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1 Introduction

Non-equilibrium dynamics and thermalization of a strongly coupled system is a long-

standing problem in many areas of physics. In the holographic context, equilibration

from a highly excited initial state is expected to be dual to black hole formation under a

gravitational collapse. So in this scenario, issues about the black hole physics are tightly

connected to the physics of thermalization in the dual strongly coupled system [1] (see [2]

for review).

A simple setting that shows the general features of equilibration in a far-from-equilib-

rium system is a global quench. In this setup, one considers the creation of a homogeneous

and isotropic highly excited state from the vacuum state by an abrupt change in the

Hamiltonian of a closed quantum system. It is expected that this excited state evolves

towards the equilibrium and shows some aspects of a thermalization process [3, 4] (refer

to [5–7] for review). Remarkably, the holographic dual of this dynamics is simply described

by the Vaidya geometry that shows the collapse of a thin shell of null matter and black hole

formation which is an exact solution to Einstein’s theory of gravity [1, 8–10]. It should be

noted that the Vaidya geometry is not the only possible holographic model describing the

quantum quench, in particular, it can be modeled namely by the time evolution of black

hole interior [11].
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One may study the dynamics of a globally quenched system by evaluating the corre-

lation between the subsystems of a given system [12]. Among other things, it is known

that the entanglement entropy (EE) is a useful probe to capture this dynamics [4]. EE

measures the quantum correlations between a subsystem A and its complement Ac and is

defined as von Neuman entropy of a reduced density matrix ρA = trAc(ρ) as

SA = − tr(ρA ln ρA). (1.1)

As the non-equilibrium system evolves towards the equilibrium, the EE grows with time

linearly and saturates at the equilibrium value which is equal to thermal entropy. This

behavior of EE growth has a simple description in terms of propagating entangled pairs of

quasi-particles [4, 5].

In quantum field theories with holographic dual, there is a very interesting prescription

for computing EE. According to Ryu and Takayanagi (RT) seminal proposal [13], EE

corresponding to a spatial subregion A in the CFT is given by the area of a codimension-2

minimal surface ΓA

SA =
area(ΓA)

4GN
, (1.2)

where the bulk minimal RT surface ΓA is homologous to the subregion A such that its

boundary anchored to the boundary of A (∂A = ∂ΓA). The authors of [9] generalized this

prescription to the time-dependent backgrounds by assuming ΓA is an extremal surface

(HRT surface) subject to the same boundary condition. It is worthwhile to mention that

both proposals have been derived in the context of AdS/CFT in [14, 15].

Studying holographic entanglement entropy for an asymptotically AdS Vaidya geome-

try nicely captures the time evolution of EE in the dual CFT [16–21]. In general, where the

characteristic size of the boundary entangling region is large compared to inverse tempera-

ture, EE shows a quadratic growth in the pre-local-equilibration and it follows by a linear

growth regime in the past-local-equilibration. After that and before saturation, the system

evolves to memory loss regimes in which the EE forgets the size and shape of the entan-

gling region. This behavior may suggest a simple geometric interpretation for the growth

of entanglement based on the propagation of an entanglement wave with a sharp wavefront

inward the entangling region from the entangling boundary. This model is dubbed as an

“entanglement tsunami” [20, 21] (see also [22–28] for related studies). However, as authors

of [29] explain, the tsunami picture only works for large entangling regions and breaks down

for small regions. In this condition, the saturation time is less than the equilibration time

scale and it implies that the dynamics of the quenched system is governed by a different

mechanism.

As mentioned, one way to study the equilibration process is the evaluation of the

correlation between subsystems. For a pure state, EE measures the correlations between

a subsystem and its complement. However, to analyze the correlation of two disjoint

intervals, A and B, EE is not a convenient quantity. This is because EE is a measure of

the (quantum) correlation when the total system is pure (subsystem and its complement)

while for two disjoint regions A and B, ρA∪B is not pure. In this case, one useful quantity
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is mutual information (MI) that measures the total correlation between two subsystems A

and B

I(A,B) = SA + SB − SA∪B. (1.3)

As MI defined in terms of EE, one may use the HEE proposal to study MI and its time

evolution in the holographic setups [30]. Further generalizations of MI to systems consisting

of more (disjoint) subsystems, e.g. tripartite and n-partite information is studied in several

directions in [31, 32].

In the framework of holographic theories, EE and MI are related to (H)RT surfaces.

Recently, a generalization of (H)RT surface which is called the entanglement wedge cross

section (EWCS) has attracted a lot of attention. This geometrical quantity is defined

as [33, 34]

EW (A,B) =
area(Σmin

AB )

4GN
, (1.4)

where Σmin
AB is the minimal cross-sectional area of the entanglement wedge [35–37] corre-

sponding to the boundary region A ∪ B. As shown in [33], the EWCS is subject to the

following inequalities1

I(A,B)

2
≤ EW (A,B) ≤ min (SA, SB) , (1.5)

EW (A,B ∪ C) ≥ I(A,B)

2
+
I(A,C)

2
(1.6)

EW (A,B ∪ C) ≥ EW (A,B). (1.7)

One may argue that EWCS takes into account the correlation between the boundary sub-

systems A and B even for a mixed state [33, 34, 38]. Therefore, it should be useful to

probe the equilibration in a holographic system. The main goal of this paper is to study

the dynamics of EW in the Vaidya background as a dual description of a global quench in

a CFT.

There are several proposals for the CFT counterpart of EW . Initially, it was introduced

as a possible dual of the entanglement of purification. This conjecture was based on some

information theoretic properties and intuition from holographic tensor networks [33, 34].

However, it is turned out that several other correlation measures such as reflected en-

tropy [39], logarithmic negativity [40, 41] and odd entropy [42] also relate to EW . Interest-

ingly, all of these measures are useful for analyzing the correlation between A and B where

ρA∪B is a mixed state. See [43–51] for related progress. In the following, we review each

one of them briefly.

The entanglement of purification is a measure of classical and quantum correlations

between two subsystems [52]. To define entanglement of purification let us assume that

ρAB is (a mixed) density matrix for A ∪ B in the total Hilbert space H = HA ⊗HB. By

adding some auxiliary degrees of freedom to H, it is possible to construct a pure state

|ψ〉〈ψ| such that ρAB = trA′B′(|ψ〉〈ψ|) and |ψ〉 ∈ HAA′ ⊗HBB′ . Although this purification

1For a complete set of inequalities see [34].
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is not unique, one may consider a specific purification that minimizes the EE between A

and its auxiliary partner A′. Therefore, the entanglement of purification is defined as

EP (A,B) = min
ρAB=trA′B′ (|ψ〉〈ψ|)

SAA′ . (1.8)

Clearly, the above definition reduces to EE when ρAB is pure. Note that, this quantity

should be minimized over all possible |ψ〉 so it is not an easy task to compute it in an

arbitrary quantum theory. But under some assumptions one may investigate it in certain

situations [34, 53]. Moreover, for holographic theories, it has been conjectured that entan-

glement of purification is dual to the area of entanglement wedge cross section EP = EW .

In this case, minimization is restricted to states with holographic dual [33, 34].

More recently however, increasing attention has been paid to the reflected entopy as

a new measure of the correlation between two disjoint regions. To define this measure,

note that one can canonically purify the mixed state ρAB =
∑

i pi |ρ〉 〈ρ| by doubling the

Hilbert space H = HA⊗HB such that
√
ρ =

∑
i

√
piρi⊗ρi be a pure state in H⊗H′. Now

the reflected entropy between A and B is defined as the entanglement entropy between A

and A′

SR(A,B) ≡ − tr(ρAA′ ln ρAA′),
√
ρAA′ = trBB′ |

√
ρ〉 〈√ρ| . (1.9)

One may note that similar to the entanglement of purification, the reflected entropy also

reduces to EE for pure states. Interestingly, it is possible to calculate this mesuare by using

the replica method and some holographic argument shows that SR = 2EW [39].

The logarithmic negativity is another quantity that captures the correlation between

A and B but unlike mutual information, the entanglement of purification and reflected

entropy, it is monotonic under local operations and classical communication (LOCC)

and so is appropriate to capture quantum correlations for mixed states. It is defined

as E(A,B) = log tr
(
ρTBAB

)
, where ρTBAB represents the partial transpose of ρAB with respect

to B [54]. Initially, based on the holographic quantum error-correcting code, authors of [40]

conjectured relation between the logarithmic negativity and the area of a brane with ten-

sion in the entanglement wedge. For the vacuum state and ball-shaped subregions, this

reduces to E = χdEW where χd is a dimensional dependent constant. Remarkably, this re-

lation has been derived by noting the connection between logarithmic negativity and Rényi

reflected entropy and using the holographic prescription for computing Rényi entropy [41].

