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1 Introduction

Worldsheet approaches to scattering amplitudes generate perhaps the most compact and

mathematically structured formulae for tree-level S-matrices and loop integrands available.

These formulations cannot at this stage be obtained from space-time action formulations.

The first such formulae for field theory amplitudes (as opposed to conventional string theory

amplitudes) arose from the twistor strings of Witten [1], Berkovits [2] and Skinner [3].

These give rise to remarkable worldsheet formulae for tree-level super Yang-Mills [4, 5]

and gravity [6] in four dimensions. These formulae were extended by Cachazo, He and

Yuan (CHY) [7] to tree formulae for gravity and Yang-Mills amplitudes in all dimensions

together with a variety of further theories [8] including D-branes and Born-Infeld theories,

but without fermions or supersymmetry.

The CHY formulae are based on the scattering equations. These are equations for n

points on the Riemann sphere arising from the n null momenta taking part in a scattering

process. They were first discovered in conventional string theory as a semi-classical ap-

proximation in [9] and at high energy [10]. They were then seen to underpin the twistor

string [11] and to naturally arise from string theories in the space of complex null geodesics,

ambitwistor space [12] in an RNS formulation. These RNS ambitwistor models provide the

worldsheet theories underpinning the CHY formulae and extend straightforwardly [13] to

incorporate the later CHY formulae [8]. The RNS ambitwistor model was followed by a

fully supersymmetric pure spinor formulation in 10 dimensions [14] but which does not lead

to such explicit formulae for amplitudes. Although the original RNS forms of ambitwistor

string theories contain supersymmetry and fermions in their Ramond sectors, as do the

pure spinor formulations more directly, it has been difficult to obtain explicit formulae for

such amplitudes with arbitrary numbers of fermions. As such they don’t directly make

contact with the original twistor-string formulae by dimensional reduction.
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A framework was subsequently developed in six dimensions [15, 16] that allowed the

supersymmetric extension of the original CHY formulae and those for brane theories. These

models had some features of the original RSVW formulae [4, 5] in that moduli of maps

from the worldsheet to chiral spin space in six-dimensions are integrated out against delta

functions. Although these authors were able to obtain amplitude formulae for a variety of

supersymmetric theories in this way, there were a number of issues. In particular the for-

mulae distinguish between even and odd numbers of particles, and become quite awkward

for odd numbers of particles in gauge and gravity theories where such distinctions are not

natural. Although a number of persuasive checks were made, there has been no attempt at

a systematic proof of factorization or recursion for these formulae. Their possible origins

from worldsheet models remain obscure.

Subsequently the last two named authors of this paper introduced a distinct ap-

proach [17] based on extending the scattering equations to incorporate polarization data.

These polarized scattering equations have a geometric origin in string theories in six-

dimensional ambitwistor space expressed in twistorial coordinates (although complete

worldsheet theories that give rise to the full supersymmetric worldsheet formulae remain

lacking). They were used to obtain compact formulae for amplitudes for a full range

of six-dimensional theories, now without any awkward distinction between even and odd

numbers of particles for gauge and gravity theories. These formulae differed from those

of [15, 16] both in the underlying form of the scattering equations, and also provided a

number of new integrand structures. These included 6-dimensional analogues of the 4d

formulae of [18] that provided a more efficient and compact version of the RSVW [4, 5]

and Cachazo-Skinner formulae [6] for gauge and gravity theories, as well as formulae for

D5 and M5-branes all expressed naturally in new supersymmetry representations. There

were also more controversial formulae for Gerbe multiplets with (2, 0) supersymmetry that

were analogous to gauge theory amplitudes and with (3, 1) and (4, 0) supersymmetry that

have some analogy with Gerbe-like gravity amplitudes.

In this article we give an improved and more detailed analysis of the formulae of [17].

We shift the supersymmetry representation in such a way as to maintain the same simple

exponential structure but so that it no longer depends on the solutions to the polarized

scattering equations. We present manifestly permutation invariant expressions for the

brane integrands, as well as direct computations for three and four point amplitudes, which

we compare to known answers previously obtained by recursion [19, 20]. For the polarized

scattering equations we give a deeper analysis, showing that generically there is a unique

solution for each solution to the conventional scattering equations: we prove that, although

they are superficially expressed as nonlinear equations, the solutions can be obtained by

normalizing solutions to a system of linear equations. As a further check on the formulae,

we derive the symmetry reductions to five dimensions giving formulae for the same variety

of theories there with maximal supersymmetry. We also show that the controversial (0, 2)-

PT, (3, 1) and (4, 0) formulae for interacting gerbes reduce to standard gauge and gravity

formulae in 5d. Reducing further to 4d we land directly on the 4d ambitwistor string

formulae of [18]. Our treatment gives new insights there, giving an interpretation of the 4d

refined scattering equations introduced there as also being polarized scattering equations.
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We also give a proof via 6d of the relation between the CHY measure in 4d with the 4d

refined/polarized scattering equations measure.

Our main result consists of a proof of factorization for all our gauge, gravity and brane

formulae. We also introduce a new spinorial realization of BCFW recursion adapted to

6d for gauge and gravity that therefore leads to a full proof of our formulae. Somewhat

surprisingly, despite their poor power counting at large momenta, our brane formulae have

no boundary contribution for large BCFW shifts.

The paper is structured as follows. In section 2 we give an extended introduction. This

contains a review of the formulae of CHY and the original scattering equations, the four

dimensional formulae of [18]. We structure this four-dimensional discussion to highlight

that these formulae were also based on 4d polarized scattering equations (as are the closely

related RSVW formulae [4] based on the original twistor-string). The review goes on

to define the ingredients and details of the six-dimensional formulae of [17] with some

improvements and updates to include for example (2, 0)-supergravities and statements of

the main results. In section 3 the polarized scattering equations and measure are studied

in more detail. It is shown that given a solution to the original scattering equations,

there exists generically a unique solution to the polarized scattering equations which can

be obtained essentially by solving linear equations and then normalizing. The associated

measures are also shown to reduce to the CHY measure. Section 4 goes on to prove

basic properties of the integrands we use, permutation invariance (see also appendix A),

invariance under supersymmetry and compatibility of the supersymmetry factors with the

reduced determinants. In section 5 the three and four point amplitudes are computed from

the new formulae and shown to agree with the standard answers for the corresponding

theories. Section 6 gives the symmetry reductions to give new formulae in five dimension,

and then to the standard known formulae of [18] in four dimensions, giving new insights into

the relations between CHY and 4d refined/polarized scattering equations measures there.

The full proof of the gauge and gravity formulae by BCFW recursion is given in

section 7. Along the way we prove factorization for all non-controversial formulae. Our

BCFW shifts are different from those of other authors so we give a brief comparison in

appendix B. To give a practical example we use our BCFW shift to derive the four point

formulae in appendix D.

Finally in section 8 we discuss further issues and directions. These include a brief

discussion of the Grassmannian approach of [16] and its use in [21] to obtain a correspon-

dence between the formulae studied in this paper and those of [16]. This leads to some

brief remarks concerning analogues of the momentum amplituhedron of [22] in 6d. There

is also some discussion of ambitwistor worldsheet models and the controversial formulae

for Gerbe theories with (2, 0), (3, 1) and (4, 0) supersymmetry.

2 Review and extended summary of results

We start with a review of the CHY formulae [7] for gauge and gravity theories with a

brief mention of those for other theories [23]. We further give an introduction to the 4d

refined/polarized scattering equation formulae of [18] in such as a way as to bring out the
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analogy with the formulae that come later in 6d as the scattering equations there were ex-

tended to include an extra scaling per point that incorporates the polarization data.1 This

extended introduction then introduces the six-dimensional spinor-helicity formalism [19],

polarized scattering equations, measures and integrands that underlie the formulae for the

various different theories, and then summarizes the amplitude formulae and other main

results of the paper.

2.1 Review of CHY

For a scattering process involving n null momenta ki, the scattering equations arise from

a meromorphic vector-valued function

P (σ)µ =
n∑
i=1

kiµ
σ − σi

, (2.1)

where σ ∈ C is a coordinate on the Riemann sphere CP1. When momentum is conserved,

P (σ)µ naturally transforms as a 1-form on CP1 under Möbius transforms. Equivalently,

P (σ) has weight −2 in homogeneous coordinates and is a section of the line bundle O(−2)

on CP1. The scattering equations are then

Resσi
P 2(σ)

2
= ki · P (σi) =

∑
j

ki · kj
σij

= 0 , σij = σi − σj . (2.2)

The scattering equations imply that P 2(σ) is global and holomorphic, but it must then

vanish as there are no global one-forms squared on CP1, so P (σ)µ is therefore null for all σ.

The scattering equations then underpin the CHY formulae for massless scattering

amplitudes in the form

Mn =

∫
M0,n

dµCHY
n I , (2.3)

where the CHY measure is defined by∫
I dµCHY

n = δd

(
n∑
i=1

ki

)∫
I
∏n
i=1 δ(ki · P (σi))dσi

Vol(SL(2,C)× C3)

= δd

(∑
i

ki

)∫
I |lmn||pqr|

∏
i 6=p,q,r

δ̄(ki · P (σi))
∏

j 6=l,m,n
dσj (2.4)

= δd

(∑
i

ki

)∑
I |lmn||pqr|

det Φpqr
lmn

.

Here, the Jacobians for the gauge-fixing and solving the scattering equations are given by

|pqr| := σpqσqrσrp , Φij :=
∂ki · P (σi)

∂σj
, (2.5)

1In that paper, the equations were referred to as the refined scattering equations as the extra data and

measures distinguish the different MHV sectors so they were refined by MHV degree.
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and the superscript pqr denotes the removal of the corresponding rows and subscript lmn

the corresponding columns. It is standard that (2.4) is permutation invariant [7]. The

integration is over M0,n, the space of n marked points on the Riemann sphere, having

divided by the volume of the Möbius transformations SL(2,C) in the Faddeev-Popov sense.

(The second C3 factor is removed by removing the pqr delta functions in the product and

replacing them with a further factor of |pqr|). The delta functions are understood as

complex delta functions that localize the integral to a sum over the (n−3)! solutions to the

scattering equations of residues given by the integrand I divided by the given Jacobian.

The integrands denoted I vary from theory to theory. They are usually a product of

two factors I = Ih
LIh

R with each “half-integrand” Ih
L,R transforming under Möbius trans-

formations as a 1-form in each σi. In the original CHY formulae, two possibilities for

these half-intgrands were discussed. The first was a Parke-Taylor factor that depends on

a permutation ρ

PT(ρ) =
n∏
i=1

1

σρ(i) ρ(i+1)
. (2.6)

The second was the CHY Pfaffian Pf ′(M) where M is the skew matrix that depends on

polarization vectors eiµ associated to each null momenta kiµ

M =

(
A C

−CT B

)
, Aij =

ki · kj
σij

, Bij =
ei · ej
σij

, Cij =


ki·ej
σij

, i 6= j∑
l
ki·el
σli

, i = j .
(2.7)

On the support of the scattering equations, the matrices M have a two-dimensional kernel,

and so the Pfaffian Pf M vanishes. One can however define a non-trivial reduced Pfaffian

by deleting two rows and columns, say i and j, and quotienting by the corresponding

generators of the kernel,

Pf ′(M) :=
1

σij
Pf(M[ij]). (2.8)

This reduced Pfaffian is invariant under which rows and columns are removed. We then

obtain

Yang-Mills:

∫
PT(α) Pf ′(M) dµCHY

n (2.9a)

Gravity:

∫
Pf ′(M)Pf ′(M̃) dµCHY

n , (2.9b)

There are many related formulae. Biadjoint scalar amplitudes are constructed from a

product of two Parke-Taylors and further integrands for Einstein-Yang-Mills, DBI, and

other massless theories in [13, 23].

2.2 The refined/polarized scattering equations in 4d

In four dimensions, polarization data can be presented in terms of spinor-helicity variables.

A null momentum kµ, µ = 1, . . . , d, is expressed for d = 4 in terms of two-component

spinors kαα̇ = κακ̃α̇, α = 1, 2, α̇ = 1̇, 2̇. We will use the conventional angle and square

bracket notation to denote undotted and dotted spinor contractions

〈εiεj〉 := εαβε
α
i ε
β
j , [ε̃iε̃j ] = εα̇β̇ ε̃

α̇
i ε̃
β̇
j . (2.10)
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We will, for the most part use complexified polarization data as we will take our Maxwell

2-forms to be simple and null, although momenta can be taken to be real. So the little

group is the C∗ subgroup of the complexified Lorentz group that preserves the momentum

and acts by rescaling κα and κ̃α̇. We take polarization data for a Maxwell field or gluon to

be a null vector eµ that is null and orthogonal to kµ. Null simple 2-forms are then either

self-dual or anti-self-dual given by Fµν = e[µkν] with Fαα̇ββ̇ = εαεβεα̇β̇ or its conjugate in

terms of spinor-helicity data εα = εκα or ε̃α̇ = ε̃κ̃α̇ respectively. Thus, polarization simply

associates a scale to either κα or κ̃α̇.

In order to polarize the scattering equations, we can seek global meromorphic λ(σ)α
and λ̃(σ)α̇ such that

P (σ)αα̇ = λ(σ)αλ̃(σ)α̇ . (2.11)

The weights of λ(σ)α and λ̃(σ)α̇ must add up to −2 to give P and we will take them each

to take values in O(−1). In 4d we have the freedom to let them take values in different line

bundles λα ∈ Ω0(Σ,L), λ̃α̇ ∈ Ω0(Σ, L̃) such that L ⊗ L̃ ∼= KΣ. While this set-up emerges

naturally from the original twistor-string and related models [3, 24, 25], the higher dimen-

sional analogues of (2.11) will only make sense when both spinors take values in O(−1),

and so the 4d ambitwistor-string model [18] provides the more natural starting point.

Amplitudes in the 4d ambitwistor string are localized on scattering equations that are

refined by MHV degree as follows. Take k gluons i = 1, . . . , k to have negative helicity

polarization εiα = εiκiα and p = k + 1, . . . , n positive with polarization data ε̃iα̇ = ε̃iκ̃iα̇.

The equations then incorporate the polarization data via the following ansätze for λ(σ)α
and λ̃(σ)α̇;

λ(σ)α =

k∑
i=1

uiεiα
σ − σi

, λ̃(σ)α̇ =

n∑
p=k+1

uiε̃iα̇
σ − σi

, (2.12)

where the σi and ui are together determined by the polarized scattering equations

upλ(σp)α =
κpα
ε̃p

, p = k + 1, . . . n− k, uiλ̃(σi)α̇ =
κ̃iα̇
εi

, i = 1, . . . , k . (2.13)

It is easy to see that the σi satisfy the original scattering equations. In [18], these equations

were incorporated into a measure

dµ4d
n,k =

k∏
i=1

δ2

(
uiλ̃(σi)α̇ −

κ̃iα̇
εi

) n∏
p=k+1

δ2

(
upλ(σp)α −

κpα
ε̃p

) ∏n
j=1 dσjduj/uj

Vol(GL(2,C))
(2.14)

where the GL(2,C) extends the SL(2,C) Möbius invariance to include the little group

C∗ = GL(1) generated by ∑
i≤k

ui∂/∂ui −
∑
p>k

up∂/∂up. (2.15)

The quotient by GL(2,C) removes the first three dσi and one dui whilst introducing a

factor of σ12σ23σ13 but no delta functions are removed. The four-momentum conserving

delta functions, do not need to be inserted manually, as they are implied by the delta

– 6 –
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functions. This measure is related to the CHY measure by∏
i,p

εiε̃p

∫
dµ4d

n,k I4d =

∫
dµCHY

n det ′Hk I4d . (2.16)

Although this is clear from an indirect general argument as described in section 6.2, we

also give a detailed proof there via 6d. Here the symmetric matrix Hk is defined on each

MHV sector by

Hk
ij =


〈εiεj〉
σij

, i, j ≤ k
[ε̃iε̃j ]
σij

, i, j > k,
for i 6= j, Hk

ii =

{
− 〈εiλ(σi)〉

ui
, i ≤ k

− [ε̃iλ̃(σi)]
ui

, i > k ,
(2.17)

with vanishing entries otherwise. It follows straightforwardly from (2.12) that H has a two-

dimensional kernel spanned by the vectors (u1, . . . , uk, 0, . . . , 0) and (0, . . . , 0, uk+1, . . . , un).

Its reduced determinant is defined by

det ′Hk :=
detHk [lm]

[ij]

uiujulum
(2.18)

where H
[lm]
[ij] is the matrix with rows i, j and columns l,m removed with l ≤ k < m,

i ≤ k < j. We remark that det ′Hk is supported on the sectors appropriate to Nk−2MHV

degree2 [28]. The full (n− 3)! set of solutions to the scattering equations break up into the

Nk−2MHV sectors with k = 2, . . . , n−2 with Eulerian number3 A(n−3, k−2) in each sector.

This reduced determinant plays a dual role in that it agrees with the CHY Pfaffian

Pf ′(M) when the polarization data is restricted to the appropriate MHV degree. Thus,

because (2.16) already essentially contains one CHY Pfaffian, the integrand for Yang-Mills

formula is simply the Parke-Taylor factor and the one for gravity contains one additional

copy of det ′(H).

These formulae directly extend to incorporate supersymmetry either by using chiral

or anti-chiral supermomenta. For super-Yang-Mills with N = 4 supersymmetries, our

supermultiplets will be either chiral or antichiral with the supermultiplet given by

(Fαβ , ψαI ,ΦIJ , ψ
I
α̇, F̃α̇β̇) =

(
εαεβ , εαqI , qIqJ ,

κ̃α̇
ε
q3I ,

κ̃α̇κ̃β̇
ε2

q4

)
eik·x

=
(
q̃4κακβ

ε̃2
,
κα
ε̃
q̃3
I ,

1

2
εIJKLq̃

Kq̃L, ε̃α̇q̃
I , ε̃α̇ε̃β̇

)
eik·x (2.19)

respectively where q3I = εIJKLqJ qKqL/6 and q4 = q3IqI/4 etc.. These are obtained from

each other by ε = 1/ε̃ and fermionic Fourier transform from qI to q̃I . At N = 4 these

multiplets are the same. For N < 4 we can define them in an obvious way so as to be

complementary.

2This can be seen from the ranks k − 1 and n − k − 1 respectively of the H and H̃ matrices of the

Cachazo-Skinner formulae [6, 26] and their relationships to Hk [27].
3A(n,m) is the number of permutations of n elements in which m elements are greater than their

predecessors after the permutation.
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To obtain supersymmetric formulae at Nk−2MHV, we partition {1, . . . , n} = Y ∪ Ȳ
with |Y | = k and particles i ∈ Y in the first representation and i ∈ Ȳ in the second and

introduce the supersymmetry factor eF
k
N with

F kN =
∑

i∈Y,j∈Ȳ

uiuj
σi − σj

qiI q̃
I
j . (2.20)

We now obtain the following supersymmetric 4d amplitude formulae

Super Yang-Mills:

∫
PT(α) eF

k
N dµ4d

n,k (2.21a)

Supergravity:

∫
det ′Hk eF

k
N dµ4d

n,k , (2.21b)

with N ≤ 4 for Yang-Mills theory and N ≤ 8 for gravity.

2.3 Polarized scattering equations framework in 6 dimensions

We here recall basic definitions from [17].

Spinor helicity in 6d. In six dimensions, vectors transform in the antisymmetric repre-

sentation of SL(4,C), the spin group of the Lorentz group Spin(6,C). Thus a 6-momentum

can be expressed as kAB = k[AB] = γABµ kµ, where A,B = 0, . . . , 3 are spinor indices and γABµ
are antisymmetric 4× 4 Pauli matrices, the chiral constituents of the γ-matrices satisfying

the Clifford algebra. The inner product of vectors is defined via the totally skew, SL(4)-

invariant tensor 1
2εABCD, which is also used to raise and lower skew pairs of spinor indices.

For massless particles, the little group is given by Spin(4,C) ∼= SL(2) × SL(2). Since

null momenta kAB with k2 = kABkCDεABCD = 0 are of rank two due to the antisymmetry of

the spinor indices, the on-shell condition can be solved by chiral (or antichiral) spinors [19],

kAB = εȧḃκAȧκ
B

ḃ
≡
[
κAκB

]
, kAB = κaAκ

b
Bεab ≡ 〈κAκB〉 . (2.22)

Here, a = 0, 1, ȧ = 0̇, 1̇ are the corresponding SL(2,C) little group spinor indices, and we

have introduced the four-dimensional notation 〈·, ·〉 and [·, ·] brackets now used to denote

little group contractions.

Polarization data is made up of representations of the little group. A Dirac particle has

polarization data εA = εaκ
a
A. A Maxwell field strength is represented by FA

B , with FA
A = 0

because the Lie algebra of the Lorentz group is sl(4). For a momentum eigenstate, with a

null polarization vector orthogonal to k, we find

FA
B = εAεB . (2.23)

The Maxwell equations require kABε
A = 0 = kABεB, so that all polarization data is encoded

in little group spinors εa and εȧ with4

εA = εȧκ
Aȧ , εA = εaκ

a
A . (2.24)

4Note that εa and εȧ cannot be taken to be real in Lorentz signature.

– 8 –



J
H
E
P
0
8
(
2
0
2
0
)
0
6
6

6D polarized scattering equations. Now in 6d, we can seek a spinor-helicity factor-

ization for P (σ) over CP1

PAB = λAaλ
a
B =

1

2
εABCDλ

C
ȧλ

Dȧ . (2.25)

The scattering equation ki · P (σi) = 0 implies ki · P = det(κaiA, λ
b
A) = 0. This determinant

vanishes iff there exists non zero (uai , v
a
i ) defined up to scale so that

EiA := uiaλ
a
A(σi)− viaκaiA = 0 . (2.26)

This is scale invariant in u and v, so we can normalize

〈viεi〉 = 1 . (2.27)

We introduce an analogue of (2.1) for λAa(σ)

λAa(σ) =

n∑
i=1

uiaεiA
σ − σi

. (2.28)

Together, (2.26), (2.27) and (2.28) will constitute the polarized scattering equations. One

motivation for this latter formula arises from a heuristic twistorial ambitwistor-string model

that was presented in [17].

These provide our 6D polarized version of the 4d polarized scattering equation (2.13)

as equations on the (σi, uia, via) that determine the (uia, via) on the support of a solution

σi to the ordinary scattering equations. More explicitly we can write

EiA :=
∑
j

〈uiuj〉εjA
σij

− 〈viκiA〉 = 0 . (2.29)

We can eliminate the vi from these equations by skewing with εiA to get

εi[AEB]i :=
∑
j

〈uiuj〉εj[BεA]i

σij
− kiAB = 0 , (2.30)

which follows from the normalization condition on vi. Although these are 6 equations,

skewing with εiC vanishes identically by construction and there are only three independent

equations per point that serve to determine the uia and σi. Summing this version of the

equations over i, the first double sum vanishes being antisymmetric over i, j, leaving the

sum of momentum showing that these equations imply momentum conservation.

Although as presented, the equations for uia appear nonlinear, later we will see that

they are underpinned by linear equations, and, in proposition 3.2, that there exists a unique

solution to these equations for each solution σi to the unpolarized scattering equation.5

5Unique up to an SL(2,C)-transformation on the global a index.
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Integral formulae. Our integral formulae for amplitudes all take the form

An =

∫
In dµpol

n (2.31)

where the integrands In are theory specific and will be specified in due course. We define

the measure based on the chiral 6D polarized scattering equations by

dµpol
n =

∏n
i=1 δ

4
(
EiA
)
δ
(
〈viεi〉 − 1

)
dσi d2ui d2vi

vol SL(2,C)σ × SL(2,C)+
. (2.32)

Here the two copies of SL(2) are the Möbius transformations on σ and the little group on

the little a index and the division by their volumes are understood in the usual Faddeev-

Popov sense. We will however see that this measure is equal to the CHY measure in

section 3.2.

2.4 Supersymmetry in 6d

Here we review supersymmetry representations in 6d, in particular that in [17]. That

representation depends on individual solutions to the scattering equations, so we introduce

a variant that maintains the same simple structure, but that is global.

Supersymmetry representations in 6 dimensions have been explored in the context

of scattering ampitudes by a number of authors [19, 20, 29]. In six dimensions, (N, Ñ)-

supersymmetry possesses an Sp(N) × Sp(Ñ) R-symmetry group for which we introduce

indices I = 1, . . . , 2N, and İ = 1̇, . . . , ˙2Ñ . On momentum eigenstates with momentum kAB,

the supersymmetry generators QAI and QA
İ

satisfy, temporarily suppressing the particle

index i for readability,

{QAI,QBJ} = kAB ΩIJ , {QA
İ
,QB

J̇
} = kAB Ωİ J̇ (2.33)

where ΩIJ and Ωİ J̇ are the R-symmetry symplectic metrics. The supersymmetry generators

thus reduce to the little group as

QAI = κaAQaI , QA
İ

= κAȧQ
ȧ
İ

(2.34)

where we now have

{QaI , QbJ} = εabΩIJ , {Qȧİ , QḃJ̇} = εȧḃΩİ J̇ . (2.35)

Super Yang-Mills. A key example is (1, 1) super Yang-Mills theory. The linearized

‘super-Maxwell’ multiplet is

F := (FB
A , ψ

A
I , ψ̃Aİ , φIİ) , (2.36)

consisting of a 2-form curvature FB
A , spinors of each chirality ψA

I and ψ̃Aİ and four scalars

φIİ . On momentum eigenstates with null momentum kAB, QCJ acts on this multiplet by

QCJF = (kACψ
B
J , ΩJIF

A
C , kACφJİ , ΩJIψ̃İC) . (2.37)
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To construct a supersymmetry representation, we need to choose half of the QaI as anti-

commuting supermomenta. The possibilities discussed in the literature [19, 20, 29] focus on

halving either the I or the a-indices manifesting only full little-group or only R-symmetry

respectively. The former was used successfully implemented in recent work on 6d scattering

amplitudes for a variety of theories [15, 16]. However, the latter is more natural from the

perspective of the ambitwistor string [30], and will be the formulation we work with here.

The two approaches are of course related by appropriate Grassmann Fourier transforms

and we discuss the details of the R-symmetry breaking approach and its correspondence

with the little group breaking approach used in this section in section 4.2.

For amplitudes in the representation (2.31) based on the polarized scattering equations,

there is a natural choice of supermomenta that manifests the full R-symmetry, because the

polarized scattering equations provide a natural basis (εa, va) of the little group space for

each particle so that εaQpol
aI anti-commute. They can therefore be represented as Fermionic

variables

qI := εaQpol
aI . (2.38)

This allows us to write the supersymmetry generators as

Qpol
aI =

(
vaqI + εaΩIJ

∂

∂qJ

)
, Q̃pol ȧ

İ
=

(
vȧq̃İ + εȧΩ̃İ J̇

∂

∂q̃J̇

)
. (2.39)

The full super Yang-Mills multiplet is then obtained from the pure gluon state F (0, 0) =

(εAε
B, 0, 0, 0) as

Fpol(qI, q̃İ) =
(
(εA + q2〈vκA〉)(εB + q̃2〈vκB〉), qI(εA + q̃2〈vκA〉), q̃İ(εA + q2〈vκA〉), qI q̃İ

)
.

(2.40)

This gives a representation of the anti-commutation relations (2.35) such that the (1, 1)-

super-Yang-Mills superfield becomes

ΦR
pol = gεε̃ + qI ψ

I ε̃ + q̃J̇ ψ̃
εJ̇ + q2gvε̃ + q̃2gεṽ + qI q̃J̇ φ

IJ̇ + · · ·+ q2q̃2 gvṽ . (2.41)

where gεε̃ = εaε̃ȧ g
aȧ is the gluon with polarization εaε̃ȧ etc. This explicit form of the

multiplet highlights one of the peculiar features of this supersymmetry representation: since

the supersymmetry generators depend via v on the individual solutions to the polarized

scattering equations, so do all states in the bottom half of the multiplet, e.g. gvṽ or gvε̃. The

supersymmetry representation is thus dynamic, not just particle-specific, and varies with

the solution to the scattering equations, i.e., via is not specified in advance, but depends on

the momenta and polarization data and an individual solution to the scattering equations.

While any issues associated to this peculiarity can be easily avoided by only calculating

amplitudes with external states at the top of the multiplet,6 we prefer to work with a global

supersymmetry representation that can be introduced as follows.

6i.e. taking all gluons as gεε̃, fermions as ψIε̃ or ψ̃εJ̇ and scalars as φIJ̇ . This can always be achieved by

a choice of polarization. Note in this context that the supermomenta themselves only depend on the εia
from (2.38).
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The new representation. Instead of using the basis (εa, va) of the little group in-

troduced by the polarized scattering equations (which depends on the solutions to the

scattering equations), let us choose a global basis for each particle

(εia, ξia) , with 〈ξiεi〉 = 1 . (2.42)

Using this basis, εaQaI again anti-commute, and can be represented by Grassmann variables

qI = εaQaI . However, the supersymmetry generators are now globally defined,

QaI =

(
ξaqI + εaΩIJ

∂

∂qJ

)
, Q̃ȧİ =

(
ξȧq̃İ + εȧΩ̃İ J̇

∂

∂q̃J̇

)
. (2.43)

Note that due to the normalization condition 〈vε〉 = 1, we know that va and ξa are related

by

va = ξa + 〈ξv〉εa . (2.44)

This implies that the supersymmetry generators Qpol
aI and QaI are not related by a linear

transformation of the respective supermomenta qI . Returning to the example of super

Yang-Mills, the multiplet now takes the form

F (qI, q̃İ) =
(
(εA + q2〈ξκA〉)(εB + q̃2〈ξκB〉), qI(εA + q̃2〈ξκA〉), q̃İ(εA + q2〈ξκA〉), qI q̃İ

)
,

(2.45)

and the (1, 1)-super-Yang-Mills superfield becomes

ΦR = gεε̃ + qI ψ
I ε̃ + q̃J̇ ψ̃

εJ̇ + q2gξε̃ + q̃2gεξ̃ + qI q̃J̇ φ
IJ̇ + · · ·+ q2q̃2 gξξ̃ . (2.46)

where as above gεε̃ = εaε̃ȧ g
aȧ denotes the gluon with polarization εaε̃ȧ. By construction,

this representation is now global and independent of the solution to the polarized scattering

equations. Of course, this global definition comes at the expense of having to introduce an

additional reference spinor ξa, whereas the dynamic representation ΦR
pol only depends on a

single choice of polarization spinor.

