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1 Introduction

The AdS soliton [1] is a globally non-singular solution that has negative energy relative

to the pure AdS space. It is an asymptotically locally AdS spacetime and has a flat

conformal boundary with a compact S1 circle. It has been conjectured that the AdS

soliton is the unique lowest energy solution among the spacetimes with the same asymptotic

structure [1, 2]. The uniqueness theorem for the AdS soliton supports the conjecture [3, 4],

but its full proof is yet to be given [5].1

In the AdS/CFT duality [7–9], the AdS soliton has been considered with respect to

the gravity dual of the confining phase of pure Yang-Mills theory. In the dual field theory,

an anti-periodic boundary condition for fermions along the S1 breaks supersymmetry, and

so pure Yang-Mills theory can be described [10]. In the bulk, the spacetime of the AdS

soliton is smoothly capped at a finite distance where the S1 shrinks, and gapped normal

modes, corresponding to the confined spectrum, are obtained. At finite temperature, there

is a Hawking-Page transition [11] between an AdS soliton and a black brane [12], and this

is interpreted as the confinement/deconfinement transition [10].2

1Recently, results supporting the Horowitz-Myers conjecture were given also in [6].
2There is another interesting aspect of the AdS soliton; the dynamics of probe classical strings in the

geometry are chaotic [13, 14] in contrast to their integrability in pure AdS space.
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In this paper, we will study time-periodic states in the confined phase of the gauge

theory by using its gravity dual. Understanding dynamical phenomena is one of the most

challenging problems of strongly coupled quantum many body systems. The gauge/gravity

duality helps us to understanding such problems. The normal modes that the AdS soliton

admits are expected to have a nonlinear extension. In particular, we will focus on the spin-2

perturbation of the AdS soliton [2, 15] and show that its nonlinear extension leads to a non-

stationary time periodic solution. We will call such solutions as the resonating AdS solitons.

In particular, we will consider five-dimensional solutions with cohomogeneity-1 metrics.

In asymptotically global AdS space, similar setups for non-stationary solutions have been

considered. Solutions describing nonlinear gravitational oscillations are called geons [16–

19]. Analogously, there are boson stars, characterized by oscillating scalar fields [20–26].

These solutions are non-stationary but time periodic. Geons constructed in four dimensions

only have a single helical Killing vector [17]. But recently, by going to five dimensions, geons

whose metric is cohomogeneity-1 (i.e. the metric functions only depend on a single variable)

have been constructed [27, 28]. By applying techniques in refs. [27, 28], we construct the

resonating AdS soliton with cohomogeneity-1 metric in five dimensions. There has been a

perturbative construction [29], but we are able to find non-trivial nonlinear solutions.

Gravitational dynamics in AdS space of general relativity is theoretically interesting.

Because of the timelike conformal boundary of the asymptotically AdS space, non-trivial

dynamics can be realized. One example is the weakly turbulent instability of global AdS

space [30]: pure AdS is nonlinearly unstable against arbitrarily small perturbations, and a

black hole is formed for a wide class of initial data. Similar phenomena has been observed

in the AdS soliton background although the presence of a finite threshold of amplitude

for the black hole formation is a significant difference [31, 32]. Below the threshold, the

spacetime oscillates forever and is time periodic. Our resonating AdS soliton might be one

simple realization of such a phase.

The normal modes of the AdS space are connected to the onset of the superradiant

instability of rotating black holes [20, 33–41]. Indeed, gravitational geons correspond to

the smooth horizonless limit of black resonators [27, 28, 42, 43].3 A black resonator is a

dynamical spacetime. Therefore, it will be prone to further superradiant instabilities [44].

Stability analysis has been carried out for five-dimensional cohomogeneity-1 solutions [45],

and cascades of instabilities are expected, but their endpoint is an open problem [43]. A

study of such of nonlinear evolution is [46].

In holography, time periodic states have been studied by applying periodic driving by

external sources at the conformal boundary [47–55]. Such time dependent solutions provide

a time dependent oscillating condensate called Floquet condensate in the dual field theory.

In the presence of a black hole horizon, the driving can be dissipated; when a horizon is

absent, resonances can be excited. These driven states survive in the limit of zero source

amplitude, resulting in spontaneously excited states which nonlinearly extend the normal

modes. In this paper, we directly construct cohomogeneity-1 solutions without applying a

nontrivial boundary source.

