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1 Introduction

In the past couple years a large body of work on 2+1 dimensional gauge theories has

revealed a panoply of fascinating physics. Partially spurred by advances in Chern-Simons

matter theories [1–6], higher spin gravity [7, 8], emergent gauge field [9] and supersymmetric

dualities [10, 11], this research program has shed light on important concepts in particle,

string and condensed matter physics (see [12–36] for a subset of this work). A large portion

of these insights stem from the existence of the non-Abelian Chern-Simons term:

SCS =
k

4π

∫
Tr

(
A ∧ dA+

2i

3
A ∧A ∧A

)
(1.1)

where the level k is quantized to ensure gauge invariance and Tr refers to trace over

the gauge group (we will be primarily concerned with SU(N)). This term generically

dominates the dynamics at low energies due to the single derivative. Equation (1.1) has a

long and storied history in theoretical and mathematical physics (see the review [37] and

the references therein), but has recently garnered attention due to its ubiquity in emergent

2+1 d gauge theories in condensed matter physics. Indeed, eq. (1.1) is unavoidable in any

planar theory of fermions since fermions of mass m dynamically generate a Chern-Simons

term with level sgn(m)/2 at one loop.
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An interesting story arises when one studies eq. (1.1) coupled to massless fermions.

One finds the surprising result that for certain parameter regimes (namely when the level

k ≥ Nf/2 where Nf is the number of fermions)1 there exists a duality [43]:

SU(N)k with Nf ψ ↔ U

(
Nf

2
+ k

)
−N

with Nf φ (1.2)

where φ are Wilson-Fisher scalars with single and double trace quartic potentials [44, 45].

As one increases the number of flavors, eq. (1.2) fails to hold, since the gauge group of the

scalars gets completely broken down, leading to a nonlinear sigma model (NLσM). This

lead the authors of [38] to a new type of duality in which the fermions undergo spontaneous

symmetry breaking for a small range masses. This scenario, valid for k < Nf/2 ≤ N?, where

N? is a yet-to-be pinned down upper bound, leads to the duality2

SU(N)k with Nf ψ ↔

U
(
Nf
2 + k

)
−N

with Nf φ mψ = m?

U
(
Nf
2 − k

)
N

with Nf φ̃ mψ = −m?

. (1.3)

Between these critical points exists a NLσM given by the complex Grassmannian:

Gr

(
Nf

2
+ k,Nf

)
∼=

U (Nf )

U
(
Nf
2 + k

)
× U

(
Nf
2 − k

) (1.4)

supplemented by an appropriate WZW type term. This scenario assumes that each of

the Nf fermions is given the same mass deformation. One can relax this condition as

in [44, 46, 47] and study the phase diagram as a function of distinct mass deformations for

different groups of fermions. These different masses explicitly break the flavor symmetry

and one obtains inequivalent Grassmannians in different part of the phase diagram. As one

changes the size of these groups, these Grassmannians can disappear and reappear in at

a different locations in the diagram. In addition, there exist special points in the diagram

where multiple Grassmannians become degenerate.

The plot thickens when one passes to the large N limit. LargeN limits in Chern-Simons

matter theories have been studied before (see for instance [1–5] and references therein)

where N/k remains constant. However, this limit does not lead to the Grassmannian (1.4).

Instead, the authors or [45] studied a large N limit of Yang-Mills-Chern-Simons theory

coupled to fermions with g2N = const, where g is the gauge coupling. In this limit, the

distinguished points in the phase diagram where one transitions between the semi-classical

phases get resolved into a series of first order phase transitions with Grassmannians of

the form Gr(p,Nf ) as in figure 1. Interestingly, this is true when k = 0 as well as when

k ≥ Nf/2 and k < Nf/2. Additionally, each Grassmannian is accompanied by a decoupled

pure Chern-Simons theory of the form SU(N)k+p−Nf/2, even when k = 0. The phases

identified at finite N are distinguished by the fact that their CS theory has zero level.

1Here and throughout we use the convention of [38–42] that k = kb − Nf/2, where kb is the bare

Chern-Simons level and −Nf/2 is the contribution from the η-invariant.
2Here we choose a definition of mψ such that the critical points are symmetric about the origin, however

this need not be the case.
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(a) k > Nf/2 and Nf →∞ (b) k < Nf/2 < N?

Figure 1. Resolution of critical points into a series of first order phase transitions. The different

colored regions represent distinct Grassmannians.

In this work, we extend the analysis of [44, 46] to the large N limit using the techniques

laid out in [45]. We find series of first order phase transitions in special locations of the phase

diagram consistent with the results of [44, 46]. Interestingly, there exists special places in

the diagram where many (2n where n− 1 is the number of distinct flavors) Grassmannians

become degenerate. Additionally, for odd Nf we find degenerate symmetry broken and

symmetry unbroken phases from any value of the mass, not just at special locations where

phase transitions occur. We also discuss modifications to the dual scalar potential which

will lead to doubly symmetry broken phases. The layout of our paper is as follows: in

section 2 we review the necessary results of [38, 44–46] which are used in this work. Next,

in section 3, we discuss the construction of our phase diagram and perform some consistency

checks. In section 4 we briefly discuss scalar potentials and modifications which lead to

interesting doubly symmetry broken phases. We conclude in section 5. Additionally, we

include numerical evidence for the diagram in appendix A.

2 Symmetry breaking in QCD3 and vacuum structure at large N

As mentioned in the introduction, the 3d non-Abelian bosonization dualities fail to hold

when k ≤ Nf/2 < N? where N? is some yet-to-be-pinned-down function of Nf and k.3

When the scalars obtain a large negative mass deformation, they obtain a vev of the form

〈φ〉 =

(
1Nf

2
+k

0Nf
2
−k

)
(2.1)

which spontaneously breaks the flavor symmetry as

U (Nf )→ U

(
Nf

2
+ k

)
× U

(
Nf

2
− k
)

(2.2)

3For an upper bound derived from the f-theorem see [48].
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leading to Goldstone bosons which are valued in the complex Grassmannian4

Gr (Nf/2 + k,Nf ) ∼=
U (Nf )

U
(
Nf
2 + k

)
× U

(
Nf
2 − k

) . (2.3)

A key observation of [38] is that this is not the only scalar theory with this symmetry

breaking pattern. One can instead consider the theory

U

(
Nf

2
− k
)
−N

with Nf φ̃ (2.4)

with a large negative mass deformation and find the same symmetry breaking pattern,

leading to equivalent low energy dynamics. In addition, positive mass deformations of this

scalar theory will land us in the level/rank dual of the TFT corresponding to negative mass

deformations of the original fermionic theory. This motivates the duality

SU (N)k with Nf ψ ↔

U
(
Nf
2 + k

)
−N

with Nf φ mψ = m?

