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Abstract: False vacuum decay is a key feature in quantum field theories and exhibits a

distinct signature in the early Universe cosmology. It has recently been suggested that the

false vacuum decay is catalyzed by a black hole (BH), which might cause the catastrophe

of the Standard Model Higgs vacuum if primordial BHs are formed in the early Universe.

We investigate vacuum phase transition of a scalar field around a radiating BH with taking

into account the effect of Hawking radiation. We find that the vacuum decay rate slightly

decreases in the presence of the thermal effect since the scalar potential is stabilized near

the horizon. However, the stabilization effect becomes weak at the points sufficiently far

from the horizon. Consequently, we find that the decay rate is not significantly changed

unless the effective coupling constant of the scalar field to the radiation is extremely large.

This implies that the change of the potential from the Hawking radiation does not help

prevent the Standard Model Higgs vacuum decay catalyzed by a BH.
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1 Introduction

Vacuum phase transition is one of the most important phenomenon in the early universe

predicted by quantum field theory. If our Universe is in a metastable state, namely a local

minimum of a potential, quantum tunneling to the global minimum may take place. It

includes a series of physical processes such as vacuum bubble nucleation. Such bubbles

expand and collide with each other, which may become an important source of gravita-

tional wave background [1, 2]. Such metastable vacua often appear in various models of

particle physics and string theories [3–5], and the most familiar example is the instability of

electroweak vacuum [6–9]. The up-to-date measurements of the Higgs mass and top quark

mass suggest that the effective potential of the Standard Model (SM) Higgs field develops

a negative value at the scale higher than 1011 GeV at their median values [10, 11], if there

are not any corrections from the physics beyond the SM and quantum gravity. If the elec-

troweak vacuum we live were unstable under such a phase transition with a considerable

rate, our very existence would be in danger.

The rate of vacuum tunneling associated with such instabilities can be estimated by

using the Euclidean path integral technique [12, 13], and subsequently gravitational effects

were incorporated in ref. [14]. Applying it to the case of the Higgs instability, fortu-

nately, the probability that our Universe undergoes the phase transition in the cosmic

age is about O(10−600) [15, 16]. It is also sufficiently stable against the thermal phase

transition regardless of the reheating temperature of the Universe [9, 17]. The inflation-

ary fluctuation is problematic especially for high-scale inflation, but several resolution has

been proposed [18–20]. See also recent discussions on the SM Higgs vacuum stability in the
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inflationary Universe [21–23]. However, these works assume the homogeneity of the initial

vacuum state and the inhomogeneity of the Universe is not taken into account.

It was found that the existence of spatial inhomogeneities greatly changes the result of

the tunneling calculation, which was pioneered by Steinhardt [24] and Hiscock [25]. Hiscock

first discussed the bubble nucleation around a non-rotating BH and showed that it can

enhance the decay rate [25]. Gregory et al. refined and generalized his analysis [26–29] and

pointed out that a very small BH greatly induces the phase transition process (see also [30]).

Recently the study of catalyzing effects on cosmological vacuum decay was extended to the

cases of spinning BHs [31] and other various cosmological impurities [32–35].

Cosmological creation of primordial black holes (PBHs) has been of interest for a long

time to explain dark matter [36–38] and recently for the binary BHs [39] detected by the

LIGO and VIRGO [40]. The density perturbations in the early universe could also lead

to small-mass PBHs which have evaporated by today. Since those PBHs may play the

role of catalysts for the Higgs vacuum decay, cosmological parameters relevant to the PBH

formation may be constrained by the parameters of the Higgs potential or vice versa [41].

The footprint of PBH evaporation could remain in stochastic gravitational waves [42],

which may be detected by near-future GW observations. Therefore, the catalyzing effect

of BHs are very important not only in the particle physics but also in the early cosmology.

According to the studies in refs. [26–28], the formation of such small BHs might be

dangerous for our Universe since they can induce the SM Higgs vacuum phase transition

at the end stage of the evaporation. However, the thermal effects of small BHs could be

non-negligible since the Hawking temperature is proportional to the inverse of its mass,

and it has been an open question whether the thermal effects of small BHs would stabilize

the present Higgs vacuum state or not.1

In order to investigate this phenomenon in more detail, it is important to construct the

bounce solution based on the effective potential including thermal (quantum) corrections

appropriately. Indeed, since we are interested in tiny evaporating BHs, we need to use

the effective action that describes radiating BHs. In particular, the Hawking radiation

emitted from the BHs might stabilize the Higgs potential or make the Higgs potential

barrier high enough to prevent the transition from the false to true vacuum state [43].

Such a backreaction is quite important when we discuss the phase transition in thermal

plasma [17, 44], where quantum fields obtain large vacuum polarization associated with

the high temperature. In this paper, we take into account this effect on the analysis of the

vacuum phase transition around a radiating BH and try to improve the evaluation of the

transition rate.

The crucial point in our analysis is the choice of the vacuum state in the Schwarzschild

spacetime. We are interested in the cosmological application of the transition process

around a BH. Therefore, we here consider a vacuum state around a gravitationally collapsed

BH which has no past horizon that separates the regions I and III in the Penrose diagram

1For example, ref. [43] argues that the thermal effects of Hawking radiation would stabilize the present

Higgs vacuum state and a small BH does not play a role of a catalyst for the Higgs vacuum decay. However,

their approach differs from the Euclidean path integral, utilized in [26], and the stochastic fluctuation of

the Higgs field is assumed although the background is Schwarzschild spacetime.
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Figure 1. The Penrose diagram of maximally extended Schwarzschild spacetime. Region I and II

are the outside and the inside of the event horizon respectively, and region III is the white hole

interior. Region IV is the mirror domain of region I. Physically relevant regions to a BH formed by

gravitational collapse are Region I and II.

(figure 1). In this case, the state of quantum fields can be modeled by the Unruh vacuum

state [45] that leads to outgoing energy flux of vacuum fluctuations and the evaporation

process of BHs. On the other hand, the Hartle-Hawking vacuum state [46] describes a

thermal equilibrium state around a BH and it does not evaporate.2 An important feature

of the Higgs potential thermally corrected in the Unruh vacuum state is that the thermal

correction becomes weaker at a larger distance from the horizon [48]. As a result, we will

show that the thermal effects do not prevent the catalyst effect of BHs since the Hawking

temperature is suppressed near a bubble wall unless there are many light scalar fields χi
coupling to the metastable scalar field φ (e.g. Higgs field) as ∼∑i λiχ

2
iφ

2 with
∑

i λi � 103,

where λi is a coupling constant. This general result also holds in the case of the SM Higgs

vacuum and hence the tiny PBH formation in the early Universe is still a threat of our

Universe.

The organization of this paper is as follows. In the next section, we review the vacuum

phase transition around a non-radiating BH following refs. [27, 28] and obtain simple

expression of transition rate with the thin-wall approximation. In section 3, we include the

effect of Hawking radiation in the potential, calculate the bounce solution, and estimate

the transition rate. In section 4, we apply this result to the case of Higgs vacuum instability

and argue that a vacuum bubble nucleation due to the Higgs instability would be catalyzed

by a BH even when the thermal effect of Hawking radiation is taken into account. Section 5

is devoted to conclusion and discussion.

