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Abstract: In Double Field Theory, the mass-squared of doubled fields associated with

bosonic closed string states is proportional to NL +NR − 2. Massless states are therefore

not only the graviton, anti-symmetric, and dilaton fields with (NL = 1, NR = 1) such

theory is focused on, but also the symmetric traceless tensor and the vector field relative

to the states (NL = 2, NR = 0) and (NL = 0, NR = 2) which are massive in the lower-

dimensional non-compactified space. While they are not even physical in the absence of

compact dimensions, they provide a sample of states for which both momenta and winding

numbers are non-vanishing, differently from the states (NL = 1, NR = 1). A quadratic

action is therefore here built for the corresponding doubled fields. It results that its gauge

invariance under the linearized double diffeomorphisms is based on a generalization of

the usual weak constraint, giving rise to an extra mass term for the symmetric traceless

tensor field, not otherwise detectable: this can be interpreted as a mere stringy effect in

target space due to the simultaneous presence of momenta and windings. Furthermore,

in the context of the generalized metric formulation, a non-linear extension of the gauge

transformations is defined involving the constraint extended from the weak constraint that

can be uniquely defined in triple products of fields. Finally, we show that the above

mentioned stringy effect does not appear in the case of only one compact doubled space

dimension.
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1 Introduction

When compactified on a d-dimensional torus T d, string theory exhibits the peculiar sym-

metry O(d, d; Z) [1] for all the d compact directions [2]: the target-space duality (T-

duality) [3, 4]. It is a distinctive symmetry of strings since, differently from particles,

one-dimensional objects can wrap d non-contractible cycles. A winding number counts the

times a string wraps around a circle in the target space. Winding modes ωa ≡ maRa/α
′

(a = 1, 2, · · · , d; ma ∈ Z) around the compact circle of radius Ra of T d with coordinate xa

have to be added to Kaluza-Klein momentum modes pa = na/Ra. The O(d, d; Z) T-duality

is a symmetry that establishes a connection between the two different but dual tori: T d and

T̃ d. For a rectangular torus, a T-duality transformation consists in exchanging momentum

and winding modes while mapping the circle of radius Ra of T d with coordinate xa into

the dual circle, with coordinate x̃a and periodicity 2πα′/Ra, where α′ is the Regge slope

parameter. While the momentum pa is the conjugate variable to xa, the winding mode

results to be the conjugate variable of the coordinate x̃a. The most intuitive realization of a

T-dual invariant formulation of string theory is to introduce a manifest symmetry between

windings ωa and Kaluza-Klein momenta pa [5, 6] or, equivalently, between xa and x̃a and

hence between the string coordinates Xa and their duals X̃a already at the level of the

string world-sheet. This should generate a manifestly T-dual invariant formulation of the

corresponding target space theory [7–12]. Having a T-dual invariant formulation of string

theory possibly also has the advantage of providing a field theory description of winding

states, not reachable through the usual field theory limit α′ → 0.

The above goal can be pursued both within the first-quantized string theory and in

the context of the second-quantized string theory, in particular of the closed string field

theory [13–17]. The closed string field theory on a T d torus is naturally formulated in

such a way that it exhibits a manifest invariant T-dual structure since string fields are

necessarily defined on the 2d-dimensional doubled torus, formed by the coordinates xa of
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T d and the coordinates x̃a of the dual torus T̃ d. Inspired by these features of closed string

field theory, Double Field Theory [18] is a proposal to incorporate T-duality already as a

symmetry structure of a field theory. Geometry underlying Double Field Theory is novel

and when restricted to a half-dimensional space, it includes Generalized Geometry, based

on substituting the tangent space in each point of the target space with a direct sum of

the tangent and the cotangent spaces [7–12].

The fields φI(x
µ, xa, x̃a) of Double Field Theory remember the constraints imposed on

the corresponding physical string states. On-shell string physical states need to be annihi-

lated by the level matching condition L0− L̄0 = 0 and by the free string on-shell condition,

where L0 and L̄0 are the well-known Virasoro operators, defined in terms, respectively,

of the string left and right modes, respectively. The former gives rise to the condition

NL−NR−α′pawa = 0 with NL and NR being the number of left-moving and right-moving

oscillators, while the latter allows one to determine the squared mass of the corresponding

physical state. The definition of the squared mass

M2 ≡ −(k2 + p2 + ω2) (1.1)

of a physical string state in all of the D (non-compact and compact) dimensions of the

target space involves symmetrically the momenta along the non-compact directions kµ,

the momenta along the compact directions pa, and the winding ωa with p2 = Ĝabpapb and

ω2 = Ĝabω
aωb, being Ĝab the torus metric given by Ĝab = δabR

2
a/α

′ for a rectangular torus.