For the most part hereon, we will work in the global R-symmetry preserving representa-

tion ΦR. However, it is easy to convert our formulae to the little-group preserving represen-

tation: for this we break up QaI = (Qla, Qal, ) with l = 1, . . . , N so that ΩIJ =

(
0 δlm

−δml 0

)
and introduce supermomenta ηal so that

QaI =

(
∂

∂ηal
, ηal

)
. (2.47)

We explain the correspondence in more detail in 4.2 and give the alternative formulae

below.

2.5 Integrands

Supersymmetry determines the full super-amplitude from the amplitudes involving only

the top of the multiplet. We will see in section 4.2 that supersymmetry implies that
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the total dependence on the supermomenta is encoded in the exponential factor eF , with

F = FN + F̃Ñ where7

FN = F pol
N − 1

2

n∑
i=1

〈ξivi〉 q2
i , F pol

N =
∑
i<j

〈uiuj〉
σij

qiIq
I
j , (2.48a)

F̃Ñ = F̃ pol

Ñ
− 1

2

n∑
i=1

[ξivi] q̃
2
i , F̃ pol

Ñ
=
∑
i<j

[ũiũj ]

σij
q̃iİ q̃

İ
j . (2.48b)

For example for N = (1, 1) super Yang-Mills we take the exponential factor expFYM =

exp(F1 +F̃1). In the dynamic R-symmetry preserving representations (2.41) as used in [17],

we only keep the F pol
N terms in the exponential, eF

pol
with F = F pol

N + F̃ pol

Ñ
. Alternatively,

we can Fourier transform in half the fermionic variables to make contact with the little-

group-preserving representation of refs. [15, 16] as given in (2.47). To do so, we choose an

explicit off-diagonal representation for the R-symmetry metric, decompose the fermionic

variables qI =
(
ql, 〈εηl〉

)
according to this representation, and Fourier transform one of

these half-dimensional fermionic subspaces,∫ n∏
i=1

dNqli
∏
j

e−q
l
j〈ξjηjl〉 eFN =

∏
i

δ0|N

∑
j

〈uiuj〉
σij

〈εjηjl〉 − 〈viηil〉

 . (2.49)

On the right, we have relabeled ql = ηεl := 〈εηl〉, and grouped the fermionic variables into

a little-group spinor ηla. In this representation, the fermionic delta-functions take the same

form as the polarized scattering equations with ηal replacing κaA, and we define dµ
pol|N+Ñ
n

to be the measure obtained by combining the fermionic delta functions (2.49) into dµpol
n .

In general, given a scattering amplitude of the form (2.31) for the top states of the

multiplet of an N = (N, Ñ) theory, the fully supersymmetric amplitude is given by

An =

∫
dµpol

n In eFN+F̃Ñ R-symmetry (2.50a)

An =

∫
dµpol|N+Ñ

n In little-group symmetry . (2.50b)

This gives our formulae for superamplitudes from the formulae for the top states of the

supermultiplets. We show in section 4.2 that these are correctly supersymmetric.

For the ambidextrous spin one contribution, define an n× n matrix H by

Hij =


εiAε

A
j

σij
i 6= j

ei · P (σi) , i = j
(2.51)

where ei is the null polarization vector and P (σ) is as defined in (2.1). We can define Hii

equivalently by

λaA(σi)ε
A
i = −uiaHii , λȧA(σi)εiA = −uȧiHii . (2.52)

See section 4.1 for details.

7Here we decompose our factors for the new fixed SUSY representation in terms of the F pol
N factors used

in [17].
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On the polarized scattering equations, the determinant detH vanishes because H has

co-rank 2 due to ∑
i

uiaHij = λaA(σj)ε
A
j + ujaHjj = 0 . (2.53)

The first term follows from the definition (2.28) of λaA and the second equality from (2.52).

Similarly,
∑

j Hijujȧ = 0. These identities nevertheless imply that H has a well defined

reduced determinant

det ′H :=
det(H

[i1i2]
[j1j2])

〈ui1ui2〉[uj1uj2 ]
. (2.54)

Here H
[i1j1]
[i2j3] denotes the matrix H with the rows i1, i2 and columns j1, j2 deleted, and

det ′H is well-defined in the sense that the (2.54) is invariant under permutations of particle

labels, and thus independent of the choice of i1,2, j1,2, see section 4.1 for the proof.

The reduced determinant det ′H is manifestly gauge invariant in all particles, carries

SL(2,C)σ weight −2, as expected for a half-integrand Ispin−1 and is equally valid for

even and odd numbers of external particles. On the support of the polarized scattering

equations, it is verified using factorization in section 7.2 that det ′H is equal to the CHY

half-integrand Pf ′M .

Another important building block, relevant for the D5 and M5 theory, is the skew

matrix A, familiar from the CHY formulae [7, 31], with

Aij =
ki · kj
σij

. (2.55)

Again, the Pfaffian PfA vanishes on the scattering equations (2.2), but the reduced Pfaffian

Pf ′A = (−1)i+j

σij
PfAijij is well-defined and non-zero for even numbers of particles [7, 31].

The final ingredients are constructed from (σi, uia, ũiȧ), and are only needed for M5-

branes. These only lead to amplitudes with even numbers of particles. We present a formu-

lation pointed out by [21] using [32], giving a useful alternative formulation to that in [17],

the connections to which we discuss in section 4.3. Define the family of matrices U (a,b) by

U
(a,b)
ij =

〈uiuj〉a [ũiũj ]
b

σij
. (2.56)

In fact we will only need U (2,0) and U (0,2) although for even numbers of particles we have

the identity

det ′H =
Pf ′A

Pf U (1,1)
, (2.57)

allowing for the use of U (1,1) according to taste.

With these ingredients, we have the following integrands of various supersymmetric

theories as follows

(1,1)-Super Yang-Mills: PT(α) det ′H eF1+F̃1 (2.58a)

(2,2)-Supergravity: det ′H det ′H̃ eF2+F̃2 (2.58b)

(1,1)-D5-branes: det ′A det ′H eF1+F̃1 (2.58c)

(2,0)-M5-branes: det ′A
Pf ′A

Pf U (2,0)
eF2 (2.58d)

– 14 –



J
H
E
P
0
8
(
2
0
2
0
)
0
6
6

The resulting superamplitudes are SL(2,C)σ × SL(2,C)± invariant, the super Yang-Mills

and supergravity amplitudes are gauge invariant, and the supergravity amplitudes are

permutation invariant. We also see colour-kinematics duality expressed in the form of the

super Yang-Mills and supergravity amplitudes. The M5 amplitudes are manifestly chiral.

The integrands used here improve the formulae in [17] by having a static, fixed once

and for all supersymmetry representation. We have furthermore replaced the determinants

of n/2× n/2 blocks of U -matrices with manifestly permutation invariant Pfaffians. These

integrands are quite different from those of [16], not only in the supersymmetry represen-

tation, but also in the Pfaffians of our U matrices and our spinorially constructed det ′H

replaces the CHY Pfaffians.

The main result of this paper, expressed and proved in detail in section 7, is:

Theorem 1 The amplitude formulae (2.31) with integrands (2.58) all factorize correctly.

There exists good BCFW shifts for the gauge and gravity formulae so that their equivalence

with the corresponding tree-level S-matrices is guaranteed by recursion and the three-point

examples of section 5.

We will see later explicitly that these formulae all correctly reproduce the known three-

and four- point amplitudes. We will see further that the supergravity and super Yang-

Mills amplitudes reduce to the four-dimensional expressions given in terms of the four-

dimensional polarized scattering equations above.

2.6 The double copy and Gerbe-theories

As remarked in [17], our half-integrands provide a double-copy matrix of theories given in

terms of the improved half-integrands of this paper in the first four columns of table 1 below.

This table is analogous to those obtained in [13, 31] in the CHY and RNS ambitwistor-

string framework and the entries provide nodes in the web of theories of [33]. The table

contains the amplitude formulae for the theories described above, but the last column also

gives three expressions that may not correspond to an amplitude in a well-defined theory.

Analogous formulae were also found in the framework of [16].

A key feature of this last column is that is provides amplitude-like formulae of the

type that might arise for theories that contain Gerbes in their linear multiplets. Gerbes

are closed self-dual 3-forms and correspond to fields BAB = B(AB) in spinors. The spin-

2 analogues have spinors ψABCD for (3, 1) and ψABCD for (4, 0) in their linear multiplets

(whereas the spinor corresponding to the Weyl tensor of a genuine gravitational field is the

trace-free symmetric spinor ΨCD
AB ). See [34–37] for further discussion of these spin-2 linear

fields and their possible links with interesting interacting theories.

The example that may be of most interest in this column is the ‘(2, 0)-PT for-

mula’, obtained from combining the M5 half-integrand Pf ′A detX eF2/Pf U (2,0) with

a Parke-Taylor factor, i.e. replacing the det ′A of the M5-integrand by a Parke-Taylor

half-integrand. This leads to an expression with a non-abelian structure and N = (2, 0)

supersymmetry. While this formula may seem suggestive of amplitudes for the famous

(2, 0)-theory arising from coincident M5-branes, this is certainly too simplistic, because
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PT det ′A det ′H eF1+F̃1
Pf ′A

Pf U (2,0)
eF2

PT Bi-adjoint scalar NLSM N = (1, 1) sYM N = (2, 0)-PT

det ′A Galileon N = (1, 1) D5 N = (2, 0)-M5

det ′H eF1+F̃1 N = (2, 2) sugra N = (3, 1)

Pf ′A

Pf U (2,0)
eF2 N = (4, 0)

Table 1. All integrands constructed from the building blocks discussed above.

that theory lacks a perturbative parameter and thus has no S-matrix.8 Ref. [16] have

further shown that the equivalent four-particle expression in their framework factorizes

into non-local three-particle formulae that are not even well-defined,9 and thus cannot

be interpreted as amplitudes. Moreover, the formulae in the right-hand column are not

obviously defined for an odd number of particles. The (2, 0)-M5 theory is not expected

to have amplitudes for odd numbers of particles, but that is already guaranteed by the

additional det ′A factor which, being the determinant of a skew matrix, automatically

vanishes for odd n. However, for the other factor we have no analogue of (2.57) to provide

a meaning for odd n. This issue may well be connected to the difficulties in defining three-

particle extensions for the (2, 0)-PT mentioned above and discussed in [16]. Despite these

difficulties in identifying underlying theories for these formulae, they are all well-defined

and manifestly chiral and supersymmetric, and we discuss them further in section 8.

Further theories, (2,0) supergravity. Our matrix in table 1 can be extended further

using the half-integrands from [13, 31] to give potentially supersymmetric 6d versions of

the theories discussed there. Further half-integrands in [39, 40] will give further potentially

supersymmetric formulae for the higher order theories treated there.

This larger matrix will by no means be exhaustive and many further theories can

be constructed by stripping out some of the supersymmetry and adjoining fewer or more

fields than are present in the maximally supersymmetric multiplet. This yields further

half-integrands and theories. In many settings the correct couplings will then be ensured

from the original supersymmetric theory. We give an example that follows the analysis

of Heydeman et al. [41]. In the context of their 6d framework, they extract all chiral

N = (2, 0) 6d supergravity amplitudes together with the abelian (2, 0) tensor multiplets

from the known formulae for N = (2, 2) supergravity. The number of tensor multiplets can

then be changed with impunity. If there are 21 of them, this leads to anomaly cancellation

and a correspondence with a K3 reduction of type IIB string theory.

The (2, 2) supergravity multiplet can be regarded as the tensor product of the (2, 0)

multiplet with the (0, 2) multiplet. The latter consists of fields (BAB,ΨA
İ
, φİJ̇) with φİJ̇Ω

İ J̇ =

0 so that there are only 5 scalars. This can be truncated to throw out the ΨA
İ

and the

8See also the no-go theorems of [20, 38] for the existence of a 3-point amplitude.
9The three-particle kinematics carries a special redundancy, under which amplitudes must be invariant

— but these three-particle formulas are not.
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number of scalars can be reduced or increased. In the tensor product with the (2, 0)

multiplet, the scalars correspond to (2, 0) abelian tensor multiplets. With just one flavour

of (2, 0) abelian tensor multiplet embedded into the (2, 2) multiplet (together with the

(2, 0) gravity), integrating out the (0, 2) part of the supersymmetry from the (2, 2) formula

yields, with m abelian multiplets and n graviton multiplets

M(2,0)
n+m =

∫
dµpol

n+m det ′H det ′H̃ detU (0,1)
m eF2 . (2.59)

where U
(0,1)
m is the m×m matrix of (2.56) whose particle indices are those for the m abelian

tensor multiplets. If we now wish to have an arbitrary number of flavours of abelian tensor

multiplets, we can extend U
(0,1)
m to

U (0,1)
ij =

[ũiũj ]δfifj
σij

(2.60)

into which the flavour vectors of the m abelian tensor multiplets can be contracted before

taking the determinant in (2.59).

We remark that this formula superficially contains more polarization data than ex-

pected for the m abelian tensor multiplets as it contains an εA in addition to the εA for

each tensor multiplet, coming from the (n + m) × (n + m) reduced determinant det′H.

However, it will be seen in section 4.4 that these expressions are independent of the spurious

εA as they should be.

3 Polarized scattering equations and measure

In this section we prove various statements made in the introduction. We first give an

alternative form of the scattering equations that manifests that the scattering equations

imply momentum conservation. In section 3.1 we prove the existence and uniqueness for

solutions to the polarized scattering equations given an initial solution to the scattering

equations. Underlying this is a linear formulation of the polarized scattering equations that

we make explicit in section 3.1.1. This is not used explicitly in what follows and can be

omitted by a casual reader. The final subsection 3.2 proves that the polarized scattering

equations measure is equivalent to the standard CHY measure.

We first recall the form of the polarized scattering equations in which we eliminate the

via by skew-symmetrizing the ith polarized scattering equation with εiA to obtain

εi[A]EB]i = εi[A〈uiλB](σi)〉+ kiAB =
∑
j

〈ui, uj〉εi[AεB]j

σi − σj
− kiAB . (3.1)

These leads to

Lemma 3.1 We have the identity

KAB :=
∑
i

kiAB =
∑
i

εi[A]EB]i . (3.2)

Thus if EiA = 0 then momentum conservation KAB =
∑

i ki = 0 follows.
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Proof. This follows from ∑
i,j

uijεj[AεB]i

σij
= 0 , (3.3)

as the argument of the double sum is skew symmetric in i, j. �

We also wish to know that λaA provides a spinor-helicity decomposition of P (σ).

Proposition 3.1 On the support of the polarized scattering equations

λAa(σ)λaB(σ) = PAB(σ) :=
∑
i

kiAB
σ − σi

(3.4)

Proof. We have

λaA(σ)λaB(σ) =
∑
ij

uiau
a
j εiAεjB

(σ σi)(σσj)
. (3.5)

There are no double poles because uiau
a
i = 0. The residue of the l.h.s. at σi is

ResσiλAa(σ)λaB(σ) = εi[A
∑
j

uiau
a
j εj|B]

(σiσj)
= εi[Auiaλ(σi)

a
B] .

The polarized scattering equations reduces the r.h.s. of this to

ResσiλAa(σ)λaB(σ) = εicκ
c
i[Aκ

b
B]ivib = 〈viεi〉κi[A|aκaB]i =: kiAB ,

as desired. �

When the scattering equations are not imposed, although the residue of ResσiP (σ) is

no longer ki, there is nevertheless an alpha-plane that contains both P (σi) and ki.

3.1 Linear form of equations, and existence and uniqueness of solutions

In this subsection we prove existence and uniqueness using algebro-geometric arguments.

We define the bundle over CP1 in which λaA, a = 0, 1, takes its values to show that it

is a rank-two bundle with canonically defined skew form, and so generically has a pair of

sections that can be normalized.

We work with bundles on CP1 which will be direct sums of line bundles O(n) whose

sections can be represented in terms of homogeneous functions of degree n in terms of

homogeneous coordinates σα, α = 0, 1 on CP1 with skew inner product (σiσj) := σi0σj1 −
σi1σj0. We prove:

Proposition 3.2 For each solution {σi} to the scattering equations and compatible polar-

ization data in general position, there exists a unique solution to the polarized scattering

equations (2.26), (2.27) and (2.28) up to a global action of SL(2,C) on the little-group index.
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Proof. Let PAB(σ) arise from the given solution to the scattering equations as the spinor

form of (2.1). To remove the poles, define Π(σ)AB := PAB
∏

(σσi) which is now holomor-

phic object of weight n − 2 on CP1 and is a null 6-vector so as a skew matrix has rank 2

on CP1 (for momentum and σi in general position it will be vanishing on CP1).

We require λaAP
AB = 0 for a = 0, 1 so to study solutions to this equation, define

the rank-2 bundle E = kerP ⊂ SA on CP1 where SA is the rank four trivial bundle of

spinors over CP1. To calculate the number of sections we wish to compute the degree of

this bundle. To do so consider the short exact sequence

0 −→ E −→ SA −→ E0(n− 2) −→ 0 , (3.6)

where the second map is multiplication by Π(σ)AB and E0(n − 2) ⊂ SA(n − 2) is the

annihilator of E twisted by O(n − 2), that being the weight of ΠAB. In such a short

exact sequence the degree of §A is the sum of that of E and E0(n − 2) since the degree

is the winding number of the determinant of the patching function, and the maps of the

exact sequence determine these up to upper triangular terms that don’t contribute to the

determinant. Since SA is trivial, it has degree 0, so we find

degE + degE0 + 2(n− 2) = 0 . (3.7)

Because E0 = (S/E)∗ and S is trivial, we have degE0 = degE so this gives degE = 2−n.

Now ΛaA := λaA
∏

(σσi) is a section of E(n−1) which by the above has degree n. Our

ΛaA is subject to the n conditions, one at each marked point, as we impose ΛaA|σ=σj ∝ εjA.

This has the effect of defining a subbundle with a reduction of degree by 1 at each marked

point, so the total degree is now zero. Thus this subbundle therefore has degree zero.

For data in general position, it will therefore be trivial with a two-dimensional family of

sections spanned by ΛaA, a = 0, 1. These can be normalized because Λ0[AΛ1B] = fΠAB

where f is a holomorphic function of the sphere of weight n. The conditions on ΛaA at σi
imply that f vanishes at each σi so f = c

∏
i(σ σi) and we can normalize our sections so

that c = 1 reducing the freedom in the choices of frame ΛaA to SL(2). On dividing through

by
∏
i(σ σi)

2 we obtain PAB = λaAλ
a
B . �

For the non-chiral theories that we are considering, we will need both chiralities of

spinors satisfying polarized scattering equations i.e, we can also define

λAȧ(σ) :=
∑
i

uiȧε
A
i

σ − σi
, uiȧλ

ȧA(σi) = viȧκ
ȧA
i . (3.8)

3.1.1 An explicit linear version of the polarized scattering equations

This is not essential to the logical structure of the paper and can be omitted by the casual

reader. However, the above argument is rather abstract and it is helpful to see explicitly at

least the underlying linearity of the problem of solving the polarized scattering equations.

However we have not been able to give explicit versions of all the algebro-geometric proofs

above.

According to the above, we are trying to find a pair of solutions λaA, a = 1, 2 to the

equations

P (σ)ABλB(σ) = 0 , (3.9)
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where λA(σ) has projective weight −1 in σ and P weight −2. The argument above gives

λA
∏

(σσi) as a section of E(n− 1) which has degree n and rank 2 so generically has n+ 2

global sections. To make this more explicit, make the ansatz10

λA =
∑
i

uiaiκ
ai
A

(σσi)
, (3.10)

which removes double poles from (3.9). Given that the total weight of (3.9) is negative, it

will be satisfied if the residues at its poles vanish. The vanishing of the residue at σi yields

kABi
∑
j

κ
aj
jB

σij
uajj + P (σi)

ABκaiiBuaii = 0 . (3.11)

Now define paȧi after solving the CHY scattering equations (2.2) by

PAB(σi)κ
a
iA = κBiȧp

aȧ
i . (3.12)

This makes sense at σi as κaiA annihilates the pole, and a second contraction with κbiB leads

to zero as it gives ki · P , so it must be a multiple of κBiȧ. We can understand this also by

considering the 2-form P (σi) ∧ ki which in spinors gives, using the above,

P (σi)ACk
BC
i = P (σi)

BCkiAC = pBiA , pBiA = κiAaκ
B
ȧp

aȧ
i . (3.13)

We can now see for example that

ei · P (σi) = [εi|pi|εi〉 , (3.14)

using eiAB = εi[Aε̃B]i where ε̃Aκ
AB
i = εBi . Following Cheung and O’Connell [19], we further

define

κȧaij := κAȧi κ
a
jA , (3.15)

that relate the ij-particles little group indices.

With this notation we see that (3.11) can be written as κAiȧ multiplied by

∑
a,j

H
ȧaj
ij uajj = 0, H ȧa

ij =


κȧaij
σij

i 6= j

paȧi i = j .
(3.16)

The discussion of the previous subsection implies that generically these equations have

n+ 2 solutions. These equations reduce to the original polarized scattering equations if we

supplement them with n further equations 〈εjuj〉 = 0, since we will then have uajj = εjajuj
as in the original ansatz (2.28). We then expect to find a pair of linearly independent

solutions uia, with a = 1, 2 now global little group indices, so that we now have

uaaii = εiaiu
a
i . (3.17)

10We attach the additional i-index to ai here to distinguish this uaii from the uia in the original ansatz

for λAa; the ai is a little group index associated to momentum ki rather than the global one associated to

λAa. We will drop these sub-indices when the equations are unambiguous.

– 20 –



J
H
E
P
0
8
(
2
0
2
0
)
0
6
6

In order to normalize these solutions, observe that for a pair of solutions λ1
A, λ

2
A to (3.9),

we must have that

λ1
[Aλ

2
B] = fPAB (3.18)

for some meromorphic function f on CP1 with poles at the σi. However, when we im-

pose (3.17), the double poles in (3.18) vanish and f must be constant, so we can normalize

the pair of solutions uai so that the coefficient is 1. The full n + 2-dimensional space of

solutions also has a volume form determined by (3.18).

In general (3.16) are 2n-equations on 2n-unknowns, so we must have n + 2 relations

to agree with the discussion of the previous subsection and to allow us to impose these

extra n conditions. The relations follow from the original equation (3.9) and the nilpotency

PABPBC = 0 that follows from the original scattering equations. This leads to the nilpotency∑
ja

Haȧ
ji Hjk

ḃ
a = 0 . (3.19)

This can be checked explicitly using a Schouten identity. We can use this nilpotency to

generate solutions

λA(σ) = P (σ)ABW
B(σ) , W (σ)A =

∑
i

κAiȧw
ȧ
i

(σσi)
(3.20)

where the WB has weight 1 in σ so wȧi has weight 1 in σi and 2 in σ. The ansatz guarantees

no double poles in λA and by taking residues we obtain11

uai =
∑
ȧ,j

Haȧ
ij wȧj . (3.22)

3.2 The equivalence of measures

We first show that

δ̄(k · P ) =

∫
d2u d2v δ4(EA)δ(〈εv〉 − 1) , with EA := 〈uλA〉 − 〈vκA〉 . (3.23)

After integrating out the four components of (ua, vb), we are left with a single delta-function

on both sides of the equation. It is easy to see that they have the same support as the

latter delta function on the left implies that va 6= 0, but this can only be true when (λaA, κ
b
A)

have rank less than four, which happens iff εABCDλ0
Aλ

1
Bκ

0
Cκ

1
D := k · P = 0. Furthermore the

weights in λaA and κaA are −2 on both sides. A systematic proof uses a basis with εa = (0, 1),

κ0
3 = κ1

4 = 1 and all other components zero. This allows us to integrate out the va directly

against the delta functions reducing the right side to∫
d2u δ(uaλ

a
0) δ(uaλ

a
1) δ(uaλ

a
3 − 1) = δ(〈λ0 λ1〉) , (3.24)

11We also have the special solutions when W (σ)A has no poles that leads to the 8 solutions

uai = κiaA(WA
0 + σiW

A
1 ) . (3.21)
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where the latter equality follows by direct calculation integrating out the ua; this

gives (3.23) in this basis.

The CHY measure is defined to be

dµCHY
n := δ6 (K)

∏n
i=1 δ̄(ki · P (σi))dσi

Vol(SL(2,C)σ × C3)
= δ6 (K) (σ12σ23σ31)2

n∏
i=4

δ̄(ki · P (σi))dσi , (3.25)

where K =
∑

i ki, the volume of SL(2,C)σ quotients by the Möbius invariance of σ, and the

C3 is a symmetry of the ambitwistor string whose quotient removes the linearly dependent

scattering equations delta functions.

Proposition 3.3 We have

dµpol
n :=

∫ ∏n
i=1 d

2ui d
2vi dσi δ

4(EiA)δ(〈εivi〉 − 1)

Vol(SL(2,C)σ × SL(2,C)u)
= dµCHY

n , (3.26)

where SL(2,C)σ denotes Möbius invariance of σ as above in the CHY measure, the

SL(2,C)u is acting on the little group index of ua, and the integrals are over the (ui, vi)

variables.

Proof. We first reduce the SL(2,C)σ factor fixing (σ1, σ2, σ3) to be constant with the

standard ∏
i dσi

Vol SL(2,C)σ
= σ12σ13σ23

∏
i≥4

dσi . (3.27)

Similarly Faddeev-Popov gauge fixing12 SL(2,C)u by

ua1 = (1, 0), ua2 = (0, u12), ua3 =

(
−u23

u12
, u13

)
, (3.28)

so that uij = 〈uiuj〉 for i < j ≤ 3 yields∏
i d

2ui
Vol SL(2)u

= du12du13du23

n∏
i=3

d2ui , (3.29)

On the support of the delta functions
∏
i>3 δ

4(EiA) we can write, using (3.2),

KAB =

(
3∑
i=1

εi[AEiB]

)
. (3.30)

We can trivially perform one of each of the vi integrals against the δ(〈viεi〉 − 1) delta

functions by choosing a basis of the little group spin space for each i so that εia = (1, 0)

fixing vai = (vi, 1).

Choosing a basis of spin space consisting of {εiA, ε0A} with i = 1, 2, 3 and ε0A chosen

so that 〈0123〉 = 1, and dual basis ε̃Ai , i =, 0, . . . , 3 we find via (3.30)

K0i = Ei0 , Kij = E[ij] , (3.31)

12This entails contracting a normalized basis of the Lie algebra of SL(2,C)u into the form
∏
i d

2ui and

restricting to the given slice.
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so that these polarized scattering equations can be replaced by δ6(K). The remaining

scattering equations in
∏3
i=1 δ

4(EiA) are, for i, j = 1, . . . , 3,

E(ij) =


uij
σij

+ . . . i 6= j

vi + . . . , i = j
(3.32)

where the . . . denotes terms involving i, j > 3. Thus we can integrate out duij and dvi
against these remaining polarized scattering equation delta functions δ(E(ij)) for i, j ≤ 3

yielding an extra numerator factor of σ12σ23σ13.

Finally we can use (3.23) to replace the remaining polarized scattering equations delta

functions by standard ones thus yielding the desired formula. �

4 Integrands

In this section, we discuss the integrands In and the supersymmetry representation in more

detail. We first show that the spin-one contribution det ′H is permutation invariant, and

that it is equivalent to the CHY pfaffian Pf ′M in providing the correct dependence on

the spin-one polarization data. We move on to giving further details of the supersymme-

try factors and of the ingredients required for brane theories. Finally, we prove crucial

properties such as linearity of the spin-one contribution in the polarization data, and the

compatibility of the reduced determinant with the supersymmetry representation.

4.1 The kinematic reduced determinant det ′H

For our ambidextrous spin one contribution, recall that we defined an n× n matrix H by

Hij =


εiAε

A
j

σij
i 6= j

ei · P (σi) , i = j
, (4.1)

where ei is the null polarization vector above and P (σ) is as defined in (2.1). We first prove

the equivalence between this definition of Hii and that in (2.52). In order to use the vector

representation of the polarization vector, we introduce a spinor ε̃A so that εA = kAB ε̃B.

Then the polarization vector is eAB = ε[Aε̃B]. The equivalent definition of Hii (2.52) is

λaA(σi)ε
A
i = −uiaHii , λȧA(σi)εiA = −uȧiHii . (4.2)

The left side is a multiple of uia (or uȧi ) due to the scattering equation and the identity

kABκaA = 0. Starting from the second last formula we obtain the first from

ei · P (σi) = ε[Aε̃B]λaA(σi)λ
a
B(σi) = −Hiiε̃

Buaλ
a
B(σi) = −Hiiε̃

Bvaκ
a
B = −Hii . (4.3)

This then, being neither chiral nor antichiral justifies the equivalence.

