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is the intermediate Dirac neutrino mass, and for current best fit values of the Dirac phase δ
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imi & 125 meV. These lower bounds hold for normally ordered neutrino masses, as
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is expected, despite neutrino masses being normally ordered. Outside the region, the
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a measurement of the lightest neutrino mass. Therefore, in the next years low energy
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might result either in severe constraints or in a strong evidence.
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1 Introduction

The persistent lack of evidence of new physics at colliders supports the idea that the

matter-antimatter asymmetry of the Universe originates from a dynamical process occurred

during the early history of the universe at energies well above the electroweak energy

scale. From this point of view minimal scenarios of leptogenesis, relying on type-I seesaw

mechanism [1–6] for the generation of neutrino masses and mixing and on the assumption

of thermal leptogenesis [7], are very attractive. The asymmetry is generated at an energy

scale approximately corresponding to the mass of the right-handed (RH) neutrino species

whose decays generate the asymmetry. Barring fine tuned solutions and unnaturally low

neutrino Yukawa couplings, this mass has to be very high in order to reproduce the solar

and atmospheric neutrino mass scales measured in neutrino oscillation experiments. This

is in nice agreement with the lower bound MI & 109 GeV on the mass of the heavy neutrino

producing the asymmetry obtained imposing successful leptogenesis [8–10]. However, the

possibility to test such very high energy scale leptogenesis scenarios necessarily relies on

some strategy to reduce the number of independent parameters in the type-I seesaw

mechanism. In this respect an attractive way to realise such a reduction is provided

by SO(10)-inspired conditions [11–16] since they are naturally satisfied in various (not

necessarily SO(10)) grand-unified models.

The resulting RH neutrino mass spectrum is very hierarchical and typically for the

lowest mass one has M1 ∼ 105 GeV, certainly well below the lower bound 109 GeV, in a

way that the asymmetry produced by its decays is negligible. However, the next-to-lightest

RH neutrino typically has a mass M2 ∼ (1010–1011) GeV, nicely in the right range for its

flavoured CP asymmetries to be sufficiently large to attain successful leptogenesis. In this
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way one is necessarily led to consider N2-leptogenesis, where the observed asymmetry is

reproduced by the next-to-lightest RH neutrino decays [17]. Within the SO(10)-inspired

leptogenesis scenario [18] the asymmetry can be expressed, in first approximation, as a

function of the nine low energy neutrino parameters and just one Dirac neutrino mass. The

latter is constrained by SO(10)-inspired conditions to be not too different by the charm

quark mass. In this way the successful leptogenesis condition generates constraints in the

space of all nine low energy neutrino parameters [18, 19]. Low energy neutrino phases are

particularly constrained since they play an important direct role both in maximising the

asymmetry produced by N2-decays and in making possible for this to escape the lightest

RH neutrino wash-out from inverse processes [20].

The most interesting constraint is a lower bound on the lightest neutrino mass, m1 &
O(1) meV [18]. This lower bound also translates into a lower bound on the neutrinoless

double beta deday effective neutrino mass. In general, it is well known that for normally

ordered neutrino mass this can be arbitrarily small if m1 is approximately within the

range (3–7) meV. However, within SO(10)-inspired leptogenesis one has a lower bound

mee & O(0.1) meV [21]. The existence of such a lower bound on the absolute neutrino mass

scale is very interesting, since it represents a strong constraint on any SO(10)-inspired model

that aims at embedding successful leptogenesis. However, no current or planned absolute

neutrino mass scale experiment has the sensitivity to fully test such a lower bound in a

way either to rule out SO(10)-inspired leptogenesis or to measure a value of the absolute

neutrino mass scale in agreement with the lower bound. On the other hand, a positive

signal in neutrinoless double beta decay experiments, at the level of mee ∼ 10 meV, would

certainly represent a strong support to SO(10)-inspired leptogenesis, since it would first

of all establish lepton number violation, a fundamental ingredient for leptogenesis models,

and it would fit very well with the expectations for the bulk of solutions.

An analytical expression of the lower bound was first derived neglecting the mismatch

between the neutrino and charged lepton flavour basis [20]. When this is taken into

account, scatter plots show that the lower bound on the lightest neutrino mass gets slightly

relaxed [19, 21]. The dependence of the lower bound on the Dirac phase delta and on the

atmospheric mixing angle was separately (i.e., marginalising on one of the two) studied

in [21] and, interestingly, the results clearly showed that the lower bound is modulated by

the value of the Dirac phase and can become much more stringent away from δ = 2nπ

(with n integer). Moreover, it becomes more and more stringent also for increasing values

of the atmospheric mixing angle. Interestingly, latest results from neutrino oscillation

experiments go in this direction for both parameters, thus favouring a more stringent lower

bound on the absolute neutrino mass scale.

In this paper we study in detail how the lower bounds, on m1 and on mee, jointly

depend on both δ and θ23. We show that for current best fit values, and approximately

within 1σ, the lower bound on m1 is actually much more stringent, finding m1 & 34 meV

that corresponds to
∑

imi & 0.125 eV. This lower bound is already in slight tension with

the upper bound from cosmological observations
∑

imi < 0.146 eV (95% C.L.) [23]. Within

the same region we also find mee & 31 meV, a lower bound that, quite interestingly, will

be tested by next generation 0νββ experiments.
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These results hold for α2 ≤ 5, where α2 is the ratio of the intermediate Dirac neutrino

mass to the charm quark mass at the temperature of leptogenesis Tlep ' 5 × 1010 GeV.

As we will see, these lower bounds do not apply just for best fit values of δ and θ23 but

for quite a large region in the plane (θ23, δ), approximately for δ in the interval 155◦–240◦

and for θ23 in the second octant. Outside this region the lower bound on m1 drops quite

sharply but within a 2σ region around best fit values it is still much more stringent than

the lower bound m1 & 0.5 meV that was found for δ = 2nπ and θ23 ≥ 36.5◦ [21]. Indeed as

we will see the lower bound gets more stringent for increasing values of θ23 and, therefore,

the fact that current data favour θ23 in the second octant goes in that direction.

These results clearly show the strong connection between absolute neutrino mass scale

and neutrino mixing parameters within SO(10)-inspired leptogenesis, a connection that is

quite a distinguished feature of the scenario and that is the main focus of our investigation.

The paper is organised as follows. In section 2 we review how within type-I

seesaw mechanism one can impose SO(10)-inspired conditions and reproduce the

matter-antimatter asymmetry of the universe with SO(10)-inspired leptogenesis. We also

briefly review current experimental results on neutrino masses and mixing parameters. In

section 3 we show the results of scatter plots projected on the 3-dim spaces (δ, θ23,m1) and

(δ, θ23,mee). The 3-dim projections of the scatter plots show clearly how SO(10)-inspired

leptogenesis identifies a special region strongly connecting the absolute neutrino mass to

δ and θ23. In section 4 we focus on the lower bound on the absolute neutrino mass scale

that can be extracted from these scatter plots. We show the lower bounds on m1 and

mee, in the form of isocontour lines in the plane (θ23, δ) for α2 = 5 and for a misalignment

between the neutrino Yukawa basis and the charged lepton flavour basis no larger than the

one measured in the quark sector and encoded by the CKM matrix. In section 5 we show

the dependence of the lower bounds on α2 and, more generally, on the exact definition of

SO(10)-inspired conditions. In particular, we show how the lower bounds get progressively

relaxed allowing for larger and larger values of the angles parameterising the left-handed

leptonic mixing matrix describing the mismatch between neutrino Yukawa and charged

lepton flavour basis, the analogue of the CKM matrix. In section 6 we derive an analytical

expression for the lower bound on m1 applying the analytical procedure discussed in [20]

for VL = I and in [21] for 0 ≤ VL ≤ VCKM. This expression clearly shows the dependence

on θ23 and δ. We also show analytically the effect played by taking VL ' VCKM of allowing

a complete suppression of the lightest RH neutrino wash-out. Finally, in section 7 we draw

conclusions, discussing in particular how absolute neutrino mass experiments might have

the opportunity in next years, depending on the results on δ and θ23, either to rule out or

to find quite a strong signature of SO(10)-inspired leptogenesis, considering the interplay

between absolute neutrino mass and neutrino mixing parameters.