U
(
Nf
2 − k

)
N

with Nf φ̃ mψ = −m?

(2.5)

and the corresponding phase diagram in figure 1. Thus, there is a finite range of masses

for which spontaneous symmetry breaking (SSB) occurs and the low energy theory is

described by massless Goldstone modes valued in the Grassmannian. In addition to the

Lagrangian which describes the NLσM, the action contains a contribution from a Wess-

Zumino-Witten term which allows for the existence of skyrmions which play the role of

baryons in the symmetry broken phase. The WZW term, however, will not play a crucial

role in our discussion.

2.1 Symmetry breaking with unequal masses

The above analysis is applicable when one gives equal masses to all Nf of the fermions. A

more interesting structure emerges when one gives different mass deformations to separate

subsets of the Nf fermions [44, 46]. Namely, we give the first f of the fermion flavors a mass

m and the other Nf −f a mass M . Such mass deformations will explicitly break the flavor

group as U(Nf )→ U(f)×U(Nf−f). As a result of this explicit breaking, it will always be

either one or the other subset of flavor which will condense to form Grassmannians. The

specific Grassmannians and their location in the phase diagram depends on the relative

values of f,Nf − f and k. There are 6 possible options:

i.) f − Nf
2 < k,

Nf
2 − f < k

ii.) f − Nf
2 < k,

Nf
2 − f = k

iii.) f − Nf
2 < k,

Nf
2 − f > k

iv.) f − Nf
2 = k,

Nf
2 − f > k

4Henceforth we will drop the “complex” for sake of presentation.
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v.) f − Nf
2 > k,

Nf
2 − f > k

vi.) f − Nf
2 = k,

Nf
2 − f = k.

The structure of the phase diagrams in each case shown in figure 2. For each of parameter

regime we have the following Grassmannians5 along the specified axis in the m−M plane.

i.) M < 0 : Gr
(
k + f − Nf

2 , f
)

m < 0 : Gr
(
k − f +

Nf
2 , Nf − f

)
ii.) m < 0 : Gr

(
k − f +

Nf
2 , Nf − f

)
iii.) m > 0 : Gr

(
k +

Nf
2 , Nf − f

)
m < 0 : Gr

(
k − f +

Nf
2 , Nf − f

)
iv.) m > 0 : Gr

(
k +

Nf
2 , Nf − f

)
v.) M > 0 : Gr

(
k +

Nf
2 , f

)
m > 0 : Gr

(
k +

Nf
2 , Nf − f

)
vi.) No additional Grassmannians

Strictly speaking this analysis is applicable when at least one mass deformation is macro-

scopically large.6 The massive fermions shift the Chern-Simons level and the problem then

reduces to the analysis of flavor bounds of the light flavors with this shifted level. The

behavior when both mass deformations are small is still ambiguous but can be slightly

elucidated in the large N limit.

2.2 Vacuum structure at large N

One major drawback of the analyses in the previous section is the lack of insight about the

nature of the phase transitions. On one hand the fact that they are mediated by scalar

theories seems to indicate that these are second order. However they are also strongly

coupled and so the presence of light degrees of freedom at the transition point does not

necessarily mean that the transition is second order. In order to probe the nature of these

phase transitions, we must pass to some perturbative limit where calculations are possible.

One such perturbative analysis was recently performed in [45] using the “standard” ’t

Hooft large N limit: N →∞, g2N =fixed. This differs from previous large N calculations

in Chern-Simons matter theories where one takes k/N = fixed. As a result, this counting

scheme leads to the standard large N counting rules-leading order diagrams are arbitrary

planar gluon diagrams, and quark loops are suppressed by a factor of 1/N .

5These are in addition to the Grassmannian Gr(k +
Nf

2
, Nf ) which exists along the diagonal in

each regime.
6By “macroscopically large” we mean larger than the strong scale Λ.
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(a) Phase diagram associated

to i).

(b) Phase diagram associated

to ii).

(c) Phase diagram associated

to iii).

(d) Phase diagram associated to iv). (e) Phase diagram associated to v).

Figure 2. Various phase diagrams for the scenarios discussed in section 2.1, where m is on the y

axis and M is on the x-axis.

Since we are interested in the patterns of flavor-symmetry breaking in this limit, the

primary observable of interest is the expectation value of the fermion condensate

M J
I =

1

N
〈ψ̄IψJ〉 (2.6)

where I, J = 1, . . . , Nf are flavor indices. This term is valued in the adjoint represen-

tation of the global SU(Nf ) ⊂ U(Nf ) flavor symmetry, invariant under the baryonic

U(1) ⊂ U(Nf ) and is time-reversal odd. It enters into the Lagrangian via a mass term for

the fermions

L ⊃ −m J
I ψ̄Jψ

I = −Ntr(mM). (2.7)

Here we defined m as the matrix with entries m J
I .

The basic strategy of [45] is to use large N reasoning to derive a general form for the

effective potential as a function of 〈M〉. Specifically, we are interested in

V (〈M〉) = −W (m)−Ntr(mM) (2.8)

where W (m) = −iln(Z(m))/V3 is the sum of all connected correlation functions of M
and V3 is the spacetime volume. We now review their leading order and next to leading

order calculations.

Leading order. The O(N) contributions to W (m) (and, by extension, V (〈M〉)) come

from diagrams which are topologically a disk with a single fermion loop and an arbitrary

– 6 –
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number ofM’s inserted on it’s boundary as in figure 3. The interior of the disk is an arbi-

trary planar gluon diagram. As a result, W (m) can only take on contributions from single-

trace operators. Time reversal symmetry requires that the potential obey W (−m) = W (m)

which further constrains the allowed terms. When the dust settles, we can schematically

write W (m) as

W (m) = NΛ3
∞∑

n=2,4,6...

