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In this sense graphene can be considered as a natural testing ground for the analysis

of quantum field theory vacuum instabilities. We analyze the quantum transition from

subcritical to supercritical charge regimes in gapped graphene in a common framework

that preserves unitarity for any value of charge impurities. In the supercritical regime

it is possible to introduce boundary conditions which control the singular behavior at

the impurity. We show that for subcritical charges there are also non-trivial boundary

conditions which are similar to those that appear in QED for nuclei in the intermediate

regime 118 < Z < 137. We analyze the behavior of the energy levels associated to the

different boundary conditions. In particular, we point out the existence of new bound

states in the subcritical regime which include a negative energy bound state in the attractive

Coulomb regime. A remarkable property is the continuity of the energy spectral flow under

variation of the impurity charge even when jumping across the critical charge transition.

We also remark that the energy levels of hydrogenoid bound states at critical values of

charge impurities act as focal points of the spectral flow.
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1 Introduction

The stability of non-relativistic hydrogenoid atoms is one of the essential features that

contributed to consolidate the quantum theory. However in relativistic quantum mechanics

there is a critical value of the central point-like charge Ze from where on atom stability is

lost [1–4]. This is one of the surprising consequences of relativistic invariance in QED. The

phenomenon can be understood in a heuristic way as a falling to the center catastrophe.

The critical value in QED is reached when the spectrum of bound states of Dirac equation

becomes complex which occurs for Z > 137. In fact what happens in QED is that when one

of the bound states reaches the negative continuum spectrum the vacuum becomes unstable,

generating electron-positron pairs. The positron escapes to infinite and the electron screens

the central charge. The phenomenon has attracted attention from a fundamental viewpoint

because it suggests that could be experimentally tested by detecting an excess of positron

in the collisions of heavy nuclei [5, 6].

The instability of the atom for supercritical charges has also inspired a new mech-

anism of quark confinement in QCD [7–11]. The running of the strong coupling under

the renormalization group flow in QCD leads to large values of the effective charge of the
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quarks, which reaches very fast supercritical values in the infrared. The instability of the

vacuum generates a transition from the perturbative Coulomb regime at short distances to

a confinement regime in quarks interactions at large distances [12–15].

The discovery of graphene [16] opened a new window for the analysis of this phe-

nomenon [17]. In that case a similar phenomenon occurs in the presence of charged im-

purities, but with a much lower critical charge. In graphene the instability yields to a

screening of the charge impurity, and the phenomenon has been recently experimentally

observed [18]. Motivated by this new physical effect we review the main features of this

phenomenon and shed some light in some of its more paradoxical aspects. We address the

problem from a viewpoint where quantum unitarity is never lost no matter the strength of

charge impurities. In fact we show that the formal analytic continuation of the bounded en-

ergy levels of the Coulomb problem into complex values does not mean a loss of Hermiticity

of the corresponding effective Hamiltonian. It only shows the existence of non-trivial spec-

tral densities in the continuum spectrum which correspond to the existence of resonances

in scattering processes [18].

In order to clarify this issue we analyze in graphene the transition from the subcritical

regime to the supercritical one by increasing the values of impurity charges. The results

show a continuous behavior of the corresponding energy levels, although the spectral flow

is very peculiar: energy levels of hydrogenoid spectrum in the critical regime are focal

points of the spectra of subcritical and supercritical regimes. The peculiar behavior of the

supercritical regime is reflected by the increasing number of energy levels inside the energy

gap, but the continuity of the spectral flow is always preserved along the transitions be-

tween the different spectral regimes. Vacuum instability of the corresponding quantum field

theory is pointed out by the crossing of the E = −m energy level of the Dirac sea contin-

uum by some eingenvalues of the Dirac Hamiltonian which implies the appearance of pair

particle-antiparticle creation mechanism that leads to the screening of the charge impurity.

The analysis of the problem is based in a novel method of dealing with selfadjoint

extensions of the Dirac Hamiltonian. In that formalism all cases are approached in an

unified and global way that allows to follow the spectral flow of the different (weak-strong)

regimes in a smooth way. The analysis can be extended to any space dimension, e.g see [19]

for the three dimensional case.

In the section 2 we analyze the unitarity problem of the Dirac Hamiltonian in a

Coulomb background. The problem is solved by using the theory of self-adjoint extensions

which regularize the singularities associated to the Coulomb potential. The selfadjoint

Hamiltonians are classified in different regimes according to the value of impurity charges.

In section 3 we calculate the bound states energy spectrum of the Coulomb Hamiltonian

in the different regimes. A particular attention is paid to the special cases of hydrogen

and meta-hydrogen spectra (see [20, 21]), The spectral flow of the bound states spectrum

is analysed in section 4, where we also study the analytic properties of this flow in the dif-

ferent subcritical and critical regimes. Finally, the analysis of the results and conclusions

is carried out in section 5.
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2 Charged impurities in graphene

Graphene is a two dimensional layer of carbon atoms arranged on a honeycomb lattice of

hexagons. The magic of the hexagonal honeycomb structure of graphene leads to a spectral

structure in the first Brillouin zone with two contact points K and K ′ (Dirac points)

between electronic bands. In a neigbourghood of any of these two points1 the spectrum of

unbounded electrons is well described in terms of a massless Dirac Hamiltonian [22]

H = −ivF (σ1∂x + σ2∂y), (2.1)

where σi, i=1,2,3, are the Pauli matrices and vF is the velocity of the electrons at the

Fermi surface, which for suspended graphene is about 300 times smaller than the speed of

light in vacuum. This behavior also holds for graphene in a substrate of SiO2 with a slight

modification of vF .

Although natural graphene behaves like a semi-metal with no spectral gap, for elec-

tronic applications it is convenient to open a gap between the bands to reach a semicon-

ductor regime. This behavior can be attained by different methods, either by introducing

some disorder or by epitaxially grow graphene on a SiC substrate [23]. In that case the

effective Hamiltonian (2.11) becomes a massive Dirac Hamiltonian

H0 = −ivF (σ1∂1 + σ2∂2) +mσ3, (2.2)

where m the effective mass of the gap.

In the presence of a charged Coulomb impurity the effective electronic Hamiltonian

becomes

Hm = −i(σ1∂x + σ2∂y) +mσ3 −
α

r
, (2.3)

where

α =
e2∗
vF
, e2∗ =

2e2

ε+ 1
,

is the effective charge of the impurity, ε the effective dielectric constant of the graphene

sheet, r =
√
x2 + y2 and the electronic effective speed factor vF has been absorbed by

rescaling of coordinates x = x1/vF , y = x2/vF . The values of α depend on the substrate

where the graphene sheet is grown. For instance, α ≈ 2 for vacuum, α ' 1 for SiO2 and

α ' 0.35 for SiC.