Finally, it is also worthwhile mentioned that there is also a new measure of correlations

for mixed states which is called odd entropy [42]

So(A,B) ≡ lim
no→1

1

1− no

[
tr
(
ρTBAB

)no

− 1
]
. (1.10)

Based on holographic replica trick, odd entropy is related to the EW (A,B) and HEE

between A and B as follows

So(A,B) = S(A,B) + EW (A,B). (1.11)

One may note that EW (A,B) vanishes either for product state ρAB = ρA ⊗ ρB or pure

state ρAB = |ψ〉 〈ψ|, so So(A,B) reduces to the von Neumann entropy in the former and

to the EE in the latter. Refer to [55] for recent study on this topic.
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As mentioned, the area of EWCS should be a good geometrical quantity to capture

correlations of mixed states in the dual quantum field theory and so it should be a useful

tool to analyze the equilibration process after a quantum quench. Some authors have

investigated aspects of this scenario mainly in two-dimensional CFTs. The author of [56]

has investigated the time evolution of reflected entropy and its holographic dual after a

global quench in the context of the thermal double model. In a related study, the authors

of [51] have studied the dynamics of logarithmic negativity, odd entropy and reflected

entropy as well as their holographic counterpart EWCS via AdS/BCFT after local and

(in)homogenous global quenches. Furthermore, the time evolution of reflected and odd

entropies under local quenches has been analyzed in [57, 58] where local quench is modeled

by a falling particle in the holographic bulk theory. Also, the time evolution of EWCS in

a two-sided black hole and Vaidya geometry has been studied in [59].

In the current article, we aim to provide a detailed analysis of the time evolution of

EWCS in various time-dependent geometries using holographic prescription. In particular,

we are interested in various scaling regimes in the EWCS dynamics during the thermal-

ization process. For this purpose, we investigate EWCS for a strip-shaped region in the

Vaidya geometry describing the collapse of a thin shell of null (charged) matter into the AdS

vacuum to form a black brane as a holographic description of thermal (electromagnetic)

quench.

The organization of the present paper is as follows. In section 2, we give the general

framework in which we are working, establishing our notation and the general form of

the HEE and EWCS functionals both in static and time-dependent geometries. Section 3

contains a brief summary about EWCS in static backgrounds which are dual to the initial

and final equilibrium states. We review old results for AdS and AdS black brane geometries

and also find new ones for the case of extremal black branes. In section 4, we investigate

the time evolution of EWCS in 2 + 1 dimensions, where we present both numerical and

analytic results. Next, we study the higher dimensional cases by considering both thermal

and electromagnetic quenches in section 5. We review our main results and discuss their

physical implications in section 6, where we also present some future directions.

2 Set-up

We consider Einstein gravity coupled to a Maxwell field in (d+1)-dimensional asymptoti-

cally AdS spacetime. The action is

I =
1

16πGN

∫
dd+1x

√
−g
[
R− 2Λ− 1

4
FµνF

µν

]
, (2.1)

where R is the Ricci scalar and Λ = −d(d−1)
2L2 is the cosmological constant, with L being the

AdS radius. The equations of motion following from this action are solved by the geometry

of a charged black brane

ds2 =
L2

r2

(
−f(r)dt2 +

dr2

f(r)
+

d−1∑
i=1

dxi

)
, (2.2)
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with

f(r) = 1−mrd +
d− 2

d− 1
q2r2d−2, At(r) = µ

(
1−

(
r

rh

)d−2)
, µ = qrd−2h , (2.3)

where rh denotes the horizon radius determined by the largest positive root of the black-

ening factor and µ corresponds to the chemical potential.2 This geometry is dual to a

boundary theory at a finite density with the following expressions for energy, entropy and

charge densities, respectively

E =
d− 1

16πGN
m, s =

1

4GN

(
1

rh

)d−1
, ρ =

d− 2

4πGN
µrd−2h . (2.4)

Further, the Hawking temperature of the black brane is given by

T =
d

4πrh

(
1− (d− 2)2

d(d− 1)
q2r

2(d−1)
h

)
. (2.5)

Next, we will consider the extremal limit of the charged black branes where the temperature

vanishes. It is straightforward to show that in this limit the blackening factor becomes

fext.(r) = 1− 2d− 2

d− 2

(
r

rh

)d
+

d

d− 2

(
r

rh

)2d−2
. (2.6)

Promoting the mass and charge in eq. (2.2) to time-dependent functions m(v) and q(v),

the Vaidya solution is obtained where in the Eddington-Finkelstein coordinate is given by

ds2 =
1

r2
[
−f(r, v)dv2 − 2dvdr + dx2d−1

]
, f(r, v) = 1−m(v)rd+

d− 2

d− 1
q(v)2r2d−2. (2.7)

Here v is a new coordinate defined by

dv = dt− dr

f
, (2.8)

which coincides with the boundary time, i.e., t, at r = 0. This geometry describes an

infalling null shell in an asymptotically AdS background.

In the next sections, we apply holographic prescription to find the time evolution of

EWCS using eq. (1.4) for configurations consisting of thin long strips. Figure 1 shows the

entangling regions that we consider for computing HEE and EWCS in the static geometry.

When the entangling region in the boundary theory is a strip the corresponding domain is

specified by

−X/2 ≤ x1 ≡ x ≤ X/2, 0 ≤ xi ≤ ˜̀, for i = 2, · · · , d− 1, (2.9)

where X and ˜̀ is the width and length of the strip, respectively. Note that in our set-up

where we consider two different extremal hypersurfaces, i.e., Γh and Γ2`+h, X is replaced

with h and 2`+h, respectively. In X � ˜̀ limit, the translation invariance implies that the

2Without loss of generality we will from now on consider L = 1.
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x

xi r

A B

h

2ℓ+ h

ℓ̃d−2

Γℓ Γℓ

ΓA∪B = 2Γℓ

A B

h

2ℓ+ h

ℓ̃d−2

Γh

Γ2ℓ+h

ΓA∪B = Γ2ℓ+h + Γh

Σ

Γh

Γ2ℓ+h

r = rh

A B

rd

ru

Figure 1. Schematic minimal surfaces for computing SA∪B in disconnected (left) and connected

(middle) configurations. In the right panel, we show the EWCS (Σ in orange). Here we only

consider the connected configuration where the EWCS is non-zero.

minimal hypersurface for computing HEE, i.e., ΓX , is completely specified by x(r). The

HEE functional for static geometries eq. (2.2) then becomes

S =
˜̀d−2

2GN

∫ rt

0

dr

rd−1

√
1

f(r)
+ x′(r)2, (2.10)

where rt is the turning point of the minimal hypersurface, i.e., tip of ΓX . Of course, using

the equation of motion, rt can be implicitly expressed in terms of X as follows

X = 2

∫ rt

0

dr√((
rt
r

)2d−2 − 1
)
f(r)

. (2.11)

On the other hand, due to the reflection symmetry the corresponding hypersurface for

EWCS, i.e., Σ, lies entirely on x = 0 slice. In this case the EWCS functional becomes

EW =
˜̀d−2

4GN

∫ r
[2`+h]
t

r
[h]
t

dr

rd−1
√
f(r)

, (2.12)

where r
[X]
t is the turning point of the minimal hypersurface ΓX corresponding to a bound-

ary region with width X. In the following, we will denote the r
[h]
t and r

[2`+h]
t as rd and ru,

respectively. In [33, 34] it was shown that EWCS exhibits a discontinuous phase transition

which is due to the competition between two different configurations for computing SA∪B.

At small distances, i.e., h � `, a connected configuration (ΓA∪B = Γ2`+h + Γh) has the

minimal area, while for large separations the RT surface changes topology and the discon-

nected configuration (ΓA∪B = 2Γ`) is favored. In the latter case Σ becomes empty and

hence the EWCS vanishes (see figure 1). Indeed, this behavior is similar to the continuous

phase transition of holographic mutual information (HMI) and the corresponding critical

points are exactly the same. In order to have a nontrivial Σ and nonvanishing EW , we

consider the small separation limit h� ` in the following.