Cn
Λn

tr(mn) (2.9)

which leads to a very similar form for the effective potential:

V (〈M〉) = NΛ3
∞∑

n=2,4,6...

C ′n
Λ2n

tr(〈M〉n). (2.10)

We now use an SU(Nf ) transformation to diagonalize M to get

M = Λ3diag(x1, x2 . . . xNf ), xi ∈ R (2.11)

which leads to an effective potential of the form

V (xi) = NΛ3

Nf∑
i=1

∞∑
n=2,4,6,...

C ′nx
n
i ≡ NΛ3

Nf∑
i=1

F (xi). (2.12)

An incredibly crucial assumption of [45] is that F (x) has degenerate minima at some finite

±x? and by a simultaneous rescaling ofM and F (x) we can set x? = 1.7 Since the potential

is minimized as xi = ±1, each eigenvalue must take on either one of those values. This

leads to Nf+1 degenerate vacua labeled by the number of positive (or negative) eigenvalues

of M. The NLσM that describes the low energy physics is again the Grassmannian

Gr(p,Nf ) ∼=
U(Nf )

U(p)× U(Nf − p)
(2.13)

supplemented by the appropriate WZW term. In addition to the Grassmannian, each of

these vacua will contain a non-trivial Chern-Simons TFT of the form SU(N)
p−

Nf
2

+k
, even

when k = 0. This is necessary is one assumes that there are no phase transitions as one

tunes the mass from small non-zero values to asymptotically large values.

One can add a mass term for the fermions which will lift the degeneracy of these vacua.

It is not difficult to show that

[m,M] = 0 (2.14)

which allows for the simultaneous diagonalization of both m and M. Let mi be the

eigenvalues of m. Then the mass term will add a term to the effective potential of the form

V (xi) ⊃ NΛ

Nf∑
i=1

mixi. (2.15)

Now if we take the first mi > 0 for i = 1, . . . , p andmi < 0 for i = p+1, . . . , Nf , the potential

will be minimized by taking xi = −1 for i = 1, . . . , p and xi = 1 for i = p+ 1, . . . , Nf . This

lifts the degeneracy and singles out Gr(p,Nf ) as the true ground state.

7Without this assumption the results of [45] would be inconsistent with the Vafa-Witten theorem [49, 50].
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(a) (b)

Figure 3. Leading (a) and subleading (b) diagrams in the large N limit. Blue represents arbitrary

gluon loops and stars are insertions of M.

Next-to-leading-order. In the proceeding section we discussed the vacuum structure of

QCD3 by examining the O(N) contribution to the effective potential, which stems from the

disk diagram of figure 3(a). The O(1) contribution, on the other hand, comes from the an-

nulus diagram of figure 3(b) and so contains double trace terms such as tr(〈M〉n)tr(〈M〉n′).
Since we are not interested in any higher order terms in the large N expansion, we can

restrict the xi’s to their values which minimize the O(N) potential. This fact, along with

constraints from time-reversal invariance, give the following form for the O(1) potential

V (xi) ⊃ Λ3∆
N∑

i,j=1

xixj . (2.16)

The constant ∆ is a strictly positive constant whose value is determined from calculation

of the diagrams in figure 3. It’s positivity is required by consistency with the Vafa-Witten

theorem-in the absence of mass terms the ground state is given by Gr(Nf/2, Nf ).

One can add a small singlet mass deformations m ∼ mδij to this and examine how

the ground state will change as a function of the mass. In addition, we can add a non-zero

Chern-Simons term to the action. The contribution from the Chern-Simons term enters in

the same form as the mass term and so we can group them together. The potential is then

V (xi) ⊃ Λ3∆

Nf∑
i,j=1

xixj +
(
NmΛ2 + kΛ3

) Nf∑
i=1

xi. (2.17)

Note that this mass deformation is subleading only when m O(1/N). If m ∼ O(1), then it

becomes part of the O(N) potential. Now we make the ansatz that the first p eigenvalues

of 〈M〉 are -1 and the remaining Nf − p are 1. Minimizing the effective potential with

respect to p gives

p =
Nf

2
+

s
Nm+ Λk

4Λ∆

{
(2.18)

where JxK denotes the nearest integer of x. The vacuum which minimizes the effective

potential jumps by ±1 whenever Nm+Λk
4Λ∆ ∈ Z + 1

2 . Thus as we tune m we traverse each

– 8 –
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Grassmannian until we wind up in the asymptotic phases. In other words, one encounters

a series of first order phase transitions as a function of m.

3 Vacuum structure with an explicitly broken flavor group

In the above discussion we gave the fermions a mass deformation of the form m = m1

which preserved the global flavor symmetry. In this section we will examine a different

scenario in which

m̃ = diag

m, . . . ,m︸ ︷︷ ︸
f

,M, . . . ,M︸ ︷︷ ︸
Nf−f

 . (3.1)

This mass deformation explicitly breaks the global flavor symmetry as U(Nf ) → U(f) ×
U(Nf−f). As a result, we will distinguish the corresponding eigenvalues of our condensate:

〈M〉 =
1

N
diag

(
x1, . . . , xf , y1, . . . , yNf−f

)
. (3.2)

We may then ask if these subgroups get broken down any further by the resulting fermion

condensate. The purpose of this section is to determine the circumstances under which

these subgroups get spontaneously broken.

3.1 Leading order

We start by assuming M = 0. The full O(N) potential including the mass deformation is

V (xi) = NΛ3

Nf∑
i=1

F (xi) +m

f∑
i=1

xi. (3.3)

The mass term fixes all the x’s to be −1 but places no such restriction on the y′s. Thus each

y can be ±1 which again leads to a degeneracy. Assuming the first p of the y eigenvalues

are 1, our symmetry group will spontaneously break as

U(f)× U(Nf − f)→ U(f)× U(p)× U(Nf − f − p) (3.4)

which leads to the coset

U(f)× U(Nf − f)

U(f)× U(p)× U(Nf − f − p)
=

U(Nf − f)

U(p)× U(Nf − f − p)
∼= Gr(p,Nf − f). (3.5)

Thus there are Nf−f+1 degenerate vacua, one for each choice of p, each one accompanied

by a Chern-Simons TFT.