We adopt the Planck units for simplicity; the Newton constant G = 1, Planck mass

mpl = 1, and Planck length `pl = 1. When G explicitly appears in some equations or

definitions, it is intended that G denote the original mass dimension of physical quantities.

2There is a related work [47] that suggests the large enhancement of the transition rate can be interpreted

as the thermal production of a bubble in the Hawking radiation in the Hartle-Hawking vacuum state

(thermal equilibrium state).
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2 Static bounce around a “zero-temperature” BH

We start with the review of vacuum phase transition around a Schwarzschild BH following

ref. [28]. Here we consider a scalar field φ with a potential that has two minima, φ =

φfv(= 0) and φ = φtv, where the former is a false vacuum with a vanishing potential

energy density and the latter is a true vacuum with a negative potential energy density,

and evaluate the phase transition rate from the false to true vacuum through the bubble

nucleation around the BH.

2.1 General discussion on the bounce and vacuum decay rate catalyzed by BH

Let us consider the following action

S =

∫
M
d4x
√−g

(
1

16π
R− 1

2
(∂µφ)2 − V (φ)

)
+

1

8π

∫
∂M

KdS (2.1)

where M is the spacetime manifold with a BH, g is the determinant of the (Lorentzian)

metric gµν with the convention (−,+,+,+), R is the Ricci scalar, and K is the trace of the

extrinsic curvature of the boundary of the spacetime. Since we consider the spacetime with

a BH horizon, we explicitly include the Gibbons-Hawking-York boundary term. Assuming

the spherical symmetry and staticity of the final configuration, a general metric is taken

to be

ds2 = −f(r)e2δ(r)dt2 + f−1(r)dr2 + r2dΩ2
2, f = 1− 2µ(r)

r
, (2.2)

where dΩ2
2 is the line elements on a unit sphere S2. Solving the Einstein equation, together

with the equation of motion for scalar fields, one can obtain the metric functions µ(r) and

δ(r) and can determine a vacuum bubble configuration. On the other hand, the initial

configuration is given by the Schwarzschild metric with M+ being the seed BH mass

ds2 = −
(

1− 2M+

r

)
dt2 +

(
1− 2M+

r

)−1

dr2 + r2dΩ2
2. (2.3)

In order to estimate the Euclidean action, let us implement the Wick rotation t → −iτ ,

and one obtains the Euclidean spacetime

ds2
E = gEµνdx

µdxν = fe2δdτ2 + f−1dr2 + r2dΩ2
2. (2.4)

Then one can construct the bounce solutions on the Euclidean background. The existence

of a BH reduces the maximal symmetry of bounce to O(3) from O(4). Therefore, we here

consider time-independent static O(3) symmetric solutions. We can still construct time-

dependent bounce solutions, but it has been shown that the least Euclidean action is given

by the static one based on the analysis under the thin-wall condition [26]. Note that the

bounce is static even after analytic continuation to Lorentzian bubble, but it is unstable

under the perturbations and can easily expand so that the whole system quickly falls down

to the (unwanted) true vacuum. Thus we regard the bubble nucleation rate, evaluated
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from the bounce action, as the vacuum decay rate of the system. The equation of motion

for the scalar field and the Einstein equations are

fφ′′ + f ′φ′ +
2

r
fφ′ + δ′fφ′ − ∂V

∂φ
= 0, (2.5)

µ′ = 4πr2

(
1

2
fφ′2 + V

)
, (2.6)

δ′ = 4πrφ′2, (2.7)

where the prime denotes the derivative with respect to r. Substituting eq. (2.7) into

eq. (2.5), one obtains

fφ′′ + f ′φ′ +
2

r
fφ′ + 4πfrφ′3 − ∂V

∂φ
= 0. (2.8)

We require that the scalar field is in the false vacuum state at infinity and the asymptotic

spacetime is the Schwarzschild spacetime:

µ(r)→M+, φ(r)→ φfv, φ′(r) = 0, (r →∞), (2.9)

where M+ denotes the initial BH mass before the nucleation. We also impose the following

boundary condition at the horizon r = rh

µ(r)→ µ−, φ(r)→ φ0 (r → rh), (2.10)

where

µ− ≡ µ(rh) =
rh
2
, (2.11)

and µ− and φ0 are determined by the shooting method so that the obtained solution

satisfies the condition (2.9). In order for the solution to avoid the coordinate singularity

at the horizon in eq. (2.5), the following condition should be satisfied at the same time

φ′(rh) =
rh

∂V
∂φ (φ0)

1− 8πrh2V (φ0)
. (2.12)

One can calculate δ(r) after obtaining φ(r) from the integration of eq. (2.6) and (2.8), and

its integration constant can be absorbed into the scale of τ . Furthermore, we perform the

coordinate transformation to improve the numerical behavior near the horizon as

r∗ =

∫
dr

f(r)
, (2.13)

which runs from the horizon −∞ to the spacial infinity ∞. Consequently, the bounce

equations, (2.6) and (2.8), become

d2φ

dr∗2
+

2f

r

dφ

dr∗
+

4πr

f

(
dφ

dr∗

)3

− f ∂V
∂φ

= 0, (2.14)

dµ

dr∗
= 4πr2

(
1

2

(
dφ

dr∗

)2

+ fV

)
, (2.15)
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and the boundary conditions at the horizon (eqs. (2.10) and (2.12)) become

µ(r∗)→ µ−, φ(r∗)→ φ0, dφ/dr∗ → 0 (r∗ → −∞). (2.16)

The exponent of vacuum decay rate can be evaluated by the difference between the

Euclidean action SE of the bounce and of the false vacuum solution before the transition,

and the full form of the decay rate can be obtained as [26]

ΓD ∼
√
B

2π
M−1

+ exp (−B) , with B = SE [gE , φ]− SE [gESch, φfv] (2.17)

where M+ is initial BH mass and gEsch denotes the Euclideanized Schwarzschild metric, see

eq. (2.3). (φ, gE) represents the bounce solution obtained by solving the bounce equations.

The dimensionless factor
√
B/2π comes from the normalization factor of the zero mode

around the bounce associated with the time translation symmetry. The dimensionful pref-

actor M−1
+ is taken from the typical energy scale of the transition process [26]. For the static

bounce solution, the bulk part of the action vanishes due to the Hamiltonian constraint and

only the boundary part, which comes from the Gibbons-Hawking-York term, contributes to

the action [26]. The boundary contribution reduces to (−1) times the Bekenstein-Hawking

entropy that can be derived without tuning the period of the Euclidean time (even with

the conical singularity)

SE [gE , φ] = −A
4
, (2.18)

where A is the horizon area [26]. Consequently the bounce action is determined to be

B = 4π(M2
+ − µ2

−). (2.19)

Since this expression generally holds for static bounce solutions, we will use the expression

in the next section where we consider static bounce solutions with radiating BHs.