A simple expression for M2 is obtained when the background Kalb-Ramond field vanishes

M2 =
2

α′
(NL +NR − 2). (1.2)

For NL = NR = 1, eq. (1.2) defines a set of massless fields living in D dimensions that would

also be massless also in the non-compactified theory. They have the same index structure

as in the non-compact directions but keep their full dependence both on the coordinates

of the doubled torus and the non-compact ones. These fields result to be: hjk(x
µ, xa, x̃a),

bjk(x
µ, xa, x̃a), and φ(xµ, xa, x̃a) with j, k = 1, 2, · · · , D ; µ, ν = 0, 1, · · · , D − d, and

a = 1, 2, · · · , d and these are the fields on which Double Field Theory is constructed [18].

It turns out that the so-called weak constraint ∂a∂
ãf = 0 has to be imposed on them

in order to have a consistently gauge-invariant theory under diffeomorphisms and anti-

symmetric tensor gauge transformations [18]. When imposing the weak constraint, the

above fields hjk, bjk and φ depend only on (xµ, xa) or, alternatively, on (xµ, x̃a) providing

respectively the familiar tensor metric, the Kalb-Ramond and the dilaton in D dimensions

or their dual versions. The weak constraint ∂a∂
ãf = 0 is reminiscent of the level matching

condition paω
a = 0 applied in the particular case of NL = NR = 1, being ∂a ≡ ∂/∂xa

and ∂̃a ≡ ∂/∂x̃a the operators respectively associated with pa and ωa. It is clear from its

definition that the weak constraint eliminates the possibility of having doubled fields with

a dependence on both momenta and windings, as simply dictated by the level matching

condition. Furthermore, the weak constraint applied to a product of fields gives rise to

the definition of the strong constraint, introduced for having a manifestly O(D, D) struc-

ture in target space [10], where an extension of T-duality is realized from O(d, d; Z) to
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O(D, D) by associating with the non-compact dimensions xµ and the corresponding null

dual coordinates x̃µ. This allows one to treat non-compact and compact dimensions in a

symmetric way. The strong constraint is necessary for non-compact directions from the

string perspective [19–21].

Let us remind here, as already stressed in ref. [18], that the definition of squared mass

in eq. (1.1) is different from the corresponding one given by:

M2 ≡ −k2 = p2 + ω2 +
2

α′
(NL +NR − 2) = p2 + ω2 +M2 (1.3)

in the non-compact (D− d)-dimensional Minkowski space where, therefore, a conventional

effective theory would keep states with zero or small values of M2. Hence the spectrum

of the D-dimensional states with M2 = 0 does not coincide with the analogous massless

spectrum of particles in the lower (D − d)-dimensional theory and, in particular, does not

include the d-dimensional extra vector states (NL = 1, NR = 0) and (NL = 0, NR = 1)

with M2 = 0 giving an enhanced gauge symmetry at the self-dual compactification radius

Ra =
√
α′ [22–24]. Instead, Double Field Theory keeps states with M2 = 0 that include,

therefore, not only the states (NL = 1, NR = 1), already mentioned above but also the

states (NL = 2, NR = 0) and (NL = 0, NR = 2). They have vanishing squared mass M2 in

D dimensions according to eq. (1.2) but correspond to massive states in (D−d) dimensions

with M2. There are the states on which this work is focused on. The reason why they

are interesting is that the level matching condition applied to such states, α′paw
a = 2

and α′paw
a = −2, implies for them a simultaneous presence of non-vanishing momentum

and winding modes, differently from the more familiar massless state (NL = 1, NR =

1) for which, instead, such simultaneous presence is inhibited. Constructing, through

Double Field Theory, a theory of doubled fields corresponding to such string states could

reveal therefore field theoretical aspects due to the simultaneous presence of momenta and

windings and could shed light on more stringy effects in target space which would be difficult

to capture otherwise. The action will provide an answer to the central question addressed

in this work: What is the target space theory that highlights more stringy features in Double

Field Theory? In other words, what is the target space field theory that could incorporate

the simultaneous presence of momenta and winding modes allowed by a deformation of the

weak constraint [25]? This investigation is a first step to extending Double Field Theory

beyond the supergravity spectrum.