If we take M 6= 0, then the corresponding eigenvalues will also be fixed and, in general,

no SSB will occur.

– 9 –
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3.2 Next-to-leading order

The story becomes much more interesting at O(1) due to the asymmetry in the mass term.

The full O(1) potential including, including the Chern-Simons term and an O(1/N) mass

deformation, can be written as

V = ∆Λ3

 f∑
i=1

xi +

Nf−f∑
i=1

yi

2

+ kΛ3

 f∑
i=1

xi +

Nf−f∑
i=1

yi

+NmΛ2
f∑
i=1

xi +NMΛ2
f∑
i=1

yi.

(3.6)

As in the flavor symmetric case the eigenvalues of M take on their O(N) values in the

O(1) potential since we are not considering terms which are higher order. The general

structure of the phase diagram will also be uneffected by the Chern-Simons term and so

the bulk of our analysis will be concerned with the k = 0 case. Adding non-zero k will

only serve to shift the locations of various phases in the phase diagram, rather than change

it’s structure.

We start this section by demonstrating a lack of double condensation of the fermions

when m 6= M . That is, it is forbidden to have SSB in both groups of fermions simultane-

ously. The resulting scenarios can then be broken up into three cases-one where symmetry

breaking happens in the upper left f × f block of M, one that happens in the lower right

(Nf − f)× (Nf − f) block, and one where no symmetry breaking occurs. We then identify

the regions of the phase diagram where these symmetry breaking scenarios occur by ex-

amining the relative values of the effective potential. We then use the fact that Gr(M,N)

does not exist unless 0 ≤M ≤ N to further refine our diagram.

3.2.1 A lack of double condensation

We start by looking for a solution in which both groups of fermions undergoes spontaneous

symmetry breaking. That implies the formation of a condensate of the form

N〈M〉 = diag(1, . . . , 1︸ ︷︷ ︸
p

,−1, . . . ,−1︸ ︷︷ ︸
f−p

, 1, . . . , 1︸ ︷︷ ︸
q

,−1 . . . ,−1︸ ︷︷ ︸
Nf−f−q

) (3.7)

leading to the double coset

Gr(p, f)×Gr(q,Nf − f). (3.8)

The integers p and q are bounded below by zero and above by the number of fermion

flavors in that block. In other words, p and q takes integer values in the domain D =

[0, f ]× [0, Nf − f ]. If, for general m and M , the effective potential admits a minimum on

int(D) then double condensation can occur. Otherwise, the minimum must occur on ∂D
and only one group of flavors undergoes SSB. Plugging (3.7) into (3.6) gives

V

∆Λ3
= (2p+ 2q −Nf )2 +

(
mN

Λ∆
+
k

∆

)
(2p− f) +

(
MN

Λ∆
+
k

∆

)
(2q −Nf + f) . (3.9)

– 10 –
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To find extrema, we extend p and q to the real numbers and solve the system of equations:

∂V

∂p
= 4(2p+ 2q −Nf ) + 2

(
mN

Λ∆
+
k

∆

)
= 0 (3.10)

∂V

∂q
= 4(2p+ 2q −Nf ) + 2

(
MN

Λ∆
+
k

∆

)
= 0. (3.11)

To simplify this, rewrite it as a matrix equation:(
8 8

8 8

)(
p

q

)
=

(
4Nf − 2

(
mN
Λ∆ + k

∆

)
4Nf − 2

(
MN
Λ∆ + k

∆

)) . (3.12)

Clearly the coefficient matrix

(
8 8

8 8

)
has determinant zero and is therefore not invertible.

This system of equations has no solutions and the extrema must occur on ∂D. Explicit

numerics demonstrating the same conclusion are given in appendix A.

At finite N , one can show that double condensation is forbidden by explicitly mini-

mizing the potential on the scalar side, as was done in [44, 45]. There the authors included

both a single and double flavor trace quartic potentials and minimized with respect to the

eigenvalues. Positivity constraints show that there is no double condensation outside of the

flavor enhanced m = M line. However, this same reasoning can not be applied to large N

QCD3, since the proposed form of the (finely tuned) sextic potential on the scalar side does

not include double trace deformations at leading order. Since the leading order solution

determines the eigenvalues of the condensate, there is no a priori reason to expect a lack of

double condensation. We will discuss some modifications to the potential that could allow

for such double condensation in section 4 below.

3.2.2 Single massive flavor

We start by examining what happens when we give the first f flavors a mass m > 0 while

leaving the other Nf −f light. The situation is slightly different when f ≤ Nf
2 and f ≥ Nf

2 .

We examine these in turn. The potential is the same in either case. We start by taking

k = 0. We have

V = ∆Λ3

 f∑
i=1

xi +

Nf−f∑
i=1

yi

2

+NmΛ2
f∑
i=1

xi. (3.13)

First, consider giving f <
Nf
2 a mass m. In this scenario, we can take all the x’s to

be −1. Now, since there are more y′s than there are x’s, we can entirely cancel off the

contribution from the x’s in the quadratic term by taking f of the y′s to be equal to +1. Of

the remaining Nf − 2f y’s, we take half to be positive and half to be negative so that they

cancel among themselves. If Nf is even, this works perfectly. If Nf is odd, then we will be

left with one unpaired eigenvalue. This eigenvalue can be either +1 or −1 and since it’s

only contribution to the effective potential is in the quadratic term, these scenarios have

the same value of the effective potential and so are degenerate. When the dust settles our

– 11 –



J
H
E
P
0
8
(
2
0
2
0
)
1
4
5

condensate looks like

NM = diag

−1, . . .− 1︸ ︷︷ ︸
f

, 1, . . . , 1︸ ︷︷ ︸
Nf
2

−1, . . . ,−1︸ ︷︷ ︸
Nf
2
−f

 for Nf even

= diag

−1, . . .− 1︸ ︷︷ ︸
f

, 1, . . . , 1︸ ︷︷ ︸
Nf±1

2

−1, . . . ,−1︸ ︷︷ ︸
Nf∓1

2
−f

 for Nf odd

(3.14)

which leads to the Grassmannians

Gr

(
Nf

2
, Nf − f

)
∼= Gr

(
Nf

2
− f,Nf − f

)
for Nf even

Gr

(
Nf ± 1

2
, Nf − f

)
∼= Gr

(
Nf ∓ 1

2
− f,Nf − f

)
for Nf odd

(3.15)

with effective potentials given by

V = −NmΛ2f, for Nf even

= 1−NmΛ2f, for Nf odd.
(3.16)

These only occur, however, when

Nf

2
− f ≥ 1 for Nf even

Nf ∓ 1

2
− f ≥ 1 for Nf odd.

