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ABSTRACT: Recently two of the authors presented a spinorial extension of the scattering
equations, the polarized scattering equations that incorporates spinor polarization data.
These led to new worldsheet amplitude formulae for a variety of gauge, gravity and brane
theories in six dimensions that naturally incorporate fermions and directly extend to maxi-
mal supersymmetry. This paper provides a number of improvements to the original formu-
lae, together with extended details of the construction, examples and full proofs of some of
the formulae by BCFW recursion and factorization. We show how our formulae reduce to
corresponding formulae for maximally supersymmetric gauge, gravity and brane theories in
five and four dimensions. In four dimensions our framework naturally gives the twistorial
version of the 4d ambitwistor string, giving new insights into the nature of the refined and
polarized scattering equations they give rise to, and on the relations between its measure
and the CHY measure. Our formulae exhibit a natural double-copy structure being built
from ‘half-integrands’. We give further discussion of the matrix of theories and formu-
lae to which our half-integrands give rise, including controversial formulae for amplitudes
involving Gerbes.

KEYWORDS: Field Theories in Higher Dimensions, Extended Supersymmetry, Supersym-
metric Gauge Theory, D-branes

ARX1v EPRINT: 2001.05928

OPEN AcCCESS, (© The Authors.

Article funded by SCOAP®. https://doi.org/10.1007/JHEP08(2020)066


mailto:giulia.albonico@maths.ox.ac.uk
mailto:yjgeyer@gmail.com
mailto:lmason@maths.ox.ac.uk
https://arxiv.org/abs/2001.05928
https://doi.org/10.1007/JHEP08(2020)066

Contents

1 Introduction

2 Review and extended summary of results

2.1
2.2
2.3
24
2.5
2.6

Review of CHY

The refined /polarized scattering equations in 4d
Polarized scattering equations framework in 6 dimensions
Supersymmetry in 6d

Integrands

The double copy and Gerbe-theories

3 Polarized scattering equations and measure

3.1

3.2

Linear form of equations, and existence and uniqueness of solutions
3.1.1 An explicit linear version of the polarized scattering equations
The equivalence of measures

4 Integrands

4.1
4.2

4.3
4.4

4.5

The kinematic reduced determinant det’H

The supersymmetry factors and transform to little-group preserving repre-
sentation

M5 and D5 theories

Consistency of the reduced determinant with the supersymmetry represen-
tation

Linearity in the polarization data

4.5.1 Linearity from supersymmetry

4.5.2 Linearity for non-supersymmetric amplitudes

5 The three and four-point amplitudes

5.1
5.2
5.3
5.4

6.1
6.2

Three-point amplitudes
Four-point Yang-Mills amplitudes
Other theories

Fermionic amplitudes

Dimensional reduction

Dimensional reduction to 5d
Dimensional reduction to 4d

7 Super-BCFW in 6d

7.1
7.2

The BCFW shift for 6d spinors

Factorization

7.2.1 Polarized scattering equations and measure
7.2.2 Factorization of the integrands

-

[0 BN} TN

10
12
15

17
18
19
21

23
23

25
27

31
33
33
33

36
37
39
41
43

43
44
46

52
93
o7
99
65



7.3 Boundary terms 70

7.3.1 The polarized scattering equations 71
7.3.2 Supersymmetry 72
7.3.3 The integrand 73
8 Discussion 75
A Direct proof of permutation invariance of H 78
B Comparison to other BCFW shifts in higher dimensions 79
C Factorization of Pf U (20 83
D Recursion 3 to 4 points 85

1 Introduction

Worldsheet approaches to scattering amplitudes generate perhaps the most compact and
mathematically structured formulae for tree-level S-matrices and loop integrands available.
These formulations cannot at this stage be obtained from space-time action formulations.
The first such formulae for field theory amplitudes (as opposed to conventional string theory
amplitudes) arose from the twistor strings of Witten [1], Berkovits [2] and Skinner [3].
These give rise to remarkable worldsheet formulae for tree-level super Yang-Mills [4, 5]
and gravity [6] in four dimensions. These formulae were extended by Cachazo, He and
Yuan (CHY) [7] to tree formulae for gravity and Yang-Mills amplitudes in all dimensions
together with a variety of further theories [8] including D-branes and Born-Infeld theories,
but without fermions or supersymmetry.

The CHY formulae are based on the scattering equations. These are equations for n
points on the Riemann sphere arising from the n null momenta taking part in a scattering
process. They were first discovered in conventional string theory as a semi-classical ap-
proximation in [9] and at high energy [10]. They were then seen to underpin the twistor
string [11] and to naturally arise from string theories in the space of complex null geodesics,
ambitwistor space [12] in an RNS formulation. These RNS ambitwistor models provide the
worldsheet theories underpinning the CHY formulae and extend straightforwardly [13] to
incorporate the later CHY formulae [8]. The RNS ambitwistor model was followed by a
fully supersymmetric pure spinor formulation in 10 dimensions [14] but which does not lead
to such explicit formulae for amplitudes. Although the original RNS forms of ambitwistor
string theories contain supersymmetry and fermions in their Ramond sectors, as do the
pure spinor formulations more directly, it has been difficult to obtain explicit formulae for
such amplitudes with arbitrary numbers of fermions. As such they don’t directly make
contact with the original twistor-string formulae by dimensional reduction.



