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1 Introduction

It is a long-standing challenge in string theory to construct solutions with a positive cos-

mological constant. An essential complication is that within the low-energy supergravity

limit there are no-go arguments [1–3] that forbid de Sitter compactifications using only

ingredients obeying standard energy conditions.

Because of this, any putative de Sitter solution must in some way violate the classical

supergravity approximation. For instance, one may make use of corrections to the two-

derivative supergravity equations. Alternatively one can try to construct solutions using

semiclassical objects, orientifolds, that have negative tension and violate the assumed en-

ergy conditions. The latter class of constructions also takes us beyond the supergravity

approximation. Close to the orientifolds the curvature and dilaton often become large and

stringy corrections again become important.
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Several classes of de Sitter models have been proposed using these ideas; see for exam-

ple [4–8]. However, because of the importance of stringy or quantum corrections, these so-

lutions are typically not under parametric control; moreover the O-planes are often smeared

(although see [9, 10] for investigations on how to unsmear them). For these reasons, doubts

have remained both over particular proposals [11–13] and even over the existence any de

Sitter compactifications in string theory; see [14–22] for a sample of recent discussions.

Motivated by these considerations, in [23] we constructed explicit de Sitter compactifi-

cations of ten-dimensional supergravity by directly solving the IIA supergravity equations

of motion. Spacetime is a warped product of dS4 with an internal M6. The no-go argu-

ments are evaded because of the presence of two singularities, which we identified from the

behavior of the fields as being those of an O8+ and an O8−-plane. Of course near these

singularities supergravity breaks down: in particular, both the curvature and the string

coupling become large at a finite distance from the O8−. To assess the validity of these

solutions in string theory, one should ideally use the full string theory action, or switch to

a dual description. Unfortunately neither of these options is available, and for this reason

we emphasized in [23] that the ultimate fate of those solutions depends on string theory

corrections. Here we do not resolve this issue, though in section 5 below we discuss some

ideas to attack these problems indirectly.

Instead, one of our main results in this paper is to construct a new class of ten-

dimensional de Sitter compactifications of massive IIA. In these new solutions, described

in section 3, the O8− is replaced by an O6−. As we review in section 2, for such an object,

as for any Op−-plane with p < 8, it is well-known that the supergravity solution breaks

down in a “hole” region around the source; see figure 1. In absence of Romans mass, it

is known how to resolve this singular behavior in M-theory, where it is replaced by the

smooth Atiyah-Hitchin metric [24, 25]; with F0 6= 0 however this is not possible.

By modifying an analytic class of AdS solutions [26], we will be able to find numerical

de Sitter solutions where the metric takes the form

ds2
10 = e2Wds2

4 + e−2W (e2λ3ds2
κ3 + dz2 + e2λ2ds2

S2) , (1.1)

where the warp factor W as well as the dilaton and functions λi depend only on the single

coordinate z, and ds2
κ3 is the metric on an Einstein three-manifold with negative curvature.1

The z direction parameterizes an interval subject to an orientifold involution. At one side

there is an O8+-plane, on the other side the solution terminates at the boundary of a hole,

behaving locally like the O6− in flat space. There are several AdS solutions where the

presence of an O6− has been argued using this hole behavior, including some with known

holographic dual [27, 28].

In section 4, we take a step back from these explicit discussions and analyze in more

detail the original solutions of [23] with only O8s. Our discussion here is motivated in part

by a complaint [29] about the O-plane singularities in [23]. By using a certain combination

of the supergravity equations of motion, [29] claimed that no dS solutions with only O8-

plane singularities could exist; they resolved the apparent contradiction with [23] by finding

fault with the subleading behavior of the fields as a function of distance from the O8−.

1Relative to our later discussion we have suppressed the gauge redundant function Q.
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The argument in [29] assumes the validity of the supergravity equations of motion

everywhere, even near the orientifolds where they obviously are invalid. Their apparent

aim is to ascertain whether the solution can be trusted in supergravity, before one goes on to

consider stringy corrections. Of course as discussed above all de Sitter solutions necessarily

involve some correction to the low-energy supergravity approximation. However, such a

breakdown does not settle the essential physical question of whether string theory admits

de Sitter vacua.

The nature of the solutions of [23], as with all solutions involving orientifolds, is that

the supergravity is a valid approximation in one region, while completely breaking down

in another. Of course this means that the solutions cannot be completely verified with-

out taking into account the strong-coupling region. However, this issue cannot possibly

adjudicated one way or another by using the equations of motion of supergravity.

Nevertheless, in section 4 we discuss the formal problem of the behavior of the super-

gravity fields and equations in the strong-coupling region of an O8. As one might anticipate,

the confusion is one of boundary conditions: [23] and [29] use two slightly different versions,

imposing that a certain function have a single or double zero. This comes in turn from two

different assumptions on the allowed field fluctuations near O-planes. These issues are in

fact independent of the sign of the cosmological constant. There are purely local questions

about the correct local description of O8− singularities. In particular in appendix A we

show that certain previously constructed analytic supersymmetric AdS solutions [30] have

O8− singularities with the same boundary behavior as [23].

A priori, without input from a more fundamental theory one cannot determine which,

if any of these boundary behaviors is correct. Thus, the status of these O8s is somewhat

similar to black brane solutions of supergravity where one requires input from string theory

to decide which solutions and singularities are physical. The O6 solutions of section 3 have

a similar status. Our analysis of these ensures that they have the correct charge and leading

approximation to an orientifold near the boundary of the hole region but leaves the question

of whether additional boundary conditions should be imposed presently unanswered.

2 Orientifolds in supergravity

Since we will have several Op-singularities in what follows, we start with a review of their

effect in supergravity. We only need in fact O8s and O6s in this paper, but consider other

values below for completeness.

The most common type of Op-plane is the so-called Op−, which has negative tension

and charge. We will mostly focus on this case, commenting only occasionally on Op+-

planes, which have positive tension and charge, and hence a behavior more similar to a

stack of Dp-branes.2 In the context of dS solutions discussed in this paper, we will always

need at least one Op− to violate the no-go arguments of [3]. We will work in string frame

unless otherwise noted.

2A stack of Dp-branes coincident with an Op− has an SO worldvolume gauge group, while Dp-branes

coincident with Op+ give SP gauge groups.
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H

r0 r

Figure 1. The function H for Op-planes with p < 7 becomes negative at some value r = r0 of the

radial coordinate. For 3 < p < 7, curvature and string coupling become strong already for larger

values of r, in a region schematically shown in red here.

For general p, the Op− solution can be obtained by a modification of the Dp solution

and reads:

ds2 = H−1/2ds2
p+1 +H1/2(dr2 + r2ds2

S8−p) , F8−p = −4π7−p

v8−p
volS8−p , eφ = gsH

3−p
4 .

(2.1)

Here ds2
p+1 is the space parallel to the Op-plane, vd = 2 πd/2

Γ(d/2) is the volume of the unit-

radius S8−p, and H is a harmonic function of the transverse coordinates.

p = 8. In this case there is a single transverse coordinate, which we call x9; the metric

in (2.1) now reads ds2 = H−1/2ds2
8 +H1/2(dx9)2, with

HO8− = a+
gs
2π
|x9| . (2.2)

For a > 0 the curvature and string coupling are finite, but at the origin x9 = 0 the string

coupling eφ = gsa
−5/4 and R ∝ g2

sa
−5/2, which may be large if a is small. In particular for

a = 0 they diverge: eφ ∼ |x9|−5/4, R ∼ |x9|−5/2.3 At large |x9| the metric does not reduce

to flat space.

An O8+ is obtained by reversing the sign of the second term in (2.2), so HO8+ =

a− gs
2π |x

9|. Because of the square roots of H in (2.1), the metric now loses meaning beyond

a critical distance, |x9| ≥ 2πa/gs, just like for a stack of D8-branes. This will not be

important for our setting, in which the transverse directions are compact. For an O8+ it is

impossible to take a = 0: it would take the critical distance to zero and make the solution

disappear altogether.

p = 7. We briefly include this case for completeness, but we will not consider it in this

paper. Here

HO7− =
2gs
π

log

(
r

r0

)
. (2.3)

As was the case for the O8−, at r → ∞ the metric does not reduce to the flat space

metric. For r < r0, H becomes negative, and once again the metric becomes imaginary.

3Supergravity solutions with a = 0 are ubiquitous. For instance they occur in well-studied supersym-

metric AdS solutions (see e.g. [30–34]), as well as the non-supersymmetric AdS8 solutions of [35] and the

dS solutions of [23]. We discuss some subtleties of these O8s in section 4.1 below.
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This unphysical “hole” is resolved in F-theory, where the hole is revealed to contain two

mutually non-local (p, q)-sevenbranes [36]. The hole also occurs for p < 7, where a similar

resolution is not always known, and we will discuss it at greater length.

For an O7+, the sign in (2.3) is reversed, and the metric again has a critical distance,

as for the O8+.

3 < p < 7. The harmonic function is now a power law:

H ≡ 1−
(
r0

r

)7−p
, (p < 7) . (2.4)

The metric becomes imaginary in the “hole”

r < r0 ∝ gs ; (2.5)

This hole region is a finite distance in the metric and both the curvature and string coupling

diverge as one goes towards the “boundary of the hole” r = r0: namely

R ∼ (r − r0)−5/2 , eφ ∼ (r − r0)
1
4

(3−p) . (2.6)

So the solution cannot be trusted already some distance outside the hole. We will return

on this issue in section 3.