2 Quadratic theory

In this section, we strictly follow ref. [18], and the quadratic action for the fields correspond-

ing to the string states (NL = 1, NR = 1) will be here borrowed here in order to write the

analogous action for the fields corresponding to the string states (NL = 2, NR = 0) and

(NL = 0, NR = 2) also with M2 = 0, provided that a suitable correspondence can be

established between the two families of states in the two cases.
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Let us remind that, for the case (NL, NR) = (1, 1), the quadratic action in Double

Field Theory is [18]

S
(2)
DFT =

1

16πGN

∫
[dxdx̃]

(
1

4
hjk∂l∂

lhjk +
1

2
∂jhjk∂lh

lk − 2Φ∂j∂khjk − 4Φ∂j∂jΦ

+
1

4
hjk∂̃l∂̃

khjk +
1

2
∂̃jhjl∂̃kh

kl + 2Φ∂̃j ∂̃khjk − 4Φ∂̃j ∂̃jΦ

+
1

4
bjk∂l∂lbjk +

1

2
∂kbjk∂lb

jl +
1

4
bjk∂̃l∂̃lbjk +

1

2
∂̃kbjk∂̃lb

jl

+(∂kh
jk)∂̃lbjl + (∂̃lhjl)∂kb

jk − 4Φ∂j ∂̃kbjk

)
, (2.1)

where GN is the gravitational constant, and
∫

[dxdx̃] is an integral over all of the n + 2d

coordinates of Rn−1,1 × T 2d being this latter the doubled torus with periodic coordinates

(xa, x̃a).

The action S
(2)
DFT in eq. (2.1) describes the dynamics of the fluctuations hjk(x

µ, xa, x̃a)

and bjk(x
µ, xa, x̃a) around constant backgrounds Gjk and Bjk respectively. Indices are

raised and lowered by Gjk. Furthermore, the constant toroidal background field Ejk =

Gjk + Bjk and, correspondingly, the fluctuations ejk = hjk + bjk can be introduced. For

simplicity, backgrounds with Bjk = 0 are considered. The field Φ(xµ, xa, x̃a) corresponds

to the scalar dilaton, invariant under T-duality with its expectation value providing the

duality invariant string coupling constant.

The gauge invariance of S
(2)
DFT is respect to linear doubled diffeomorphisms generated

by the vector fields εj(x
µ, xa, x̃a) and ε̃j(x

µ, xa, x̃a) given by:

δhjk = ∂jεk + ∂kεj + ∂̃j ε̃k + ∂̃k ε̃j ;

δbjk = −
(
∂̃jεk − ∂̃kεj

)
−
(
∂j ε̃k − ∂k ε̃j

)
;

δΦ = −1

2
(∂jε

j − ∂̃j ε̃j) . (2.2)

When εj and the fields themselves are independent of x̃j ≡ (x̃a, x̃
µ = 0), then the above

transformations reproduce the standard linearized diffeomorphisms with parameter εj in-

volving the coordinates xj and the anti-symmetric tensor gauge transformations with pa-

rameters ε̃j . Analogously, fields and parameters independent of xi ≡ (xµ, xa) are defined

on the dual space with the roles of the parameters εj and ε̃j , interchanged in the doubled

diffeomorphisms. In fact, diffeomorphisms and anti-symmetric gauge transformations are

strictly linked, and their variables are interchanged by T-duality. The T-duality invari-

ance means that the action S
(2)
DFT remains unchanged under an O(d, d; Z), i.e. a 2d × 2d

transformation matrix g relating Ejk and E′jk as follows:

E′ = g(E) =
aE + b

cE + d
; g =

(
a b

c d

)
; ηT gη = η; η =

(
0 1

1 0

)
(2.3)

with a, b, c, and d being d× d matrices, and η being the O(d, d) invariant metric.

Furthermore, as already observed above, while the scalar dilaton Φ is invariant under

T-duality, there is instead no dilaton that is a scalar under both diffeomorphisms and dual
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diffeomorphisms. One can actually define a dilaton φ ≡ Φ +Gjkhjk/4, invariant under the

standard linearized transformations acting on xj = (xµ, xa). An analogous definition can

be given for a dual dilaton φ̃ ≡ Φ−Gjkhjk/4 under the dual diffeomorphisms generated by

ε̃j and acting on x̃j . Non-linearly, a relation of the form exp(−2Φ) ≡ exp(−2φ)
√
− dethjk

holds [18]. It has to be stressed that the gauge invariance of S
(2)
DFT holds only if the weak

constraint ∂j ∂̃
jf = 0 is imposed on fields and gauge parameters [18].