2 Neutrino masses and SO(10)-inspired leptogenesis

The SO(10)-inspired leptogenesis scenario relies, in its minimal form, on the assumption

that neutrino masses and mixing are described by the type-I seesaw mechanism with three
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RH neutrinos. The light neutrino mass matrix is then given by the seesaw formula [1–6]

mν = −mD
1

DM
mT
D . (2.1)

Here we indicated with mD the neutrino Dirac mass matrix in the flavour basis,

where both charged lepton and Majorana mass matrices are diagonal, and defined

DM ≡ diag(M1,M2,M3), where M1 ≤ M2 ≤ M3, are the three heavy neutrino masses.

In the flavour basis, the light neutrino mass matrix is diagonalised by the leptonic mixing

matrix U , in a way that the light neutrino masses m1 ≤ m2 ≤ m3 are given by

Dm = −U †mν U
? , (2.2)

where Dm ≡ diag(m1,m2,m3). Neutrino oscillation experiments measure the atmospheric

neutrino mass scale matm ≡
√
m2

3 −m2
1 = (49.9 ± 0.3) meV and the solar neutrino mass

scale msol ≡
√
m2

2 −m2
1 = (8.6±0.1) meV [22]. We consider only normally ordered neutrino

masses since the case of inverted ordering is not only disfavoured by current data at ∼ 3σ,

but also only marginally viable in SO(10)-inspired leptogenesis. As mentioned in the

introduction, cosmological observations place a stringent upper bound
∑

imi < 0.146 eV

(95% C.L.) [23] on the sum of neutrino masses for normally ordered neutrino masses,

corresponding to an upper bound m1 < 43 meV (95% C.L.).

The leptonic mixing matrix can then be parameterised in terms of the usual mixing

angles θij , the Dirac phase δ and the Majorana phases ρ and σ,

U =

 c12 c13 s12 c13 s13 e
−i δ

−s12 c23 − c12 s23 s13 e
i δ c12 c23 − s12 s23 s13 e

i δ s23 c13

s12 s23 − c12 c23 s13 e
i δ −c12 s23 − s12 c23 s13 e

i δ c23 c13

 diag
(
ei ρ, 1, ei σ

)
.

(2.3)

Latest global analyses of neutrino oscillation experiment results find, in the case of normal

ordering, the following best fit values, 1σ errors and 3σ intervals for the mixing angles and

the leptonic Dirac phase δ [22]:

θ13 = 8.60◦ ± 0.13◦ ∈ [8.22◦, 8.98◦] , (2.4)

θ12 = 33.82◦ ± 0.76◦ ∈ [31.61◦, 36.27◦] , (2.5)

θ23 = 48.6◦+1.0◦

−1.4 ∈ [40.8◦, 51.3◦] , (2.6)

δ = 222◦+39◦

−28◦ ∈ [144◦, 357◦] . (2.7)

At the moment, not only there are no experimental constraints on the Majorana phases,

but we do not even know whether they are physical, in the case of Majorana neutrinos, or

unphysical, in the case of Dirac neutrinos.

The type-I seesaw extension of the SM, introduces eighteen additional parameters and

predicts that neutrinos are Majorana particles. On the other hand low energy neutrino

experiments can measure only eight independent parameters, including the experimental

information on the effective neutrinoless double beta decay neutrino mass

mee ≡ |mνee| =
∣∣m1 U

2
e1 +m2 U

2
e2 +m3 U

2
e3

∣∣ , (2.8)
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coming from 0νββ experiments. Having not found a positive signal so far, they place an

upper bound with the most stringent one coming from the KamLAND-ZEN experiment

that finds mee < 165 meV (90% C.L.) [24]. Therefore, the type-I seesaw mechanism cannot

be tested in a model independent way and, to this extent, one needs to introduce some

additional (phenomenological and/or theoretical) information to reduce the number of

independent parameters. The SO(10)-inspired leptogenesis scenario is a well justified

framework that realises such a reduction, yielding testable experimental predictions on

low energy neutrino parameters.

Qualitatively, SO(10)-inspired conditions are equivalent to the assumption that the

neutrino Dirac mass matrix is not too different from the up quark mass matrix mu. This

is a property that is certainly realised in SO(10) models [27–31] but in recent years also

non-SO(10) models respecting SO(10)-inspired conditions have been proposed [32, 33]. If

one considers SO(10) models, fermion families are represented by 16-dim spinors of SO(10).

In the simplest case, the dominant contribution to the Yukawa coupling matrices comes

from the 10-dim Higgs multiplet. In this case one would simply have mD = mu = md = m`,

where mu, md and m` are respectively the up quark, down quark and charge lepton mass

matrices, and there would be no mixing whatsoever, neither in the quark sector nor in the

lepton sector. For this reason, in order to get realistic models, one has to add some higher

dimensional Higgs multiplet that introduces a mismatch among fermion matrices and is

responsible for the observed leptonic and quark mixing. In the case of SO(10) models,

contributions from 120-dim and 126-dim Higgs multiplets introduce in general such kind

of mismatch and can indeed successfully reproduce the mixing both in the lepton and

quark sectors [27–31, 34]. In our case, to be more general and following [18, 19], we define

SO(10)-inspired models that class of models that satisfy SO(10)-inspired conditions defined

as follows.

Let us parameterise the neutrino Dirac mass matrix in the bi-unitary parameterisation,

mD = V †L DmD UR , (2.9)

where VL is the unitary matrix acting on left-handed neutrino fields and realising the

transformation from the flavour basis to the neutrino Yukawa basis (where mD is diagonal

instead of the charged lepton mass matrix). It is then the analogous of the CKM matrix

in the quark sector, encoding the mismatch between the neutrino Yukawa basis and the

charged lepton flavour basis. It can be parameterised analogously to the leptonic mixing

matrix as

VL =

 cL12 c
L
13 sL12 c

L
13 sL13 e

−iδL

−sL12 c
L
23−cL12 s

L
23 s

L
13 e

iδL cL12 c
L
23−sL12 s

L
23 s

L
13 e

iδL sL23 c
L
13

sL12 s
L
23−cL12 c

L
23 s

L
13 e

iδL −cL12 s
L
23−sL12 c

L
23 s

L
13 e

iδL cL23 c
L
13

 diag
(
ei ρL ,1, eiσL

)
,

(2.10)

in terms of three mixing angles θL12, θ
L
13 and θL23 (sLij ≡ sin θLij and cij ≡ cos θLij), one

Dirac-like phase δL and two Majorana-like phases ρL and σL. The diagonal matrix DmD ≡
diag(mD1,mD2,mD3) gives the spectrum of Dirac neutrino masses. Finally, UR acts on

the RH neutrino fields and it is the matrix encoding the mismatch between the neutrino
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Yukawa basis and the flavour basis, where the Majorana mass matrix is diagonal. It can

then be regarded as the RH neutrino mixing matrix. We define SO(10)-inspired models

that class of models respecting the following SO(10)-inspired conditions:

i) The unitary matrix VL has mixing angles 0 ≤ θLij ≤ θCKM
ij , where θCKM

ij are the mixing

angles in the CKM matrix and, in particular, θCKM
12 ' 13◦ is the Cabibbo angle;

ii) The neutrino Dirac masses are such that the mass ratios α1 ≡ mD1/mup, α2 ≡
mD2/mcharm, α3 ≡ mD3/mtop are O(1) parameters, more precisely we allow them

to vary within [0.1, 10]. Notice that the up quark masses have to be evaluated at

the energy scale of interest. In our case we are interested in temperatures where the

asymmetry is generated, i.e., for T ∼ (1010–1011) GeV and we will take mup = 1 MeV,

mcharm = 400 MeV and mtop = 100 GeV [25].

With these assumptions the three RH neutrino masses are well expressed in terms of mν ,

the three αi’s and VL by [21]

M1 '
m2
D1

|m̃ν11|
, M2 '

m2
D2

m1m2m3

|m̃ν11|
|(m̃−1

ν )33|
, M3 ' m2

D3 |(m̃−1
ν )33|, (2.11)

where m̃ν ≡ VLmν V
T
L is the light neutrino mass matrix in the neutrino Yukawa basis.