For Op+ in the range 3 < p < 7, the sign of the second term in (2.4) is reversed. Now

nothing special happens at r = r0; as r → 0 the curvature diverges like R ∼ r
1
2

(3−p), while

the string coupling goes to zero like eφ ∼ r
(p−3)(7−p)

4 .

p = 3. The harmonic function for an O3− is still (2.4), but now the string coupling is a

constant. The curvature R in fact also vanishes, but the invariant RMNR
MN diverges as

∼ (r − r0)−5 as r → r0. So r = r0 is still a true singularity.

For the O3+, the sign in (2.4) is reversed; again eφ is a constant and R = 0. Other

curvature invariants also remain finite in this case, and it was in fact argued in [37] that

the locus at r → 0 is not a singularity, and that one can analytically continue beyond it.

p < 3. This case plays no role in four-dimensional compactifications, but let’s review it

just the same. At r = r0 the curvature again diverges as (r − r0)−5/2, while the string

coupling goes to zero as eφ ∼ (r − r0)
1
4

(3−p). For Op+’s in this range, the curvature goes

to zero for r = 0 as R ∼ r
1
2

(3−p), while the string coupling diverges as eφ ∼ r
1
4
p−3
7−p .

3 O8+-O6− solutions

In this section we construct a new type of ten-dimensional de Sitter solutions of supergrav-

ity, involving O8+ and O6− orientifolds. We first present a short review of the ansatz of [23]

and then subsequently generalize. In section 3.3 we also show that our ansatz encompasses

some analytically known AdS4 solutions. In this section we use the conventions for the

type II equations of motion spelled out in [35, appendix A].
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3.1 Review of the O8+-O8− Ansatz

The simplest class of solutions in [23] are ten-dimensional geometries with a dS4 factor in

spacetime, and two O8-planes. The internal geometry is S1 ×M5 and only F0 flux. The

S1 is quotiented by an orientifold, so that one can consider an interval I instead.

The metric ansatz was

ds2
10 = e2Wds2

dS4
+ e−2W

(
dz2 + e2λds2

M5

)
. (3.1)

M5 is a compact Einstein manifold with negative curvature; z is a coordinate on the above-

mentioned S1/Z2 ≡ [0, z0]. The metric coefficients W , λ, as well as the dilaton φ are all

functions of the coordinate z only.

At the loci z = 0 and z = z0, the metric is singular. The z = 0 singularity is very

mild: the metric is continuous but non-differentiable there. We interpreted this as the

backreaction of an O8+-plane, which has positive tension; in fact we started our analysis

by imposing boundary conditions at z = 0 that correspond to the backreaction of an O8+.

These boundary conditions are not controversial in any way. We then started a numerical

evolution, and at z = z0 found another singularity. Closer inspection revealed that this

matched the behavior of an O8− at leading order in |z− z0|. This led to the claim that we

had found a solution with an O8+ and an O8−.

Below we describe a new type of solutions, where the O8− is replaced by an O6−. We

return to a critical analysis of the O8− solutions and their orientifold boundary conditions

in section 4. In particular there we also discuss the arguments of [29].

3.2 Setup

Let us first describe the allowed singularities. We will recognize the O6− by the behavior

at the boundary of its “hole” r = r0, discussed in section 2. Adapting that discussion to

the p = 6 case, the local solution reads

ds2 ∼ t−1/2ds2
‖ + t1/2(dt2 + ds2

S8−p) , eφ ∼ t−3/4 , (3.2)

with t ≡ r − r0. Our aim in the following will be to find dS4 solutions where singularities

of the type (3.2) are allowed. We will interpret these singularities as boundaries of the

holes produced by O6-planes. As we will see, solutions involving singularities (3.2) will

in general have free parameters, and a priori we may wonder if more restrictive boundary

conditions can or should be imposed to fix them. This is similar to analogous issues that

arise for the O8− solutions which are differed to section 4.

We now look for dS4 backgrounds of massive type IIA supergravity. We restrict our-

selves to a co-homogeneity-one ansatz.4 For simplicity, we also include an explicit S2 factor

in the metric, which will be the sphere transverse to the O6-plane. Thus our ansatz for

the metric reads

ds2
10 = e2Wds2

4 + e−2W (e2λ3ds2
κ3 + e2Qdz2 + e2λ2ds2

S2) , (3.3)

4A similar Ansatz was used for de Sitter solutions in string theory and more generally with extra

dimensions in [38].
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with all the functions only depending on the coordinate z. The metric ds2
κ3 is an Einstein

space with Einstein constant κ3 and the function Q parametrizes a gauge redundancy.

The most general fluxes compatible with the symmetries of the metric are

H = hdz ∧ vol2 , F2 = f2vol2 , F4 = f41vol3 ∧ dz + f42vol4 , F0 6= 0 , (3.4)

where a priori h, f2, f41 and f42 are all functions of the coordinate z.

3.2.1 Equations of motion

Away from sources, we can solve the Bianchi identities and equations of motion for the

fluxes by setting

h = f ′2/F0, f42 = const , f41 =
1

F0
eQ−6W−2λ2+3λ3(F0c1 − f42f2), (3.5)

where c1 is an integration constant. The equations for the fluxes are then completely

satisfied up to the differential equation

f ′′2 = e2(Q−5W+φ)(F0c1f42 + (e8WF 2
0 − f2

42)f2) + f ′2(Q′ − 4W ′ + 2λ′2 − 3λ′3 + 2φ′). (3.6)

This local form of the equation of motion has to be supplemented with boundary conditions

for the fluxes, which we are going to discuss in the next section where we focus on a specific

choice for the sources.

Turning our attention to the Einstein and dilaton equations of motion, we obtain5

8Λe2q0−4W = e4W−4λ2

(
−(f ′2)2

F 2
0

+ f2
2 e

2q0−2W+2φ + F 2
0 e

2q0−6W+4λ2+2φ

)
− 16λ′2φ

′ − 24λ′3φ
′ + 4

(
λ′2
)

2 + 12
(
λ′3
)2

+ 24λ′2λ
′
3 +

− 6κ3e
2q0−2λ3 − 4e2q0−2λ2 + 8W ′φ′ − 16

(
W ′
)2

+ 8
(
φ′
)2

(3.7a)

16W ′′ = e4W−4λ2

(
−2 (f ′2)2

F 2
0

+ 6f2
2 e

2q0−2W+2φ + 6F 2
0 e

2q0−6W+4λ2+2φ

)
− 32λ′2φ

′ − 48λ′3φ
′ + 8

(
λ′2
)

2 + 24
(
λ′3
)

2 + 48λ′2λ
′
3 + 16

(
φ′
)2

− 12κ3e
2q0−2λ3 − 8e2q0−2λ2 +

δ6κ
2τ6e

−2λ2+q0+W+φ

π

+ 4δ8κ
2τ8e

q0−W+φ − 32λ′2W
′ − 48λ′3W

′ + 48W ′φ′ − 32
(
W ′
)2

(3.7b)

8λ′′2 = e4W−4λ2

(
−5

(f ′2)2

F 2
0

+ f2
2 e

2q0−2W+2φ + 5F 2
0 e

2q0−6W+4λ2+2φ

)
− 24λ′3φ

′ − 12
(
λ′2
)

2 + 12
(
λ′3
)2 − 6κ3e

2q0−2λ3 + 4e2q0−2λ2 +

+ 4δ8κ
2τ8e

q0−W+φ + 8W ′φ′ − 16
(
W ′
)2

+ 8
(
φ′
)2

(3.7c)

5For simplicity we display here only the equations of motion for the case with F4 = 0.
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8λ′′3 = e4W−4λ2

(
−(f ′2)2

F 2
0

+ 5f2
2 e

2q0−2W+2φ + 5F 2
0 e

2q0−6W+4λ2+2φ

)
− 16λ′2φ

′ − 8λ′3φ
′ + 4

(
λ′2
)

2 − 12
(
λ′3
)

2 + 8λ′2λ
′
3

+ 2κ3e
2q0−2λ3 − 4e2q0−2λ2 +

δ6κ
2τ6e

−2λ2+q0+W+φ

π

+ 4δ8κ
2τ8e

q0−W+φ + 8W ′φ′ − 16
(
W ′
)2

+ 8
(
φ′
)2

(3.7d)

4φ′′ = e4W−4λ2

(
−2

(f ′2)2

F 2
0

+ 3f2
2 e

2q0−2W+2φ + 5F 2
0 e

2q0−6W+4λ2+2φ

)

− 8λ′2φ
′ − 12λ′3φ

′ +
3δ6κ

2τ6e
−2λ2+q0+W+φ

4π
+ 5δ8κ

2τ8e
q0−W+φ + 8

(
φ′
)2

(3.7e)

The first equation is a first order equation which will act as a constraint. Each of

the other four equations involves a second derivative of a different function, and includes

a δ-function that accounts for the back-reaction of the physical sources. Since our 8-

dimensional sources are O8+-planes, which do not suffer from strong-coupling ambiguities,

the δ8 terms are well-defined. However, the δ6 terms that appear in the equations of motion

are just formal devices since, as we have seen in the flat-space case, for Op-planes with

p < 7 their support would be located inside the hole, and hence outside of the physical

space-time described by supergravity .