The presence of a charge impurity with strong Coulomb interactions generate remark-

able effects in the spectroscopic and transport properties. The physics of the effective

theory is quite similar to that of relativistic atomic physics where the presence of instabil-

ities is rather well know [1–4]. In any case there is a renewed interest on the theoretical

and experimental studies on the Coulomb potential supercritical instabilities [24–39]. The

main difference with respect to the 3D analogue (hydrogen-like atoms) is that the value of

the supercritical charge is much smaller α = 1
2 � 137.

Although the single particle approach to the Coulomb problem constitutes the first step

in addressing nontrivial features of the full-fledged many-body interacting theory, most of

the phenomenology of graphene physics can be explained from this simplified approach.

1For simplicity we consider only the K Dirac point and ~ = 1.
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2.1 2D Dirac Hamiltonian in a Coulomb background

The presence of a singularity at the origin of the Coulomb potential requires the use

of some ultraviolet renormalization mechanism. For such a reason it is convenient to

introduce an ultraviolet cut-off r< > 0 around that singular point r = 0 and later on take

the appropriate limit to extend the Hamiltonian to the whole space R2\{0} [1, 40, 41].

The only physical requirement is unitarity of time evolution, which is equivalent to the

self-adjointness of the Hamiltonian defined in such limit. If we exclude from the physical

space a disk D(r<) = {x ∈ R2; ‖ x ‖< r<} of radius r< around the origin, the most

general boundary conditions that preserve selfaldjointness of the Hamiltonian (2.3) are

given by [42–44]

(1 + n/)ψ(r<) = U(r<)σ3(1− n/)ψ(r<), (2.4)

in terms of a unitary operator U(r<) defined on the boundary values of spinors ψ(r<) ∈
L2(S1

r< ,C
2), where n denotes the normal vector to the circumference S1

r< = {x ∈ R2; ‖x‖=
r<}. This fact derives from the general theory of selfadjoint extensions developed by von

Neumann and Krein [44]. Roughly speaking, up to technicalities, the boundary conditions

must cancel the boundary term ∫
S1
r<

ψ†1 n/ψ2 (2.5)

obtained by integrating by parts the matrix element

〈ψ1|Hm|ψ2〉 − 〈ψ2|Hm|ψ1〉,

and the boundary conditions (2.4) define the maximal linear subspaces of the domain of

H†m where the boundary term (2.5) vanishes.

Using polar coordinates r and θ a general spinor ψ can be expanded as

ψ(r, φ) =

∞∑
l=−∞

(Fl(r)Φ
+
l (φ) +Gl(r)Φ

−
l (φ)),

in terms of orthogonal eigenfunctions

Φ+
l (φ) =

(
ei l φ

0

)
and Φ−l (φ) =

(
0

i ei (l+1)φ

)
,

of the total angular momentum Jz = Lz + Sz = −i ∂∂φ + 1
2σ3, with semi-integer eigenvalues

j = l+ 1/2. The space of spinors can be then decomposed as orthogonal sum of subspaces

with fixed total angular momentum j ∈ Z + 1
2 :

ψ =
∑
j

ψj , (2.6)

where ψj is a spinor of the form

ψj(r, φ) =

(
F j(r)ei (j−1/2)φ

iGj(r)ei (j+1/2)φ

)
, (2.7)

which belongs to the subspace of total angular momentum j,
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In order to preserve the SO(2) rotation symmetry in the regularized theory, the unitary

operator U(r<) fixing the boundary condition has to be diagonal in the angular momentum

decomposition (2.6),

U(r<) =


e2i βj−1

e2i βj

e2i βj+1

 (2.8)

i.e. on each subspace of fixed angular momentum j the unitary operator U(r<) reduces to

a single phase e2i β
j
. Thus, the boundary condition (2.4) becomes

(1 + n/)ψj(r<) = e2i β
j(r<)σ3(1− n/)ψj(r<). (2.9)

More explicitly,

e2i β
j(r<) =

F j(r<) + iGj(r<)

F j(r<)− iGj(r<)
, (2.10)

where F (r<) and G(r<) are real functions.

The removal of the UV regularization requires to take the limit r< → 0 which implies

the choice of an appropriate series of boundary conditions U(r<). The optimal choice of

boundary conditions U(r<) that guarantees the convergence of the UV limit is given by

the flow driven by asymptotic zero modes. Near the impurites asymptotic zero modes are

solutions of the equation [
−i(σ1∂x + σ2∂y)−

α

r

]
ψ0 = 0. (2.11)

They will play a fundamental role in the renomalization of the singularity introduced by

the impurities as they do in the three-dimensional case of hydrogenoid atoms [19, 45, 46].

The key observation is that in the vicinity of the inpurity 0 < r � r< any solutions of the

Coulomb-Dirac equation Hψ = Eψ behaves as an asymptotic zero mode. Thus, all the

spinors in the domain of the Hamiltonian must behave near the singularity as zero modes

of (2.11).

For any choice of boundary condition βj0 at a given cut-off r0 there is a unique asymp-

totic zero mode (F j0 , G
j
0) satisfying the equation

e2i β
j
0 =

F j0 (r0) + iGj0(r0)

F j0 (r0)− iGj0(r0)
. (2.12)

If the two components of the asymptotic zero mode (F j0 , G
j
0) are L2 normalizable in a

neigbourghood of the singularity, i.e. F j0 , G
j
0 ∈ L2(D(r<),R), then the flow of boundary

conditions βjr< (r< ∈ (0, r0)) given by

e2i β
j(r<) =

F j0 (r<) + iGj0(r<)

F j0 (r<)− iGj0(r<)
, (2.13)

– 5 –
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defines in the limit r< → 0 a selfadjoint extension of the Dirac Hamiltonian (2.3). The

domain of the Hamiltonian is expanded by the spinors (F j0 , G
j
0) which satisfy

lim
r→0

(
F j(r)Gj0(r)−G

j(r)F j0 (r)
)

= 0. (2.14)

This formula can easily be derived by combining equations (2.13) and (2.10).2

In other terms, once the cut-off r0 is fixed, we can associate to each boundary condition

parametrized by βj0 a unique asymptotic zero mode satisfying (2.12). The other way around,

given an asymptotic zero mode, the relation (2.13) defines for each r< ∈ (0, r0) a boundary

phase βjr< in a unique way.

For some values of the impurity charge not all the boundary conditions βj0 give rise

to normalizable asymptotic zero modes. Such boundary conditions do not lead by the

procedure described above to a well defined selfadjoint Dirac Hamiltonian. However, as we

shall see later on, it is always possible to find an alternative boundary condition β̂j0 for the

same value of impurity charge whose zero mode is normalizable and leads to a well defined

selfadjoint Dirac Hamiltonian.3

By this method we have replaced the convergent flow of UV cut-off boundary condi-

tions just by the choice of a simple asymptotic boundary condition (2.14). The boundary

condition flow is then defined in this way: the initial cut-off phase βj0 defines an asymptotic

zero mode (F j0 , G
j
0), and the boundary phases βj(r<) run with the cut-off while keeping

fixed the zero mode, converging to a well defined boundary condition when the cut-off

is removed.