(3.17)

Otherwise, the Grassmannians (3.15) do not exist. If (3.17) is not satisfied, then we simply

have some Chern-Simons matter theory with Nf − f massless fermions.

When f =
Nf
2 , we get no spontaneous symmetry breaking when Nf is even. This is

because all of the y’s can perfectly cancel all the x’s. We wind up with a condensate of

the form:

N〈M〉 = diag

−1, . . .− 1︸ ︷︷ ︸
Nf/2

, 1, . . . , 1︸ ︷︷ ︸
Nf/2

 . (3.18)

When Nf is odd, we have two choices, since not all of the y’s can cancel off the x’s. We

are left with one unpaired y eigenvalue which can take either sign. Since this eigenvalue

enters in eq. (3.13) in the quadratic term, both choices have the same value of the effective

potential and we again have a twofold degeneracy as in eq. (3.15). This leads to the

following condensates:

N〈M〉 = diag

−1, . . .− 1︸ ︷︷ ︸
(Nf−1)/2

, 1, . . . , 1︸ ︷︷ ︸
(Nf+1)/2

 =⇒ no SSB

N〈M〉 = diag

−1, . . .− 1︸ ︷︷ ︸
(Nf−1)/2

, 1, . . . , 1︸ ︷︷ ︸
(Nf−1)/2

,−1

 =⇒ SSB with Gr

(
1,
Nf + 1

2

)
.

(3.19)

– 12 –



J
H
E
P
0
8
(
2
0
2
0
)
1
4
5

Already we can see some novelties of the flavor broken case as opposed to the flavor

symmetric one. Namely that one does not encounter a series of first order phase transitions

as you dial m-you simply stay in the same Grassmannian until you reach the asymptotic

regime. Also we see that for odd Nf there exists two degenerate Grassmannians for any

value of m. When f = (Nf − 1)/2, this degeneracy is between a phase where SSB occurs

and one where it does not.

When f > Nf/2 the y’s can not fully cancel off all of the x’s. As a result, we will

have some excess energy in either the quadratic term or the linear term. To proceed we

calculate the extrema of the effective potential in both cases and compare the values of V

to see which scenario is preferred. Proceeding in this way, we find that having excess in

the linear term is energetically favorable. This leads to a condensate of the form

N〈M〉 = diag

−1, . . .− 1︸ ︷︷ ︸
f−q

, 1, . . . , 1︸ ︷︷ ︸
q

1, 1, . . . 1︸ ︷︷ ︸
Nf−f

 (3.20)

where

q = f −
Nf

2
−

s
Nm

4Λ∆

{
. (3.21)

In contrast to the f ≤ Nf/2 case, we do encounter a series of phase transitions as we tune

the mass, albeit a reduced number of them.

3.2.3 Double massive flavors

The diagram become much richer when we give the other set of flavor a mass. The poten-

tial is

V = ∆Λ3

 f∑
i=1

xi +

Nf−f∑
i=1

yi

2

+NmΛ2
f∑
i=1

xi +NMΛ2

Nf−f∑
i=1

yi. (3.22)

Now, we must carefully examine the values of the effective potential on the boundary of

our p− q domain. The full domain is given by

D = [0, f ]× [0, Nf − f ] (3.23)

with boundary ∂D = ∂D1 ∪ ∂D2 ∪ ∂D3 ∪ ∂D4 where

∂D1 = [0, f ]× {0}
∂D2 = [0, f ]× {Nf − f}
∂D3 = {0} × [0, Nf − f ]

∂D4 = {f} × [0, Nf − f ]

(3.24)
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Let m̃ = mN
Λ∆ and similarly for M̃ . The minimum occur at:

∂D1 : p =
Nf

2
−

s
m̃

4

{
, q = 0 with V1 = −m̃

2

4
+ (m̃− M̃)(Nf − f)

∂D2 : p = f −
Nf

2
−

s
m̃

4

{
, q = Nf − f with V2 = −m̃

2

4
− (m̃− M̃)(Nf − f)

∂D3 : p = 0, q =
Nf

2
−

t
M̃

4

|

with V3 = −M̃
2

4
− (m̃− M̃)f

∂D4 : p = f, q =
Nf

2
− f −

t
M̃

4

|

with V4 = −M̃
2

4
+ (m̃− M̃)f

(3.25)

where p and q are subject to

0 ≤ p ≤ f, and 0 ≤ q ≤ Nf − f. (3.26)

Plugging eq. (3.25) into eq. (3.26) gives the following mass ranges for which we remain

on ∂D:

∂D1 :
m̃

4
∈ I1 ≡

[
Nf

2
− f,

Nf

2

]
∂D2 :

m̃

4
∈ I2 ≡

[
−
Nf

2
, f −

Nf

2

]
∂D3 :

M̃

4
∈ I3 ≡

[
f −

Nf

2
,
Nf

2

]
∂D4 :

M̃

4
∈ I4 ≡

[
−
Nf

2
,
Nf

2
− f

]
.

(3.27)

These intervals have the property that I1 ∩ I2 and I3 ∩ I4 can not both be non-zero. If

f >
Nf
2 , the former is non-empty while the latter is empty and vice versa for f ≤ Nf

2 .

For regions where these mass intervals overlap, the preferred symmetry breaking scenario

is the one which minimizes the effective potential. From eq. (3.25) it is easy to see that if

m < M then

V1 < V2 and V4 < V3

while if m > M we have the opposite. If m = M the flavor group is no longer broken and

we return to the phase diagram of [38].