The action (2.1) is the starting point for the construction of the quadratic Double Field

Theory action for the fields corresponding to the string states with (NL = 2, NR = 0) and

(NL = 0, NR = 2). Before doing that, let us first discuss the content of these levels in string

theory. We shall consider the critical dimensionality D = 26 of bosonic closed string theory,

but the results will be also valid for closed superstring theories. For illustrative purposes, we

consider the case of one coordinate compactified on a circle of radius R, e.g. X25 satisfying

the periodicity condition X25 ∼ X25 + 2πRm with m ∈ Z. Physical states have to satisfy

the constraint NL−NR = α′ p25 ω
25 = nm with p25 = n/R and ω25 = mR/α′. This means

that for the states (NL = 2, NR = 0) one has (n,m) = (1, 2), (2, 1), (−1,−2), (−2,−1) while

the states (NL = 2, NR = 0) require (n,m) = (−1, 2), (−2, 1), (1,−2), (2,−1).

For each of these possibilities, the physical state content for the level (NL = 2, NR = 0)

[resp. (NL = 0, NR = 2)] is generated by the action of the light-cone left [resp. right]

creation moving oscillators
(
αj−1

)(
αk−1

)
or
(
αj−2

)
[resp.

(
ᾱj−1

)(
ᾱk−1

)
or
(
ᾱj−2

)
] on the

vacuum tachyon state. In such a case, the product of creation operators
(
αj−1

)(
αk−1

)
generates a symmetric traceless tensor with (D − 2)(D − 1)/2 − 1 physical degrees of

freedom and a scalar with one degree of freedom. We denote the doubled fields associated

with them again respectively by hjk(x
µ, xa, x̃a) and Φ(xµ, xa, x̃a). The second creation

operator
(
αj−2

)
defines a vector state and its dual, described by a one-form gauge field

Aj(x
µ, xa, x̃a) with (D − 2) physical degrees of freedom.

All these states are massless in D-dimensions, with M2 = 0, but they are massive in

the lower-dimensional (D − d)-dimensional non-compact spacetime, where Kaluza-Klein

momenta and windings contribute to the squared-mass according to M2 in eq. (1.3).

Summarizing, the fields associated with the string states of the levels (NL = 2, NR =

0) and (NL = 0, NR = 2) correspond to a symmetric traceless tensor hjk(x
µ, xa, x̃a), a

one-form gauge field Aj(x
µ, xa, x̃a), and a scalar field Φ(xµ, xa, x̃a) with a missing anti-

symmetric field. Actually, the one-form gauge field Aj can be used to define still an

anti-symmetric tensor

bjk = −
(
∂̃jAk − ∂̃kAj

)
+
(
∂kAj − ∂jAk

)
. (2.4)

The gauge transformation of Aj is provided by δAj such that

δAj = εj = ε̃j , (2.5)

as suggested by the gauge transformation of bjk in eq. (2.2). This implies εj = ε̃j , and we

shall see in a while that this identification will play a relevant role.

In conclusion, it results that the fields of the level (NL=2, NR=0) and (NL=0, NR=2)

can be put in a one-to-one correspondence with the ones of the level (NL = 1, NR = 1) [18].

– 5 –
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This correspondence allows us to consider the quadratic action in eq. (2.1) as our starting

point, but adapted to the double states (NL = 2, NR = 0) or (NL = 0, NR = 2). We will

denote by S̃
(2)
new the quadratic action after applying the above-mentioned correspondence

of fields, with the aim of distinguishing the two cases S
(2)
DFT → S̃

(2)
new.

The variation δS
(2)
DFT of the action (2.1) with respect to the gauge transformations in

eq. (2.2) vanishes only if the weak constraint ∂a∂̃
af = 0 is imposed on the gauge parameters

and double fields. Therefore, in the cases (NL = 2, NR = 0) and (NL = 0, NR = 2), we

start from S̃
(2)
new, with the only modification to do concerning the weak constraint that now

becomes [18]:

∂a∂̃af = −(NL −NR)

α′
f ≡ −λ

2
f. (2.6)

As already observed, also this constraint is reminiscent of the level matching condition

NL −NR − α′pawa = 0, but this time applied to the case NL 6= NR. It is straightforward

to calculate the variation of S̃
(2)
new under the same linear gauge transformations listed in

eq. (2.2). While S
(2)
DFT is invariant under those gauge transformations when the gauge

parameters are subject to the weak condition ∂a∂̃
af = 0, the analogous variation of S̄

(2)
new

is not zero and results to be

δS̃(2)
new =

1

16πG

∫
dxdx̃

(
λ

4
δ(bjkbjk) + λhjk(∂k ε̃j + ∂̃kεj) + 4λΦ(∂k ε̃k − ∂̃kεk)