3.2.2 Flux quantization

From now on, we will focus on solutions with an O8+ and an O6−. The orientifold involu-

tion is generated by the operators

ΩWSσ8 , ΩWS(−1)FLσ6 . (3.8)

ΩWS is the worldsheet parity; FL is the left-moving fermion number operator; σ8 : z 7→
−z, whose fixed locus is at z = 0, the O8-plane; and σ6 : (θ, φ) 7→ (π − θ,−φ) is the

antipodal map on the S2, whose fixed locus is at the locus where the S2 shrinks, the

O6-planes. The difference between Op± is in general defined via the orientifold action on

the Chan-Paton variables, but in cases without D-branes such as this one it can also be

defined as a sign appearing for non-orientable maps at the Op+, as explained for example

in [39, section 6.2]. Early models with O-planes of different signs appearing simultaneously

appeared for example in [39–41].

The σz involution means that the physics in z < 0 is just a replica of the physics in

z > 0; so, as is often done, we will consider only the latter half. Then, z starts from an

O8+ plane sitting at z = 0 and ends at the hole of an O6-plane at z = z0.

We will restrict our attention to the case

F4 = 0 . (3.9)

The presence of an O8+ will make the flux F0 jump according to its Bianchi identity:

∆F0 = −κ2τ8 . (3.10)

– 8 –
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Since F0 is odd across an O8-plane, we have ∆F0 = 2F0|z→0+ . Combining the two equations

we get in our conventions

F0|z→0+ =
n+

0

2π
, n+

0 = −4 . (3.11)

The behavior of F2 on the O8 plane requires some care. Away from O6/D6 and NS5/ONS5

we have to satisfy the Bianchi identities

dF2 = F0H , dH = 0 . (3.12)

In particular H does not have to jump. Since on top of an O8+ plane F0 jumps according

to (3.10), then dF2 has to jump.

The O6 at z = z0 is not defined through a δ-function, since the δ6 is outside of the

space-time, but through the boundary condition

f2(z0) = 1. (3.13)

This choice fixes the flux quantization for F2. This normalization ensures that the O6 has

the correct charge, as can be seen for example by comparing with the flat space solution

in (2.1).

Finally, we have to impose flux quantization for H:∫
M3

H = (2π)2N. (3.14)

To do so, we integrate the Bianchi equation on half of the internal space,∫
M3
2

dF2 =

∫
M3
2

F0H, (3.15)

and we use (3.14) and the fact that H as a form is even across the O8+ to obtain

4π(f2(z0)− f2(0)) = F+
0

1

2
(2π)2N. (3.16)

By writing F0 ≡ n0
2π and using (3.13), we get

f2(0) = 1− n+
0 N

4
(3.17)

where for a simple O8+ (i.e. without D8s on top of it) n+
0 = −4.

Summing up, for a solution of the type O8+-O6 we have to impose the conditions (3.11),

(3.13) and (3.17), which account for the flux quantization of F0, F2 and H.

3.2.3 O8+ boundary conditions and the cosmological constant

By integrating the equations of motion across the O8+plane at z = 0, we obtain the

boundary conditions

λ′2 = λ′3 = −1

2
F0e

q0−W+φ, W ′ = −1

4
F0e

q0−W+φ, φ′ = −5

4
F0e

q0−W+φ, at z = 0.

(3.18)
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By plugging these conditions into the constraint equation we get

Λ =
1

8
f2

2 e
−4λ2+6W+2φ − 3

4
κ3e

4W−2λ3 − 1

2
e4W−2λ2 − (f ′2)2e−4λ2−2q0+8W

8F 2
0

(3.19)

+
c1f2f42e

−4λ2−2W+2φ

4F0
− 1

8
c2

1e
−4λ2−2W+2φ − f2

2 f
2
42e
−4λ2−2W+2φ

8F 2
0

− 1

8
f2

42e
2φ−6W

at z = 0

where the second line vanishes for F4 = 0. In particular we notice that with κ3 negative

enough we can obtain a positive cosmological constant.

3.3 An analytic AdS starting point

A notable class of already known solutions that fits in our Ansatz (3.3), (3.4), (3.9) can be

obtained from the AdS7 solutions in [27, 42, 43] by replacing simply

AdS7 → AdS4 ×H3 , (3.20)

where H3 is a compact hyperbolic space with the same Einstein constant as AdS4, κ3 = Λ,

and doing nothing else. At the level of the equations of motion this replacement has no

impact. (At the level of supersymmetry equations it does make a difference; there is a

procedure to generate supersymmetric AdS4 × H3 solutions from AdS7 supersymmetric

ones, but it is more complicated and involves also changing the internal metric and fluxes

in a certain way [44], in the spirit of [3].)

For the solutions obtained this way, the local form of the metric functions is given by

e2W = eλ3 =
√

2π

√
−α
α̈
, e2λ2 =

2π2X5/2α2

X5α̇2 − 2αα̈
, q0 = 2π2X−5/2 , Λ = −2 +X5

4X5/2
,

(3.21)

where the dot denotes derivatives with respect to the coordinate z. In particular the metric

is given by

1√
2π
ds2

10 =

√
−α
α̈

(ds2AdS4
+ ds2

H3
) +

√
− α̈
α
X−5/2

(
dz2 +

α2

α̇2 − 2X−5αα̈

)
. (3.22)

Reality and positivity of the metric are achieved if

α ≥ 0 , −α̈ > 0 . (3.23)

F2 and the dilaton are obtained from

eφ = X5/4 25/434π5/2
(
−α
α̈

)3/4
√
X5α̇2 − 2αα̈

, f2 =
α̈

234π2
+

F0πX
5αα̇

X5α̇2 − 2aα̈
. (3.24)

(Since we are interested in the case where F0 6= 0, we can take B = F2
F0

, which automatically

solves (3.12).) Both values of the constant

X = 1 , X = 21/5 (3.25)
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lead to a solution of the equations of motion. In AdS7, the supersymmetric solution is

obtained for X=1, while the non-supersymmetric one is obtained for X = 21/5 [26]. After

our replacement (3.20), both cases are non-supersymmetric. However, in what follows we

will focus on the X = 21/5 case.

The equations of motion force α to be a piece-wise degree 3 polynomial that has

to satisfy
...
α = −162π3F0 . (3.26)

If 8-dimensional sources are present, F0 changes accordingly to its Bianchi identity, and
...
α

jumps. Nevertheless one can impose that the metric and fields are continuous.

Different sources are then chosen by specifying the correct boundary conditions for α,

which has three free parameters. We highlight the following:

• A D6 is obtained by imposing α→ 0.

• The boundary of an O6 hole is obtained with α̈→ 0.

• An O8 requires α̇→ 0.6

To obtain an O8+-O6 solution we impose the conditions

α̇(0) = 0, α̈(z0) = 0, f2(z0) = 1, f2(0) =
k

2
= 1− n+

0 N

4
, (3.27)

where both k and N should be integers. The first two conditions in (3.27) come from

imposing that at 0 and z0 the solution has the correct local behavior for an O8+ and for

the boundary of an O6− boundary respectively, as in the list of possibilities above. The

third condition fixes the charge of the O6− (which is −2 that of a D6). Finally, the fourth

takes care simultaneously of flux quantization for F2 at z = 0, and of flux quantization for

H, whose flux integral (over the whole space, from −z0 to z0) is N . The two are related

by integrating the Bianchi. If we have a simple O8+ at z = 0, then n+
0 = −4, and we are

only left with the freedom of choosing the integer N . Moreover, in this gauge z0 depends

on N as

z0 = −N
2

+
2

n+
0

= −N + 1

2
, (3.28)

and the requirement that z0 > 0 forces N < −1. Explicitly, the solution reads

α =
27

32
π2
(
k2(k + 12N) + 48kz2 + 64z3

)
; (3.29)

recall k = 2(N + 1).

This solution can be checked using holography: the aWeyl anomaly can be computed

using both field theory and holography as in [43, 45], getting the same result 16
7 215N3k2

in the limit where N � 1 [28].

Curiously, for all AdS7 solutions with an O6 there is the possibility of analytically

continuing past the boundary of the O6 hole. This requires going past the point where

6The “diverging dilaton” type, which is only possible for an O8−, is obtained by imposing that α̈ → 0

at the same time. We will not need this here.
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α̈ = 0, to a region where α̈ > 0, violating (3.23) and making (3.22) imaginary, exactly as for

the hole in (2.1), (2.4). The center of this hole is obtained at a point where α→ 0, where

there is a formal singularity z = zO similar to the one of a D6 but where some functions

have opposite signs. For the solutions (3.29) above, this happens at a point zO ∼ −N/2.7

In general, it is not clear that this procedure of continuing classical supergravity solutions

beyond the hole (where they are not valid) has any physical meaning. In our numerical

dS4 solutions below we are not able to completely reproduce this continuation.

3.4 Numerical solutions

In this section, we show that it is possible to find dS4 solutions of the type O8-O6, if the

O6 is identified by the behavior of the metric and the dilaton near its hole, as in the flat

space case (3.2). Imposing these conditions, we are able to explicitly build the numerical

solutions. We find a three-parameter family of solutions labeled by the boundary data for

the unconstrained metric functions at the boundary of the hole.

