shown in figure 10. At tree-level there are two Feynman diagrams

contributing to this process: one involving a contact interaction (diagram T1), and the

other with an intermediate χ propagator (diagram T2). The second diagram gives a con-

tribution to the matrix element proportional to
(
µµ1/m

2
χ

)
, in the non-relativistic limit

for the χχ initial state, with the centre of mass energy squared s ' 4m2
χ. Therefore, for

µ/mχ � 1 and µ1/mχ � 1, the contact interaction dominates.

In order to determine the CP-asymmetry generated by the semi-annihilation process,

we compute the interference between the tree-level and loop-level diagrams shown in fig-

ure 10. In general the CP-asymmetry is proportional to Im (Mtree(gi)
∗Mloop(gj)), which in

turn is proportional to Im
(∏

i,j g
∗
i gj

)
× Im(I), where I is the loop factor which acquires an

imaginary part when the particles in the loop go on-shell. The latter requirement is ensured

by the condition mφ < mχ. We find that diagram T2 gives a non-zero contribution to the

CP-asymmetry, resulting from its interference with the loop diagram L2, while diagram T1

leads to a non-zero contribution from its interference with L1 and L3. Furthermore, the

contributions from the interference of T2 and L2, and that from T1 and L3 cancel identi-

cally. Therefore, the only relevant contribution is from the interference of T1 and L1. The

resulting difference in matrix elements squared that contribute to ε as defined in eq. (2.1),

is given as:

|M |2χχ→χ†φ − |M |2χ†χ†→χφ =
4|λ|µµ1λ2 sin θ

16π
√
s(s− 4m2

χ)
log

[
m2
χ +m2

φ − s+ β1

m2
χ +m2

φ − s− β1

]
(4.2)
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Figure 11. Contours of fixed effective CP-violation parameter |εeff | (red solid lines), as a function

of the complex phase θ = arg(λ) and the effective pair-annihilation coupling λ2. The results are

shown for two different DM mass values mχ = 1 TeV (left panel) and 5 GeV (right panel). The

required values of the annihilation rates and εeff are reproduced, as indicated. See text for details,

and figure 7 for comparison with the results obtained in the model-independent analysis.

where, s is the centre of mass energy squared, and

β1 =

√
(s− 4m2

χ)(m4
χ + (m2

φ − s)2 − 2m2
χ(s+m2

φ))

s
. (4.3)

In the model-independent setup discussed in section 2 and section 3, the different

annihilation rates and the effective CP-violation parameter were treated as independent

free parameters. However, in a model in which such processes are realized, these parameters

are often correlated, and are determined in terms of the common set of couplings and

masses. Therefore, in order to understand whether the simple model described by eq. (4.1)

can accommodate the required values of the relevant physical parameters found in the

previous section, we study in figure 11 the correlation between the effective CP-violation

εeff , and the annihilation rates, as a function of the CP-violating phase θ, and the relevant

couplings λ2 and |λ|.
In figure 11, we show contours of fixed effective CP-violation parameter |εeff | (red solid

lines), as a function of the complex phase θ = arg(λ) and the effective pair-annihilation

coupling λ2. We have also shown the corresponding values of the annihilation rate 〈σv〉A
in both panels. The results are shown for two different DM mass values mχ = 1 TeV

(left panel) and 5 GeV (right panel). As we can see from this figure, the values of the

annihilation rates and ε required to satisfy the DM relic abundance can be obtained in this

model, as indicated by the dashed horizontal and vertical lines. This can be observed by

comparison with the Ωh2 = 0.12 contour in figure 7, where the results were obtained in

the model-independent analysis.

A few comments are in order. First of all, as mentioned earlier, in figure 11 we ensure

µ/mχ � 1 and µ1/mχ � 1, for which our restriction to the class of 2 → 2 diagrams

in figure 10 remains valid. Since the loop amplitudes in this model depend upon the
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Figure 12. The effective CP-violation parameter |εeff |, as a function of the pair-annihilation

coupling λ2. The results are shown for fixed values of all other parameters, including the DM mass

value of mχ = 5 GeV. The triangle loop gives the dominant contribution, as shown by comparison of

|εeff | computed only with the triangle loop (red dashed line), and all the three loops (blue solid line).

coupling λ2, the pair-annihilation process is necessarily present whenever the CP-violation

in the semi-annihilation process is sufficiently large. Thus the first scenario with only the

semi-annihilation process discussed in section 2 is not obtained in this model, while the

second scenario in section 3 with both semi- and pair-annihilations can be easily realized.

Additional structures are therefore necessary to have loop graphs with sufficiently large

imaginary parts, which do not induce significant tree-level pair annihilation [51].

We find that a scenario where the effective CP-violation parameter |εeff | is close to

unity, thereby leading to the present DM asymmetry η → 1, can be realized in the model

described by eq. (4.1), for values of the model parameters within perturbative limits. We

show in figure 12 the variation of |εeff | as a function of the coupling λ2, which appears in

all the relevant loop graphs in figure 10. The results are shown for fixed values of all the

other parameters, including the DM mass value of mχ = 5 GeV. Even though here the

dimensionful parameters µ and µ1 are taken to be only a factor of two smaller than mχ, we

have checked that only the 2→ 2 processes in figure 10 dominate. We find that the triangle

loop gives the dominant contribution, as shown by comparison of |εeff | computed only with

the triangle loop (red dashed line), and all the three loops (blue solid line). While the

triangle loop (L1 in figure 10) does not lead to any ultraviolet (UV) divergence, the other

two loops (namely, L2 and L3) are divergent in the UV, and therefore |εeff | computed with

all three loops has a renormalization scale dependence, which is found to be rather weak.

For our computations, we have set the renormalization scale to be Λ = mχ. We emphasize

that even though in this example, the value of the pair-annihilation coupling λ2 is large,

the choice of parameters for which |εeff | → 1 essentially belongs to the first scenario we

studied, in which the semi-annihilation process almost entirely determines the present DM

properties, including its asymmetry. This is because, for |εeff | → 1, at the decoupling of

the semi-annihilation process, the symmetric component is already negligible, and hence

the subsequent pair-annihilation is largely irrelevant. Therefore, as is clear from figure 12,

we can achieve |εeff | close to 1 in this scenario, being within perturbative limit of all the

relevant parameters including λ2. Furthermore, we can also essentially realize, albeit in
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the presence of the coupling λ2, the first scenario in which the semi-annihilation process

almost entirely determines the present DM properties.
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