Let us now turn to the time-dependent case where the geometry in the bulk is given

by a Vaidya spacetime. Once again, the translation invariance implies that the extremal

– 7 –
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hypersurface is completely specified by r(x) and v(x). Using eq. (2.7), the HEE functional

can be written as

S =
˜̀d−2

4GN

∫ X/2

−X/2
dx

S
rd−1

, S =
√

1− 2v̇ṙ − v̇2f(r, v), (2.13)

where ˙≡ d
dx . Extremizing the above expression yields the equations of motion for r(x) and

v(x), which read

v̇2

2rd−1S
∂f

∂v
=

∂

∂x

(
ṙ + v̇f

rd−1S

)
,

v̇2

2rd−1S
∂f

∂r
+

(d− 1)S
rd

=
∂

∂x

(
v̇

rd−1S

)
. (2.14)

In this case, the corresponding boundary conditions for the extremal hypersurface are given

as follows

r(0) = rt, v(0) = vt, ṙ(0) = 0, v̇(0) = 0, r

(
X

2

)
= 0, v

(
X

2

)
= t, (2.15)

where (rt, vt) is the location of the turning point. On the other hand, the EWCS can

be parametrized as v = v(r) where due to the reflection symmetry the corresponding

hypersurface, i.e., Σ will be symmetric with respect to the midpoint x = 0. In this situation,

the EWCS functional becomes

EW =
˜̀d−2

4GN

∫
dr
F
rd−1

, F =

√
−2v′ − f(r, v)v′2. (2.16)

The equation of motion obtained extremizing the above functional is

∂

∂r

(
1 + f(r, v)v′

rd−1F

)
= − ∂

∂v

(
F
rd−1

)
, (2.17)

where the hypersurfaces of interest satisfy the following boundary conditions

v(rd) = vd, v(ru) = vu. (2.18)

Now we are equipped with all we need to calculate the time dependence of HEE and EWCS

using eqs. (2.13) and (2.16), respectively. Unfortunately, it is not possible to find the time

evolution of HEE and EWCS during the thermalization process analytically in general

dimensions. In the following we will present the numerical results in the thin shell regime.

Assuming this condition, the background that we consider for the thermal quench is given

by eq. (2.7) with

m(v) =
m

2

(
1 + tanh

(
v

v0

))
, (2.19)

where v0 � 1 is the parameter that controls the thickness of the null shell. Note that in

this setup v = 0 denotes the location of the null shell. We comment on q(v) in the case of

electromagnetic quench later.
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3 Preliminaries: EWCS for static backgrounds

Before examining the full time-dependence of EW , we would like to study its asymptotic

behaviors where the geometry is static. This study plays an important role in our analysis

in the next sections because according to eqs. (2.7) and (2.19), the early and late time

geometries correspond to a pure AdS and a charged AdS black brane, respectively. So

in the following we review the computation of EW in these backgrounds. Under these

circumstances, the corresponding extremal hypersurface, i.e., Σ lies entirely on a constant

time slice inside the bulk. In the subsequent subsections, we present two specific examples in

which we evaluate the behavior of EW . We will consider AdS-Schwarzschild and Extremal

AdS black brane geometries for which semi-analytic results can be obtained.

3.1 AdS-Schwarzschild black brane

For the AdS-Schwarzschild black branes, the EWCS can be evaluated analytically in dif-

ferent scaling regimes. In this case, we consider f(r) = 1−
(
r
rh

)d
where rh = m−1/d is the

horizon radius. Evaluating eq. (2.12) gives an exact result [59]

EW =
˜̀d−2

4(2− d)GN

(√
f(r)

rd−2
− d− 4

4

r2

rdh
2F1

(
1

2
,

2

d
,
d+ 2

d
,
rd

rdh

))∣∣∣∣∣
ru

rd

. (3.1)

On the other hand, the relation between the position of the turning point rt and the strip

width X can be written as follows [60]

X = 2rt

∞∑
n=0

1

1 + nd

Γ
(
n+ 1

2

)
Γ (n+ 1)

Γ
(
d(n+1)
2d−2

)
Γ
(
dn+1
2d−2

) ( rt
rh

)nd
, (3.2)

where the infinite series converges for rt < rh. In principle, we can invert this formula

to write eq. (3.1) in terms of the boundary quantities, h, 2` + h and T . For the sake

of simplicity, in the following we will focus on the low and high temperature behavior of

EWCS. As demonstrated in [61] considering low temperature with respect to the separation

scale corresponds to h � T−1 � `. On the other hand, one might also regard the h �
`� T−1 case where we have low temperature with respect to both the subregion sizes and

the separation between them. Further we note that, h � T−1 � ` limit corresponds to

rd � rh and ru → rh, while for h � ` � T−1 we have rd, ru � rh. Now using eqs. (3.1)

and (3.2) one can find that the low and high temperature expansion of EWCS for d > 2 is

given by (see [61] for details)

EW ∼

{
Evac.
W − α ˜̀d−2

GN
`(`+ h)T d + · · · , h� `� T−1

˜̀d−2T d−2

4GN

(
− β

(hT )d−2 + γ + λ(hT )2
)
, h� T−1 � `

. (3.3)

where α, β, γ and λ are some constants and Evac.
W is the vacuum (pure AdS) contribution

which can be written in the following form

Evac.
W = β

˜̀d−2

4GN

(
− 1

hd−2
+

1

(2`+ h)d−2

)
. (3.4)
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Figure 2. Left : EW in AdS-Schwarzschild black brane as a function of h/` for different values of

`. Right : parameter space for d = 3 where EW is nonzero only in the shaded region. Here we have

set rh = 1.

The above result eq. (3.3) shows that EWCS is a monotonically decreasing function of

temperature and obeys an area law even in finite temperature where the HEE shows a

volume law.

On the other hand, solving numerically for the turning points rd and ru using eq. (3.2),

we can evaluate EW in eq. (3.1), as shown in figure 2 (left panel) for different values of h and

`. The right panel shows the two dimensional parameter space restricted by the I(`, h) ≥ 0

condition which coincides with EW (`, h) 6= 0. We can see that EW shows a discontinuous

phase transition, such that EW = 0 when h is large enough. As we mentioned before, the

vanishing of EWCS results because of the disconnected configuration for the RT surfaces

and the fact that in this case the corresponding entanglement wedge is empty.

It is instructive to analyze the particular case of BTZ black holes with d = 2, since

EW can be determined analytically even at finite temperature. In this case the EWCS

functional becomes

EW =
1

4GN

∫ ru

rd

dr

r
√
f(r)

, f(r) = 1− r2

r2h
. (3.5)

Performing the above integral, we are left with

EW =
1

4GN
log

(
ru
rd

1 +
√
f(rd)

1 +
√
f(ru)

)
. (3.6)

Also the relation between the width of the entangling region and the corresponding turning

point at finite temperature is known [62]

X = rh log
rh + rt
rh − rt

. (3.7)

Now combining the above two equations, as well as eq. (2.5) for d = 2 with zero charge,

yields the following

EW =
c

6
log

tanh π(2`+h)T
2

tanh πhT
2

, (3.8)
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where c = 3L
2GN

is the central charge. We can evaluate the zero temperature limit of the

above result to find the vacuum contribution as follows

Evac.
W =

c

6
log

(2`+ h)

h
. (3.9)

3.2 Extremal AdS black brane

In this situation, plugging eq. (2.6) into eq. (2.12), we find

EW =
˜̀d−2

4GN

∫ ru

rd

dr

rd−1

√
1− δ

(
r
rh

)d
+ (1− δ)

(
r
rh

)2d−2 , (3.10)

where we have introduced δ = 2d−2
d−2 . While the above integral cannot be carried out

analytically for general d, in a very similar manner to the analysis of the thermal correction

to EWCS in [61], we can obtain the scaling behavior of EW for extremal black branes. First,

using binomial expansion we rewrite eq. (3.10) as follows

EW =
˜̀d−2

4GN

∞∑
n=0

n∑
k=0

Γ
(
n+ 1

2

)
δn−k(1− δ)k

√
πΓ (k + 1) Γ (n− k + 1)

