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1 Introduction

Similar to Bose Einstein condensation, Fermi condensation is an interesting quantum phe-

nomena, which has wide a range of applications. The famous examples include the Cooper

pair in BCS theory of superconductivity, which is the bound state of a pair of electrons in a

metal with opposite spins. The chiral condensate of massless fermions is another example
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of Fermi condensation. In QCD the chiral condensate is an order parameter of transi-

tions between different phases of quark matter in the massless limit. The condensation of

fermionic atoms has been observed in experiment [1].

Recently, it is found that Weyl anomaly can induce Fermi condensation for theories

with Yukawa couplings [2], when a background scalar is turned on. The mechanism is

similar to the those of Weyl anomaly induced Casimir effect [5] and current [6–8]. For

simplicity, [2] discusses only the free Dirac fermion theory with the action

I =

∫
M

√
|g|
(
ψ̄iγi∇iψ + φψ̄ψ

)
, (1.1)

where ψ̄ = ψ†γ0 and φ is a background scalar field. We take signature (1,−1,−1,−1) in

this paper. The gamma matrix obeys

{γi, γj} = 2 gij . (1.2)

Imposing the following bag boundary condition (BC) [9–11]

(1± γ5γ
ini)ψ|∂M = 0 (1.3)

and applying the heat kernel expansion [2, 11] gets Weyl anomaly at one loop

A =
1

8π2

(∫
M

√
|g|
[
−(∇φ)2 +

Rφ2

6
+ φ4

]
+

∫
∂M

√
|h|kφ

2

3

)
. (1.4)

Here k = ∇ini and ni is the outward-pointing normal vector. From the action (1.1), it is

clear that the Fermi condensation is given by the renormalization expectation value of the

scalar operator O := ψ̄ψ,

〈ψ̄ψ〉 =
1√
|g|
δIeff

δφ
, (1.5)

where Ieff is the effective action of fermions. For a flat half space x ≥ 0, it is remarkable

that the Fermi condensation (1.5) can be derived from Weyl anomaly (1.4) as [2]

〈ψ̄ψ〉 = − 1

4π2

ni∇iφ+ 1
3kφ

x
+O(lnx), x ∼ 0, (1.6)

where we have used ni∇iφ = −∂xφ since ni = (0,−1, 0, 0).

In this paper, we generalize the work of [2] to more general class of boundary conditions

in four dimensional CFT/BCFT [13, 14]. We show that, by imposing the Wess-Zumino

consistency condition, one can obtain the general expression of Weyl anomaly due to a

background scalar field (or pseudoscalar field) φ.1 Compared with (1.4), generally more

boundary terms are allowed to appear. This is one of the main results of this paper. We

then show that the presence of the Weyl anomaly implies that the scalar operator defined by

O :=
1√
|g|

δI

δφ
(1.7)

1The same results apply for a pseudoscalar field. In the rest of the paper, unless otherwise stated, we

will refer to both a scalar and a pseudoscalar simply as a scalar without specifying its parity.
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obtains a nontrivial expectation value near the boundary. Generally new contributions

that are independent of the background scalar field can arise. We show that this also

occur in conformally flat spacetime without boundaries. This is another interesting result

of this paper. Finally, we verify our results with the Yukawa theory of fermions coupled

to a background scalar or pseudoscalar field with general BCs. We do the same for the

holographic BCFT and we obtain, in particular, the shape and curvature dependence of

the one point function of the dual scalar operator in strongly coupled CFT. This is an

interesting quantity and we expect it to have non-trivial implications on the phase structure

of the theory.

The paper is organized as follows. In section 2, we obtain the general expressions of

Weyl anomaly for 4d BCFTs with a general shape of boundary in a curved spacetime,

and in the presence of a background scalar field. In section 3, we show that the Weyl

anomaly induces a condensation for the corresponding scalar operator O in a BCFT near

the boundary or in a CFT in a conformally flat spacetime without boundaries. In section 4,

we consider the Yukawa theory with general BCs and verify the anomalous Fermi conden-

sation near the boundary. In section 5, we study the holographic one point function near

the boundary of BCFT and verify that it takes the expected form as derived in section 3.

In section 6, we give a holographic proof of the Weyl anomaly induced one-point function

in conformally flat spacetime without boundaries. Finally, we conclude in section 7.

Conventions. People in the fields of quantum field theory and gravity theory usually

use different signature of the metric [3, 4]. For the convenience of the reader, we take

signature (1,−1,−1,−1) in section 1 — section 4 for the field-theoretical discussions, while

signature (1, 1, 1, 1) or (−1, 1, 1, 1) in section 5 and section 6 for the holographic study.

In signature (1,−1,−1,−1) [3], Rijkl = ∂lΓ
i
jk − ∂kΓ

i
jl + ΓilmΓmjk − ΓikmΓmjl , Rij = Rl ilj ,

R = gijRij , kij = hki h
l
j∇knl, k = hijkij = ∇ini where ni is the normal vector given

by ni = −ni = (0,−1, 0, 0) in a flat half space x ≥ 0. While in signature (1, 1, 1, 1)

and (−1, 1, 1, 1) [4], Rijkl = ∂kΓ
i
jl − ∂lΓijk + ΓikmΓmjl − ΓilmΓmjk, Rij = Rl ilj , R = gijRij ,

kij = hki h
l
j∇knl, k = hijkij where ni is the outward-pointing normal vector. Note that

Fermi condensation 〈ψ̄ψ〉, stress tensor Tij , Ricci scalar R, normal vector ni and the trace

of extrinsic curvature k are the same, while Rijkl, Rij , kij , gij , ni and, in particular, the

Weyl anomaly 〈T ii 〉, differ by a minus sign in different signatures. Note that R and k agree

with those of [11] in both signatures.

2 Weyl anomaly due to scalar background

Let φ be a scalar field or pseudo-scalar field with dimension one, which we will consider

as a background. Similar to the background gravitational field and gauge field, it leads to

Weyl anomaly [15]. For a CFT/BCFT, the Weyl anomaly should be Weyl invariant and

obey the Wess-Zumino consistency condition [16]

[δσ1 , δσ2 ]A = 0. (2.1)

– 3 –
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Imposing the above conditions, we obtain the general expressions of Weyl anomaly due to

a background field φ:

A = a1A1 + a2A2 +

4∑
n=1

bnBn, (2.2)

where An,Bm are given by

A1 =

∫
M

√
|g|
[
−(∇φ)2 +

1

6
Rφ2

]
+

∫
∂M

√
|h|1

3
kφ2, (2.3)

A2 =

∫
M

√
|g|φ4, (2.4)

B1 =

∫
∂M

√
|h|φ3, (2.5)

B2 =

∫
∂M

√
|h|[kφ2 + 3φni∇iφ], (2.6)

B3 =

∫
∂M

√
|h|[Rφ+ 6�φ], (2.7)

B4 =

∫
∂M

√
|h|[Trk̄2φ] (2.8)

and an, bm are the corresponding bulk and boundary central charges. Here gij , R,∇i,� are

metrics, Ricci scalar, covariant derivatives and D’Alembert operator defined in the bulk M ,

hab is the induced metric on the boundary ∂M , ni is the outpointing normal vector given

by ni = −ni = (0,−1, 0, 0) in a flat half space, kab = h i
a h

j
b ∇inj is the extrinsic curvature

and k̄ab = kab − 1
3khab is its traceless part.

Some comments are in order. 1. The bulk central charges an are independent of

boundary conditions, while the boundary central charges bm depend on boundary condi-

tions. 2. Second, as mentioned above, the Weyl anomaly (2.2) obeys the Wess-Zumino

consistency (2.1). 3. We consider only integer powers of φ and ignore terms including

φ1/2, φ1/3, . . .. If such terms are allowed, we could construct scalar-invariant terms such as∫
∂M

√
|h|
[
−(Dφ

1
2 )2 +

1

8
Rφ
]
, (2.9)

where Da,R are covariant derivatives and Ricci scalar on the boundary ∂M , respectively.

However, since (Dφ
1
2 )2 = 1

4(Dφ)2/φ is not well-defined on points with φ = 0 but Dφ 6= 0,

we rule out such possible contributions to Weyl anomaly. 4. We focus on CFT/BCFT in

this paper. For general QFT, non-scale-invariant terms are allowed in Weyl anomaly. 5. We

can rewrite B3 into more convenient form for the purpose to derive Fermi condensation

B3 =

∫
∂M

√
|h|
[
Rφ− 6ninj∇i∇jφ− 6kni∇iφ+ 6DaDaφ

]
, (2.10)

where the total derivative term DaDaφ can be dropped since ∂M is closed, i.e., ∂(∂M) =

0. In the next section, we shall show that B3 is related to the leading term of Fermi

condensation near the boundary.
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3 Anomalous condensation

In this section, we show that in four dimensional spacetimes with and without boundaries,

the operator O that couples to the scalar field φ obtains a non-trivial expectation value due

to the Weyl anomaly (2.2). For simplicity, we focus on the case of CFT/BCFT below. For

the theory of Dirac fermions with Yukawa coupling to a background scalar field φ, O = ψ̄ψ

and the expectation value 〈O〉 gives Fermi condensation.