The matrix Hij is not full rank because∑
i

uiaHij = λaA(σj)ε
A
j + ujaHjj = 0 , (4.4)
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and so, as above, we define the generalized determinant

det ′(H) :=
det(H [ij])

〈uiuj〉[uiuj ]
=

det(H
[i1i2]
[j1j2])

〈ui1ui2〉[uj1uj2 ]
(4.5)

where H [ij] denotes the matrix H with the ij rows and columns deleted and H
[i1i2]
[j1j2] the

matrix with the with rows i1, i2 and columns j1, j2 removed. These are well-defined as

Lemma 4.1 The generalized determinant defined above is permutation invariant.

Proof. We can extend the argument of appendix A of [26] on such generalized determi-

nants as follows.

Consider an n × n matrix Hj
i with a p-dimensional kernel and cokernel, i.e., that

satisfies
∑

iw
i
aH

j
i = 0 and

∑
j H

j
i w̃

b
j = 0 where a, b = 1, . . . , p. We must also assume

that there are volume p-forms on these kernels, 〈w1 . . . wp〉 and [w̃1, . . . w̃p]. Our reduced

determinant can be understood as the determinant of the exact sequence

0→ Cp w̃→ Cn H→ Cn w→ Cp → 0 . (4.6)

To make this explicit, note that we have

εj1...jnε
i1...inH

jp+1

ip+1
. . . Hjn

in
〈w1 . . . wp〉〈w̃1 . . . w̃p〉 = det ′(H)w

[i1
1 . . . w

ip]
p w̃1

[j1
. . . w̃pjp] (4.7)

for some det′(H). This formula follows because skew symmetrizing a free index on the left

with a wr or w̃r vanishes as it dualizes via the ε to contraction with Hj
i . Thus it must

be a multiple of the right hand side as defined. The definitions (4.5), (2.54) then follow

by taking components of this definition in the case p = 2 on the i1, i2, j1, j2 indices. In

our context the natural volume form on the kernel is defined on the 2-dimensional space

of uiai = uiεai by the f on the right hand side of (3.18) but for our polarized scattering

equation framework, the normalizations are such that this is 1 so the bracketed terms on

the left of (4.7) reduce to unity in (4.5). �
Note that the first term on the left side of (4.7) is simply the pth derivative of detH

where we have to relax the scattering equations and momentum conservation to make the

determinant not identically zero. The CHY matrix is also non-degenerate away from the

support of the scattering equations and momentum conservation. We have

Proposition 4.1 The determinant is related to the full CHY Paffian by det(H) = Pf M .

Proof. We use the form of the CHY Pfaffian due to Lam & Yao [42]. They show that

the full Pfaffian of M can be expanded into a sum over the permutations ρ ∈ Sn of the

particle labels,

Pf
(
M
)

=
∑
ρ∈Sn

sgn(ρ)MI . . .MJ , (4.8)

where each term has been decomposed into the disjoint cycles I = (i1 . . . iI), J = (j1 . . . jJ)

of the permutation ρ. The terms in this cycle expansion are given by

MI =

{ tr(Fi1 ...FiI )

σI
if |I| > 1 ,

Cii if I = {i} ,
(4.9)

and σI =
(
σi1i2 . . . σiI i1

)−1
denotes the Parke-Taylor factor associated to the cycle.
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Euler’s formula for the determinant of H similarly gives

det(H) =
∑
ρ∈Sn

sgn(ρ)HI . . . HJ (4.10)

where the terms HI are given by

HI = Hi1i2 . . . HiI i1 =

{ tr(Fi1 ...FiI )

σI
if |I| > 1 ,

Hii if I = {i} ,
. (4.11)

Here the trace over the F s is taken in the spin representation and we have Cii = Hii hence

the equivalence. �
This result provides some circumstantial evidence that Pf ′M = det′H on the support

of the scattering equations, but we do not have a direct proof. We prove this only indirectly

via factorization in section 7.2. Our det′H can therefore be used as a half-integrand in

place of Pf ′(M) in the theories as described in [31] to give full integrands

Yang-Mills: PT(α) det ′H (4.12a)

Gravity: det ′H det ′H̃ (4.12b)

D5-branes: det ′A det ′H . (4.12c)

4.2 The supersymmetry factors and transform to little-group preserving rep-

resentation

Here we show that the supersymmetry factors eFN , with

FN = F pol
N − 1

2

n∑
i=1

〈ξivi〉 q2
i , F pol

N =
∑
i<j

〈uiuj〉
σij

qiIq
I
j , (4.13a)

F̃Ñ = F̃ pol

Ñ
− 1

2

n∑
i=1

[ξivi] q̃
2
i , F̃ pol

Ñ
=
∑
i<j

[ũiũj ]

σij
q̃iİ q̃

İ
j . (4.13b)

are invariant under supersymmetry. The full supersymmetry generator for n particles is

defined by the sum QAI =
∑n

i=1QiAI for each particle as defined by (2.43),

QiAI = 〈ξiκiA〉qiI + εiA ΩIJ

∂

∂qiJ
, Q̃A

iİ =
[
ξiκ

A
i

]
q̃iİ + εAi Ω̃İ J̇

∂

∂q̃iJ̇
. (4.14)

Superamplitudes must be supersymetrically invariant and so are annihilated by the total

QAI and indeed this determines the amplitude for the whole multiplet from the amplitudes

involving only the top of the multiplets.

It is easily verified that the supersymmetry factors give an amplitude that is supersy-

metrically invariant, since

QAI e
FN =

∑
i

(
〈ξiκiA〉+ 〈ξivi〉εiA

)
qiI −

∑
i,j

〈uiuj〉 εiA
σij

qjI

 eFN

=

∑
i

〈viκiA〉 qiI −
∑
i,j

〈uiuj〉 εiA
σij

qjI

 eFN = 0 , (4.15)
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and similarly QA
İ
eF = 0. Here, the second equality follows from vi = ξi + 〈ξivi〉εi, and the

sum vanishes on the support of the polarized scattering equations. Conversely, given an in-

tegrand In for the top states of a multiplet, (2.50) is the unique supersymmetric completion

using the supersymmetry representation (2.43), as can be verified using supersymmetric

Ward identities.

The little-group preserving supersymmetry representation. In six dimensions,

amplitudes can alternatively be written in a supersymmetry representation that breaks

R-symmetry, but preserves little group symmetry. We construct this representation by

choosing an N -dimensional subspace on which ΩIJ vanishes indexed by l,m = 1 . . .N so

that aI = (al, al) with ΩIJa
IbJ = albl − blal. Then

QI
A = (QlA,QAl) = κaA(Qla, Qal) (4.16)

satisfying

{Qla, Qmb } = 0 = {Qal, Qbm} , {Qal, Qmb } = εabδ
m
l , (4.17)

with similar relations for QAİ = (QAl, QA
l ) = κAȧ(Qȧl, Qȧl ). Thus we can introduce supermo-

menta ηla as fermionic eigenvalues of Qla so that our supermomentum eigenstates satisfy

Qlaφ = ηlaφ , Qlaφ =
∂φ

∂ηla
, Q̃lȧφ = η̃lȧφ , Q̃lȧφ =

∂φ

∂η̃lȧ
. (4.18)

This clearly gives a representation of (4.17). For N = (1, 1) super Yang-Mills, we can

replace the l-index by ‘1’ when l = 1 is an upper index and ‘2’ when l is a lower index to find

ΦLG = φ11̇ + ηaψ
a1̇ + η̃ȧψ̃

1ȧ + ηaη̃ȧA
aȧ + η2φ21̇ + η̃2φ12̇ + · · ·+ η2η̃2φ22̇ , (4.19)

for the R-symmetry breaking representation.13

Fermionic Fourier transform. The sets of supermomenta from the R-symmetry pre-

serving representing are related to those above by decomposing qI = (ql, q
l) and observing

that the definitions allow us to identify

η1l := ηεl = εaηal = ql , η2l := ηξl = ξaηal =
∂

∂ql
. (4.20)

The latter relation implies a fermionic half-Fourier transform on the supermultiplets written

for general (N, Ñ) as

ΦR =

∫
dNη2 d

Ñη̃2̇ e
qlη2leq̃

lη̃2̇l ΦLG

∣∣∣∣∣η1l=ql
η̃1̇l=q̃l

, ΦLG =

∫
dNq dÑq̃ e−q

lηξle−q̃
lη̃ξ̃l ΦR

∣∣∣∣∣ql=ηεl
q̃l=η̃ε̃l

.

(4.21)

As discussed in section 2.5, we can implement the fermionic half-Fourier transform at the

level of the amplitudes. Starting from the exponential (R-symmetry preserving) represen-

tation, we find that the supersymmetry factors turn into delta-functions that mimic the

13The indices are chosen to agree with the conventions in [15, 16].
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polarized scattering equations,

∫ n∏
i=1

dNqli
∏
j

e−q
l
jηξl eFN =

∏
i

δ0|N

∑
j

〈uiuj〉
σij

〈εjηjl〉 − 〈viηil〉

 =: ∆0|N
n . (4.22)

In this representation, it is convenient to include the fermionic delta-functions in the defi-

nition of the measure, dµ
pol|N+Ñ
n = dµpol

n ∆
0|N
n ∆̃

0|Ñ
n . We remark that in this delta-function

representation of the superamplitude, all components are monomials in the Grassmann

variables η, and the all-gluon amplitude sits in the middle of the multiplet (4.19). It is

straightforward to check that we recover the integrand det ′H of the gluon amplitude in

the top state by extracting the component proportional to
∏
i〈viηi〉[ṽiη̃i].

We can also verify directly that the supersymmetry factors ∆
0|N
n are invariant under

supersymmetry, and that superamplitudes in the delta-function representation are annihi-

lated by the supersymmetry generator QAI , defined as before by the sum QAI =
∑n

i=1QiAI .

This is particularly easy to see for the multiplicative operator QAl, which vanishes on the

support of the polarized scattering equations,

QAl ∆
0|N
n =

n∑
i=1

κaiAηila ∆0|N
n =

∑
i,j

〈uiuj〉
σij

(
− 〈εiηil〉εjA + 〈εjηjl〉εiA

)
∆0|N
n = 0 . (4.23)

Here we have used both the support of the polarized scattering equations and their

fermionic analogues, and the last equality holds because the argument of the sum in i

and j is skew symmetric. The remaining supersymmetry generators annihilate the super-

amplitude by a similar argument,

QlA ∆0|N
n =

n∑
i=1

κaiA
∂

∂ηail
∆0|N
n =

∑
i,j

〈uiuj〉
σij

(
−εjAEFj + εiAEFi

)
∆

0|N
n [iljl]

= 0 , (4.24)

where EFi denote the fermionic delta-functions, and ∆
0|N
n [iljl]

is the usual product (4.22), but

with the delta-functions EFil , EFjl removed. The sum vanishes again by the skew-symmetry

of its argument.

4.3 M5 and D5 theories

We first recall the ingredients for D5 and M5-branes. These are supersymmetric theories

that share a scalar sector with Lagrangian of the form L ∼
√
− det(ηµν + k

∑
r ∂µφ

r∂νφr).

For D5 branes r = 1, . . . , 4 and for M5 branes r = 1, . . . , 5 thought of as transverse coor-

dinates to 6d worldvolumes in 10d or 11d respectively. D5-branes are naturally completed

with (1, 1)-supersymmetry, and M5 with (2, 0)-supersymmetry. In the case of D5-branes,

the linearised multiplet then coincides with the (1, 1) super-Maxwell multiplet (2.36). The

Lagrangian for the bosonic parts of the multiplet extends the Born-Infeld action to give

L ∼

√√√√− det

(
ηµν + k

∑
3

∂µφr∂νφr + κFµν

)
.
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For M5 branes, the (2, 0) supermultiplet is (GAB, ψIA, φIJ) with φIJ = φ[IJ ] and φIJΩIJ =

0. Here the spinor GAB = G(AB) corresponds to a self-dual 3-form whose linearized equa-

tions are that it should be closed (and hence co-closed by self-duality). Such a field is

known as a Gerbe, often thought of as a curvature associated to a 2-form potential BB
A .

See [43] for a modern review.

There are CHY formulae [31] for the bosonic brane theories with any number of scalars,

and further including the Born-Infeld contribution. As in [17], we follow the strategy in [15]

that obtains full superamplitudes for D5 and M5 theories by incorporating supersymmetry

factors on top of these CHY formulae for scalar amplitudes. This makes use of the fact that

both theories share an SU(2) subsector of the scalars. The full supersymmetric amplitudes

can then be reconstructed from the known scalar amplitudes in this sector by applying

supersymmetry. We go on to explain their relationship with the half-integrands (2.56)

given in the introduction.

The D5 integrand. The bosonic part of this is well-known from [31] in the original

CHY-format, where it takes the form ID5 = det ′APf ′M . Substituting the spin-one half-

integrand in the 6d spinor-helicity formalism, and inserting the correct supersymmetry

factors immediately gives the 6d integrand

ID5 = det ′A det ′H eF1+F̃1 , (4.25)

of the full superamplitudes. We can now extract the shared subsector of scalar amplitudes

from this D5 integrand by a suitable integration over the super momenta qI , q̃İ . For an

all-scalar amplitude where we scatter generic scalars φJiJ̇ii , the integrand takes the form

IJ1J̇1...JnJ̇n
D5 =

∫ n∏
i=1

d2qi d
2q̃i q

Ji
i q̃

J̇i
i ID5 = det ′A det ′H (Pf U)J1...Jn (Pf Ũ)J̇1...J̇n . (4.26)

Here, U and Ũ are n × n matrices carrying the R-symmetry indices of the scalars, with

entries

U JiJjij =
〈uiuj〉
σij

ΩJiJj , Ũ J̇iJ̇jij =
[ũiũj ]

σij
ΩJ̇iJ̇j , (4.27)

and Pf U and Pf Ũ are defined by specifying the R-symmetry indices, and then taking the

Pfaffian as usual. To construct the M5 integrand, we further have to restrict this amplitude

to the shared SU(2) scalar subsector between M5 and D5 theory, which is the subspace of

non-self-interacting scalars of the respective theories. This sector can be constructed along

similar lines to the discussion in section 4.2. Let us choose again anN -dimensional subspace

of the supersymmetry generators on which the metric ΩIJ vanishes, indexed by aI = (al, al)

with ΩIJa
IbJ = albl − blal. From this we can directly construct two non-self-interacting

scalar subsectors, Y = {φll̇} and Y = {φll̇} for D5, and Y = {φlm} and Y = {φlm} for M5.

Any other non-self-interacting subsector is related to Y and Y by an SU(2) transformation.

Note that each of the non-self-interacting subsectors contains exactly one scalar state; this

is obvious for D5, where φll̇ = φ11̇
LG and φll̇ = φ22̇

LG in the notation of the last section, and for

M5 theory this follows from the antisymmetry constraint on the scalar indices, φIJ = −φJI .
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Moreover, amplitudes in this SU(2) subsector are non-trivial, as long as n/2 of the scalars

are in Y , and the other n/2 in Y . This is most easily seen in the R-symmetry breaking

representation, where the multiplets take the form

ΦLG
D5 = φ11̇

LG + ηaψ
a1̇ + η̃ȧψ̃

1ȧ + ηaη̃ȧA
aȧ + η2φ21̇

LG + η̃2φ12̇
LG + · · ·+ η2η̃2φ22̇

LG , (4.28a)

ΦLG
M5 = φLG + ηalψ

al + εlmηalηbm Bab + ηalη
a
m φ

lm
LG + (η3)al ψ̃al + η4 φ̃LG , (4.28b)

with φLG = φlm, φ̃LG = φlm and φlmLG = εmnφln in the M5 multiplet. In this representation,

amplitudes are monomials of degree 2n in the fermionic variables, so scalar amplitudes

from the SU(2) subsector are generically non-trivial when n/2 particles are in Y , as claimed

above.

Using this construction, we can restrict the generic scalar amplitudes of (4.26) to the

SU(2) subsector with |Y | = |Y | = n/2. The matrices U and Ũ then take the form

U =

(
0 UY

−UTY 0

)
, Ũ =

(
0 ŨY

−ŨTY 0

)
, (4.29)

where UY and ŨY are n/2× n/2 matrices with entries UY ip = U
(1,0)
ip and ŨY ip = U

(0,1)
ip for

i ∈ Y and p ∈ Y . In this SU(2) scalar subsector, the scalar D5 amplitudes are thus given

by

ISU(2)
D5 = det ′A det ′H detUY det ŨY . (4.30)

We can compare this to the same scalar subsector in the CHY formalism [31], where the

integrand is given by ISU(2)
D5 = (Pf ′A)3 detXY . Here, XY is an n/2 × n/2 matrix with

entries XY ip = σ−1
ip , again with for i ∈ Y and p ∈ Y . This gives the identity

detXY

detUY det ŨY
Pf ′A = det ′H . (4.31)

The M5 integrand. As discussed above, the scalar amplitudes (4.30) are the same in

both the M5 and D5 theory. Supersymmetry then uniquely determines the M5 integrand

IM5
n from this SU(2) scalar subsector as follows. Consider the following generic ansatz for

the M5 superamplitude,

AM5
n =

∫
dµpol

n IM5 e
F2 . (4.32)

By integrating over suitable supermomenta qI , we can again extract the SU(2) scalar sector,

and a similar calculation to the above D5 case gives

ISU(2)
M5 = IM5 det 2UY . (4.33)

There is no contribution of the local terms −1
2

∑
i〈ξivi〉q2

i ⊂ F2 in the exponential because

the scalars obey ΩIJφ
IJ = 0. As discussed above, the amplitudes (4.33) in the SU(2)

scalar subsector have to agree with the D5 case (4.30), which uniquely determines the M5

integrand to be

IM5 = det ′A det ′H
det ŨY
detUY

=
(
Pf ′A

)3 detXY

det 2UY
, (4.34)

where the second equality follows from (4.31).
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While this gives a valid formula for the M5 integrand, it obscures the permutation

invariance of the Gerbe amplitudes, because the integrand superficially seems to depend

on Y . However, it turns out that all of the combinations

det ŨY
detUY

,
detXY

det 2UY
,

detXY

detUY det ŨY
, (4.35)

are in fact permutation invariant, and in particular independent of the choice of Y . This

can be made manifest, as pointed out in [21], by using results first derived in [32] relating

the above ratios to Pfaffians of a family of matrices U (a,b), defined as before by

U
(a,b)
ij =

〈uiuj〉a [ũiũj ]
b

σij
. (4.36)

The main theorem we will need here, derived in [32], gives a fundamental identity for the

splitting of the Pfaffian Pf U (a,b) into two determinants,

Pf U (a,b) =
detU

(a1,b1)
Y1

VY1VY 1

detU
(a2,b2)
Y2

VY2VY 2

V , with a = a1 + a2 , b = b1 + b2 . (4.37)

Here, V denotes the Vandermonde determinant, and VY1,2 are the Vandermonde de-

terminants for the subsets Y1,2 etc. Ref. [32] further proves that each of the factors

detU
(a1,b1)
Y1

/VY1VY 1
are invariant under the full Sn permutation group, despite only mani-

festing permutation invariance on the subgroup Sn/2×Sn/2×Z2. The only further identity

we will need is for detXY , which can be expressed as

detXY =
V 2
Y V

2
Y

V
. (4.38)

If we choose Y1 = Y2 = Y in (4.37), we thus find that

Pf U (a,b) =
detU

(a1,b1)
Y detU

(a2,b2)
Y

detXY
. (4.39)

This gives manifestly permutation invariant formulae for all of the ratios in (4.35),

Pf U (2,0) =
det 2UY
detXY

, Pf U (1,1) =
detUY det ŨY

detXY
, (4.40)

from which we deduce the following manifestly permutation invariant representation fo

the M5 half-integrand, as well as the following relation between the reduced determinant

det ′H and det ′A,

Ih
M5 =

Pf ′A

Pf U (2,0)
, det ′H =

Pf ′A

Pf U (1,1)
. (4.41)

In particular, the full M5 superamplitude takes the form

AM5
n =

∫
dµpol

n det ′A
Pf ′A

Pf U (2,0)
eF2 . (4.42)

– 30 –



J
H
E
P
0
8
(
2
0
2
0
)
0
6
6

This integrand now manifests N = (2, 0) supersymmetry and is manifestly chiral and

permutation invariant. We note that all dependence on the polarization data is encoded

by the Pfaffian Pf U (2,0), an argument similar to the one presented in section 4.5 guarantees

that the amplitude is indeed linear. While the integrand is guaranteed to be correct by

construction (supersymmetry and agreement with the SU(2) scalar subsector of D5 theory),

we verify in section 6 that both M5 and D5 amplitudes agree upon dimensional reduction

to five dimensions as an additional check.

4.4 Consistency of the reduced determinant with the supersymmetry repre-

sentation

Our gauge (and gravity) formulae in effect give two different representations of bosonic

amplitudes with gluons coming from different parts of the multiplets. One comes from

simply substituting gluon polarizations from different parts of the multiplet in the kinematic

integrand det ′H and the other from expanding out the supersymmetry factors. In this

subsection we show that these give the same formulae.

When a subset I of the particles are in states at the bottom of the (chiral part of the)

supersymmetry multiplet, the integrals over the supercharges lead to the integrand

Ih
n = detU I det ′H eF

Ī+F̃ , (4.43)

where U Iij = U
(1,0)
ij and the superscripts indicate the restriction to the subsets I and Ī

respectively. On the other hand, for any choice of polarization data, the integrand for

gluons (gravitons) takes the form of a reduced determinant,

I
vi1 ...vi|I|
n = det ′HI eF

Ī+F̃ , with HI
ij =

Hij i /∈ I
〈ξiκiA〉εAj

σij
i ∈ I ,

(4.44)

where HI is defined with polarization spinors 〈ξiκiA〉 instead of εiA for i ∈ I. For the super-

symmetry to be compatible with the representation of the integrand, the two prescriptions

for the amplitude must agree, Ih
n = I

ξi1 ...ξi|I|
n .

A lemma on reduced determinants. To prove the equivalence of (4.43) and (4.44),

the general strategy will be to first identify the relation between H and HI . To draw

conclusions about the behaviour of their reduced determinants though, we will need a few

results discussed in appendix A of [26], which we review here for convenience.

In contrast to regular determinants, it does not make sense to ask how a reduced

determinant behaves under the addition of an arbitrary vector to a row or column of H,

because this will in general spoil the linearity relations among its rows and columns. On the

other hand, we can define a new reduced determinant by multiplication with an invertible

n× n matrix U , since this leaves the (full) determinant detH = det Ĥ = 0 unaffected,

Ĥj
i := Uki H

j
k . (4.45)
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Since the kernel and co-kernel of H are spanned by w and w̃,14 the kernel of Ĥ = UH is

ŵ = U−1w. To be explicit, Ĥ and ŵ satisfy relations analogous to (2.53),∑
i

ŵiaĤ
j
i = 0 ,

∑
j

w̃bjĤ
j
i = 0 , for ŵia =

(
U−1

)i
k
wka . (4.46)

We can thus define a reduced determinant det ′Ĥ as in (4.7) by

εi1i2...inεj1j2...jnĤ
jp+1

ip+1
. . . Ĥjn

in
〈ŵ1 . . . ŵp〉

[
w̃1 . . . w̃p

]
= det ′Ĥ ŵ

[i1
1 . . . ŵ

ip]
p w̃1

[j1
. . . w̃pjp] .

(4.47)

Let us multiply this equation by p factors of U . On the right-hand-side, this cancels

the factors of U−1 from the kernel ŵ
[i1
1 . . . ŵ

ip]
p , whereas on the left, it combines with the

(n−p) factors from Ĥ = UH to detU . Putting this all together, we arrive at the following

lemma [26]:

Lemma 4.2 Under multiplication by an invertible matrix U , the reduced determinant of

a matrix Ĥ := U H behaves as

det ′Ĥ = detU det ′H , (4.48)

with the reduced determinant defined using the kernel ŵ = U−1w.

This implies in particular that the usual row- and column operations leave the reduced

determinant unaffected, det ′Ĥ = det ′H, due to detU = 1.

Equivalence of the reduced determinants. Lemma 4.2 now allows us to prove the

compatibility of the supersymmetry representation with the reduced determinant. We first

note that on the support of the polarized scattering equations, HI and H are related via

HI
ij =

∑
k 6=i

〈uiuk〉
σik

εkAε
A
j

σij
− 〈ξivi〉

εiAε
A
j

σij

=
∑
k 6=i

〈uiuk〉
σik

Hkj −
1

σij

∑
k 6=i
〈uiuk〉Hkj︸ ︷︷ ︸

=0

−〈ξivi〉Hij =:
∑
k

U IikHkj , (4.49)

for i ∈ I. In the second equality, the middle term vanishes because u spans the kernel of

H, and we use the last equality to define U I . Combining the above result with HI
ij = Hij

for i /∈ I, we thus have

HI = U IH , with U Iij =


U

(1,0)
ij i 6= j , i ∈ I
−〈ξivi〉 i = j ∈ I
δij i /∈ I .

(4.50)

Since detU I is generically non-zero, and Lemma 4.2 gives directly that

det ′HI = detU I det ′H , (4.51)

confirming the equivalence of the two prescriptions.

14As discussed above, for super Yang-Mills and supergravity, we take wia = uia, where a denotes the

chiral little group index, and similarly for w̃ḃj = ũḃj .
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4.5 Linearity in the polarization data

As another important check on the amplitudes (2.58), we verify that they are multilinear

in the polarization data. This is of course a mandatory requirement for amplitudes, but

is not manifest in the integrands for gauge and gravity theories because the reduced de-

terminants depend on the u-variables and these can potentially depend in a complicated

way on the polarization data via the polarized scattering equations. We first observe that

linearity is manifest for amplitudes with two external scalars and n− 2 gluons. Given the

supersymmetry of the formulae this provides strong circumstantial evidence. Then we show

explicitly that the reduced determinant is linear on the support of the polarized scattering

equations and go on to the full superamplitude.

4.5.1 Linearity from supersymmetry

Linearity of the gluon states is most easily seen from the mixed amplitudes with two

external scalars, e.g. j = 1, 2, and n− 2 gluons. In this case, we can choose to reduce the

determinant det ′H on the scalar states, giving

Aφ1φ2ε3ε̃3... =

∫
dµpol

n

1

σ2
12

detH
[12]
[12] PT(α) . (4.52)

The integrand is then manifestly independent of {ui, vi} as well as ε1,2, and only depends on

the punctures σi and the polarization of the gluons. Due to the invariance of the measure

established by Proposition 3.3, the ‘polarization’ spinors of the scalars ε1,2 are choices of

reference spinors. For the gluons on the other hand, the integrand is now manifestly linear

in εi. Supersymmetry then guarantees that linearity extends to the all-gluon amplitude.

The consistency between the supersymmetry representation and the reduced determi-

nant discussed in the last section further guarantees that the argument above holds for

gluons both at the top and the bottom of the multiplet; we simply replace H by HI . For

gravity and brane-amplitudes, the argument is completely analogous, and follows again

from the multilinearity of the amplitude Mφ1φ2ε3ε̃3... with two scalars and n− 2 gravitons.

4.5.2 Linearity for non-supersymmetric amplitudes

We now study the dependence of the reduced determinant on the polarization data directly

by expanding the spinors εa in a basis. This gives the desired linearity for pure Yang-Mills

and gravity directly, where the above supersymmetry argument seems excessive, but can

equally be applied to supersymmetric theories. We first discuss (chiral) linearity for gluons,

but the proof extends straightforwardly to linearity in the anti-chiral polarization data, as

well as (bi-)linearity for gravity amplitudes.

Consider the amplitude Aε1 or the superamplitude Aε1 , where one of the particles is a

gluon with polarization ε1, and all other particles are in arbitrary states. We can expand

ε1 in an (arbitrarily chosen) polarization basis ζa1 , ζ
a
2 via

εa1 = α1ζ
a
1 + α2ζ

a
2 , with 〈ζ2ζ1〉 = 1 . (4.53)

It will be helpful to think of this new basis (ζ1, ζ2 =: ξζ1
1 ) as playing a similar role to (ε1, ξ1),

both in the polarized scattering equations and in the integrands. To prove linearity of the
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(super-) amplitudes in the polarization, we then have to show that amplitudes in the two

different bases are related via

Aε1 = α1A
ζ1 + α2A

ζ2 , (4.54)

where the amplitudes Aε1 and Aζr are respectively given by

Aε1 =

∫
dµpol

n det ′H PT(α) , Aζr =

∫
dµpol,ζr

n det ′Hζr PT(α) , (4.55)

and the superscripts ζr indicate that the respective quantities are defined using the po-

larization ζr. For the measure, Proposition 3.3 guarantees that dµpol
n = dµ

pol,ζr
n , but the

integration variables u
ζr
i = ui(ζr) defined by dµ

pol,ζr
n enter into the definition of the reduced

determinant det ′Hζr . Since the measure and the Parke-Taylor factors are invariant un-

der changes of polarization, the linearity relation (4.54) for the amplitude is equivalent to

linearity of the spin-one contribution;

det ′H = α1 det ′Hζ1 + α2 det ′Hζ2 , (4.56)

where the (implicit) map between {ui, vi} on the left-hand side and {uζri , v
ζr
i } on the right

hand side is determined by the polarized scattering equations.

Proposition 4.2 For εa1 = α1ζ
a
1 + α2ζ

a
2 expand also va1 = β1ζ

a
1 + β2ζ

a
2 so that 〈ε1v1〉 = 1

gives α1β2 − α2β1 = 1. Then we have that {ui, vi} and {uζri , v
ζr
i } are related by

va1 = β2 v
ζ1 a
1 ua1 = β2 u

ζ1 a
1 (4.57a)

vai = vζ1 a
i + α2β2

〈uζ1
1 u

ζ1
i 〉2

σ2
1i

εai uai = uζ1 a
i − α2β2

〈uζ1
1 u

ζ1
i 〉

σ1i
uζ1 a

1 , (4.57b)

with identical expressions for {ui, vi} in terms of {uζ2
i , v

ζ2
i }.