The resulting spectrum of neutrino masses is very hierarchical and in particular one has

M1 � 109 GeV and M2/M3 � 1.1 This results into a negligible contribution to the

final matter-antimatter asymmetry produced by N1- and N3-decays, so that the only

contribution that can reproduce the observed asymmetry comes from N2-decays. The

final B − L asymmetry, that is conserved in the standard model and in particular by

sphaleron processes, has to be calculated as the sum of three charged lepton flavour

asymmetries (α = e, µ, τ)

N f
B−L =

∑
α

N∆α , (2.12)

where ∆α ≡ B/3−Lα. A fraction asph = 28/79 of the final B−L asymmetry will ultimately

be in the form of a baryon asymmetry at the sphaleron freeze-out time. In this way the

baryon-to-photon ratio predicted by leptogenesis can be calculated as

ηlep
B = asph

N f
B−L
N rec
γ

' 0.96× 10−2N f
B−L , (2.13)

where N rec
γ is the abundance of photons at recombination. The numerical expression

on the right-hand side holds when the abundances are normalised in a way that the

ultra-relativistic thermal equilibrium abundance of a RH neutrino species is just given

by N eq
NI

(T � MI) = 1. In this way the abundance of photons at recombination is

given by N rec
γ = 4 gSM

R /(3 grec
S ) ' 36.4, where gSM

R = 106.75 is the number of standard

model ultra-relativistic degrees of freedom and grec
S = 43/11 is the entropy ultra-relativistic

number of degrees of freedom at recombination.

1We are barring the very fine tuned compact spectrum solution with M1 ∼M2 ∼M3 [26].
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Notice that we are assuming the contribution from a pre-existing asymmetry to be

negligible. The possibility that a large pre-existing asymmetry is generated by some

external mechanism prior to leptogenesis and it is then washed-out by RH neutrinos

inverse processes while decays produce the observed (much smaller) asymmetry, so-called

strong thermal leptogenesis scenario, has been considered in [35] and it has been shown

that this is possible only within tauon-dominated N2-leptogenesis with some additional

conditions. Interestingly, this scenario can be realised within SO(10)-inspired leptogenesis

leading to very sharp predictions on low energy neutrino parameters [36]. Currently, the

main challenge is the existence of an upper bound on the atmospheric mixing angle in

tension with current data favouring second octant. This can be reconciled only for quite

large values of α2 & 5 [37] that, however, seem to be indicated also by realistic fits in SO(10)

models [38]. In this paper we do not consider strong thermal SO(10)-inspired leptogenesis

scenario but we just remind that, for this more restrictive scenario to be realised, there is

anyway, independently of α2, a very stringent and compelling lower bound on the absolute

neutrino mass scale, with both m1 and mee & 10 (2) meV [39] for an initial pre-existing

asymmetry Np,i
B−L = 10−1 (10−3). This is getting already tested by current cosmological

observations while for neutrinoless double beta decay signal we need to wait for next

generation experiments.

The three flavoured asymmetries in eq. (2.12) have to be calculated within

N2-leptogenesis [17] and, taking into account also so-called phantom terms, these can be

calculated using the expressions [40–43]

N lep,f
∆e
'

[
K2e

K2τ⊥2

ε2τ⊥2
κ(K2τ⊥2

) +

(
ε2e −

K2e

K2τ⊥2

ε2τ⊥2

)
κ(K2τ⊥2

/2)

]
e−

3π
8
K1e ,

N lep,f
∆µ
'

[
K2µ

K2τ⊥2

ε2τ⊥2
κ(K2τ⊥2

) +

(
ε2µ −

K2µ

K2τ⊥2

ε2τ⊥2

)
κ(K2τ⊥2

/2)

]
e−

3π
8
K1µ ,

N lep,f
∆τ
' ε2τ κ(K2τ ) e−

3π
8
K1τ , (2.14)

that apply for 109 GeV . M2 . 1012 GeV. In this mass range the asymmetry production

occurs in the two fully flavoured regime [44, 45], where Boltzmann equations are used to

describe the evolution of the two flavoured asymmetries, the electronic and the sum of

muonic and tauonic.2 Moreover, it should also be noticed that they are valid for M1 &
T out

sph ∼ 100 GeV, since otherwise there would not be any wash-out from the lightest RH

neutrino (an alternative scenario considered in [46]). This condition is naturally realised for

α1 & 0.1, as we are assuming. In eqs. (2.14) the ε2α’s are the N2 flavoured CP asymmetries

defined as ε2α ≡ −(Γ2α − Γ2α)/(Γ2 + Γ2), where Γ2 ≡
∑

α Γ2α and Γ2 ≡
∑

α Γ2α and we

2For M2 & 1012 GeV we should use a modified version where the production occurs in the unflavoured

regime. However, in this case there are only very marginal solutions since the wash-out at the production

is much stronger. We should also mention that we are neglecting flavour coupling. In [32] it was noticed

that including flavour coupling effects some new special solutions in a region where θ23 is deeply in the

second octant (θ23 ' 53◦) and δ ' 20◦. We are not considering here these solutions since this region is

not only disfavoured by current data but also because those solutions imply quite a large fine tuning in the

seesaw formula.
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indicated with ΓIα = Γ(NI → φ† lα) and Γ̄Iα = Γ(NI → φ l̄α) the zero temperature limit

of the flavoured decay rates into α leptons and anti-leptons respectively.

Accounting for the interference between tree level and one loop graphs one obtains for

the flavoured CP asymmetries [47]

ε2α ' ε(M2)

{
Iα23 ξ(M

2
3 /M

2
2 ) + J α23

2

3(1−M2
2 /M

2
3 )

}
, (2.15)

where we introduced

ε(M2) ≡ 3

16π

M2matm

v2
, ξ(x) =

2

3
x

[
(1 + x) ln

(
1 + x

x

)
− 2− x

1− x

]
, (2.16)

Iα23 ≡
Im
[
m?
Dα2mDα3(m†DmD)23

]
M2M3 m̃2matm

and J α23 ≡
Im
[
m?
Dα2mDα3(m†DmD)32

]
M2M3 m̃2matm

M2

M3
,

(2.17)

with m̃2 ≡ (m†DmD)22/M2. Since M3 �M2, one has ξ(M2
3 /M

2
2 ) ' 1 and the second term

∝ J α23 can be neglected in eq. (2.15). The expression (2.17) for the interference term Iα23

can be recast using the bi-unitary parameterisation (eq. (2.9)) and in this way one obtains

the following expression for the flavoured CP asymmetries [21]

ε2α '
3

16π v2

|(m̃ν)11|
m1m2m3

∑
k,l mDkmDl Im[VLkα V

?
Llα U

?
Rk2 URl3 U

?
R32 UR33]

|(m̃−1
ν )33|2 + |(m̃−1

ν )23|2
. (2.18)

Like the three RH neutrino masses, the RH neutrino mixing matrix can be also expressed

analytically in terms of mν , the three αi’s and VL. It is found [21]

UR '


1 −mD1

mD2

m̃?ν12
m̃?ν11

mD1
mD3

(m̃−1
ν )?13

(m̃−1
ν )?33

mD1
mD2

m̃ν12
m̃ν11

1 mD2
mD3

(m̃−1
ν )?23

(m̃−1
ν )?33

mD1
mD3

m̃ν13
m̃ν11

−mD2
mD3

(m̃−1
ν )23

(m̃−1
ν )33

1

 DΦ , (2.19)

where the three phases in Dφ ≡ diag(e−i
Φ1
2 , e−i

Φ2
2 , e−i

Φ3
2 ) are given by

Φ1 = Arg[−m̃?
ν11] , Φ2 = Arg

[
m̃ν11

(m̃−1
ν )33

]
− 2 (ρ+ σ)− 2 (ρL + σL) , Φ3 = Arg[−(m̃−1

ν )33] .