3.1 Spacetime with boundary

Let us first investigate the case with boundaries. Since the mass dimension of scalar

operator O is three, its expectation value takes the asymptotic form [17]

〈O〉 =
O0

x3
+
O1

x2
+
O2

x
+O

(
x0, lnx

)
(3.1)

near the boundary. Here x is the proper distance from the boundary, On have mass

dimension n and depend on only the background geometry and background scalar. Below

we will derive exact expressions of On from the Weyl anomaly.

One way to see that the coefficients On are directly connected with the Weyl anomaly

is by noticing that the one point function (3.1) can be understood as a well-defined distribu-

tion [18, 19] if the inverse powers of x are accompanied by logarithmically divergent contact

terms lnx ∂nx δ(x). Such contract terms determine the scale variation of 〈O〉 and hence the

coefficients On of (3.1) are in fact determiend by the central charges of Weyl anomaly.2

From this point of view, it is clear that the coefficient O0 is completely determined by an

anomaly coefficient instead of other non-anomalous data.

In this paper, we use an alternative method to derive On from the Weyl anomaly.

Using the fact that the Weyl anomaly is related to the UV Logarithmic divergent term of

the effective action, one can [5, 8] establish the relation

(δA)∂M = (δIeff)log ε =

(∫
M

√
|g|
(

1

2
〈Tij〉δgij + 〈Ji〉δAi + 〈O〉δφ

))
log ε

(3.2)

which relates directly the variation of the Weyl anomaly with a corresponding one-point

function. Here a regulator x ≥ ε to the boundary has been introduced in the integral on

the r.h.s. of (3.2) and the symbol ( )log ε denotes the coefficient of the log ε term. The first

equation of (3.2) is due to the definition of Weyl anomaly, and the second equation of (3.2)

is just the definition of one point functions. For our purpose, we will turn on only the

variation of scalar and focus on

(δφA)∂M =

(∫
M

√
|g|〈O〉δφ

)
log ε

. (3.3)

The variations δgij , δAi, δφ are independent. Previously the one-point functions 〈Tij〉, 〈Ji〉
have been studied. In this paper we will consider the scalar variation δφ and derive the

one-point function 〈O〉 from the Weyl anomaly.

2We thank the referee for emphasising this point to us.
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To proceed, let us consider the metric written in the Gauss normal coordinates

ds2 = −dx2 +
(
hab(y)− 2xkab(y) + x2qab(y) +O(x3)

)
dyadyb (3.4)

and expand the scalar near the boundary as

φ(x, y) = φ0(y) + xφ1(y) +
x2

2
φ2(y) +O(x3) (3.5)

where ni = −ni = (0,−1, 0, 0) and φm are independent variables. From (2.2), we get the

l.h.s. of (3.3)∫
∂M

√
|h| (−6b3δφ2 + (6b3k − 3b2φ0) δφ1)

+

∫
∂M

√
|h|
(

2

3
a1kφ0 − 2a1φ1 + 2b2kφ0 + b3R+ b4Trk̄2 + 3b1φ

2
0 − 3b2φ1

)
δφ0 (3.6)

Next, we substitute (3.1) into the r.h.s. of (3.3), integrate over x and select the logarithmic

divergent term, we obtain∫
∂M

√
|h|
(
−O0

2
δφ2 − (O1 − kO0) δφ1

)
+

∫
∂M

√
|h|
(
−1

2
O0

(
k2 + q − 2Trk2

)
+ kO1 −O2

)
δφ0, (3.7)

where we have used
√
|g| =

√
|h|
(
1− kx+ 1

2

(
k2 + q − 2Trk2

)
x2 +O(x3)

)
and q = habqab

in the above calculations. Comparing (3.6) and (3.7), we can solve

O0 = 12b3, O1 = 3(2b3k+b2φ0) ,

O2 =−2a1

(
1

3
kφ0−φ1

)
−3b1φ

2
0 +b2(kφ0 +3φ1)−b3(6q+R−12Trk2)−b4Trk̄2. (3.8)

From (1.5), (3.1) and (3.8), we finally obtain one of our main results for the expectation

value of the Fermi condensation near the boundary:

〈ψ̄ψ〉 =
12b3
x3

+
6b3k + 3b2φ

x2

+
−2a1(ni∇i + 1

3k)φ− 3b1φ
2 + b2kφ− b3(R+ 6Rnn − 6Trk2)− b4Trk̄2

x

+O(x0, lnx), (3.9)

where φ = φ(x) = φ0 + xφ1 + · · · in the above expression. Above we have rewritten On
into covariant expressions and have used Rnn = q − Trk2 in Gauss normal coordinates.

Let us make some comments. 1. (3.9) shows that the leading terms of Fermi conden-

sation near the boundary are completely fixed by central charges of Weyl anomaly. In

general, the boundary central charge depends on choices of boundary conditions, so does

the Fermi condensation (3.9). 2. Similar to the case of current and stress tensor [5, 8],

there are boundary contributions to the Fermi condensation, which can cancel the “bulk

– 6 –
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divergence” and make finite the total Fermi condensation. 3. (3.9) works for general 4d

BCFTs. For non-BCFTs, there are corrections to Weyl anomaly and thus corresponding

corrections to Fermi condensation (3.9). 4. (3.9) agrees with the results of the free theory

with bi = 0 [2]

〈ψ̄ψ〉 =
−2a1(ni∇i + 1

3k)φ

x
+O(x0, lnx) (3.10)

Note that ∇n of [2] denotes ∇x, so it is given by −ni∇i in this paper. 5. In general in a

curved spacetime and for curved boundary, the Fermi condensation (3.9) is non-vanishing

even without a background scalar

〈ψ̄ψ〉φ=0 =
12b3
x3

+
6b3k

x2
− b3(R+ 6Rnn − 6Trk2) + b4Trk̄2

x
+O(x0, lnx). (3.11)

This generalize the result of [2].

3.2 Conformally flat spacetime without boundary

Let us next turn to discuss the case without boundaries. For simplicity, we focus on

conformally flat spacetime. Let us start by deriving the anomalous transformation rule

for the condensate. Consider a theory with metric and scalar field given by (gij , φ). Due

to the anomaly, the renormalized effective action Ieff is not invariant under the Weyl

transformation. Consider the Weyl transformation

gij → g′ij = e−2σgij , φ→ φ′ = eσφ, (3.12)

for arbitrary finite σ(x), we have generally

δ

δσ
Ieff(e−2σgij , e

σφ) = A(e−2σgij , e
σφ). (3.13)

This can be integrated to give the effective action [16, 23, 24]. Using the fact that the

anomaly (2.2) is Weyl invariant up to a surface term:

A(e−2σgij , e
σφ) = A(gij , φ) + a1

∫
M
∂i(
√
−gφ2gij∂jσ), (3.14)

we obtain the transformation rule for the effective action:

Ieff(e−2σgij , e
σφ) = Ieff(gij , φ)

+ a1

∫
M

√
|g|
[(
−(∇φ)2 +

Rφ2

6

)
σ +

φ2

2
(∇σ)2

]
+
a1

3

∫
∂M

√
|h|kφ2σ

+ a2

∫
M

√
gφ4σ +

4∑
n=1

bnBnσ. (3.15)

One can check that the effective action satisfies Wess-Zumino consistency [δσ1 , δσ2 ]Ieff = 0.

This is a test of our results. Using (3.15), we obtain finally the anomalous transformation

rule for the condensate (1.5) under Weyl transformation gij → g′ij = e−2σgij , φ→ φ′ = eσφ,

〈O〉 = −2a1∇(σ∇φ)−
(a1

3
φR+ 4a2φ

3
)
σ − a1φ(∇σ)2, (3.16)

– 7 –
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plus the term e−3σ〈O〉′ and some boundary terms which we drop in spacetime without

boundaries. Here 〈O〉 (resp. 〈O〉′) denotes the vev of the condensate of the theory (5.1) in

the background spacetime gij (resp. g′ij). Taking g′ij to be the flat spacetime metric and

the fact that the Fermi condensation vanishes in flat spacetime, we finally obtain (3.16) as

the Fermi condensate in conformally flat spacetime

ds2 = e2σηijdx
idxj . (3.17)

For Dirac fermions with Yukawa coupling, we have O = ψ̄ψ, a1 = 1/(8π2) and (3.16)

reproduces the result of [2].

4 Yukawa coupled fermions

In this section, we investigate the anomalous Fermi condensation for the Yukawa coupled

Dirac theory (1.1) with more general BCs. We will derive the general expression (2.2) for

the Weyl anomaly and also the corresponding Fermi condensate.