In summary, the boundary condition of the Dirac Hamiltonian in a Coulomb back-

ground when the two components of asymptotic zero modes are L2 normalizable is defined

by the choice of one of these two equivalent boundary data: either a unitary matrix U(r0)

of the form (2.8) acting on the functions of the boundary of the cut-off disk of radius r0 or

a normalizable asymptotic zero mode (F j0 , G
j
0). The connection between the two choices

is given by equation (2.4). Moreover, any boundary condition that leads to selfadjoint

extension of the Hamiltonian (2.13) is obtained by this method.

Thus, the most general boundary conditions in such regimes depend on a UV scale r0
and a dimensionless angular parameter βj [42–44]. In those cases, the space of boundary

conditions has the topology of an infinity cylinder S1 × R ≡ R2\{0} for any value of the

impurity charge α. The physical meaning of the boundary conditions can be associated to

the insertion of a repulsive δ function potencial with r0 strength. This potential is enough

to stabilize the falling to the center trend of strong attractive Coulomb potentials. The

dimensionful nature of r0 becomes evident from this physical interpretation. In the case

where there is no freedom in the choice of boundary conditions is because the Coulomb po-

tential is not strong enough to attract to the electrons to the center which make the system

2The boundary conditions are independent of the mass m of the electrons. In fact they also hold for

massless particles. Notice that m does not appear in the asymptotic equation (2.11) which defines the

asymptotic zero-modes.
3In any case one can define alternative prescriptions of the boundary conditions flows which starting from

a non-normalizable boundary condition converge to the trajectories of normalizable boundary conditions.

However, these prescriptions are not canonical and will not be consider here.
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insensitive to the presence of a δ function perturbation. The dependence of the boundary

conditions on a dimensionful parameter r0 has very relevant physical implications. In the

massless limit it implies the breaking of conformal invariance due to the choice of bound-

ary conditions. This phenomenon which is also present in QCD provides in that case the

physical argument for the opening a mass gap and an anomalous breaking of conformal

symmetry [12–15].

2.2 Boundary conditions for different regimes

The subspace of asymptotic zero modes (F j0 , G
j
0) satisfying the boundary condition (2.12)

for a given angular momentum j ∈ Z + 1
2 depends on the value of the charge α of the

impurity, in a similar way as in the three-dimensional analogue case [19, 45, 46]

To find the asymptotic zero modes of the Hamiltonian (2.3) we have to look only at

leading terms asymptotic expansion around the impurity. Using the expansion (2.7) is easy

to show that they satisfy the following coupled equations

dF j0
dr
− j − 1/2

r
F j0 +

α

r
Gj0 = 0, (2.15)

dGj0
dr

+
j + 1/2

r
Gj0 −

α

r
F j0 = 0. (2.16)

Searching for solutions of the form F j0 (r) = rs and Gj0(r) = C rs we find two independent

solutions

s± = −1/2± ν, C± = (j ∓ ν)/α if α2 6= j2, (2.17)

where ν =
√
j2 − α2. For α2 = j2 the two solutions degenerate, but in this case the

logarithmic corrections give rise also to two independent solutions of the form

F j0 (r) = r−1/2 Gj0(r) =
j

|j|
r−1/2 (2.18)

F j0 (r) = r−1/2 log(Λ r) Gj0(r) =
j

|j|
r−1/2

[
log(Λ r)− 1

j

]
, (2.19)

where Λ = 1/r0.

Notice that the value j2 = α2 is critical: when α2 < j2 the parameter ν is real, while

for α2 > j2 it is purely imaginary. Thus, depending on the strength of the charge impurity

there are three different regimes where to impose the boundary conditions.

a) Regular regime: α2 ≤ j2 − 1
4
. This regime is never reached in the lowest angular

momentum states j = ±1/2.

In this case ν is a real parameter and one of the two asymptotic zero modes solutions is

not normalizable in a neigbourghood of the origen D(r0). Indeed, the asymptotic zero mode

ψ−j (r, φ) =

(
rs− ei (j−1/2)φ

iC−r
s− ei (j+1/2)φ

)
/∈ L2(D(r0),C2), (2.20)

– 7 –
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is not square integrable in D(r0). Thus, we are left with only one asymptotic behaviour

given by the normalizable zero mode

ψ+
j (r, φ) =

(
rs+ ei (j−1/2)φ

iC+r
s+ ei (j+1/2)φ

)
∈ L2(D(r0),C2), (2.21)

which strongly constrains the boundary condition (2.10), In particular, the parameter βj0
is not free, it is completely fixed by the boundary condition (2.12)

βj0 =
1

2
arcsin

∣∣∣∣αj
∣∣∣∣ ,

independently of r0. This means that there is a unique self adjoint extension of the Hamil-

tonian (2.3). The boundary condition (2.14) becomes:

lim
r→0

[
(−j + ν)F j(r) + αGj(r)

]
= 0. (2.22)

b) Subcritical regime: j2 − 1
4
< α2 < j2. In this regime both solutions are nor-

malizable, thus the most general asymptotic zero mode is a linear combination of the two

solutions (2.20) (2.21). The choice of βj0 ∈ [0, π) fixes that linear combination in a unique

way, up to a global constant.

F j0 (r) = r−1/2
(

cos θ (Λ r)ν − sin θ (Λ r)−ν
)

Gj0(r) = r−1/2
(

cos θ C+(Λ r)ν − sin θ C−(Λ r)−ν
)
, (2.23)

where the parameter θ ∈ [0, π) of the linear combination is given according to the boundary

condition (2.12) by

tan θ =
(j − ν) cosβj0 − α sinβj0
(j + ν) cosβj0 − α sinβj0

(Λ r0)
2ν .

Thus, the boundary condition (2.14) becomes:

lim
r→0

[(
j(tan θ− (Λ r)2ν) + ν(tan θ+ (Λ r)2ν)

)
F j(r)−α(tan θ− (Λ r)2ν)Gj(r)

]
= 0 (2.24)

c) Critical regime: α2 = j2. In this case the most general asymptotic zero mode is

F j0 (r) = r−1/2
(

cos θ + sin θ log(Λ r)
)

Gj0(r) = r−1/2
j

|j|

(
cos θ + sin θ

(
log(Λ r)− 1

j

))
, (2.25)

where the parameter θ ∈ [0, π) can be related to the phase βj0 ∈ [0, π) of the boundary

condition (2.12) imposed at S1
r0

tan θ =
j − |j| tanβj0

1− log(Λ r)(j − |j| tanβj0)
.

The corresponding boundary condition (2.14) of the Dirac operator becomes:

lim
r→0

[
|j|Gj(r)

(
1 + log(Λr) tan θ

)
− F j(r)

(
j +

[
− 1 + j log(Λr)

]
tan θ

)]
= 0. (2.26)

– 8 –
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d) Supercritical regime: α2 > j2. In this case the value of ν becomes imaginary and

both asymptotic zero modes are normalizable. A general zero mode solution is of the form

F j0 (r) = r−1/2
(
e−i θ (Λ r)ν + ei θ (Λ r)−ν

)
Gj0(r) = r−1/2

(
e−i θ C+(Λ r)ν + ei θ C−(Λ r)−ν

)
, (2.27)

where the parameter θ ∈ [0, π) is fixed by the phase βj0 ∈ [0, π) of the boundary condi-

tion (2.12) imposed at S1
r0

e2θi =
(ν − j) cosβj0 + α sinβj0
(ν + j) cosβj0 − α sinβj0

(Λr0)
2ν .