Proof. First note that the punctures σi are unaffected so we omit the superscripts here.

First write εa1 = (ζa1 + α2v
a
1)/β2. Using this, the polarized scattering equations Ei can be

written in the form

E1A =
∑
j 6=1

〈u1uj〉
σ1j

εjA−〈v1κ1A〉 (4.58)

EiA =
∑
j 6=1,i

(
〈uiuj〉
σij

+
α2

β2

〈u1ui〉
σ1i

〈u1uj〉
σ1j

)
︸ ︷︷ ︸

!
=
〈uζ1

i
u
ζ1

j
〉

σij

εjA+
1

β2

〈u1ui〉
σ1i

〈ζ1κ1A〉−
(
〈viκiA〉−

α2

β2

〈u1ui〉2

σ2
1i

εiA

)
︸ ︷︷ ︸

!
=〈vζ1

i κiA〉

.

It is now simple to map this to the polarized scattering equations Eζ1
i via the change of

variables (4.57a). �
As an aside, although Proposition 3.3 implies that the measures are unchanged, it is

easily checked directly that dµpol
n = dµpol,ζ1

n : the rescaling (4.57a) gives an overall factor
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of β−4
2 coming from the scattering equation δ(E1) = β−4

2 δ(Eζ1
1 ), which exactly compensates

the factor from d2u1d
2v1 = β4

2 d
2u
ζ1
1 d

2v
ζ1
1 . The remaining part of the measure is invariant

under the linear shift in α2β2, and thus the polarized measure is invariant under the choice

of polarization data.

Theorem 2 With the above definitions

det ′H = α1 det ′Hζ1 + α2 det ′Hζ2 . (4.59)

Proof. For each solution to the scattering equations, the above correspondence (4.57)

maps the reduced determinant by

det ′H =
1

〈u1ui〉 [ũ1ũi]
detH

[1i]
[1i] =

1

β2
det ′Hζ1 . (4.60)

Here, we have reduced on particle 1 for convenience, and used the fact that the diagonal

entries Hii for i 6= 1 are independent of the polarization ε1 by (4.3). Similarly, the map

from {ui, vi} to {uζ2
i , v

ζ2
i } induced by the polarized scattering equations gives

det ′H = − 1

β1
det ′Hζ2 . (4.61)

Note that β1,2 depend on the solutions to the polarized scattering equations, so the rela-

tions (4.60) and (4.61) between the reduced determinants only hold on individual solutions

to the scattering equations, and do not lead to an analogous relation for the amplitudes.

However, by combining the two expression we get the following linearity relation

det ′H = (α1β2 − α2β1) det ′H = α1 det ′Hζ1 + α2 det ′Hζ2 , (4.62)

as required. This is now independent of the solutions to the scattering equations, and thus

lifts to the full amplitudes, confirming (4.54). �

Superamplitudes. The above analysis extends straightforwardly to superamplitudes to

give checks on the supersymmetry factors. As before, we take particle 1 to be a gluon,

though we do not restrict its position in the multiplet in the supersymmetric case. In the

top state, its polarization is ε1 = α1ζ1 + α2ζ2 as above, and in the bottom state we choose

the polarization

ξ1 = αξ1ζ1 + αξ2ζ2 , (4.63)

with constant αξ1,2 such that α1α
ξ
2−α2α

ξ
1 = 1 due to the normalization condition 〈ε1ξ1〉 = 1.

As indicated above, in the supersymmetric case it will be helpful to treat the basis

spinors (ζ1, ζ2) as the new basis for the multiplet of particle 1. In the explicit change of

variables given in Proposition 4.2, ζ1 plays the rôle of the original ε1, and ζ2 provides the

additional polarization spinor to parametrize the full multiplet, i.e. ξ
ζ1
1 = ζ2.15 Using this

15Of course, we are free to reverse the roles of ζ1 and ζ2 in this discussion, at the expense of a minus sign

due to our normalization conventions.
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choice, we can verify by expanding out both sides and using the relation between {ui, vi}
and {uζ1

i , v
ζ1
i } from Proposition 4.2 that∫

d2q1 q
2
1 e

F =

∫
d2q

ζ1
1 β2

(
α1

(
q
ζ1
1

)2
+ α2

)
eF

ζ1

. (4.64)

The superscript ζ1 again indicates that the supersymmetry factor is defined with the mul-

tiplet parametrized by the polarization ζ1, as well as the variables uζ1
i . Similarly, for gluon

states at the bottom of the multiplet, we find∫
d2q1 e

F =

∫
d2qζ1

1 β2

(
αξ1
(
qζ1

1

)2
+ αξ2

)
eF

ζ1

. (4.65)

Combining this with the result (4.60) for the reduced determinant det ′H = β−1
2 det ′Hζ1,

we find the expected linearity relations for supersymmetric integrands with one gluon,

det ′H

∫
d2q1 q

2
1 e

F = det ′Hζ1

∫
d2qζ1

1

(
α1

(
qζ1

1

)2
+ α2

)
eF

ζ1

, (4.66)

and similarly for the gluon at the bottom of the multiplet with polarization ξ1. The

simplicity of this relation is due to our choice of ξζ1
1 = ζ2: using this, as well as the results

from section 4.4, the second term on the right gives indeed the amplitude for a gluon

with polarization ζ2 with a proportionality factor of α2. As in the bosonic case, the final

linearity relation (4.66) is independent of the solution to the polarized scattering equations,

and thus lifts to the full superamplitude,

Aε1 = α1Aζ1 + α2Aζ2 , Aξ1 = αξ1A
ζ1 + αξ2A

ζ2 . (4.67)

5 The three and four-point amplitudes

In this section, we discuss the three-particle and four-particle amplitudes in our polarized

scattering equations formalism (2.58), and compare them to previous results available in

the literature, e.g. [19]. We first focus on the three-particle amplitudes that will serve as

the seed amplitudes for the BCFW recursion relation of section 7. Since the configuration

of three momenta is highly degenerate, we include a treatment of the four-particle case for

further illustration.

For the calculations below, two general observations will be helpful. First, for low

numbers of external particles, the most useful formulation of the scattering equations arise

from (2.30), obtained by skew-symmetrizing the ith polarized scattering equation with εiA
to give ∑

j

〈uiuj〉εj[AεB]i

σij
= KiAB . (5.1)

This can be skewed with further polarization spinors to obtain formulae for uij :=

〈uiuj〉/σij . We will use this below to construct explicit solutions to the polarized scat-

tering equations, both for three and four particles.

After solving the polarized scattering equations and simplifying the integrands on these

solutions, amplitudes are expressed in the form Aε1ε̃1...εnε̃n , with all little group indices
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contracted linearly into the polarization spinors εai and ε̃ȧi . To compare our results to the

formulae obtained in e.g. [19], we thus have to convert between our polarized formalism and

the standard, little-group covariant spinor-helicity formalism, where amplitudes Aa1ȧ1...anȧn
n

carry the little group indices of the scattered particles. Using that the amplitudes (2.58)

are linear in the polarization spinors εai and ε̃ȧi as shown in section 4.5, the two formalisms

are related via

Aε1ε̃1...εnε̃n =
∏
i

εiai ε̃iȧi . . . A
a1ȧ1...anȧn
n . (5.2)

5.1 Three-point amplitudes

We now compute the three particle case to compare to the Yang-Mills result given in [19].

This case is somewhat degenerate as momentum conservation implies that the three null

momenta are also mutually orthogonal. In Lorentz signature they would of necessity be

proportional, which would be too degenerate to calculate with. We therefore allow complex

momenta so that they span a null two-plane. This can be expressed by the non-vanishing

2−form that is given in spinors by

κBκ
A := (k1 ∧ k2)AB = −(k1 ∧ k3)AB = (k2 ∧ k3)AB . (5.3)

The spinors κA and κA are defined up to an overall scale and its inverse and are orthogonal

to each momentum.

We can represent each momentum kiAB as a line in the projective spin space CP3

through the two spinors κiaA for a = 1, 2. That each line contains κA means that they are

concurrent and that they are orthogonal to κA means that they are co-planar as in the

diagram 1.

To compare to the results of [19], we introduce little group spinors ma
i , m̃

ȧ
i for each i

κA = , κA = m̃ȧ
i κ

A
iȧ . (5.4)

These are defined in [19] equivalently by

κiAaκ
A

jḃ
= miam̃jḃ . (5.5)

As in [19], we further introduce spinors wi, w̃i normalized against mi, m̃i such that

miaw
a
i = 1 , m̃iȧw̃

ȧ
i = 1 . (5.6)

This normalization does not fully fix wi, w̃i, since we have the further freedom to add on

terms proportional to mi, m̃i. We can partially fix this redundancy wia → wia + cimia by

the condition

wa1κ1Aa + wa2κ2Aa + wa3κ3Aa = 0 , (5.7)

which imposes co-linearity of the three points 〈wiκiA〉 on the lines ki and reduces the

redundancy to shifts satisfying c1 + c2 + c3 = 0.

In what follows we will compute the three gluon amplitude from the general for-

mula (2.50) in Yang Mills theory. For three particles the σi can be fixed to (0, 1,∞)

and the formula reduces to

A3 = det′H|∗ =
ε1Aε

A
2

U23Ũ13

, (5.8)
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ε2A

〈v1κ1A〉

k1

k2

k3

ε3A

〈v2κ2A〉

ε1A

κA

〈v3κ3A〉

Figure 1. Each ki corresponds to a line in the projective spin space spanned by κiaA. The lines lie

in a common two-plane orthogonal to κA and are concurrent meeting at κA defined by (5.4). Thus

the line k1 joins ε1A and κA and so on. The polarized scattering equations give 3 further lines, e.g.

with E1A giving the line joining ε2A and ε3A and intersecting k1 at 〈v1κ1A〉.

evaluated on the solution to the polarized scattering equations, as indicated by the star.

Note that the Jacobian from solving the polarized scattering equations is trivial due to

Proposition 3.3. Having gauge fixed three of the u variables as in section 3.2, we only need

to solve the polarized scattering equations for the three Uij := U
(1,0)
ij = 〈uiuj〉/σij , with

Uij = Uji for i 6= j,

U12ε2A + U13ε3A = 〈v1κ1A〉 , and cyclic, (5.9)

together with the normalization conditions 〈viεi〉 = 1. These three scattering equations

define lines in the plane spanned by the three momenta in the projective spin space as in

the diagram 1.

In order to solve the polarized scattering equations we use the εiA as a basis of the

plane in the projective spin space orthogonal to κA to write

κA =
∑
i

aiεiA (5.10)

Using the normalization 〈viεi〉 = 1, we can further expand vi in the polarization basis

εi,mi;

via =
1

〈miεi〉
(〈mivi〉εia +mia) ,

and solve the system (2.2) to obtain

Uij =
ai

〈mjεj〉
=

aj
〈miεi〉

, 〈mivi〉 = ai . (5.11)
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To compare to [19], we can similarly decompose

wi = − 1

〈εimi〉
εi +

〈εiwi〉
〈εimi〉

mi, (5.12)

and impose the condition (5.7) to obtain:

ai =

∏
k 6=i〈εkmk〉

〈ε1m1〉〈ε2m2〉〈ε3w3〉+ cyc.
(5.13)

The scattering equations for spinors in the antifundamental representation are solved en-

tirely analogously and together we obtain from (5.8) the three point amplitude as

A3 =
(
〈ε1m1〉〈ε2m2〉〈ε3w3〉+ cyc.

)(
〈ε̃1m̃1〉〈ε̃2m̃2〉〈ε̃3w̃3〉+ cyc.

)
, (5.14)

where we have used that ε1Aε
A
2 = 〈ε1m1〉[ε2m̃2] from (5.5). This is precisely the result

in [19], contracted into the polarization spinors as discussed around (5.2).

5.2 Four-point Yang-Mills amplitudes

To illustrate these techniques in a slightly more generic setting, consider next the four-gluon

amplitude in Yang-Mills theory. As before, we can fix three of the marked points on the

sphere, e.g. σ1, σ2 and σ4, so that the solution to the scattering equation in homogeneous

coordinates is

σ1 = [(1, 0)] σ2 = [(1, 1)] σ3 =

[(
1,−s13

s12

)]
σ4 = [(0, 1)] . (5.15)

From the measure, we thus pick up the CHY Jacobian |Φ|[j1j2j3]

[i1i2i3] := |∂Ei/∂σj |[j1j2j3]

[i1i2i3] as well as

the usual Faddeev-Popov factors (σi1i2σi2i3σi3i1) and (σj1j2σj2j3σj3j1) due to the equality

between the polarized measure and the usual CHY measure established in Proposition 3.3.

Combining this with the four-particle Yang-Mills integrand (2.58a) gives

Aε1ε̃1...ε4ε̃44 =
(σi1i2σi2i3σi3i1)(σj1j2σj2j3σj3j1)

det Φ[j1j2j3]

[i1i2i3]

PT(1234) det′H

∣∣∣∣
∗

=
σ2

12(σ13σ34σ41)(σ23σ34σ42)

s12
PT(1234)

H13H24 −H14H23

〈u3u4〉 [ũ1ũ2]

∣∣∣∣
∗

(5.16)

=
1

〈u3u4〉 [ũ1ũ2]

σ12σ34

s12

(
ε1Aε

A
3ε2Bε

B
4 −

σ31σ42

σ41σ32
ε1Aε

A
4ε2Bε

B
3

)∣∣∣∣
∗
,

where ∗ again denotes evaluation on the (single) solution to the polarized scattering equa-

tions. Using (5.15), the amplitude then becomes

Aε1ε̃1...ε4ε̃44 = − 1

s12U34Ũ12

(
ε1Aε

A
3ε2Bε

B
4 +

s13

s14
ε1Aε

A
3ε2Bε

B
4

)∣∣∣∣
∗
, (5.17)

evaluated on the solution to the scattering equations. At four points there are 8 − 3

independent variables uai and we can take them to be Uij = 〈uiuj〉/σij = Uji, i 6= j, with

the extra relation

〈uiuj〉〈ukul〉+
(

cyc jkl
)

= 0, (5.18)
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given by the Schouten identity. The skewed form (5.1) of the scattering equations give∑
j 6=i

Uijεj[AεiB] = kiAB , (5.19)

In order to solve for U34 we contract this for i = 3 with εABCDε1Cε2D to obtain

U34 = −〈k312〉
〈1234〉

, (5.20)

where we define

〈1234〉 = εABCDε1Aε2Bε3Cε4D , 〈k312〉 = εABCDk3ABε1Cε2D . (5.21)

Similarly we obtain, using square brackets for 4-brackets of upper-indexed quantities,

Ũ12 = − [k134]

[1234]
. (5.22)

Using these we can solve for the via to give

v1a =
〈κ1a234〉
〈1234〉

, (5.23)

and so on.

The resulting expression for A4 can be simplified by expanding the product of upper

and lower ε tensors as skew product of Kronecker deltas. Consider the quantity

〈k312〉[k134] = 4 ε1Dε
D
3 k3AB k

AC
1 εB4 ε2C + 2k1 · k3(ε1Aε

A
4 ε2Bε

B
3 − ε1AεA3 ε2BεB4 ). (5.24)

The first term can be rewritten using momentum conservation as

k3AB k
AC
1 κB4ȧκ2Ca = −k2ABk

AC
1 κB4ȧκ2Ca = −1

2
κ2Aaκ

A
4ȧ k1 · k2 , (5.25)

such that 〈k312〉[k134] is proportional to the numerator of the amplitude,

〈k312〉[k134] = s14

(
ε1Aε

A
3 ε2Bε

B
4 +

s13

s14
ε1Aε

A
4ε2Bε

B
3

)
. (5.26)

The amplitude then agrees with the result of [19],

Aε1ε̃1...ε4ε̃44 =
〈1234〉[1234]

s12s14
, (5.27)

upon the usual identification (5.2).

As discussed in section 2.4, the supersymmetry representation we use breaks little

group symmetry so that little group multiplets are spread in different degrees in the su-

perfield expansion (2.46) in terms of supermomenta. All above expressions are for gluons

in the top state gεε̃, but the calculations extend directly to other amplitudes as well. As

we have seen in section 4.4, amplitudes for gluons appearing at order q2 in the multiplet

can be calculated either from the supersymmetry representation, or by replacing εi → ξi
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in the integrand. At four points, this can be seen explicitly: consider first the amplitude

A4(gε1ε̃1gε2ε̃2gξ3ε̃3gξ4ε̃4) obtained from the supersymmetry representation,

A4(gε1ε̃1gε2ε̃2gξ3ε̃3gξ4ε̃4) = Aε1ε̃1...ε4ε̃44 ΩIJΩKL ∂

∂qI3

∂

∂qJ3

∂

∂qK4

∂

∂qK4
eF+F̃

∣∣∣∣
∗

∣∣∣∣
qi=0

. (5.28)

The only non-vanishing term comes from the F 2 in the expansion of the exponential, and

gives an extra factor of detU{34} = −U2
34 + 〈ξ3v3〉 〈ξ4v4〉 in the amplitude. When we

evaluate this on the solutions to the polarized scattering equations we obtain, using (5.20)

and (5.23),

detU{34}
∣∣∣∣
∗

=
1

〈1234〉2
(
〈ξ3 312〉 〈ξ4 412〉 − 〈ξ3 124〉 〈ξ4 123〉

)
=
〈12 ξ3ξ4〉
〈1234〉

. (5.29)

Here we have used kiAB = ξi[Aεi|B] in the first equality, as well as the notation ξiA := 〈ξiκiA〉,
and the last equality follows from a Schouten identity in the two-dimensional space defined

by εABCDε1Cε2D. Using the result (5.27) for the amplitude where all gluons are in the top

state, we thus find

A4(gε1ε̃1gε2ε̃2gξ3ε̃3gξ4ε̃4) =
〈12 ξ3ξ4〉[1234]

s12s14
. (5.30)

This clearly agrees with the result from the integrand det ′HI for I = {3, 4}, i.e. by replacing

εia by ξia for i = 3, 4 in (5.27). Similar conjugate formulae apply for amplitudes with a

pair of external particles in the gεξ̃ states.

5.3 Other theories

The Yang-Mills calculations extend directly to the other theories expressed as integrals over

the polarized scattering equations. For any theory that admits the representation (2.50),

the four point amplitude for the top states of the supersymmetry multiplet has the form:

A4 =
1

det′Φ
Ih
L Ih

R

∣∣∣∣
∗
, (5.31)

where the ∗ indicates that the formula is evaluated on the solutions to the polarized scat-

tering equations. Having solved the polarized scattering equations at four point, (5.15), it

is now an easy task to evaluate the amplitude for other theories than Yang-Mills (2.58).

We have already discussed the Jacobian,

1

det′Φ
=

(σi1i2σi2i3σi3i1)(σj1j2σj2j3σj3j1)

det Φ[j1j2j3]

[i1i2i3]

= − s4
12

s12s13s14
(5.32)

The main ingredients that appear in the half integrands evaluated on such solutions are as

follows:

PT(1234) = −s12

s14
det′H = 〈1234〉[1234]

s2
12

s12s13s14
(5.33a)

Pf U (1,1) =
s13s14

〈1234〉 [1234]
Pf U (2,0) =

s13s14

〈1234〉2
(5.33b)

Pf ′A = s12 . (5.33c)
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It is then straightforward to calculate all four-particle amplitudes for the theories we have

discussed. In (2, 2) supergravity, for all particles in the top state, we obtain:

Mgrav
4 =

〈1234〉2[1234]2

s12s13s14
, (5.34)

which corresponds to the result in [16, 29] and reproduces the KLT relation. For the brane

theories we have

AD5
4 = 〈1234〉[1234] , (5.35)

AM5
4 = 〈1234〉2 , (5.36)

agreeing with [15]. As expected these give the same result on reducing to four or five

dimensions where fundamental and anti-fundamental spinors are identified, see section 6.

The more exotic and controversial formulae in table 1, obtained by double-copying the

above integrands. When combining the M5 half integrand with a Parke Taylor factor, we

get

A
(2,0)−PT
4 =

〈1234〉2

s12s14
. (5.37)

As expected, the formula is chiral, and has the same reduction to 5d as the Yang-Mills

amplitude. We can also look at the formulae for other ‘double copied’ theories in table 1:

A
(3,1)
4 =

〈1234〉3[1234]

s12s13s14
(5.38)

A
(4,0)
4 =

〈1234〉4

s12s13s14
. (5.39)

We note that (5.38)–(5.39) give the same result as the gravity amplitudes (5.34) upon

reduction to four and five dimensions. However, in six dimensions, as remarked in [16, 20],

the formulae are more problematic as soft limits (or factorization) to three-point amplitudes

are not obviously well-defined. This is because the three-particle kinematics κA = ma
i κiaA

and κA = m̃ȧ
i κ

A
iȧ of (5.4) each have a scaling ambiguity

ma
i → αma

i , m̃ȧ
i → α−1m̃ȧ

i , (5.40)

that cancels in κAκ
B. In our discussion of the Yang-Mills three-particle amplitudes, this

was reflected in the two factors
(
〈ε1m1〉〈ε2m2〉〈ε3w3〉+cyc.

)
× (its tilded version) not being

individually invariant under the scaling (5.40), although of course this ambiguity cancels in

the full amplitude (5.14). In the chiral double-copied amplitudes (5.37)–(5.39) however, this

scaling ambiguity cannot cancel anymore, so there are no invariant three-point amplitudes

for gerbe theories. On reduction to 5d, there is an identification between the chiral and

anti-chiral spinors so the scaling in (5.40) is fixed up to sign. This is also reflected in

the factorization discussion of the related formulae in [16], where it was shown that the

resulting three-particle formulae are non-local. As discussed there, the non-locality can

be made manifest in two different ways. To factorize the four-particle formula into the

product of two three-particle objects summed over internal states, we have to either fix
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a scale α or fix the shift redundancy wia → wia + cimia of the dual variables. In both

cases, the required ‘frame choice’ depends on the kinematics of all four particles, and the

three-particle objects are not invariant under the a rescaling of α (in the first case) or a

shift in ci (in the latter case).

Thus it seems unlikely that the formulae (5.37)–(5.39) can be interpreted as tree-level

S-matrices in the normal sense.

5.4 Fermionic amplitudes

We can also evaluate amplitudes involving the fermionic sector. We will show here how

this works for the scattering of two gluons with two gluini in (1, 1) super Yang-Mills, but

the results can be adapted easily to supergravity and the brane theories.

Consider the four particle amplitude A4(gεε̃1 , g
εε̃
2 , ψ

I ε̃
3 , ψ

J ε̃
4 ) for two gluons and two gluini,

obtained in our supersymmetry representation by extracting the fermionic components as

follows,

A4(gεε̃1 , g
εε̃
2 , ψ

I ε̃
3 , ψ

J ε̃
4 ) =

〈1234〉[1234]

s12s14

∂

∂qI3

∂

∂qJ4
(1 + F1 + F̃1 + . . .)

∣∣∣∣
qi=q̃i=0

=
〈1234〉[1234]

s12s14
U34ΩIJ (5.41)

Inserting the solution to the polarized scattering equations (5.20) we obtain,

A4(gεε̃1 , g
εε̃
2 , ψ

Iε̃
3 , ψ

Jε̃
4 ) =

〈12k3〉[1234]

s12s14
ΩIJ (5.42)

We can compare this to the amplitude representation of [29] in the little-group preserving

supersymmetry representation;

Asusy
4 =

δ4(
∑
q)δ4(

∑
q̃)

s12s14
, (5.43)

where the supercharges are qAI = εȧḃκAȧ η̃
I

ḃ
and qIA = εabκ

a
Aη

bI . The amplitude

A4(gaȧ1 , gbḃ2 , ψ
ċ
3, ψ

ḋ
4) is now the following coefficient of the Grassmann variables η and η̃,

A4(gaȧ1 , gbḃ2 , ψ
ċ
3, ψ

ḋ
4) =

∂

∂ηa1

∂

∂η̃ȧ1

∂

∂ηb2

∂

∂η̃ḃ2

∂

∂η̃ċ3

∂

∂η̃ḋ4

∂

∂ηe4

∂

∂ηg4
εeg

δ4(
∑
q)δ4(

∑
q̃)

s12s14

∣∣∣∣
ηi=η̃i=0

=
〈1a2bk3〉 [1ȧ2ḃ3ċ4ḋ]

s12s14
(5.44)

This agrees with our result (5.42) after contraction into the external polarization states.

6 Dimensional reduction

As an additional check on our formulae, we examine their behaviour under dimensional

reduction. When we reduce D5 and M5 amplitudes to 5d, both expressions are expected
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to agree there. Similarly when we reduce our (controversial) (0, 2) formula with the Parke-

Taylor, the formulae agree with those of the reduced (1, 1) super Yang-Mills formula. Sim-

ilarly the reduced (3, 1) and (0, 4) formulae also agree with the reduced (2, 2) supergravity

formulae. When (1, 1) super Yang-Mills and (2, 2) super gravity theories are reduced to

5d, we see that our supersymmetry representation naturally extends the R-symmetry to

Sp(2) and Sp(4) respectively.

We further reduce the super Yang-Mills and supergravity to the 4d massless case, where

we recover the 4d version of the polarized scattering equations reviewed in section 2.2.

The main new feature of the 4d massless case is the emergence of (MHV) sectors for the

amplitude, whereas neither the 4d massive nor the higher dimensional amplitudes split into

sectors. We will see below that the dimensional reduction gives rise to a unified formula for

all sectors, with the separation into different MHV sectors appearing naturally from differ-

ent classes of solutions to the 6d polarized scattering equations. The reduction to massive

4d kinematics, and in particular the Coulomb branch in super Yang-Mills, has already

been discussed in previous work [17], and we refer the interested reader to that paper, as

well as [16] for related topics in the little-group preserving supersymmetry representation.

6.1 Dimensional reduction to 5d

On reduction to 5d, the sixth direction is represented as a skew spinor that we will denote

ΩAB so that a five vector kAB must satisfy kABΩAB = 0. In 5d spinor indices can now be

raised and lowered with ΩAB and its inverse. This reduces the spin group from SL(4,C)

to Spin(5) = Sp(2).

Starting with a theory in 6d with (N, Ñ)-supersymmetry, we can lower the su-

persymmetry generator spinor index Q̃Aİ = ΩBAQ
B
İ

so that now in 5d we can write

QAI = (QAI , Q̃Aİ) where I = 1, . . . , 2N where N = N + Ñ . We can define the skew

form ΩI,J = ΩIJ ⊕ Ωİ J̇ and with this the R-symmetry has the possibility of extending

from Sp(N)× Sp(Ñ) to Sp(N + Ñ). Thus we see that reduction of theories with (1, 1) and

(0, 2)-supersymmetry in 6d can naturally reduce to theories with identical supersymme-

try in 5d if there is nothing in the spectrum to break the increased R-symmetry. This is

typically the case in the massless sectors of the reduced theories (although differences will

generally be seen in Kaluza-Klein massive modes).

5d spinor helicity and scattering equations from 6d. In 5d, the massless little

group will be Spin(3,C) = Sl(2,C) rather then Spin(4) = Sl(2,C) × Sl(2,C). Given a 5d

massless momentum kAB, we can introduce the spinor helicity frame κaA satisfying

kAB = κaAκ
b
Bεab , k · Ω = 0 (6.1)

But we can now raise the indices with ΩAB to obtain κAa providing also the κAȧ thus

identifying the dotted little group in 6d with the undotted one. Now κaA transforms in

the fundamental representation of Spin(5,C) ∼= Sp(4,C), and a labels the little group for

massless particles, Spin(3,C) ∼= SL(2,C).

Spin one polarization data are 2-forms given in 5d by symmetric spinors FAB = F(AB)

satisfying kABFBC = 0. Thus they arise from little group spinors εab = ε(ab) with FAB =
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κaAκ
b
Bεab and we can take εab = εaεb. When reduced from 6d, we therefore identify both

the 6d εȧ and εa with the 5d εas. This therefore becomes the same polarization data as

one obtained from the symmetry reduction of the 6d Gerbe field.

The chiral polarized scattering equations reduce straightforwardly, with the u’s, ε’s

and v’s now all transforming in the 5d little group. However, the same is true for the

anti-fundamental scattering equations, where the ũ’s etc now transform under the same

SL(2,C), i.e. ũȧi → ũai . Moreover, we have seen that we should take ε̃i = εi after reduction.

Thus the fundamental and anti-fundamental scattering equations are identified

Ẽ5dA
i = ΩABEiB

∣∣∣∣
u→ũ
v→ṽ

. (6.2)

We therefore have the same equations for both (ui, vi) and (ũi, ṽi). By the uniqueness of

the solution ensured by Proposition 3.2, we have

ũai = uai , ṽai = vai . (6.3)

We can implement the reduction from 6d amplitude formulae to 5d via a projection

operator

Π6→5 =

∫ n∏
i=1

dki · Ω
n−1∏
j=1

δ (kj · Ω) . (6.4)

The second product goes only up to n − 1 so that the nth integral can absorb the sixth

component of the momentum-conserving delta-function. The resulting formula then has

the correct count of variables vs symmetries and delta-functions, and leading to the required

δ5 for momentum conservation. We therefore define

dµpol,5d
n = Π6→5, dµ

pol
n . (6.5)

The polarized measure dµpol,5d
n in 5d thus has none of the subtleties of the 6d case, and all

constraints are manifestly imposed via delta-functions.