We start by building the local solution near an O8+-plane at z = 0. By imposing the

boundary conditions (3.18) we obtain the expressions

e−4W = 1 +
F0e

q0z

a
3/4
1

+
1

2
e2q0z2

(
− f2

20

a
3/2
1 a2

2

− 4Λ

)
+O(z3) ,

e−
4
3
φ = a1 +

5

3
4
√
a1F0e

q0z +

z2

(
6a

3/2
1 b2

F 2
0

+ e2q0(10a2
2F

2
0 − 9f2

20)

)
18
√
a1a2

2

+O(z3) ,

e−2λ3 = 1 +
F0e

q0z

a
3/4
1

+

z2

(
2e2q0

(
a2(a2Λ + 2)− 2f220

a
3/2
1

)
+ b2

F 2
0

)
6a2

2

+O(z3) , (3.30)

e2λ2 = a2 −
a2F0e

q0z

a
3/4
1

+ z2

(
e2q0

(
a2F

2
0

a
3/2
1

+ a2Λ + 1

)
− b2

2a2F 2
0

)
+O(z3) ,

f2 = f20 + bz +
F0e

q0z2(f20F0e
q0 − a3/4

1 b)

2a
3/2
1

+O(z3) .

Some comments are in order.

• Since we decided to keep Λ and κ3 as continuous parameters, we fixed the redundancy

in the parametrization of the metric by setting e−4W and e−2λ3 equal to 1 on top of

the O8+.

• q0 here is just a gauge redundancy and we can use it to rescale the length of the

interval.

7In (3.27), we have imposed flux quantization
∫
H = 4π2N over the physical region alone; one might

wonder what happens if one extends the integral over the hole as well. Formally this is achieved by imposing

the same conditions at zO as one would impose for a D6 stack, but taking nD6 = −2. The solution obtained

in this way is α̃ = α− 27
4
π2, so the difference between the two is small when N is large.
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• f20 and F0 are discrete parameters depending on N and n0 as in (3.11) and (3.17):

f20 = 1− n+
0 N

4
, F0 =

n+
0

2π
. (3.31)

For a simple O8+ without D8-branes on top of it we have n+
0 = −4.

• b is not a free parameter. From the first order equation we find:

b = ±F0e
q0

√
f2

20

a
3/2
1

− 2a2(3a2κ3 + 4a2Λ + 2) . (3.32)

The two roots correspond to the 2 possible choices for the sign of f ′2(0). We find

that only the positive root gives the solutions we are interested in. Moreover, notice

that in order to have real solutions the expression inside the square root has to

be non-negative. This gives a inequality on the initial parameters of a physically

acceptable solution.

To summarize, the local solution near the O8+-plane depends on four continuous parame-

ters a1, a2, κ3 and Λ and two discrete ones, N and n+
0 . These parameters have to be chosen

such that b defined in (3.32) is real. To hit an O6− we need to find a point where f2 = 1,

requiring one fine-tuning.

We now take an AdS4×H3 solution at large N , i.e. weakly-curved and weakly-coupled,

and we slowly increase Λ making it positive. Correspondingly, we have to tune the pa-

rameters (κ3, a1, a2) in order to reach a point z0 where, defining t ≡ |z − z0|, the functions

behave as

f2(z0) = 1, eλ2 ∼ const, eW ∼ t−
1
4 , eλ3 ∼ t−

1
2 , eφ ∼ t−

3
4 . (3.33)

Near such a point, the metric, the dilaton, and the fluxes have the same local expression as

in (3.2). As in that case, the supergravity approximation breaks down near the boundary

of hole, since the dilaton starts growing and eventually diverges. Figure 2 shows a typical

solution with this behavior.

We have thus succeeded in obtaining dS4 solutions with an O8+ at z = 0 and an O6−
whose boundary lies at z = z0. Near this boundary the dilaton and string coupling diverge,

but they do in the same way as for the O6 in flat space and for the O6 in the AdS7 solutions

in section 3.3.

As we have mentioned earlier, in this case it is unclear how one should check whether

the δ’s in the equations of motion are correctly reproduced, since their support now lies

outside the physical space, in the “hole” region where the metric is purely imaginary.

Moreover, the integration by parts argument that was in [29] to criticize the O8+-O8−
solutions of [23] in this case doesn’t apply: if we consider [46, (A.7)], there is no single

choice of c that makes both the O8+ and the O6− source terms disappear.8

8A speculative way to test the δ source term of the O6 might be to formally try to continue the solutions

inside the unphysical “hole”. It is unclear how physical this is, but it does work for the analytic AdS7
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20 60 100 140
z

5

10

15

Figure 2. A numerical dS4 solution. It starts from an O8+-plane (on the left) and ends at the

boundary of the hole produced by an O6−-plane (on the right). The functions are e4W (turquoise),

e4φ(black), e2λ3(orange, dashed) and e2λ2(red, dashed). On the right, the functions behave as in

equation (3.33). The numerical constants that produce the solution in this plot are Λ = 2.7×10−3,

κ3 = −2.1× 10−1, a1 = 9.02, a2 = 3.5× 102, q0 = −2.86, N = −275 and n0 = −4.

Finally, we comment on the physical value of the cosmological constant. At this stage,

Λ is only a parameter. Its physical value in units of the four dimensional Planck mass is

obtained as

Λphys =
Λ

M2
p

, with M2
P = κ2Vol2Vol3

∫
dzeQ−4W+2λ2+3λ3−2φ. (3.34)

Performing this integral9 for the solution in figure 2 we obtain

Λphys ∼
10−9

κ2Vol3
, (3.35)

where we have already substituted the volume of the unit-radius transverse S2. This small

number is expected from the AdS7 solutions, where at large N the Planck’s mass scales as

N5 and Λ remains constant.

4 A discussion of the O8+-O8− solutions

In this section we discuss the original O8+-O8− de Sitter solutions of [23] in detail. In

particular our analysis is focused on the behavior near the O8−.

In [29], it was claimed that such solutions would be impossible quite generally, based

on a certain integration by parts applied to the supergravity equations of motion. They

solutions with O6-planes, as we noticed at the end of section 3.3. We attempted this by continuing the

numerical evolution past the O6 boundary. This requires fine-tuning on the initial conditions, and we did

not manage to obtain the full formal hole behavior. For instance, H ≡ e−4W is not diverging and eλi and

eφ tend to zero with unusual power laws. We thank N. Cribiori and D. Junghans for correspondence about

this issue.
9There is almost no difference in stopping the integral on the boundary of the hole or on top of the O6

since the contribution of the hole is very small.

– 14 –



J
H
E
P
0
8
(
2
0
2
0
)
0
9
3

explained the disagreement with [23] by claiming that the z = z0 singularity, while display-

ing the same behavior as an O8− at leading order in |z − z0|, was crucially different from

it in subleading behavior. In this section we will investigate this claim.

In appendix A we also exhibit several previously known [30] analytic supersymmet-

ric AdS4 solutions with O8− planes and the same subleading behavior as our de Sitter

solutions.

4.1 The solutions in detail

Let us then first look at the equations of motion from the de Sitter solutions of [23] for the

functions W , φ, λ defined in the ansatz (3.1). Since the contentious point is the treatment

of O-planes, we include the source terms:

W ′′ +W ′(5λ− 2φ)′ − 1

4
F 2

0 e
2(φ−W ) − Λe−4W =

1

π
eφ−Wσ ; (4.1a)

(W + 2φ− 5λ)′′ +W ′(5λ+ 2φ)′ − 8(W ′)2 − 5(λ′)2 +
1

4
F 2

0 e
2(φ−W ) =

1

π
eφ−Wσ ; (4.1b)

(W − λ)′′ + (W − λ)′(5λ− 2φ)′ + κe−2λ +
1

4
F 2

0 e
2(φ−W ) = − 1

π
eφ−Wσ ; (4.1c)

4(W ′)2 − 10(λ′)2 − 2(φ′)2 + 2φ′(5λ−W )′ + 2e−4WΛ +
5

2
κ5e
−2λ − 1

4
F 2

0 e
2(φ−W ) = 0

(4.1d)

where

σ ≡ δ(z)− δ(z − z0) (4.2)

is the sum of the O8± localized contribution.

To focus on the sources, we notice that the second-order equations (4.1a)–(4.1c) are

linear combinations of equations of the form

eW−φ∂2
zfi = ± 1

π
δ + . . . (O8±) . (4.3)

From now on we omit the argument of the δ when it should be obvious from the context.

The . . . denote terms that are not important near the sources, and

fi ≡
{
W,

1

5
φ,

1

2
λ

}
. (4.4)

Near the O8+, the functions are finite; assuming they are also continuous, the treat-

ment of the δ terms is standard. One can for example take the integral of the sources on a

small interval [−ε, ε]; in the ε→ 0 limit, the only contributions come from the δ terms and

from the discontinuities in the second derivatives. Alternatively, we can directly use the

fact that the weak derivative of a discontinuous function h includes a δ term proportional

to the discontinuity; schematically

∂zh = h′ + (∆h)δ . (4.5)

Either way, we obtain

eW−φf ′i |z→0+ =
1

2π
(O8+) . (4.6)
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Since at the location of the O8+ no field is diverging or going to zero, the condition (4.6)

can be imposed unambigously on all the fields. The O8− is more subtle; near its position

z0, the leading behavior in z − z0 of the fi is

efi = ci|z − z0|−1/4 +O(|z − z0|3/4) ; (4.7)

so the f ′i = −1
4

1
|z−z0| + reg., and the ci are such that eW−φ = |z − z0|+O(|z − z0|).