To proceed let us assume m < M . The regions in the m̃−M̃ plane for which symmetry

breaking of either type will occur is (up to a factor of 4) are given by I1 × Rm<M and

Rm<M × I4, respectively, where we defined

Rm<M ≡ {(M,m) ∈ R2 |m < M}.
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One can see that for M̃/4 ∈ I4, we have M̃ < 0 except for some small interval [0, Nf/2−f ]

if f < Nf/2. Similarly, if m̃/4 ∈ I1, then m̃ > 0 except for some small interval [Nf/2−f, 0]

if f > Nf/2. This shows that most of the region where the f fermions condense are for

positive values of m̃ while the regions where the other Nf − f fermions condense are for

negative values of M̃ ! And since we restrict our attention to the regions m < M , we know

that in the first quadrant, we get Grassmannians of the form Gr(p, f) and in the third

quadrant, we get Grassmannians of the form Gr(q,Nf − f). In both cases, as you tune

m̃ or M̃ , you encounter a series of first order phase transitions which bring you through

each Grassmannian until you wind up in the asymptotic, topological phase as in [38]. We

can repeat the analysis for M > m and find a similar phenomenon, except now we get

Grassmannians of the form Gr(p, f) for negative values of m̃ and Grassmannians of the

form Gr(q,Nf − f) for positive values of M̃ .

The resulting phase diagram is given in figure 4 Each line represents a transition

between Grassmannians, and they are colored according to the component of ∂D on which

the transitions occur. Namely, blue corresponds to ∂D1, pink to ∂D4, green to ∂D2 and

red to ∂D3. The low energy theory in each region is

Blue: Gr(p, f)⊗ SU(N)Nf
2
−p

with p =
Nf

2
−

s
m̃

4

{

Pink: Gr(q,Nf − f)⊗ SU(N)Nf/2−f−q with q =
Nf

2
− f −

t
M̃

4

|

Green: Gr(p, f)⊗ SU(N)
f−

Nf
2
−p

with p = f −
Nf

2
−

s
m̃

4

{

Red: Gr(q,Nf − f)⊗ SU(N)Nf/2−q with q =
Nf

2
−

t
M̃

4

|

.

(3.28)

These are subject to the isomorphism Gr(M,N) ' Gr(N −M,N). Since we have chosen p

and q to represent the number of +1 eigenvalues of our condensate, this isomorphism simply

puts things in terms of the number of −1 eigenvalues. Physically these are equivalent. The

black diagonal represents the flavor symmetric case studied in [38] where the stars represent

the phase transitions along that line. In the flavor symmetric case, these were special

points where two Grassmannian phases become degenerate. Now, they are phases where

six different Grassmannians become degenerate. The vacuum one winds up in depends on

the direction in the M −m plane that you approach this point. For instance, if you tune

along the m < M from above or below, you wind up in a vacuum of the form Gr(p, f),

while if you tune along the m = M from above or below you wind up in Gr(p,Nf ). In

general, if we have n different masses there will be 2n degenerate vacua at these special

values of the mass.

One interesting part of the phase diagram in figure 4 is the part where I1 ∩ I2 6= ∅
(or I3 ∩ I4 6= ∅ if f < Nf/2). As we mentioned previously, these low energy theories are

determined by which mass is larger. Interestingly, although perhaps not surprisingly, these

theories are not equivalent and are related by a time-reversal-symmetry transformation.

To see this note that the in the region of overlap, the blue Grassmannians are of the form

– 15 –



J
H
E
P
0
8
(
2
0
2
0
)
1
4
5

(a) Phase diagram for f < Nf/2 (b) Phase diagram for f ≥ Nf/2

Figure 4. Phase diagrams for QCD3 with an explicitly broken flavor symmetry. The various TFTs

shown are SU(N) Chern-Simons gauge theory with level k + 1
2 (sgn(m)f + sgn(M)(Nf − f)). The

shaded regions represent the Grassmannians as explained in eq. (3.28).

Gr(f − p, f)⊗ SU(N)Nf/2−f+p while the green Grassmannians are of the form Gr(p, f)⊗
SU(N)f−Nf/2−p. The Grassmannians are equivalent due to the isomorphism we discussed

above, but the Chern-Simons TFTs are related to each other by a time reversal operation!

Thus, as one smoothly varies m from M − ε to m+ ε, one should encounter a domain wall

with extra light matter, even though the massless degrees of freedom on both sides are

equivalent. Constructing such domain wall solutions is interesting but is beyond the scope

of this work. If one includes a non-zero Chern-Simons level, then the TFTs are no longer

related by a time reversal symmetry, but one should get a domain wall solution regardless.

In addition to this analytic derivation, we also include some numerical evidence for a

specific choice of Nf and f . We find perfect agreement with our analysis in this particular

case, as well as for numerous other choices. For brevity we only include the one.

3.2.4 Matching onto the finite N solution

As a check, we would like to match onto the flavor broken phase diagram of [44, 46]. This

is not entirely possible, however, due to the fact that the adding a Chern-Simons term

does not alter the shape of the phase diagram, only the location in the plane where the

transitions occurs. However, as noted in [45] the finite N symmetry broken phase is still

present in the large N solution and is distinguished by the fact that it is the phase which

has vanishing Chern-Simons level for it’s decoupled TFT. When k = 0, this occurs at

p = Nf/2 giving the symmetry broken phase first discussed in [49, 50]. At non-zero k, this

occurs when p = k+Nf/2, giving the phase discussed in [38]. Thus, one consistency check

we can perform is to see if the classical flavor-broken Grassmannians discussed in [44, 46]

(and shown in 2) are accompanied by SU(N)0 for the relevant parameter regimes.
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To proceed, we find for what values of p or q the Chern-Simons level vanish, and find

the values of k for which this confining theory exists. We get:

Blue: p = k +
Nf

2
exists when −

Nf

2
≤ k ≤ f −

Nf

2

Pink: q = k +
Nf

2
− f exists when f −

Nf

2
≤ k ≤

Nf

2

Green: p = k + f −
Nf

2
exists when

Nf

2
− f ≤ k ≤

Nf

2

Red: q = k +
Nf

2
− f exists when −

Nf

2
≤ k ≤

Nf

2
− f.