Dimensional reduction of the integrands and formulae. Upon reduction, the spin-

one matrix H6d
ij → H5d

ij becomes symmetric as εi = ε̃i gives

H5d
ij =

εAi ε
B
j ΩAB

σij
, i 6= j.

This is sufficient to give Yang-Mills with integrand det′H5d PT and gravity with

(det′H5d)2.

The dimensional reduction of the supersymmetry factors proceeds along the same lines,

driven again by the equality (6.3). We find

FN

∣∣∣
5d

=
1

2

∑
i,j

〈uiuj〉
σij

qiIqjJΩ
IJ − 1

2

n∑
i=1

〈ξivi〉qiIqiJΩIJ , (6.6a)

F̃Ñ

∣∣∣
5d

=
1

2

∑
i,j

〈uiuj〉
σij

q̃iİ q̃jJ̇Ω̃
İ J̇ − 1

2

n∑
i=1

〈ξivi〉qiİ q̃jJ̇Ω̃İ J̇ . (6.6b)
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For N = (1, 1) supersymmetry, we can thus naturally combine the fermionic variables

qiI = (qil, q̃il̇) into N = 2 supermomenta, with the symplectic metric Ω = diag(Ω, Ω̃)

composed of the N = 1, Ñ = 1 metrics in 6d. This manifests that

F1 + F̃1

∣∣∣
5d

= F 5d
2 , F2

∣∣∣
5d

= F 5d
2 . (6.7)

Thus for maximally supersymmetric Yang-Mills we obtain the integrand eF
5d
2 det′H5d PT.

Similarly, the 6d (2, 2)-supersymmetry factor reduces to F 5d
4 giving the maximal super-

gravity integrand eF
5d
4 det′(H5d)2.

Finally, for the brane integrands, we first note that from ui = ũi, that U (a,b) reduces

to U (m)

U
(m)
ij :=

〈uiuj〉m

σij
, (6.8)

with a+ b = m. Further, from (2.57), we find

det ′H5d =
Pf ′A

Pf U (2)
, (6.9)

On the other hand, the M5 integrand reduces to the same expression due to the equality

between ui and ũi,
Pf ′A

Pf U
(2,0)
5d

=
Pf ′A

Pf U (2)
= det ′H , (6.10)

This in particular gives a nontrivial meaning to the right hand side for odd particle number

in 5d, and the D5 and M5 integrands become the same. With both the integrands and the

supersymmetry factors agreeing among M5 and D5, we conclude that both theories give

the same amplitudes when reduced to 5d.

The above reductions imply that the integrands of the (0, 2)-PT theory reduced to

5d now makes sense for both even and odd numbers of particles, and agrees with the

reduction of maximal super Yang-Mills. Similarly the 5d reductions of (1, 3) and (0, 4)

theories make sense for both odd and even numbers of particles and agree with the 5d

maximal supergravity formulae.

6.2 Dimensional reduction to 4d

The 6d formalism similarly allows for a natural embedding of both 4d massive and massless

kinematics. On reduction, the 6d spin spaces each reduce to the sum of the dotted and

undotted spin spaces so εA = (εα, εα̇). The massive little group in 4d is Spin(3,C) = Sl(2,C)

and we can choose the 6d little group frames so that both SL(2,C)-factors align with the

massive 4d little group,

κaA =

(
κ0
α κ̃

α̇ 0

κ1
α κ̃

α̇ 1

)
, κAȧ =

(
κα0 κα1

κ̃α̇ 0 κ̃α̇ 1

)
. (6.11)

Here, a = 0, 1 denote the 4d massive little group indices. Massive momenta, as well as the

mass m, are constructed via

kαα̇ = καaκ̃α̇bε
ab , καaκβbε

ab = Mεαβ , κ̃α̇aκ̃β̇bε
ab = M̃εα̇β̇ . (6.12)
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with M = M̃ and M2 = m2. For more details of the reduction to the Coulomb branch,

see [16, 17].

From hereon we focus on the reduction to massless kinematics. When M = M̃ = 0,

the two spinors become proportional, and following already from the reduction to 5d, we

can identify the dotted and undotted little groups. We choose a little-group frame with

κ0
α = κ̃1

α̇ = 0 so

κaA =

α α̇( )
0 κ̃α̇ a=0

κα 0 a=1

, κAȧ =

ȧ=0̇ ȧ=1̇( )
κα 0 α

0 −κ̃α̇ α̇

. (6.13)

With this, the polarization data and 2-forms reduce as

εA = (ε1κα, ε̃0κ̃α̇) , εAε
B → ε21κακβεα̇β̇ + ε20κ̃α̇κβ̇εαβ . (6.14)

We see that the two components of εia are naturally distinguished by helicity.

Scattering equations. When reduced to the four-dimensional massless case as in (6.13),

the polarized scattering equations become

Eiα =
∑
j

〈uiuj〉
σij

εj 1κjα − vi 1κiα , Ẽiα̇ =
∑
j

〈uiuj〉
σij

εj 0κ̃j
α̇ − vj 0κ̃i

α̇ . (6.15)

At this stage, the scattering equations have a unified form valid for all MHV sectors si-

multaneously. They can be reduced to the 4d polarized scattering equations (2.13) refined

by MHV sector by dividing the external particles into two sets with k and n − k parti-

cles respectively, corresponding to positive and negative helicities. This determines the

εia up to scale from (6.14). With this we can embed the massless 4d polarized scattering

equations (2.13) into (6.15) with the following consequent choices for the uia and via

εia = (0, εi) ξia = via = − 1

εi
(1, 0) uia = (ui, 0) i ∈ − , (6.16a)

εpa = (ε̃p, 0) ξpa = vpa =
1

ε̃p
(0, 1) upa = (0, up) p ∈ + . (6.16b)

This assignment automatically solves the scattering equations Eiα = 0 for i ∈ − and

Ẽpα̇ = 0 for p ∈ +. Thus the remaining polarized scattering equations reduce to the refined

scattering equations for the Nk−2MHV sector

Epα =
∑
i∈−

upui
σpi

εiα −
1

ε̃p
κpα = upλα(σp)−

1

ε̃p
κpα , (6.17a)

Ẽiα̇ =
∑
p∈+

uiup
σip

ε̃p
α̇ − 1

εi
κ̃i
α̇ = ui λ̃

α̇(σi)−
1

εi
κ̃i
α̇ , (6.17b)

where we have written

εiα = εi1κα, for i ∈ −, and ε̃pα̇ = ε̃p0κ̃pα̇ . (6.18)
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Thus the 4d refined scattering equations are clearly a subset of the solutions to the dimen-

sionally reduced polarized scattering equations (6.15) for the given choice of polarization

data. Conversely, these are indeed all solutions, since the refined scattering equations have

A(n− 3, k− 2) solutions, where A denotes the Eulerian number. Summing over all sectors,

the ansatz (6.16) these give the full (n − 3)! solutions of the polarized scattering equa-

tions. We will also see below that any division not lining up with the particle helicities has

vanishing contribution.

The reduced determinants. To study the reduction of det′H in terms of the 4d data

above, note that εi ∼ (0, 1) for negative helicity particles, and εp ∼ (1, 0) for positive

helicities. Thus the entries in the H become Hk with

Hk
ij :=

〈εiεj〉
σij

, Hk
pq :=

[ε̃pε̃q]

σpq
, Hip = Hpi = 0 . (6.19)

for i, j ∈ − and p, q ∈ +. This agrees with the Hodges matrix (2.17) as reviewed in

section 2.2. In particular, the relations among its entries become the row- and column

relations described in [18]: ∑
j∈−

ujH
k
ij = 0 ,

∑
q∈+

uqH
k
pq = 0 . (6.20)

We can now understand how the polarized scattering equations restrict to the correct

MHV sector for a given configuration of particle helicities. To see this, we need to show

that if the split in (6.16) into − and + does not line up with the helicities of the respective

particles, the contribution to the amplitude vanishes. But since the integrand is always

formulated for the correct MHV sector due to our discussion above, this is just the familiar

result of ref. [28] that the reduced determinant vanishes when evaluated on scattering

equations refined to a different sector.

Measure. To obtain the correct measure on reduction to 4d, we have to include the

appropriate delta-function restricting the kinematics to 4d. A convenient choice is

Π4d :=

∫ n∏
i=1

dki,12 dki,34

n∏
j,l=1

j 6=1, l 6=n

δ (kj,12) δ (kl,34) , (6.21)

since it reproduces the reduction to κ given in (6.13). Note that although we integrate over

all n momenta, only n − 1 delta-functions are included, the remaining constraints follow

from momentum conservation.

It follows from general considerations that we should have

Lemma 6.1

dµ4d
n,k

∏
i,p

εiε̃p = det ′Hk Π4d dµ
pol
n (6.22)

so that dµ4d
n gives det ′Hk as Jacobian relative to the dµpol = dµCHY on the solutions (6.16)

refined to the given MHV sector. In particular det ′Hk vanishes on the other MHV sectors.
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The general considerations arise from comparing the CHY gauge and gravity formulae

of (2.9) to the corresponding 4d ambitwistor string formulae of (2.21). The first step to

notice is that the gauge theory formulae of (2.9) and (2.21) are identified if we have

dµ4d
n,k = Pf ′(M)dµCHY

n . (6.23)

Then the fact that the gauge and gravity formulae for CHY are related by exchanging the

Parke-Taylor factor for Pf ′(M), whereas for the 4d ambitwistor-string one exchanges the

Parke-Taylor for det ′Hk suggests that in the kth MHV sector

Pf ′(M) = det ′Hk. (6.24)

This was shown explicitly in [28, 32]. Finally recall that the measure dµpol
n was shown to

be equivalent to the CHY measure in section 3.2 and putting this together suggests the

lemma. We now prove this explicitly, albeit via 6d.

Proof. We have seen above that the 6d polarized scattering equations reduce to the 4d

version and so have the correct support restricted to the given MHV sector. To calculate

the Jacobian, consider a fixed MHV sector, corresponding to the solutions (6.16) to the

polarized scattering equations. We first fix part of the SL(2,C)u invariance by setting

u1 1 = un 0 = 0 for 1 ∈ − and n ∈ +, giving a contribution to the Jacobian of u1un.

Similarly, we use the corresponding scattering equations E1 1 and Ẽn0̇ to solve for kn,12 and

kn,34, introducing a Jacobian of ε1 0ε̃
1̇
n. We used (6.16b) to solve the polarized scattering

equations that don’t survive in the 4d measure or framework

Eiα :=
∑
j∈−

〈uiuj〉
σij

εjα − vi 1κiα = 0 , (6.25a)

Ẽ α̇p :=
∑
q∈+

〈upuq〉
σpq

ε̃qα̇ − vp 0κ̃
α̇
p = 0 , (6.25b)

for the variables ui 1, up 0, vi 1 and vp 0 (using the normalization conditions to fix the other

components of v). This gives a further Jacobian that we denote Jpol so that we have

Π4d dµ
pol
n =

∫
dµ4d

n,k Jpol u1un ε1 0 ε̃
1̇
n

n∏
i=1

ui , (6.26)

where the extra factor of
∏n
i=1 ui cancels its inverse explicitly in the definition of the mea-

sure dµ4d
n . The Jacobian matrix whose determinant Jpol arises from solving the polarized

scattering equations (6.25) has a block-diagonal form due to

∂Ẽ α̇p
∂vi 1

=
∂Ẽ α̇p
∂ui 1

= 0 ,
∂Eiα
∂vp 0

=
∂Eiα
∂up 0

= 0 , (6.27)

on the solutions (6.16b), so we have Jpol = J−J+, with J− and J+ the determinants

of the respective block matrices. On the solutions (6.16), the entries of the matrix with

determinant J− are given by

∂Eiα
∂vj 1

= −δijκiα ,
∂Eiα
∂uj 1

=

−ui
εjα
σij

, i 6= j∑
k∈−,k 6=i uk

εkα
σik

, i = j.
(6.28)
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The Jacobian J− is the determinant of this (2k− 1)× (2k− 1) matrix (as we have already

dealt with u11). To simplify this, introduce the index notation E−2i−1 ≡ Ei,α=0 and E−2i ≡
Ei,α=1 so that the Jacobian J− is given by

J− = εa1...a2k−1
∂E−a1

∂v1 1
. . .

∂E−ak
∂vk 1

∂E−ak+1

∂u2 1
. . .

∂E−a2k−1

∂uk 1
(6.29)

The first equation in (6.28) gives ∂E−a
∂vi 1

= δ2i−1
a κi 0 + δ2i

a κi 1 so monomials in the expansion

of the determinant with ∂E2i−1/∂vi1 must multiply some ∂E2i/∂ui1 and similarly ∂E2i/∂vi1
must multiply some ∂E2i−1/∂ui1 with the opposite sign leading to a contraction on the

spinor index. Thus the sum collapses to one over half the indices, and after some re-

ordering of the terms and relabeling of the indices, we find

J− = κ10 ε
i2...ik−1

(
κα2
i2

∂Ei2α2

∂u2 1

)
. . .

(
καkik

∂Eikαk
∂uk 1

)
= κ10

∏
i∈−
i 6=1

ui
εi

det H
k [1]
− = u1 ε10

∏
i∈−

ui
εi

det ′Hk
− . (6.30)

In the second equality, we have used (6.28) to see that contraction into the respective κi re-

produces the entries of H−, and the last equality holds due to the reduction relations (6.20)

for the reduced determinant. Similarly,

J+ =
un ε̃n

1̇
∏
q∈+ uq∏

p∈+ ε̃p
det ′H+ . (6.31)

The extra factors ε1 0ε̃
1̇
n thus cancel against the Jacobian from integrating out k1,12 and

kn,34, the factors of u cancel against the measure and partial gauge fixing, and we indeed

are left with (6.22). �
As a corollary we briefly mention that for momenta in four dimensions, the (n −

3)! solutions to the scattering equations can be refined by MHV degree k with Eulerian

number16 A(n−3, k−2) in the kth sector [4, 44]. The above relation between measures gives

Corollary 6.1 The 4d measure dµ4d
n,k is supported on the A(n− 3, k − 2) solutions to the

scattering equations in the kth sector.

Proof. This follows from the fact that det ′Hk is supported on the kth sector. To see

this, define the matrices H± by

H+
ij =

〈εiεj〉
σij

, H−ij =
[εiεj ]

σij
, i 6= j , H±ii = ei · P (σi) . (6.32)

On the one hand, minors of these appear as the blocks in Hk. On the other hand, as

explained in [27], these are gauge fixed versions of the n × n matrices appearing in the

Cachazo-Skinner gravity twistor-string-like formulae [6, 26]. In those papers it is shown

that at degree k−1 in the twistor-string, appropriate to MHV degree k−2, these matrices

have ranks k− 1 and n− k− 1 respectively. Thus det ′Hk will vanish because one or other

block will have insufficient rank when restricted to the inappropriate MHV sector. �
16The Eulerian number A(p, q) is the number of permutations of 1 to p where q elements are larger than

their preceding element. They are defined recursively by A(p, q) = (p− q)A(p−1, q−1)+(q+1)A(p−1, q).
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Supersymmetry. The reduction of the supersymmetry generators QAI and Q̃A

İ
on the

solutions (6.16) in 4d give

− helicity : QIα = εα
∂

∂qI
, Qα̇I =

1

ε
κ̃α̇qI , Q̃İα = εα

∂

∂q̃İ
, Q̃α̇

İ
=

1

ε
κ̃α̇q̃İ , (6.33)

for negative helicity particles. where we have raised the Sp(N) R-symmetry indices with

the symplectic metric Ω, i.e. QαI = ΩIJQ
J
α and Q̃αİ = Ωİ J̇Q

J̇
α. Similarly, for positive

helicity,

+ helicity : QIα =
1

ε̃
καq

I , Qα̇I = ε̃α̇
∂

∂qI
, Q̃İα =

1

ε̃
καq̃

İ , Q̃α̇
İ

= ε̃α̇
∂

∂q̃İ
, (6.34)

where qI = ΩIJqJ etc. The index placement is chosen to manifest the embedding of

Sp(N) × Sp(Ñ) into the bigger 4d SU(N ) R-symmetry group. We can make this explicit

by introducing qI = (qI , q̃İ) and q̃I = (qI , q̃İ), where I = 1, . . . ,N = N + Ñ is the SU(N )

R-symmetry index in 4d. The supersymmetry generators then become

− helicity : QIα = εα
∂

∂qI
, Qα̇I =

1

ε
κ̃α̇qI , (6.35a)

+ helicity : QIα =
1

ε̃
καq̃

I , Qα̇I = ε̃α̇
∂

∂q̃I
, (6.35b)

and the supersymmetry multiplet takes the familiar form (2.19),

Φ− = A−− + qIψ
I
− + qIqJφ

IJ + (q3)Iψ+
I + q4A++ , (6.36a)

Φ+ = A++ + q̃Iψ+
I + εIJKLq̃

I q̃JφKL + (q̃3)Iψ
I
− + q̃4A−− . (6.36b)

Here qI and q̃I are conjugate supermomenta, related by a fermionic Fourier transform and

ε↔ ε̃−1.

When implementing this reduction in the amplitude, only terms containing one particle

of each helicity survive in the exponential supersymmetry factors due to the form of the

solutions (6.16) to the 4d scattering equations,

FN + F̃Ñ

∣∣∣
4d

=
∑
i∈−
p∈+

uiup
σip

qiI q
I
p =: F kN . (6.37)

In particular, all local terms of the form 〈ξivi〉q2
i vanish due to ξai = vai . As reviewed in

section 2.2, this is one of the standard supersymmetry representations in 4d, sometimes

referred to as the link representation [45].

Combining the above results, we find that the 6d amplitudes for super Yang-Mills and

supergravity reduce correctly to the 4d amplitudes (2.21). The reduced determinant in the

numerator cancels against the Jacobian from the measure, and we have

An
∣∣∣
4d

= Π4d

∫
dµpol

n det ′H Ih
n e

FN+F̃
Ñ =

∑
k

∫
dµ4d

n,k

∏
i,p

εiε̃p Ih
n e

FN = A4d
n , (6.38)

with Ih
n = PT(α) for super-Yang-Mills, Ih

n = det ′H for supergravity, and Ih
n = det ′A for

Born-Infeld.
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7 Super-BCFW in 6d

In this section, we give a proof of the gravity and Yang-Mills formulae using BCFW recur-

sion [46, 47], cf. Theorem 1. This is a powerful on-shell tool that has been used to prove

a variety of explicit amplitude representations. This technique has two main ingredients.

The first is to introduce a deformation of the formula for the amplitude depending on a

complex parameter z, and to use complex analysis to reconstruct the amplitude in terms

of its residues at poles in z. The second key ingredient in the argument is the factorization

property of amplitudes. We know from the Feynman diagram representation of amplitudes

that they are multilinear in the polarization vectors and rational in the momenta. The

only poles arise from propagators, so that they can only arise along factorization channels,

where partial sums of the momenta go on shell. At tree-level, factorization is the statement

that the residues at such poles are tree amplitudes on each side of the propagator. This

then allows us to identify the residues in z in terms of lower point amplitudes, setting up

the recursion. In the following we give more details of the generalities of this argument.

In section 7.1 we introduce the complex shift adapted to our formulae. In section 7.2 we

prove that our formulae factorize correctly; this includes also our brane formulae giving a

key check on these also. In section 7.3 we show that there is no pole as the deformation

parameter is taken to infinity in our formulae, completing the BCFW recursion proof of

our supersymmetric gauge and gravity formulae (2.58).

BCFW shifts are generally based on the following one-parameter deformation of the

external momenta,

k̂1µ = k1µ + z qµ , k̂nµ = knµ − z qµ , (7.1)

with q2 = q · k1 = q · kn = 0. Cauchy’s theorem applied to A/z then gives an equality

between the original undeformed amplitude at z = 0 and the sum over all other residues

at the possible factorisation channels of the amplitude and at ∞. If

lim
z→∞

A(z) = 0 , (7.2)

we say that there are no boundary terms at z = ∞. The residue theorem then expresses

the amplitude at z = 0 as a sum over products of lower point amplitudes AnL+1 arising at

and AnR+1, with nL + 1 and nR + 1 = (n − nL) + 1 particles respectively, but at shifted

values of z

An =
∑
L,R

AnL+1 (zL)
1

k2
L

AnR+1 (zL) . (7.3)

The sum runs over partitions of the n particles into two sets L and R, with one of the

deformed momenta in each subset, 1 ∈ L and n ∈ R. In the propagator, kL =
∑

i∈L ki
denotes the (undeformed, off-shell) momentum, whereas the amplitudes are evaluated on

the on-shell deformed momentum k̂L =
∑

i∈L ki + zL q with zL = −k2
L/2q · kL. See also

figure 2 for a diagrammatic representation of the recursion. For particles transforming in

non-trivial representations of the little group, the BCFW shift (7.1) has to be extended to

the polarization vectors as well [48], and the boundary terms vanish if the shift vector qµ
is chosen to align with the polarization vector of one of the shifted particles, qµ = e1µ. In
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An

n1

=
∑
L,R

AnL+1

1̂

1
K2

L AnR+1

n̂

Figure 2. A diagrammatic representation of the BCFW relation (7.3).

this case the sum over partitions in the BCFW recursion relation (7.3) also includes a sum

over a complete set of propagating states, labeled for example by their polarization data

for gluons or gravitons.

The recursion (7.3) has been a useful tool to prove novel amplitude representations. In

particular, it guarantees that any expression satisfying factorization17 and the boundary

condition (7.2) is a representation of the amplitude. In section 7.1 we adapt the shift to our

formulae, in section 7.2, we show that our amplitudes factorize correctly, and in section 7.3

we verify that our boundary terms (7.2) vanish.

7.1 The BCFW shift for 6d spinors

The higher dimensional BCFW-shifts discussed in the literature (e.g. [19, 48, 49]) are

ambidextrous, and this makes it difficult to verify that the boundary terms vanish. We

need to adapt (7.1) to the spinor-helicity formalism in 6d. Such shifts were introduced in

ref. [19], but, as discussed in appendix B, this does not sit naturally within the framework

of the chiral scattering equations. We therefore introduce a novel BCFW shift to start the

recursion in the 6d spinor-helicity formalism. Our shift vector qµ does not coincide with

the polarization vector e1µ, but is instead related to the chiral polarization data of both

shifted particles 1 and n.

Fundamental spinors. We choose instead the following chiral BCFW shift, dependent

on the (chiral) polarization data of the shifted particles:

κ̂a1A = κa1A + z εa1 εnA , κ̂anA = κanA + z εan ε1A . (7.4)

This shift evidently leaves the polarization spinors εA invariant, but shifts the spinors

〈v1κ1A〉 and 〈vnκnA〉 featuring in the polarized scattering equations by a term proportional

to the polarization spinor of the other particle,

〈v1κ̂1A〉 = 〈v1κ1A〉+ zεnA , ε̂1A = ε1A , (7.5a)

〈vnκ̂nA〉 = 〈vnκnA〉+ zε1A , ε̂nA = εnA . (7.5b)

17including the correct 3-particle amplitudes
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The invariance of the polarization spinors ε1,n ensures that the shift is well-defined, in the

sense that the ‘shift-spinors’ δκa1A ≡ εa1 εnA and δκanA ≡ εan ε1A are themselves unaffected.

This mirrors the usual BCFW shift, where the vector qµ does not transform. It is easily

seen that the spinorial deformation (7.4) is indeed a valid vectorial BCFW shift (7.1).

However, in contrast to the usual construction the shift vector qAB is composed of the

polarization spinors of both particles 1 and n,

qAB = 2εn [Aε1B] . (7.6)

It is clear that the shift preserves momentum conservation from the vector representa-

tion (7.1), and it preserves Maxwell’s equations by construction. Since the shift vector qAB
is constructed from the polarization spinors of both particles, it is not only orthogonal to

the momenta of the shifted particles, q2 = q · k1 = q · kn = 0, but also to their polarization

vectors e1 and en, q · e1 = q · en = 0. We will verify in section 7.3 that this defines a

‘good’ BCFW shift, in the sense that the boundary terms vanish for Yang-Mills theory and

gravity. We discuss the comparison with shifts of other authors in section B.

Anti-fundamental spinors. We will see that the chiral BCFW shift (7.4) ties in

well with the polarized scattering equations. However, for ambidextrous theories such as

super Yang-Mills or supergravity however, the shift for spinors in the anti-fundamental

representation plays an equally important role. The anti-fundamental shift

k̂AB1 = kAB1 + z qAB , k̂ABn = kABn − z qAB , (7.7)

is of course related to the chiral one via qAB = εABCDqCD, but this does not fully determine

the shift of the anti-chiral spinors κ̂Aȧ . We will use this freedom to choose a BCFW shift

where both deformations δκA1ȧ and δκAnȧ are proportional to the same spinor ε̃A,18

κ̂1
A
ȧ = κ1

A
ȧ − z ε̃A

(
εnBκ1

B
ȧ

)
, (7.8a)

κ̂n
A
ȧ = κn

A
ȧ − z ε̃A

(
ε1Bκn

B
ȧ

)
. (7.8b)

The spinor ε̃A is constructed such that it is a valid choice for ε̃A1 = ε̃A and ε̃An = ε̃A,

ε̃A = ε1 aκn
A
ȧ

(
κn

B
ȧ κ1

a
B

)−1
+ εnaκ1

A
ȧ

(
κ1

B
ȧ κn

a
B

)−1
. (7.9)

The first term corresponds to the canonical choice for ε̃A1 , constructed in complete analogy

to (B.2), where we have chosen the reference spinor κ∗ = κn. The second term is similarly

the canonical choice for ε̃An with reference spinor κ∗ = κ1. Due to this choice of reference

spinor, the second term is proportional to κA1 ȧ, and is thus pure gauge for particle 1. An

analogous argument shows that the first term is pure gauge for particle n. Thus we can

choose ε̃A1 = ε̃A and ε̃An = ε̃A, and we have the useful relations

ε̃A κa1A = εa1 , ε̃A κanA = εan . (7.10)

18The choice of ε̃A in the anti-fundamental shift will turn out to be crucial in proving that the boundary

terms vanish. However, it is also the key distinction from previously defined shifts like the covariant shift

of [19]. We discuss this in more detail in section B.
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The anti-fundamental BCFW deformation then leads to the standard shift (7.7) for the

momenta, but where the shift vector q is again determined by the chiral polarization spinors

of both shifted particles,

qAB = 2ε̃[Ak
B]C
1 εn C = −2ε̃[AkB]C

n ε1 C . (7.11)

The latter equality follows from the definition of ε̃A and the relations (7.10).19 Using the

same identities, it is also readily verified that qAB indeed satisfies qABεABCD = qCD as claimed

above.

While not manifest in (7.8), the ‘shift-spinors’ (defined by κ̂1,n
A
ȧ = κ1,n

A
ȧ + δκ1,n

A
ȧ)

δκ1
A
ȧ = −ε̃A

(
εnBκ1

B
ȧ

)
and δκn

A
ȧ = −ε̃A

(
ε1Bκn

B
ȧ

)
, (7.12)

are themselves invariant under the BCFW deformation. To see this, let us focus on δκ1
A
ȧ ,

and recall that εnB is unaffected by the shift. Then (εnBκ1
B
ȧ ) does not transform because

ε̃A is orthogonal to εnA as we have seen in (7.10), so the only deformation can come from

ε̃A itself. To see how ε̃A behaves under BCFW, it is useful to rewrite its definition (7.9) as

ε̃A = − 1

k1 · kn
(
kABn ε1B + kAB1 εnB

)
. (7.13)

In this form, the relations (7.10) are manifest, and it is clear that it transforms at most

linearly in z because the denominator is invariant due to q · k1 = q · kn = 0. However,

neither of the polarization spinors ε1B and εnB transform, and

qABε1B = ε̃[Ak
B]C
1 εnCε1B = 0 . (7.14)

Therefore ε̃A as well as the shift-spinors δκ1
A
ȧ and δκn

A
ȧ are invariant under the BCFW

deformation, and the shift (7.8) is well-defined.

Shifting the supermomenta. In the R-symmetry preserving supersymmetry represen-

tation, the supershift is not implemented via a linear shift in the fermionic variables, but

rather by a multiplicative exponential factor

In → În exp
(
−z q1IqnJΩ

IJ
)
. (7.15)

This is clearly the fermionic Fourier transform of the standard linear super-BCFW shift in

the little-group preserving representation, see e.g. ref. [49]. As expected, the Fourier Trans-

form interchanges linear shifts of the variables in z with a multiplication by an exponential

factor.

To see this explicitly, consider the amplitude in the little-group preserving representa-

tion of eq. (2.50), obtained from the R-symmetry representation via a fermionic half-Fourier

transform as discussed in section 4.2,∫ n∏
i=1

dNqli
∏
j

e−q
l
jηξl eFN

∣∣∣∣∣
ql=ηεl

=
∏
i

δ0|N

∑
j

〈uiuj〉
σij

〈εjηlj〉 − 〈viηli〉

 . (7.16)

19using εCA1A2A3εCB1B2B3 = 3! δA1
[B1
δA2
B2
δA3
B3].
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On the right, we have grouped the fermionic variables into a little-group spinor ηla, with

ηliε = 〈εiηli〉 and ηlξi = 〈ξiηli〉. In this representation, the fermionic BCFW-shift mirrors the

shift in the chiral spinors,

η̂la1 = ηla1 + z εa1〈εnηln〉 η̂lan = ηlan + z εan〈ε1ηl1〉 (7.17)

Our discussion from the polarized scattering equations is then directly applicable to the

fermionic case: only 〈v1,nη̂1,n〉 are shifted, while 〈ε1,nη̂1,n〉 remain invariant. In particular,

all z-dependence resides in the delta-functions

δ0|N

∑
j

〈u1uj〉
σ1j

〈εjηlj〉 − 〈v1η
l
1〉 − z〈εnηln〉

 δ0|N

∑
j

〈unuj〉
σnj

〈εjηlj〉 − 〈vnηln〉 − z〈ε1ηl1〉


(7.18)

We can then transform back to the R-symmetry preserving representation, where the z-

dependent terms combine to give the exponential of (7.15), while the other terms give back

the usual supersymmetry factor eF .20 We thus conclude that the BCFW shift amounts to

the insertion of an exponential factor exp (−z q1IqnJΩ
IJ) in the integrand of the exponential

supersymmetry representation. Due to the chiral nature of the spinorial shift, it is only

necessary to shift the chiral supermomenta, so no corresponding factor exp
(
−z q̃1İ q̃nJ̇Ω̃

İ J̇
)

appears in the integrand.