2.2 Thin-wall approximation

In principle we need to numerically solve the bounce equations (2.5), (2.6) and (2.7) for a

given potential to see how the vacuum decay rate changes in the presence of a BH. However,

when the thin-wall approximation is applicable, we can give an analytic investigation to

show some qualitative and quantitative features of the BH catalyst effect.

In the thin-wall approximation, one can suppose that an infinitely-thin wall separates

two different spacetimes and the scalar field can be represented by the step function at the

wall. The system is, then, characterized by the tension of the wall σ, the bubble radius

R, and the interior vacuum energy density, characterized by anti-de Sitter (AdS) radius

l ≡
√

3/|8πV (φtv)|, where the false vacuum energy density is assumed to be zero. The

details of the effective potential barrier is “coarse-grained” in the tension parameter σ as

σ =

∫ φtv

φfv

dφ
√

2V (φ) ∼ V 1/2
barrier∆φ, ∆φ ≡ |φtv − φfv|, (2.20)

– 6 –
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where Vbarrier is the maximum value of effective potential between the false and true vac-

uum, and we suppose it is much larger than the potential energy difference, Vbarrier �
∆V ≡ |V (φfv)− V (φtv)|. Thin-wall approximation is appropriate if the bubble-wall thick-

ness is thinner than any relevant length scales, e.g. the bubble radius. While the bubble

radius is determined by the balance between the energy contributions from the bulk Ebulk

and the wall Ewall. For a spherical bubble, we roughly estimate

|Ebulk| ∼
4π

3
R3∆V, Ewall ∼ 4πR2σ ' 4πV

1/2
barrier∆φR

2, (2.21)

which give the bubble radius in terms of the potential parameters,

R ∼ V
1/2

barrier∆φ

∆V
. (2.22)

On the other hand the wall thickness is determined by the curvature of the potential top at

φ = φbarrier, lwall ∼ m−1
barrier ≡

√
V ′′(φbarrier). Thus we see that the thin-wall approximation

is appropriate when the energy difference between the false and true vacuum, ∆V , is

sufficiently small,

∆V � V
1/2

barriermbarrier∆φ. (2.23)

In the following, we assume that eq. (2.23) holds and calculate the dynamics of a thin-

wall bubble which is consistent with the Einstein equation. To this end, we solve the Israel

junction condition [49] with the O(3) symmetry:

K
(+)
ab −K

(−)
ab = 8πG

(
Sab −

1

2
habS

)
, (2.24)

where K
(+/−)
ab is the extrinsic curvature outside/inside the bubble wall, hab is the induced

metric on the wall, and Sab = −σhab is the energy momentum tensor of the wall. The

trajectory of the bubble is given by

Xµ
± = (τ±(η), R(η), θ, φ), (2.25)

where η is Euclidean proper time and τ+/− is the Schwarzschild time for the exterior/interior

spacetime. Outside the bubble we take the scalar field is at the false vacuum and the metric

is the Schwarzschild metric,

φ = φfv, ds2
E+ = f+dτ

2
+ + f−1

+ dr2
+ + r2dΩ2

2, with f+(r) = 1− 2M+

r
, (2.26)

whereas inside the bubble we take the scalar field is at the true vacuum and the metric is

the Schwarzschild-AdS metric,

φ = φtv, ds2
E− = f−dτ

2
− + f−1

− dr2
− + r2dΩ2

2, with f−(r) = 1− 2M−
r

+
r2

l2
, (2.27)

where M+ and M− are the BH masses before and after the bubble nucleation, respectively,

and we set r+ = r− = R at the bubble wall. Note that the horizon and the BH mass inside

the bubble are related as

M− =
4

l2
µ3
− + µ−, µ− = rh/2. (2.28)

– 7 –
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Then the (θ, θ)-component of the Israel junction condition reduces to

f+(R)τ̇+ − f−(R)τ̇− = −σR
2
, (σ ≡ 8πσ), (2.29)

where the dot represents the derivative with respect to η. Imposing the condition that the

magnitude of the wall four-velocity to be the unity, one obtains

f±(R)τ̇2
± +

Ṙ2

f±(R)
= 1. (2.30)

Using eq. (2.30), the Israel junction condition (2.29) reduces to

Ṙ2 = 1−
(
σ2

16
− 1

2l2
+

1

σ2l4

)
R2 −

(
M+ +M− +

4(M+ −M−)

σ2l2

)
1

R
− 4(M+ −M−)2

σ2R4
.

(2.31)

By redefining the variables as

R̃ = αR, τ̃ = ατ, η̃ = αη, with α ≡ 1− σ2l2/4

σl2
, (2.32)

the equation for the wall position is rewritten as

1

2

(
dR̃

dλ̃

)2

+ U(R̃) = 0, 2U(R̃) ≡ −1 +

(
R̃+

k2

R̃2

)2

+
k1

R̃
. (2.33)

where

k1 = 2αM+, k2 =
2α2(M+ −M−)

σ
. (2.34)

Here we consider the case σl < 1/2. Indeed, it was shown that there is no any solutions

that satisfy an appropriate junction condition for σl > 1/2 [27].

The O(3) static solution, which gives the highest decay rate, are obtained by requiring

that there are parameter sets satisfying U(R̃) = U ′(R̃) = 0. This determines the relation

between the parameters k1 and k2

k1 = k∗1(k2) ≡ −2k2 ∓
2

9

√
1 + 81k2

2 +Q+ −Q− for k2 ≶ − 2

3
√

3
(2.35)

with Q± =

(
±
(

1 + 5(27k2)2 − (27k2)4

2

)
+

27k2

2

(
(27k2)2 + 4

) 3
2

) 1
3

, (2.36)

as well as the position of the wall,

R̃ = R̃∗ ≡ 2−
2
3

(
k∗1 + 2k2 +

√
k∗1 + 4k∗1k2 + 36k2

2

) 1
3

. (2.37)

Note that k∗1 is positive for k2 < 4/27.

From eq. (2.35) we can determine M− (and hence µ− from eq. (2.28)) in terms of σ,

l, and M+. The bounce action is then determined by eq. (2.19). Note that the effective

– 8 –
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potential governing the position of the wall is concave, W ′′(R̃) < 0, in the Lorentzian

picture, W (R̃) ≡ −U(R̃). Therefore, the static bubble is unstable and it may eventually

collapse or expand after the nucleation. If the Hawking radiation that has outgoing flux

interacts with the bubble wall, it may push the wall outward and the bubble would expand.

Thus, as we have mentioned in the above, we expect that the nucleated bubbles are likely

to expand to the spatial infinity, which is the catastrophe of the Universe, and hence we

treat the bubble nucleation rate as the vacuum decay rate.

It is instructive to see the large and small-M+ limits of the solution. For k2 � −1

(large-M+ limit), we see k∗1 � 1 or M+ � 1/2α so that

k∗1 ' (−k2)1/3 +
1

36(−k2)1/3
+O

(
(−k2)−2/3

)
, R∗ ' 2M+

(
1 +

1

144α2M2
+

)
, (2.38)

which implies that the bubble is created near the horizon. From eqs. (2.19), (2.28), (2.34),

and (2.38), then, we obtain the horizon mass inside the bubble and the bounce action as

µ− ' (1− σ2l2/4)
1
3M+, (2.39)

B ' 4π
(

1− (1− σ2l2/4)
2
3

)
M2

+, (2.40)

at the first order in M+.