∫ ru

rd

dr

rd−1

(
r

rh

)dn+(d−2)k
, (3.11)

which can be integrated to give

EW =
˜̀d−2

4GN

∞∑
n=0

n∑
k=0

Γ
(
n+ 1

2

)
δn−k(1− δ)k

√
πΓ (k + 1) Γ (n− k + 1)

rdn+(d−2)(k−1)

(dn+ (d− 2)(k − 1))r
dn+(d−2)k
h

∣∣∣∣∣
ru

rd

. (3.12)

Further, the relation between the position of the turning point rt and the strip width X

can be written as follows [63]

X = rt

∞∑
n=0

n∑
k=0

Γ
(
n+ 1

2

)
δn−k(1− δ)k

Γ (k + 1) Γ (n− k + 1)

Γ
(
dn+(d−2)k+d

2(d−1)

)
Γ
(
dn+(d−2)k+2d−1

2(d−1)

) ( rt
rh

)dn+(d−2)k
. (3.13)

Now we would like to invert this formula to write eq. (3.12) in terms of the boundary

quantities, h, 2`+h and µ. A similar derivation to the one presented for AdS-Schwarzschild

black brane holds in this case. Again, to perform an exact estimation, we will focus on the

behavior of EWCS in small and large chemical potential limits. As demonstrated in [63],

considering small chemical potential with respect to the separation scale corresponds to

h � µ−1 � `. Once again, one might also regard the h � ` � µ−1 case where we

have small chemical potential with respect to both the subregion sizes and the separation

between them. Next, we note that h� µ−1 � ` limit corresponds to rd � rh and ru → rh,

while for h� `� µ−1 we have rd, ru � rh. Further, using eqs. (3.12) and (3.13) one can

find that the small and large chemical potential expansion of EWCS for d > 3 is given by

EW ∼

{
Evac.
W + α′

˜̀d−2

GN
`(`+ h)µd + · · · h� `� µ−1

˜̀d−2µd−2

4GN

(
− β′

(hµ)d−2 +
(
4π
d

)d−1
γ′ + λ′(hµ)2

)
, h� µ−1 � ` .

(3.14)
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Figure 3. Left : EW in Extremal AdS black brane as a function of h/` for different values of `.

Right : parameter space for d = 3 where EW is nonzero only in the shaded region. Here we have

set rh = 1.

where α′, β′, γ′ and λ′ are some constants that depends on d. This result shows that EWCS

is a monotonically increasing function of µ and obeys an area law even in finite chemical

potential. Again, solving numerically for the turning points using eq. (3.13), we can find

EW , as shown in figure 3 (left panel) for different values of h and `. Also the right panel

presents the two dimensional parameter space restricted by the EW (`, h) 6= 0 condition.

We note again that EW shows a discontinuous phase transition, such that EW = 0 when

h is large enough.

4 EWCS in Vaidya backgrounds: 2 + 1 dimensions

In this section, we study the time evolution of EWCS by considering the case where d = 2

and the final equilibrium state is given by the BTZ black hole. First, we provide a numerical

analysis and examine the various regimes in the growth of EWCS in the thin shell limit.

Next, we will show that Σ is a geodesic whose length can be expressed analytically in closed

form, which enables us to directly extract its scaling behavior in various regimes.

4.1 Numerical analysis

We start by evaluating EW (t), defined in eq. (2.16), numerically for several values of h, ` and

T . We will consider subsystems consisting of equal width intervals as depicted in figure 1.

For simplicity, we set rh = 1 and work with the rescaled quantity ẼW = 4GNEW through-

out the following. We will focus on thermal quench where the corresponding geometry is

given by eq. (2.7) with m(v) is given by eq. (2.19) and q(v) = 0. As we mentioned before we

consider the thin shell regime where v0 → 0 and the corresponding mass function behaves

like a step function. To do so, we consider v0 = 10−3 throughout the following. Note that

the EWCS is nontrivial only for connected configurations, i.e., ΓA∪B = Γ2`+h + Γh, and

vanishes for disconnected ones, i.e., ΓA∪B = 2Γ`, when Σ becomes empty. The extremal

hypersurfaces can be found by solving eqs. (2.14) and (2.17). We show the full profile of

these hypersurfaces for a specific value of h and ` at different values of boundary times

in figure 4. In this case, the disconnected configuration is favored at late times and EW

– 12 –
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Figure 4. Configuration of the minimal hypersurfaces for computing HEE (cyan) and EWCS

(orange) at different boundary times: t = 0.1, 2, 3, 4. Here we consider h = 1 and ` = 4.5. In

this case the disconnected configuration is favored at late times when Σ becomes empty and EW

saturates to zero.

saturates to zero. Note that the most straightforward way to choose the minimal area con-

figuration is by comparing the corresponding entanglement entropies. Another way is to

compute the mutual information noting that in the disconnected phase the HMI vanishes.

Regarding the evolution of EWCS and assuming that the connected configuration

is always favored for any boundary time, there are three different scaling regimes3 (see

figure 5) (i) at early time Σ does not reach the shell and lies entirely in AdS geometry, (ii)

during intermediate stage of time evolution, Σ crosses the shell at rw such that rd < rw <

ru, and (iii) at late time Σ lies entirely in black brane geometry.

In figures 6 and 7 we show the competition between connected and disconnected con-

figurations, the corresponding HMI and EWCS for specific values of h and `. In figure 6,

we show various boundary quantities for the case where both the subregions width and

separation between them are small, i.e., h < ` < T−1. In this example, we fix ` and

consider different values for h. In the left panel, we compare the values of Scon.(t) and

Sdis.(t) to see which configuration is minimal during the evolution. Our numerical results

make it clear that in this case the connected configuration is always favored for any time.

The middle panel demonstrates the evolution of HMI which is always nonzero, irrespec-

tive of the boundary time. In the right panel we show EW (t) for the same values of the

parameters. At early times, i.e., t � h, the EWCS starts at the same value of the AdS

3Note that for the case where the disconnected configuration is favored at late times, only the late time

behavior should be suitably modified and the last panel in figure 5 must be replaced with a disconncted

configuration.
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ℓ ℓh

v = 0

Γh

Γ2ℓ+h

Σ

v > 0

v = 0

v < 0

rd

ru

rw

v = 0

Figure 5. Schematic configurations for HRT (Γ) and EWCS (Σ) geodesics corresponding to sym-

metric entangling regions on the boundary. Outside the null shell (indicated in dashed violet), i.e.,

v > 0, the geodesics propagate in an AdS black brane geometry, while inside, i.e., v < 0, they

propagate in a pure AdS geometry. The null shell refracts the geodesics. Left : while at early times,

the shell lies in the UV part of the geometry and Γ’s cross the shell near the boundary, Σ does not

intersect the shell. Middle: during intermediate stages of time evolution Γ2`+h and Σ cross the null

shell. Right : at late time Γ’s and Σ do not intersect with the shell and lie entirely in black brane

geometry.
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Figure 6. Left : the HEE for connected (solid) and disconnected (dashed) configurations for

different values of the separation between subregions. The connected configuration is always favored

for any boundary time. Middle: the HMI as a function of time which is positive during the entire

evolution. Right : the EWCS as a function of boundary time which saturates to a finite value. Here

we have set ` = 2.

geometry given by eq. (3.9), then at t ∼ O(h) quickly deviates from the vacuum value and

approaches a regime of linear growth. Based on these plots, we observe a period of time

during which the growth of the EW is quadratic. We will examine this observation further

in the following. Note that in the period of linear growth, the slope seems more or less the

same independent of h. This regime in fact persists all the way up to t ∼ O(`+ h) where

EW reaches its maximum value. Further, at late times, EW decreases and very quickly

saturates to a constant value corresponding to the BTZ geometry given by eq. (3.8).

We present the time dependence of the EWCS for the case of h < T−1 < ` in fig-

ure 7. The left panel shows the competition between the contribution to HEE due to the

connected and disconnected configurations. Based on this figure, although the connected

configuration has the minimal area at early time, the late time behavior is governed by

the disconnected configuration. The critical time when this transition happens is approxi-

mately given by t ∼ O(`−h). We show EW (t) for the same values of the parameters in the

right panel. Once again, at early times the EWCS starts growing quadratically from the

vacuum value and approaches the linear growth regime. It seems that, in this regime, the
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Figure 7. Left : the HEE for connected (solid) and disconnected (dashed) configurations for

different values of h. At late times, the disconnected configuration is favored. Middle: the HMI as

a function of time which vanishes at late times. Right : the EWCS as a function of boundary time

which saturates to zero. Here we have set h = 1.

slope is independent of `. Finally, at late times, EW displays a discontinuous transition and

immediately saturates to zero where the saturation time is approximately ts ∼ O(`− h).