The BCs of Dirac fields should make zero the normal current on the boundary. Ac-

cording to [14], the general BCs take the form

Π−ψ|∂M = 0, (4.1)

where Π± = (1± χ)/2 are projection operators and χ satisfy [14]

χγn = −γnχ̄, χγa = γaχ̄, χ2 = χ̄2 = 1. (4.2)

Here χ̄ = γ0χ+γ0 and n (a) denote the normal (tangent) directions. Without loss of

generality, we choose

χ = −ieiθγ5γini, (4.3)

which defines the so-called chiral bag boundary condition(
1 + ieiθγ5γini

)
ψ|∂M = 0. (4.4)

Here θ is a constant and ni is the normal vector given by (0, 1, 0, 0) in a flat half space.

Note that the BC (4.4) reduces to the usual bag BC (1± iγini)ψ|∂M = 0 for θ = 0, π. And

it reduces to the BC (1.3) studied in [2] when θ = ±π
2 .

From the BC (4.4) and EOM (iγi∇i + φ)ψ = 0, one can derive that(
−ni∇i + S

)
Π+ψ|∂M = 0, (4.5)

where

S = −
(
φ cos θ +

k

2

)
Π+ (4.6)

and

Π± :=
1

2
(1∓ ieiθγ5γini). (4.7)

– 8 –
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4.1 Fermi condensate from Weyl anomaly

In this subsection, we use heat-kernel method [11] to derive Weyl anomaly due to a back-

ground scalar. To apply the heat-kernel method, we need to construct a Laplace-type

operator from the Dirac operator. Following [3], we define two operators

D = iγi∇i + φ, (4.8)

D̃ = −iγi∇i + φ. (4.9)

In even dimensions, {γi} and {−γi} form equivalent representations of Clifford algebra [3].

As a result, the effective action can be rewritten as

W = −i ln detD = − i
2

ln det(D̃D), (4.10)

where

D̃D = gij∇i∇j +
1

4
R+ φ2 − iγi∂iφ := gij∇i∇j − E, (4.11)

where

E := −1

4
R− φ2 + iγi∂iφ. (4.12)

Now we are ready to derive Weyl anomaly. Using the heat kernel coefficient in [11],

the Weyl anomaly related to the background scalar is given by

A =
1

360(4π)2

∫
M
dx4
√
|g|
(
− 60�E + 60RE + 180E2

)
+

1

360(4π)2

∫
M
dy3
√
|h|
(
− (240Π+ − 120Π−)ni∇iE + 120Ek + 720SE + 120SR

+ 144Sk2 + 48Skabk
ab + 480S2k + 480S3 + 120SDaχD

aχ
)

(4.13)

where Da denote covariant derivative on the boundary and we have change the sign of �E,

ni∇iE and SDaχD
aχ of [11] due to different choice of signature in this paper. Substitut-

ing (4.3), (4.6), (4.12) and Daχ = −ieiθγ5γikai into (4.13), we obtain

A =
1

8π2

(∫
M

√
|g|
(
− (∇φ)2 +

1

6
Rφ2 + φ4

)
+

∫
∂M

√
|h|1

3
kφ2

)
+

4∑
n=1

bnBn (4.14)

where Bm are given by (2.5), (2.6), (2.7), (2.8) and bm are boundary central charges,

b1 =
cos θ − 2

3 cos3 θ

4π2
, b2 = −cos2 θ

12π2
, b3 =

cos θ

48π2
, b4 =

cos θ

40π2
. (4.15)

It is remarkable that the Weyl anomaly (4.14) for general BC (4.4) is Weyl invariant. This

can be regarded as a check of our calculations. Besides, for θ = ±π
2 , all the boundary

central charges vanish and (4.14) reduces to the Weyl anomaly of [2]. For general BCs,

the boundary central charges (4.15) are no longer zero. This leads to Fermi condensation

〈ψ̄ψ〉 ∼ 1
x3

+· · · from (3.9). In the case of flat space with a flat boundary, i.e. Rijkl = kij = 0,

the Fermi condensation (3.9) (4.15) can be simplified as

〈ψ̄ψ〉 =
cos θ

4π2

1

x3
− cos2 θ

4π2

φ(x)

x2
+

1

4π2

∂xφ(x)− (3 cos θ − 2 cos3 θ)φ2(x)

x
+ · · · . (4.16)
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4.2 Fermi condensate from Green function method

In this subsection, we study the anomalous Fermi condensation near a boundary by ap-

plying the Green’s function method [12]. For simplicity, we focus on the linear order of

background scalar. We verify the result (4.16) in a flat half space.

Following [12], let us first derive the Green’s function at the linear order of the back-

ground scalar field. Green’s function of the Dirac fields satisfies(
iγi∇i + φ

)
S(x, x′) = δ(x, x′), (4.17)

where δ(x, x′) := δ4(x− x′)/
√
|g|. We impose the BCs (4.1)

Π−S(x, x′)|∂M = 0, (4.18)

where χ is given by (4.3). S also satisfies

S(x′′, x)γnS(x, x′)|∂M = 0, (4.19)

which follows immediately from (4.18) and (4.2). To solve for S perturbatively, let us split

the Green’s function into the background term S0 and a correction term Sc,

S = S0 + Sc, (4.20)

where S0 obeys the EOM

iγi∇iS0(x, x′) = δ(x, x′) (4.21)

and the BC

Π−S0(x, x′)|∂M = 0. (4.22)

For reasons similar to that of (4.19), it is easy to see that

SA(x′′, x)γnSB(x, x′)|∂M = 0, (4.23)

where SA,B denotes S, S0, Sc. Let us apply the Green’s formula for Dirac fields. We obtain∫
M
d4x
√
|g|
[
Sc
(
x′, x

) (
iγi
−→
∇ i + φ

)
S
(
x, x′′

)
+ Sc

(
x′, x

) (
iγi
←−
∇ i − φ

)
S
(
x, x′′

)]
= −

∫
∂M

d3x
√
|h|
[
Sc
(
x′, x

)
iγnS

(
x, x′′

)]
= 0, (4.24)

where
←−
∇ i means acting on the left and we have used (4.23) in the last equation above.

Now (4.17) and (4.21) imply that

Sc(x
′, x)(iγi

←−
∇ i − φ) = S0(x′, x)φ(x). (4.25)

Substituting to (4.24), we obtain the integral equation for Sc

Sc(x
′, x′′) = −

∫
M
d4x
√
|g|
[
S0(x′, x)φ(x)S(x, x′′)

]
, (4.26)
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and perturbatively we have

Sc(x
′, x′′) = −

∫
M
d4x
√
|g|S0(x′, x)φ(x)S0(x, x′′)

+

∫
M
d4x
√
|g|
∫
M1

d4x1

√
|g1|S0(x′, x)φ(x)S0(x, x1)φ(x1)S0(x1, x

′′)

+ · · · (4.27)

where the n-th line of (4.27) is of order O(φn).

The Feynman Green function of Dirac field is given by [3]

S(x, x′) = −i〈Tψ(x)ψ̄(x′)〉, (4.28)

where T is the time-ordering symbol. From (4.28) one can derive the Fermi condensation

〈ψ̄ψ〉 = −i lim
x′→x

Tr
[
S(x, x′)− S̄(x, x′)

]
, (4.29)

where we have subtracted the reference Green function S̄ for the theory without boundary.

From the key formula (4.27), we get

S(x′, x′′) = S0(x′, x′′)−
∫ ∞

0
dx

∫ ∞
−∞

dtd2yS0(x′, x)φ(x)S0(x, x′′) +O(φ2), (4.30)

S̄(x′, x′′) = S̄0(x′, x′′)−
∫ ∞
−∞

dx

∫ ∞
−∞

dtd2yS̄0(x′, x)φ(x)S̄0(x, x′′) +O(φ2), (4.31)

where φ(x) = φ0 + xφ1 and

S0(x′, x′′) =
1

2π2

[
γ0(t′ − t′′)− γ1(x′ − x′′)− γa(y′a − y′′a)

((x′ − x′′)2 + (y′a − y′′a)2 − (t′ − t′′)2)2

+ χ.
γ0(t′ − t′′)− γ1(−x′ − x′′)− γa(y′a − y′′a)

((x′ + x′′)2 + (y′a − y′′a)2 − (t′ − t′′)2)2

]
, (4.32)

S̄0(x′, x′′) =
1

2π2

γ0(t′ − t′′)− γ1(x′ − x′′)− γa(y′a − y′′a)

[(x′ − x′′)2 + (y′a − y′′a)2 − (t′ − t′′)2]2
. (4.33)

Note that the integration region of x are different for S and S̄. Substituting (4.3), (4.30)–

(4.33) into (4.29) and performing the Wick rotation t = −itE , we obtain

〈ψ̄ψ〉 =
cos θ

4π2x3
−
∫ ∞

0
dx′
∫ ∞

0
dr

4r2 (cos(2θ) (φ1x
′ + φ0)− φ1x

′ + φ0)

π3
(
r2 + (x′ + x)2

)3 +O(φ2), (4.34)

where we have performed the angular integrals above. Carrying out the integrals along x′

and r, we obtain the anomalous Fermi condensation in a half space

〈ψ̄ψ〉 =
cos θ

4π2x3
− cos2 θφ(x)

4π2x2
+
∂xφ(x)

4π2x
+O(φ2), (4.35)

which agree with (4.16) precisely.
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Following the same approach, we can derive the axial vector current

〈ψ̄γ5γiψ〉 =

[
sin θφ(x)

4π2x2
+

sin θ∂xφ(x)

4π2x
+O(φ2)

]
δi1 (4.36)

and the pseudo-Fermi condensation

〈ψ̄iγ5ψ〉 = − sin θ

4π2x3
+

sin(2θ)φ(x)

8π2x2
+O(φ2). (4.37)

It is interesting that the normal axial vector current and pseudo-Fermi condensation are

non-zero for chiral angle θ 6= 0.