For k2 ∼ 4/27 (small-M+ limit), we see k1 � 1 or M+ � 1/2α, which leads to

k∗1 ' 3

(
4

27
− k2

)
, R ' 2

3α
− M+

2
, (2.41)

which means that the bubble wall is placed far from the horizon, and the configuration is

close to an static O(3) bubble without a BH. Combining eq. (2.41) with eqs. (2.19), (2.28),

and (2.34), we obtain the asymptotic expressions

µ− 'M+ −
2σ3l4

27(1− σ2l2/4)2
, (2.42)

B ' 16πσ3l4

27(1− σ2l2/4)2
M+ + 4π

(
2σ3l4

27(1− σ2l2/4)2

)2

. (2.43)

For σl � 1, when the gravitational effect is small, the bounce action is further approxi-

mated as

B ' 16π

27
σ3l4M+. (2.44)

Figure 2 shows the bounce action as a function of the BH mass before the bubble nucleation

M+ with σ = 3.42× 10−15 and l = 9.36× 1010.

Since we are interested in the bubble nucleation catalyzed by radiating BHs, the bub-

ble nucleation rate evaluated in the above is meaningful only if it is larger than the BH

evaporation rate [50, 51],

ΓH ≡ Ṁ/M ' 7.5× 10−5gHM
−3
+ , (2.45)
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M+

B k1=k1*(k2)

small / large M+ limit

CdL action

Figure 2. The bounce action dependence on initial BH mass M+ for σ = 3.42 × 10−15 and

l = 9.36 × 1010 which corresponds to the potential parameters (eq. (2.48)) m = 4.08 × 10−6,

g = 2.13, λ = 1. The blue line represents the bounce action obtained from the condition k1 = k∗1(k2)

(eq. (2.35)), and the red dotted lines the asymptotic forms given by eqs. (2.40) and (2.43). Black

solid line means the CDL bounce action given by eq. (2.47). The bounce action of the O(3)×U(1)

bubble become significantly smaller than the CDL’s one as M+ � 107.

where gH is the effective degrees of freedom emitted as the Hawking radiation,

gH '
∑
i

gsi , with gs =



1 s = 0,

0.55 s = 1
2 ,

0.22 s = 1,

0.003 s = 2,

(2.46)

where i denotes the particle species whose mass is lighter than Hawking temperature, and

s is the spin of the particle. Note that gH ' 60 is obtained in the case of SM for a small

BH satisfying M � 1017.

Since the bounce action increases in proportion to the BH mass before the phase

transition, M+, the bubble nucleation rate becomes exponentially smaller for larger M+,

see eq. (2.17). Comparing it with eq. (2.45), which shows the decay of the BH evaporation

rate proportional to a power law of M+, we see that for smaller M+, the bubble nucleation

rate is larger than the BH evaporation rate. For example, for σ ∼ 10−15, l ∼ 1010, and

gH ∼ 60, ΓH < ΓD holds for M+ . 107. Though this discussion is limited to the thin-wall

case, it has been found that even in the case when the thin-wall approximation does not

hold (see eq. (2.23)), ΓH < ΓD is likely to be satisfied for small M+ [28]. Note that for

M+ < 1, the BH radius becomes smaller than the Planck scale so that the (semi)classical

analysis of gravity breaks down and hence we do not consider such a case. We here assume

that if ΓH < ΓD holds at M+ = 1, the Planck-mass BH catalyzes the phase transition to

the AdS vacuum.

We can see how the presence of BH changes the vacuum decay rate by comparing

it with the CdL tunneling rate. In the thin-wall approximation, the bounce action is
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Figure 3. Potential shape for m = 1/2
√

3, λ = 1. The dashed line represents ∆g = 0 for which

the two vacua degenerate, and the potentials with the purple and blue lines lead to a thin-wall and

thick-wall bubbles, respectively.

evaluated as [14]

BCDL =
πσ4l6

16G(1− σ2l2/4)
. (2.47)

The bounce action around a small BH eq. (2.43), which is of our interest as seen in the

above, is less than the CDL bounce action for 1 < M+ � α−1.

2.3 Connecting the parameters of thin-wall bubbles with the effective po-

tential

The analysis of thin-wall bubbles with Israel junction condition uses some parameters

characterizing a vacuum bubble, e.g. σ and l in the previous subsection. These parameters

include some details of an effective potential of scalar field. We here clarify the relation

between the thin-wall parameters and the effective potential. Let us consider the following

toy potential of scalar field,

V (φ) =
m2

2
φ2 −

√
λ

6

gm

3
φ3 +

λ

4!
φ4. (2.48)

It has a true vacuum at φtv ' 2
√

3m/
√
λ for g > g0 = 3/

√
2 with V (φtv) = −4

√
2(m4/λ)∆g

to the first order in ∆g ≡ g−g0, and the false vacuum at the origin φfv = 0 with V (φfv) = 0.

The potential maximum between true and false vacua is given by Vbarrier = (3/8)m4/λ.

Thus Vbarrier � ∆V is satisfied for ∆g �
√

3 +
√

3− 3/
√

2 ' 0.05, in which case the thin-

wall approximation is appropriate, see figure 3 and eq. (2.23). In the following analysis,

we use the potential eq. (2.48) with (m, g, λ) being independent parameters that fixes the

potential.

Next let us evaluate the thin-wall parameters and results in terms of the potential

parameters with V (φ) eq. (2.48). The tension and the AdS radius are given by

σ =
16πm3

λ
, l =

√
3

32
√

2π

√
λ

∆g

(
1

m

)2

. (2.49)
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Then we obtain σl ∼ (m/
√
λ)/
√

∆g ∼ φtv/
√

∆g, and the condition σl � 1 is satisfied for

sub-Planckian false vacuum φtv � 1 with ∆g ∼ O(0.1). In ref. [27] it is argued that for

σl > 1/2 there is no static O(3) bubble solution, which should satisfy f±τ̇± > 0. Now the

physical meaning of this condition is clear. For σl ≥ O(1), the two vacua are degenerated

too much ∆g ' φ2
tv � 1, gravitational back reaction prevents the system from having a

bounce solution.

The bounce action and solutions for σl� 1 are written as

α ' 2
√

2

3
m∆g, (2.50)

µ− '


(

1−
√

2πm2

λ∆g

)
M+ (M+ � 1/(2α))

M+ − 4πm
3λ∆g2 (M+ � 1/(2α))

, (2.51)

B '


8
√

2π2m2

λ∆g M2
+ (M+ � 1/(2α))

32π2m
3λ∆g2M+ (M+ � 1/(2α))

, (2.52)

R '

2M+

(
1 + 1

128m2∆g2M2
+

)
(M+ � 1/(2α))

2M+

(
1

2
√

2m∆gM+
− 1

4

)
(M+ � 1/(2α))

, (2.53)

which will be useful for the investigation in the next section. The bubble radius (eq. (2.53))

is further rewritten as

R ' 1√
2m∆g

for M+ � (m∆g)−1, (2.54)

for the future use.