)
(2.7)

with fields and gauge parameters now subject to the new modified constraint (2.6). Let us

assume εj = ε̃j , as already requested by the variation of the anti-symmetric field bjk from

eq. (2.4). One obtains

δS̃(2)
new =

1

16πGN

∫
dxdx̃

(
λ

4
δ(bjkbjk) +

λ

4
δ(hjkhjk)− 4λδ(Φ2)

)
. (2.8)

In order to have a quadratic action invariant under the generalized transformations, the fol-

lowing term S̃
(2)
add has therefore to be added to S̄

(2)
new in order to cancel the non-invariant terms

S̃
(2)
add =

1

16πGN

∫
dxdx̃

(
− λ

4
bjkbjk −

λ

4
hjkhjk + 4λΦ2

)
. (2.9)

The quadratic action of Double Field Theory S̃
(2)
DFT for the states (NL = 2, NR = 0) and

(NL = 0, NR = 2) is therefore given by:

S̃
(2)
DFT = S̃(2)

new + S̃
(2)
add

= S̃(2)
new +

1

16πGN

∫
dxdx̃

(
− λ

4
bjkbjk −

λ

4
hjkhjk + 4λΦ2

)
. (2.10)

This shows that the parameter λ appearing in the new constraint (2.6) gives a mass

term to the fluctuation fields hjk, bjk and the scalar dilaton field Φ. Furthermore, the

identification εj = ε̃j that makes the theory gauge invariant under the generalized diffeo-

morphisms by using the new constraint, now creates an interdependence of the fields in the
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target space and the dual fields in the dual target space: they, therefore, do not constitute

independent physical degrees of freedom.

When the dilaton field φ vanishes, the scalar dilaton field Φ at the quadratic order is

Φ = −hjj/4. Consequently, a graviton-like massive term λ
(
hjkhjk−(hjj)

2
)

is generated for

the symmetric traceless field showing that the stringy effect is mainly embodied in the pa-

rameter λ. This provides a graviton-like massive term in the theory of the target space that,

from the point of view of the non-compact lower (D − d)-dimensional spacetime, is given

byM2
g = p2+ω2+2(NL−NR)/α′. Furthermore, it is worth observing that the appearance

of the new gravitational mass term is uniquely due to the non-simultaneous vanishing of

momenta and windings, which is provided by the states (NL, NR) = (2, 0), (0, 2) in consid-

eration. It could be therefore interpreted as due to an interaction between momentum and

winding modes.

Finally, we give some comments on the T-duality [3, 4] for the quadratic action S̃
(2)
DFT.

As already mentioned, the latter, just like S
(2)
DFT, represents the dynamics of the fluctua-

tions hjk and bjk around a suitable background Ejk and scalar dilaton Φ. The T-duality

invariance of the action S
(2)
DFT can be extended to the action S̃

(2)
DFT without any role played

by the modified weak constraint, meaning that the T-duality invariance, at the quadratic

level, does not see the deformation carried out by λ in the constraint (2.6).

In ref. [18], beyond the quadratic action in the fluctuation fields described by the ac-

tion S
(2)
DFT, also a cubic action with the corresponding gauge transformations have been

constructed by circumventing a problem related to non-associativity. The resulting theory

does not exhibit a manifest O(d, d; Z) symmetry. For having a manifest T-dual invari-

ant theory, the first necessary step is to perform an extension of T-duality from O(d, d;

Z) to O(D, D). This is done by associating the non-compact dimensions xµ with the

corresponding dual coordinates x̃µ = 0 and allowing to treat compact and non-compact

dimensions in all the D dimensional target space in a symmetric way through xj ≡ (xµ, xa)

and x̃j ≡ (x̃µ = 0, x̃a). The O(D, D) symmetry is then broken to the subgroup O(d, d;

Z) preserving the boundary conditions in the presence of the d compact coordinates. An

action with a manifest O(D, D) symmetry structure can therefore be obtained by rewriting

the action in terms of O(D, D) tensors: the scalar dilaton Φ and the generalized metric

HMN , defined in terms of the metric tensor field g and the antisymmetric tensor field b as

follows

HMN ≡

(
g−1 −g−1b

bg−1 g − bg−1b

)
, (2.11)

where O(D, D) indices M,N = 1, 2, · · · , 2D have been introduced. This is the core of the

generalized metric formulation of Double Field Theory [10].