The asymptotic boundary condition (2.14) in this case reads

lim
r→0

[(
ν(e2iθ − (Λ r)2ν) + j(e2iθ + (Λ r)2ν)

)
F j(r)− α (e2iθ + (Λ r)2ν)Gj(r)

]
= 0. (2.28)

Notice that in any of the above regimes the Hamiltonian (2.3) is a selfadjoint operator.

From now on we will parametrize the boundary conditions by θ ∈ (0, π) and Λ keeping

in mind its relations with βj0 and r0.

3 Bound states and energy levels

Once we have shown that the Dirac Hamiltonian (2.3) is a selfadjoint operator it is possible

to analyze its spectrum by finding the energy levels

Hψ = Eψ. (3.1)

The eigenvalue problem can be reduced, by using the ansatz (2.7) for each subspace of

fixed angular momentum j, to solve the pair of coupled differential equations

dF j

dr
− j − 1/2

r
F j +

(
E +m+

α

r

)
Gj = 0, (3.2)

dGj

dr
+
j + 1/2

r
Gj −

(
E −m+

α

r

)
F j = 0. (3.3)

Let us now introduce two radial functions a(r) and b(r) defined by

F j(r) =

√
m+ E

2 r

(
a(r)− b(r)

)
, Gj(r) =

√
m− E
2 r

(
a(r) + b(r)

)
, , (3.4)

and use the notation ε =
√
m2 − E2, x = 2ε r. The coupled equations satisfied by a(x)

and b(x) become

xa′ (x) +

(
x

2
− 1

2
− αE

ε

)
a (x) +

(αm
ε

+ j
)
b (x) = 0, (3.5)

xb′ (x)−
(
x

2
+

1

2
− αE

ε

)
b (x) +

(
− αm

ε
+ j
)
a(x) = 0, (3.6)

– 9 –
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which can be easily decoupled. Indeed it is obvious to realize that

b(x) =
(2αE + ε− ε x)a(x)− 2ε x a′(x))

2(αm+ jε)
(3.7)

and then

a′′ (x) +

(
−1

4
+

1
2 + αEε
x

+
1
4 − j

2 + α2

x2

)
a(x) = 0. (3.8)

The general solution of (3.8) can be expressed in terms of Whittaker functions W and

M [47, 48]

a(x) = AW (1/2 + αE/ε, ν, x) +BM(1/2 + αE/ε, ν, x), (3.9)

where A and B are constants. In the same way we have that

b(x) = (j −αm/ε)AW (−1/2 +αE/ε, ν, x) +
(αm− jε
αE + νε

)
BM(−1/2 +αE/ε, ν, x). (3.10)

Thus, the general solution of (3.2) and (3.3) is given by

F j(r) =
√
m+E
2 r

[
A
(
W (1/2 + αE/ε, ν, 2εr)− (j − αm/ε)W (−1/2 + αE/ε, ν, 2εr)

)
+B

(
M(1/2 + αE/ε, ν, 2εr)−

(αm− jε
αE + νε

)
M(−1/2 + αE/ε, ν, 2εr)

)]
, (3.11)

Gj(r) =
√
m−E
2 r

[
A
(
W (1/2 + αE/ε, ν, 2εr) + (j − αm/ε)W (−1/2 + αE/ε, ν, 2εr)

)
+B

(
M(1/2 + αE/ε, ν, 2εr) +

(αm− jε
αE + νε

)
M(−1/2 + αE/ε, ν, 2εr)

)]
. (3.12)

The asymptotic behavior of these solutions is strongly dependent on the regime of

charge impurities.

If α2 6= j2 the asymptotic behavior can be derived from the behavior of the Whittaker

functions W and M for r � 1,

M

(
±1

2
+ αE/ε, ν, x

)
∼= x1/2+ν (3.13)

W

(
±1

2
+ αE/ε, ν, x

)
∼= x1/2

(
xν Γ [2 ν]

Γ
[
1
2 ∓

1
2 − ν − αE/ε

] +
x−ν Γ [2 ν]

Γ
[
1
2 ∓

1
2 + ν − αE/ε

]) , (3.14)

whereas for α2 = j2:

M (±1/2 + αE/ε, 0, x) ∼= x1/2 (3.15)

W (±1/2 + αE/ε, 0, x) ∼= −
x1/2

Γ
[
1
2 ∓

1
2 − jE/ε

] (2γ + ψ

(
1

2
∓ 1

2
− jE/ε

)
+ log x

)
, (3.16)

where ψ(x) = Γ′(x)/Γ(x) is the digamma function and γ the Euler’s constant.

The spectrum of energy levels is also strongly dependent on the regime of charges. Let

us focus on the discrete energy spectrum which correspond to bound states.
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3.1 Regular regime α2 ≤ j2 − 1
4

The boundary conditions (2.22) can only be satisfied if the constant A of the general

solution (3.12) vanishes. On the other hand bound state spinors ψ have to be L2(R3,C2)-

normalizable which implies that it must to decay at infinity. Thus, the asymptotic be-

haviour at r � 1 of (3.2) and (3.3) must be of the form
(
F j(r) ∼= e−εr,Gj(r) ∼= e−εr

)
.

The implies that the spinors should look like

F j(r) = r−1/2+ν e−εrf(r), Gj(r) = r−1/2+ν e−εrg(r),

where f(r) and g(r) are two radial functions that are polynomially bounded at infinity.

This requirement is satisfied when the expressions

P1(r) = r−1/2−νeεrM(1/2 + αE/ε, ν, 2εr),

P2(r) = r−1/2−νeεrM(−1/2 + αE/ε, ν, 2εr)

reduce to polynomials, or when only P1(x) is a polynomial and αm = jε. Expanding P1

and P2 it is possible to show that this happens when −αE/ε+ ν = −n, with n = 0, 1, 2, ..

if j > 0 and n = 1, 2, .. if j < 0. More explicitly, the spectrum of bound states is given by

EHn =
m√

1 + α2

(n+
√
j2−α2)2

, n =

{
0, 1, 2, .. for j > 0

1, 2, 3, .. for j < 0
. (3.17)

This is the well known hydrogenoid atom spectrum of bound states.

For α2 > j2 − 1
4 the boundary conditions (2.24) and (2.26) for θ 6= 0 and θ 6= π

2 (we

will analyze these two exceptional cases later separately), and (2.28) (for any value of θ)

are satisfied only if the parameter B of the general solution (3.12) vanishes B = 0. In

that case only terms involving the Whittaker function W survive, which implies that they

automatically decays exponentially at infinity.