3 Static bounce around a radiating BH

While the evaluation in the previous section based on refs. [27, 28] explicitly shows the

amplification of the vacuum decay rate due to the seed BH for small mass, the bounce

solution is obtained from the tree-level action. Since a BH emits the high-temperature

Hawking radiation, one might expect that it stabilizes the scalar potential so that the

vacuum decay rate is instead reduced [43]. In order to clarify which effect is dominant, it

is straightforward to construct the bounce solution and evaluate the decay rate with the

effective potential that takes into account the thermal effect from the Hawking radiation.

This procedure is similar to the case of the evaluation of usual thermal phase transition

and can be understood as the next-to-minimal order correction to the one in refs. [27, 28].

We here take into account the vacuum polarization effect of the Hawking radiation

and calculate the bounce action with a thermal effective potential. Since we are interested

in the spacetime of gravitationally collapsed BHs, which consists of the Region I and II in

the Penrose diagram (figure 1), the state of quantum fields can be modeled by the Unruh

vacuum state that gives the outgoing thermal radiation from the vicinity of the future

horizon. Since it leads to the inhomogeneous temperature distribution around a BH, it is
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difficult to carry out the full 1-loop calculation with path integral formalism.3 Thus, we

will only include the thermal mass, which would be the leading contribution, and neglect

O(λ2) terms to yield the following expression [54]:

ΓE [φ] =

∫ √
gEd

4xE

(
1

2
(∂µEφ)2 + V (φ) +

λ

4
〈U |φ2(xE)|U〉φ2

)
+O(λ2), (3.1)

where 〈U |φ2(xE)|U〉 is the vacuum polarization with the Unruh vacuum state |U〉. In order

to evaluate the vacuum polarization, we adopt the renormalized one for the massless scalar

field [48], which has the asymptotic form as [48, 54]

〈U |φ2(xE)|U〉 =


1

192π2M2
− 1

8π2r2

∫ ∞
0

dω

∑
`(2`+ 1)|B`(ω)|2
ω(eω/TH − 1)

(r ∼ 2M)

1

8π2r2

∫ ∞
0

dω

∑
`(2`+ 1)|B`(ω)|2
ω(eω/TH − 1)

(r � 2M)

'


1

256π2M2
(r ∼ 2M)

1

192π2r2
(r � 2M),

(3.2)

where ω is a frequency of Hawking particle, ` is the angular mode, M is the mass of the

Schwarzschild BH, TH = 1/8πM is the Hawking temperature, and B`(ω) is defined as [55]

B`(ω) ∼
[

`!2

(2`)!(2`+ 1)!!

]2 ∏̀
m=1

[
1 +

( ω

mκ

)] 2ω

κ

( ω
2κ

)2`+1
, with κ ≡ 2πTH . (3.3)

Here we neglect the masses of Hawking particles, since at the leading order the massless

approximation is a good approximation for the high temperature regime, which is the case

of our interest. For the computational convenience we adopt the values at r � 2M . This

treatment is not problematic since the thermal correction of the transition rate becomes

important when the BH temperature is higher than the inverse of bubble radius, i.e. when

the bubble radius is larger than the BH radius. The size of bubble is governed by the typical

scale of phase transition, as we will see later. Moreover, the values of the two-point function

near the horizon, 1/256π2M2, is not significantly different from the values extrapolated

from the asymptotic expression in eq. (3.2). In summary, the effective potential is written

with the radius-dependent thermal mass as

Veff(φ, r) ∼ V (φ) +
λ

768π2r2
φ2. (3.4)

We here neglect the change of the spacetime caused by the vacuum bubble nucleation.

This is valid when the BH mass inside the bubble, µth−, is close to the BH mass outside

the bubble, M+, and GM+/l� 1 holds. We shall consider the case where this condition is

3In the case of the Hartle-Hawking vacuum, the full 1-loop effective potential is calculated by performing

the path integral in an analogous way of the thermal field theory, with imposing the thermal periodic

boundary condition on the Euclidean time. See refs. [52, 53] for details.
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satisfied. Note that at r � 2M the vacuum polarization eq. (3.2) is independent of the BH

mass M , and hence the asymptotic behavior of the effective potential at r � 2M seems

to be insensitive to the change of the BH mass. If that is so, then our calculation may be

extendable to the situation where the seed BH disappears due to a phase transition [26].

So far we have considered the case where the system contains only one scalar field that

experiences the phase transition. However, we can consider the case where there are many

other fields, denoted as χi, which couple to the scalar field, say,

Vint =
∑
i

λi
4
χ2
iφ

2. (3.5)

In such a case, the 1-loop effective potential is approximated as

Veff(φ, r) ' V (φ) +
λ̃

4
〈χ̂2〉φ2 ' V (φ) +

λ̃

768π2r2
φ2, λ̃ =

∑
i

λi, (3.6)

where the effective coupling constant λ̃ is a parameter independent of λ in V (φ). In par-

ticular, if the number of species coupled to φ is large, we extrapolate the above expression

to λ̃� 4π, beyond the validity of the perturbative analysis.

3.1 Bounce solution around a radiating BH

Since the effective potential of the scalar field is lifted by the thermal effect, the false

vacuum can be stabilized near the horizon. Therefore, it is expected that the decay rate is

reduced or the bounce solution does not exist due to the stabilization. We here investigate

the thermal effects on the bounce solutions and our methodology is presented below.

Here we consider the static O(3) bounce solution that may give the least Euclidean

action and calculate the equation of motion of the scalar field and the Einstein equations:

fφ′′ + f ′φ′ +
2

r
fφ′ + 4πrfφ′3 − ∂V (φ)

∂φ
− λ̃

384π2r2
φ = 0, (3.7)

µ′ = 4πr2

(
1

2
fφ′2 + V (φ) +

λ̃

768π2r2
φ2

)
. (3.8)

They are obtained by replacing the effective potential V in eqs. (2.5) and (2.6) with Veff

eq. (3.6). We then take the boundary conditions at the spatial infinity as the same as

eq. (2.9). In general, the thermal correction to the potential leads to a corrected rem-

nant mass µth− and horizon radius rh,th, and the boundary condition at the horizon is

expressed as

µ(rh,th) = µth−, rh,th = 2µth−. (3.9)

The change of the bounce solution can be understood qualitatively as follows. As is well

known, the bounce equation can be understood as the scalar field dynamics with r being

the “time” coordinate in the flipped potential −V (φ) from the horizon to infinity. Without

thermal corrections, the flipped potential has two local maxima with −V (φtv) > −V (φfv).