The weak constraint itself can be rewritten in an O(D, D) covariant form. Actually,

the two derivatives ∂j with respect to xj and ∂̃j with respect to x̃j can be used for defining

the partial derivative ∂J ≡
(
∂̃j ∂j

)T
with an O(D, D) index J = 1, 2, · · · , 2D with the

– 7 –
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O(D, D) indices being raised or lowered by the O(D, D) invariant metric

ηAB ≡

(
0 1

1 0

)
. (2.12)

This allows to obtain the O(D, D) covariant weak constraint:

∂J∂
Jf = 2∂a∂̃

af = 0 (2.13)

in the case (NL = 1, NR = 1). In the cases (NL = 2, NR = 0) and (NL = 0, NR = 2), the

modified weak constraint can be written by using O(D, D) indices as ∂J∂
Jf = −λf : this

constraint breaks the O(D, D) structure as the emergence of massive fields witnesses but

still one can discuss the gauge transformations for the O(D, D) fields, i.e. the generalized

metric and the scalar dilaton, and try to understand how the gauge symmetry could be

broken by the constraint.

3 Gauge transformation

In any theory with a metric gjk and an anti-symmetric tensor field bjk like in Double

Field Theory, diffeomorphisms are generated by vector fields ξj while anti-symmetric ten-

sor gauge transformations are generated by one-forms ξ̃j . This is of course also true in

the case of the theory described by the action S̃
(2)
DFT for which one can define the gauge

transformations generated by the double vector ξP =
(
ξ̃j ξ

j
)T

having the two kinds of

gauge parameters as components. The gauge transformations for gjk and bjk induce a

gauge transformation for the generalized metric that, together with the scalar dilaton, is

the fundamental field in the generalized metric formulation.

Before defining the non-linear gauge transformations of the fields of the theory, we first

show how the modified weak constraint could be easily imposed through a suitable ∗ star

product operation that is going to be defined in the following. It results to be easier to

work in the momentum space, in order to project a generic field A down to the physical

space with ∂J∂JA = −λA.

For a generic double field A(x̃m, x
m), one can introduce a Fourier series along the

dimensions of the doubled space as follows

A ≡
∑
K

AKe
iKX , (3.1)

where KX ≡ KMXM . Here we define XM ≡ (x̃j , x
j) and KM ≡ (pj , w

j), with pj being

the momentum along the j-th dimension, and wj being the corresponding winding number

with KX defined through the O(D, D) invariant metric η.

The constraint in eq. (2.6) can be rewritten in the O(D, D) notation ∂J∂
JA = −λA,

which can be imposed on the field A by embodying it in the following star product where

it is transferred on the momenta as KJK
J = λ [18]

A ∗ 1 ≡
∑
K

AK exp(iKX)δKK,λ (3.2)
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that implies:

A ∗B = B ∗A
≡

∑
KA,KB

AKABKB exp
(
i(KA +KB)X

)
δKAKA,λδKBKB ,λδKAKB ,−λ2

. (3.3)

In other words, the star product above defined directly imposes the modified strong con-

straint eq. (2.6) on A and on the product of constrained fields A and B:

∂J∂
J(A ∗ 1) = −λ(A ∗ 1) and ∂J∂

J(A ∗B) = −λ(A ∗B). (3.4)

Furthermore, we would like to stress that the star product in eq. (3.2) also yields the

constraint in the triple-products of fields and gauge parameters: ∂M∂
M
(
(A ∗ B) ∗ C

)
=

−λ(A ∗ B) ∗ C. The latter condition implies (A ∗ ∂MB) ∗ ∂MC = (λ/4)(A ∗ B) ∗ C. These

conditions put in evidence the non-associativity of the above-defined star product ∗ when

λ 6= 0. Once again, one can notice that when λ = 0, the constraint is equivalent to the

usual strong constraint, but it goes beyond this latter for λ 6= 0.

The two main fields on which the generalized metric formulation is based are the

generalized metric itself and the scalar dilaton, as already claimed. These basic fields can

be defined, in the theory that we are discussing, in terms of the star product as follows:

HMN ≡

(
g−1 −g−1 ∗ b

b ∗ g−1 g − b ∗ g−1 ∗ b

)
Φ = e−2φ ∗

√
|detg| (3.5)

The above projection realized by the star product ∗ has of course to be used in the non-

linear gauge transformations of these two main fields in the terms involving the product of

fields and gauge parameters for ensuring that the gauge variations are allowed variations

of the fields. They are given by:

δξHMN = ξP ∗ ∂PHMN +
(
∂MξP − ∂P ξM

)
∗ HPN +

(
∂NξP − ∂P ξN ) ∗ HMP ;

δξΦ = −1

2
∂Mξ

M + ξM ∗ ∂MΦ, (3.6)

where the gauge parameter ξP is defined by ξP ≡ ηPQξ
Q, while the partial derivatives

∂M and ∂M are defined by: ∂M ≡
(
∂̃j ∂j

)T
and ∂M ≡ ηMQ∂Q. As already seen for

the linearized gauge transformations in eq. (2.2), in the case of non-zero λ, one chooses:

ξ̃j = ξj .