4.3 Condensation due to pseudoscalar

In this subsection, we generalize the above discussions to include Yukawa coupling with

pseudoscalar. Since the calculations are similar to those of section 4.1 and section 4.2, we

will list only the key steps and key results below.

Let us start with the action

I =

∫
M

√
|g|ψ̄

(
iγi∇i + φ+ iγ5φ̄

)
ψ, (4.38)

where φ and φ̄ are background scalar and pseudoscalar, respectively. Following section 4.1,

we construct two operators

D = iγi∇i + φ+ iγ5φ̄, (4.39)

D̃ = −iγi∇i + φ− iγ5φ̄. (4.40)

Since {γi, γ5} and {−γi,−γ5} form equivalent representations of Clifford algebra in even

dimensions [3], we have

W = −i ln detD = − i
2

ln det(D̃D). (4.41)

From (4.39), (4.40) and D̃D = gij∇i∇j − E, we get

E = −1

4
R− φ2 + iγi∂iφ− φ̄2 + γ5γ

i∂iφ̄. (4.42)

Following the approach of section 4.1, we obtain

S = −
(
k

2
+ φ cos θ − φ̄ sin θ

)
Π+, χ = −ieiθγ5γini, Daχ = −ieiθγ5kabγb. (4.43)

Substituting (4.42) and (4.43) into (4.13), we obtain the Weyl anomaly

A = a1A1(φ) + ā1A1(φ̄) +

4∑
n=1

bnBn(φ) +

4∑
n=1

b̄nBn(φ̄)

+
1

8π2

∫
M

√
|g|(φ2 + φ̄2)2 + b0

∫
∂M

√
|h|
(
kφφ̄+

3

2
ni∇i(φφ̄)

)
(4.44)
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where A1,Bm are defined by (2.3), (2.5)–(2.8); a1 = ā1 = 1
8π2 , bm’s are given by (4.15),

b̄m’s are boundary central charges related to the pseudoscalar

b̄1 = −
sin θ − 2

3 sin3 θ

4π2
, b̄2 = −sin2 θ

12π2
, b̄3 = − sin θ

48π2
, b̄4 = − sin θ

40π2
(4.45)

and

b0 =
sin(2θ)

12π2
(4.46)

is the central charge associated with the last (new) anomaly term in (4.44). It is interesting

that the boundary central charge obeys the following relation

b̄m (θ) = bm

(
θ +

π

2

)
, m = 1, 2, 3, 4. (4.47)

Besides, (4.44) is Weyl invariant, which can be regarded as a test of our calculations.

From the Weyl anomaly (4.44) and the key formula

(δφ,φ̄A)∂M =

(∫
M

√
|g|
(
〈ψ̄ψ〉δφ+ 〈ψ̄iγ5ψ〉δφ̄

))
log ε

, (4.48)

one can derive the Fermi condensate

〈ψ̄ψ〉 = r.h.s. of (3.9) +
3
2b0φ̄(x)

x2
+

1
2b0kφ̄(x)

x
(4.49)

and the pseudo-Fermi condensation

〈ψ̄iγ5ψ〉 = r.h.s. of (4.49) with (φ, φ̄, bm) replaced by (φ̄, φ, b̄m). (4.50)

It is interesting that the pseudoscalar can induce Fermi condensation and similarly the

scalar can induce pseudo-Fermi condensation. In a flat half space, the Fermi condensa-

tion (4.49) and the pseudo-Fermi condensation (4.50) becomes

〈ψ̄ψ〉= cosθ

4π2

1

x3
− cos2 θ

4π2

φ(x)

x2
+

sin(2θ)

8π2

φ̄(x)

x2
+
∂xφ(x)−φ2(x)(3cosθ−2cos3 θ)

4π2x
+ · · · ,

(4.51)

〈ψ̄iγ5ψ〉=
− sinθ

4π2

1

x3
− sin2 θ

4π2

φ̄(x)

x2
+

sin(2θ)

8π2

φ(x)

x2
+
∂xφ̄(x)+ φ̄2(x)(3 sinθ−2sin3 θ)

4π2x
+ · · · .

(4.52)

Similar to section 4.2, one can verify (4.51) and (4.52) by applying Green’s function method.

The methods are the same as those of section 4.2, except that one needs to replace Sc by

the following one

Sc(x
′, x′′) = −

∫
M
d4x
√
|g|S0(x′, x)

(
φ(x) + iγ5φ̄(x)

)
S0(x, x′′) +O(φ2, φ̄2, φφ̄). (4.53)
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Figure 1. BCFT on M and its dual N .

5 Holographic story I: CFT with boundary

In this section, we study the one point function of scalar operator O in holographic

BCFT [25]. We will derive the holographic one point functions and holographic Weyl

anomaly and find that they indeed obey the universal relations (3.8) between Fermi con-

densation and central charges. For our purpose, it will be sufficient to consider the Eu-

clidean version of the AdS/CFT correspondence. Anomalies and correlation functions in

zero temperature Minkowski theory can be obtained directly by Wick rotation. Note that,

we use signature (1, 1, 1, 1) instead of (1,-1,-1,-1) in this and the next section. It should

be mentioned that the one point function (e.g. Fermi condensation) is independent of the

choice of signature.

Let us first give a quick review of the geometry of holographic BCFT [25]. Consider

a BCFT [13] defined on a manifold M with a boundary P . Takayanagi [25] proposed to

extend the d-dimensional manifold M to a (d+1)-dimensional asymptotically AdS space N

such that ∂N = M∪Q, where Q is a d dimensional manifold with boundary ∂Q = ∂M = P .

See figure 1 for example.

Without loss of generality, we choose the following bulk action in this paper

I =

∫
N
d5x
√
|G|
(
R̂+ 12− 1

2

(
∇̂µφ̂∇̂µφ̂+m2φ̂2

))
+ 2

∫
Q
dx4
√
|γ|
(
K − T +

ξ

2
φ̂

)
,

(5.1)

where we have set 16πGN = 1 and AdS radius l = 1 for simplicity. Note that the Euclidean

action is given by IE = −I with signature (1, 1, 1, 1). Here (Gµν , R̂, ∇̂µ, φ̂) are the metric,

scalar, covariant derivatives and Ricci scalar in the bulk N , (γij ,K) are the induced metric

and extrinsic curvature on the bulk boundary Q, m is the mass of scalar field φ̂ and (T, ξ)

are constant parameters of the theory. Note that T can be regarded as holographic dual

of the boundary entropy [25–27], while, as we will see later that, ξ parameterizes the

boundary condition of the scalar field. To have a well-defined action principle, one must

impose suitable boundary conditions on Q. Following [25], we choose Neumann boundary

conditions (NBC)

Kij −
(
K − T +

ξ

2
φ̂

)
γij = 0, (5.2)

n̂µ∇̂µφ̂− ξ = 0, (5.3)
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where n̂µ is the outward-pointing normal vector on Q. Note that there are other choices

of consistent boundary conditions [26–28], which we leave for future studies. From the

action (5.1), we get equations of motion (EOM)

R̂µν −
R̂+ 12

2
Gµν =

1

2
Tµν , (5.4)

(∇̂µ∇̂µ −m2)φ̂ = 0, (5.5)

where Tµν is the stress tensor of the scalar field

Tµν = ∇̂µφ̂∇̂ν φ̂−
1

2
Gµν

(
∇̂αφ̂∇̂αφ̂+m2φ̂2

)
. (5.6)

Near the AdS boundary, the scalar field behaves as

φ̂ = z4−∆φ(x) + +z∆φ(2∆−4)(x), z → 0, (5.7)

where φ is the boundary scalar discussed in section 2 and section 3, ∆ = 2 +
√

4 +m2

is the conformal dimension of the operator O dual to φ̂. According to the dictionary of

AdS/CFT [29, 30], we have

〈O〉 =
1√
|g|

δI

δφ
= (2∆− 4)φ(2∆−4) + · · · (5.8)

where · · · denote finite and local functions of (φ, gij , ψ(2∆−4)). Since we are interested in

the ‘divergent terms’ (3.1) near the boundary, we can ignore these irrelevant · · · terms.