(3.29)

Comparing these ranges to those discussed in section 2.1, we find the following:

i.) f − Nf
2 < k,

Nf
2 − f < k— Green+ Pink

ii.) f − Nf
2 < k,

Nf
2 − f = k—Pink only

iii.) f − Nf
2 < k,

Nf
2 − f > k—Pink+Red

iv.) f − Nf
2 = k,

Nf
2 − f > k—Red Only

v.) f − Nf
2 > k,

Nf
2 − f > k—Blue + Red

vi.) f − Nf
2 = k,

Nf
2 − f = k—None

As you can see, this perfectly matches with the phase diagrams in [44, 46] and figure 2.

4 Scalar potentials and double condensation

When we pass to the scalar side of the large N QCD duality we encounter a number of

difficulties. Specifically, the authors of [45] have argued that the usual quartic potential at

finite N will not accurately capture the phase structure of large N QCD3. They go on to

construct a sextic potential at O(N) and O(1) which can reproduce the desired effects:

VO(N) ∼
∑
i

y2
i (y

2
i − 1)2 (4.1)

VO(1) ∼
∑
i,j

(2y2
i − 1)(2y2

j − 1) (4.2)

where yi is the eigenvalue for the scalar vacuum expectation value. However, as was argued

in [45], the coupling constants associated with eqs. (4.1) and (4.2) must be fine tuned to

ensure consistency with the fermionic side. This is an unfortunate artifact, but the fact

that it can be done for some choice of coefficients is reassuring.

When we break the flavor symmetry to the U(f)× U(Nf − f) subgroup we generally

expect to operators which respect this new symmetry to be generated along the RG flow.

On the fermion side of the duality, it is not clear a priori what these would be, since quartic

potentials are classically irrelevant in 2+1 d. For this we turn to the scalar side to see these

effects. For simplicity we stick to U(f)× U(Nf − f) quartic potentials.
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Figure 5. Diagram associated to the U(f)× U(Nf − f) invariant term discussed in section 4.

Let φ1 represent the first f scalars and φ2 the remaining Nf−f . Then, the two quartic

U(f)× U(Nf − f) invariant potentials are

L ⊃ λφ†b1Iφ
a
1Iφ
†a
2Jφ

b
2J (4.3)

⊃ γφ†a1Iφ
a
1Iφ
†b
2Jφ

b
2J . (4.4)

Both of these involve double traces over the flavor indicies, while eq. (4.3) has a single

trace over the gauge indicies. The index structure of eq. (4.4) indicates it should be part of

the O(1) potential, since it involves separate gauge and flavor traces. Diagrams with this

interaction will be included in the annulus diagram as discussed in section 2.

The more interesting term is eq. (4.3). Terms of this type have been discussed before

in [46, 51]. Heuristically this term behaves as follows: when one set of scalars gets a vev

from a negative mass deformation this term induces a mass for some of the components

of the other group of scalars. In [46] it was argued that if this term is large enough it

could prevent double condensation, since any negative mass deformation could not cancel

the off the contribution from the induced mass. The gauge and flavor index structure

makes it difficult to determine at which order this type of term should enter since diagrams

containing this interaction are neither disk or annulus diagrams but instead are “eyeball”

type diagrams as in figure 5. Since these are, in a sense, “ in between” a disk and annulus,

we examine the effect of including this term at order N and order 1.

Consider the following forms of the vevs for the scalars. If the rank of the gauge group

is larger than the (broken) flavor group, the vev will look like:

φaI1 =

(
diag(x1, . . . , xf )

0

)
, φaI2 =

(
diag(y1, . . . , yNf−f )

0

)
. (4.5)

When this is multiplied out according to (4.3), we wind up with a term in the effective

potential which looks like

V ⊃ λ

F∑
i=1

x2
i y

2
i (4.6)

where F ≡ min(f,Nf − f). If we include this term in the O(1) potential, then we would

be looking for the optimal configuration of 0’s and 1’s along the diagonal. This would

add a term like λmin(p, q), where now p and q refer to the number of 1’s on the diagonals
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of (4.5). to the minimization problem we have discussed. Again, there is no minimum in

the interior of our domain in the p − q plane and the absolute minimum must live on the

boundary. On the components of the boundary where either p or q are zero, this term

disappears and the analysis is the same as it was without the term. If we are on the other

two boundaries, this term becomes something like λp or λq and will serve to simply shift

the mass by m̃→ m̃+λ/2. Evidently, in either case the analysis is identical to the inclusion

of a Chern-Simons term.

The more interesting case is when we include this term in the O(N) potential. In

which case, we must minimize

VO(N) ∼
f∑
i=1

y2
i (y

2
i − 1)2 +

Nf−f∑
i=1

x2
i (x

2
i − 1)2 + λ

min(f,Nf−f)∑
i=1

y2
i x

2
i . (4.7)

Again there are minimum at x,yi = 0, 1 however the eigenvalues are now correlated. For

generic λ the minimum of eq. (4.7) occur at (xi, yi) = (0, 1), (1, 0) and (0, 0). Thus, if we

choose the first p of the x’s to be 1, we must take the first p of the y’s to be 0. However,

if we choose the first p x’s to be 0, then we can choose the corresponding y’s to be 0 or

1. Without adding any mass deformations, we thus have many degenerate Grassmannians

which, generically, are of the form

Gr(p, f)×Gr(q,Nf − f) (4.8)

where Nf − f − p ≤ q ≤ Nf − f . If q does not fall within this range, we wind up with

single condensation. Also, if we give φ1 a positive mass deformation, it forces all the y’s to

0 and we wind up with degenerate vacua as in section 3. If we give them a negative mass

deformation, we force all the y’s to be 1. This then restricts the allowed range of q and we

do not have as many degenerate vacua.

One could further ask what happens if we include eq. (4.4) at O(1) in addition to

eq. (4.3) at O(N). This gets messy and so we will not perform a full analysis here, but

we do note that for generic values of λ the minimum again occurs on the boundary of the

p − q plane. However, there do exist regions of the m −M phase diagram where double

condensation at O(1) can occur for finely tuned values of γ. This is true with or without the

inclusion of the λ term — the λ term only serves to restrict the number of Grassmannians

one is allowed to traverse due to the correlation of the scalar vev eigenvalues. So again, we

could engineer phases on the scalar side of the theory where double condensation can occur

in the phase diagram. It is difficult to know if this symmetry breaking actually occurs for

QCD3 unless we can accurately calculate the anomalous dimensions of γ and λ. For now,

we only note that with the inclusion of these symmetry breaking potentials, it is possible

for both flavors of fermions to condense simultaneously.