3Scalar field normal modes and superradiant instabilities also lead to analogous boson stars and hairy

black hole solutions with similar dynamics these gravitational solutions [20, 34–41].
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This paper is organized as follows. In section 2, we study spin-2 normal modes of

the AdS soliton. In section 3, we set up the nonlinear extension of the normal modes.

Numerical results for the resonating AdS soliton are presented in section 4. This paper is

concluded with a summary and discussion in section 5.

2 Normal modes of AdS soliton

2.1 AdS soliton

We consider five dimensional Einstein gravity with a negative cosmological constant,

Rµν −
1

2
gµνR =

6

L2
gµν , (2.1)

where L is the AdS radius. We will set L = 1 throughout this paper.

The AdS soliton is a solution to the Einstein equation (2.1) with a flat conformal

boundary:

ds2 =
1

z2

[
−dt2 +

dz2

F (z)
+
z20
4
F (z)dθ2 + dx2 + dy2

]
, F (z) = 1− z4

z40
. (2.2)

This metric can also be obtained by the double Wick rotation of the Schwarzschild-AdS5

solution with a flat horizon [1]. The AdS boundary is located at z = 0. The coordinate θ is

compactified on a circle with a periodicity θ ' θ+2π in order to avoid a conical singularity

at the tip of the geometry where z = z0. This geometry contains 3d Minkowski space

denoted by −dt2 + dx2 + dy2 and is invariant under ISO(2, 1). It is also invariant under a

θ-translation. In summary, the isometry group of the AdS soliton is

ISO(2, 1)×U(1) . (2.3)

For later convenience, we denote the generator of the rotation in the (x, y)-plane by4

ξ = x
∂

∂y
− y ∂

∂x
. (2.4)

This is the generator of U(1) ∈ ISO(2, 1).

The compactified direction introduces the Kaluza-Klein mass scale MKK . Near the

AdS boundary z ∼ 0, the metric (2.2) becomes

ds2 ' 1

z2

[
−dt2 + dx2 + dy2 +

z20
4
dθ2
]
. (2.5)

The boundary metric is locally 4d Minkowski, but the θ-direction is compactified. For the

AdS soliton, the Kaluza-Klein mass scale is given by

MKK =
2

z0
. (2.6)

In this paper, we will measure dimensionful quantities in units of MKK .

4In the polar coordinates x = ρ cosφ and y = ρ sinφ; this is simply written as ξ = ∂φ.
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2.2 Decoupled spin-2 perturbation

We focus on the decoupled spin-2 gravitational perturbation of the AdS soliton that is

homogeneous in the (x, y)-plane [2, 15]. Here, we also include a nontrivial Kaluza-Klein

momentum k along the θ-coordinate. We formulate the perturbation in a way that will

naturally leads to the nonlinear construction in the following section.

Let us introduce complex coordinates w± in the (x, y)-plane as

dw± = dx± idy . (2.7)

These satisfy

Lξdw± = ±idw± , (2.8)

where L is the Lie derivative. This means that dw± have U(1)-charges of ±1. Then we

consider the following gravitational perturbation of the AdS soliton:

hµνdx
µdxν =

1

z2
e−iωt+ikθδα(z)dw2

+ + h.c. . (2.9)

From the periodicity of θ, k ∈ Z is required. This perturbation has U(1)-charges of +2

(first term) and −2 (second term), and it is homogeneous in the (x, y)-plane: ∂xhµν =

∂yhµν = 0. Other homogeneous perturbations such as dt2, dtdw+, and dzdw− cannot have

U(1)-charges of ±2. Thus the perturbation (2.9) is decoupled from the other perturbations.

The perturbation equation for δα is given by

δα′′ +
(z−3F )′

z−3F
δα′ +

(
ω2

F
− 4k2

z20F
2
− 2(zF ′ − 4F + 4)

z2F

)
δα = 0 . (2.10)

Solving the above equation near the tip z = z0 and conformal boundary z = 0, we find the

regular and Dirichlet boundary conditions as

δα ∼ (z0 − z)k/2 (z ∼ z0) , δα ∼ z4 (z ∼ 0) . (2.11)

We compute the normal mode spectrum for ω by solving (2.10) numerically with these

boundary conditions. Results are summarized in table 1. There, n denotes the radial

overtone number given by the number of nodes in the interval 0 ≤ z ≤ z0 and corresponds

to the excitations of the dual spin-2 glueballs [2, 15]. The numerical values for k = 0

reproduce the spectrum obtained in [56–58] for 0++ glueballs, which degenerate with the

2++ glueball spectrum [2, 15].