The field starts to fall off from the point near the true vacuum to the false vacuum just
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Figure 4. The Euclidean dynamics of the scalar field is shown. The red line represents the flipped

effective potential at the horizon, which is stabilized by the thermal mass and the true vacuum is

absent. At a distant region, the flipped effective potential is lifted as the thermal effect becomes

weaker (blue line). Therefore, even if the true vacuum is absent near the horizon, a bounce solution

can be constructed by using the shooting method (gray dashed line).

once r deviates from the horizon. On the other hand, with thermal corrections around a

sufficiently small BH, the potential is lifted around the horizon so that −Veff(φtv, rh,th) <

−Veff(φfv, rh,th) with −Veff(φtv, rh,th) being no longer a local potential maximum. Thus

around the horizon, we would never have the bounce solution that reaches the false vacuum.

However, the thermal fluctuation becomes weaker at a distant region, and the values of

−Veff near the true vacuum become positive so that it eventually reaches φ = φfv at infinity.

The schematic picture of the evolution of the scalar field is shown in figure 4.

To find such a solution, we numerically calculate bounce equations (3.7) and (3.8) in

the shooting method. The calculation starts from the horizon r = rh,th with the boundary

conditions,

µ(rh,th) = µth− = rth−/2, φ0 ≡ φ(rh,th), (3.10)

which determines the boundary condition for the first derivative of the scalar field at the

horizon

φ′(rh,th) =
rh,th

∂Veff
∂φ (φ0)

1− 8πrh,th2Veff(φ0)
. (3.11)

We search φ0 such that φ satisfies the condition eq. (2.9) at infinity by using the shooting

method implemented in ref. [28] after performing the same coordinate transformation as

eq. (2.13) to improve the numerical behavior near the BH horizon. Note that the bounce

solution obtained from eqs. (3.7) and (3.8) is static, the bounce action Bth is evaluated by

the change of Bekenstein-Hawking entropy [27, 28]

Bth = 4π(M2
+ − µ2

th−). (3.12)

Performing the numerical calculations, we find that the thermal effect on the bounce

solution is less significant for λ̃ � 103. However, if we take λ̃ & 103, the bounce solution
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Figure 5. The bounce solutions in the case with λ = 4π, m = 2× 10−3, g = 3 (or ∆g = 0.88) for

the toy potential V (φ), and M+ = 1.3 × 103. The blue dotted line represents the bounce solution

without the thermal correction. The red and orange solid line represent those with the thermal

correction for λ̃ = 4π and λ̃ = 105, respectively.

and action become significantly different from the one without thermal potential, and the

decay rate is sufficiently reduced. For example, in the case m = 2 × 10−3, g = 3, λ = 4π,

and M+ = 1.4 × 103, we do not see the difference in the bounce solutions for λ̃ = 4π

whereas we see the significant changes for λ̃ = 105, as can be seen in figure 5. Figure 6

shows the vacuum decay rate ΓD ≡
√
Bth/2πM

−1
+ exp[−Bth] for m = 2 × 10−3, g = 3,

λ = 4π as a function of M+. The condition to ignore the effect of AdS curvature on the

vacuum polarization, M+ . l = 1.4×105, is satisfied. Note that if the ΓD is larger than the

BH evaporation rate ΓH (eq. (2.45)), the unwanted vacuum decay occurs before the BH

evaporation and we would suffer from the catastrophe. We can see that without thermal

corrections, the catastrophic vacuum decay for M+ < 102 would be inevitable and the

situation does not change for λ̃ < 104. If we are allowed to take extremely large λ̃ > 105,

the thermal correction can stabilize the false vacuum state so that ΓD < ΓH is satisfied

even at M+ = 1.

3.2 Thin-wall approximation of the bounce around a radiating BH

The numerical calculation performed in the previous subsection implies that thermal effect

on the bounce solution is not significant for λ̃ . 103, regardless of the details of the

other potential parameters and BH mass. In this subsection, in order to support this

conjecture, we give an analytic investigation with the thin-wall approximation. In the

thin-wall approximation, thermal correction to the bounce solution can be represented by

corrections to the wall tension σ, the AdS radius l, and the bubble radius R. It is also

convenient to see how the bounce equation changes due to the thermal correction, as we

will see later. In the following, the subscript “th” denotes the quantities including the

thermal correction.

Let us consider the case for σl� 1. In the case of M+ � 1/(2α) without the thermal

correction, for which the BH catalysis effect is significant, the bubble radius is given as

R∗ ' 2/(3α+)−M+/2 ' (2/3)σl2. The thermal correction to the potential at the bubble

wall is Vth(φ) = λ̃φ2/768π2σ2l4. If it is much smaller than the zero-temperature potential,

∆V , which holds when λ̃ is sufficiently small, the bounce configuration as well as the wall

tension do not change significantly. On the other hand, the remnant BH mass slightly
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Figure 6. The vacuum decay rate as a function of M+ in the case with λ = 4π, m = 2 × 10−3,

and g = 3 (or ∆g = 0.88) for the toy potential V (φ) (eq. (2.48)) is shown. The blue dotted line is

the decay rate without the thermal correction. The decay rates including thermal corrections with

λ̃ = 4π (red solid), 103 (orange dotted), 104 (orange dashed), and 105 (orange solid) are plotted.

The orange lines represent the case where there are many particles interacting with the scalar field.

For comparison, the evaporation rates with gH = 60 (brown dashed) and gH = 105 (black dashed)

are also shown. The former one corresponds to the case of the SM. If a line of ΓD comes below that

of ΓH (shaded regions), a phase transition would occur before the BH evaporates.

changes as well as the bounce action. This contribution can be estimated by examining

the change of the bounce equation for µ, see eqs. (2.6) and (3.8). With the same field

configuration for φ (φ = φtv(rh < r < R) and φ = φfv(r > R)), we obtain

µ′th − µ′ =
λ̃

192π
φ2. (3.13)

Integrating this equation from horizon to infinity, we obtain the horizon radius of the

remnant BH and bounce action with the thermal correction as

µth− ∼ µ− +
λ̃

192π
φ2

tvR ' µ− +
λ̃m

16
√

2πλ∆g
, (3.14)

Bth ∼ B +
µ−λ̃

24
φ2

tvR ' B
(

1 +
3λ̃∆g

64
√

2π2

)
, (3.15)

where we have used the explicit form of φtv and eq. (2.54) to obtain the right hand side of

eqs. (3.14) and (3.15). The condition that the thermal correction of the potential at the

bubble wall is less significant can be expressed as

λ̃� 128
√

2π2

∆g
' 2× 104

(
0.1

∆g

)
. (3.16)

We can see that as long as the constraint eq. (3.16) is satisfied, the correction on the bounce

action eq. (3.15) is at most order of the unity. This is consistent with figure 6 where the

significant change in the bounce action is seen only for λ̃ � 103, although the thin-wall

approximation does not hold for the parameters in figure 6. In particular, for λ̃ . 4π, we

find that the thermal effect cannot be significant to change the vacuum decay rate.
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For M+ � 1/(2α) the bubble wall nucleates near the horizon when we do not take into

account the thermal correction. The thermal effect at the true vacuum near the horizon

is Vth(φtv) ' λ̃φ2
tv/3072π2M2

+ and is small, once more, when the λ̃ is sufficiently small,

λ̃� 3072π2M2
+∆V/φ2

tv. In this case the bounce configuration does not change significantly.