It would be very interesting to rewrite S̃
(2)
DFT in the generalized metric formulation

according to the same steps followed in ref. [10] for S
(2)
DFT and the cubic action. We will

leave it as the next possible task, but we make some observations that could be helpful at

this aim. We will focus therefore on the non-trivial mass terms that have been generated

in S̃
(2)
add.

One should observe that, in the context of the generalized metric formulation, the

generalized metric by itself [9, 10] in eq. (3.5) cannot generate the non-trivial massive term

involving λ since it is constrained to satisfy the equality HMP ηPQHQN = ηMN that has to

be preserved. Such equality implies λHMNHMN ∼ λ.
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Since we cannot generate the non-trivial term with λ, the suitable gauge transformation

for the generalized metric HMN should not have an explicit dependence on it. Actually,

this results to be the case as we are going to discuss.

The algebra of the gauge transformations induced in the theory by the double vector

ξ can be more deeply analyzed by studying the commutator algebra of the corresponding

generalized Lie derivatives. Then we first let the corresponding Lie derivative Lξ act on a

generic scalar field Φ̃ by calculating LξΦ̃ = ξj∂j ∗Φ̃ to show that the commutator [δξ1 , δξ2 ]∗,

embodying the above star product, defines a closed algebra. By direct calculation, one

can explicitly get that: [Lξ1 ,Lξ2 ]∗Φ̃ = L[ξ1,ξ2]∗Φ̃, where [ξ1, ξ2]∗ ≡ ξj1 ∗ ∂jξk2 − ξ
j
2 ∗ ∂jξk1 .

This implies that the gauge transformation does not have an explicit dependence on the

parameter λ, and the closure property holds.

One can conclude therefore that the gauge transformation of the scalar dilaton field

also does not explicitly depend on λ since:

[δξ1 , δξ2 ]∗ ∗ Φ =
1

2
∂M [ξ1, ξ2]

M
C − [ξ1, ξ2]

M
C ∗ ∂MΦ

= −δ[ξ1,ξ2]C ∗ Φ. (3.7)

Here the C bracket [· , ·]C is defined by [ξ1, ξ2]
M
C ≡ ξN[1 ∂Nξ

M
2] −

1
2ξ
P
[1∂

Mξ2]P with [i, j] ≡
ij − ji.

The generalized metric has the same transformation property as the scalar dilaton in

eq. (3.7) [δξ1 , δξ2 ]∗ ∗ HMN = −δ[ξ1,ξ2]C ∗ H
MN . Hence the closure of the gauge transforma-

tions algebra both for the scalar dilaton and the generalized metric holds.

Now we comment on how to probe a generalized metric formulation for the action S̃(2).

For a simple extension to this case, we want to retain the O(D, D) notation with its space-

time doubled indices and O(D, D) tensors. When HMN is promoted to an O(D, D) matrix,

constraining it to the condition HηH = η, one needs to integrate out an auxiliary field λ̄

from the term λ̄MN (HηH−η−1)MN in the action for the generalized metric formulation [10],

where the role of the auxiliary field is to reproduce the constraint HηH = η through its

equation of motion. After turning on λ 6= 0, the constraint HηH = η has to be modified

by adding to η a suitable deformation term in order to have ∂M∂
M (HηH) = −λ(HηH),

i.e. one has to introduce a suitable deformation necessary for obtaining a consistent rela-

tion compatible with the modified constraint. Retaining the O(D, D) indices
(
even losing

an O(D, D) element
)

is quite useful because the gauge transformation of the generalized

metric only requires the O(D, D) indices without any constraint on the matrix elements.

4 d = 1

Now we consider a one-doubled compact direction d = 1 to solve the modified constraint.

The generic solution of the equation KAK
A = λ is given by the KA =

(
x λ/(2x)

)T
for each

non-zero constant x. The momenta KB and KC appearing in B ∗C defined in eq. (3.3) of

course satisfy the same equation. Therefore, one has the generic solution for the momenta

KB =
(
a λ/(2a)

)T
and KC =

(
b λ/(2b)

)T
. Then this provides a/b + b/a = −1 when
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λ 6= 0 from the equation KBKC = −λ/2 . It is easy to show that a/b is an imaginary

number, implying no solution with λ 6= 0 in the case d = 1. We emphasize that the result

is quite general without considering the triple-products. Hence we need to go beyond the

d = 1 case to obtain a non-trivial solution with λ 6= 0.