In this sense the exponential decay e−εr of bound states means that they are localized

around the impurity charge and thus behave as edge states in topological insulators [42, 43].

Notice that in the massless limit the exponential decay e−εr becomes a pure phase

factor e−iEr and the corresponding solution is not localized and in fact belongs to the

continuum energy spectrum.

3.2 Subcritical regime j2 − 1
4
< α2 < j2 with θ 6= 0 and θ 6= π

2

In that case the boundary conditions (2.24) are satisfied only if(
α(−E +m) + (−j + ν)ε

)(
α(E −m) + (j + ν)ε

) Γ[2 ν]Γ[1− ν − αE/ε]
Γ[−2 ν]Γ[1 + ν − αE/ε]

=
( Λ

2 ε

)−2 ν
tan θ. (3.18)

The solution of (3.18) gives the spectrum EIIn (θ) of bound states in that case. However, in

the subcritical regime we have two special cases: θ = 0 and θ = π
2 where the asymptotic

zero modes that defines the boundary conditions reduce to one of the two possible different

asymptotic behaviors near the origin. Such cases require a special analysis.
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3.3 Subcritical regime j2 − 1
4
< α2 < j2 with θ = 0 (hydrogenoid atom)

The boundary conditions reduce in this case to those of the regular regime 3.1, and then

the spectrum is the same as in (3.17), i.e the bound states spectrum is the same as the

hydrogenoid atom EHn .

3.4 Subcritical regime j2− 1
4
< α2 < j2 with θ = π

2
(meta-hydrogenoid atom)

If θ = π
2 the boundary conditions are defined by the asymptotic zero modes characterized

by the exponent s = −1
2 − ν and become

lim
r→0

(
− (j + ν)F j(r) + αGj(r)

)
= 0. (3.19)

These boundary conditions can be satisfied by setting A = 0 in the general solutions and

making the replacement ν → −ν. Using the same techniques as in the regular case, we get

the analytic spectrum of bound states
Eh0 = − m√

1+ α2

j2−α2

Ehn = m√
1+ α2

(n−
√

(j2−α2)2

for j > 0, (3.20)

and
Ehn = m√

1+ α2

(n−
√

(j2−α2)2
for j < 0, (3.21)

with n = 1, 2, 3, . . .. The above bound states are known meta-hydrogenoid states.4 The

meta-hydrogenoid bounded spectrum is very similar to the hydrogenoid spectrum. The

only difference is a sign in the second radicand.

3.5 Critical regime α2 = j2, for θ 6= 0 and θ 6= π

In this case the spectral condition derived from the boundary conditions (2.26) is

j − |j| (mε − Eε)
(j−|j| (mε−Eε))(2γ−log Λε/2)+(j−|j|mε)ψ(1−|j|Eε) + |j|Eεψ(−|j|Eε)

= tan θ, (3.22)

where Eε = E/ε, mε = m/ε and Λε = Λ/ε. The solutions of equation (3.22) give an infinite

sequence EIIIn (θ) of discrete energy levels.

3.6 Critical regime α2 = j2 with θ = 0 (or θ = π)

In the critical regime for boundary conditions with θ = 0 the hydrogenoid and meta-

hydrogenoid spectra do coincide. They are defined by (3.17) with the only difference that

E0 = 0 for α2 = j2 and j > 0.

4The meta-hydrogenoid states first appeared in the literature as hydrino states [20, 21]. However, the

misuse of its properties for claiming magic generation of energy requires the introduction of new name.

Notice that the hydrogen atom Z = 1, D = 3 is in a subcritical regime where the Hamiltionian is essentially

selfadjoint and there is a canonical boundary condition giving rise to the well know spectrum. There is no

meta-hydrogen spectrum. Otherwise it will open the interesting window to explain the puzzle of proton

radius in an elegant way in terms of more exotic boundary conditions.
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3.7 Supercritical regime α2 > j2

The hydrogenoid and meta-hydrogenoid spectra are not well defined for α2 > j2, the spec-

tral formulae (3.17), (3.20) and (3.21) become complex, but as we have already remarked

the spectrum is real and contains an infinite set of discrete energy levels EIVn (θ) n ∈ Z
given by the spectral condition(

α(−E +m) + (−j + ν)ε
)(

α(E −m) + (j + ν)ε
) Γ[2 ν]Γ[1− ν − αE/ε]

Γ[−2 ν]Γ[1 + ν − αE/ε]
= −e2 i θ

( Λ

2 ε

)−2 ν
. (3.23)

4 Spectral flows of bound states

The problem which inspired Gribov’s approach to confinement is the fact that the energies

of the bound states given by EHn become complex for α2 > j2. To better understand that

mechanism let us analyse the flow of the bound state spectrum by continuously increasing

the charge α of the impurity or varying the boundary conditions.

4.1 Spectral flow and boundary conditions

It is interesting to analyze the flow of the spectrum as we change the boundary condition

parameter θ. The continuous flow of the spectrum defined by the change of the parameter

θ characterizing the boundary conditions in the subcritical regime j2 − 1/4 < α2 < j2 is

displayed in figure 1. There we plot for j = 3
2 the θ dependence of the lowest energy bound

states in this regime.

Notice that in the limits θ = 0, θ = π/2, θ = π we recover the ydrogenoid and meta-

hydrogenoid spectrum, i.e.

lim
θ→0

EIIn (θ) = EHn , (4.1)

lim
θ→π

2

EIIn (θ) = Ehn (4.2)

lim
θ→π

EIIn (θ) = EHn . (4.3)

The continuity of the flow should be obvious from the fact that the boundary condi-

tions (2.24) reduce to the boundary conditions of the hydrogenoid and meta-hydrogenoid

spectra in these limits. What is more surprising is the fact that the spectral flow is not

periodic, i.e. there is an spectral asymmetry. The spectrum is periodic, i.e. it is the same

at θ and θ + π, but the flow shifts the energy levels by one unit in each cycle from θ = 0

to θ = π. In general, for fixed angular momentum and charge we have

EIIn (θ + kπ) = EIIn+k(θ), (4.4)

for any integer k ∈ Z. The behaviour of the spectral flow recalls the pumping mechanism

exhibited by edge states in topological insulators [49, 50].

An interesting property of the spectral flow is its monotonic behavior, i.e. EII(θ) <

EII(θ′) if θ < θ′. In particular this implies the standard sandwich inequalities between the

hydrogenoid and meta-hydrogenoid energy levels

−m < Eh0 < EH0 < Eh1 < EH1 < · · · < Ehn−1 < EHn−1 < Ehn < EHn < · · · < m. (4.5)

– 13 –



J
H
E
P
0
8
(
2
0
2
0
)
1
4
4

0
π

4

π

2

3π

4
π

θ

-0.5

0.0

0.5

E/m

Figure 1. θ dependence of the energy E/m of the lowest bound states (n = 0, 1, 2, 3) with angular

momentum j = 3/2 for α = 1.45 in the subcritical regime 2 < α2 < 9
4 (Λ = m/10). The dots

correspond to the hydrogenoid and meta-hydrogenoid energy levels at θ = 0, θ = π
2 and θ = π.