To conclude this section let us comment on the essential role of the minimal hyper-

surface Γ2`+h. As noted above, one can identify the three positions, i.e., rd, ru and rw
which are important in studying the evolution of EWCS. We can also consider the time

dependence of these points, as shown in figure 8 for specific values of h and `. In the left

panel, we show the results for h = 0.46 and ` = 1.5 where the connected configuration is

always favored for any boundary time and the resultant EW continuously saturates to the

final equilibrium value given by eq. (3.8). The right panel shows the results for h = 1 and

` = 4.5. In this case the disconnected configuration is favored at late times. To see this,

note that I(`, h) > 0 condition in d = 2 yields h < hcrit., where the critical separation is

given by

hcrit. = cosh−1 (2 cosh(`)− 1)− `. (4.1)

Also note that for both cases rw always obeys the bound rd ≤ rw ≤ ru as expected.

These plots show that the main behavior in the evolution of Σ depends on ru which is the

corresponding turning point of Γ2`+h while rd and the shape of Γh are fixed and do not

influence the time dependence of EW (t) for the present symmetric case. However, we should

also remark that in general, the saturation time of the EWCS does not follow the saturation

time of the HEE corresponding to Γ2`+h. Although when the connected configuration is

favored at late times these time scales coincide, one should take into account that for some

boundary subregions the minimal configuration is given by the disconnected solution at

late times. In the latter case the saturation time of EWCS is smaller than the saturation

time of the HEE associated with Γ2`+h. We compare these two time scales as a function

of ` in figure 9.

4.2 Analytic treatment

When the final equilibrium state is given by the BTZ black brane, most of the expressions

can be evaluated analytically. In particular, in the thin shell approximation, we demon-

strate that the problem admits semi-analytic solution. In fact, this provides a check on our
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Figure 8. Time evolution of rd, rw and ru. Clearly, rw always obeys the bound rd ≤ rw ≤ ru.

Left : for h = 0.46 and ` = 1.5 the connected configuration is always favored for any boundary

time. Right : for h = 1 and ` = 4.5 the disconnected configuration is favored at late times. Here

the transition between connected and disconnected configurations happens at t ∼ 3.82.
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Figure 9. Comparison of the saturation time of the EWCS and the saturation time of the HEE

corresponding to Γ2`+h when the disconnected configuration is favored at late times for different

values of `. Clearly, ts(Γ2`+h) is always greater than ts(Σ). Here we have set h = 1.

numerical results and also allow us to derive in detail several general features in the time

evolution of EWCS.

As we explain in the previous section, the evolution of EWCS can be divided into three

different scaling regimes (see figure 5). In cases (i) and (iii) corresponding to the early and

late time static geometries, the EWCS lies entirely on a constant time slice and we can use

the previous expressions derived in section 3.1 to find EW . On the other hand, in case (ii)

the part of Σ that is inside the shell is given by the geodesic in the pure AdS geometry,

and the part of it that is outside the shell is given by the geodesic in the pure black brane

geometry. In this case, the geodesic gets refracted at the null shell and it does not have to

be in a constant time slice. In the following we focus on case (ii) which is more involved.

Using eq. (2.7), we write the metric in zero charge limit as

ds2 =
1

r2
[
−f(r, v)dv2 − 2dvdr + dx2

]
, f(r, v) = 1−m(v)r2. (4.2)
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Further, we consider a thin null shell such that m(v) = θ(v)
r2h

and

f(r, v) =

 1 ≡ fa v < 0

1− r2

r2h
≡ fb v > 0

. (4.3)

Note we have used the subscript a (b) to refer to quantities on the AdS (black brane) side

of the null shell. In this case, using eq. (2.8), the boundary time reads

t = vb −
rh
2

log
rh − r
rh + r

. (4.4)

The geodesic equations in the black brane geometry become [19]

fb(r)ṫ

r2
=
Qb
rh
,

1 = −fb(r)
r2

ṫ2 +
ṙ2

r2fb(r)
, (4.5)

where Qb is some integration constant, ˙ ≡ d
dλ and λ parametrizing the geodesic length.

Note that we consider geodesics that lie on x = 0 slice, so comparing to [19] there is only

one integration constant. Combining these two equations together yields

ṙ2 = r2
(

1− r2

r2h
+
r2Q2

b

r2h

)
, (4.6)

which can be solved as follows

r(λ)2 =
4r2h(

eλ +
(
1−Q2

b

)
e−λ
)2 . (4.7)

Now using the above result we can solve eq. (4.5) for t(r) to find

t±(r) = c± +
rh
2

log

∣∣∣∣∣∣
r2h − (Qb + 1)r2 ± rh

√
r2h + (Q2

b − 1)r2

r2h + (Qb − 1)r2 ± rh
√
r2h + (Q2

b − 1)r2

∣∣∣∣∣∣ , (4.8)

where c± are integration constants. Hereafter, we only consider the + branch of the

geodesics without loss of generality. Next, using eq. (4.4) for vb(r), we obtain

vb(r) = c+ +
rh
2

log

rh − r
rh + r

r2h − (Qb + 1)r2 + rh

√
r2h + (Q2

b − 1)r2

r2h + (Qb − 1)r2 + rh

√
r2h + (Q2

b − 1)r2

 , (4.9)

which can be rewrite as follows

vb(r) = cb + rh log
Qbrh −

√
r2h + (Q2

b − 1)r2

Qb(r + rh)
. (4.10)
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Note that the expression for the part of geodesic that lies in the pure AdS geometry inside

the null shell can be obtained from the rh →∞ limit of eq. (4.9) as follows

va(r) = ca − r −
√

1 +Q2
ar

2

Qa
, (4.11)

where in doing this, we should scale Qb with rh at the same time because in (4.5) we have

defined the integration constant with an extra factor of horizon radius. The integration

constants, i.e., ca and cb, will be fixed by setting va(ru) = vu and vb(rd) = vd, respectively.

Imposing these conditions, we have

ca = ru + vu +

√
1 +Q2

ar
2
u

Qa
, cb = vd − rh log

Qbrh −
√
r2h + (Q2

b − 1)r2d

Qb(rd + rh)
. (4.12)

On the other hand, Qa and Qb can be found using the matching conditions at the null shell.

Denoting value of r at the intersection of Σ and the null shell v = 0 as rw, we note that

v′(r) will be discontinuous at this point because of the refraction condition noted above. To

find the matching condition for the derivative we integrate the equation of motion across

the null shell which reads

dr

dv

∣∣∣∣
a

− dr

dv

∣∣∣∣
b

= −1

2

r2w
r2h
. (4.13)

Solving the above condition, we obtain

Qb = ±
(r2w − 2r2h)Qa + rw

√
1 +Q2

ar
2
w

2rh
. (4.14)

On the other hand, at the intersection of Σ and the null shell we have

va(rw) = 0 = vb(rw), (4.15)

which means that v remains continuous along r = rw. The above conditions can be solved

analytically in closed form as follows

Q2
a =

4(vu + ru − rw)2

vu(vu − 2rw)(vu + 2ru)(vu + 2ru − 2rw)
, (4.16)

Qbrh −
√
r2h + (Q2

b − 1)r2d

Qbrh −
√
r2h + (Q2

b − 1)r2w

rh + rw
rh + rd

= e
vd
rh . (4.17)

Now we are equipped with all we need to calculate the time dependence of EWCS

analytically. Upon substituting the profiles of va(r) and vb(r) into eq. (2.16), EWCS can

be evaluated by separately evaluating the integral on the portion of the geodesic above the
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shell and that below the shell as follows

EAdS
W =

1

4GN

∫ ru

rw

dr

√
−2v′a − v′a2

r
=

1

4GN
log

r

1 +
√

1 +Q2
ar

2

∣∣∣∣∣
ru

rw

, (4.18)

EBB
W =

1

4GN

∫ rw

rd

dr

√
−2v′b − fb(r)v′b

2

r
=

1

4GN
log

r

r2h + rh

√
r2h + (Q2

b − 1)r2

∣∣∣∣∣∣
rw

rd

.