For our purpose, we focus on the case ∆ = 3, or equivalently,

m2 = −3, (5.9)

which is above the Breitenlohner-Freedman stability bound m2 > −4 for asymptotic AdS5.

Now the approach to derive the holographic one point function is straightforward.

First we solve the coupled Einstein-scalar EOM (5.4) and (5.5) with the boundary condi-

tions (5.2) and (5.3). Then we use the scalar solution to obtain the holographic one point

function (5.8) from the asymptotic behaviour (5.7).

It is a non-trivial problem to find solutions which satisfy the EOM with the specified

form of boundary conditions (BC). For examples, the usual AdS black holes are no longer

solutions to AdS/BCFT generally, since they do not obey NBC (5.2). A systematic method

based on derivative expansion was developed in [5, 28, 31]. Following [5, 28, 31], we take

the following ansatz for the bulk metrics

ds2 =
1

z2

[
dz2 +

(
1 + εxX1

( z
x

)
+ ε2x2X2

( z
x

)
+ · · ·

)
dx2

+
(
δab − 2εxKab

( z
x

)
+ ε2x2Qab

( z
x

)
+ · · ·

)
dyadyb

]
+O

(
ξ2
)

(5.10)
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and the bulk scalar field

φ̂ = f0

( z
x

)
+ ε xf1

( z
x

)
+ ε2x2f2

( z
x

)
+ ε3x3f3

( z
x

)
+ · · · , (5.11)

where Xn,Kab, Qab, fn are unknown functions to be determined and ξ is the parameter for

the scalar boundary condition (5.3). Note that we have introduced a parameter ε to label

the order of derivative expansions with respect to x or z. It should be set ε = 1 at the end

of calculations. To get an asymptotic AdS background, we set the BC

X1(0) = X2(0) = 0, Kab(0) = kab, Qab(0) = qab,

lim
z→0

f0(z)

z
= 0, lim

z→0

f1(z)

z
= φ0, lim

z→0

f2(z)

z
= φ1, lim

z→0

f3(z)

z
=

1

2
φ2, etc., (5.12)

so that the metric and scalar on M take expected forms in the Gauss normal coordinates

ds2
M = dx2 +

(
δab − 2ε xkab + ε2x2qab + · · ·

)
dyadyb, (5.13)

φ = εφ0 + ε2xφ1 + ε3
x2

2
φ2 + · · · . (5.14)

The powers of ε in (5.14) is understood from the fact that φ, being the coefficient of φ̂ near

z = 0 as dedicated by (5.7), is already of order ε. We also take the embedding function of

bulk boundary Q to be of the form

x = − sinh ρz + ελ1z
2 + ε2λ2z

3 + · · · (5.15)

where λn are constants. Note that functions Xm,Kab, Qab, fn, λn are functions of ξ.

5.1 Holographic condensate

Let us first study the background solution with ε = 0. Substituting (5.11) into EOM (5.5),

(5.9), we get (
s2 + 1

)
s2f ′′0 (s) +

(
2s2 − 3

)
sf ′0(s) + 3f0(s) = 0, (5.16)

which has the solution

f0(s) = d1ξ
s3

(s2 + 1)3/2
+ d2ξ

s
(√

s2 + 1 + s2 tanh−1(
√
s2 + 1)

)
(s2 + 1)3/2

, (5.17)

where d1, d2 are integral constants and s = z
x . Imposing the NBC (5.3) on the bulk

boundary Q and DBC (5.12) on AdS boundary M , we fix the integral constants to be

d1 = −1

3
cosh3 ρ coth ρ, d2 = 0. (5.18)

Thus, the scalar f0 is of order O(ξ). As a result, the scalar stress tensor (5.6) and thus

the back reaction to the bulk geometry is of order O(ξ2). This means that AdS metric is a

solution to (5.4) only up to O(ξ2). That is the reason why we add O(ξ2) in the last line of

bulk metric (5.10). For simplicity, we mainly focus on solutions up to O(ξ) in this paper.
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We discuss briefly the effects of backreaction up to order O(ξ2) to the metric and O(ξ3) to

the scalar field φ̂ in the appendix B.

Now we are ready to derive the leading term of one point function. From (5.8), (5.11)

and (5.17), we obtain

〈O〉 =
2d1ξ

x3
+O(1/x2, ξ2). (5.19)

Comparing with (3.9), we read off the central charge

b3 =
d1ξ

6
= − ξ

18
cosh3 ρ coth ρ+O(ξ2) (5.20)

Following the same procedure, we can solve for the bulk solutions to (5.10) and (5.11)

order in order in ε and derive the sub-leading terms of the one point function. Since the

calculations are quite complicated, we will first study below some special cases and then

list the general results. In following subsections, we will determine the bulk solution up to

order ε2 and linear order in ξ.

5.1.1 Free-field limit

To warm up, let us first study so-called Free-Field Limit. It is noticed that, when the

brane tension vanishes T = 0, holographic Weyl anomaly [32], norm of displacement oper-

ator [28, 33] and their two point functions [33, 34] all exactly match those of free theories.

So we call T = 0 the free-field limit. When there are scalars, a natural choice of the

free-field limit would be to take ξ = 0 in addition to T = 0. Equivalently, the boundary

conditions become

Kij −Kγij = 0, (5.21)

n̂µ∇̂µφ̂ = 0. (5.22)

Below we will show that the above boundary conditions can indeed produce the form of

one point function for free BCFT.

First from (5.11), (5.17), (5.18), we notice that φ̂ ∼ O(ε) when ξ = 0. As a result, the

back reaction due to scalars to the bulk metric is of order O(ε2). Fortunately, to derive

one point function up to O(ε2) (O(1/x)), we do not need the bulk metric of order O(ε2).

That is because, from EOM (5.5) and φ̂ ∼ O(ε), the order O(ε2) terms of the bulk metric

affect only the order O(ε3) terms of the bulk scalar and thus are irrelevant for the one point

function up to order O(ε2). This means we can ignore the back reaction of scalars on the

metric in the free-field limit ξ = 0.

On this, we recall the metric without scalars were obtained in [5], where the bulk

metric is given by

ds2 =
1

z2

[
dz2 +

(
1 + x2ε2X

( z
x

))
dx2

+

(
δab − 2xεk̄abf

( z
x

)
− 2xε

k

3
δab + x2ε2Qab

( z
x

))
dyadyb

]
+O(ε3), (5.23)

– 17 –



J
H
E
P
0
8
(
2
0
2
0
)
1
3
4

and the embedding function of Q is given by

x = − sinh(ρ)z + ε
k cosh2 ρ

6
z2 + ε2λ2z

3 +O(ε3) (5.24)

Here kab = diag(k1, k2, k3), T = 3 tanh ρ, f(s) is given by

f(s) = 1 + 2α1 −
α1

(
s2 + 2

)
√
s2 + 1

, (5.25)

α1 =
−1

2(1 + tanh ρ)
,

and X,Qab, λ2 are complicated functions, which can be found in the appendix of [5]. As

mentioned above, in the free-field limit, we do not need either X,Qab, λ2 which are of order

O(ε2) or a non-vanishing tension T = 3 tanh ρ. However, for the convenience of following

sections, we will give the general results below by first studying the general case with

T = 3 tanh ρ and then we will take the free-field limit T → 0 at the end of calculations.

Substituting bulk metric (5.23) and scalar (5.11) with f0 = 0 into EOM (5.5), we obtain

f1(s) = s

(
d3√
s2 + 1

+ d4

)
, (5.26)

f2(s) =
s
(
d3k + 2d6(s2 + 1)

)
2
√
s2 + 1

+ d5s. (5.27)

Imposing DBC (5.12) on AdS boundary z = 0, we get

d4 = φ0 − d3, d6 = −1

2
d3k − d5 + φ1. (5.28)

Imposing NBC (5.22) on bulk boundary Q, we obtain

d3 =
φ0 coth ρ

coth ρ− csch2ρ+ 1
, d5 =

kφ0(− sinh(2ρ) + cosh(2ρ)− 3) + 3φ1 sinh(2ρ)

3(sinh(2ρ) + cosh(2ρ)− 3)
. (5.29)

Substituting bulk scalar solution (5.26) and (5.27) into (5.8) and (5.11), we obtain the one

point function

〈O〉 = −d3

x2
ε− d3k + d5 − φ1

x
ε2 +O

(
ε3, ξ

)
. (5.30)

In the free-field limit T = ρ = 0, it becomes

〈O〉 = −
(
k
3φ0 − φ1

)
x

ε2 +O
(
ε3, ξ

)
, (5.31)

which takes the same form (3.10) as that of the free theories [2] with all the boundary

charges vanish: bi = 0. Comparing with (3.10) and using ni∇iφ = −φ1 +O(x), we get the

bulk central charge

a1 =
1

2
. (5.32)

Note that the bulk central charge is independent of boundary conditions, so (5.32) is exact

and gets no corrections from ε and ξ.
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5.1.2 No-scalar limit

Let us go on to investigate the no-scalar limit. By ‘no scalar’ we mean there is no boundary

scalar, i.e., φ = 0, but the bulk scalar φ̂ can be non-zero. Now we have φ̂ ∼ O(ξ), which

back react the bulk metric at order O(ξ2). Since we mainly focus on solutions linear in

ξ, we can ignore the back reaction due to scalars to the bulk metrics. Note that we have

φ̂ ∼ O(ξ) in no-scalar limit, while φ̂ ∼ O(ε) in free-field limit. As a result, unlike the case

of free-field limit, in no-scalar limit we need bulk metrics (5.23) of order O(ε2) in order to

get the one point function of order O(ε2).