(2.20)

With this analytical expression for the matrix UR and neglecting sub-dominant terms, one

obtains the following analytical expression for the tauonic CP asymmetry depending only

on α2, mν and VL,

ε2τ '
3m2

D2

16π v2

|(m̃ν)11|
m1m2m3

|(m̃−1
ν )23|

|(m̃−1
ν )33|

×
[|VL33|2 (|(m̃−1

ν )23|/|(m̃−1
ν )33|) sinατAL + |VL33| |VL23| sinατBL ]

|(m̃−1
ν )33|2 + |(m̃−1

ν )23|2
, (2.21)
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where

ατAL = Arg [m̃ν11]− 2 Arg[(m̃−1
ν )23]− π − 2 (ρ+ σ)− 2 (ρL + σL) , (2.22)

ατBL = Arg [m̃ν11]− Arg[(m̃−1
ν )23]−Arg[(m̃−1

ν )33]− 2 (ρ+ σ)− 2 (ρL + σL) . (2.23)

Analogously, one finds an analytic expression for the muon CP asymmetry given by [21]

ε2µ ' εVL2µ =
3m2

D2

16π v2

|(m̃ν)11|
m1m2m3

(2.24)

× |(m̃
−1
ν )23|

|(m̃−1
ν )33|

|VL22| |VL32| sinαµAL + |VL32|2 (|(m̃−1
ν )23|/|(m̃−1

ν )33|) sinαµBL
|(m̃−1

ν )33|2 + |(m̃−1
ν )23|2

,

where

αµAL = Arg [m̃ν11]−Arg[(m̃−1
ν )23]−Arg[(m̃−1

ν )33]− 2 (ρ+ σ)− 2 (ρL + σL) , (2.25)

αµBL = Arg [m̃ν11]− 2 Arg[(m̃−1
ν )23]− π − 2 (ρ+ σ)− 2 (ρL + σL) . (2.26)

Since there are no electron dominated solutions, we do not give here the analytic expression

for the electron CP asymmetry but this can be found in [21].3

In the expressions (2.14) we have also introduced the flavoured decay parameters KIα

defined as

KIα ≡
ΓIα + ΓIα
H(T = MI)

=
|mDαI |2

MI m?
, (2.27)

where m? ≡ 16π5/2
√
gSM? /(3

√
5) (v2/MPl) ' 1.07 meV is the equilibrium neutrino mass

and H(T ) =
√
gSM? 8π3/90T 2/MP is the expansion rate.

It is easy to obtain the following expression for the flavoured decay parameters in the

bi-unitary parameterisation (see eq. (2.9)) [21]

KIα =

∑
k,l mDkmDl VLkα V

?
Llα U

?
RkI URlI

MI m?
. (2.28)

Finally, for the efficiency factors at the production κ(K2α) we can use the standard

simple analytic expression valid for initial thermal abundance [10]

κ(K2α) =
2

zB(K2α)K2α

(
1− e−

K2α zB(K2α)

2

)
, zB(K2α) ' 2 + 4K0.13

2α e
− 2.5
K2α . (2.29)

Notice, however, that since all solutions are characterised by strong wash-out at the

production (either K2τ � 1 or K2τ⊥2
� 1 respectively for tauon and muon-dominated

solutions), the final asymmetry does not depend on the initial N2 abundance anyway.4

In this way we have now all the analytical expressions needed to calculate the final

asymmetry N f
B−L in a fast way and from this, using eq. (2.13), the baryon-to-photon ratio

3However, notice that electron dominated solutions are found in a supersymmetric framework [46].
4For τB solutions, that we introduce in the next section, one can find values of K2τ as low as K2τ ' 2

but for values of m1 & matm, now disfavoured by the cosmological observations.
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ηlep
B predicted by leptogenesis as a function of α2, the nine low energy neutrino parameters

in mν and the nine parameters in VL.

3 Scatter plots: 3-dim projections

The baryon-to-photon ratio predicted by leptogenesis, that can be calculated with the

analytic expression ηlep
B (α2,mν , VL) given in the previous section, has to be compared with

the experimental value from cosmological observations [48]

ηexp
B = (6.12± 0.04)× 10−10 . (3.1)

If one approximates VL ' I and assumes α2 values lower than a certain maximum

allowed value, then the successful leptogenesis condition ηlep
B (α2,mν , VL) = ηexp

B defines

an hypersurface in the space of the nine low energy neutrino parameters. When the

dependence on the parameters in the VL is taken into account, the hypersurface becomes a

layer with some thickness determining an allowed region in the space of parameters. Since

SO(10)-inspired conditions impose stringent upper bounds on the three mixing angles θLij ,

this thickness is sufficiently moderate that one still obtains experimental, partly testable,

predictions [18, 19].

The determination of this allowed region can be done numerically with scatter

plots [18–21]. So far the resulting constraints have been shown projecting on different

planes, in particular θ23 versus m1 and δ versus m1. However, these 2-dim projections can

hide the full higher dimensional structure of the constraints and, therefore, the predictive

power of the scenario. Without imposing any experimental information on δ, allowing

uniformly any value in [0, 2π], there would be no loss of predictive power in neglecting the

dependence on δ. However, the experimental data now favour a certain range of values for

δ excluding at 3σ quite a large interval (see eq. (2.7)).

For this reason, in the left panel of figure 1, we now show 3-dim projections of the

scatter plots in the space (δ, θ23,m1) for α2 = 5 and 0 ≤ θLij ≤ θCKM
ij . It can be seen that

for sufficiently large values of θ23, and in particular for θ23 in the second octant, one has two

different regions corresponding to two disconnected ranges of values for m1: one at high

values, approximately for 34 meV . m1 . 100 meV, and one at low values, approximately

for 1 meV . m1 . 10 meV, with the exact limits depending on the values of δ and θ23 and

in general such that the ranges reduce for increasing values of θ23.

These two regions correspond to two different types of analytical solutions that were

clearly identified and characterised in [19, 20]. They both correspond to tauon dominated

solutions but those at low m1 values, the τA solutions, are approximately characterised by

ρ ' nπ/2 and K2τ � 1, while those at high m1 values, the τB solutions, are characterised

by ρ ' nπ and K2τ ' 1. Therefore, an important difference is that in the case of τA
solutions (low m1 values) the wash-out at the production is necessarily very strong (K2τ &
10) and the final asymmetry is independent of the initial N2 abundance, while in the case

– 10 –
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Figure 1. Scatter plots in the space (δ, θ23,m1) (left panel) and (δ, θ23,mee) (right panel) for

α2 = 5 and 0 ≤ θLij ≤ θCKM
ij . The red vertical axis indicates best fit values for δ and θ23. The red

shaded regions correspond to m1 & 43 meV, currently disfavoured by cosmological observations.

The three blue planes, at m1 and mee = 1.5 meV, 3 meV and 10 meV help to visualise the ranges

of m1 and mee values allowed by τA solutions in the (δ, θ23) plane.

of τB solutions the wash-out at the production is mild (K2τ & 2) and for this reason there

can be some slight dependence on the initial N2 abundance.5

An interesting feature is that while in the case of τB solutions, for m1 & 34 meV, all

values of δ and θ23 are allowed, in the case of τA solutions, for low m1, not all values of δ

and θ23 are allowed. In particular, there is a range of values of δ, modulated by θ23, that

is unaccessible to τA solutions. In this way, if future cosmological observations will place

an upper bound below 34 meV, excluding τB solutions, then, for a given couple of values

(δ, θ23), there is quite a narrow allowed range of m1 values (in the left panel of figure 1

this range can be understood with the help of the three blue planes at m1 = 1.5 meV,

3 meV and 10 meV). Considering that current best fit values of δ and θ23 fall just in the

region unaccessible to τA solutions (in figure 1 these best fit values are indicated by the red

vertical axis), one has a very interesting situation: if the experimental errors on δ and θ23

will sufficiently shrink around current best fit values, then either absolute neutrino mass

scale experiments will find a positive signal or SO(10)-inspired leptogenesis with α2 . 5

will be ruled out. This shows that in the next years low energy neutrino experiments will

test SO(10)-inspired leptogenesis in a very effective and interesting way.

5Strong thermal leptogenesis can be realised only for τA solutions [20]. For increasing values of the initial

pre-existing asymmetry to be washed-out, one needs increasing value of m1 in order to have higher values

of K1e ∝ mee ' m1 and this, in turn, requires lower and lower values of θ23. In this way one finds (more

stringent) lower bounds on m1 and mee and an upper bound on θ23 depending on the initial pre-existing

asymmetry to be washed-out [20]. For example for a 10−3 value of the initial pre-existing asymmetry and

for α2 = 5 one finds m1,mee & 8 meV and θ23 . 45.75◦ incompatible with θ23 in the second octant [37].

However, for higher values of α2, the upper bound on θ23 gets relaxed and, in particular, for α2 = 6 one

obtains θ23 . 54◦ compatible with current experimental values [37].
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Another interesting feature is that even outside the region in the plane (θ23, δ) for

which m1 & 34 meV (τB solutions), there is still a lower bound m1 > mmin
1 (δ, θ23) ∼ meV,

holding for τA solutions, with the exact value depending on δ and θ23 as we will discuss

in detail in the next section. Even though this lower bound is much more relaxed, it

might be still tested in future and it is in any case important when considering specific

SO(10)-inspired models.