5 Outlook

Following what done in ref. [18] in constructing Double Field Theory focused on the string

states with (NL = 1, NR = 1), we have constructed the analogous quadratic theory action

for the cases (NL = 2, NR = 0) and (NL = 0, NR = 2): these states are indeed massless in

the whole D-dimensional target-space but massive in the lower dimensional non-compact

space. Such construction is based on a deformation of the weak constraint through a

parameter λ = 2(NL −NR)/α′. The main appearance of further stringy effects is an extra

mass term, given by λ itself, for the symmetric two-order metric tensor contained in the

levels (NL = 2, NR = 0) and (NL = 0, NR = 2). The non-linear gauge transformations with

the O(D, D) indices have been defined. From there, it turns out that the λ parameter only

appears in the generalized metric HMN , but the corresponding gauge transformation does

not have an explicit dependence on the parameter, as expected. Hence this could simplify

a non-linear construction aimed to find a suitable matrix element for HMN : a non-linear

extension becomes therefore a possible task. We have shown that in the d = 1 case it is

impossible to have a solution of the modified weak constraint that could exhibit stringy

effects due to the simultaneous presence of momenta and windings. This implies that it

would be interesting to find solutions which are beyond d = 1 and to explore a non-linear

extension of the quadratic theory because all this could give information on further stringy

effects in Double Field Theory since the latter does not loose tracks of winding modes.

Finally, we would like to make some considerations regarding the energy scale of the

effective theory, depending on the mass scale, M2. For NL + NR = 2, we can obtain

M2 = n2/R2 +m2R2/α′2. For NL +NR = 3, the mass scale has the additional 1/α′ term,

and it gives M2 = n2/R2 +m2R2/α′2 + 2/α′. When we consider the same (n,m) in both

cases, the case of NL + NR = 2 has a lower energy-scale than the one of NL + NR = 3,

but it is not enough for the consistent truncation of NL + NR > 2. When we consider

(n,m) = (2, 1) in NL + NR = 2 and (n,m) = (1, 3) in NL + NR = 3, the mass scale

becomes M2 = 4/R2 + R2/α′2 and M2 = 1/R2 + 9R2/α′2 + 2/α′ respectively, showing

that the NL + NR = 3 case cannot be truncated when the compactified radius becomes

R2 ≥ α′/2. This implies that the consistent effective theory should contain infinite modes,

not only the modes from NL + NR = 2. We should expect that the different modes can

appear simultaneously in the non-linear term. Since our study is limited to the quadratic

level, it is not necessary to consider such infinite modes from the perspective of the gauge

symmetry. When we extend the analysis of gauge invariance to the non-linear level, the

cancellation of the non-gauge invariance is necessary in order to consider the different

constraints simultaneously.
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[24] B. Fraiman, M. Graña and C.A. Núñez, A new twist on heterotic string compactifications,

JHEP 09 (2018) 078 [arXiv:1805.11128] [INSPIRE].

[25] C.-T. Ma and F. Pezzella, Supergravity with Doubled Spacetime Structure, Phys. Rev. D 95

(2017) 066016 [arXiv:1611.03690] [INSPIRE].

– 13 –

https://doi.org/10.1016/S0920-5632(97)00352-6
https://arxiv.org/abs/hep-th/9610032
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9610032
https://doi.org/10.1016/0550-3213(92)90517-F
https://arxiv.org/abs/hep-th/9110038
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9110038
https://doi.org/10.1088/1126-6708/2009/09/099
https://arxiv.org/abs/0904.4664
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0904.4664
https://doi.org/10.1007/JHEP05(2014)044
https://arxiv.org/abs/1402.1686
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1402.1686
https://doi.org/10.1007/JHEP11(2011)052
https://arxiv.org/abs/1109.0290
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1109.0290
https://doi.org/10.1007/JHEP11(2011)116
https://arxiv.org/abs/1109.4280
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1109.4280
https://doi.org/10.1007/JHEP03(2016)093
https://arxiv.org/abs/1510.07644
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1510.07644
https://doi.org/10.1007/JHEP03(2019)012
https://arxiv.org/abs/1805.10306
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.10306
https://doi.org/10.1007/JHEP09(2018)078
https://arxiv.org/abs/1805.11128
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.11128
https://doi.org/10.1103/PhysRevD.95.066016
https://doi.org/10.1103/PhysRevD.95.066016
https://arxiv.org/abs/1611.03690
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.03690

	Introduction
	Quadratic theory
	Gauge transformation
	d=1
	Outlook