Notice the π-periodicity of the spectrum.

Notice that there is a bound state emerging from the continuum E ≤ −m at a value of

θ close to θ = 0. The behaviour of the flow is the same for positive j > 0 and negative

angular momentum j < 0, except for the absence of zero levels (n=0) for the hydrogenoid

and meta-hydrogenoid energy levels for j < 0. Thus the sandwich inequalities in the

negative case are

−m < Eh1 < EH1 < · · · < Ehn−1 < EHn−1 < Ehn < EHn < · · · < m. (4.6)

Another interesting feature of the subcritical regime is that from (3.17) and (3.21) it

follows that for n > 0 the spectra EHn and Ehn with j > 0 and j < 0 are degenerate.5 The

boundary condition (2.24) for θ 6= kπ and θ 6= 2k+1
2 breaks this degeneracy and creates a

gap between the energies corresponding to j > 0 and j < 0.

The situation is described in figure 2 for Zα = 1.45. For θ = 0 we have the energy

corresponding to n = 1 of the hydrogen spectrum EH1 which is degenerate for j = ±3
2 . As

we increase the parameter θ a gap appears between the states j = ±3
2 . The energy of the

state j = −3
2 becomes lower than the one corresponding to j = 3

2 . The gap disappears

again for θ = π
2 , where we have the again a degenerate energy level corresponding to n = 2

of the meta-hydrogenoid spectrum Eh2 . If we increase the boundary condition parameter

5Notice that the same behavior appears in the regular regime (see eq. (3.17)).
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Figure 2. Gap between the energies corresponding to j = 3/2 (blue) and j = −3/2 (red) for

α = 1.45 and Λ = m/10 in the subcritical regime. The flow interpolates from θ = 0 to θ = π

between the hydrogen levels n = 1 and n = 2 and reaches the n = 2 energy level of meta-hydrogen

at θ = π/2.

θ the gap reappears again. This time with the energy corresponding to j = 3
2 lower than

the one corresponding to j = −3
2 . Finally, for θ = π the two energy levels become again

degenerate at the level n = 2 of EH2 .

The origin of this phenomenon resides in the behavior of the theory under time reversal

transformations

τψ(x, y, t) = iσ2ψ
∗(x, y,−t). (4.7)

The time reversal transformation (4.7) does not leave invariant the Hamiltonian (2.3)6

τHmτ = H−m, (4.8)

and the angular momentum operator J3 = x∂y − y∂x + 1
2σ3

τJ3τ = −J3. (4.9)

Some boundary conditions are also not invariant under time reversal tranformation (4.7).

In fact the only ones that are time reversal invariant correspond to θ = 0 and θ = π
2 in

the subcritical regime and θ = 0 in the critical regime. None of the boundary conditions

of the supercritical regime are time reversal imvariant. This behavior is reminiscent of

6The time reversal symmetry is preserved in the Kane-Mele model [52] of topological insulators which is

made of two gapped graphene sheets with opposite masses and without impurities (α = 0) H = Hm⊕H−m.

Actually, many of the interesting features of topological insulators are derived from this invariance.
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what happens for scalar fields with boundary conditions which mix normal derivatives and

boundary values of the fields [51]. Now, for all boundary conditions where τ is preserved

the spectra of Hm and H−m are identical, which implies that for both cases the energy levels

with j > 0 and −j < 0 are identical. This degeneracy is similar to that of the Kramers

effect in topological insulators, except that in this case as τ 2 = I it is not compulsory that

all energy levels must be degenerate as in fact it occurs in the case j = 0 where there is

no degeneracy.

In summary the breaking of the ±j degeneracy for values of θ 6= 0, π/2 is a consequence

of the breaking of time reversal symmetry by boundary conditions. This remark have

implications for the Kane-Mele model where due to presence of charged impurities the

time reversal symmetry can be broken by the same mechanism.

In the critical regime, α2 = j2, as we have anticipated, the hydrogenoid and meta-

hydrogenoid spectra do coincide with EIIIn (0) = EIIIn (π) and are given by (3.17) with

the only difference that for α2 = j2 and j > 0, E0 = 0. Once more this fact we can be

understood in a simpler way, just by looking at the corresponding boundary conditions.

Analyzing how the spectrum EIIIn (θ) changes with θ, we find that the correspondence in

this case is

lim
θ→0

EIIIn (θ) = EHn , (4.10)

lim
θ→π

EIIIn (θ) = Ehn, (4.11)

for j > 0. The spectrum is also periodic in this case, i.e. it is the same at θ and θ+ π, but

the flow shifts the energy levels by one unit each time that we increase θ by π. In general,

for fixed angular momentum and charge we have

EIIIn (θ + kπ) = EIIIn+k(θ), (4.12)

for any integer k ∈ Z. But even in that case the spectral flow has a monotonic character,

i.e. EIII(θ) < EIII(θ′) if θ < θ′. The inequalities between the hydrogenoid and meta-

hydrogenoid energy levels (4.6) become the standard inequality of the hydrogenoid levels

EHn < EH
n+1 in this case. The behaviour of the spectral flow recalls again the pumping

mechanism of edge states in topological insulators [49, 50].

The degeneracy between the bound energy levels with total angular momentum j and

−j (for n > 0) at θ = 0 and θ = π is again broken for intermediate values of θ ∈ (0, π)

as shown in figure 3. The level with negative angular momentum −|j| has always lower

energy than that of the corresponding level with positive angular momentum |j|. Once

more the origin this phenomenon is the breaking of time reversal (or CP) invariance by

the boundary conditions for θ 6= 0, π. The degeneracies at θ = 0, π appear by analogous

reasons that Kramers effect in topological insulators.

Let us now analyze the supercritical charge regime with α2 > j2. As anticipated, in

this regime, the levels EHn and Ehn do not belong to the spectrum of the Hamiltonian.

In this case for any value of θ the energy spectrum EIVn (θ) contains an infinity number

of bound states that accumulate near the mass gap continuum energy level E = m. In
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Figure 3. Gap between the energies corresponding to j = 3/2 (blue) and j = −3/2 (red) for

α = 3/2 and Λ = m/10 in the critical regime. The flow interpolates from θ = 0 to θ = pi between

the hydrogenoid levels n = 1 and n = 2.

Figure 4 we plot the flow of some eigenvalues of the spectrum EIVn (θ) when parameter θ

flows from 0 to π. Notice that along that flow one eigenvalue pops up from the Dirac sea

continuum E < −m at a particular value of the parameter θ.

This is the only footprint of the instabilities pointed out in the supercritical regime,

where the analytic expressions of hydrogenoid and meta-hydrogenoid energy levels become

formally complex. Notice that the same phenomenon occurs in the subcritical regime

α2 < j2. The appearance of these instabilities is what inspired the Gribov mechanism of

quark confinement in QCD [10, 11] (see also [12–15]).