The logic we just used to obtain (4.6) now does not apply straightforwardly. For ex-

ample, if we take the integral of (4.3) on [−ε, ε], we have the integral of eW−φ∂2
zfi, which

is not a total derivative. If one tries to use (4.5), one is confronted with the derivative of

functions fi which are not simply discontinuous but in fact divergent. One could alterna-

tively multiply (4.3) by eφ−W , and then integrate it on [−ε, ε]. Now the left-hand side ∂2
zfi

is a total derivative, but the right-hand side reads

eφ−W δ ∼ 1

|z − z0|
δ(z − z0) (4.8)

which is a product of distributions, of unclear interpretation.

In fact this formal trouble hides an even deeper problem: since the dilaton and curva-

ture are diverging at the O8−, the supergravity approximation is breaking down there, and

we shouldn’t use the equations of motion (4.1) in the first place. Our numerical solution

cannot be trusted there, and trying to understand its formal properties is not physically

meaningful. The reason we identified our divergence with that of an O8− was that its

leading-order divergence in (z − z0) behaves exactly like an O8− solution in flat space.10

That solution also has the problem that supergravity breaks down in its vicinity, but it

is believed to be modified in fully-fledged string theory, whatever its equations of motion

may be, but to still exist.

More precisely, both the flat-space O8− and our solution satisfy

eW−φf ′i |z→z+0 = − 1

2π
(O8−) (4.9)

as one can see from (4.7). This is very similar to (4.9); for an O8− where the dilaton and

curvature remains small (a � 1, in the language of footnote 10 and (2.2)), this could be

motivated by the same arguments that took us to (4.9).

This similarity between our singularity and the flat-space O8− motivates the hope

that our solution also exists in fully-fledged string theory. Notice that the solution has a

supergravity “modulus” c, generated by the rescaling

gMN → e2cgMN , φ→ φ− c . (4.10)

This is a symmetry of the supergravity equations of motion, but not of full string theory.

We thus expect the solution to exist in string theory only for a particular value of c. (We

10The O8− in flat space has metric (2.1), (2.2). As we saw there, the particular case of this solution

where a = 0 has diverging dilaton and curvature; this is the solution that we will refer to as “flat-space

O8−” from now on.
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will see later that it is not clear whether c can in fact be considered a field in an effective

four-dimensional description.) However, as stated in [23], all this is unproven until one

somehow finds a way to evaluate the stringy corrections: there might be no value of c for

which the solution works in full string theory.

Meanwhile, [29] examined the same solution by using the supergravity equations of

motion even in the region where supergravity breaks down. This should not be done, and

that the fate of the solution cannot possibly be decided this way. It is true that we ourselves

used supergravity, but we just looked at the leading behavior of the fields in |z − z0|. In

particular this allows us to read off the correct charge of the O8−. However, it is not

clear that applying the uncorrected supergravity equations of motion to the subleading

behavior as in [29] makes any physical sense. For the rest of this section we will consider

this issue further.

4.2 Various versions of the boundary conditions

As we just saw, the solutions in [23] satisfy (4.9). However, (4.9) would seem to suffer from

an ambiguity. For example one might want to rewrite it as

f ′i |z→z+0 = − 1

2π
eφ−W |z→z+0 . (4.11)

From (4.7) we now see that both sides have a simple pole; so the equation is of the form

dL
i

|z − z0|
+ eL

i =
dR
i

|z − z0|
+ eR

i . (4.12)

Equality of the leading term, dL
i = dR

i , is equivalent to (4.9); but if we also impose equal-

ity of the subleading coefficient eL
i = eR

i we have a more restrictive boundary condition

than (4.9). By multiplying (4.9) by a diverging function, we have made one more coeffi-

cient of its Taylor expansion emerge; this new coefficient has effectively created an extra

boundary condition. Thus (4.11) is not in fact equivalent to (4.9); we will call them the

restrictive and permissive boundary conditions, respectively.

One could be even more extreme and multiply (4.9) by an even more diverging function,

such as e2(W−φ). The two sides of the equation would now be of the form

dL,R
i

|z − z0|2
+

eL,R
i

|z − z0|
+ fL,R

i , (4.13)

thus creating the need to equate even the coefficients fL,R
i . While of course this does

not appear particularly natural, one does not see any a priori reason to consider this

option to be any less valid than (4.9) or (4.11). Clearly we need a better understanding of

this ambiguity.

The restrictive boundary condition (4.11) is effectively the one used in [29]; it is not

satisfied by the singularity we identified as O8− in [23], and this is what creates the apparent

contradiction between the two papers.

More precisely, [29] applies (4.11) to the difference

(f1 − f2)′ = W ′ − 1

5
φ′ , (4.14)
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which from (4.12) we see to be of the form ∆d12
|z−z0| + ∆e12 = 0 for some constants ∆d12

and ∆e12. The restrictive (4.11) imposes (f1 − f2)′ = 0, so both ∆d12 = ∆e12 = 0; the

permissive (4.9) imposes eW−φ(f1−f2)′ = 0, so only ∆d12 = 0. Our solution in [23] satisfies

∆d12 = 0: it cancels the pole in (f1 − f2)′, but not the constant.

In other words, [29] can be read as a complaint that in (f1 − f2)′ we only made sure

that the pole ∆d12
|z−z0| vanished, and not the constant term ∆e12. Indeed they went further:

with an integration by parts, they showed that no solution with only O8-planes exists such

that this constant term vanishes.11 So the issue is really reduced to whether we should use

their restrictive boundary conditions (4.11) for (f1 − f2)′ = W ′ − 1
5φ
′, or our permissive

ones.12 Let us stress once again, however, that one really should be looking at the full

string theory equations of motion.

4.3 Action variation

We will now see that the difference between permissive and restrictive boundary condi-

tions (4.9), (4.11) can be traced back to how one varies the action: namely, to what space

the variations δfi are taken to belong. We will illustrate this point by focusing on the

dilaton’s equation of motion.

The relevant terms of the action in the string frame are

S0 =
1

κ2

∫
M10

d10x
√
−g

[
e−2φ

(
R+ 4(∇φ)2

)
− 1

2
F 2

0

]
, (4.15)

SDBI = −
∑

τi

∫
Σi

d9xe−φ
√
−h , (4.16)

where Σi are the sources, and hMN is the metric induced on them by the bulk metric.

Our point of view in this subsection will be that the internal space is

M5 × [0, z0] , (4.17)

whose boundary consists of the loci where the two O8-planes sit. Thus we should be careful

to include boundary terms. First of all, the variation of a bulk term in the action can yield a

boundary term when we integrate by parts to extract its equations of motion. For example,

the dilaton kinetic term in (4.15), when varied with respect to φ, upon integration by parts

produces a bulk term that contributes to the equations of motion, but also a boundary term

8

∫
∂M10

d9x
√
−h e−2φnM∂Mφ , (4.18)

where nM is the normal vector to ∂M10, normalized so that n2 ≡ gNMnNnM = 1. Second,

as usual in general relativity, in presence of a boundary the action should also contain

11This is based on [46, (A.7)] taking c = 2
5
. This is the same linear combination of equations of motion,

but now including source terms, as the one used in [3, section 6.3] to extend the dS no-go to solutions with

F0.
12A related point is that in [23] we used a different set of variables, trading λ for α ≡ e5λ−2φ. This makes

it natural to impose α′ = 0. However, using (4.7) one can see that this imposes the restrictive boundary

condition on the difference f2 − f3. If we relax this to the permissive boundary condition, consistent with

our treatment of f1 − f2, leads to additional moduli and new solutions [47].
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the Gibbons-Hawking-York (GHY) boundary term, even prior to variation. Varying the

usual Einstein-Hilbert action produces a term containing the normal derivative of the

metric variation nM∂MδgNP , which would require a restricted variational problem. The

GHY term cancels this variation. In the Einstein frame it is equal to the integral of the

boundary extrinsic curvature:

SGHY,E =
2

κ2

∫
∂M10

d9x
√
−hE∇E

Mn
M
E . (4.19)

In the string frame, a GHY-like term that achieves the same cancellation is

SGHY =
2

κ2

∫
∂M10

d9x
√
−h e−2φ∇MnM . (4.20)

Notice that (4.20) does not immediately turn into (4.19) upon the usual change of frame

gE
MN ≡ e−φ/2gMN . Rather, it does so when one combines it with a further boundary term

produced by changing frame. Indeed∫
M10

d10x
√
−gE

(
RE −

1

2
(∇φ)2 − 1

2
e

5
2
φF 2

0

)
≡S0

E

=S0 +
9

2κ2

∫
∂M10

d9x
√
−he−2φnM∂Mφ ,

(4.21)

and

SGHY,E =
2

κ2

∫
∂M10

d9x

√
−h√
−g

e
1
4
φ∂M (e−

9
4
φ√−ggMNnN )

=
2

κ2

∫
∂M10

d9x
√
−h e−2φ

[
1√
−g

∂M (
√
−ggMNnN )− 9

4
∂Mφg

MNnN

]
(4.22)

=
2

κ2

∫
∂M10

d9x
√
−h e−2φ∇MnM −

9

2κ2

∫
∂M10

d9x
√
−h e−2φnM∂Mφ .