3 Nonlinear resonation of AdS soliton

3.1 Symmetry preserved by the perturbation

The main goal of this paper is to construct nonlinear solutions that extend from the normal

modes obtained in the previous section. In this section, we identify the metric ansatz for

the nonlinear solutions and set up its computation. A perturbative construction has been

given in [29], but here we will construct complete nonlinear solutions. In particular, we

find that they are obtained in a cohomogeneity-1 metric ansatz.

– 4 –
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n = 0 n = 1 n = 2 n = 3

k = 0 1.7020 2.9380 4.1526 5.3598

k = 1 2.4224 3.6144 4.8082 6.0034

k = 2 3.2544 4.3848 5.5424 6.7139

k = 3 4.1412 5.2130 6.3309 7.4740

k = 4 5.0587 6.0788 7.1580 8.2717

Table 1. The spectrum of the gravitational perturbation ω/MKK .

To find the metric ansatz for the nonlinear solutions, we examine the symmetries

preserved by the perturbation (2.9). Let us define the following 1-forms e± by

e± = e±(−iωt+ikθ)/2dw± . (3.1)

In terms of them, the perturbation (2.9) is simply written as

hµνdx
µdxν =

1

z2
δα(z)(e2+ + e2−) . (3.2)

Hence it is convenient to look at the symmetries acting on e±. The 1-forms e± are trans-

formed by ξ, ∂t and ∂x as

Lξe± = ±ie± , L∂te± = ∓ iω
2
e± , L∂θe± = ± ik

2
e± . (3.3)

The t and θ-translations are broken if ω 6= 0 and k 6= 0, respectively, but their linear

combinations with ξ are preserved, defining vector fields K1 and K2 by

K1 = ∂t +
ω

2
ξ , K2 = ∂θ −

k

2
ξ , (3.4)

implying that

LK1e± = 0 , LK2e± = 0 . (3.5)

Thus, the perturbation (3.2) preserves the symmetries generated by K1 and K2. That is,

ξ, ∂t and ∂x are not Killing vectors independently, but their appropriate linear combina-

tions are. In K1, the t-translation is combined with the rotation generated by U(1)ξ, and

therefore K1 can be regarded as a helical Killing vector. The 1-forms e± are also invari-

ant under translations in the (x, y)-plane: L∂xe± = L∂ye± = 0. The upshot is that the

perturbation (3.2) is invariant under {K1,K2, ∂x, ∂y}.
What is the isometry group generated by {K1,K2, ∂x, ∂y}? To identify that, it is more

appropriate to consider L1 ≡ 2K1/ω = ξ + (2/ω)∂t and L2 ≡ kK1 + ωK2 = k∂t + ω∂θ so

that ξ and ∂θ are separated. Clearly, LL1e± = 0 = LL2e±. Recall that {ξ, ∂x, ∂y} form

the algebra of ISO(2), although ξ is no longer a Killing vector. Then, because [∂t, ∂x] =

[∂t, ∂y] = 0, we can say that {L1, ∂x, ∂y} are the generators of ISO(2). The remaining one

– 5 –
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L2 commutes with the other vectors {L1, ∂x, ∂y} and is the generator of U(1) for k = 0 and

R for k 6= 0. Thus, the isometry group generated by {K1,K2, ∂x, ∂y} is given by5

ISO(2)×U(1) (k = 0) ,

ISO(2)×R (k 6= 0) .
(3.6)

The original isometry group of the AdS soliton (2.3) is broken into these smaller groups

by the perturbation (3.2).

The perturbation (3.2) is also invariant under discrete transformations P1 and P2 given

by

P1(t, θ, x, y) = (−t,−θ,−x, y) ,

P2(t, θ, x, y) = (−t,−θ, x,−y) .
(3.7)

Under these, 1-forms (dt, dθ, e+, e−) are transformed as

P1(dt, dθ, e+, e−) = (−dt,−dθ,−e−,−e+) ,

P2(dt, dθ, e+, e−) = (−dt,−dθ, e−, e+) .
(3.8)

3.2 Metric for resonating AdS soliton

We will now construct the metric ansatz that has Killing vectors {K1,K2, ∂x, ∂y}. To this

end, it is convenient to introduce real 1-forms e1 and e2 as

e± = e1 ± ie2 . (3.9)

They can be related to the original orthogonal coordinates, (x, y), as(
e1

e2

)
=

(
cos Θ − sin Θ

sin Θ cos Θ

)(
dx

dy

)
, Θ =

1

2
(−ωt+ kθ) . (3.10)

These are also invariant under {K1,K2, ∂x, ∂y}. Then, we can write a general metric

equipped with them as

ds2 = gab(z)EaEb , (3.11)

where Ea = (dt, dz, dθ, e1, e2). The metric depends only on z but still has 15 components.