4.2 Spectral flow and impurity charges

In order to analyze the transition from the subcritical regime to the supercritical regime

we fix a suitable value of the parameter θ for EIIn (θ), EIIIn (θ) and EIVn (θ). By increasing

the value of α we can follow the flow of each energy level from the subcritical regime to the

critical regime in an adiabatic continuous way. Notice, however, that for each 0 < θ < π
4

there is a bound state in the subcritical regime that merges into the continuum for a

special value of α < j, and conversely, there is an infinity of bound states emerging from

the continuum spectrum for α & |j| in the supercritical regime for any θ. In any case we

have the following relations

lim
α→|j|−

EIIn (θ) = EIIIn (0) = lim
α→|j|+

EIVn (θ′); (4.13)
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Figure 4. Spectral flow for α = 1.55, Λ = m/10 and j = 3/2 in the supercritical regime. The

lowest bound state energy level emerges from the negative continuum spectrum for a value of θ

close to θ = π. Notice the π-periodicity of the spectrum.

whenever θ 6= π
4 and θ′ 6= π

2 . This means that, for any fixed values of θ (θ 6= π
4 and θ′ 6= π

2 ),

EIIn (θ) and EIVn (θ′), converge to EIIIn (0) as α → αc = |j|, pointing out the continuity of

the flow of energy levels in the transition from the subcritical regime to the critical one

(See Figure 5). In the exceptional cases we also have continuity in the path crossing the

transition border

lim
α→|j|−

EIIn

(π
4

)
= EIIIn

(π
2

)
= lim

α→|j|+
EIVn

(π
2

)
, (4.14)

provided we choose the suitable values for the parameter θ of the boundary condition in

the different regimes.

The transition of the spectral flow from the subcritical to the supercritical regime is

illustrated in figure 5. The flow shows the dependence of bound states on the impurity

charge. They are also highly dependent on the boundary conditions of the different self

adjoint extensions. For simplicity we consider the case of angular momentum j = 3
2

and only a window of the infinite tower of bound states which includes the spectral flow

of the lowest bound states of regular and subcritical regimes for different values of α.

The flow of higher energy levels is in fact very similar. In the region 0 < α <
√

2, the

operator is essentially self adjoint and the spectrum is that of an hydrogenoid atom (black

curves in figure 5) that begin at E = m for α = 0. On the border of the subcritical

region (α =
√

2) the smallest level (red point in figure 5) is the ground state of the

meta-hydrogenoid spectrum, while the other two levels are doubly degenerated, because

they include the n-level of the hydrogenoid spectrum and the (n + 1)-level of the meta-
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Figure 5. Flow of the lowest energy levels with angular momentum j = 3/2 (Λ = m/10) when

the impurity charge crosses from subcritical regime to supercritical regime at α = 3/2. The colors

correspond to different choices of boundary conditions. In the subcritical regime θ = 0 (hydro-

gen), θ = 0.005π, θ = 0.03π, θ = 0.1π, θ = 0.2π, θ = 0.25π (isolated), θ = 0.3π, θ = 0.5π (meta-

hydrogen), θ = 0.75π, θ = 0.9π, θ = 0.99π, θ = 0.999π; and in the supercritical regime θ = 0,

θ = 0.1π, θ = 0.25π, θ = 0.5π (isolated), θ = 0.6π, θ = 0.75π, θ = 0.9π. Notice that at the crit-

ical point αc = 3
2 the tangent vectors to the spectral curves are vertical except for the green and

gray curves which correspond to θ = π
4 and θ = 3π

4 in the subcritical regime and θ = π
2 and θ = 0

supercritical regime, respectively.

hydrogenoid spectrum. All the energy levels of the different self adjoint extensions of H

start from one of these points.

At the critical coupling αc = 3
2 , we also have some special energy levels, which to some

extent, are attractors or repulsors of the other energy levels: the black points correspond

to the double degenerate hydrogenoid and meta-hydrogenoid spectra of θ = 0, whereas

the green points correspond to the bound states of the spectrum of H for θ = π/2. The

alternating black and green points are, respectively, stable and unstable fixed points for

the flow of energy levels. Each green point attracts only one energy level, that corresponds

to the self adjoint extension with θ = π/4 which are on the green curve of figure 5. These

flow curves are isolated and act as repulsive barriers creating bifurcations of the flow. In

the subcritical regime for 0 ≤ θ < π/4 the n = 0 ground state merges into the continuum

flowing to −∞ and each of the other n > 0 levels flow towards the n-th black point, while

for π/4 < θ < π each of the other n ≥ 0 levels flow towards the n + 1 black point (see

eq. (4.13)). In the supercritical region, each green point is the starting point of only

one level (green curve) which is associated to a particular selfadjoint extension θ = π/2.
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(a) (b)

Figure 6. (a) Instability properties of the flow of EIIn (θ) for θ = π
4 and θ± = π

4 ± 0.001 (up/down)

and j = 3/2 (Λ = m/10). (b) the same properties for the flow of EIVn (θ) for θ = π
2 and θ± =

π
2 ± 0.005 (up/down) and j = 3/2 (Λ = m/10).

whereas black points are the starting points of bound state energy levels for all other

boundary conditions θ 6= π/2. The green levels again are isolated and create a barrier for

all the others. Notice that for any θ 6= π/2 there are energy levels which emerge from the

continuum for large enough values of the charge α. In fact there is an infinity of them if

we consider higher excited bound states. In figure 5 we just displayed one of those levels

emerging from the continuum for each boundary condition).

The very special matching of subcritical and supercritical regimes at critical points

is possible because the derivatives of the spectral curves at α2
c = j2 are divergent

(∂αEn(θ)|αc = ±∞), except for θ = π
4 and θ = 3π

4 . For those special values of θ the α-

derivatives of the subcritical spectral curves are finite and do coincide with the α-derivatives

of the supercritical spectral curves reaching the same points for θ = π
2 (green curves in fig-

ure 5) and θ = 0 (gray curves in figure 5), respectively. The specific value of the derivative

is Λ dependent. For all other values of θ those derivatives are ±∞.

In figures 6 we show the instability of the isolated flow curves. The central flux curves

correspond, respectively to θ = π
4 and θ = π

2 , while the others correspond to small pertur-

bations of these curves, respectively θ = π
4 ± 0.001 and θ = π

2 ± 0.005. We can see how,

when approaching to α2 = j2, the perturbed curves follow the isolated curves flow but

eventually they are attracted by two different eigenvalues of EIIIn (0).

For the lowest angular momentum j = 1
2 the spectral flow is very similar (figure 7).