So S0 + SGHY = S0
E + SGHY,E.

The total string-frame action is then

S1/2 = S0 +
1

2
SDBI + SGHY . (4.23)

(The subscript 1/2 reminds us that we are working with half of spacetime; the factor 1/2 in

front of the DBI action is present for the same reason.) Let us vary it with respect to the

dilaton. The bulk variation produces (4.1b); but we are now interested in the boundary

terms. The boundary contribution of δS0 is (4.18); SDBI are already localized on the

boundary, and also contribute. In particular notice that δSGHY is non-zero because of the

e−2φ factor, which is absent in the Einstein frame. Evaluating it explicitly in our metric

ansatz (3.1) gives

δφS
GHY = − 4

κ2

∫
∂M10

d9x
√
−hδφe−2φ∇MnM = − 4

κ2
VoldS4VolM5δφe

−2φ+W∂z(e
−W+5λ)

= − 4

κ2
VoldS4VolM5δφe

−2φ+5λ(5λ−W )′|z→z+0 (4.24)
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taking into account that n2 = 1. Combining all the contributions we obtain

κ2δφS = 4VoldS4VolM5e
−W+5λ−φδφ

(
eW−φ(2φ′ +W ′ − 5λ′)∓ 1

2π

)
|z→z+0 . (4.25)

At the O8+, (4.25) is a linear combination of the (4.6). At the O8−, from (4.7) we see

that the prefactor e−W+5λ−φ ∼ 1
|z−z0| :

0 =
1

|z − z0|
δφ

(
eW−φ(2φ′ +W ′ − 5λ′) +

1

2π

)
|z→z+0

=
1

|z − z0|
δφ (d+ e|z − z0|+ . . .)

(O8−) . (4.26)

These d and e are related to our notation in (4.12). So now the interpretation of (4.26)

depends on the boundary condition one imposes on the fluctuation δφ; or in other words,

to what space δφ belongs. At first sight, a few possibilities might spring to mind:

• δφ ∈ L2(M10). Since
√
g diverges as 1

|z−z0|2 on the O8−, this requires δφ → 0; if it

goes like a power law, δφ ∼ |z−z0|α, then α > 1/2. Then (4.26) only requires setting

the leading order d = 0. So we are getting a linear combination of the permissive

boundary conditions (4.9).

• δφ smooth. In particular its limit for z → z0 can be a non-zero constant; this requires

both the leading and subleading order, d = e = 0. In this case we are getting a linear

combination of the restrictive boundary conditions (4.11).

Intuitively, the more permissive we are with our variation space, the more restrictive the

boundary conditions, because we are varying in more directions in field space.

The two possibilities we have just seen are just some natural-sounding possibilities; oth-

ers can be considered. The permissive boundary conditions are obtained more generally for

any boundary condition that forces δφ→ 0. Making δφ ∼ |z−z0|α, α > 1 would impose no

boundary conditions at all; at the opposite extreme, leaving δφ completely unconstrained,

free to diverge, would impose infinitely many boundary conditions. In section 4.5 we will

try to get a more physical picture of what might be reasonable conditions on δφ.

We are now going to look at the same issue from a slightly different viewpoint, using

delta functions and distributions.

4.4 Delta-function sources

We now consider the internal space as

M5 × S1 , (4.27)

where S1 = [0, 2z0] with the periodic identification 2z0
∼= 0, and the functions are now

required to be even under z → −z.

From this point of view, there is no boundary, and no need to include boundary GHY

terms; the action is now

S = S0 + SDBI (4.28)
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with (4.15), (4.16). We can rewrite the localized DBI terms as a bulk term including a

delta function, and then vary. This is how we found the equations of motion (4.1), but the

discussion so far (and in particular the difference between (4.9) and (4.11)) made it clear

that it is crucial to also understand how the variation multiplies it; so let us see this in

more detail. We again focus on the dilaton equations of motion:

κ2δφS = −4

∫
M10

d10x
√
−gδφe−2φ(−2R− 8(∇e−φ)2)−

∑
i

τi

∫
Σi

d9x
√
−hδφe−φ

= −4

∫
dze−W+5λ−φδφ

(
eW−φ(W + 2φ− 5λ)′′ + . . .+

1

π
σ

)
. (4.29)

The parenthesis is nothing but the equations of motion (4.1b), and again the . . . are terms

irrelevant for our discussion of what happens near the O8±. Recalling (4.7), we have

obtained that (4.1b) in fact arises as

1

|z − z0|
δφ

(
eW−φ(W + 2φ− 5λ)′′ + . . .+

1

π
δ

)
= 0 (O8−) . (4.30)

This is the delta-function counterpart of (4.26). Once again we see that the conditions we

impose on δφ play a crucial role. Mirroring our discussion in the previous subsection:

• δφ ∈ L2(M10). Then δφ → 0; in this case the second derivatives produces a delta

term to match the explicit δ in the parenthesis; the subleading terms in the |z − z0|
expansion evaluate to zero when multiplied by the prefactor δφ

|z−z0| . Thus in this case

we only have a condition on the leading behavior.

• δφ smooth. This in particular allows δφ to go to a constant. Then we have a term
1

|z−z0|δ(z− z0), as anticipated in (4.8). This is of unclear interpretation, but if it can

be given a meaning, it is likely to require two conditions on eW−φ(W +2φ−5λ)′′ and

thus on the functions: not just a condition on their leading behavior, but on their

subleading behavior as well.

So we recover the issue we saw in the previous subsection, although with the disadvantage

of having products of distributions. This is expected as General Relativity is a non-linear

theory, and only in very particular cases the field equations become linear allowing for a

rigorous treatment of the singularities within the framework of usual linear distribution

theory. This is the case for the flat-space solutions described in section 2, where the

field equations reduce to a Gauss-like equation for the harmonic function H of the form

∆H = τδ. In more general cases, like the present one, the non-linearity of the field

equations introduces ill-defined products of distributions.13

Given the problems we have just seen with interpreting the δ terms, we might wonder

whether perhaps we are working in the wrong set of variables. Perhaps the issues are

13Such products of distributions could perhaps be defined in a more general mathematical framework.

One such approach is based on Colombeau algebras, which include distributions as a linear subspace and

smooth functions as a subalgebra. For a review of applications of these methods in General Relativity

see for example [48] and references therein. It would be interesting to apply these methods to the present

problem.
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created by the fact that the fi are diverging, and it might be wiser to switch to variables

that remain finite.

For example we can define

Hi = e−4fi ; (4.31)

the metric then reads

ds2
10 = H

−1/2
1 ds2

dS4
+H

1/2
1 (dz2 +H−1

3 ds2
M5

) . (4.32)

The equations of motion are now

Λ =
F 2

0

√
H1
H2

8H1H2
2

− 5H3κ

4H1
− (H ′1)2

8H3
1

+
25(H ′2)2

16H1H2
2

+
5(H ′3)2

4H1H2
3

+
5H ′1H

′
2

16H2
1H2

− 25H ′2H
′
3

8H1H2H3
(4.33a)

± 4

π
σ = − H

5/4
2 H ′′1

H
5/4
1

− F 2
0

4
√
H1

H
5/4
2

− 4H
3/4
1 H

5/4
2 Λ +

H
5/4
2 (H ′1)2

H
9/4
1

− 5 4
√
H2H

′
1H
′
2

2H
5/4
1

+
5H

5/4
2 H ′1H

′
3

2H
5/4
1 H3

(4.33b)

± 4

π
σ = − H

5/4
2 H ′′3

4
√
H1H3

− F 2
0

4
√
H1

H
5/4
2

− 2H
5/4
2 H3κ
4
√
H1

− 2H
3/4
1 H

5/4
2 Λ

+
7H

5/4
2 (H ′3)2

2 4
√
H1H2

3

− 5 4
√
H2H

′
2H
′
3

2 4
√
H1H3

(4.33c)

± 4

π
σ = −

4
√
H2H

′′
2

4
√
H1

− 4F 2
0

4
√
H1

5H
5/4
2

− 2H
5/4
2 H3κ
4
√
H1

− 8

5
H

3/4
1 H

5/4
2 Λ− H

5/4
2 (H ′1)2

5H
9/4
1

+
2H

5/4
2 (H ′3)2

4
√
H1H2

3

+
4
√
H2H

′
1H
′
2

2H
5/4
1

− 5 4
√
H2H

′
2H
′
3

2 4
√
H1H3

+
(H ′2)2

4
√
H1H

3/4
2

. (4.33d)

Near the O8−, (4.7) tells us that Hi ∼ c−4
i |z − z0|. Looking at (4.33), we see that the

coefficients of H ′′i are all constant; taking this into account, near the O8− now the equations

are of the form ∂2
zHi = δ rather than the more confusing (4.3). But notice that this

agreement only required the leading behavior in z − z0; so from this point of view the

permissive boundary conditions seem to be enough to reproduce the delta’s in the equations

of motion.

4.5 Finite masses

We have seen in detail how the problem of the boundary conditions can be traced back to

the boundary conditions for the field fluctuations. Let us now look at a possible strategy

one might try to use to decide the correct conditions for the field fluctuations.