In the right panel of figure 1 we also show a scatter plot in the space (δ, θ23,mee).

Interestingly, it can be noticed that the region in the plane (δ, θ23) where m1 & 34 meV

translates into a slightly more relaxed lower bound mee & 31 meV that will be fully tested

by next generation 0νββ experiments. Outside this region the lower bound on mee can

relax to values that are too small to give a signal but there are still regions where the

lower bound is stringent enough that might be testable by next generation experiments.

We discuss this in more detail in the next section but it is interesting that if long baseline

experiments will confirm values of δ and θ23 not too different from current best fit values,

then both cosmological observations and 0νββ experiments should find a positive signal

and measure the absolute neutrino mass scale if the SO(10)-inspired leptogenesis scenario

is correct, otherwise they will rule it out or place strong constraints on the parameters

defining SO(10)-inspired conditions (in particular on α2 and the angles in VL as we discuss

in section 5).

Finally, notice that in figure 1 we indicated, with a red colour, the region in tension

with the upper bound from cosmological observations m1 . 43 meV(95% C.L.). Notice that

within SO(10)-inspired leptogenesis this upper bound also applies on mee, since at these

high values of m1 the τB solutions satisfy mee ' m1, as we show in section 6, another,

quite distinctive, feature.

4 Lower bound on the absolute neutrino mass scale

The scatter plots in figure 1 clearly confirm the existence of the lower bounds on m1 and

mee. The results in [21] were already showing that the lower bound on m1 was strongly

modulated by δ and that for certain values this could become stringent enough to be

testable by absolute neutrino mass scale experiments. They were also showing that the

lower bound was becoming more stringent for large values of θ23.

We extracted the lower bounds on m1 and mee from the scatter plots in figure 1,

showing their simultaneous dependence both on δ and θ23. To this extent, we show in

figure 2 isocontour lines of the lower bound on m1 (left panel) and mee (right panel) in

the plane δ versus θ23 for α2 = 5 and 0 ≤ θLij ≤ θCKM
ij . The blue region corresponds to the

case when the lower bound is realised by τA solutions, while the orange region corresponds

to the region where τA solutions are missing and the lower bound is determined by τB
solutions. Since the two sets of solutions are disconnected at such high values of θ23, there

is a discontinuity in the value of the lower bounds. In the same figure we also superimpose

white short-dashed lines showing the allowed regions found by global analyses at 1σ, 2σ

and 3σ C.L. [22]. The white stars indicates the best fit values for δ and θ23. It can be seen

how current data favour θ23 in the second octant and δ in the third quadrant. From figure 2
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Figure 2. Isocontour lines for the lower bound on the lightest neutrino mass m1 (left panel) and on

the 0νββ effective neutrino mass mee (right panel) for α2 = 5 in the plane δ versus θ23. The white

dashed lines are the current experimentally favoured regions for δ and θ23 at the indicated C.L.

from global analyses [22] and the white stars indicate the best fit values. The blue area indicates

τA solutions, while the orange area indicates τB solutions.

it is clear how this experimentally favoured region strongly overlaps with the orange region,

for δ in the range 150◦–240◦ at θ23 = 48.6◦ (best fit value), where the lower bounds get

much more stringent and precisely

m1 & 34 meV and mee & 31 meV . (4.1)

These lower bounds are sufficiently stringent that will be tested during next years by

absolute neutrino mass scale experiments. The first lower bound on m1 corresponds to∑
imi & 125 meV and, compared to the existing upper bound

∑
imi < 146 meV (95%

C.L.) [23], it is clear that there is already some tension. The second lower bound on mee

will be tested by next generation 0νββ experiments. For example, the KamLAND2-ZEN

experiment should reach a sensitivity of mee ' 20 meV [49] that would certainly fully test

this high m1 value region (τB solutions).

Outside the fully testable region (4.1) the lower bound is of course much less stringent.

One can indeed only have τA solutions that are realised for values in the range m1 ∼
(1–10)meV. The lowest bound is obtained for δ = nπ, confirming the results found in [21]

and in our case, for θ23 ≥ 40◦, we find m1 & 0.8 meV. However, values δ = nπ with

θ23 . 43◦ are currently excluded by global analyses at more than 3σ.

Within the experimentally 2σ allowed region we find m1 & 1.2 meV, that would

correspond to
∑

imi & 59.8 meV, with a deviation from the hierarchical limit, where∑
imi = 58.5 meV, of just δ(

∑
imi) & 1.3 meV. Unfortunately such a small deviation

is far beyond both current and planned cosmological observations (see [50] for a review).

However, if future long baseline measurements should shrink the allowed region in (θ23, δ)

around current best fit values, then the deviation from the hierarchical limit could become

detectable. It is then crucial whether future neutrino oscillation experiments will be able

to measure δ and θ23 precisely (and of course accurately) enough, in particular at the

level to establish whether θ23 and δ fall inside the region where the stringent lower bound
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in eq. (4.1) hold (the region associated to τB solutions). For example, if errors should

shrink around current best fit values, a determination of δ with a ∆δ ' 5◦ error and a

determination of θ23 with a ∆θ23 ' 0.5◦ error would confirm the lower bounds (4.1) at

3σ C.L.. Interestingly, these are precisions that will be reached combining results from

next generation long baseline experiments DUNE and T2HK [51]. In this case absolute

neutrino mass scale experiments should be able to measure both m1 and mee and to verify

the prediction mee ' m1 (see section 6 for more details).

5 Dependence of the lower bound on SO(10)-inspired conditions

In this section we discuss the dependence of the results on the definition of SO(10)-inspired

conditions given in section 2. From the calculation of the asymmetry we have seen that

this depends strongly on α2, while it is independent of α1 and α3, as far as of course

one considers values of α1 and α3 for which the N2 leptogenesis scenario and eq. (2.14)

is applicable.6 In this case one simply has N f
B−L ∝ α2

2 since ε2α ∝ α2
2 and the two

wash-out factors do not depend on α2 considering that all flavoured decay parameters are

independent of all three αi. For this reason the lower bound on m1, as we will see in more

detail in the next section, is simply ∝ α−2
2 , getting relaxed for increasing values of α2.

In figure 3 we show again, as in figure 3, the contour lines for the lower bound on m1

in the plane (θ23, δ) but this time for three different values of α2. The top panel is for

α2 = 4. One can see a very interesting result: the region filled by τA solutions shrinks

considerably so that the region not filled by τA solutions enlarges. At the same time τB
solutions also become disfavoured. The reason is that for α2 = 4 the lower bound on

m1 for τB solutions becomes m1 & 53 meV, above the upper bound from cosmological

observations m1 . 45 meV (95% C.L.), having in mind, however, that current tensions in

the ΛCDM model might be indicating some extension and some relaxation of the upper

bound on neutrino masses cannot be excluded [52]. Therefore, this region is excluded at

95% C.L. by cosmological observations, or, in other words, it is only marginally allowed

and, for this reason, we indicated it with red colour. Moreover since neutrino oscillation

experiments favour values of θ23 and δ to lie just in this region at ∼ 1σ, then one arrives

to the conclusion that current neutrino mixing data slightly disfavour values α2 . 4: this

is an interesting result showing well the interplay between absolute neutrino mass scale

and neutrino mixing experiments in testing SO(10)-inspired leptogenesis, the main point

of this paper. On the other hand, from the bottom panel one can see that for α2 = 6

the lower bound gets considerably relaxed in the whole (θ23, δ) plane. In particular, τA
solutions now exist for all values of δ even for θ23 in the second octant (more precisely, for

θ23 . 48◦) and, marginally, even for best fit (θ23, δ) values. Moreover the lower bounds get

considerably relaxed.

In figure 4 we show, for the same three values of α2, the contour lines for the lower

bound on mee. The results are analogous to those for the lower bound on m1. In the case

α2 = 4, the region where there are no τA solutions is still indicated in red still to signal that

6For example, as we mentioned, if α1 . 0.1 so that M1 . T out
sph ∼ 100 GeV, then there would be no

wash-out from N1 inverse processes.
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Figure 3. Isocontour lines for the lower bound on the lightest neutrino mass in the plane (θ23, δ)

(same conventions as in figure 2) for α2 = 4 (top panel), α2 = 5 (central panel) and α2 = 6

(bottom panel).
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this region is only marginally allowed by cosmological observations. Notice that since at

high values of m1 one has m1 ' mee, we will show this result in section 6, the lower bound

m1 & 53 meV translates also into an analogous lower bound mee & 50 meV. Interestingly,

planned 0νββ experiments will be able to test this lower bound during next years. On

the other hand, for α2 = 6, the lower bound on mee, like that one for m1, gets relaxed

compared to the case α2 = 5 and, as one can see from the bottom panel, one obtains

mee & 19 meV.