This can be further simplified by imposing the parity (3.8), under which (dt, dθ, e1, e2) are

transformed as
P1(dt, dθ, e1, e2) = (−dt,−dθ,−e1, e2) ,
P2(dt, dθ, e1, e2) = (−dt,−dθ, e1,−e2) .

(3.12)

Therefore, in eq. (3.11), only the terms with dt2, dtdθ, dθ2, dz2, e21, and e22 are allowed if the

parity invariance is imposed. This leads us to write the cohomogeneity-1 metric ansatz as

ds2 =
1

z2

[
− f(z)dt2 +

dz2

F (z)g(z)
+α(z)e21 +

1

α(z)
e22 +

z20
4
F (z)β(z){dθ− h(z)dt}2

]
, (3.13)

5If k = 0, L2 does not depend on K1, while if k 6= 0 both L1 and L2 depends on K1. Therefore, the

helical isometry given by K1 is contained in ISO(2) for k = 0 and distributed in ISO(2)×U(1) for k 6= 0.

– 6 –
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where F (z) was defined in eq. (2.2). The product of the coefficients of e21 and e22 are fixed

by redefinition of the z-coordinate. Note that a similar metric has also appeared as an ef-

fective metric on the probe D7-brane when a rotating electric field is applied in the D3/D7

system [51, 52]. To avoid a conical singularity at the tip, we require

g(z)β(z)|z=z0 = 1 . (3.14)

The AdS soliton (2.2) is reproduced when f = g = α = β = 1 and h = 0.

Substituting the ansatz (3.13) into the Einstein field equation Gµν = 6gµν , we obtain

the complete set of the equations of motions as

f ′ =
1

4z20zFgα
2{z(Fβ)′ − 6Fβ)}

[
z20F{z2Fgβ(−z20Fh′2α2β + 4α′2f)

+ 24zfgα2(Fβ)′ − 96fα2β(Fg − 1)}
+ z2(α2 − 1)2{z20Fβ(ω − kh)2 − 4k2f}

]
, (3.15)

g′ =
1

4z02zFfα2β(z(Fβ)′ − 6Fβ)

[
− z20{z2gα2β2(−z20F 3h′2β + 8F ′2f)

+ 4zF ′Ffgα2β(3zβ′ − 14β) + 4z2F 2fg(α2β′2 + α′2β2)

+ 32zfα2β(−F 2gβ′ + (Fβ)′) + 96Ffα2β2(gF − 1)}
+ z2β(α2 − 1)2(−z20Fβ(ω − kh)2 + 4k2f)

]
, (3.16)

h′′ =
h′

2

(
f ′

f
− g′

g
− 3β′

β
− 4F ′

F
+

6

z

)
− k(ω − kh)

z20F
2gβ

(
α− 1

α

)2

, (3.17)

α′′ = α′
(
α′

α
+

4

zFg
− 1

z

)
− α(z20Fβ(ω − kh)2 − 4k2f)

4z20F
2fgβ

(
α2 − 1

α2

)
, (3.18)

β′′ = −(Fg − 4)(Fβ)′

zF 2g
+ β

(
β′2

β2
− F ′′

F
+
F ′2

F 2
− z20Fh

′2β

4f

)
− k2

z20F
2g

(
α− 1

α

)2

, (3.19)

where ′ ≡ d/dz. We will solve them numerically. Note that h decouples from the rest when

k = 0.

3.3 Asymptotic form at the tip

The asymptotic solution to (3.15)–(3.19) near the tip z = z0 with the regularity condi-

tion (3.14) takes the form

α = 1 + rk(α0 + α1r + α2r
2 + · · · ) ,

g = 1 + r2k(g0 + g2r
2 + g4r

4 + · · · ) ,
β = 1 + r2k(β0 + β2r

2 + β4r
4 + · · · ) ,

f = F0 + r2k+2(f0 + f2r
2 + f4r

4 + · · · ) ,
h = H0 + r2k(h0 + h2r

2 + h4r
4 + · · · ) ,

(3.20)

where r2 ≡ (z − z0)/z0. Once we specify five parameters (α0, F0, H0) and (ω, z0), other

expansion coefficients (αi, βi, fi, gi, hi) are determined by the equations of motion. For

– 7 –
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example, the leading order coefficients are

f0 =
z20(ω − kH0)

2

4(k + 1)2

(
1− α0(3α0 + 4)

4(α0 + 1)2)
δk,0

)
α2
0 , g0 =

k2

4(k + 1)2
α2
0 ,

h0 = −ω − kH0

4(k + 1)
(1− δk,0)α2

0 , β0 = − k(k + 2)

4(k + 1)2
α2
0 .