Reduction to 4d. Under dimensional reduction, the 6d shift (7.4) reduces to the well-

known BCFW shift in four dimensions. To see this, consider the case where the particles

1 and n have negative and positive helicity respectively. In the conventions of section 6.2,

this can be embedded into 6d via

ε1a = (0, ε1) , εna = (ε̃n, 0) . (7.21)

The six-dimensional shift (7.4) for fundamental spinors then reduces straightforwardly to

the usual BCFW shift in four dimensions,

κ̂a1A =

(
0 κ̃α̇1

κ1α 0

)
+ zε1ε̃n

(
0 κ̃α̇n

0 0

)
, κ̂anA =

(
0 κ̃α̇n

κnα 0

)
− zε1ε̃n

(
0 0

κ1α 0

)
, (7.22)

20It is of course sufficient to only transform the fermionic variables in 1 and n to see this. Alternatively,

we can also choose to perform a full fermionic Fourier transform on only one of the particles, e.g. n,

∫
d2Nqn e

−qnIηIneF = δ0|2N

(∑
i

〈uiun〉
σin

ΩIJqiJ

)
exp

1

2

∑
i,j 6=n

〈uiuj〉
σij

ΩIJqiIqjJ − ηIn

 . (7.19)

This clearly comes at the expense of having to treat the two shifted particles differently. In this case, we

choose the following BCFW shift for the new fermionic variables ηn:

η̂In = ηIn + zΩIJq1J . (7.20)

After transforming back to the R-symmetry breaking representation, this leads to the same exponential

factor.
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up to the manifest scale ε1ε̃n in the polarization data, which could be absorbed into z.

The shift vector qαα̇ = ε1αε̃nα̇ again agrees with the usual choice up to the polarization-

dependent scale ε1ε̃n. Proving that the shift of the anti-fundamental spinors gives the

same results is a little more involved due to δκA1,n ∼ ε̃A (rather than δκA1 ∼ ε̃A1 and δκAn ∼ ε̃An
respectively). Using the definition (7.13) for ε̃A, we find

ε̃A =

(
+
ε̃n κ

α
1

〈1n〉
, −ε1 κ̃nα̇

[1n]

)T
, εnBκ

B
1ȧ = (0, −ε̃n [1n]) , ε1Bκ

B
nȧ = (εa 〈1n〉, −0) .

(7.23)

Inserting this into (7.8) then leads to the following shift for the anti-fundamental spinors;

κ̂A1 ȧ =

(
κα1 0

0 −κ̃1α̇

)
+zε1ε̃n

(
0 ε̃n[1n]
ε1〈1n〉κ

α
1

0 −κ̃nα̇

)
, κ̂A1nȧ =

(
καn 0

0 −κ̃nα̇

)
−zε1ε̃n

(
κα1 0

− ε1〈1n〉
ε̃n[1n] κ̃nα̇ 0

)
.

(7.24)

To see that this gives the same four-dimensional shift, note that the off-diagonal entries are

proportional to κα1 and κ̃nα̇ respectively, so they can be absorbed into a (z-dependent) 6d

little group transformation of κA1 ȧ and κAn ȧ. Moreover, since one of the off-diagonal terms

always vanishes, this little group transformation leaves the diagonal entries unaffected, and

we get21

κ̂A1 ȧ ' U ḃȧκ̂A1 ḃ =

(
κα1 0

0 −κ̃1α̇

)
+ zε1ε̃n

(
0 0

0 −κ̃nα̇

)
, (7.26a)

κ̂An ȧ ' U ḃȧκ̂An ḃ =

(
καn 0

0 −κ̃nα̇

)
− zε1ε̃n

(
κα1 0

0 0

)
, (7.26b)

in agreement with our result from the chiral spinors (7.24). Above, we have used ' to

indicate that the relations hold up to a 6d little-group rotation. We emphasize that the

need for this additional little-group rotation to bring κ̂A1,n into diagonal form was expected

from the embedding of 4d kinematics into 6d, see section 6.2: even after restricting to

4d massless kinematics, καȧ are only required to be proportional, in general an additional

little-group rotation is needed to bring it into the diagonalized form of (6.13).

7.2 Factorization

For scattering-equations-based amplitude representations, it is well-known that factoriza-

tion of the momenta arises from factorization of the of the moduli-space M0,n of n-points

on the Riemann-sphere modulo Möbius transformations [50]. The boundary ∂M0,n of M0,n

consists of loci where a collection of points σi for i ∈ L come together at a point. This is

21To be explicit, the relevant little group transformations are

U ḃȧ =

(
1 b

c 1

)
, with b = −z ε̃2n

[1n]

〈1n〉 , c = 0 for particle 1 , b = 0 , c = z ε21
〈1n〉
[1n]

for particle n .

(7.25)
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understood geometrically as a limit where the Riemann surface Σ = CP1 decomposes into

two CP1s, ΣL and ΣR joined at a node, with the σi, i ∈ L on ΣL and the rest on ΣR. We

denote by M̂0,n the Deligne-Mumford compactification of the moduli space of marked Rie-

mann surfaces [51], obtained by including such nodal surfaces of genus zero, with arbitrarily

many components and nodes, but with at least 3 marked points/nodes on each component.

Singularities in the integrand In for any theory only depend on the kinematic data via

polynomials. All poles in the formula stem from those in the σij and 〈uiuj〉 which come

from the boundary of the moduli space ∂Mpol
0,n. Here the moduli space Mpol

0,n encodes the

locations of the punctures σi as well as the values for ui, vi, modulo the symmetry group

SL(2,C)σ×SL(2,C)u. However, the additional boundary components in Mpol
0,n correspond to

spurious singularities involving the polarization data as seen for example in (5.20) and other

formulae in section 5. But, for super Yang-Mills and supergravity theories, we have proven

linearity of det ′H in the polarization data in section 4.5. Thus, all poles of the integrand

originate from boundaries of the moduli space of the Riemann sphere ∂M̂0,n ⊂ ∂Mpol
0,n.

At tree level, ∂M̂0,n is the union of components ∂L,RM̂0,n that correspond to separating

degenerations that split the sphere Σ into two components, ΣL and ΣR partitioning the

punctures into L ∪R, with R the complement of L so n = nL + nR,

∂L,RM̂0,n ' M̂0,nL+1 × M̂0,nR+1 . (7.27)

The component ∂L,RM̂0,n can be parametrized by gluing two Riemann spheres ΣL and ΣR

as follows. Choose a marked point on each sphere, σR ∈ ΣR and xL ∈ ΣL, and remove

the disks |σ − σR| < ε1/2 and |x − xL| < ε1/2, where ε is the parameter governing the

degeneration. Then we can form a single Riemann surface by identifying,

(x− xL) (σ − σR) = ε . (7.28)

The component ∂L,RM̂0,n corresponds to the limiting case ε → 0. Often we simplify this

degeneration by choosing xL =∞, where (7.28) becomes

σ = σR + εx̃, , with x̃ = x−1 . (7.29)

Let us briefly review how factorization works in the CHY formalism.

Lemma 7.1 Suppose that the marked points σi satisfy the scattering equations

Ei :=
∑
j 6=i

ki · kj
σij

= 0 , (7.30)

then {σi} ∈ ∂L,RM̂0,n implies k2
L = 0 where kL = −

∑
i∈L ki.

Proof. This follows by inserting (7.28) into the following combination of the scattering

equations

0 =
∑
i∈L

σiREi =
∑
i,j∈L

x̃iL
ki · kj
x̃ij

=
1

2

∑
i,j∈L

ki · kj =
1

4
k2
L , (7.31)

where the second equality holds to order O(ε) as the denominator is O(1) for j ∈ R. �
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Thus, in the degeneration limit kL is null, and the propagator goes on-shell. The

scattering equations further ensure that the CHY measure dµCHY
n mirrors the behaviour of

the moduli space at the boundary [50, 52],

dµCHY
n =

ε2(nL−1)∏
i∈L x

4
iL

dε

ε
δ
(
k2
L − εF

)
dµCHY

nL+1 dµ
CHY
nR+1 . (7.32)

Each ‘half integrand’ In for Yang-Mills theory and gravity — either a Pfaffian or a Parke-

Taylor factor — also factorizes into two subamplitudes, linked by a sum over states in the

internal propagator,

Ih
n = ε−(nL−1)

∏
i∈L

x2
iL

∑
states

Ih
nL+1 Ih

nR+1 . (7.33)

Combining the measure and the integrand, we see that gravity and Yang-Mills amplitudes

in the CHY-representation factorize correctly, in accordance with (7.3).

In the rest of this section, we will follow a similar strategy to the one outlined above for

the CHY formalism, and first establish the map between the polarized scattering equations

and factorization channels. Based on this, we determine how the measure dµpol
n behaves

on the boundary of the moduli space. In line with the equivalence between the polarized

measure and the CHY measure established in section 3.2, we find

dµpol
n =

ε2(nL−1)∏
i∈L x

4
iL

dε

ε

d8κaA
vol SL(2,C)

dµpol
nL+1 dµ

pol
nR+1 . (7.34)

The delta-functions δ
(
k2
L − εF

)
enforcing that ε ∼ k2

L ∼ k2
R are part of the momentum

conservation contained in the polarized measure. Finally, we show that the integrands

obey (7.33), and that the sum over states is encoded in a suitable superspace integral,∑
states

Ih
nL+1 Ih

nR+1 =

∫
d2NqLd

2NqR Ih
nL+1 Ih

nR+1

(
〈εLεR〉N ei〈εLεR〉

−1 qLIqRJΩIJ
)
. (7.35)

The formulae based on the polarized scattering equations thus factorize as expected for

super Yang-Mills and supergravity amplitudes.

7.2.1 Polarized scattering equations and measure

Factorisation of the polarized scattering equations. We wish to find an analogue

of lemma 7.2 for the factorization properties of the polarized scattering equations. We have

Lemma 7.2 Define εaRA :=
∑

i∈L u
a
i εiA. Factorization {σi} ∈ ∂L,RM̂0,n and the polarized

scattering equations then implies the factorization

εaRA :=
∑
i∈L

uai εiA = uaRεRA . (7.36)

Proof. We consider the form (2.30)

εi[AEiB] :=
∑
j

〈uiuj〉εj[BεiA]

σij
− kiAB = 0 , (7.37)
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and by analogy with (7.31) consider the sum

0 =
∑
i∈L

σiRεi[AEiB] =
∑
i,j∈L

x̃jL
〈uiuj〉εj[BεiA]

x̃ij
=

1

2

∑
i,j∈L
〈uiuj〉εj[BεiA] ≡

〈
εR[AεRB]

〉
. (7.38)

Again, the second equality holds to order O(ε) in the degeneration parameter, and in the

last equality, we have introduced the spinor εaRA :=
∑

i∈L u
a
i εiA. The relation (7.38) tells us

that 〈εR[AεRB]〉 = O(ε), so to leading order in ε, εaRA factorizes into an SL(4) spinor and a

little group spinor, εaRA = uaRεRA for some uaR, εRA as desired. �

Corollary 7.1 In the degeneration limit, the original worldsheet spinor λ(σ) thus induces

a spinor λ(R)(σ) on the sphere ΣR, with

λ
(R)
A

a(σ) =
∑
p∈R

uapεpA

σ − σp
+

uaRεRA
σ − σR

, where uaRεRA =
∑
i∈L

uai εiA . (7.39)

By an extension of the same argument, λ(σ) also induces a spinor λ(L)(σ) on the sphere ΣL,

which can be seen as follows. Since λ(σ) is a worldsheet spinor, the combination λ(σ)
√
dσ

is invariant under the inversion (σ − σR)(x− xL) = ε,

λaA(σ)
√
dσ = λaA(x)

√
dx , with λaA(x) =

n∑
i=1

wai εiA
x− xi

, (7.40)

where wai denote the little group spinors in the coordinates x. The invariance of λaA(σ)
√
dσ

then implies that the ui transform as worldsheet spinors of the local bundle at the marked

point σi,

uai
√
dσ

σ − σi
=
wai
√
dx

x− xi
and thus uai =

iε1/2

xiL
wai . (7.41)

At this stage, the same reasoning as above ensures that λ(x) descends to λ(L)(x) on ΣL

with

λ
(L)
A

a(x) =
∑
i∈L

wai εiA
x− xi

+
waLεLA
x− xL

, where waLεLA =
∑
p∈R

wapεpA . (7.42)

In the CHY amplitude representation, the relation (7.31) makes it clear that the scat-

tering equations map the boundary of the moduli space to a factorization channel of the

amplitude. To see this from (7.38), note that momentum conservation on each subsphere

(encoded in the polarized scattering equations) gives

kRAB = −
∑
p∈R

kp AB = εR[A

∑
p∈R

〈upuR〉
σpR

εpB] , (7.43)

where we have used the form (7.37) of the polarized scattering equations on ΣR,

εp[AE
(R)
pB] =

∑
q∈R

〈upuq〉
σpq

εp[AεqB] +
〈upuR〉
σpR

εR[AεpB] − kp AB = 0 , (7.44)
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and the first term does not contribute due to the antisymmetry in the SL(4) spinor index.

The relations (7.43) guarantees that to leading order in the degeneration parameter ε, the

internal momentum kR is on-shell, k2
R = O(ε), and the boundary of the moduli space indeed

corresponds to a factorization channel of the amplitude. The same reasoning can also be

applied to the momentum kL on the sphere ΣL,

kLAB = −
∑
i∈L

ki AB =
∑
i∈L
p∈R

〈wiwp〉
xiR

εp[AεiB] =
∑
i∈L
p∈R

〈uiup〉
σRp

εp[AεiB] = −kRAB , (7.45)

so kL goes on-shell as ε→ 0 and kL = −kR, as expected for a factorization channel. Here,

the second identity follows again from the polarized scattering equations on ΣL, the third

from the degeneration relations (7.41) for up and wi, and the last from the definition of εR
and the relation (7.43) for kR.

The scaling weights in ε. Before proceeding further, it is helpful to take a closer look

at the scaling in the parameter ε in the degeneration limit ε� 1. Near the boundary of the

moduli space, a marked point i lies on the sphere ΣL if xiL ∼ 1 is of order one, and similarly

a point p lies on ΣR if σpR ∼ 1. Using the parametrization (7.28) of the degeneration, this

gives immediately

i ∈ L : xiL ∼ 1 , σiR ∼ ε , (7.46a)

p ∈ R : xpL ∼ ε , σpR ∼ 1 . (7.46b)

As a direct consequence, the separation xij ∼ 1 of two marked points i, j that lie on ΣL is of

order one in the degeneration limit (and σpq ∼ 1 for p, q on ΣL). Using Proposition 3.2 on

the spheres ΣL and ΣR, we can also infer the scaling of little-group invariants constructed

from u’s and w’s. Proposition 3.2 implies that there only exist solutions to the polarized

scattering equations if all terms in 〈wiλ(L)
A (xi)〉 and 〈upλ(R)

A (σp)〉 remain of order one. For

points i, j ∈ L and p, q ∈ R, this means

i, j ∈ L : 〈wiwL〉 ∼ 1 , 〈wiwj〉 ∼ 1 , (7.47a)

p, q ∈ R : 〈upuR〉 ∼ 1 , 〈upuq〉 ∼ 1 , (7.47b)

and the order of all other contractions follows from the relation (7.41) between u and w

and (7.46).22 We can further use the definitions of uR and wL to derive the order of the

remaining spinor brackets: from the dominant balance in 〈uiuR〉εRA, 〈wpwL〉εLA, 〈upuR〉εRA
and 〈wLuR〉εRA, we find respectively

i ∈ L , p ∈ R : 〈uiuR〉 ∼ ε , 〈wpwL〉 ∼ ε , 〈uiup〉 ∼ 1 , 〈uRwL〉 ∼ ε1/2 . (7.48)

Summarizing the above discussion, we have seen that both the worldsheet spinor λ(σ)
√
dσ

and the polarized scattering equations descend to the subspheres, with leading terms of

order one throughout the degeneration,

n∏
i=1

δ4 (Ei) =
∏
i∈L

δ4
(
E(L)
i

)∏
p∈R

δ4
(
E(R)
p

)
(7.49)

22So, for example, 〈uiwL〉 ∼ ε1/2 and 〈uiwj〉 ∼ ε1/2.
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where the scattering equations on the subspheres ΣL and ΣR are given by the usual con-

struction,

E(L)
i =

〈
wiλ

(L)
A (xi)

〉
− 〈viκiA〉 i ∈ L , (7.50a)

E(R)
p =

〈
upλ

(R)
A (σp)

〉
− 〈vpκpA〉 p ∈ R . (7.50b)

We stress that in contrast to the CHY formalism, the polarized scattering equations do not

contribute powers of the degeneration parameter ε to the measure. As we will see below, the

factor of ε2(nL−1)−1 instead comes entirely from the integration over the variables (σi, ui).

Factorization of the measure. Armed with the insights on how the polarized scattering

equations behave on the boundary of the moduli space, let us now take a closer look at the

measure. The degeneration of the measure dn−3σ on the sphere is entirely analogous to the

CHY case, but it provides a good introduction and we will review it here for completeness.

For any values of the degeneration parameter, Möbius invariance on the sphere allows

us to fix three marked points, two of which we choose to lie on one subsphere in the limit

ε � 1, σp1 , σp2 ∈ ΣR, and one on the other, xi1 ∈ ΣL.23 At the boundary of the moduli

space, we have the further freedom to fix the junction points σR, xL of the two spheres, as

well as one additional point σi2 on ΣL. To leading order in ε, the Jacobian Jmöb for this

gauge fixing becomes the Jacobian Jmöb
R for gauging {σp1 , σp2 , σR} ⊂ ΣR,24

Jmöb = σi1p1σp1p2σp2i1 = σRp1σp1p2σp2R = Jmöb
R . (7.51)

Together with the differentials
∏
p∈R dσp, which descend directly to ΣR, this Jacobian gives

the usual Möbius invariant measure on ΣR. For the punctures σi with i ∈ L on the other

hand, we find from (7.28)

dσi = − ε

x2
iL

dxi , dσi2 =
xi1i2

xi1Lxi2L
dε . (7.52)

Combining these factors gives both the correct differentials and the Jacobian Jmöb
L for the

measure on ΣL after gauge-fixing {xi1 , xi2 , xL}. Putting this all together, the measure on

the moduli space of marked Riemann spheres factorizes as∏n
i=1 dσi

vol SL(2,C)
=

εnL−2dε∏
i∈L x

2
iL

(
(xi1i2xi2LxLi1)

∏
i∈L

i 6=i1,i2

dxi

) (
(σRp1σp1p2σp2R)

∏
p∈R

p 6=p1,p2

dσp

)
(7.53)

=
εnL−2dε∏
i∈L x

2
iL

dxL
∏
i∈L dxi

vol SL(2,C)L

dσR
∏
p∈R dσp

vol SL(2,C)R
(7.54)

23In the ambitwistor string, this has a particularly elegant interpretation in terms of picture changing

operators. We start out on the Riemann sphere with n vertex operators and n−3 picture changing operators.

In the degeneration limit, the only non-trivial assignment of these onto the two subspheres correlates the

number of picture changing operators with the number of vertex operators as described above. All other

possibilities give zero after integration over the ghost zero modes.
24While the degeneration appears to treat ΣL and ΣR differently, their roles can be interchanged by

starting from a parametrization of the sphere in x-coordinates instead of σ.
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Consider next the part of the measure dependent on v. By the same argument as

above, Proposition 3.2 ensures that all vi for i = 1, . . . , n remain of order one throughout the

degeneration. The part of the measure involving v’s, including the delta-functions encoding

the normalization, thus factorize directly into the contributions on each subsphere,

n∏
i=1

d2vi δ
(
〈viεi〉 − 1

)
=
∏
i∈L

d2vi δ
(
〈viεi〉 − 1

) ∏
p∈R

d2vp δ
(
〈vpεp〉 − 1

)
. (7.55)

In contrast to the measure dn−3σ for the punctures however, the right hand side of (7.55)

does not yet give the full v-dependence of the measure on ΣL and ΣR, because we are

missing the contributions vL and vR from the junction points. We will see later how these

extra variables are defined and in what form they appear in the amplitude.

For the u-dependent part of the measure, it will again be convenient to first work with

a gauge-fixed measure, and restore gauge invariance on each sphere ΣL,R after factorization.

In the same manner as for the punctures σi, we gauge the SL(2,C)u by fixing two moduli

on ΣR and one on ΣL (cf. (3.28))

up1a = (1 , 0) , 〈ui1u∗〉 = 0 , for p1 ∈ R , i1 ∈ L , (7.56)

where u∗ is an arbitrarily chosen reference spinor. For convenience, let us also introduce u⊥∗ ,

normalized such that 〈u∗u⊥∗ 〉 = 1. The usual Faddeev-Popov procedure gives the Jacobian

Ju = 〈ui1up1〉 〈up1u∗〉, and thus the u-part of the measure becomes

∏n
i=1 d

2ui
vol SL(2,C)u

=
εnL∏
i∈L x

2
iR

〈wi1up1〉 〈up1u∗〉

(
d〈wi1u⊥∗ 〉

∏
i∈L
i 6=i1

d2wi

)(∏
p∈R

d2up

)
, (7.57)

where we used that the ui transform as worldsheet spinors of the local bundles at σi,

see (7.41). As was the case for the marked points σi, this does not fully fix the SL(2,C)

gauge on each component sphere at the boundary of the moduli space, and we have the

further freedom to fix both of the ‘junction moduli’ wL on ΣL, as well as one component of

uR ∈ ΣR. As above, the right side is not yet in a recognizably factorized form, but misses

components of the Jacobians for gauge-fixing on the subspheres, as well as the measure for

one of the junction moduli d〈uR u⊥∗ 〉.

For a full factorization of the measure, we are also still missing the delta-functions

enforcing the polarized scattering equations on the junction points, as well as an integral

over the internal momentum in the propagator, d6kL = d8κaLA/vol SL(2,C). We introduce

these, as well as all missing factors discussed above, by inserting a conveniently chosen
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factor of 1,25

1 = ε−1

∫
d8κL

vol SL(2,C)
d〈uR u⊥∗ 〉 d2vL d

2vR 〈uRwL〉〈wL u∗〉 δ (〈vLεL〉 − 1) δ (〈vRεR〉 − 1)

× δ4
(〈
wLλ

(L)
A (xL)

〉
− 〈vLκLA〉

)
δ4
(〈
uRλ

(R)
A (σR)

〉
− i 〈vRκLA〉

)
. (7.59)

The spinors κL encode the intermediate momentum kL = −kR, with26

kLAB = 〈κLAκLB〉 , kR AB = −kLAB = 〈(iκLA)(iκLB)〉 =: 〈κRAκRB〉 , (7.60)

and the integral fully localizes on the normalization conditions for vL and vR, as well as the

delta-functions enforcing the scattering equations at the node〈
wLλ

(L)
A (xL)

〉
=
∑
i∈L

〈wiwL〉
xiL

εiA = 〈vLκLA〉 , (7.61a)

〈
uRλ

(R)
A (σR)

〉
=
∑
p∈R

〈upuR〉
σpR

εpA = 〈vRκRA〉 = i 〈vRκLA〉 . (7.61b)

The little group-spinors εaL,R relate κaLA to the previously defined are defined objects εLA
and εRA via εLaκ

a
LA = εLA and εRaκ

a
RA = εRA. By directly comparing (7.61) to the defini-

tions (7.36) and (7.42) of εLA and εRA, we find that〈
uRλ

(R)
A (σR)

〉
= −iε−1/2 〈uRwL〉 εLA ,

〈
wLλ

(L)
A (xL)

〉
= −iε−1/2 〈uRwL〉 εRA . (7.62)

so that the nodal scattering equations are indeed consistent with our previous definitions.

Note that despite the factors of ε−1/2, the right side is of order one due to 〈uLwR〉 ∼ ε1/2.

The nodal scattering equations thus imply that the variables (εL, vL) and (εR, vR) are

related by

vaL = ε−1/2〈uRwL〉εaR , vaR = −ε−1/2〈uRwL〉εaL , (7.63)

and so the integration over vL and vR should be understood as an integration over the

polarization choices of the particle running through the cut propagator.

We can now combine the elaborate factor of 1 in (7.59) with the remaining part of

the measure as follows. It evidently provides the missing factors for the v-dependent part

of the measure and the polarized scattering equations to factorize correctly, as well as the

missing measure d〈uLu⊥∗ 〉 for the u-dependent part. Using a Schouten identity and dropping

terms of subleading order in ε, we can further combine the factors 〈wi1up1〉〈up1u∗〉 from

25This is quickly checked: first note that a quick weight count in the spinors κL shows that the right hand

side is weightless in κL, and indeed the Faddeev-Popov Jacobian from fixing the SL(2,C) freedom cancels

against (part of) the Jacobian from solving the scattering equations. We can make this explicit e.g. by

fixing κaL0, as well as εL1. Then

JSL(2)κ = kL 01εL0 , J−1
pol = ε−1 〈uLwR〉〈wRu∗〉 kL 01εL0 , (7.58)

and thus the integral indeed gives one.
26We have chosen a little-group frame where κR = iκL to simplify the expression.
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the measure and 〈uRwL〉〈wLu∗〉 from (7.59) to give the missing Jacobians for gauge-fixing

the u’s and w’s on ΣL,R,

〈wi1wL〉〈up1uR〉〈up1u∗〉〈wLu∗〉 = JuRJ
w
L . (7.64)

Combining everything, the u-part of the measure factorizes with the expected degeneration

factor

ε−1〈uLwR〉〈wRu∗〉 d〈uLu⊥∗ 〉
∏n
i=1 d

2ui
vol SL(2,C)u

=
εnL−1∏
i∈L x

2
iL

d2wL

∏
i∈L d

2wi

vol SL(2,C)Lw

d2uR
∏n
p∈R d

2up

vol SL(2,C)Ru
,

(7.65)

and so the polarized measure dµpol
n indeed factorizes as (7.34),

dµpol
n =

ε2(nL−1)∏
i∈L x

4
iL

dε

ε

d8κaA
vol SL(2,C)

dµpol
nL+1 dµ

pol
nR+1 . (7.66)

7.2.2 Factorization of the integrands

Parke-Taylor factors and the reduced determinants. The Parke-Taylor factors

factorize as usual; when all punctures i ∈ L are consecutive in the colour-ordering α, then

PT(α) = ε−(nL−1)
∏
i∈L

x2
iL PT(αL)PT(αR) , (7.67)

where PT(αL) denotes the Parke-Taylor factor on the ΣL, with the ordering αL = α
∣∣
L
∪xL.

If the marked points i ∈ L do not appear in a consecutive order in α, the pole is of lower

order of ε, and there is no factorization in this channel.

The factorization of the reduced determinant is similarly straightforward. On the

boundary of the moduli space, its components are given by

Hij =
xiLxjL
ε

εiAε
A
j

xij
, Hip =

εiAε
A
p

σRp
, Hpi =

εpAε
A
i

σpR
, Hpq =

εpAε
A
q

σpq
. (7.68)

Due to the permutation invariance of the reduced determinant, we can make a convenient

choice and remove one row and column from each side, i1, i2 ∈ L and p1, p2 ∈ R,

det ′H =
detH

[i1p1]
[i2p2]

〈ui1up1〉[ũi2 ũp2 ]
= ε−nL

∏
i∈L

x2
iL

detHL
[i1L]
[i2L] detHR

[p1R]
[p2R]

〈wi1up1〉[w̃i2 ũp2 ]
. (7.69)

In the last step, we have identified the leading term in ε as determinants of HL and HR

respectively, with the rows and columns associated to xL and σR removed. Using the

Schouten identity 〈wi1up1〉〈uRwL〉 = 〈wi1wL〉〈up1uR〉 (to leading order in ε), as well as the

relations (7.63), the reduced determinant becomes

det ′H = ε−(nL−1) 1

〈εLεR〉[ε̃Lε̃R]

∏
i∈L

x2
iL det ′HL det ′HR . (7.70)

To see that this is the correct factorization behaviour for the bosonic case, let us com-

pare (7.70) to the sum over states. To implement this sum in our framework, we introduce
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again a global basis for the little group space of the internal particle. With εaL and εaR as

defined above, it is natural to choose the other basis elements (on each component sphere)

ξaL =
εaR
〈εRεL〉

, ξaR =
εaL
〈εLεR〉

, (7.71)

i.e. we choose the same basis (εL, ξL) (up to normalization constants) for both the left and

the right component sphere. Consider now the amplitude An := Aε1ε̃1...n with all external

particles in states at the top of the multiplet.27 Then the sum over states reads∑
states

AnL+1AnR+1 = εabεȧḃA
aȧ
nL+1A

bḃ
nR+1 = ξL[aεL|b] ξ̃L[ȧε̃L|ḃ]A

aȧ
nL+1A

bḃ
nR+1 (7.72)

=
AεLε̃LnL+1A

εR ε̃R
nR+1

〈εLεR〉[ε̃Lε̃R]
+
〈εLεR〉
[ε̃Lε̃R]

AξLε̃LnL+1A
ξR ε̃R
nR+1 +

[ε̃Lε̃R]

〈εLεR〉
AεLξ̃LnL+1A

εRξ̃R
nR+1 +

〈εLεR〉
[ε̃Lε̃R]

AξLξ̃LnL+1A
ξRξ̃R
nR+1 .