(4.19)

The final result then becomes

EW = EAdS
W + EBB

W =
1

4GN
log

ru
rd

1 +
√

1 +Q2
ar

2
w

1 +
√

1 +Q2
ar

2
u

r2h + rh

√
r2h + (Q2

b − 1)r2d

r2h + rh

√
r2h + (Q2

b − 1)r2w

 .

(4.20)

In principle we should write the above result in terms of the boundary quantities such as

h and 2` + h. Finding analytic solution of HRT turining points, i.e., (vt, rt), in the terms

of the width of entangling region is subtle. Here we recall that it was shown in [19] that

the relation between rt and X as a function of boundary time, i.e., t, can be expressed

analytically in closed form as follows

X =
2rh
ρ

c

s
+ rh log

(
2(1 + c)ρ2 + 2sρ− c
2(1 + c)ρ2 − 2sρ− c

)
, c =

√
1− s2, (4.21)

with

ρ =
1

2
coth

t

rh
+

1

2

√
csch2 t

rh
+

1− c
1 + c

, (4.22)

where ρ = rh
rc

and s = rc
rt

. Note that rc is the value of r at which ΓX intersects the null

shell. Also vt can be find as follows

vt = rc − rt, (4.23)

which is due to the matching condition for ΓX [21]. With these expressions, the profile of

the minimal geodesic and EWCS in eqs. (4.9), (4.11) and (4.20) are implicitly expressed

entirely in terms of boundary quantities, e.g., h, ` and T . In the left panel of figure 10, the

profile for EWCS which is determined from the analytic expressions in the (v, r) plane are

plotted for different values of boundary time. Further, we show the full evolution of rd, rw
and ru for a fixed h and ` in the right panel of figure 10. The markers in this figure show

the numerical results which coincide with our analytical expressions in the thin shell limit.

We will explore some universal features in the time evolution of EWCS using the closed

form expression in detail in the next section.
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Figure 10. Left : the profile of v(r) for fixed h = 0.4, ` = 2 and different values of boundary time.

The dashed line indicates the apparent horizon. Right : time evolution of rd, rw and ru. Clearly,

rw always obeys the bound rd ≤ rw ≤ ru. The markers show the corresponding numerical results.

Here we have set rh = 1.

4.3 Regimes in the growth of EWCS

The closed form expression for EWCS given by eq. (4.20) enables us to directly extract

the different scaling behavior in various regimes during the thermalization process. In

this section we will study these scaling regimes in more detail. In our setup, the main

boundary quantities which may affect the behavior of holographic dual for EWCS during

the thermalization process are h, ` and T . On the other hand, the dual geometric entities

in the bulk which may govern the evolution of EWCS are rd, ru and rh. Also our numerical

and analytical results in the previous sections suggest that the time dependence of EW
could be associated to rw, that ranges from rd (i.e., close to the turning point of Γh) at

early times, to ru (i.e., close to the turning point of Γ2`+h) at late times. In fact, rd and ru
are also depend on time, so that rw is not a monotonically increasing function of time to

ensure rd ≤ rw ≤ ru at all times. Based on these results, an immediate conclusion is that

the evolution of EWCS is characterized by different scaling regimes depending on rw(t)

which we will examine further in the following.

Early growth. At early times, the null shell does not reach Σ which lies entirely in AdS

geometry, and hence the EWCS is a fixed constant given by the vacuum value. The early

growth of EWCS starts immediately after the shell intersects with Σ, i.e., rw ∼ rd and

vd ∼ vshell = 0. In other words, there exists a sharp time t1 after which Γh lies entirely in

the black brane region and hence reduces to that in a static BTZ geometry. Indeed, t1 is

the saturation time for HEE corresponding to a boundary region with width h. Further,

the boundary quantities t and h can be fixed in terms of bulk parameters, i.e., vd and rd
using eqs. (3.7) and (4.4) as follows

h = rh log
rh + rd
rh − rd

, t = vd +
rh
2

log
rh + rd
rh − rd

. (4.24)

Combining the above equations then yields

t =
h

2
+ vd > t1. (4.25)
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On the other hand, because we consider h . t� rh � `, Γ2`+h lies almost entirely in the

AdS region and the point of intersection is very close to the boundary, i.e., rc � rh. From

eqs. (4.21) and (4.22), we can expand rc and ru for early times to find

rc = t− t3

12r2h
+ · · · , ru =

(
`+

h

2

)(
1 +

t4

144r4h
+ · · ·

)
. (4.26)

In the large ` limit we can approximate the value of Qa,Qb and rw in eqs. (4.14), (4.16)

and (4.17) by that at ru →∞. In this way, using vu = rc − ru we find

Qa = 2
rc − rw
r2u

+ · · · , Qb = − rw
2rh

+
rc − rw
rh

2r2h − r2w
r2u

+ · · · , (4.27)

where rw is given by

rw = 2rh
rh(p2 − 1) + rd(p

2 + 1)

rh(p+ 1)2 + rd(p2 − 1)
, p = e

vd
rh . (4.28)

The above solution for rw, shows that in eqs. (4.14) and (4.16) one must pick the minus and

plus sign for Qb and Qa, respectively. To see this, note that when Γh starts intersecting

the null shell, i.e., vd ∼ 0, we should have rw ∼ rd as satisfied by (4.28). Indeed choosing

other signs this condition is not satisfied. Using the above relations for the early time limit

(in which case, t� rh), eq. (4.20) yields

EW =
1

4GN

(
log

ru
rd

+
t2

4r2h
+ · · ·

)
. (4.29)

We can use eqs. (4.24) and (4.26) as well as h� ` condition, to rewrite it as follows

EW = Evac.
W + πEt2 + · · · , (4.30)

where Evac.
W is the vacuum contribution given by eq. (3.9) and E is the energy density

given by eq. (2.4) with d = 2. Therefore at early times, i.e., h . t � rh, EWCS grows

quadratically and the rate of growth is a fixed constant proportional to the energy density.

Similar scaling behavior was found for the early growth of entanglement entropy in [21].

Linear growth. As we discussed above, for t > t1, Γh lies on a constant time slice outside

the horizon and is time independent. Hence, rd remains fixed and we can use eq. (4.24) to

find rd and vd. One might note that in fact the time evolution of Σ is then largely governed

by properties of Γ2`+h which go through both AdS and black brane regions. Based on our

numerical results we expect that this regime corresponds to h � rh � t � `. In this

regime we can expand eqs. (4.21) and (4.22) to find

rh
rc

=
1

2
+

rc
4ru

+
2ru
rc
e
−2 t

rh + · · · ,

`+
h

2
= 2

rh
rc
ru + t+ rh log

rc
ru

+ · · · . (4.31)
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Solving these at leading order then yields

ru = `+
h

2
− t+ · · · , rc = 2rh + · · · . (4.32)

Once again in the ru →∞ limit we can use eqs. (4.27) and (4.28) for Qa, Qb and rw, noting

that in this case we should consider the above expressions for ru and rc. Upon substituting

these results into eq. (4.20) and expand for large `, the resulting EWCS is then

EW = Evac.
W +

1

4GN

t

rh
− 1

4GN
log 4 + · · · , (4.33)

which can be rewrite as follows

EW = Evac.
W + seq.t−

c

6
log 4 + · · · , (4.34)

where seq. is the equilibrium thermal entropy density given by eq. (2.4). It is worth to

mention that the above constant rate precisely matches with the previous results of [51,

56]. Similar scaling behavior was found during intermediate stages of time evolution of

entanglement entropy in [21].

Saturation. At late times, the tip of Γ2`+h approaches the null shell, i.e., rw → ru from

below and vu → 0. Thus, we can expand the relevant quantities in small ru − rw and vu.

Indeed, in this case Σ lies entirely in the black brane region and hence reduces to that in

a static BTZ geometry. Recall that an essential assumption in evaluating EWCS is that

both HRT hypersurfaces, i.e., Γh and Γ2`+h, correspond to the same boundary time t. We

use this condition to simplify the calculation since for vu ∼ 0, vd can be expressed in terms

of rd and ru as follows

vd = vu −
rh
2

log
rh − ru
rh + ru

+
rh
2

log
rh − rd
rh + rd

, (4.35)

where we have used eq. (4.4). Inserting the above expression in eqs. (4.14) and (4.17) and

simplify the resultant equations yields

Qa =
rw

2rh

√
r2h − r2w

, Qb = 0. (4.36)

Combining the above relation with eq. (4.16) and expand for small vu, we have

rw = ru +

(
1− r2u

2r2h

)
vu + · · · . (4.37)

Upon substituting these results into eq. (4.20), one finds that at leading order the resulting

EWCS is then given by the same expression as in (3.8). Also note that according to

eq. (4.37) the vu → 0 limit coincides with rw → ru as expected.