(3.21)

Because the field redefinition α→ 1/α just exchanges the roles of e1 and e2, we can assume

α0 ≥ 0 without loss of generality.

3.4 Physical quantities

At the AdS boundary, we impose the asymptotically locally AdS condition as

f → 1 , α→ 1 , h→ 0 , (z → 0) , (3.22)

while g → 1 (z → 0) is automatically satisfied because of the equations of motion. Solving

eqs. (3.15)–(3.19) near z = 0 with the above boundary condition gives the asymptotic

solution as

f = 1 + cf

(
z

z0

)4

+ · · · , g = 1 + (cf + cβ)

(
z

z0

)4

+ · · · ,

h =
ch
z0

(
z

z0

)4

+ · · · , α = 1 + cα

(
z

z0

)4

+ · · · ,

β = β∞

[
1 + cβ

(
z

z0

)4

+ · · ·

]
,

(3.23)

where β∞, cf , ch, cα and cβ are unspecified in the asymptotic analysis. These will be de-

termined when the equations of motion are solved in the bulk. The metric of the conformal

boundary is

ds2bdry = −dt2 + dx2 + dy2 +
dθ2

MKK
2
, (3.24)

where the Kaluza-Klein mass scale for the metric (3.13) is given by6

MKK =
2

z0
√
β∞

. (3.25)

Let us introduce the canonically normalized coordinate χ = θ/MKK , which has periodicity

χ ' χ+ 2π/MKK . Then the boundary metric is rewritten as

ds2bdry = −dt2 + dx2 + dy2 + dχ2 . (3.26)

Thermodynamical quantities are obtained from the boundary energy momentum ten-

sor, which is given by [59, 60]7

8πG5Tij = − 1

2z2
Ciρjσn

ρnσ
∣∣∣∣
z=0

, (3.27)

6For the undeformed AdS soliton, β∞ = 1 and (2.6) is reproduced.
7Also see the counterterm method [61–63].
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where i, j = t, x, y, χ, G5 is the five dimensional Newton constant, Cµνρσ is the Weyl tensor

of the bulk spacetime, and nµ is the unit normal to a bulk constant-z surface. Using the

asymptotic solution (3.23), we obtain

Tijdx
idxj =

M4
KK

256πG5

[
E dt2 − 2πχ dtdχ− T dχ2 + P (e21 + e22) + σ (e21 − e22)

]
, (3.28)

where we defined

E = −β2∞(1 + 3cf − cβ) , πχ = 2β5/2∞ ch , T = β2∞(3 + cf − 3cβ) ,

P = β2∞(1− cf − cβ) , σ = 4β2∞cα .
(3.29)

These quantities are interpreted as8

• E : Energy density

• πχ: Momentum density along the compact direction

• T : Tension along the compact direction (i.e. Casimir force)

• P: (Time average of) pressure

• σ: (The maximal value of the) shear stress

up to the normalization factor

M4
KK

256πG5
=
M4
KKN

2
c

128π2
, (3.30)

where Nc is the number of colors in the dual gauge theory. For the AdS soliton, we obtain

(E , πχ, T ,P, σ) = (−1, 0, 3, 1, 0). The energy density of the AdS soliton is negative [1].

In the energy momentum tensor (3.28), only the last term is time dependent. (Note

that e21 + e22 = dx2 + dy2 is time independent.) In the original (x, y)-coordinates, the time

dependent term is

e21 − e22 = cos(kθ − ωt)(dx2 − dy2) + 2 sin(kθ − ωt)dxdy . (3.31)

The xy-component of the energy momentum tensor takes the form

Txy ∝ σ sin(kθ − ωt) . (3.32)

This is called the shear stress (i.e. the flux of the x-component of the momentum mea-

sured on the (y, χ)-plane). The parameter σ gives the maximum value of the shear stress.