Together with α2, constraints on low energy neutrino parameters also depend on the

three mixing angles θL12, θ
L
13, θ

L
23 in the LH mixing matrix VL. Therefore, they depend on

the precise definition of SO(10)-inspired conditions in placing upper bounds on the θLij .

It was already discussed in detail in different papers [19–21] how the constraints change

compared to the case VL = I when small values of the mixing angles, at the level of the

corresponding angles in the CKM matrix, are turned on. In figure 5 we show the results for

the lower bound on m1 allowing a more extreme departure from VL = I especially aiming at

understanding how large have to be the mixing angles to expect a drastic relaxation of the

lower bound on the absolute neutrino mass scale. In the top panel we show again the results

for α2 = 5 and 0 ≤ θLij < θCKM
ij . In the central panel we still impose θL12 ≤ θCKM

12 ' 13◦ but

this time we allow 0 ≤ θL13 ≤ 5◦ and 0 ≤ θL23 ≤ 5◦. One can see how the blue region with

τA solutions now fills almost all (θ23, δ) plane. In particular within the 1σ region allowed

by neutrino oscillations experiments one now has m1 & 2 meV. In the bottom panel we

show the results for an even more drastic relaxation of SO(10)-inspired conditions, allowing

all three angles to vary within the range 0 ≤ θLij ≤ 13◦. One can see how this time the

τA solutions are allowed for all points in the (θ23, δ) plane. However, despite this drastic

relaxation one can notice that there is still an absolute lower bound m1 & 0.2 meV and

within the 1σ region favoured by neutrino oscillation experiments one has m1 & 0.5 meV.

These results are somehow expected since allowing the angles in VL to vary freely, one has

a full dependence of the asymmetry on six additional parameters and it is quite natural

that the constraints on low energy neutrino parameters would gradually disappear. Similar

results are found for the lower bound on mee (see figure 6). Our results indicate more clearly

what size of the mixing angles are needed to relax considerably the lower bound (as we have

seen at the level of one order of magnitude). This can be an indication for the identification

of realistic fits within specific models that also aim at explaining the matter-antimatter

asymmetry with leptogenesis. We should also clarify that we selected only solutions that

respect the condition M1 . 109 GeV for the applicability of the N2 leptogenesis expression

for the asymmetry eq. (2.14). If one allows M1 to become larger, then one can have N1

leptogenesis and the lower bound on the absolute neutrino mass scale would evaporate and

in that case the interference between just the two lightest RH neutrinos can be sufficient

to reproduce the observed asymmetry, so that the heaviest can be arbitrarily large and

decouple from in the seesaw mechanism realising the two RH neutrino limit. From this

point of view we can say that the value of the absolute neutrino mass scale sets a border

between N1-leptogenesis and N2-leptogenesis.7

7However, even in the case when N1 is heavier than ∼ 109 GeV one could have regions in the space of
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Figure 4. Isocontour lines for the lower bound on mee in the plane (θ23, δ) (same conventions as

in figure 2) for the three indicated values of α2.
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Figure 5. Isocontour lines for the lower bound on m1 in the plane (θ23, δ) (same conventions as in

figure 2) for three different choices of the upper bounds on the three mixing angles θLij : standard

case 0 ≤ θLij ≤ θCKM
ij (upper panel); 0 ≤ θL12 ≤ θCKM

12 ' 13◦ and 0 ≤ θL13, θ
L
23 ≤ 5◦ (central panel);

0 ≤ θLij ≤ 13◦ (bottom panel).
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Figure 6. Isocontour lines for the lower bound on mee for the same three cases as in figure 5.
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6 Analytical insight

We can now use the analytical description provided in [20] for VL = I and then extended

in [21] for I ≤ VL ≤ VCKM, to understand the results obtained with the scatter plots and

in particular the dependence of the m1 lower bound on θ23 and δ.

The analytical expression for N f
B−L given in section 2 can be simplified considering

that only the tauon flavour asymmetry can reproduce the observed total asymmetry and,

therefore, one can neglect the electron and muon asymmetries and write from eq. (2.14)

N f
B−L ' ε2τ κ(K2τ ) e−

3π
8
K1τ . (6.1)

6.1 Approximation VL = I

If we first consider, for simplicity, the limit VL = I, then the three different quantities

contributing to the final B−L asymmetry, ε2τ , K1τ and K2τ , have the following simplified

expressions just in terms of the nine low energy neutrino parameters and α2 [20]

ε2τ |VL=I =
3

16π

α2
2m

2
c

v2

|mνee| (|m−1
νττ |2 + |m−1

νµτ |2)−1

m1m2m3

|(m−1
ν )µτ |2

|(m−1
ν )ττ |2

sinαL , (6.2)

K2τ |VL=I =
m2
D3

m?M2
|UR32|2 '

m1m2m3

m?

|(m−1
ν )µτ |2

|mνee| |(m−1
ν )ττ |

(6.3)

and

K1τ |VL=I =
m2
D3

m?M1
|UR31|2 '

|mνeτ |2

m? |mνee|
, (6.4)

where in the first expression we introduced the effective SO(10)-inspired leptogenesis phase

αL = Arg [mνee]− 2 Arg[(m−1
ν )µτ ]− π − 2 (ρ+ σ) . (6.5)

Therefore, from eq. (6.1) we obtain an explicit expression for the final B − L asymmetry

in the approximation VL = I as a function just of mν and α2 [20]:

N lep,f
B−L

∣∣∣
VL=I

' 3

16π

α2
2m

2
c

v2

|mνee| (|m−1
νττ |2 + |m−1

νµτ |2)−1

m1m2m3

|m−1
νµτ |2

|m−1
νττ |2

sinαL (6.6)

× κ
(
m1m2m3

m?

|(m−1
ν )µτ |2

|mνee| |(m−1
ν )ττ |

)
× e−

3π
8
|mνeτ |2
m? |mνee| .

From this analytical expression we can understand some of the numerical results we

found, though with some limitations due to the approximation VL = I. In particular, we

can understand the lower bound on m1 for τA solutions.

parameters where the contribution from N2 decays could be dominant and one would realise N2 leptogenesis.

This possibility has been found even in the case of a two RH neutrino model [53, 54].
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6.1.1 τA solutions

The τA solutions are characterised by low values of m1. For the derivation of the lower

bound, we can safely specialise the expression (6.6) for the asymmetry in the hierarchical

limit, for m1 � msol ' 8.6 meV. First of all it is important to write the limit for the N1

tauon flavoured decay parameter, since this describes the exponential wash-out. In this

limit, from eq. (6.4), one finds:

K1τ |VL=I (m1 � msol) (6.7)

' 1

m?

|(matm e
i (2σ−δ) −msol s

2
12 e

i δ) s13 c13 c23 −msol c13 s12 c12 s23|2

|msol s
2
12 c

2
13 +matm s2

13 e
2i (σ−δ)|

.

This expression can be recast conveniently in the following way

K1τ |VL=I (m1 � msol) ' s2
23 c

2
12

msol

m?

∣∣∣matm ei(2σ−δ)−msol e
iδ s212

msol

s13
tan θ23 s12 c12

− 1
∣∣∣2∣∣∣1 + matm

msol

s213

c213 s
2
12
e2i(σ−δ)

∣∣∣ . (6.8)

Currently, from reactor neutrino measurements, the mixing angle θ13 is known with

great accuracy and precision (see eq. (2.4)). However, the expression (6.8) gives us the

opportunity, as a side result, also to highlight a successful feature of SO(10)-inspired

leptogenesis. Considering that the dependence of ε2τ on θ13 can be neglected in first

approximation and that K2τ does not depend on θ13, one can derive both a lower bound and

an upper bound on θ13 minimising K1τ on the phases σ and δ and imposing K1τ . 1. First

of all the possibility of a cancellation in the numerator of (6.8) is possible if 2σ− δ = 2nπ

with n integer in a way that exp[i(2σ − δ)] = 1. This is a condition that needs to be

realised quite strictly and indeed in the scatter plots the quantity 2σ − δ is observed to

peak narrowly around values 2nπ. Secondarily, one has also to impose exp[2i(σ − δ)] = 1

implying σ−δ = mπ. As we will see, this latter condition is also necessary to maximise the

CP asymmetry. Imposing both conditions simultaneously, one has σ ' mπ and δ = 2nπ.