In the second equality, we have used the definition (7.71) of the little group basis choice

for the internal particle, and contracted the polarization data back into the amplitudes.

While this does not yet look reminiscent of the factorization property (7.70), let us take a

closer look at the amplitudes AξLε̃LnL+1 etc., arising from contracting ξL or ξR in the respective

subamplitudes. Using either the supersymmetry representation or the results of section 4.4,

the (half-) integrand of these amplitudes is given by28 det ′H 〈ξLvL〉. However, due to (7.63),

vaL = ξaL , and so all of these amplitudes vanish,

AξLε̃LnL+1 = AεLξ̃LnL+1 = AξLξ̃LnL+1 = 0 , (7.73)

and similarly for AnR+1. The sum over states thus simplifies drastically, and only the first

term contributes, ∑
states

AnL+1AnR+1 =
1

〈εLεR〉[ε̃Lε̃R]
AεLε̃LnL+1A

εR ε̃R
nR+1 . (7.74)

Thus the reduced determinant indeed factorizes as expected for gluon amplitudes, cf. (7.70).

The sum over states in the supersymmetry representation. Before discussing

factorization of the full supersymmetric amplitudes, let us first derive an expression for

the sum over states as an integral over the fermionic variables of propagating particle. For

readability, we focus on the chiral case below, all statements extend straightforwardly to

N = (N, Ñ) supersymmetry. In general, these fermionic integrals take the form

An =
1

k2
L

∫
d2NqLd

2NqR AnL+1AnR+1 G(qL, qR) (7.75)

where G(qL, qR) is a ‘gluing factor’ for the internal propagator that depends on the choice

of supersymmetry representation, and is determined — up to an overall normalization–

27For readability, we suppress the ε- indices for external particles below.
28The other integrands are Ih = det ′H [ξ̃LṽL] for AεLξ̃LnL+1 and Ih = det ′H 〈ξLvL〉 [ξ̃LṽL] for AξLξ̃LnL+1 respec-

tively.
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by supersymmetric invariance. This can be seen as follows. The left hand side of (7.75)

vanishes under the full supersymmetry generator QAI . Using further that

QAIAnL+1 = −QLAIAnL+1 , QAIAnR+1 = −QRAIAnR+1 , QAI G(qL, qR) = 0 , (7.76)

due to the supersymmetric invariance of the amplitudes on the right, we find that G has

to satisfy

0 =

∫
d4NqLd

4NqR

((
QLAIAnL+1

)
AnR+1 +AnL+1

(
QRAIAnR+1

))
G(qL, qR) . (7.77)

Using the explicit form of the supersymmetry representation (2.48), we can easily verify

that this is solved by29

G(qL, qR) =
∣∣G(0, 0)

∣∣ exp

(
i qLIqRJΩ

IJ

〈εLεR〉

)
. (7.78)

To further fix the normalization
∣∣G(0, 0)

∣∣, we compare the factorization for external gluons

from (7.75) to the sum over states (7.74). In the notation An := Aε1ε̃1...n , the fermionic

integrals give

An =
1

k2
L

∣∣G(0, 0)
∣∣ ( 1

〈εLεR〉2N
AεLnL+1A

εR
nR+1 + · · ·+A

ξL
nL+1A

ξR
nR+1

)
, (7.79)

where we used AεLnL+1 to indicate that the particle flowing through the on-shell propagator

is in the top state of the chiral supersymmetry multiplet, parametrized by εL. For the

terms AξLnL+1 with the propagating particle at the bottom of the multiplet, we have used

the consistency of the integrands with the supersymmetry representation, see section 4.4.30

By matching (7.79) to the sum over states (7.74), the normalization is given by∣∣G(0, 0)
∣∣ = 〈εLεR〉N , (7.80)

and the fermionic integral representing the sum over states in the R-symmetry preserving

supersymmetry representation takes the form

An =
1

k2
L

∫
d2NqLd

2NqR AnL+1AnR+1

(
〈εLεR〉N ei〈εLεR〉

−1 qLIqRJΩIJ
)
. (7.81)

29We can see this as follows. Using the explicit form of the supersymmetry representation, the condi-

tion (7.77) contains two terms proportional to εL and εR respectively, CL + CR = 0, with

CL =

∫
d2NqLd

2NqR e
FL+FR G(qL, qR) εRA

(
−〈vLvR〉qLI + i

∑
p∈R

〈uRup〉
σRp

qpI

)

CR =

∫
d2NqLd

2NqR e
FL+FR G(qL, qR) εLA

(
i〈vLvR〉qRI +

∑
i∈L

〈wLwi〉
xLi

qiI

)
.

Then we can straightforwardly integrate out qR in CL (and qL in CR) using the ansatz (7.78) for G and the

vanishing of the local terms in the supersymmetry factors at the node 〈ξLvL〉 = 〈ξRvR〉 = 0, and confirm

that indeed CL = CR = 0.
30As discussed above, these terms vanish if all external particles are in the top state of the multiplet.
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Factorization of the supersymmetry factors. Given that the measure and the inte-

grands factorize correctly, we can isolate the supersymmetry factors in the relation (7.81).

To prove that the superamplitudes factorize correctly, we thus need to show that at the

boundary of the moduli space

eF
∣∣∣
∂M

!
= 〈εLεR〉2N

∫
d2NqLd

2NqR e
FL+FR ei〈εLεR〉

−1 qLIqRJΩIJ
, (7.82)

Our strategy will be to first calculate the left side of this equation, and then simplify the

right to see that they match. On the left, the parametrization of (σi, ui) on the boundary

gives

F
∣∣∣
∂M

=
1

2

∑
i,j∈L

〈wiwj〉
xij

qiIqjJΩ
IJ

︸ ︷︷ ︸
:=F̂L

+
1

2

∑
p,q∈R

〈upuq〉
σpq

qpIqqJΩ
IJ

︸ ︷︷ ︸
:=F̂R

+
∑
i∈L
p∈R

〈upui〉
σpR

qiIqpJΩ
IJ . (7.83)

Here, we have introduced the factors F̂L and F̂R for later convenience.31 On the right hand

side, we can integrate out qL and qR,

〈εLεR〉2NeF̂L+F̂R

∫
d2NqL

∏
I

δ

i〈vLvR〉 qLI +
∑
p∈R

〈uRup〉
σRp

qpI

 exp

(∑
i∈L

〈wiwR〉
xiL

qiIqLJΩ
IJ

)

= eF̂L+F̂R exp

−ε−1/2〈εLεR〉
∑
i∈L
p∈R

〈uiwL〉〈uRup〉
σRp

qiIqpJΩ
IJ

 , (7.84)

where, we have used that exp(〈ξRvR〉q2
R) = 1 due to vR = ξR. To simplify the exponent

in the last line, we use a Schouten identity and the relations (7.63) for the polarization

spinors of the propagating particle to obtain to leading order

〈uiwL〉〈uRup〉 = −〈uiup〉〈wLuR〉+ 〈uiuR〉〈upwL〉 = −ε1/2 〈uiup〉
〈εLεR〉

+O
(
ε3/2

)
. (7.85)

The exponent thus agrees with (7.83), and so our formulae (2.50) factorize as expected of

amplitudes in super Yang-Mills theory and supergravity.

As an aside, we give an alternative way of deriving the factorization of the super-

symmetry factors that mirrors the bosonic discussion of the polarized scattering equations

more closely. First, note that the delta-functions in the first line of (7.84) can be solved in

analogy to the bosonic case (7.38) by

uaR qRI =
∑
i∈L

uai qiI + θaRI , 〈wLθRI〉 = 0 , (7.86a)

waL qLI =
∑
p∈R

wap qpI + θaLI , 〈uRθLI〉 = 0 . (7.86b)

31The ‘hat’-notation is intended as a reminder that these are not yet the factors FL and FR for the

subamplitudes since they do not include the contributions from the junction point.
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Here the 2N conditions imposed by the delta-functions have been replaced by 4N con-

straints, but supplemented by 2N degrees of freedom encoded in θL and θR. We can now

solve the constraints 〈wLθRI〉 = 0 by taking θaRI = αR w
a
LθRI , and similarly for θL. For

convenience, we have defined θR to be of order one, and kept a normalization factor αR
explicit. Contracting the resulting relations into ui (or wp respectively) gives the dominant

balance αR = ε1/2, and so we are left with

uaR qRI =
∑
i∈L

uai qiI + ε1/2waLθRI , waL qLI =
∑
p∈R

wap qpI + ε1/2 uaRθLI , (7.87)

on support of the delta-functions. The exponent then directly gives the correct factoriza-

tion (7.82).

Factorization of Pf ′A and the M5 half-integrand Ih
M5. While the brane theories

are not known to satisfy a BCFW recursion, the above treatment of the integrands can be

extended easily to prove that the M5 and D5 amplitudes factorize correctly. It would be

interesting to extend this to a full soft recursion as introduced in [53], but this is beyond

the scope of this paper.

Let us first consider the Pfaffian Pf ′A. On a boundary ∂L,RM0,n, the matrix entries

become

Aij =
xiLxjL
ε

ki · kj
xij

, Aip =
ki · kp
σRp

, Aip =
kp · kq
σpq

. (7.88)

If nL, nR are odd (so the subamplitudes AnL+1 andAnR+1 have an even number of particles),

it is convenient to define Pf ′A by reducing on i ∈ L, p ∈ R. Since the block-matrix

proportional to ε−1 is of even rank nL − 1, the reduced Pfaffian then factorizes as

Pf ′A =
(−1)i+p

σip
Pf A[ip] = ε−

1
2

(nL−1)
∏
j∈L

xjL Pf ′AL Pf ′AR . (7.89)

Here, the powercounting of ε is due to the removed row and column i ∈ L.

On the other hand, if nL, nR are even, i.e. we are studying factorization channels

into subamplitudes with an odd number of particles, it is still convenient to reduce on

i ∈ L, p ∈ R to avoid leading-order cancellations. In contrast to the odd case however, the

factorization now involves a sum over states as shown in [50], and the leading order term

gives Pf ′A ∼ ε−(nL2 −1). For amplitudes with half-integrand Ih
n = det ′A, there are thus no

factorization channels with odd-point subamplitudes, and for nL even, we indeed find

det ′A = ε−(nL−1)
∏
j∈L

x2
jL det ′AL det ′AR , (7.90)

as expected for half-integrands.

The calculation of the factorization of Pf U (2,0) featuring in the M5 half-integrand is

more involved due to the structure of its entries, and we have delegated the discussion to

appendix C. The final property for odd nL however is very compact,

Pf U (2,0) = ε
nL−1

2
〈εLεR〉2∏
j∈L xjL

Pf U
(2,0)
L Pf U

(2,0)
R , (7.91)
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and gives the following factorization of the M5 half-integrand,

Ih
M5 = ε−(nL−1)

∏
j∈L x

2
jL

〈εLεR〉2
Ih

M5,L Ih
M5,R . (7.92)

Repeating the arguments used in the factorization of the reduced determinant det ′H, the

only non-vanishing contribution to sum over states comes from the top of the multiplet, in

agreement with (7.92). We thus conclude that the brane amplitudes also factorize correctly.

As discussed above, for the brane theories factorization into odd-point subamplitudes is

ruled out by the presence of det ′A in the integrand. On the other hand, the novel formulae

in the web of theories in table 1 are composed of Ih
M5 with another half-integrand that sup-

ports factorization channels with odd-particle subamplitudes (such as the Parke-Taylor fac-

tor for the (2, 0)−PT formulae). From this perspective, we would also like to study the fac-

torization of Ih
M5 for even nL. A straightforward counting shows that in that case Pf U (2,0) ∼

ε
nL
2 , so Ih

M5 does give a non-zero contribution to factorization channels with even nL. While

it would be interesting to pursue this further to gain some insights into the (2, 0)−PT for-

mulae, or construct odd-particle versions, this is beyond the scope of this paper.

7.3 Boundary terms

As we have seen in section 7.2 and section 5.1, the formulae (2.50) based on the polarized

scattering equations factorize correctly, and reproduce the correct three-particle Yang-Mills

and gravity amplitudes. To demonstrate that they satisfy the BCFW recursion relation —

and are thus representations of the tree-level amplitude — we still need to show that the

boundary terms in the BCFW recursion relation vanish,

lim
z→∞

A(z) = 0 . (7.93)

We will follow a similar strategy to the one employed in the discussion of factorization,

and discuss first how the polarized scattering equations and the measure behave under the

BCFW deformation (7.4) and (7.8),

κ̂a1A = κa1A + z εa1 εnA , κ̂1
A
ȧ = κ1

A
ȧ − z ε̃A

(
εnBκ1

B
ȧ

)
, (7.94a)

κ̂anA = κanA + z εan ε1A , κ̂n
A
ȧ = κn

A
ȧ − z ε̃A

(
ε1Bκn

B
ȧ

)
. (7.94b)

As expected from the equivalence of the polarized measure dµpol
n and the CHY-measure

dµCHY
n , we find that the measure scales as z−2,

lim
z→∞

dµpol
n = z−2dµ̃pol

n , (7.95)

and thus only integrands scaling at most as In ∼ z as z →∞ can give vanishing boundary

terms. In the case of super Yang-Mills theory and supergravity, we find that eF+F̃ ∼ z0,

and det′H ∼ z0 while PT(α) ∼ z for colour-ordered partial amplitudes where the shifted

particles 1 and n are adjacent, and PT(α) ∼ z0 otherwise. Putting this together, the

supergravity and super Yang-Mills expressions scale as

M(z) ∼ z−2 , A(z) ∼ z−1 , (7.96)

– 70 –



J
H
E
P
0
8
(
2
0
2
0
)
0
6
6

in the large-z limit, so the boundary terms vanish in both cases. We conclude that the

formulae based on the polarized scattering equations satisfy the BCFW recursion relation,

and thus give representations of the respective tree-level amplitudes.

7.3.1 The polarized scattering equations

Polarized scattering equations and measure. A crucial feature of the BCFW de-

formation of the fundamental spinors is that it leaves the polarization spinors ε1,n of the

shifted particles invariant. The polarized scattering equations are thus unaffected for all

particles i 6= 1, n, and become

Êi =
∑
j

〈uiuj〉
σij

εjA − 〈viκiA〉 , (7.97a)

Ê1 =
∑
j 6=n

〈u1uj〉
σ1j

εjA − 〈v1κ1A〉+

(
〈u1un〉
σ1n

− z
)
εnA , (7.97b)

Ên =
∑
j 6=1

〈unuj〉
σnj

εjA − 〈vnκnA〉+

(
〈u1un〉
σ1n

− z
)
ε1A . (7.97c)

In the large-z limit, the scattering equations E1 and En require that σ1n ∼ z−1 while

〈u1un〉 ∼ 1 remains of order one. We can refine this dominant balance by explicitly solving

for the difference σn1 = z−1〈unu1〉 to leading order, which suggests the following change of

variables:

σn = σ1 + z−1〈unu1〉+ z−2yn , (7.98)

The shifted polarized scattering equations are indeed manifestly independent of z when

expressed in terms of the variables σ1 and yn,32

Êi =
∑
j 6=1,n

〈uiuj〉
σij

εjA +
1

σi1

(
〈uiu1〉 ε1A + 〈uiun〉 εnA

)
− 〈viκiA〉 , (7.99a)

Ê1 =
∑
j 6=n

〈u1uj〉
σ1j

εjA − 〈v1κ1A〉+
yn

〈u1un〉2
εnA , (7.99b)

Ên =
∑
j 6=1

〈unuj〉
σ1j

εjA − 〈vnκnA〉+
yn

〈u1un〉2
ε1A . (7.99c)

Let us define a new polarized measure dµ̃pol
n in analogy to (2.32), but now using the z-

independent scattering equations (7.99) as well as the new variable yn specifying the marked

point σn. Then the shifted measure dµ̂pol
n obeys

lim
z→∞

dµ̂pol
n = z−2dµ̃pol

n , (7.100)

due to dσn = z−2 dyn. This makes is clear that only theories with integrands scaling at

most as In ∼ z for large z will have vanishing boundary terms in the BCFW recursion

relation.

32We have omitted higher order terms in z−1 in Êi and Ên.
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Anti-chiral scattering equations. While the anti-chiral equivalent to the polarized

scattering equations does not play a prominent role in the amplitude expressions, we will

need the behaviour of the variables ũȧi to determine the scaling behaviour of the integrands.

On support of the chiral polarized scattering equations, the marked points σ1 and σn
factorize in the large-z limit,

σn = σ1 + z−1〈unu1〉+ z−2yn . (7.101)

Using this, the anti-chiral scattering equations are given to order O(z) by

Êi
∣∣∣
O(z)

=−z
(

[ũiũ1]

σi1

(
εnC ε1

C
)

+
[ũiũn]

σi1

(
ε1C εn

C
))

ε̃A

Ê1

∣∣∣
O(z)

= z
[ũ1ũn]

〈u1un〉
εAn +z yn

[ũ1ũn]

〈u1un〉2
(
ε1C εn

C
)
ε̃A−z2 [ũ1ũn]

〈u1un〉
(
ε1C εn

C
)
ε̃A+z

(
εnC [v1κ1

C ]
)
ε̃A

Ên
∣∣∣
O(z)

= z
[ũnũ1]

〈unu1〉
εA1 +z yn

[ũnũ1]

〈unu1〉2
(
εnC ε1

C
)
ε̃A−z2 [ũnũ1]

〈unu1〉
(
εnC ε1

C
)
ε̃A+z

(
ε1C [vnκn

C ]
)
ε̃A .

Due to the terms proportional to z2 as well as the different spinors in Ê1 and Ên, the

only dominant balance for this set of equations is [ũ1ũn] ∼ z−1. We will parametrize this

balance by

ũȧn =
[w̃nũn]

[w̃nũ1]
ũȧ1 + z−1w̃ȧn . (7.102)

Using this, the anti-chiral polarized scattering equations simplify to

Êi
∣∣∣
O(z)

= −z [ũiũ1]

σi1

((
εnC ε1

C
)

+
[w̃nũn]

[w̃nũ1]

(
ε1C εn

C
))

ε̃A , (7.103a)

Ê1

∣∣∣
O(z)

= z

(
− [ũ1w̃n]

〈u1un〉
(
ε1C εn

C
)

+
(
εnC [v1κ1

C ]
))

ε̃A (7.103b)

Ên
∣∣∣
O(z)

= z

(
− [ũ1w̃n]

〈u1un〉
(
εnC ε1

C
)

+
(
ε1C [vnκn

C ]
))

ε̃A (7.103c)

Together with the normalization condition [v1ε1] = 1, the leading order of Ê1 determines

v1 to order one; in other words we can set v1 = v∗1 + z−1ṽ1 where E1

∣∣
O(z)

(v∗1) = 0, and

similarly for vn. All remaining scattering equations Êi are solved to leading order by

ũȧn = −(εnB ε1
B)

(ε1C εnC)
ũȧ1 + z−1w̃ȧn . (7.104)

Changing variables to {σi, ũȧi , vȧi } for i 6= 1, n and {σ1, ũ
ȧ
1, ṽ

ȧ
1} and {yn, w̃ȧn, ṽȧn} thus

renders the anti-chiral scattering equations manifestly independent of z as z � 1.

7.3.2 Supersymmetry

As discussed in section 7.1, in the R-symmetry preserving supersymmetry representation

the supershift is implemented via multiplication by an exponential factor

eF+F̃ → eF̂+F̃ = eF−z q1IqnJΩIJ
eF̃ , (7.105)
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rather than a linear shift in the fermionic variables. From the solutions to the antifunda-

mental polarized scattering equations (7.104), it is easily checked that F̃ remains of order

one in the limit z → ∞, so the only z-dependent term is proportional to 〈u1un〉/σ1n − z.

On the support of the polarized scattering equations (7.98), this combination remains of

order one, and as a consequence, so does F̂ ;

F̂ =
1

2

∑
i,j

i,j 6=n

〈uiuj〉
σij

qiIqjJΩ
IJ +

∑
i 6=1

〈uiun〉
σi1

qiIqnJΩ
IJ +

yn
〈u1un〉2

q1IqnJΩ
IJ . (7.106)

The supersymmetry factors are thus of order one in the large-z-limit, eF+F̃ ∼ z0. Al-

ternatively, this can be seen from the little-group preserving representation, where the

fermionic-delta functions (2.49) and the shift (7.17) manifestly mirror the polarized scat-

tering equations. As z →∞, the same argument as for the polarized scattering equations

thus guarantees that the delta-functions remain of order one.

7.3.3 The integrand

The Parke-Taylor factor. The large-z limit for the colour half-integrand PT(α) is

familiar from the original d-dimensional CHY amplitude representation. Since the Parke-

Taylor factor only depend on the moduli of the marked Riemann sphere, its behaviour as

z →∞ is determined by (7.98).

σn = σ1 + z−1〈unu1〉+ z−2yn . (7.107)

For colour-ordered Parke-Taylor factors, we thus find

P̂T(α) ≡
n∏
i=1

1

σα(i)α(i+1)
∼

{
z α−1(1) = α−1(n)± 1 ,

1 otherwise ,
(7.108)

so the colour half-integrands are of order z if the legs 1 and n are adjacent in the colour-

ordering α and of order z0 otherwise.

The reduced determinant. In contrast to the Parke-Taylor factor, the reduced de-

terminant det ′Ĥ depends on z not only via the marked points σ1n ∼ z−1, but also via

the anti-chiral spinors ε̂A1 and ε̂An. There is however no chiral contribution of order z since

ε̂1A = ε1A and ε̂nA = εnA, and so all z-dependence stems from the columns 1 and n,

Ĥi1 = −z εiAε̃
A

σi1

(
εnBε

B
1

)
+
εiAε

A
1

σi1
, (7.109a)

Ĥin = −z εiAε̃
A

σi1

(
ε1Bε

B
n

)
+
εiAε

A
n

σi1
− εiAε̃

A

σ2
i1

(
ε1Bε

B
n

)
〈unu1〉 . (7.109b)

The entries Ĥ1n, Ĥn1 as well as the diagonal entries Ĥ11 and Ĥnn depend quadratically on

z, and we find to subleading order

Ĥ1n = −z2 ε1Aε̃
A

〈unu1〉
(
ε1Bε

B
n

)
+ z yn

ε1Aε̃
A

〈unu1〉2
(
ε1Bε

B
n

)
+ z

ε1Aε
A
n

〈unu1〉
, (7.110a)

Ĥn1 = +z2 εnAε̃
A

〈unu1〉
(
εnBε

B
1

)
− z yn

εnAε̃
A

〈unu1〉2
(
εnBε

B
1

)
− z εnAε

A
1

〈unu1〉
, (7.110b)
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which uniquely determines Ĥ11 and Ĥnn from linearity relations (2.53) among the columns

of Ĥ. We remark that all remaining diagonal entries Ĥii are independent33 of z, as can be

seen from the (row) linearity relation

〈uiun〉Ĥii = −
∑
j 6=n,i
〈ujun〉Ĥji = −

∑
j 6=n,i
〈ujun〉Hji , (7.111)

which is manifestly of order one. All z-dependence of Ĥ is thus confined to the columns

1 and n, suggesting that we define the reduced determinant by removing these columns.

Naively this would imply det ′Ĥ ∼ z because of the denominator factor [ũ1ũn] = z−1[ũ1w̃n],

but its coefficient vanishes, as can be seen from a judicious choice of row and column

operations on Ĥ.34 In practice, however, it is easier to extract the large-z behaviour by

using row- and column operations to remove the z-dependence from one of the two columns,

say column 1, and reduce on a different column.

To make this explicit, let us construct a new matrix Ĥ ′ whose column 1 is independent

of z (apart from Ĥ ′11 and Ĥ ′n1, which will still be removed),

Ĥ ′i1 = Ĥi1 −
εnBε

B
1

ε1BεBn
Ĥin , w̃′ȧn = ũȧn +

εnBε
B
1

ε1BεBn
ũȧ1 . (7.112)

Due to Lemma 4.2, the reduced determinants agree, det ′H ′ = det ′H, and in particular so

do their large-z-limits. But by construction, H ′ only depends on z via the n-th column and

the entries H1n and Hnn, so we can manifestly remove all dependence on z by reducing on

the rows 1 and n and the columns i 6= 1 and n,

det ′Ĥ = det ′Ĥ ′ =
1

〈u1un〉
(

[ũiũn] +
εnBε

B
1

ε1Bε
B
n

[ũiũ1]
) det Ĥ

[1n]
[in] . (7.113)

The expression on the right hand side is now manifestly of order O(z0).

Yang-Mills theory and gravity. Over the last section, we derived that

eF+F̃ ∼ z0 ,
∑

α∈Sn/Zn

PT(α) ∼ z , det ′H ∼ z0 , (7.114)

in the large-z limit. Combining this with the behaviour of the measure, we find that the

boundary terms in supergravity and super Yang-Mills both vanish as expected,

M(z) ∼ z−2 , A(z) ∼ z−1 . (7.115)

This completes the BCFW-recursion proof of our formulae.

As a brief aside, we mention here the curious observation that our brane formulae also

do not receive boundary contributions in the BCFW recursion, despite their poor behaviour

for large momenta. Though we are not aware of a discussion of this in the literature, this

is also true for the D-brane amplitudes in the usual CHY-framework, and just relies on

the additional observation that Pf ′A ∼ z0 in the large-z limit, which in turn follows from

similar row- and column operations on A as are used on M to show that Pf ′M ∼ z0. It

would be interesting to investigate this cancellation from the field theory perspective.

33Here and below, independence of z refers to the large-z limit, and thus only entails independence to

order z0, with possible contributions of order z−1 that vanish as z →∞.
34Recall from Lemma 4.2 that the reduced determinant is invariant under row and column operations.
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8 Discussion

In this article we have argued that the polarized scattering equations provide a natural gen-

eralization of the twistor and ambitwistor supersymmetric formulae from four dimensions.

They lead to formulae for a full spectrum of supersymmetric gauge, gravity and brane

theories in six-dimensions. These formulae are furthermore shown to factorize properly as

a consequence of properties of the polarized scattering equations themselves, as described

in section 7.2.1. This led to a proof of the main formulae by BCFW recursion.

There remain issues that are not optimally resolved in our framework. Because the

solutions to the polarized scattering equations themselves depend on the polarization data,

it is no longer obvious that the formulae we obtain are linear in each polarization vector

as they need to be, although the proof is relatively straightforward. As shown in section 3,

there is an n+ 2 dimensional vector space of potential solutions to the polarized scattering

equations whose dimensionality is then reduced by choice of polarization spinors. It should

be possible to develop this further to produce formulae that are manifestly linear in the

polarization data, or alternatively with free little-group indices as is more usually in higher-

dimensional spinor-helicity frameworks.

There remain many avenues for further development and investigation. One is the

treatment of massive amplitudes in four and perhaps five dimensions. Here there is ongoing

work both by the authors of this paper and [54], who further apply these to construct

formulae for loop amplitudes for brane and other theories in four dimensions. Further

avenues are as follows.

Grassmannians, polyhedra, and equivalence with other formulations. In four

dimensions, twistor-string formulae for amplitudes, and indeed general BCFW terms, can

be embedded as 2n − 4-dimensional cycles in the Grassmannian G(k, n) for amplitudes

with k negative helicity particles, [55, 56].

In [16] it was similarly shown that their 6d formulae could be embedded into a La-

grangian Grassmannian, i.e., the Grassmannian LG(n, 2n) of Lagrangian n-spaces in a

symplectic 2n-dimensional vector space. Ref. [21] further discussed how the polarized

scattering equation formulation of [17] and this paper can also be embedded in the same

Grassmannian, allowing one to see that the two formulations are essentially gauge equiv-

alent representations. In the formulation in this paper, an element of the Grassmannian

can be represented as an n× 2n matrix Cial with a being the little group index for ki and

l being also a particle index.35 The symplectic form is given by Ωiajb = εabδij and the

condition that Cial defines an element of the Lagrangian Grassmannian is that

Cial C
jb
mΩiajb = 0 . (8.1)

This skew form is natural in the sense that it arises from momentum conservation in the

form

κaiAκ
b
jBΩiajb = 0 . (8.2)

35For [16, 21] this l-index is replaced by ak where a is the global little group index, and k = 0, . . . , (n−2)/2

indexes a basis in the space of polynomials on C of degree (n− 2)/2.
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The Grassmannian integral formula then takes the form∫
Γ
dµ I

∫ ∏
j

δ4(Ciaj κiaA) . (8.3)

Here I is a theory dependent integrand, Γ a cycle in the Grassmannian of dimension 4n−6,

and dµ a measure on Γ. Our data embeds into the Grassmannian by

Caij =
〈uiuj〉
σij

εai − δijvai , (8.4)

with Γ parametrized by (σi, ui, vi) subject to the constraints 〈viεi〉 = 1 and modulo the

Möbius transformations on the σi, and SL(2) on the ui. A different parametrization36 for Γ

is given in [16], and in [21] it was argued that the two representations are gauge equivalent

in LG(n, 2n).