Since the thermal correction is important only near the horizon and it does not affect the

wall configuration, the slight change of the system in the thin-wall approximation can be

absorbed in the change of the true vacuum energy density, δV = Vth(φ) ' λ̃φ2/3072π2M2
+.

Therefore, the thermal correction mainly changes the AdS radius, l→ l + δl, with

δl

l
=
λ̃φ2

tv/3072π2M2
+

2∆V
, (3.17)

which changes the bounce action B → B + δB with δB/B = 2δl/l (see eq. (2.40), which

reads B ∝ l2). With the toy potential eq. (2.48), it is expressed as

Bth ∼ B
[

1 +
λ̃∆g

288
√

2π2

(
1/2α

M+

)2
]
. (3.18)

Note that the condition that the bounce configuration does not change much is given by

λ̃� 288
√

2π2∆g−1

(
M+

1/2α

)2

' 4× 104

(
0.1

∆g

)
(2αM+)2 . (3.19)

This is also consistent with figure 6, which shows that the deviation of the bounce actions

B and Bth starts at M+/(1/2α) ' 101/2 and 10 for λ̃ = 104 and 105, respectively.

We find the analytic expressions that work well even when the thin-wall approximation

is not valid. We performed a numerical calculation based on the shooting method in order

to find a thick-wall bounce solution. Figure 7 shows the bounce action with and without

the thermal correction as a function of M+. We set λ = λ̃ = 4π and m = 1.45× 10−5, and

perform the numerical calculation for the thin-wall (∆g = 0.04) and thick-wall (∆g = 0.88)

cases. For comparison, we also plot the analytic formulae of the Euclidean action, derived

in the thin-wall approximation, in figure 7a and 7b (see eqs. (2.52), (3.15), and (3.18)).

The analytic formulae are consistent with the numerical results and the thermal correction

do not give significant differences in the bounce actions for λ = λ̃ = 4π. The increments

of bounce actions due to the thermal correction, ∆B, are too small to see in figure 7a

and 7b. Figure 7c and 7d plot ∆B/B for the thin-wall and thick-wall cases, respectively,

and both are well consistent with the formulae derived by the thin-wall analysis presented

in eqs. (3.15) and (3.18). Therefore, we conclude that the thermal correction cannot rescue

the Universe from the unwanted vacuum decay catalyzed by the BH unless the effective

coupling to the Hawking particles, λ̃, is extremely large (eqs. (3.16) and (3.19)).

4 Implication to the Higgs instability

As an application of our findings in the previous section, we investigate the SM Higgs

vacuum instability catalyzed by a BH. It has been studied in ref. [28] without thermal

correction, which suggests that we suffer from the vacuum decay from the electroweak
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Figure 7. Figures (a) and (b) show the bounce actions as functions of seed BH mass with the

thin-wall (∆g = 0.04) and thick-wall (∆g = 0.88) cases, respectively. We set λ = λ̃ = 4π and

m = 1.45 × 10−5. The approximate analytic formulae of the Euclidean action with/without the

thermal correction (red dashed/blue dotted) are also plotted in (a) and (b). For the explicit forms

of the analytic formulae, see eqs. (2.52), (3.15) and (3.18). The values of numerically obtained

Euclidean actions with and without the thermal correction are plotted with the blue crosses and

red squares, respectively. The differences of the bounce actions with and without the thermal

correction are shown in (c) and (d) with the black crosses, along with the thin-wall approximation

formulae (eqs. (3.15) and (3.18)) with the blue dotted lines.

vacuum to the AdS true vacuum, which is catalyzed by a BH with a mass M+ . 107 if the

Standard Model Higgs potential is negative at the field values larger than 1011 GeV. We

here take into account the thermal correction to see if it can rescue our Universe from this

catastrophe.

The SM Higgs potential at field values much larger than the electroweak scale is well

described by

V h
eff(φ) =

λh(φ)

4
φ4 (4.1)

in the Unitary gauge. Here φ denotes the SM Higgs field and λ(µ) is the running Higgs

quartic coupling. Instead of solving the renormalization group equations for λh from the

electroweak to high energy scales [10, 11], we here adopt the fitting formula used in ref. [28]

λh(µ) = λ∗ + b

(
log

(
µ

Mpl

))2

+ c

(
log

(
µ

Mpl

))4

. (4.2)

Here we adopt λ∗ = −0.013, b = 1.3×10−5, c = 1.7×10−6 which models the Higgs potential

with the running coupling for top mass mt = 173 GeV and Higgs mass mh = 125 GeV. For
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these parameters, the Higgs potential becomes negative at φ = φc ∼ 1010 GeV ∼ 10−9 in

the Planck unit.

We now study whether the potential correction from thermal fluctuation can stabilize

the false vacuum enough to prevent the vacuum phase transition. It is complicated to

calculate a 1-loop effective potential of a scalar field in the Schwarzschild background when

it interacts with fermions or gauge fields. Thus we instead approximate the correction by

the thermal mass for the SM Higgs [11, 56],

m2
T ∼

(
3

16
g2

2 +
1

16
g2
Y +

1

4
y2
t +

1

2
λh

)
T 2 (4.3)

with T being replaced by the “r-dependent Hawking temperature”, TH = 1/4πr, see

eq. (3.4). Here g2, gY , and yt are the SU(2)L, U(1)Y gauge couplings, and the top yukawa

coupling, respectively. Note that the contributions from other particles are negligibly small.

Let us choose the renormalization scale for the coupling constants as the Planck scale since

we are interested in the phase transition induced by a tiny BH whose Hawking temperature

is close to the Planck scale. Then we get (3/16)g2
2 + (1/16)g2

Y + (1/4)y2
t + (1/2)λh ' 0.092

and the effective potential of Higgs field around a BH is estimated as

V h
eff(φ; r) ∼ V h

eff(φ) +
0.092

32π2r2
φ2, (4.4)

which corresponds to the effective coupling λ̃ ' 2.2 for which the thermal correction is

negligible.

With this effective potential, we solve the bounce equations in the same way as dis-

cussed in section 3, see eqs. (3.7) and (3.8). Figure 8 shows the numerical results for the

bounce action. We can see that the thermal correction does not change the phase transition

rate practically and the bubble nucleation rate is larger than the BH evaporation rate for

smaller BH mass with M+ . 107, which means that the Higgs vacuum decay would be

inevitable if microscopic BHs exist in the Universe.4 Note that the bounce action is pro-

portional to the seed BH mass M+ [28], similar to the case in the thin-wall approximation

for the small M+ (eq. (2.44)). At M+ ' 107, the bounce action is of the order of unity and

we do not have the exponential suppression in the vacuum decay rate for smaller BH mass.