5 Conclusion

In this work we studied the large N limit of QCD3 as a function of two distinct masses.

We find that there exists multiple Grassmannians separated by a series of first order phase

transitions in certain portions of the phase diagram. These are consistent with the phase
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diagrams at finite N laid out in [44, 46]. We find a plethora of interesting physics, including

multiple degenerate Grassmannians at special values on the mass, degenerate symmetric

and symmetry broken phases, and lack of double condensation for unmodified scalar po-

tentials. Additionally, we consider the effect of quartic interactions which may possibly be

generated along the RG flow and find that double condensation is possible for finely tuned

values of the interaction strength.

An interesting extension to this work is to find a more rigorous argument for the lack

of double condensation without the modified scalar potentials. Perhaps there is a deeper

reason for this other than the lack of solution for p and q on the interior of the domain D.

It does not seem to be forbidden by an f-theorem or anomaly matching type argument, at

least not that the author can work out. The generation of U(f)×U(Nf − f) terms in the

scalar potential may be indication that no such general argument exists. Still, it might be

worth investigating further. Additionally, it would be interesting to attempt to compute

the anomalous dimensions of these extra terms in the scalar potential to determine if they

even get generated along the RG flow. If not, this could be further indication of a more

fundamental reason for lack of double condensation.

The rich structure of this phase diagram lends itself nicely to the study of domain walls

between Grassmannians. For instance, fix the magnitude of the mass of f −1 of the flavors

and tuning the mass of the remaining fermion from m→ M , we encounter a domain wall

with extra light matter living on it. What is the nature of this matter? Does it couple

to the Grassmannians? These are questions which are beyond the scope of this work but

seem interesting enough to warrant further investigation.
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A Numerical evidence for the phase diagram

Here we present a subset of numerical results which corroborate the phase diagram dis-

cussed in the main text. For simplicity, we choose Nf = 6 and f = 4 and k = 0. We stress

that these choices do not impact the qualitative results, only the location and number of

phase transitions, as well as the level of the accompanying Chern-Simons TFT. To demon-

strate the lack of double condensation, we fix one mass and tune the other. This brings us

along the three trajectories shown in figure 6. Note that as we tune the mass, the minimum

value of the effective potential remains along the boundary of the table. This corresponds

to values of p or q which exist along the boundary of the domain D. The trajectories along

fixed, positive m̃ ≡ mN
4Λ∆ and M̃ ≡ MN

4Λ∆ are related to those trajectories along fixed negative

m̃ and M̃ by a time reversal transformation. This maps p → f − p and q → Nf − f − q,
which serves to invert the rows and reverse the columns of tables 1, 2 and 3
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q = 0 1 2

p = 0 -18 -32 -38

1 -14 -20 -18

2 -2 0 10

3 18 28 46

4 46 64 90

(a) M̃ = 3 with vacuum SU(N)1

q = 0 1 2

p = 0 -26 -32 -30

1 -22 -20 -10

2 -10 0 18

3 10 28 54

4 38 64 98

(b) M̃ = 7 with vacuum Gr(1, 2)⊗
SU(N)2

q = 0 1 2

p = 0 -34 -32 -22

1 -30 -20 -2

2 -18 0 26

3 2 28 62

4 30 64 106

(c) M̃ = 11 with vacuum SU(N)3

Table 1. Various values of the effective potential with m̃ = 12. This follows trajectory 1 as shown

in 6. The minimum is shown in red.

q = 0 1 2

p = 0 26 36 54

1 -4 14 40

2 -26 0 34

3 -40 -6 36

4 -46 -4 46

(a) m̃ = −5 with vacuum

SU(N)−1

q = 0 1 2

p = 0 10 20 38

1 -12 6 32

2 -26 0 34

3 -32 2 44

4 -30 12 62

(b) m̃ = −1 with vacuum

Gr(3, 4)⊗ SU(N)0

q = 0 1 2

p = 0 -6 4 22

1 -20 -2 24

2 -26 0 34

3 -24 10 52

4 -14 28 78

(c) m̃ = 3 with vacuum

Gr(2, 4)⊗ SU(N)1

q = 0 1 2

p = 0 -22 -12 6

1 -28 -10 16

2 -26 0 34

3 -16 18 60

4 2 44 94

(d) m̃ = 7 with vacuum

Gr(1, 4)⊗ SU(N)2

q = 0 1 2

p = 0 -38 -28 -10

1 -36 -18 8

2 -26 0 34

3 -8 26 68

4 18 60 110

(e) m̃ = 11 with vacuum SU(N)3

Table 2. Various values of the effective potential with M̃ = 15. This follows trajectory 2 as shown

in 6. The minimum is shown in red.
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q = 0 1 2

p = 0 -2 -16 -22

1 -6 -12 -10

2 -2 0 10

3 10 20 38

4 30 48 74

(a) M̃ = 3 with vacuum SU(N)1

q = 0 1 2

p = 0 -10 -16 -14

1 -14 -12 -2

2 -10 0 18

3 2 20 46

4 22 48 82

(b) M̃ = 7 with vacuum Gr(1, 2)⊗
SU(N)2

q = 0 1 2

p = 0 -18 -16 -6

1 -22 -12 6

2 -18 0 26

3 -6 20 54

4 14 48 90

(c) M̃ = 11 with vacuum

Gr(1, 4)⊗ SU(N)2

Table 3. Various values of the effective potential with m̃ = 11. This follows trajectory 3 as shown

in figure 6. The minimum is shown in red.

Figure 6. Phase diagram for Nf = 6, f = 4 with k = 0. Various effective potential at the indicated

points along trajectories 1,2 and 3 shown are given in tables 1, 2 and 3.
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[25] C. Córdova, P.-S. Hsin and N. Seiberg, Time-Reversal Symmetry, Anomalies, and Dualities

in (2+1)d, SciPost Phys. 5 (2018) 006 [arXiv:1712.08639] [INSPIRE].
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