Solving EOM (5.5) with bulk metric (5.23) and impose the DBC (5.12) with φ0 =

φ1 = 0, we obtain f0 (5.17) with d2 = 0 and

f1(s) =
1

2
d1ks

(
1− 1

(s2 + 1)3/2

)
+ e1s

(
1√
s2 + 1

− 1

)
(5.33)

and

f2(s) =
q
(
−
(
d1s

3
(
3s2 + 2

)))
6 (s2 + 1)5/2

−
k
(
e1s

3
)

2
√
s2 + 1

−
e2

(
s3 −

√
s2 + 1s+ s

)
√
s2 + 1

+ Trk2

(
d1s

3
(
5s4 + 21s2 + 14

)
8 (s2 + 1)5/2

− 3h1(s)

)
+ k2h1(s) (5.34)

with

h1(s) =
d1s

360 (s2 + 1)5/2

[
15s2

(
3s4 + 12s2 + 8

)
− 30α2

1s
2
(
3s2 + 2

)
log
(
s2 + 1

)
− 12α1

(
2s6 − 9s4 + 4

(
5
√
s2 + 1− 6

)
s2 + 8

(√
s2 + 1− 1

))
+ 4α2

1

(
14s6 + 87s4 − 8

(
15
√
s2 + 1− 19

)
s2 − 48

(√
s2 + 1− 1

))]
, (5.35)

where d1 is (5.18), α1 is given by (5.25) and e1, e2 are integral constants. Imposing the

NBC (5.3), we fix the integral constants

e1 = −ξ k
6

cosh3 ρ coth ρ (5.36)

and

e2 = ξ

(
3Trk2 − k2

)
coth ρ csch2ρ

1080(coth ρ− 2)(coth ρ+ 1)2

(20 sinh ρ+ 13 sinh(3ρ) + 3 sinh(5ρ)− 22 cosh ρ− 4 cosh(3ρ)) (5.37)

Substituting the above scalar solution into (5.8), we obtain the one point function for

φ = 0 (3.11) with the central charges b3 given by (5.20) and

b4 = −ξ−11 sinh(2ρ)− 8 sinh(4ρ) + 8 cosh(2ρ) + 7 cosh(4ρ) + 1

90(−5 sinh ρ+ 3 sinh(3ρ) + 3 cosh ρ− 3 cosh(3ρ))
+O(ξ2). (5.38)

Note that there are four independent terms but only two parameters in (3.11). It is non-

trivial to have consistent solutions (5.20) and (5.38). This is a strong support of our results.
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5.1.3 Flat limit

In this subsection, we consider the back reaction of scalars. For simplicity, we focus on the

flat space with flat boundary, i.e., kab = qab = 0. We denote this case as the ‘flat limit’.

Since the calculations are quite similar to those of above subsections, below we only show

the key steps.

In the flat limit, the ansatz for bulk metrics and bulk scalar can be simplified as

ds2 =
1

z2

[
dz2 +

(
1 + εξxX1e

( z
x

)
+ ε2x2

(
X2

( z
x

)
+ ξX2e

( z
x

)))
dx2

+ δab

(
1 + εξxg1e

( z
x

)
+ ε2x2

(
g2

( z
x

)
+ ξg2e

( z
x

)))
dyadyb

]
+O

(
ξ2, ε3

)
(5.39)

and

φ̂ = f0

( z
x

)
+ ε xf1

( z
x

)
+ ε2x2

(
f2

( z
x

)
+ ξf2e

( z
x

))
+O(ξ2, ε3), (5.40)

where f0 is given by (5.17), (5.18) up to order O(ξ). Solving the coupled Einstein-scalar

EOM (5.4), (5.5) and the DBC (5.12) with kab = qab = 0, we obtain for the bulk scalar

f1(s) = s

(
d3

(
1√
s2 + 1

− 1

)
+ φ0

)
, (5.41)

f2 (s) = s
(√

s2 + 1 (φ1 − d5) + d5

)
(5.42)

and

f2e(s) =
s
(
−s2+

√
s2+1−1

)
√
s2+1

d7

+
d1s

48(s2+1)5/2

[
−2s2

(
15(s2+2)s2+16

)
φ2

0

+2d3

(
25s6+33s4+

(
26
√
s2+1−15

)
s2+17

(√
s2+1−1

))
φ0

+d2
3

(
−19s6−52

√
s2+1s2+54s2−34

√
s2+1−6s4

(
log
(
s2+1

)
+2
)
+34

)]
. (5.43)

Imposing the NBC (5.2), (5.3), we obtain the integral constants d1 (5.18) and

d3 =
−φ0 sinh ρ cosh ρ

(cosh ρ− 2 sinh ρ)(sinh ρ+ cosh ρ)
, (5.44)

d5 =
φ1 sinh(2ρ)

sinh(2ρ) + cosh(2ρ)− 3
,

d7 =
φ2

0csch5ρ

9216(coth ρ− 2)2(coth ρ+ 1)2

[
688− 1106 sinh(2ρ)− 258 sinh(4ρ) + 70 sinh(6ρ)

+ sinh(8ρ) + 616 cosh(2ρ)− 192 cosh(4ρ)− 104 cosh(6ρ) + 16 cosh(8ρ)
]
. (5.45)

Please see appendix B for the solutions to the bulk metric (5.39) and the embedding

function of Q (5.15). Substituting the above scalar solutions into (5.8), we obtain the one
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point function in flat limit

〈O〉 =
12b3
x3

+
3b2φ

x2
ε− 2a1∇nφ+ 3b1φ

2

x
ε2 +O(x0, lnx), (5.46)

where b3 is given by (5.20), a1 is given by (5.32) and

b1 = −ξ csch3ρ

1152(coth ρ− 2)2

(
44 + 57 cosh(2ρ) + 20 cosh(4ρ)

− 61 sinh(2ρ)− 30 sinh(4ρ)− 5 sinh(6ρ) + 7 cosh(6ρ)
)

+O(ξ2), (5.47)

b2 =
sinh ρ cosh ρ

3(cosh ρ− 2 sinh ρ)(sinh ρ+ cosh ρ)
+O(ξ2). (5.48)

Note that a1 and b3 derived in the flat limit (5.46) agree with those obtained in free-field

limit and no-scalar limit. This can be regarded as a double check of our results. Now we

have got all of the boundary central charges b1 (5.47), b2 (5.48), b3 (5.20) and b4 (5.38) in

holographic BCFT (5.1).

So far, we have verified the one point function (3.9) in three special cases. The gen-

eralization to general case is straightforward. However, the general solutions to the bulk

metric (5.10) and bulk scalar (5.11) are quite complicated, we do not list them in this

paper. The interested reader can obtain them straightforwardly with the help of Mathe-

matica. Besides, we focus on solutions in the linear order of ξ in this section. Please refer

to appendix B for solutions in higher orders of ξ.

5.2 Holographic Weyl anomaly

In this subsection, we investigate the holographic Weyl Anomaly due to the scalar back-

ground. In particular, we reproduce the four boundary central charges b1, b2, b3, b4 obtained

in section 4.1 and verify the universal relations between one point function (3.9) and Weyl

anomaly (2.2).

5.2.1 Bulk Weyl anomaly

Let us first consider the bulk contributions to Weyl anomaly, where we can ignore the

boundaries. For this case we can apply the standard method [35] to derive the holographic

Weyl Anomaly. Due to the non-trivial back reactions, the case with boundaries is more

subtle, and we leave a careful study of it in next subsection.