Namely, one might try to perform a KK reduction on a solution. We work in the point

of view where the internal space is M5× S1, as in section 4.4. Unfortunately this is a very
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convoluted computation, but we can try to look at a small block in the mass matrix; once

again we will consider the dilaton fluctuations δφ. The second variation of the action reads

δ2
φS =

8

κ2

∫
M10

d10x
√
−ge−2φ∇mδφ∇mδφ+

∑
i

τi

∫
Σi

d9x
√
−he−φδφ2 . (4.34)

We now expand the dilaton perturbation on not-yet-specified basis of functions in the

internal space:

δφ =
∑
k

ϕk(x)fk(y) , (4.35)

where x and y denote external and internal coordinates respectively. Plugging this

into (4.34) we get

δ2
φS =

∫
M4

√
−g4d

4x

[
gµν4 ∂µϕi∂νϕj

8

κ2

∫
M5

d5y

∫
dz
√
g5e
−4W+5λ−2φfifj (4.36)

+ ϕiϕj

∫
M5

d5y
√
g5

(
e−W+5λ−φfifj +

8

κ2

∫
dz
(
e5λ−2φf ′if

′
j + e3λ−2φgab5 ∂afi∂bfj

))]
.

Now the ϕi are interpreted as four-dimensional scalar fields. The first line in (4.36) gives

their kinetic terms, while the second line gives their mass matrix. We see that some of the

terms might diverge. Let us consider for example the boundary condition where f is taken

to be smooth, which as we saw earlier leads to the restrictive boundary conditions. In

this case, all the terms containing an integral in dz converge; but the term e−W+5λ−φfifj ,

which comes from the localized term in (4.34), goes like 1
|z−z0|fifj and hence diverges for

fi smooth. So the restrictive boundary conditions in this case lead to a diverging mass

matrix, which is presumably unphysical.

On the other hand, if we take fi ∼ |z − z0|α with α > 1/2, which according to (4.26)

leads to the permissive boundary conditions, then this block in the mass matrix is finite.

We hasten to add, however, that this is only a very small piece of the KK reduction.

In order to compute the mass matrix, one actually needs to first make sure all the fields

with different spins in four dimensions to decouple, and this might change the block of

the mass matrix we have computed above. It is possible to imagine that other naively

divergent terms appear, and that they combine with the one we have discussed here to

give a finite mass. We even saw a possible indication of this in the analogue of (4.36) in

the Einstein frame. Even if this happens, however, such a cancellation of infinities seem to

depend on the “scheme” one chooses to regularize the infinities, similar to our discussion

of the on-shell action in section 4.6.

To summarize: depending on the boundary conditions on the fluctuations, one will

obtain a larger or smaller set of fields in four dimensions. The restrictive boundary condi-

tions on the fields correspond to a laxer condition on the fluctuations, which would result in

more four-dimensional scalar fields ϕi. The 4d equations of motion for the additional fields

obtained in this way would presumably not be obeyed, thus invalidating our solutions from

another point of view. However, we found in this subsection that these putative additional

ϕi seem in fact to have an infinite mass matrix.
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4.6 On-shell action

In the previous subsection we examined our solutions from the point of view of the four-

dimensional effective action. We focussed on small fluctuations, interpreting them as scalars

in four dimensions. In this section, we will focus instead on the parameter c in (4.10).

If stringy corrections are not considered, c appears to be a modulus of our solutions.

As we discussed earlier, (4.10) is only a symmetry of the supergravity equations of motion,

and not of those of full string theory; so c will be fixed in the full theory. In other words,

there will be an effective potential V (c); the question of existence of our solutions in full

string theory is the same as the existence of an extremum of this potential. V (c) will have

contributions from all stringy corrections, and for this reason it is difficult to compute. In

a way the complaint in [29] amounts to saying that supergravity also gives a contribution

to V (c). As we discussed, however, in the strongly-coupled region supergravity is the least

important term in the equations of motion, and so its contribution will be completely

swamped by more important ones.

However, the spirit of this section has been to examine the formal problem of the

existence of the solutions in supergravity. In that spirit, let us try to see how one should

interpret c. If it can be interpreted as a scalar field in four dimensions, then it would enter

the four-dimensional action:

S4d ∼
1

GN

∫ √
−g4(R4 − V (c)) . (4.37)

However, we quickly see a puzzle. The rescaling (4.10) acts on the four-dimensional metric

as gµν → e2cgµν . The Ricci scalar R4 → e−2cR4. For a shift in c to be a symmetry, we

would need the potential to rescale in the same way, V (c) = V0e
−2c. This does not seem

to be compatible with a potential that has a vacuum, unless the constant V0 = 0, i.e. the

vacuum is Minkowski.

The resolution of this puzzle is clear given our discussion in section 4.5: c cannot be

viewed as a field. Indeed, the infinitesimal counterpart of (4.10) corresponds to fluctuations

δgµν = 2gµνδc , δgmn = 2gmnδc , δφ = −δc . (4.38)

Looking at our (4.26) and our discussion there, we see that this would require a boundary

condition where the two leading coefficients d and e should be set to zero; this is the

restrictive condition (4.11). Similar conclusions can be reached with (4.30). So when c can

be considered as a field, our solutions don’t exist; this is consistent with (4.37).

On the other hand, with the boundary conditions (4.9) we have imposed, δc is not

part of the space of allowed field variations.

What if we try to evaluate (4.37) directly?14 After all, we should be able to compute

its value by integrating on the solution the ten-dimensional S over M6, for any value of

c. (Equivalently, we can integrate S over M10; this would diverge because of the volume

of de Sitter space, but we can take care of this by analytically continuing to Euclidean

signature.)

14We thank J. Maldacena for discussions on this point.
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Perhaps unsurprisingly at this point, the answer is that the Lagrangian density is

divergent at the O8−, and so this on-shell action is ill-defined. The computation is similar

to (4.29). The bulk action (4.15) diverges on shell as
∫
dz 1
|z−z0|2 :

κ2S0 ∝
∫
dz

[
2e5λ−2φ

(
(5λ−W )′′

+ 4(W ′)2 − 5W ′λ′ + 15(λ′)2 − 2(φ′)2
)
− 1

2
e5λ−2WF 2

0

]
+ . . . .

(4.39)

The O8− term is even more puzzling:

SDBI ∝ e−W+5λ−φ|z=z0 =

∫
dze−W+5λ−φδ(z − z0) , (4.40)

so it again would involve evaluating 1
|z−z0|δ(z − z0), an expression which has plagued our

discussion since (4.8).

It is possible to find regularization schemes that make the divergences in (4.39)

and (4.40) cancel each other, and leave a finite answer. For example, we can decide

to introduce a length cutoff: we can evaluate the integral in (4.39) only up to z0 − ε,

and interpret (4.40) as e−W+5λ−φ|z=z0−ε. The divergences in S0 + SDBI now do can-

cel, and leave a finite result, which one might try to interpret as (4.37). However, this

regularization scheme is highly arbitrary. It is equivalent to regularizing δ(z − z0) as
1
2 (δ(z − z0 + ε) + δ(z − z0 − ε)). More conventional regularizations for δ(z−z0), where for

example one replaces it with a Gaussian of width ε, would give different results, or fail to

cancel the divergence altogether.

So a direct attempt at computing (4.37) by regularizing S = S0 + SDBI seems to fail,

and to give a highly ambiguous result. Once more, supergravity fails to decide by itself

how it should be defined at strong coupling.

4.7 Summary

At the risk of repeating ourselves, we summarize here the results of our discussion.

The solutions in [23] were obtained by using the supergravity equations of motion;

they displayed a singular behavior that was the same as an O8− in flat space at leading

order in the distance |z − z0| from it. Since the supergravity approximation breaks down

near this singularity, however, we could not establish in [23] whether the solution survives

in full string theory.

On the other hand, [29] used the supergravity equations of motion to say that the

solutions don’t make sense even in supergravity. We think this has no bearing on the issue

of whether they exist in string theory, which is the physically meaningful question.

However, in this section we have tried to assess this claim. We have argued that:

• There are several versions of the O8− boundary conditions. In particular, in [23]

we imposed a permissive version, while [29] in their criticism implicitly used a more

restrictive version.
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• The choice between permissive and restrictive version is in turn related to the choice

of what field fluctuations we allow near the O8−. A laxer condition on the field

fluctuations leads to restrictive boundary conditions, and vice versa.

• From a KK point of view, this can also be interpreted as the inclusion of more or

fewer scalars in four dimensions.

• A modulus of the solutions in [23], which is expected to be lifted by string corrections,

cannot be interpreted as a field in four dimensions because it would correspond to

fluctuations which do not vanish on top of the O8− and thus are not allowed by the

permissive boundary conditions.

So one cannot really decide in supergravity alone whether the solutions in [23] make

sense. The issue depends on an ambiguity that manifests itself at various levels in the

theory, and which has to do with how to interpret the theory near a strongly coupled

O8-plane. Ultimately it just signals that supergravity is not well-defined by itself at strong

coupling, and needs a UV-completion. This confirms that we need string theory to decide

the fate of the solutions in [23]. We do note again, however, that supersymmetric solutions

exist in the literature which satisfy the permissive boundary conditions used there; they

are reviewed in appendix A.

5 Conclusions

In this paper, we have obtained new dS4 solutions with an O8+ and an O6−, and we

have reexamined the validity of our older ones in [23]. For both solutions, the presence

of O-planes is inferred by comparison with their flat-space behavior. Since the latter have

strong curvature and coupling, stringy corrections come into play, and it is impossible to

decide with supergravity alone whether the solutions are valid. It is important to stress

that this will be so for any solution with O-planes.