These different periodicities for σ and δ are clearly observed in scatter plots. We can

then write

K1τ & Kmin
1τ ≡ s2

23 c
2
12

msol

m?

(
matm−msol s

2
12

msol

s13
tan θ23 s12 c12

− 1
)2

1 + matm
msol

s213

c213 s
2
12

. (6.9)

Let us now focus on the dependence of Kmin
1τ on θ13. First, notice that s2

23 c
2
12msol/m? ' 3

and, in the limit s13 → 0, one would have an exponential suppression not compatible

with successful leptogenesis. In this limit the term proportional to s13 in the numerator

of eq. (6.8) is smaller than 1, while the term ∝ s2
13 in the denominator can be neglected.

Imposing Kmin
1τ . 1, then implies the lower bound [20]

s13 & tan θ23 s12 c12
msol

matm

(
1− 1

s23 c12

√
msol/m?

)
' 0.03 tan θ23 , (6.10)

corresponding to θ13 & 2◦ for θ23 & 41◦. On the other hand, when the term ∝ s13 is larger

than unity, retaining the small correcting term ∝ s2
13 in the denominator, one obtains an
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upper bound

s13 . tan θ23 s12 c12
msol

matm

[
1 +

1

s23 c12

√
msol/m?

(
1 +

1

2

matm

msol

s2
13

c2
13 s

2
12

)]
' 0.145 tan θ23 ,

(6.11)

giving θ13 . 10.3◦ for θ23 . 51◦ (see eq. (2.6)). The found allowed range, 2◦ . θ13 . 10.3◦

for VL = I, nicely reproduces the numerical results (see for example [20]).

Let us now derive the lower bound on m1. In this case we also need to consider the

limit of ε2τ for m1 � msol, obtaining [20]

ε2τ |VL=I (m1 � msol) '
3

16π

α2
2m

2
c

v2

m1

msolmatm

|msol U
2
e2 +matm U

2
e3| |Uµ1|2

|Uτ1|4 (|Uτ1|2 + |Uµ1|2)
sinαL ,

(6.12)

with αL(m1 � msol) ' 2 (ρ − σ). Clearly this is maximised for sinαL = 1 implying

ρ = π/4 + σ + nπ.8 Retaining terms proportional to s13 in |Uτ1| and |Uµ1| (they were

neglected in [20]), we can then write

ε2τ |VL=I (m1 � msol) .
3

16π

α2
2m

2
c

v2

m1

msolmatm
(6.13)

× |msol s
2
12 c

2
13 +matm s

2
13 e

2 i (σ−δ)| |s12 c23 + c12 s23 s13 e
iδ|2

|s12 s23 − c12 c23 s13eiδ|4 s2
12

,

where we used |Uτ1|2+|Uµ1|2 ' s2
12. Notice that this expression is maximised for σ−δ ' nπ

and δ = 2mπ with n,m integers, the same conditions that were minimising K1τ .9 We can

then write

ε2τ |VL=I (m1 � msol) .
3

16π

α2
2m

2
c

v2

m1

matm

c2
13 (s12 c23 + c12 s23 s13)2

(s12 s23 − c12 c23 s13)4

(
1 +

matm s
2
13

msol s
2
12 c

2
13

)
.

(6.14)

The third and last ingredient to consider to maximise the final B − L asymmetry and

calculate the lower bound on m1 is the efficiency factor at the production κ(K2τ ). In the

limit m1 � msol, the flavoured decay parameter

K2τ |VL=I (m1 � msol) = c2
23

matm

m?
& 20 . (6.15)

This shows that τA solutions are characterised by strong wash-out at the production and

in this case one can use approximately [10]

κ(K2τ � 1) ' 0.5

K1.2
2τ

' 0.5

c2.4
23

(
m?

matm

)1.2

. (6.16)

8Though notice that this is not the condition maximising N f
B−L as explained in [20], since ρ also appears

in K1τ if one takes into account a sub-dominant term ∝ m1 and this shifts the condition for maximising

the asymmetry from ρ = π/4 + σ + nπ to ρ ' 0.35π + σ + nπ. In any case there is a phase difference

between ρ and σ.
9Notice that ε2τ ∝ m1. This comes from the fact that the CP asymmetry is generated by the interference

of N2-decays with N3 in the loops. Since M3 ∝ m−1
1 , the limit m1 → 0 corresponds to the limit when

N3 decouples and the interference, encoded by Iτ23 vanishes: this is the physical origin of the lower bound

on m1.
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Finally, following eq. (6.1), we can put all three terms together and write

N f
B−L .

3

32π

α2
2m

2
c

v2

m1

matm

(
m?

matm

)1.2 c2
13 (s12 c23 + c12 s23 s13)2

c2.4
23 (s12 s23 − c12 c23 s13)4

×
(

1 +
matm s

2
13

msol s
2
12 c

2
13

)
e−

3π
8
Kmin

1τ , (6.17)

where Kmin
1τ is given by the expression (6.9). From N f

B−L one can then obtain ηlep
B using

simply eq. (2.13) and, imposing ηlep
B = ηexp

B (see eq. (3.1)), from the upper bound (6.17)

one finally obtains the lower bound

m1 & matm
32π

3

ηexp
B

0.96× 10−2

v2

α2
2m

2
c

(
matm

m?

)1.2 c2.4
23 s

4
12 s

4
23 (1− c12 c23 s13

s12 s23
)4

c2
13 (s12 c23 + c12 s23 s13)2

(6.18)

×
(

1 +
matm s

2
13

msol s
2
12 c

2
13

)−1

e
3π
8
Kmin

1τ ,

that we have recast in a way to highlight that mmin
1 ∝ s4

23. If we now use the experimental

values for θ13, θ12, matm, msol and ηexp
B , we obtain a lower bound on m1 depending just

on θ23. Despite the fourth power dependence on s23, that would tend to make the lower

bound more stringent at higher values of θ23, the dependence on θ23 in Kmin
1τ is stronger

and actually the lower bound gets more relaxed for increasing values of θ23. For example,

one finds for the 3σ extreme allowed θ23 values and for the best fit value:

θ23 = 40.8◦ ⇒ Kmin
1τ ' 1.87 , m1 & 5 meV , (6.19)

θ23 = 48.6◦ ⇒ Kmin
1τ ' 0.71 , m1 & 3 meV ,

θ23 = 51.3◦ ⇒ Kmin
1τ ' 0.43 , m1 & 2.5 meV .

These results are in good agreement with the numerical results found in [20, 21], they just

overestimate the lower bound by ∼ 1 meV, a discrepancy that would be fully corrected if

one would include the sub-dominant term ∝ m1 in the expression for K1τ and then finding

the lower bound on m1 solving by iteration. However, the explicit expression we obtained

well describes the dependence on θ23 in the case VL = I.

We can also understand the dependence on δ. Since the condition 2σ− δ = 2nπ needs

to be verified in a stringent way we can then rewrite 2(σ − δ) = −δ + 2nπ both in the

expression for K1τ (see eq. (6.8)) and in that one for ε2τ (see eq. (6.13)), obtaining

m1 & matm
32π

3

ηexp
B

0.96× 10−2

v2

α2
2m

2
c

(
matm

m?

)1.2 c2.4
23 s

4
12 s

4
23

∣∣∣1− c12 c23 s13
s12 s23

eiδ
∣∣∣4

c2
13 |s12 c23 + c12 s23 s13 eiδ|2

(6.20)

×
∣∣∣∣1 +

matm s
2
13

msol s
2
12 c

2
13

e−iδ
∣∣∣∣−1

e
3π
8
Kmin

1τ (δ) ,

where

Kmin
1τ (δ) ≡ s2

23 c
2
12

msol

m?

(
matm−msol s

2
12

msol+m1

s13
tan θ23 s12 c12

− 1
)2∣∣∣1 + matm

msol

s213

c213 s
2
12
e−iδ

∣∣∣ . (6.21)
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Notice that in this case the lower bound becomes very close to msol and we included a

term proportional to m1. This implies that the lower bound now is not in an explicit form

and has to be solved iteratively. Eq. (6.21) reproduces well the effect of δ in increasing

Kmin
1τ (δ) making the lower bound more stringent. This expression gives good results for

|δ| < π/2, for higher values the lower bound becomes close to msol and one has to use the

full expression. Moreover there are two critical values of δ, one below π and one higher,

for which the lower bound becomes equal to the upper bound and the allowed m1 range

closes up. Therefore, between these two critical values there are no τA solutions and this

well explains what observed in the scatter plots. Within this δ window, the lower bound

on m1 has to be calculated within the region of τB solutions.