Following [35], we take the Fefferman-Graham gauge for the asymptotically AdS5 met-

ric

ds2 =
dρ2

4ρ2
+
ĝij(x, ρ)dxidxj

ρ
, (5.49)

where ĝij = gij + ρg(1)ij + · · · and ρ = z2. Using the EOM (5.4) together with (5.7) with

∆ = 3 and (5.49), we obtain

g
(1)
ij = −1

2
Rij +

1

12
(R− φ2)gij . (5.50)
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Substituting the bulk metric (5.49), (5.50) and bulk scalar (5.7) with ∆ = 3 into ac-

tion (5.1), selecting UV logarithmic divergent terms, we obtain the bulk contributions to

holographic Weyl anomaly

Âbulk = (I)log 1
ε

=
−1

2

∫
M

√
g

[
(∇φ)2 +

1

6
Rφ2 +

1

6
φ4

]
(5.51)

in signature (1, 1, 1, 1) or (−1, 1, 1, 1). In signature (1,−1,−1,−1), the definition of Weyl

anomaly A = 〈T ii〉 change sign. That is because T ii differs by a minus sign in differ-

ent signature. Please see appendix A for more clarifications. Transform into signature

(1,−1,−1,−1), the bulk Weyl anomaly becomes

Abulk = (I)log ε =
1

2

∫
M

√
g

[
−(∇φ)2 +

1

6
Rφ2 +

1

6
φ4

]
, (5.52)

from which one can read off the bulk central charges

a1 =
1

2
, a2 =

1

12
(5.53)

which agree with (5.32). To avoid confusion, by central charges we always refer to those

coefficients appearing in the Weyl anomaly (2.2) in signature (1,−1,−1,−1).

5.2.2 Boundary Weyl anomaly

Let us turn to discuss the boundary contributions to holographic Weyl anomaly. To derive

boundary Weyl anomaly of O(ε3), one can work out bulk solutions (5.10), (5.11) of order

O(ε3) and then select the UV logarithmic divergent terms in the action. However, the

O(ε3) solutions are quite complicated. Instead, we use a simpler method developed by [36],

which needs only bulk solutions of order O(ε2).

Consider the variation of the gravitational action (5.1), we have

δI =

∫
N

EOM +

∫
Q

√
γ

[((
K − T +

ξ

2
φ̂

)
γij −Kij

)
δγij +

(
ξ − n̂µ∇̂µφ̂

)
δφ̂

]
+

∫
M

√
g

(
1

2
T ijnon-renδgij +Onon-renδφ

)
, (5.54)

where the first line of (5.54) vanishes due to EOM and NBC (5.2), (5.3), T ijnon-ren and

Onon-ren are non-renormalized stress tensor and one point function of scalar, respectively.

To get renormalized stress tensor and scalar operator, we can subtract a reference one

without boundaries. For the reference action without bulk boundary Q, we have

δI0 =

∫
M

√
g

(
1

2
T ij0 δgij +O0δφ

)
, (5.55)

where the integration is over the same region M as in (5.54). Consider the difference

of (5.54) and (5.55), we get

δ(I − I0) =

∫
M

√
g

(
1

2
T ijholoδgij +Oholoδφ

)
, (5.56)
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where T ijholo := T ijnon-ren−T ij0 is the renormalized holographic stress tensor and similarly for

Oholo. Select the UV logarithmic divergent term of above equation and notice that I and

I0 have the same bulk Weyl anomaly, we obtain

δA|∂M = δ(I − I0)log ε =

∫
M

√
g

(
1

2
T ijholoδgij +Oholoδφ

) ∣∣∣
log ε

, (5.57)

which is just the holographic derivation of (3.3). The key point here is that the left hand

of (5.57) is a total variation. As a result, the boundary Weyl anomaly can be obtained

by integrating δgij and δφ. Since we are interested in the scalar contributions to Weyl

anomaly, we can turn off the variation of metric. By integrating (5.57), we can obtain

Weyl anomaly up to some irrelevant bulk terms such as A2 (2.4). Here by ‘irrelevant

terms’, we mean ‘integration constant’ terms which do not contribute to δA|∂M . (5.57)

shows that it is sufficient to derive δA|∂M of O(ε3) from Oholo of O(ε2), due to the fact

that φ is of O(ε).

Recall that, in section 4.1, we have obtained the holographic scalar operator Oholo

as (3.9) with boundary central charges given by (5.20), (5.38), (5.47), (5.48). Substituting

Oholo into (5.57) and integrating δφ, we get the holographic boundary Weyl anomaly as (2.2)

with boundary central charges given by (5.20), (5.38), (5.47), (5.48). This is just a turn-

around of the logic of section 3.1. Thus there is no need to repeat the calculations here.

Note that, from (5.57) one cannot derive all of the bulk Weyl anomaly.

6 Holographic story II: CFT without boundary

In this section, we give a holographic derivation of the anomalous transformation rule (3.16)

for the scalar operator O under Weyl transformation.

According to [37], the Weyl transformations g′ij = e−2σgij can be realized by suitable

bulk diffeomorphisms. Inspired by [37], we take the ansatz [38]

ρ = ρ′e2σ(x′)

(
1 +

∞∑
n=1

ρ′nb(n)(x
′)

)
(6.1)

xi = x′i +
∞∑
n=1

ρ′nai(n)(x
′) (6.2)

which is non-perturbative in the conformal factor. We require that the above diffeomor-

phisms leave the form of bulk metric (5.49) invariant, i.e.,

G′ρρ =
∂Xµ

∂ρ′
∂Xν

∂ρ′
Gµν =

1

4ρ′2
, (6.3)

G′ρi =
∂Xµ

∂ρ′
∂Xν

∂x′i
Gµν = 0. (6.4)

Substituting (6.1), (6.2) into (6.4), we obtain [37, 38]

ai(1) = −1

2
g′ij∂jσ, (6.5)

b(1) = −1

2
g′ij∂iσ∂jσ, (6.6)

where g′ij = e2σgij is non-perturbative in the scale factor.

– 23 –



J
H
E
P
0
8
(
2
0
2
0
)
1
3
4

Now we are ready to derive the transformation law of scalar operator O under Weyl

transformation. Under the diffeomorphisms (6.1), (6.2), the bulk scalar (5.7) becomes

φ̂′(ρ′,x′) = φ̂(ρ,x) = ρ
1
2φ(x)+ρ

3
2 [φ(2)(x)+ψ(2)(x) lnρ]+O(ρ

3
2 ) (6.7)

= ρ′
1
2 eσ

(
1+

1

2
ρ′b(1)

)(
φ(x′)+ρ′ai(1)∂iφ(x′)

)
+ρ′

3
2 e3σ

(
1+

3

2
ρ′b(1)

)(
φ(2)(x

′)+ψ(2)(x
′) lnρ′+2σψ(2)(x

′)
)
+O(ρ′

3
2 )

= ρ′
1
2 [eσφ(x′)]+O(ρ′

3
2 )

+ρ′
3
2

[
eσ
(
ai(1)∂iφ(x′)+

1

2
b(1)φ(x′)

)
+e3σ

(
φ(2)(x

′)+2σψ(2)(x
′)+ψ(2)(x

′) lnρ′
)]
.

From the above equation and (5.7), we can read off the transformation rules

φ′ = eσφ, (6.8)

ψ′(2) = e3σψ(2), (6.9)

φ′(2) = e3σφ(2) + eσ
(
ai(1)∂iφ(x′) +

1

2
b(1)φ(x′)

)
+ e3σ

(
2σψ(2)(x

′)
)

(6.10)

According to the standard approach, ψ(2) can be obtained from either EOM (5.5) or the

variation of holographic Weyl anomaly (5.52). Applying both methods, we get

ψ(2) = −1

4
∇2φ+

1

24
Rφ+

1

12
φ3, (6.11)

ψ′(2) = −1

4
∇′2φ′ + 1

24
R′φ′ +

1

12
φ′3. (6.12)

One can check that (6.11) and (6.12) obey the transformation rule (6.9), which is a test

of our results. Substituting (6.5), (6.6), (6.12) into (6.10) and noting that 〈O〉 = 2φ(2), we

finally obtain the Weyl transformation rule

〈O〉 = e−3σ〈O〉′ +∇(σ∇φ)− 1

6
φRσ +

1

2
φ(∇σ)2 − 1

3
φ3σ, (6.13)

in signature (−1, 1, 1, 1) or (1, 1, 1, 1). Transforms into signature (1,−1,−1,−1),

∇(σ∇φ), (∇σ)2 change sign and (6.13) agrees with the field-theoretical result (3.16) with

central charges (5.53).

7 Conclusions and discussions

In this paper, we have investigated anomalous Fermi condensation (one point function of

scalar operator) due to Weyl anomaly. We obtain general form of Weyl anomaly due to

a background scalar for 4d BCFTs, which consequently leads to two kinds of anomalous

Fermi condensation. The first kind occurs near a boundary, while the second kind appears

in conformally flat spacetime without boundaries. It is interesting that the first kind of

Fermi condensation could be non-zero in flat spacetime and even if there is no background
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scalar. While the second kind of Fermi condensation only appears in a curved spacetime

with non-zero background scalar. We verify our results with free BCFT and holographic

BCFT. In particular, we consider carefully the back reaction to the AdS geometry due to

the scalar field and reproduce precisely the shape and curvature dependence of the field

theoretic Fermi condensate from the holographic one point function.