Meanwhile, the other part of σ(e21 − e22) contributes to the xx and yy-components of the

energy momentum tensor, but the time average of this oscillating contribution vanishes.

Therefore, P is regarded as time averaged pressure. The energy momentum tensor is time

periodic without dissipation. This indicates that the resonating AdS soliton is dual to a

coherently excited state in the dual field theory.

8We define these quantities in the viewpoint of the (3+1)-dimensional boundary theory. By di-

mensional reduction along the χ-direction, effective (2+1)-dimensional quantities can be obtained as

E(2+1)d = (2π/MKK)E , etc.
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3.5 Technical details

Some tricks are available for solving the equations of motion numerically. Practically, we

use new variables (f̃ , g̃, h̃, α̃, β̃) introduced as

f = F0 + r2k+2f̃(r) , g = 1 + r2kg̃(r) , h = H0 + r2kh̃(r) ,

α = 1 + rkα̃(r) , β = 1 + r2kβ̃(r) .
(3.33)

where r2 ≡ (z − z0)/z0. We integrate the equations of motion for (f̃ , g̃, h̃, α̃, β̃) from

r = 0 (z = z0) to r = 1 (z = 0) numerically. The boundary condition at r = 0 is given

in eq. (3.20). There are five parameters, (α0, F0, H0, ω, z0), which we need to specify in

the integration prima facie. We can set H0 = 0, F0 = 1 and z0 = 1 without loss of

generality. Then, we choose a value of α0 6= 0 and determine the frequency ω by the

shooting method so that α → 1 is satisfied at infinity. The solution obtained in this way,

however, does not satisfy the other two conditions in eq. (3.22), i.e. f(z = 0) = f∞ 6= 1 and

h(z = 0) = h∞ 6= 0. The solution satisfying eq. (3.22) can be obtained by using scaling

symmetries. By applying coordinate transformations tnew =
√
f∞ t and θnew = θ−h∞tnew,

the metric components f and h become

fnew(z) =
f(z)

f∞
, hnew(z) =

1√
f∞

(h(z)− h∞) . (3.34)

These satisfy the desired boundary condition (3.22). By this procedure, the frequency ω is

also changed to

ωnew =
1√
f∞

(ω − kh∞) . (3.35)

From the canonically normalized solution, we read off the constants β∞, cf , ch, cα, cβ as

eq. (3.23) and then obtain thermodynamical quantities from eq. (3.29).

4 Results

4.1 Physical quantities

We construct the resonating AdS soliton by increasing the deformation parameter α0, start-

ing from α0 = 0. For each frequency ω/MKK in table 1, a different family of solutions can be

obtained. Here, we will focus on the results for wave numbers k = 0, 1, 2 of the fundamental

tone n = 0. We find that, for k > 0, deformed solutions cease to exist at finite α0, and if

this occurs we terminate computation there. For k = 0, deformation continues to α0 →∞.

In the left panel of figure 1, the energy density of the resonating AdS soliton is plotted

as a function of α0. The left edge of the figure, α0 = 0, corresponds to the AdS soliton.

The energy density is negative when α0 is small but becomes positive as α0 increases. It

then reaches the maximum value and decreases beyond that point. For k = 0, solutions

apparently exist until α0 →∞, where E approaches zero from above. On the other hand,

for k = 1, 2, the energy density hits zero at a finite value of α0. As shown in the right panel

of figure 1, z0MKK → ∞ in the limit E → 0. This means that the location of the tip z0
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Figure 1. (Left) Energy density as a function of α0. (Right) Location of the tip of the AdS soliton

z0 as a function of α0.

diverges, and the spacetime approaches Poincaré AdS with a compact direction.9 In fact,

physical quantities approach those for the pure AdS in that limit as we will see in figure 2.

In figure 2, we show the physical quantities of the resonating AdS soliton. We choose

the energy density E as the horizontal axis. The left edge, E = −1, corresponds to the AdS

soliton limit. The other endpoints of the curves correspond to the pure AdS limit, where

E → 0. Because E takes the maximum value halfway, physical quantities are multivalued in

E > 0. In particular, two different solutions can be found at E = 0: resonating AdS soliton

and the pure AdS. As seen in the first panel, the frequency of the resonating AdS soliton

satisfies ω > kMKK . We will show in the next subsection that this inequality results in

the non-existence of global timelike Killing vectors. In the third panel, we find that the

tension T can take negative values for k = 1, 2. If T < 0, negative work is necessary for

expanding the radius of the circle with 2π/MKK . In the figure for πχ (last panel), cusps

can be observed. Note that πχ = 0 for k = 0, which is omitted in the figure. For k 6= 0,

we checked that the first law of thermodynamics dE = ω/(kMKK)dπχ is satisfied within

numerical errors.