Producing the different scaling behavior of EWCS shows that the results based on our

analytic treatment are consistent with the previouslly numerical results.
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5 EWCS in Vaidya backgrounds: higher dimensions

In this section we generalise our studies to higher dimensional cases in specific directions.

We will mainly focus on three dimensional boundary theory, because the interesting qual-

itative features of the thermalization process are independent of the dimensionality of the

QFT. In order to investigate the behavior of EWCS during the thermalization process,

we consider two different types of global quench: a thermal quench and an electromag-

netic quench. Once again, we consider subsystems consisting of equal width intervals as

depicted in figure 1. For simplicity, we set rh = 1 and work with the rescaled quantity

ẼW = 4GN
˜̀d−2

EW throughout the following.

5.1 Evolution after a thermal quench (q = 0)

Let us begin with the case of a thermal quench where the dual gravitional geometry is

given by eqs. (2.2) and (2.3) with q = 0. In the following, we evaluate EW (t), defined

in eq. (2.16), numerically for several values of h, ` and T . To do that we should solve

eqs. (2.14) and (2.17) to find the corresponding profiles for Γh,Γ2`+h and Σ. Below in

figures 11 and 12, we show the time evolution of HMI and EWCS for various h and `.4 We

also present the competition between connected and disconnected configurations in these

figures for the same boundary regions. From these plots, one can infer that the qualitative

features of the evolution is similar to the three dimensional case, as we explain below.

In figure 11, we show various boundary quantities for the case of hT < `T < 1. In

the left panel, we compare the values of Scon.(t) and Sdis.(t) to see which configuration is

minimal during the evolution. Clearly, in this case the connected configuration is always

favored for any time. The middle panel demonstrates the evolution of HMI which is always

nonzero and the right panel shows EW (t). At early times, i.e., t� h, the EWCS starts at

the same value of the AdS geometry given by eq. (3.4), then at t ∼ O(h) quickly deviates

from the vacuum value and approaches a regime of linear growth. Once again, we observe a

period of time during which the growth of the EWCS is quadratic. The regime with linear

growth persists all the way up to t ∼ O(`+ h) where EW reaches its maximum value. At

late times, EW decreases and saturates to the equilibrium value corresponding to the black

brane geometry given by eq. (3.1).

In figure 12 we demonstrate the same boundary quantities for the case of hT < 1 < `T .

According to the left panel, although the connected configuration has the minimal area at

early time, the late time behavior is governed by the disconnected configuration. The crit-

ical time when this transition happens is approximately t ∼ O(`−h). The main difference

with the previous case is the late time behavior where EWCS displays a discontinuous

transition and immediately saturates to zero.

Comparing EWCS in the above two examples, we find that for small entangling regions,

it transitions between two different constant regimes corresponding to vacuum and thermal

values, without much of a linear regime in between. Further, as the width of the entangling

region becomes larger, the region with linear dependence becomes more pronounced. If we

fit the curves in the right panel of figure 12 in the linear growth regime, we find ∆ẼW ∼ vwt
4The results for HMI with the same parameters was previously reported in [32].
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Figure 11. Left : the HEE for connected and disconnected configuration for different values of the

separation between subregions. The connected configuration is always favored for any boundary

time. Middle: the HMI as a function of time which is positive during the entire evolution. Right :

the EWCS as a function of boundary time which saturates to a finite value. Here we have set

` = 1.18 and d = 3.
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Figure 12. Left : the HEE for connected and disconnected configuration for different values of h.

At late times, the disconnected configuration is favored. Middle: the HMI as a function of time

which vanishes at late times. Right : the EWCS as a function of boundary time which saturates to

zero. Here we have set ` = 4.5 and d = 3.

where the best fit gives vw ≈ 0.68. Note that, the slope seems more or less the same

independent of h.

5.2 Evolution after a electromagnetic quench (q 6= 0)

In this section, we study the case of an electromagnetic quench where a thin shell of

charged null fluid collapsing in empty AdS to form a charged black brane. In the following,

we consider two specific setups in which we evaluate the behavior of EW (t). We start

by considering the case of a general electromagnetic quench where the final equilibrium

geometry is a charged black brane at finite temperature and study scaling of EWCS during

the thermalization. We then choose the system to be entirely non-thermal by approaching

the extremal black brane solution whose blackening factor at late times is given by eq. (2.6).

Thermal electromagnetic quench (T 6= 0). In this case we should solve eq. (2.17)

where the blackening is given by eq. (2.7). Before we perform the computation, let us begin

by discussing a new feature which may arise in this model. Indeed, it was demonstrated

in [64] that this model generically violates the NEC in some region in the bulk, although

in some special cases the HRT surfaces that compute HEE do not probe this region. When

the extremal surfaces do probe this region the dual QFT would violate SSA which is

problematic. To avoid this, we choose the time-dependent mass and charge functions such

that the corresponding background respects SSA. This condition still leaves us with an
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Figure 13. The HEE (left), HMI (middle) and EWCS (right) as functions of boundary time

for different values of the separation between subregions in a charged black brane geometry. The

connected configuration is always favored for any boundary time and EWCS saturates to a finite

value. Here we have set ` = 1.18 and d = 3.
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Figure 14. The HEE (left), HMI (middle) and EWCS (right) as functions of boundary time for

different values of the separation between subregions in a charged black brane geometry. At late

times, the disconnected configuration is favored and EWCS saturates to zero. Here we have set

` = 4.5 and d = 3.

enormous freedom in choosing these functions. In what Follows, we will focus on a simple

choice where the mass and charge functions are given by

m(v) =
1

2

(
1 + tanh

( v

0.01

))
, q(v) = 0.9 m(v)

2
3 . (5.1)

In [64] it was shown that considering the above choice the HRT surfaces attached to the

boundary never cross into that forbidden region and SSA is satisfied.

In figures 13 and 14, we plot the results for the HEE, HMI and EWCS for various

values of the parameters. Once again, one can see that in the period of linear growth, the

slope seems more or less the same independent of the separation between subregions. Also

note that when the disconnected configuration is favored at late times the saturation time

of EWCS is smaller than the saturation time of the HEE associated with Γ2`+h as expected

(see figure 14).

Note that in general, the qualitative features of the evolution is similar to the previous

case with q = 0. Let us emphasize that from the bulk perspective, it is natural to expect

that turning on charged matter fields will slow down the thermalization process. On the

other hand, from the boundary perspective, the equilibration process becomes less efficient

due to the presence of charge density (or chemical potential) and one finds tq=0
s < tq 6=0

s .

The examples depicted in figure 15 exhibit this behavior. To close this discussion, let us

emphasize that, it was shown in [65] that in the case of AdS-RN-Vaidya the saturation of

HEE is non-monotonous with respect to the chemical potential. We expect that similar
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Figure 15. Comparison of the time evolution of the HEE (left), HMI (middle) and EWCS (right)

for neutral and charged quenches. Clearly when there is charge density, the equilibration process

becomes less efficient. Here we have set h = 2.2, ` = 4.5.

non-monotonic behavior happens in the case of EWCS. The intuitive argument for this

expectation is the dependence of EWCS on the configuration of (RT) HRT hypersurfaces

which also fix the HEE. Indeed, regarding the results illustrated in figure 15, the dependence

of saturation time on the chemical potential seems to be a universal behavior, independent

of the corresponding entanglement measure one may choose. The detailed exploration of

this behavior is outside the scope of this work and we leave it for future study [66].

Extremal electromagnetic quench (T = 0). In the case of extremal electromagnetic

quench where the system is entirely non-thermal, the blackening factor at late times is

given by eq. (2.6) corresponds to that of an extremal solution and we have

r−dh (v) =
1

2rdh

(
1 + tanh

(
v

v0

))
. (5.2)

In this case, m(v) and q(v) are not independent and we consider eq. (5.2) as the time-

dependent profile for the horizon radius. Before we proceed, let us recall that for an

extremal geometry the event horizon has a double zero. This feature plays an important

role in the evolution of EWCS after an electromagnetic quench as we detail below.