For simplicity, we focus on CFT/BCFTs in four dimensions in this paper. It is inter-

esting to generalize our works to general dimensions. Besides, it is also interesting to study

Fermi condensation for general QFT. For QFT, more possible terms are allowed in Weyl

anomaly, which would correct the results of anomalous Fermi condensation. We hope to

address these problems in future.

Acknowledgments

We would like to thank Ting-Wai Chiu, Bei-Lok Hu, Satoshi Iso, Gary Shiu, L. Shu, X.

Gao and Y. Zhou for useful discussions and comments. R. X. Miao thank the hospitality

during the workshops “Boundaries and Defects in Quantum Field Theory” and “East Asia

Joint Workshop on Fields and Strings 2019”, where parts of the work are worked out. C. S.

Chu is supported by the MOST grant 107-2119-M-007-014-MY3. R. X. Miao acknowledges

the supports from NSFC grant (No. 11905297) and Guangdong Basic and Applied Basic

Research Foundation (No.2020A1515010900).

A Weyl anomaly in different signatures

In this appendix, we clarify that Weyl anomaly < T ii > differs by a minus sign in different

signature. First, let us stress that the action is independent of the choice of signature. In

signature (−1, 1, 1, 1), the stress tensor is defined by [4]

δI =
1

2

∫
M

√
|g|T̂ ijδĝij , (A.1)

while in signature (1,−1,−1,−1) the stress tensor is defined by [3]

δI = −1

2

∫
M

√
|ĝ|T ijδgij , (A.2)

where ĝij = −gij . From (A.1) and (A.2), we notice that T ij = T̂ ij and hence the Weyl

anomaly in different signature differs by a minus sign

〈T ij〉gij = −〈T̂ ij〉ĝij . (A.3)

The Euclidean theory is related to the theory with signature (−1, 1, 1, 1) by a Wick rotation,

therefore the Weyl anomaly in Euclidean theory is also different by a minus sign from the

Weyl anomaly in the signature (1,−1,−1,−1).

For the convenience of readers, let us list some important formulas in both signature.

The action of Dirac field takes the form

I =

∫
M

√
|g|
(
ψ̄iγi∇iψ + φψ̄ψ

)
, (A.4)
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where ψ̄ = ψ+γ0, (γ0)+ = γ0, (γa)+ = −γa and the gamma matrix obeys

{γi, γj} = 2η gij . (A.5)

Here η = −1 for signature (−1, 1, 1, 1) [4] and η = 1 for signature (1,−1,−1,−1) [3]. The

key relation (3.3) becomes

η(δφA)∂M =

(∫
M

√
|g|〈ψ̄ψ〉δφ

)
log ε

. (A.6)

To summarize, the action, the stress tension Tij , the gamma matrices γi and the Fermi

condensation 〈ψ̄ψ〉 are the same, while the metric gij and the Weyl anomaly 〈T ii〉 differ

by a minus sign in different signatures. Note that we take signature (1,−1,−1,−1) from

section 1 to section 4, while signature (−1, 1, 1, 1) or (1, 1, 1, 1) in section 5 and section 6

in this paper. To avoid confusion, we denote Weyl anomaly in signature (1,−1,−1,−1) by

A and Weyl anomaly in signature (−1, 1, 1, 1) by Â in the main text of this paper.

B Solutions in the flat limit

In the flat limit, the bulk metric is given by (5.39) with

X1e(s) = d1

(√
s2+1(d3−φ0)+

d3−φ0√
s2+1

− d3

2(s2+1)
− 1

2
d3 log

(
s2+1

)
− 3d3

2
+2φ0

)
, (B.1)

X2(s) =−d3

2

(
−s2+2

√
s2+1−2

)
φ0+d2

3

(
−s

2

4
+
√
s2+1− 1

4
log
(
s2+1

)
−1

)
− 1

12
s2φ2

0,

(B.2)

X2e(s) =
d1

2

[
d5

(
4
(
s2+2

)
(
√
s2+1−1)

√
s2+1

−
(
s2+4

)
log
(
s2+1

))

+φ1

((
s2+4

)
log
(
s2+1

)
−4s2

)]
, (B.3)

g1e(s) =
d1

(
4
(
s2+1

)3/2
(d3−φ0)+4

(
s2+1

)5/2
(d3−φ0)+2d3

(
s2+1

)
−d3

)
12(s2+1)2

+d1

(
2φ0

3
− 3d3

4

)
, (B.4)

g2(s) =
1

24

(
−4d3(−s2+2

√
s2+1−2)φ0

+
d2

3

(
−3s4+4(2

√
s2+1−3)s2+8(

√
s2+1−1)

)
s2+1

−2s2φ2
0

)
, (B.5)

g2e(s) =
d1

(
d5−φ1

(
s2
(
s2+2

)
−2
(
s2+1

)
log
(
s2+1

)))
4(s2+1)

. (B.6)
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The embedding function of Q takes the form (5.15)

x = − sinh ρz + εξλ1ez
2 + ε2(λ2 + ξλ2e)z

3 + · · · (B.7)

with

λ1e =
φ0 cosh3 ρ

288(7sinhρ−sinh(3ρ)+coshρ−cosh(3ρ))

[
16coshρ−96cosh(3ρ)+16cosh(5ρ)

+sinhρ(−92+6log(coth2 ρ))+sinh(3ρ)(−84+3log(coth2 ρ))

+sinh(5ρ)(16−3log(coth2 ρ))
]
, (B.8)

λ2 =
φ2

0 sinhρ

2304(coshρ−2sinhρ)2(sinhρ+coshρ)2

[
12+28sinh(2ρ)+112sinh(4ρ)−20sinh(6ρ)

+cosh(2ρ)
(
4−3log(coth2 ρ)

)
+cosh(4ρ)

(
100−6log(coth2 ρ)

)
−cosh(6ρ)(20−3log(coth2 ρ))+6log

(
coth2 ρ

)]
, (B.9)

λ2e =
φ1 cosh4(ρ)

72(sinh(2ρ)+cosh(2ρ)−3)

[
48−8sinh(2ρ)+4sinh(4ρ)+3log(coth2 ρ)

−2cosh(2ρ)
(
9log(coth2 ρ)+10

)
+cosh(4ρ)

(
3log(coth2 ρ)+4

)]
. (B.10)

C Back reaction due to scalar BC

In the main text of the paper, we focus on solutions in the linear order of ξ, where ξ labels

the NBC (5.3) of the scalar field. In this appendix, we discuss solutions in higher orders

of ξ briefly. For simplicity, we focus on both the flat limit with kab = qab = 0 and the no-

scalar limit φ = 0. Then the ansatz for bulk metric, bulk scalar and embedding function

of Q become

ds2 =
1

z2

[
dz2 +

(
1 + ξ2Xe

( z
x

))
dx2 + δab

(
1 + ξ2 ge

( z
x

))
dyadyb

]
+O

(
ξ3, ε

)
(C.1)

φ̂ = f0

( z
x

)
+ ξ3 fe

( z
x

)
+O(ξ4, ε), (C.2)

and

x = − sinh ρ z + ξ2λ0z + +O(ξ3, ε), (C.3)

where f0 (5.17), (5.18) is of order ξ. Following approach of section 4.1, we can solve the

coupled Einstein-scalar EOM (5.4), (5.5) with DBC (5.12) on M and NBC (5.2), (5.3)

on Q. We obtain

Xe(s) = −
d2

1

(
2
(
s2 + 1

)2
log(s2 + 1) + (2s4 − 3s2 − 2)s2

)
32(s2 + 1)2

(C.4)

ge(s) =
1

32
d2

1

(
s2(s4 + 5s2 + 2)

(s2 + 1)3 − 2 log(s2 + 1)

)
(C.5)

fe(s) =
s3
[
d3

1

(
−15s4 − 12s2 + 6(s2 + 1)2 log(s2 + 1)− 2

)
+ 64(s2 + 1)3v1

]
64 (s2 + 1)9/2

(C.6)

λ0 =
cosh ρ coth3 ρ

(
−30 cosh(2ρ) + cosh(4ρ)− 8 sinh2 ρ cosh4 ρ log

(
coth2 ρ

)
+ 37

)
2304

(C.7)
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where d1 is given by (5.18) and v1 is given by

v1 = −cosh3 ρ (399 cosh(2ρ) + 6 cosh(4ρ) + cosh(6ρ)− 886) coth3 ρ

27648
. (C.8)

Substituting (5.17), (C.2), (C.6) into (5.8), we obtain

〈O〉 =
2d1ξ +

(
2v1 −

d31
16

)
ξ3

x3
+O(1/x2, ξ4), (C.9)

which gives the central charge

b3 =
1

6

(
d1ξ +

(
v1 −

d3
1

32

)
ξ3

)
+O

(
ξ4
)

= − ξ

18
cosh3(ρ) coth ρ− ξ3 cosh3 ρ (3 cosh(2ρ)− 7) coth3 ρ

1296
+O

(
ξ4
)
. (C.10)
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