4.2 Dynamical spacetime

Does the resonating AdS soliton spacetime have global timelike Killing vectors? A general

linear combination of the Killing vectors {K1,K2, ∂x, ∂y} can be given by

K = c1

(
∂t +

ω

2
ξ0

)
+ c2

(
∂θ −

k

2
ξ0

)
, (4.1)

where

ξ0 = (x− x0)∂y − (y − y0)∂x , (4.2)

and c1, c2, x0 and y0 are arbitrary parameters specifying the linear combination. The norm

of K is given by

K2 = gµνK
µKν = c21gtt + 2c1c2gtθ + c22gθθ +

(c1ω − c2k)2

4
ξ20 , (4.3)

9The geometry is highly deformed near the tip z = z0 when α0 is large, but that region, deep in the
bulk, is decoupled from the boundary as z0 →∞.
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Figure 2. Physical quantities of the resonating AdS soliton as a function of the energy density.

where ξ20 = gµνξ
µ
0 ξ

ν
0 . Near the AdS boundary, ξ20 becomes

ξ20 '
(x− x0)2 + (y − y0)2

z2
. (4.4)

Thus ξ20 →∞ as x, y →∞. This cannot be compensated by c21gtt + 2c1c2gtθ + c22gθθ which

does not depend on x and y. For this reason, we choose c1 = k and c2 = ω to eliminate

the term of ξ20 in eq. (4.3) and consider a specific combination K = k∂t − ω∂θ. Then, near

the AdS boundary, we obtain

K2 '
ω2 − k2M2

KK

M2
KKz

2
. (4.5)

Hence K cannot be timelike unless ω < kMKK . However, as shown in figure 2(a), we

always have ω > kMKK , and therefore K2 > 0. Thus the resonating AdS soliton is a

dynamical spacetime.

4.3 Free energy

The renormalized gravitational Lorentzian action is given by [61]

IL =
1

16πG5

∫
z≥ε

d5x
√
−det gµν (R+ 12)

− 1

8πG5

∫
z=ε

d4x
√
−γK − 3

8πG5

∫
z=ε

d4x
√
−γ
(

1 +
R
12

)
, (4.6)

where γij is the induced metric on the z = ε surface, its determinant is denoted by γ =

det γij , and R is the Ricci scalar with respect to γij . The trace of the extrinsic curvature
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K is also defined with respect to γij ,

K = γijK
ij , Kij = −1

2
(∇inj +∇jni) , (4.7)

where ni is the outward pointing unit normal vector at z = ε. Note that R = −20 from

the Einstein equations, and the first term becomes just a volume integral.

For stationary spacetime, the Euclidean on-shell action IE is obtained by replacing∫
dt→ −

∫ 1/T
0 dτ in the Lorentzian action IL, and the free energy is related to the Euclidean

action as F = TIE . For general dynamical spacetime, however, we cannot define the Eu-

clidean action and free energy like stationary spacetime. Even though the resonating AdS

soliton is a dynamical spacetime, the on-shell Lagrangian is fortunately time-independent.

We take advantage of this feature and can define the free energy of the resonating AdS

soliton.

For the metric of the resonating AdS soliton (3.13), we obtain

√
−γ =

z0
√
β∞

2z4
−
√
β∞(1− cf − cβ)

4z30
+ · · · ,

√
−γK = −2z0

√
β∞

z4
+

√
β∞(1− cf − cβ)

z30
+ · · · ,

R = O(z10) .

(4.8)

Substituting these into eq. (4.6) and including the O(z−4) terms into the integrand, we

obtain

IL = −z0V2
2G5

∫
dt

[∫ z0

0

dz

z5

(√
fβ

g
−
√
β∞

)
−
√
β∞(1 + cf + cβ)

8z40

]
, (4.9)

where V2 =
∫
dxdy. In this expression, the z-integral converges at the AdS boundary z = 0,

and therefore we can set ε = 0. The Euclidean action IE can be obtained by replacing∫
dt→ −1/T . Then, the free energy F = TIE is given by

F =
z0V2
2G5

[∫ z0

0

dz

z5

(√
fβ

g
−
√
β∞

)
−
√
β∞(1 + cf + cβ)

8z40

]
. (4.10)

For the undeformed AdS soliton, f(r) = g(r) = α(r) = β(r) = 1 and h(r) = 0, the free

energy of the AdS soliton is given by

FAdS soliton = − V2
16G5z30

= −
V2M

3
KK

128G5
. (4.11)

The free energy of the resonating AdS soliton is shown in figure 3 for k = 0, 1, 2. The

normalization is given by the absolute value of the free energy of the AdS soliton. We

find that the free energy of the resonating AdS soliton is always bigger than that of the

AdS soliton. This behavior has already been observed in the perturbative results [29].