It would be important, then, to develop techniques to decide whether a solution with O-

planes will survive in full string theory. In other words, it would be important to understand

what conditions one needs to impose near the O-plane singularities.15 For example, for

the O8+-O6− solutions of section 3, it is possible — perhaps even likely — that there are

some extra physical requirements one needs to impose. We tried to impose a condition

based on a formal analytic continuation, but this was only based on analogies and not

well justified. For the O8+-O8− solutions in section 4, we have examined two possibilities

(dubbed “restrictive” and “permissive”), with neither emerging as a clear winner. We

clearly need alternative procedures that are better justified physically.

A first possibility is to probe the singularity with D-branes. There are various possible

ways to do so. For example, for the massless O6 singularity, a probe D2 gives useful

information. The idea here is that the backreaction of a D-brane or O-plane is generated

by integrating out open string modes. So by computing the quantum effective theory

15The nature of these singularities is also important for the KK spectrum, as emphasized in section 4.5

and for example in [49, 50].
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on a probe D2 we are really computing what the backreaction should be in full string

theory. The low-energy effective action of a D2 in an O6− background is SU(2) with

N = 4 supersymmetry (in d = 3). Perturbatively, the metric on its Coulomb moduli space

would have a singularity and cease to make sense near the origin; fortunately, instanton

corrections modify it and turn it [24, 51] into a smooth hyper-Kähler space called “Atiyah-

Hitchin” manifold AH4 [52]. In string theory, this is interpreted as the statement that the

O6 singularity is resolved in M-theory to R7 ×AH4 [24, 25].

Something similar might be attempted for the O6− in presence of Romans mass F0.

One step in this direction was done in [53]. Because of the coupling F0

∫
CS(a) on a

D2 (where a is the worldvolume gauge potential), one expects the effective D2 action to

now include a Chern-Simons (CS) term; [53] then computed the Coulomb branch metric

on an N = 2 SU(2) CS theory, finding a behavior in qualitative agreement with the

smooth behavior found in [54] for a certain class of O6 solutions with F0. This analysis is

incomplete because the Lagrangian in [53] was not fully justified in string theory; adding

a CS term to a supersymmetric theory in three dimensions can be done in several different

ways, and each of them can potentially lead to different behaviors of the Coulomb branch

metric, corresponding probably to the geometry parallel to the O6. (Indeed one expects so,

since the O6 behavior in the supersymmetric solutions of section 3.3 have a quite different

behavior from those in [54].) Performing this computation carefully might reveal what one

should really expect from the quantum O6 singularity.

Another possible logic might be the one in [55]. This regards the backreaction of an

object on itself, viewed as an effective field theory. This might not be appropriate for

O-planes, which are non-dynamical, although we remark that one of the examples in [55]

is the back-reaction of a defect coupled to a bulk scalar and with no localized degrees of

freedom.

One might try to compute the tension associated to our singularities without going

on top of them. After all, in general relativity we usually don’t compute the mass of a

gravitational source by checking the delta in the equations of motion (although for some

early attempts in this direction see [56, 57]). Rather, we compute the gravitational field

far away from it. Various formalizations of this procedure exists, including the Komar and

ADM mass. Unfortunately for us these are not very relevant, since we cannot go far away

from the sources, given that the internal space is compact. A more promising alternative

is the covariant phase space formalism (for a review see [58]), which in principle reduces

the computation to a Gauss-like integral. It would be interesting to develop this further.

Finally, an indirect way of testing singularities is to use holography for AdS solutions

that incldue them. For example, the solutions reviewed in appendix A have O8− singu-

larities with the permissive boundary conditions of [23] and are supersymmetric; finding

their CFT duals would presumably settle the issue. Regarding O6− singularities, there are

AdS7 solutions which include them [27] and which have been tested holographically [28],

which we have in fact used as a starting point for our new solutions in section 3. For these

one could perhaps obtain stronger checks by going to subleading orders in N .
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A AdS4 N = 2 solutions with permissive O8−s

In this section we review some analytic AdS4 solutions [30] of massive IIA with N = 2

supersymmetry. They were found as part of a larger class which also allows fully regu-

lar solutions; the ones which are relevant here can be found in [30, section 4.1.4, 4.2.3,

4.2.4]. The solutions have an O8− with the permissive boundary conditions of [23], and no

other source.

The ten-dimensional metric is

ds2
10 = e2Wds2

AdS4
+ e−2W (e2Qdx2 + e2λ1Dψ2 + ds2

4) , (A.1)

where all the functions only depend on the coordinate x, which as we will see parametrizes

a compact interval. The coordinate ψ parametrizes an S1 fibered over the internal space

with a connection ρ, and Dψ ≡ dψ+ ρ. The warping functions are determined in terms of

single polynomial q(x) as

e2W = L2x

√
1− 4q

xq′
, e2Q = L4

(
1− xq′

4q

)
, e2λ1 = −L4xq

q′
. (A.2)

The only fluxes present are F0 and

F4 = −F0L
4e−2A(A′x− 1)pdx ∧Dψ ∧ j +

1

2
F0(4A′x+ 1)p2j2 (A.3)

where p = κ
6xL

4e−2A(1− x3). The four-dimensional metric ds2
4 can be either proportional

to a single Kähler-Einstein space or to a product of two Riemann surfaces Σ1 and Σ2. In

both cases, j is the Kähler form of the metric ds2
4. In the Kähler-Einstein case, a possible

potential C3 such that F4 = dC3 is given by

C3 = −κF0L
2x

2

x(q′)2 + 4q(2q′ − xq′′)
(xq′′ − 3q′)2

Dψ ∧ j . (A.4)

In the first case,

ds2
4 = κL4x

4q − xq′

xq′′ − 3q′
ds2

KE4
, e4φ =

26 · 34

F 4
0L

4

x5

q′
(xq′ − 4q)3

(xq′′ − 3q′)4 , (A.5)

where κ is the sign of the curvature of the Kähler-Einstein space and the polynomial q is

given by

q = x6 +
σ

2
x4 + 4x3 − 1

2
. (A.6)
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In the second case

ds2
4 =

L4

12

(
xq′ − 4q

x(1− x3)
κ1ds

2
Σ1
− xq′ − 4q

x(t− x3)
κ2ds

2
Σ2

)
, e4φ =

(F0L)−4

4x3q′
(xq′ − 4q)3

(x6 − (1 + t)x3 + t)2

(A.7)

where κ1 and κ2 are the signs of the curvatures of Σ1 and Σ2 respectively and the polynomial

now depends on two parameters σ, t:

q = x6 +
σ

2
x4 + 2(1 + t)x3 − t

2
. (A.8)

Depending on the zeros of q and q′ different endpoints can be obtained. In particular,

we are interested in solutions with a regular point and an O8-plane. In order to have a

regular point at x = x0 we need q(x0) to vanish linearly, such that q′(x0) 6= 0. Indeed, near

such a point the metric behaves as

ds2
10 ∼ ds2

AdS4
+

1

|x− x0|
dx2 + |x− x0|Dψ2 + ds2

4 , (A.9)

which with the simple change of coordinates r2 ≡ |x− x0| is equivalent to

ds2
10 ∼ ds2

AdS4
+ dr2 + r2Dψ2 + ds2

4 . (A.10)

From the above expression we see that the S1 parametrized by ψ shrinks regularly provided

ψ has the correct periodicity.

There are several cases where these boundary conditions on q can be met, and we

obtain solutions with a single O8− source:

• In the case with a single Kähler-Einstein space, when the parameter σ ≥ −9, the

solution has an O8− at x = 0 and caps off regularly at x = x0 > 0.

• For −1 < t < 0, σ < 3(−t)−1/3(1 + 2t), κ1 = 1, κ2 = −1, the solution caps off

regularly at x = x0 < 0 and has an O8− at x = 0. An example of solution in this

class is given in figure 3.

• For t < −1, σ < −3(2 + t), κ1 = 1, κ2 = −1, the solution has an O8− at x = 0 and

caps off regularly at x = x0 > 0.

• For t > 0, σ < −3t−1/3(1 + 2t), κa = 1, the solution has an O8− at x = 0 and caps

off regularly at x = x0 > 0.

• Finally the case κ2 = 0 has to be treated differently; the equations for ds2
4, eφ and q

change. Here one can obtain solutions with a single O8− for κ1 > 0.

On these solutions we can compute the quantity e5W−φ analytically and we obtain

e5W−φ =


F0L

6

(
x3 − 1

)2
3x3 + σx+ 6

F0L
6 (t− x3)(x3 − 1)

3x3 + σx+ 3(t+ 1)

(A.11)
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-0.3 -0.2 -0.1
x

10

30

Figure 3. A solution with t = − 1
4 , σ = −4, F0 = − 4

2π , and L = 8. The plotted functions are

eW (orange), eφ(black) and eλ1(turquoise). On the left (x0 = −0.38) the S1 shrinks regularly, on

the right (x = 0) a diverging-dilaton O8 sits.

so that in both cases

lim
x→0

∂x(5W − φ) ∝ σ 6= 0 . (A.12)

We see that generically this is non-zero, and hence satisfies the permissive boundary con-

ditions (4.9), but not the restrictive ones (4.11).16
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