This behavior can be understood in a similar way to the previous sections. In order

for the thermal effect to be significant enough to change the bounce action, the thermal

correction at a bubble wall should be comparable to or larger than the zero-temperature

potential energy density. Since the zero-temperature potential is roughly described by a

scale invariant potential, V = −|λh|φ4/4 with λh ∼ −0.01, the O(4) bounce solution are

found to be scale invariant [8], and the scale of the weak violation of the scale invariance

determines the minimum bounce solution that gives the minimum bounce action. Since

now we are working on the O(3) bounce solution with a typical scale φc, we expect that the

field value inside the bubble that gives the dominant contribution for the vacuum decay

is roughly φ0 ∼ φc. Then from the balance between the bulk and wall bounce action,

4One way around would be to lower the Planck scale by the order of 10−7 so that the phase transition

rate is well suppressed at the energy scales where the semi-classical approximation is valid.
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Figure 8. The bubble nucleation rate for the SM Higgs field with a BH as a function of the seed BH

mass M+ is shown. Here we take the potential parameters as λ∗ = −0.013, b = 1.3×10−5, c = 1.7×
10−6. The blue dotted line indicates the bubble nucleation rate without thermal correction, while

red solid line indicates the one with the thermal correction (eq. (4.4)). Brown dashed line represents

the BH evaporation rate. The bubble nucleation rate exceeds the BH evaporation rate in the brown

region, which means that the Universe would undergo the Higgs vacuum decay for M+ < 107.

the bubble radius is roughly estimated as R ∼ 1/
√
|λh|φc (see eq. (2.22)). As a result,

the thermal effect of the potential at the wall is estimated as λ̃|λh|φ4
c/768π2, whereas the

negative vacuum energy inside the bubble is estimated as −|λh|φ4
c/4. Thus the thermal

effect is strong enough to change the bounce configuration if λ̃ � 192π2 ' 2 × 103. The

Higgs potential, leading to the bubble configuration, can be modeled by our toy model

with λ ∼ |λh|, φtv ∼ φc, and ∆g ∼ O(1). Actually, the condition for having the strong

thermal effect is consistent with that derived in our toy model shown in eq. (3.16). Note

that in this configuration, the AdS radius is given as l ∼
√

1/|λh|φ4
c whereas the wall

tension is estimated as σ ∼ |λh|1/2φ3
c . From eq. (2.44), we evaluate the bounce action as

B ∼ φcM+/|λh|1/2, which is consistent with the numerical result (also see ref. [28]).

One might consider that the thermal correction can rescue the Universe from the

unwanted vacuum decay if there are sufficiently large number of hidden fields that couple

to the Higgs field to give a large effective coupling λ̃. However, such fields easily change

the renormalization group equation running for the Higgs quartic coupling λh(µ), whose

effect is much more significant than the thermal effect we consider in this work. Therefore

we conclude that the BH catalysis effect on the vacuum decay is inevitable for the SM

Higgs potential. Our very existence suggests that even a tiny primordial BH with the mass

smaller than ∼ 107 had never created in the observable Universe. As other possibilities, the

SM Higgs potential may be stabilized by a new physics or is just stable with a relatively

light top mass [57–59].

5 Conclusions and discussion

It has been discussed that a small BH, whose mass is smaller than M+ < 107, catalyzes

the bubble nucleation in a false vacuum of the Higgs field and its decay rate is evaluated

by the bounce action with the zero-temperature potential [26–28] and that the rate can

be significantly higher than the CdL decay rate. However, such a small BH has its high
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Hawking temperature, TH & 1012 GeV, for which the effective potential of true vacuum is

lifted to prevent the system from the vacuum decay.

In this work, we have evaluated a static O(3) bounce action around a Schwarzschild

BH in a false vacuum state. Using the Unruh vacuum state, we have taken into account a

thermal mass which has its radial-dependence and is proportional to r−2 with r being the

distance from the BH. The numerical results show that the Euclidean action increases due to

the thermal correction, but it is negligibly small effect for λ̃ . 4π. In our setup, the thermal

effect can be significant when there exist a number of scalar fields couple to the metastable

field and λ̃ � 103 is satisfied. This is because even though the Hawking temperature

can be high near the horizon, it is suppressed at the bubble wall and hence it cannot

change the bounce configuration much. With the help of the thin-wall approximation, we

have derived the formula that describes the small increase of the bounce action, which

remarkably works well even for the case where the thin-wall approximation does not hold.

This also gives the condition that the thermal correction can be important. That is, in

order for the thermal correction to be significant, the thermal correction should be larger

than the zero-temperature potential at least at the true vacuum around the bubble wall

so that the bounce configuration is significantly changed. This requires an extremely large

effective coupling between the scalar field and the Hawking radiation, λ̃ � 104, since

the two-point function 〈U |φ2 |U〉 is suppressed by a small factor (192π2)−1(see eq. (3.2)).

Note that we have assumed that the quadratic thermal mass term holds even at the true

vacuum around the bubble wall. However, if the effective Hawking temperature is lower

than the expectation value of the true vacuum, the thermal fluctuation is negligible as

discussed in the context of the Affleck-Dine mechanism for baryogenesis [60–63]. In such a

case the thermal effect would become much smaller, yet our main conclusion is unchanged

that thermal effect does not alter the bounce action significantly for a reasonable coupling

between the scalar field and Hawking radiation.

We have also applied our calculation to the SM Higgs vacuum instability [6–9] around

a BH [28]. Thermal correction to the potential (eq. (4.4)) is estimated by the thermal

mass obtained from the SM particle contents with the temperature being replaced by the

r-dependent effective Hawking temperature. We have found out that the effective coupling

between the SM Higgs and the Hawking radiation can be modeled by λ̃ ' 2.2 in our toy

model and that the thermal effect on the bounce action is negligibly small. As a result,

the phase transition rate exceeds the BH evaporation rate for small BH, M+ < 107, which

is the catastrophe of our Universe. Therefore we conclude that we should have never had

such small primordial BHs in the observable Universe unless the SM Higgs potential is

stabilized by a new physics or is stable as it is. Note that the latter possibility is still

consistent with the present uncertainty of the top mass [57–59].

Finally we comment on some interpretation issue for the BH catalysis effect. Ref. [47]

raised some possible interpretations for the BH catalysis effect. One of the interpretations

is that the catalysis effect would be caused by thermal plasma around a BH and it can be

understood as a sphaleron process in a uniform thermal bath.5 However, our study shows

5According to ref. [47], another scenario is that a vacuum bubble could be nucleated in the vicinity of

the BH horizon with its non-zero kinetic energy to expand. This interpretation would work for a realistic

situation where the Hawking plasma is localized near the horizon.
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that the thermal plasma is localized near the horizon and a nucleated bubble wall is not

immersed by the plasma. Although it appears inconsistent with the proposed interpretation

in [47], our argument makes sense if the catalysis effect is caused by the attractive force

of a BH as is explained below. The size of the bubble wall is determined by the balance

among the attractive force from a BH, bubble tension, and interior vacuum energy since

it is simply derived from the classical Einstein equation. Then the resulting bubble has a

smaller size due to the attractive force from the BH, which reduces the Euclidean action

that is calculated by the surface integration on the Euclidean bubble. Therefore, the BH

catalysis effect may be caused by the attractive force, and it is not necessary that the

vacuum bubble nucleated by the BH catalysis effect is immersed by thermal plasma.
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