We find that it is the case also in fully nonlinear solutions. The indication of the higher

free energy is that the resonating AdS soliton is thermodynamically subdominant in the

canonical ensemble. For the dual field theory, this is consistent with the no-go theorem for

time crystals as the ground state [64].
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Figure 3. Free energy of the resonating AdS soliton as a function of α0.

5 Conclusion

We constructed the resonating AdS soliton as the nonlinear extension of normal modes of

the static AdS soliton. We focused on the spin-2 homogeneous perturbation of the AdS

soliton, which breaks the isometries (2.3) to smaller ones (3.6). In particular, the time

translation of the AdS soliton is broken, and a helical isometry given by K1 is realized.

We introduced the cohomogeneity-1 metric ansatz (3.13) and obtained the solutions of the

resonating AdS soliton numerically. It was shown that the resonating AdS soliton is a non-

stationary dynamical spacetime. The pressure and shear stress behave time periodically,

while other thermodynamic quantities are time independent.

In [55], periodic driving by the boundary source of metric has been studied for the

four dimensional AdS soliton, and time dependent solutions have been obtained by solving

PDEs. In the zero amplitude limit of the driving, they become spontaneously time periodic

solutions. The resonating AdS soliton is analogous to them. In the present work, however,

by going to five dimensions, we were able to use the cohomogeneity-1 metric ansatz (3.13)

and constructed the time periodic solution without applying boundary driving and dealing

with PDEs.

The energy of the resonating AdS soliton is higher than that of the AdS soliton (see

figure 1). The static AdS soliton has been conjectured to be the minimal energy solution

among those with the same boundary topology [1, 2], and the higher energy of the resonat-

ing AdS soliton is in accord with this conjecture.10 The free energy of the resonating AdS

soliton is also higher than that of the static AdS soliton as shown in figure 3. Hence, the

resonating AdS soliton is thermodynamically subdominant.

10On a constant t spacelike surface, we obtain R̂+n(n−1) = K̂ijK̂
ij−K̂2 from the Hamiltonian constraint,

where n = 4 for the five dimensional bulk, the hats denote the quantities defined on the spacelike surface,

i and j run over the spatial coordinates, K̂ij is the extrinsic curvature, and K̂ is the trace of K̂ij . It is

straightforward to check that K̂ = 0 for the metric ansatz (3.13). Therefore, the resonating AdS soliton

satisfies R̂+ n(n− 1) ≥ 0, and the results for positivity of relative energy in [6] can be applied.
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For the dual field theory, the non-stationary AdS soliton not being the ground state

is consistent with the no-go theorem for time crystals as the ground state [64]. The field

theory realization of the time periodic solution dual to the resonating AdS soliton remains

unclear, but we are sure it would be an excited state. It might be interpreted as a homoge-

neous coherent excitation of glueballs in the confined phase of the Yang-Mills theory and

characterized by the time dependence in the pressure and shear stress.

In figure 2, we observed that the physical quantities are multivalued for a fixed E > 0.

This behavior typically implies the presence of instability. On the one hand, it would be

interesting to look at linear perturbations of the resonating AdS soliton. In global AdS

space, cohomogeneity-1 geons are linearly stable in a large portion of parameter space [45],

and the current horizonless solution may share the same property, especially in the branch

of small deformation, while the highly deformed branch may have a different behavior and

show linear instability instead.

On the other hand, time evolution of the resonating AdS soliton can also be considered

directly. At a fixed E > 0, a straightforward jump from one of the branches to the other is

a possibility, but other dynamics may be involved. Also, the resonating AdS soliton itself

is a dynamical spacetime in the first place, and it may develop into a different deformation

of the AdS soliton. In [31, 32], quenches and time evolution have been studied for the AdS

soliton. Similar computations for the resonating AdS soliton will be interesting.
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