The only remarkable difference is the absence of a regular sector, where the boundary

condition is unique, for any value of the impurity charge α. This implies that in graphene

the choice of a boundary condition is always necessary, which requires the introduction of

two extra parameters in the definition of the quantum system: a dimensionful scale Λ and

an angular variable θ. This is in contrast with what happens in three dimensions where for

low values of the charge Zα <
√

3/2 there is no need of fixing a boundary condition. The

space of boundary conditions has the topology of an infinity cylinder S1 ×R ≡ R2\{0} for

any value of the impurity charge α.
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Figure 7. Flow of the lowest energy levels with angular momentum j = 1/2 (Λ = m/10) when

the impurity charge crosses from subcritical regime to supercritical regime at αc = 1/2. The

colors correspond to different choices of boundary conditions. In the subcritical regime θ = 0

(hydrogen), θ = 0.005π, θ = 0.03π, θ = 0.1π, θ = 0.2π, θ = 0.25π (isolated), θ = 0.3π, θ = 0.5π

(meta-hydrogen), θ = 0.75π, θ = 0.9π, θ = 0.99π, θ = 0.999π; and in the supercritical regime

θ = 0, θ = 0.1π, θ = 0.25π, θ = 0.5π (isolated), θ = 0.6π, θ = 0.75π, θ = 0.9π. Notice that as in

the case j = 3
2 at the critical point αc = 1

2 the tangent vectors to the spectral curves are vertical

except for the green and gray curves which correspond to θ = π
4 and θ = 3π

4 in the subcritical

regime and θ = π
2 and θ = 0 supercritical regime, respectively.

5 Conclusions

In summary, the above analysis in terms of boundary conditions shows that in graphene

we have infinite set of self adjoint Dirac operator for any α > 0 (for j = 1
2) which are

parameterized by an ultraviolet scale Λ and an angle θ ∈ [0, π). In this sense the behaviour

of impurities in graphene is different from that of hydrogenoid atoms in QED. The lowest

angular momentum states of graphene are always in the subcritical regime unlike in the 3D

hydrogen atom, which requires the introduction of appropriate boundary conditions that

depend on a UV scale λ and a dimensionless parameter θ.

Unitarity is guaranteed for any value of the charge impurity α. Even more, the param-

eters introduced by the boundary conditions Λ, θ that renormalize the singular UV of the

impurity induce remarkable observable effects. The dependence on the choice of boundary

conditions at the singularity defines a flow of energy levels. The analysis of the flow of

boundary levels displays interesting physical properties. Changes of the θ parameter which

characterizes the self adjoint extension of the Hamiltonian can pump each hydrogenoid

level into the next one after a recursive loop in the parameter space recalling the pumping

mechanism of topological insulators. A Berry phase can be also associated to this process.
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All energy levels in the hydrogenoid spectrum, except the fundamental one, are degener-

ate, but the introduction of the parameter θ breaks down this degeneracy. Moreover, it is

possible to change, by adiabatic variations of α, the energy levels from the subcritical to

the supercritical regime in a continue way. Some bound states emerge (merge) from the

continuum in this process. This is a consequence of the interesting properties of the RG

flow for the subcritical and supercritical regime. Near the critical charge the energy levels

are attracted by the points of the spectra of the Hamiltonian at the critical charge α2
c = j2

and the particular value of the boundary conditions θ = 0. The attracting Hamiltonian

corresponds to the hydrogenoid atom spectrum at the critical charge. Only few levels re-

main isolated in a unstable way. This points out that the critical charge α2
c = j2 of the

hydrogenoid case is not a singular case from the quantum physics viewpoint. The theory

is well defined below and above this critical charge in the subcritical and supercritical

regimes. The transition from the subcritical to the supercritical regime does not imply a

critical change in the physical description of the system.

However the preservation of unitarity does not guarantees the stability of the theory

in the supercritical regime because of the presence of a new infinite set of localized states

with negative energies. Besides the standard stability analysis of the theory in absence

of impurities, where all negative energy levels are filled by a Dirac sea of electrons, we

have to add another sea of electrons to fill the infinite set of negative energy bound states.

These infinities turn out to be finite when one recovers the discrete analysis on a graphene

honeycomb lattice of finite size. However, the apparent stability of the theory pointed out

by the careful analysis of the boundary conditions of the Hamiltonian can not hide that

the physical behaviour of graphene is quite special in the supercritical phase. The fact that

hydrogenoid energy levels become complex in the supercritical regime implies the presence

of resonances in the spectral density of the scattering matrix in the positron (hole) channel.

These resonances are also the root of bound states levels which emerge from the continuum

negative spectrum E < −m (see figure 4).

In the supercritical regime there is an infinite number of quasi-bound states embedded

in the lower continuum E < −m which are visible in the spectral density. If they are

not filled when crossing the Fermi level E = −m, some normal electrons will jump into

these empty levels generating particle/hole pairs. The positive charges will move to infinite

and disappear whereas the negative charges remain localized near the impurity giving rise

to a screening of the impurity charge. We have assumed a positively charged impurity

but due to the CP invariance of the theory a similar phenomenon occurs for negative

charged impurities.

The striking properties of the spectral flow discussed above can be experimentally

tested by varying the impurity charge α. This can be achieved by changing the dielectric

properties of graphene environment [53]. The process will start with a supercritical impu-

rity charge and then by changing the dielectric properties of the substrate it is possible to

reduce the screening the effective coupling of the impurity to graphene electrons till reach-

ing the critical charge and beyond that the subcritical regime. It will be very interesting

see how the Coulomb supercritical extra screening disappears suddenly when crossing the

critical charge barrier at αc.
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The phenomena described above are reminiscent of what happens in Quantum Eletro-

dynamics [5, 6]. The main difference is that the value of the critical charge in graphene is

αc = j whereas in QED is Z = 137, which is very hard to realize in Nature. The screening

phenomenon due to supercritical pair creation has been recently observed in graphene [18]

and in QED a similar phenomenon might be also observed in the heavy ions collisions

(see [54] for an updated review). There is another remarkable difference between the two

theories. In graphene for any value of α > 0 the system is in a subcritical regime at least in

the lowest angular momentum sector (j = 1
2) which requires always the choice of an extra

parameter to fix the boundary condition at the origin. However, in QED for Z < 137,

e.g. for the hydrogen atom the Hamiltonian is essentially selfadjoint in lowest angular mo-

mentum sector. Thus there is no need to fix the boundary condition at the origin. In

particular a potential δ like perturbation has no effect in the spectrum. In particular this

means that the relativistic interpretation of the Lamb effect cannot be understood in pure

relativistic quantum mechanics and requires a full field theoretical analysis, unlike in the

non-relativistic quantum mechanics approach.

The analysis of the energy spectrum in the gapless semi-metal regime of graphene can

be carried out in a similar way. The boundary conditions are exactly the same as in the

massive case and, thus, the different physical regimes are the same. However, there is

a fundamental difference, there are no electronic bound states, because the exponential

decay at infinity disappears when m → 0, although there are some special points of the

continuous spectrum that correspond to resonances which can be observed in scattering

processes [18].

Open Access. This article is distributed under the terms of the Creative Commons
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any medium, provided the original author(s) and source are credited.
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[42] M. Asorey, A.P. Balachandran and J.M. Pérez-Pardo, Edge States: Topological Insulators,

Superconductors and QCD Chiral Bags, JHEP 12 (2013) 073 [arXiv:1308.5635] [INSPIRE].
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