In figure 16, we show the numerical results for a fixed ` and several values of h. In

this case the connected configuration is always favored for any boundary time and EWCS

saturates to a finite value. There is some interesting differences when comparing the

behavior of the evolution after a electromagnetic quench here to the thermal quench in

the previous section. For extremal cases, the regime of linear growth is replaced by a

logarithmic growth. This behavior is inherited from the logarithmic scaling in the static

extremal geometries as previously discussed in [17], which has its origin in the double zero

at the horizon.

6 Conclusions and discussions

In this paper, we explored the time evolution of entanglement wedge cross section after a

global quantum quench for a strip entangling region in various geometries. We considered

subsystems consisting of equal width intervals as depicted in figure 1. First, we focused on

the simple case of d = 2 and consider a thermal quench in detail where the final equilibrium

state is dual to a BTZ geometry. In this case, much of the analysis could be carried out
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Figure 16. The HEE (left), HMI (middle) and EWCS (right) as functions of boundary time for

different values of the separation between subregions in an extremal black brane geometry. The

connected configuration is always favored for any boundary time and EWCS saturates to a finite

value. Here we have set ` = 1.18, v0 = 0.001 and d = 3.

analytically. We have also extended these studies to 3+1 dimensions, where we considered

two different types of global quench: a thermal quench and an electromagnetic quench. In

the following, we would like to summarize our main results and also discuss some further

problems.

• In a (2 + 1)-dimensional bulk geometry, we found that the time evolution of EWCS

is characterized by three different scaling regimes: an early time quadratic growth,

an intermediate linear growth and a late time saturation. The main behavior in

the evolution depends on Γ2`+h while Γh is fixed and do not influence the time

dependence of EWCS. To confirm these behaviors, we provided a numerical analysis

and examined the various regimes in the growth of EWCS in the thin shell limit.

We have also found an analytically closed form expression for EWCS, which enables

us to directly extract its scaling behavior in various regimes. Our results here show

that at early times, i.e., t� h, the EWCS starts at the same value of the pure AdS

geometry, then at t ∼ O(h) grows quadratically and approaches a regime of linear

growth. We found that as the width of the entangling region becomes larger, the

region with linear dependence becomes more pronounced. In analogy to the analysis

in [21] and motivated by this linear growth we introduce a dimensionless rate of

growth as follows

RW (t) ≡ 1

seq. ˜̀d−1
dEW
dt

. (6.1)

Using eqs. (4.30) and (4.34) we find that for a BTZ geometry

RW (t) =

{
2π Eseq. t t� rh � `

1 rh � t� `
. (6.2)

It is worth to mention that the value of the constant rate corresponding to the linear

growth regime precisely matches with the previous results of [51, 56]. Also note that

this value is the same as the entanglement velocity found for a BTZ black brane

in [21].

• Higher dimension thermal quench is very similar to the mentioned d=2 case. In

this situation, our numerical results, allowing us to identify regimes of early time
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quadratic growth, an intermediate linear growth and a saturation regime. Moreover,

we found that for small entangling regions, EWCS transitions between vacuum and

thermal values, without much of a linear regime in between and as the width of

the entangling region becomes larger, the region with linear scaling becomes more

pronounced. In particular, for a four dimensional bulk theory, in the linear growth

regime, we found RW (t) ∼ vw where the best fit gives vw ≈ 0.68. Once again,

this constant rate precisely matches the entanglement velocity found for a (3 + 1)-

dimensional AdS black brane in [21]. We expect that the same matching happens in

higher dimensional cases. It would be interesting to understand whether this indeed

happens to employ an analytic approach similar to three dimensional case.

• Considering an electromagnetic quench in higher dimensions with T 6= 0, we see

that, the qualitative features of the evolution is similar to the previous case with

q = 0. The main conclusion is that turning on additional charged matter fields slow

down the thermalization process. On the other hand, choosing the system to be

entirely non-thermal by approaching the extremal black brane solution, there exist

some interesting differences when comparing the behavior of the evolution to the

thermal quench. In this case, the regime of linear growth is replaced by a logarithmic

growth. This behavior is inherited from the logarithmic scaling in the static extremal

geometries, which has its origin in the double zero at the horizon.

• As we have mentioned before, it is proposed that EWCS is dual to different informa-

tion measures including entanglement of purification, reflected entropy, odd entropy

and logarithmic negativity. Considering EW as a measure of correlations dual to the

reflected entropy, figure 17 (left panel) indicates that the correlation grows even after

t ∼ O
(
`
2

)
where HMI (a natural measure of correlations) reaches its maximum value.

It implies that EW captures more correlations than HMI. This behavior is consistent

with the result of [38, 48, 58] that points out EW is more sensitive to classical corre-

lations. Although, this interpretation conflicts with the relation between EWCS and

negativity (which is just sensitive to quantum correlations) [51]. Similar behavior for

EW has been noted in [51] for a different model of the quench in (1+1) dimensional

CFT. Here, we emphasize that our study shows this is also true for thermal and

electromagnetic quench in (1+1) and (1+2) dimensions. On the other hand, we show

the time dependence of (holographic) odd entropy given by eq. (1.11) for various

values of ` in d = 2 in the right panel of figure 17. The figure demonstrates that this

quantity saturates after t ∼ O(`) to a constant value which is larger than the vacuum

contribution.

• EWCS satisfies some inequalities e.g. eqs. (1.5) to (1.7). These relations provide

important pieces of evidence for finding holographic dual of EWCS [33, 34, 39]. It

is worthwhile to check these inequalities in the time-dependent Vaidya background

explicitly. However, in this paper, we restricted our discussion on symmetric config-

urations where the size of the two subregions is equal (2.9) so it only lets us check

eqs. (1.5) and (1.6) in a certain condition. For example, figure 18 shows that eqs. (1.5)
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Figure 17. Evolution of reflected entropy and mutual information (left) and odd entropy (right)

in d = 2. Here we have set h = 1.
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Figure 18. Left : plot of the HEE, EWCS and half the HMI as a function of boundary time for

` = 5.5. Right : plot of EWCS(`, `) and HMI(`, `/2) for ` = 4 (solid) and ` = 5 (dashed). Here we

have set h = 1 and d = 2.

and (1.6) hold in the our setup.5 To check eq. (1.7) one should study more general

non-symmetric setups.

As we have mentioned before, the symmetric configuration (2.9) significantly simplifies

the calculation of the EWCS. In [47] the authors discuss an efficient algorithm to compute

the EWCS in general configurations, which could be applied in the time-dependent case as

well. In this case, denoting the widths of the strips as `1 and `2, the EWCS corresponds

to the length of the minimum geodesic connecting rd ∈ Γh and ru ∈ Γ`1+`2+h. Note that

an important difference is that for non-symmetric configurations, rd and ru are no longer

coincide with the corresponding turning points of the HRT extremal surfaces, but rather

vary as we change the ratio of `2`1 . Hence our previous arguments that the minimum geodesic

lies on x = 0 slice no longer apply, and we must undertake a more extensive analysis of

all possible geodesics ending on the Γs. Following [47], similar algorithm may be employed

to find the minimum geodesic for the Vaidya geometry through an iterative scheme at

each time step. Even though this would be computationally very demanding, a significant

5One may note that figure 17 (left panel) also implies SR(A : B) = 2EW (A : B) > I(A : B) (see

eq. (1.5)).
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simplification occurs for the case of homogeneous backgrounds, e.g., eq. (2.7), in which

different geodesics are related by translations along the boundary spatial coordinates.

We can extend this study to different interesting directions. Although in higher di-

mensions we did a numerical analysis, we expect that an analytic treatment similar to the

three dimensional case most simply done by considering the thin shell and large entangling

region limits. Then one can extract some analytic behavior of EWCS in different scaling

regimes during the evolution which may useful to more investigate interesting features of

the thermalization process. In particular it enables us to study various scaling regimes,

generalizing the tsunami picture [21].

In this paper we restricted our discussion to the equilibration following a global quench

in relativistic setup. It is interesting to consider more general backgrounds, in particular

those with Lifshitz and hyperscaling violating exponents [26, 27]. Another interesting

direction is to consider small entangling regions similar to [29]. We leave the details of

some interesting problems for future study [66].
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