6.1.2 τB solutions

A more detailed discussion on τB solutions can be found in [20]. Here we just recall that

for these solutions, since m1 � msol ∼ 10 meV, one can use the approximation m1 ' m2.

In this case from the full expression of K1τ one finds that in order for this to be not too

large, one needs ρ ' nπ. This immediately allows to understand why for τB solutions one

necessarily has mee ' m1. From eq. (2.8) one can write explicitly

mee =
∣∣∣m1 c

2
12 c

2
13 e

2iρ +m2 s
2
12 c

2
13 +m3 s

2
13 e

2i (σ−δ)
∣∣∣ . (6.22)

Therefore, for τB solutions one immediately finds

mee '
∣∣∣m1 c

2
13 +m3 s

2
13 e

2i(σ−δ)
∣∣∣ , (6.23)

showing that for τB solutions necessarily mee ' m1 and more precisely one has mee < m1

with |mee−m1| < 2m3 s
2
13, quite a distinctive feature that can be regarded as a signature of

τB solutions. Like for τA solutions, also for τB solutions there are both a lower bound and an

upper bound on m1. They both depend on θ23 in a way that the interval gradually shrinks

for increasing values of θ23 up to a maximum value of θ23, well above the experimentally

allowed range, where the interval closes up [20].

The range of allowed m1 values, using the approximation m1 ' m2 � msol, is

approximately determined by imposing ηlep
B

∣∣∣
VL=I

(m1 � msol) = ηexp
B where

ηlep,max
B

∣∣∣
VL=I

(m1 ' m2 � msol) ' 0.96× 10−2 3

16π

α2
2m

2
c

v2
(6.24)

× m1

m3

s2
23 c

2
23 (1− m1

m3
c2

13)2/(s2
23 + m1

m3
c2

23 c
2
13)2

(s2
23 c

2
23 (1− m1

m3
c2

13)2 + s2
23 + m1

m3
c2

23 c
2
13)

× κ(Kmin
2τ ) e

3π
8
Kmin

1τ ,

with

Kmin
1τ = s2

13 c
2
13 c

2
23

(m3 −m1)2

m? (m1 +m3 s2
13)

and Kmin
2τ =

m3

m?

s2
23 c

2
23 (1− m1

m3
c2

13)2(
s2

23 + m1
m3

c2
23

)2 . (6.25)
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Notice that the asymmetry is maximised for ρ ' nπ, δ ' mπ and σ ' −π/8 + k π (with

n,m, k integers). Imposing ηlep,max
B

∣∣∣
VL=I

(m1 ' m2 � msol) ≥ nexp
B one can find a range

of allowed values for m1 as a function of θ23. For example, for the 3σ extreme allowed θ23

values and for the best fit value the following ranges, one finds:

θ23 = 40.8◦ ⇒ 35 meV . m1 . 70 meV , (6.26)

θ23 = 48.6◦ ⇒ 41 meV . m1 . 65 meV ,

θ23 = 51.3◦ ⇒ 42 meV . m1 . 62 meV .

6.2 I ≤ VL ≤ VCKM

The account of a small mismatch between neutrino Dirac mass matrix and charged lepton

mass matrix comparable to the same mismatch observed in the quark sector between

up-quark and down-quark mass matrices, is encoded by the expressions (2.21)–(2.28) and

was studied in detail in [21]. Here we want to specialise some of the analytical considerations

made in [21] to the lower bound on the absolute neutrino mass scale.

The tauon flavoured asymmetry ε2τ gets slightly corrected by turning on small mixing

angles in VL. The same it is true for K2τ and consequently the wash-out factor κ(K2τ ).

The quantity that is very sensitive to a small deviation of VL from the identity is the N1

wash-out factor since this is an exponential and the argument is proportional to K1τ . As

one can see from eq. (6.9), for VL = I this is proportional to the square of the difference

of two quantities both close to unity. This difference is sensitive to θ23 and, in particular,

for values close to the lower edge of the experimental 3σ range, there is no cancellation

and one has K1τ ' 2 (see eq. (6.19))) so that the wash-out suppression is quite large.

However, when VL ' VCKM, then new terms enter the expression for K1τ and one can have

Kmin
1τ � 1 in the eq. (6.18) independently of θ23. Let us see this result explicitly. From

eqs. (2.11), (2.19) and (2.28), one can derive the expression [21]

K1τ '
1

m?

(
|m̃ν13|2

|m̃ν11|
|VL33|2 + 2

VL23 V
?
L33

|m̃ν11|
Re [m̃?

ν12 m̃ν13] + |VL23|2
|m̃ν13|2

|m̃ν11|

)
. (6.27)

The first term is the dominant one and if we choose θL13 = θL23 = 0 the others vanish exactly.

From the definition m̃ν = VLmν V
T
L and from the parameterisation of VL, eq. (2.10), we

arrive to the following expression for Kmin
1τ

K1τ & Kmin
1τ (θL12) (6.28)

≡ msol

m?

[
s2

23 c
2
12

(
matm−msol s

2
12

msol

s13
tan θ23 s12 c12

− 1
)
eiσL + 1

2 sin 2θ23 sin θL12
matm
msol

]2

1 + matm
msol

s213

c213 s
2
12

.

This expression clearly shows that for σL ' (2n+ 1)π one can have a cancellation for any

value of θ23 for a proper value of θL12. In this way the wash-out from N1 inverse processes

can always be suppressed.

This is the dominant effect of accounting for VL ' VCKM and that makes in a way that

one can always find solutions with negligible lightest RH neutrino wash-out. In this way
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the dependence of the m1 lower bound on θ23 coming from Kmin
1τ disappears and one is left

only with the dependence from ε2τ ∝ s−4
23 so that the lower bound now gets relaxed for

decreasing values of θ23 and the numerical values for the lower bound reported in eq. (6.19)

relax into

θ23 = 40.8◦ ⇒ m1 & 0.6 meV , (6.29)

θ23 = 48.6◦ ⇒ m1 & 1.3 meV ,

θ23 = 51.3◦ ⇒ m1 & 1.5 meV ,

very well reproducing the numerical results. There is also some relaxation of about 10 meV

of the lower bound on m1 for τB solutions, that however we do not discuss.

7 Final remarks

The SO(10)-inspired leptogenesis scenario is a remarkable example of how also high energy

scale leptogenesis models are testable when a proper reduction of the number of independent

parameters is realised imposing additional conditions. The latest results from neutrino

oscillation experiments have started favouring a region in the plane δ and θ23 that allows

to establish a very interesting connection between the absolute neutrino mass scale and

mixing parameters. We have seen that essentially for the large values of θ23, now favoured

by neutrino oscillation experiments, there are two well distinguished allowed regions: one at

low values and one at high values of m1. If current best fit values will be confirmed by next

generation of long baseline experiments, DUNE and T2HK, confirming moreover discovery

of CP violation, then SO(10)-inspired leptogenesis would favour m1 & 34 meV and mee &
31 meV, implying that absolute neutrino mass scale experiments should either find a

signal during next years, both from cosmology and from neutrinoless double beta decay

experiments with mee ' m1, or place a severe constraint α2 & 5. It is of course particularly

exciting that, despite neutrino masses are normally ordered, neutrinoless double beta

decays should be observed, implying a discovery of lepton number violation. On the other

hand, if in the end the value of δ should lie in the fourth quadrant, rather than in the

third one, and θ23 will be confirmed in the second octant, the range of allowed values of

m1 within SO(10)-inspired leptogenesis would be approximately (2–10) meV, still partly

testable by cosmological observations if current tensions in the ΛCDM model are solved and

a sensitivity to a departure from the hierarchical limit in the sum of the neutrino masses at

the level of the value of m1 can be reached. We are then entering an exciting experimental

phase when low energy neutrino experiments are effectively testing an attractive scenario

for the origin of the matter-antimatter asymmetry of the universe that emerges within

a class of models typically realised within grand-unified theories: it is certainly a timely

opportunity for SO(10)-inspired leptogenesis.
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