In this paper in section 4.5, the argument for linearity of the reduced determinants in

the polarization data relies on a map between solutions to the polarized scattering equations

that have different polarization data. This map should therefore similarly arise from an

analogous gauge transformation in the Grassmannian LG(n, 2n).

Polyhedra such as the amplituhedron [57] emerge when BCFW cycles in a Grass-

mannian are united into one geometric object whose combinatorics are determined by a

certain positive geometry. The original amplituhedron was adapted to momentum twistor

or Wilson-loop descriptions of N = 4 super Yang-Mills amplitudes [58–60], but there is, at

least as yet, no analogue of this in six dimensions. The version of the 4d amplituhedron

ideas that are most natural in the context of the Grassmannian descriptions here is that

described in [22], a 2n− 4-dimensional space. It follows from the above that the analogue

in 6d should therefore be a 4n − 6 dimensional space. In our context this space will then

be naturally embedded in R4n (perhaps projected onto some quotient) as the image of the

positive Lagrangian Grassmannian LG+(n, 2n) under the map

YlA = Cial κiaA . (8.5)

There is of course an anti-chiral version also. It remains to explore these frameworks.

Worldsheet models in 6d. Another gap in our description is to identify ambitwistor

string models that underlie the formulae. Ambitwistor-string models that admit vertex

operators that yield the polarized scattering equations and supersymmetry factors were

introduced in [17], together with worldsheet matter that provides the reduced determinants.

However, these were chiral, and combining both chiralities to produce the gauge and gravity

formulae has so far proved problematic: there are constraints needed to identify the two

otherwise independent chiral halves. However, as seen here such constraints don’t seem to

matter too much at the level of the formulae. The chiral models would seem to be a better

bet for the various (N, 0) theories, but for these the worldsheet matter required to provide

the integrands has yet to be identified. The issues facing the 6d worldsheet models are

resolved on reduction and we plan to write about this elsewhere.

36In the notation of those references, the 4n− 6-cycles are parametrized by (σi, w
b
ia) subject to a normal-

ization of the determinants of the W b
ia in terms of the σi.
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Higher dimensions. Representations of ambitwistor space, in terms of twistor coor-

dinates with little-group indices exist in higher dimensions also. Furthermore, naive am-

bitwistor models in those coordinates lead to higher-dimensional analogues of the polarized

scattering equations. A discussion of such models was given in [61]. Again one can obtain

supersymmetric amplitude formulae without worrying too much about the detailed imple-

mentation of the models. In particular, there are many more constraints required to restrict

the representation to ambitwistor space as in the space of null geodesics, and again these

were not implemented in any systematic way. Indeed closely related models were proposed

over the years by Bandos and coworkers [30, 62–66]. Bandos takes the attitude that the

additional constraints should not be imposed, and instead that it should be possible to find

genuine M-theory physics in these extra degrees of freedom [62, 67, 68].

Gerbe amplitudes. In addition to the well understood gauge, gravity and brane formu-

lae, we also obtain more controversial formulae with (2, 0), (3, 1) and (4, 0) supersymmetry.

The linear super-multiplets are Gerbe-like analogues of YM and gravity theories in the

sense that Gerbes, self-dual closed 3-forms, appear in the multiplets. In particular in the

(2, 0) case with the Parke-Taylor factor in the integrand, there is an important and much

studied theory with (2, 0) supersymmetry that one might hope to say something about.

This theory is expected to reduce to super-Yang-Mills in five dimensions as indeed our

(2, 0) formulae with a Parke-Taylor does for even numbers of particles. In six dimensions

however, this is thought to be a strongly coupled theory and so shouldn’t give rise to mean-

ingful amplitudes. It has furthermore been argued that there are no invariant three point

amplitudes for such models in 6d [20]. On the other hand, the four point formulae has s

and t singularities (5.37), so that soft limits should give a nontrivial limit involving the

3-point amplitude. Thus such soft limits are likely to be ambiguous and not make sense.

Similar issues arise for the other Gerbe-like theories with (3, 1) and (4, 0) supersymmetry.

See section 5.3 for more discussion and [16] where for more detail in the context of the

little-group preserving representation.

The amplitude formulae we obtain are problematic for odd particle number. Being

ratios of Pfaffians of matrices whose size depends on the particle number n, one obtains

zero divided by zero for odd n and like the 3-particle case, might not have a sensible

meaning. For the (N,N)-theories, analogous formulae can also be obtained, but identities

such as (2.57) allow us to obtain a well-defined non-zero formula when n is odd. Such

relations also hold for the Gerbe theories reduced to 5d because they coincide with the

reductions of (N,N) theories. However, we have not been able to find such relations in 6d.

Thus the prognosis for some physical interpretation of these formulae is not clear. Some

reasonable definition must be found for odd n that is compatible with factorization, see

the discussion after (7.92) for additional details. If so, a further test will be to investigate

massive modes on reduction to 5d as the R-symmetry of reduced (0, 2) massive modes is

distinct from that of (1, 1) massive modes. For massive modes the little group in 5d is still

SO(4) with spin group SL(2)× SL(2). Thus the dotted and undotted scattering equations

remain distinct and there is no longer an identification between the U (a,b) for fixed a + b.

There is therefore no clear analogue of (6.10) so analogues of the odd-point formulae for

5d massive modes reduced from 6d massless modes remain problematic.
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There are speculations that such theories might play an important role in M-theory [34–

37] so despite all these issues, these formulae perhaps deserve further study as one of the

few handles we have on the possible interactions in such theories.
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A Direct proof of permutation invariance of H

As an alternative to the abstract proof in Lemma 4.1, we can show directly that the reduced

determinant det ′H is permutation invariant by using row and column operations, as well

as the constraints ∑
i

uaiHij = 0 ,
∑
i

ũȧiHji = 0 . (A.1)

Recall the definition (2.54) of the reduced determinant;

det ′(H) := (−1)i1+i2+j1+j2
det
(
H

[i1i2]
[j1j2]

)
〈ui1ui2〉[uj1uj2 ]

, (A.2)

where H
[i1i2]
[j1j2] denotes the matrix H with rows i1 and i2 and columns j1 and j2 removed,

det
(
H

[i1i2]
[j1j2]

)
=

∂2

∂Hi1j1∂Hi2j2

det(H) . (A.3)

By definition, det ′(H) is s invariant under exchanging two particle labels i, j 6= i1,2, j1,2,

since the determinant picks up a sign under each exchange of rows or columns. To prove

permutation invariance, we thus only need to show that the reduced determinants obtained

from removing different rows or columns are identical. Moreover, it is clearly sufficient to

consider the case of different choices for the row i2, all other cases are straightforward

extensions. To be specific, consider det(H
[1 2]
[n−1n]) and det(H

[1 3]
[n−1n]), and let us suppress

the subscript [n−1n] for the removed columns to keep the expressions readable. Then the

reduced determinant (A.2) is permutation invariant if

〈u1u3〉 det
(
H [1 2]

)
= −〈u1u3〉 det

(
H [1 2]

)
. (A.4)

First, multiply the row in H [1 2] associated to particle 3 by 〈u1u3〉 (and similarly for H [1 3]),

Ĥ
[1 2]
3i = 〈u1u3〉H3i , Ĥ

[1 3]
2i = 〈u1u2〉H2i . (A.5)
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The determinants of the hatted matrices are then related to the original determinants via

det
(
Ĥ [1 2]

)
= 〈u1u3〉 det

(
H [1 2]

)
, det

(
Ĥ [1 3]

)
= 〈u1u2〉 det

(
H [1 3]

)
. (A.6)

To compare the two determinants det Ĥ [1 2] and det Ĥ [1 3], proceed as follows: multiply

each row Ĥ
[1 2]
ji associated to particle j 6= 3 by 〈u1uj〉, and add it to the row Ĥ

[1 2]
3i ,

Ĥ
[1 2]
3i =

∑
j 6=1,2

〈u1uj〉Hji = −〈u1u2〉H2i = −Ĥ [1 3]
2i . (A.7)

In the second equality, we have used the constraint (A.1), and the last identity follows from

our definitions above. In particular, note that (A.7) holds for i = 2 as well, so there is

no subtlety associated to the diagonal entries. Since row and column operations leave the

determinant invariant, we can thus conclude that

det
(
Ĥ [1 2]

)
= − det

(
Ĥ [1 3]

)
, (A.8)

and permutation invariance follows by using (A.6).

Note that we can easily use the same idea to show that det(H) = 0. In this case, we

follow the same steps as above, but now for the unreduced matrix H. Again, we define

Ĥ2i = 〈u∗u2〉H2i , (A.9)

for any reference spinor u∗ in the little group. The determinants are again related by

det Ĥ = 〈u∗u2〉 det (H). As before, we can use the constraint equations, together with

convenient row operations on the matrix (adding 〈u∗uj〉Hji to Ĥ2i). However, since no

rows have been removed from the matrix, this time we find

Ĥ2i =
∑
j

〈u∗uj〉Hji = 0 , (A.10)

and so the determinant vanishes.

We can also extend this proof to the determinant with only one row and column

removed, H
[1]
[n] = ∂

∂H1n
det(H) = 0: proceed as above, but choose u∗ = u1 to coincide with

the removed row. Then again

Ĥ
[1]
2i =

∑
j 6=1

〈u1uj〉Hji = 0 , (A.11)

since the term from the omitted row does not contribute to the constraint when u∗ = u1,

and we conclude H
[1]
[n] = ∂

∂H1n
det(H) = 0.

B Comparison to other BCFW shifts in higher dimensions

For generic polarization data of the particles 1 and n, the BCFW shift (7.6) differs from the

BCFW shift for Yang-Mills theory and gravity of [48], as well as the 6d spinorial shift of [19].

In these, for gluons and gravitons, the shift vector is chosen to align with the polarization
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of one of the shifted particles, qµ = e1µ, to ensure that the boundary terms vanish.37 In

the 6d spinor-helicity formalism, the polarization vector e1 is given by (cf. section 4.1)

e1AB = ε1 [Aε̃1B] , with ε1A = ε1 aκ
a
1A and εA1 = ε̃ȧ1κ

A
1 ȧ = ε̃1B k

AB
1 . (B.1)

Due to the gauge freedom eµ ∼ eµ + kµ, the spinor ε̃1A is only defined up to terms

proportional to κa1A. Up to this freedom, a canonical choice [19] is given by

ε̃1A = ε̃1 ȧκ∗
b
A

(
κ∗
b
B κ1

B
ȧ

)−1
, (B.2)

where κ∗
b
A is a reference spinor satisfying κ∗

b
B κ1

B
ȧ 6= 0, and the inverse is defined as the

matrix inverse in the little group spaces of the particles 1 and n. This choice for ε̃1A
clearly satisfies ε̃ȧ1 = ε̃1A κ

A
1 ȧ, and thus reproduces FB

A =
(
γµν
)
B
A F

µν = εAε
B.

The spinorial BCFW shift qAB = εn [Aε1B] is thus only equivalent to the standard

BCFW shift qAB = e1AB if we can choose a little group spinor v∗1a such that

εnA = −ε̃1A + v∗1a κ
a
1A . (B.3)

However, for generic momenta and polarization, no such v∗1a exists: upon choosing the

reference spinor κ∗
b
A = κn

b
A in (B.2), we see that q = e1 only if the polarization spinors for

particles 1 and n satisfy ε̃ȧ1 = −εnA κA ȧ1 . Thus, the BCFW shift qAB = εn [Aε1B] generically

differs from those discussed previously in the literature [19, 48]). Note however that since

q is constructed from the chiral polarization spinors of both shifted particles, it does lie in

the space of possible polarization vector for both particles.

Comparison to the 6d BCFW shift of Cheung & O’Connell. In the bosonic case,

the super-BCFW shift discussed in section 7 is strongly reminiscent of the shift used in the

work [19] of Cheung and O’Connell on the 6d spinor-helicity formalism to derive higher

point gluon amplitudes. Here we compare our shift to that of [19], and comment on the

similarities and differences in the resulting recursion relations.

Let us briefly review the work of [19].38 For bosonic Yang-Mills theory, it is advanta-

geous to keep the little-group symmetry manifest, see also section 2.4 for a discussion on

the trade-off between the little-group and R-symmetry for super Yang-Mills. Amplitudes

are thus of the form ALG
aȧ := ALG

a1ȧ1...anȧn
, which relates to our representation (due to the

linearity in the polarization spinors proven in section 4.5) via

Aεε̃ = εa1
1 ε̃

ȧ1
1 . . . εann ε̃

ȧn
n A

LG
a1ȧ1...anȧn , Aεε̃ := Aε1ε̃1...εnε̃n . (B.4)

The BCFW-shift of Cheung and O’Connell is then designed to keep this little-group sym-

metry of the amplitude representations manifest. Note that the standard d-dimension

BCFW recursion relation does not interact well with the little-group preserving amplitude

representation, because the shift vector has to be chosen to align with the polarization of

one of the particles, qµ = eµ1 , see [48]. In the spinor-helicity formalism however, there is

37In addition, we also have to work in a gauge where qµ = e1µ does not transform under the shift.
38See also [49] for related work in higher dimensions.
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no natural candidate for q = e1, essentially by construction. Cheung and O’Connell avoid

this complication by studying partially contracted amplitudes of the form

Xa1ȧ1 ALG
a1ȧ1...anȧn , (B.5)

where X is a little group vector for particle 1. For these amplitudes, they can use the

standard BCFW construction and choose the deformation vector to be qµ = Xaȧ eµ1aȧ,

where e1aȧ is a basis of polarization vectors for particle 1. Requiring that the shift leaves

the external momenta on-shell is equivalent to q2 = detX = 0, and thus Xaȧ = xax̃ȧ

factorizes, where we can identify

xa = εa1 , x̃ȧ = ε̃ȧ1 . (B.6)

This construction leaves the direction of the deformation free (parametrized by X), but still

aligns it with the polarization vector of particle 1, since for any X we have qµ = εa1 ε̃
ȧ
1 e

µ
1aȧ =

eµ1 . Since linearity in Xaȧ = εa1 ε̃
ȧ
1 is guaranteed, the full little-group-preserving ALG

aȧ can

still be extracted this way. Having defined this covariantized, but vectorial BCFW shift39

ǩ1 = k1+zq , ǩn = kn−zq , where qµ = eµ1 = εa1 ε̃
ȧ
1 e

µ
1aȧ and eaȧ1AB = κa1Aκ

b
∗B

(
κb∗Cκ

C
1ȧ

)−1
,

(B.7)

Cheung and O’Connell then implement it at the spinorial level as follows:

κ̌a1A = κa1A + z εa1 ε̃1A κ̌A1ȧ = κA1ȧ − z ε̃1ȧ ε̃A1 , (B.8a)

κ̌anA = κanA + z ya ε1A κ̌Anȧ = κAnȧ − z ỹȧ εA1 . (B.8b)

Here, ε̃1A and ε̃A1 are defined as in (B.2), such that e1AB = ε1[Aε̃1B], and similarly for the

antichiral case. Moreover, y and ỹ are little group spinors of particle n, and are determined

by the spinors κ1, κn, as well as εa1 and ε̃ȧ1, via

ya = ε̃ȧ1
(
κanAκ

Aȧ
1

)−1
, ỹȧ = εa1

(
κa1Aκ

Aȧ
n

)−1
. (B.9)

Using this shift, the BCFW recursion relation for the little-group preserving representation

becomes

εa1
1 ε̃

ȧ1
1 A

LG
a1ȧ1...anȧn =

∑
L

εbLbRεḃLḃR

k2
L

εa1
1 ε̃

ȧ1
1 A

LG (L)

a1ȧ1...bLḃL

(
k̂1 . . . kL

)
A

LG (R)

bRḃR...anȧn

(
−kL . . . k̂n

)
.

(B.10)

The shift of Cheung & O’Connell and the polarized scattering equations.

Naively, this recursion relation seems quite suitable to the framework based on the po-

larized scattering equations — contracting both sides into the remaining ε’s and ε̃’s leads

directly to the recursion relation of section 7. This however is not true for the BCFW

shift (B.8), which is inherently ambidextrous, and does not seem natural from the point of

39We use the notation ǩ1,n here to facilitate the comparison to the chiral shift denoted by k̂1,n.
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view of the (chiral) polarized scattering equations. It is difficult to verify that the bound-

ary terms are absent,40 and it thus doesn’t seem feasible to apply the original recursion in

our framework. Note that the ambidextrous nature of the shift can be traced back to the

choice of the deformation vector q = e1, and thus seems to be an intrinsic feature of any

BCFW-relation closely related to the general-d recursion of [48].

Comparison. To illustrate how the our chiral BCFW shift relates to the ambidextrous

Cheung and O’Connell shift, it is helpful to recast (B.8) in terms of some still-to-be-specified

variables x and y, related as before via

ya = x̃ȧ
(
κanAκ

Aȧ
1

)−1
, ỹȧ = xa

(
κa1Aκ

Aȧ
n

)−1
. (B.12)

We stress that at this point these are the only constraints on the variables {x, x̃, y, ỹ}, and

that x and x̃ may not align with the polarization of particle 1. The shift (B.8) is then

given by41

κ̌a1A = κa1A + z xa〈y κnA〉 κ̌A1ȧ = κA1ȧ − z x̃ȧ
[
ỹ κAn

]
, (B.13a)

κ̌anA = κanA + z ya〈xκ1A〉 κ̌Anȧ = κAnȧ − z ỹȧ
[
x̃ κA1

]
. (B.13b)

We note that this is the 6d-version of the super BCFW-shift of [49], using a slightly modified

notation to keep it more in line with [19]. As above, we use the notation κ̌1,n for the shifted

variables to make it easier to compare this ambidextrous shift to the chiral one of section 7.

The shift (B.13) can then be chosen to partially agree with the chiral BCFW shift (7.4)

and (7.8) by setting

xa = εa1 , ya = εan , (B.14)

which leads to the same shift for fundamental spinors, κ̂1,n = κ̌1,n. To see what happens

to the antifundamental spinors, we first observe that the relations (B.12) become

x̃ȧ = εnAκ
A
1ȧ , ỹȧ = εa1

(
κ1Aκ

A
n

)−1

aȧ
=
ε1Aκ

A
nȧ

k1 · kn
. (B.15)

In comparison to (7.8), this shift is missing the ‘pure gauge’ terms of ε̃A, and so the two shifts

do not agree for the antifundamental spinors. While the shift (B.14) may be interesting in

its own right, the proportionality of the antifundamental shift to ε̃A was crucial in proving

that the boundary terms vanish.

More generally, we can show that the antifundamental shift κ̌A1ȧ never agrees with κ̂A1ȧ
for any choice of {x, x̃, y, ỹ}. To see this, contract both shifted spinors κ̂A1ȧ and κ̌A1ȧ into κa1A
(and equivalently for n). This vanishes for the chiral shift, κ̂A1ȧ κ

a
1A = 0, but is generically

non-zero for the little-group preserving shift, κ̌A1ȧκ
a
1A 6= 0, and we conclude that κ̂A1ȧ 6= κ̌A1ȧ.

40To illustrate this difficulty, note that the scattering equations for i 6= 1, n contain a single term of order z,

Ei ⊃
(
〈uiu1〉
σi1

+ z 〈εny〉
〈uiun〉
σin

)
ε1A . (B.11)

41This is in fact the original notation for the BCFW shift given in [19], though with the interpretation

of x = ε and x̃ = ε̃ as in (B.6) and (B.8).
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A more general shift. Eq. (B.13) is not the most general spinor deformation giving

rise to the vecorial shift ǩ1 = k1 + zq, ǩn = kn − zq. In fact, it is easily checked that we

have the freedom to add terms proportional to xa〈xκ1A〉 to κ̌a1A etc,

κ̌a1A = κa1A + z xa
(
〈y κnA〉+ α1 〈xκ1A〉

)
κ̌A1ȧ = κA1ȧ − z x̃ȧ

( [
ỹ κAn

]
+ α̃1

[
x̃ κA1

] )
, (B.16a)

κ̌anA = κanA + z ya
(
〈xκ1A〉+ αn 〈y κnA〉

)
κ̌Anȧ = κAnȧ − z ỹȧ

( [
x̃ κA1

]
+ α̃n

[
ỹ κAn

] )
. (B.16b)

From the point of view of this more general shift, we can finally understand both the shift

of Cheung and O’Connell (B.8) and our chiral shift (7.4), (7.8) as special choices of the

free variables. As discussed above, Cheung and O’Connell pick

xa = εa1 , x̃ȧ = ε̃ȧ1 , α1 = αn = α̃1 = α̃n = 0 , (B.17)

whereas our chiral shift corresponds to

xa = εa1 , ya = εan , α̃−1
1 = α̃n = k1 · kn , α1 = αn = 0 . (B.18)

Note that despite the six degrees of freedom in resolving the vectorial shift, most of the

choices for {x, x̃, y, ỹ} will not give rise to a ‘good’ BCFW shift for any α1,n, α̃1,n. To our

knowledge, the only two options to be found in the literature are the two discussed above:

q = e1 (the ambidextrous shift of [48] and [19]), or q · e1 = q · en = 0 (the chiral shift of

this paper).42

C Factorization of Pf U (2,0)

In this appendix, we provide details on the following factorization properties of the Pfaffian

Pf U (2,0).

Lemma C.1 On boundary divisors ∂L,RM0,n 'M0,nL+1 ×M0,nR+1 with odd nL and nR,

Pf U (2,0) = ε
nL−1

2
〈εLεR〉2∏
j∈L xjL

Pf U
(2,0)
L Pf U

(2,0)
R . (C.1)

Proof. Despite the availability of permutation symmetric formulae, it will actually be

easier to use the representation (4.37)

Pf U (2,0) =
detU2

Y

detXY
(C.2)

in terms of detXY and detUY , since these readily factorize. Restricting again to odd

nL and nR odd, i.e. even subamplitudes, we can choose a partition Y with 1
2 (nL − 1)

particles in L, and 1
2 (nR + 1) particles in R, or in other words |Y ∩ L| = 1

2 (nL − 1) and

|Y ∩R| = 1
2 (nR + 1).

42The latter is of course only possible in d ≥ 6.
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Consider first the factorization of detXY . Using the above partition, X decomposes

into a block-diagonal form, with

XY =

nL+1
2︷ ︸︸ ︷ nR−1

2︷ ︸︸ ︷( )
ε−1X̂YL [L] −X [R]

R|YR [L]

}
nL−1

2

XR|YR X
[R]
YR

}
nR+1

2

. (C.3)

where, with i ∈ L and p ∈ R (for readability we raise the matrix labels),

XYR
pq =

1

σpq
, X

R|YR
ip =

1

σRp
, X̂YR

ij = xiLxjL X
YR
ij =

xiLxjL
xij

. (C.4)

The leading order term in detXY is thus given by

detXY = ε−
nL−1

2

∑
p∈R

(−1)1+p det X̂YL∪{p} [L] detX
[R]

YR [p] , (C.5)

where the subscript det X̂YL∪{p} indicates the (nL + 1)/2 square matrix constructed from

X̂YL and the additional row p of XR|YR . As usual, we use square brackets to denote the

removal of the respective rows and columns. We may now expand this determinant along

the row p,

det X̂YL∪{p} [L] =
∏
j∈L

xjL
∑
ī∈Y L

(−1)1+ī

σRp xīL
detX

[̄i]
YL [L] = −

∏
j∈L xjL

σRp
detXYL . (C.6)

Here, we used X
R|YR
ip = 1

σRp
= σ−1

Rp , and the additional factor of x−1
īL

originates from factoring

out the product
∏
j∈L xjL. In the last equality, we noted that the factors conspire to let

us recover the full determinant detXYL . Inserting this identity back into (C.5), we get the

following factorization property for detXY ;

detXY = −ε−
nL−1

2

∏
j∈L

xjL detXYL detXYR . (C.7)

One observation worth mentioning is that the factorization of XY is solely responsible for

the power-counting in the degeneration parameter ε. This is in line with what we expect,

since U (1,0) (and also U (0,1)) remaining of order one throughout the degeneration.

On the other hand, it is precisely this property that naively obscures the factorization

properties of detUY : since all components remain of order one, we do not expect to find a

natural factorization corresponding to the two subspheres. However, the combination

UipUjq − UiqUjp =
〈uiuj〉 〈upuq〉

σRpσRq
∼ ε , (C.8)

is actually of subleading order in ε. Here, we have used that the denominators become

independent of i and j, as well as a Schouten identity in the u’s. This in turn ensures with
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Y chosen as above,

UY =

nL+1
2︷ ︸︸ ︷ nR−1

2︷ ︸︸ ︷( )
UYL [L] −Û [R]

YL|YR [L]

}
nL−1

2

ÛYL|YR U
[R]
YR

}
nR+1

2

. (C.9)

the leading order term in detUY can have at most one entry from the off-diagonal blocks,

i.e. the determinant factorizes similarly to detXY ,

detUY =
∑
p∈YR

(−1)1+p detUYL∪{p} [L] detU
[R]

YR [p] . (C.10)

Here the subscripts are defined in complete analogy to the X above. We can thus follow

the same strategy as before, and expand detUYL∪{p} [L] in the additional row p,

detUYL∪{p} [L] =
∑
ī∈Y L

(−1)1+ī 〈uīup〉
σRp

detU
[̄i]

YL [L] . (C.11)

As before, this expression can actually be resummed to give the full detUYL , which relies

on the Schouten identity

〈uīwL〉 〈upuR〉 = 〈uīup〉 〈wLuR〉+O
(
ε3/2

)
= ε1/2 〈uīup〉

〈εLεR〉
+O

(
ε3/2

)
. (C.12)

Using this, we recover the full determinant detUYL ,

detUYL∪{p} [L] = i 〈εLεR〉
〈upuR〉
σpR

∑
ī∈Y L

(−1)1+ī 〈wīwL〉
xīL

detU
[̄i]

YL [L] = i 〈εLεR〉
〈upuR〉
σpR

detUYL ,

(C.13)

which in turn gives the following factorization property for detUY ;

detUY = i 〈εLεR〉 detUYL detUYR . (C.14)

Combining the factorization properties (C.7) and (C.14) for detXY and detUY with the

independence of the choice of YL and YR ensured by (4.39) (and proven in [32]) then gives

the factorization property of Lemma C.1. �

D Recursion 3 to 4 points

We show here how the BCFW shift defined in (7.4) allows us to construct the four point

amplitude from the three point in N = (1, 1) super Yang-Mills. Having shown in section 7.3

that the boundary terms vanish, the standard recursion procedure gives:

A4(1234) = A3(1̂, 2, P )aȧ
1

s12
A3(K, 3, 4̂)aȧ , (D.1)

with kP = −kK = k̂1 +k2. We have shifted here particles 1 and 4. The contraction between

the little group indices of particles P and K comes from summing over the polarization
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states of the propagating particle, as prescribed by the BCFW procedure, to yield the

numerator of the propagator. Taking the result we obtained for the three point amplitude

we can write this expression as:

A4(1234) =
1

s12
(〈ε1m1〉〈ε2m2〉wPa + cyc.)(〈ε3m3〉〈ε4m4〉waK + cyc.)× (antifundamental) ,

(D.2)

where the contribution of antifundamental spinors is analogous to the two factors in paren-

thesis, only with tilded variables. All the variables m and w are defined with respect to

shifted spinors, i.e. m1 = m1̂ but we omit the hats to make the expressions more readable.

Eq. (D.2) can be expanded into:

A4(1234)=
1

s12

(
1̂m2m3m4̂m〈wPwK〉

+(1̂m2w3m4̂w+1̂m2w3w4̂m+1̂w2m3w4̂m+1̂w2m3m4̂w)〈mPmK〉
+(1̂m2m3m4̂w+1̂m2m3w4̂m)〈wPmK〉+(1̂w2m3m4̂m+1̂m2w3m4̂m)〈mPwK〉

)
×(antifundamental) .

We have used a shorthand notation: im = 〈εimi〉 and iw = 〈εiwi〉.
The computation of this amplitude is carried out in [19]. One needs to specify the

little group objects m and w for the internal particles P,K. Since kP = −kK , we can fix

κpA = iκkA and κAp = iκAk . Then mP , m̃P are defined by (5.4) and w, w̃ are their inverses.

We can then write:

(k1 ∧ k2)BA = mPam̃P ȧκ
a
PAκ

Bȧ
P

= −mPam̃P ȧκ
a
KAκ

Bȧ
K .

Contracting with κ̂Aiċκ̂Bjcw̃iḋwjdε
ċḋεcd, where i, j = 3 or 4:

mPam̃P ȧm
a
Km̃

ȧ
K = −(k1 ∧ k2)BA κ̂

A
iċκ̂Bjcw̃iḋwjdε

ċḋεcd = −s14 . (D.3)

Exploiting this property one can impose

〈mPwK〉 = 0 , (D.4)

and choose normalizations so that:

wK =
mP√
−s14

w̃K =
m̃P√
−s14

(D.5)

The four point amplitude above then becomes:

A4(1234) =
1

s12

1

〈mPmK〉
(
1̂m2m3m4̂m − s14(1̂m2w3m4̂w + 1̂m2w3w4̂m + 1̂w2m3w4̂m

+ 1̂w2m3m4̂w)× (antifundamental) . (D.6)

One can then check that:

1̂m2m3m4̂m − s14(1̂m2w3m4̂w + 1̂m2w3w4̂m + 1̂w2m3w4̂m + 1̂w2m3m4̂w) = 〈1̂234̂〉 , (D.7)
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by projecting it on the base mi, wi. This gives:

A4(1234) =
1

s12s14
〈1̂234̂〉[1̂234̂] =

〈1234〉[1234]

s12s14
, (D.8)

where the second equality follows from the invariance of the polarization spinors under the

shift.
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