A framework was subsequently developed in six dimensions [15, 16] that allowed the
supersymmetric extension of the original CHY formulae and those for brane theories. These
models had some features of the original RSVW formulae [4, 5] in that moduli of maps
from the worldsheet to chiral spin space in six-dimensions are integrated out against delta
functions. Although these authors were able to obtain amplitude formulae for a variety of
supersymmetric theories in this way, there were a number of issues. In particular the for-
mulae distinguish between even and odd numbers of particles, and become quite awkward
for odd numbers of particles in gauge and gravity theories where such distinctions are not
natural. Although a number of persuasive checks were made, there has been no attempt at
a systematic proof of factorization or recursion for these formulae. Their possible origins
from worldsheet models remain obscure.

Subsequently the last two named authors of this paper introduced a distinct ap-
proach [17] based on extending the scattering equations to incorporate polarization data.
These polarized scattering equations have a geometric origin in string theories in six-
dimensional ambitwistor space expressed in twistorial coordinates (although complete
worldsheet theories that give rise to the full supersymmetric worldsheet formulae remain
lacking). They were used to obtain compact formulae for amplitudes for a full range
of six-dimensional theories, now without any awkward distinction between even and odd
numbers of particles for gauge and gravity theories. These formulae differed from those
of [15, 16] both in the underlying form of the scattering equations, and also provided a
number of new integrand structures. These included 6-dimensional analogues of the 4d
formulae of [18] that provided a more efficient and compact version of the RSVW [4, 5]
and Cachazo-Skinner formulae [6] for gauge and gravity theories, as well as formulae for
D5 and Mb-branes all expressed naturally in new supersymmetry representations. There
were also more controversial formulae for Gerbe multiplets with (2,0) supersymmetry that
were analogous to gauge theory amplitudes and with (3,1) and (4,0) supersymmetry that
have some analogy with Gerbe-like gravity amplitudes.

In this article we give an improved and more detailed analysis of the formulae of [17].
We shift the supersymmetry representation in such a way as to maintain the same simple
exponential structure but so that it no longer depends on the solutions to the polarized
scattering equations. We present manifestly permutation invariant expressions for the
brane integrands, as well as direct computations for three and four point amplitudes, which
we compare to known answers previously obtained by recursion [19, 20]. For the polarized
scattering equations we give a deeper analysis, showing that generically there is a unique
solution for each solution to the conventional scattering equations: we prove that, although
they are superficially expressed as nonlinear equations, the solutions can be obtained by
normalizing solutions to a system of linear equations. As a further check on the formulae,
we derive the symmetry reductions to five dimensions giving formulae for the same variety
of theories there with maximal supersymmetry. We also show that the controversial (0, 2)-
PT, (3,1) and (4,0) formulae for interacting gerbes reduce to standard gauge and gravity
formulae in 5d. Reducing further to 4d we land directly on the 4d ambitwistor string
formulae of [18]. Our treatment gives new insights there, giving an interpretation of the 4d
refined scattering equations introduced there as also being polarized scattering equations.



We also give a proof via 6d of the relation between the CHY measure in 4d with the 4d
refined /polarized scattering equations measure.

Our main result consists of a proof of factorization for all our gauge, gravity and brane
formulae. We also introduce a new spinorial realization of BCFW recursion adapted to
6d for gauge and gravity that therefore leads to a full proof of our formulae. Somewhat
surprisingly, despite their poor power counting at large momenta, our brane formulae have
no boundary contribution for large BCFW shifts.

The paper is structured as follows. In section 2 we give an extended introduction. This
contains a review of the formulae of CHY and the original scattering equations, the four
dimensional formulae of [18]. We structure this four-dimensional discussion to highlight
that these formulae were also based on 4d polarized scattering equations (as are the closely
related RSVW formulae [4] based on the original twistor-string). The review goes on
to define the ingredients and details of the six-dimensional formulae of [17] with some
improvements and updates to include for example (2,0)-supergravities and statements of
the main results. In section 3 the polarized scattering equations and measure are studied
in more detail. It is shown that given a solution to the original scattering equations,
there exists generically a unique solution to the polarized scattering equations which can
be obtained essentially by solving linear equations and then normalizing. The associated
measures are also shown to reduce to the CHY measure. Section 4 goes on to prove
basic properties of the integrands we use, permutation invariance (see also appendix A),
invariance under supersymmetry and compatibility of the supersymmetry factors with the
reduced determinants. In section 5 the three and four point amplitudes are computed from
the new formulae and shown to agree with the standard answers for the corresponding
theories. Section 6 gives the symmetry reductions to give new formulae in five dimension,
and then to the standard known formulae of [18] in four dimensions, giving new insights into
the relations between CHY and 4d refined/polarized scattering equations measures there.

The full proof of the gauge and gravity formulae by BCFW recursion is given in
section 7. Along the way we prove factorization for all non-controversial formulae. Our
BCFW shifts are different from those of other authors so we give a brief comparison in
appendix B. To give a practical example we use our BCFW shift to derive the four point
formulae in appendix D.

Finally in section 8 we discuss further issues and directions. These include a brief
discussion of the Grassmannian approach of [16] and its use in [21] to obtain a correspon-
dence between the formulae studied in this paper and those of [16]. This leads to some
brief remarks concerning analogues of the momentum amplituhedron of [22] in 6d. There
is also some discussion of ambitwistor worldsheet models and the controversial formulae
for Gerbe theories with (2,0), (3,1) and (4, 0) supersymmetry.

2 Review and extended summary of results

We start with a review of the CHY formulae [7] for gauge and gravity theories with a
brief mention of those for other theories [23]. We further give an introduction to the 4d
refined /polarized scattering equation formulae of [18] in such as a way as to bring out the



analogy with the formulae that come later in 6d as the scattering equations there were ex-
tended to include an extra scaling per point that incorporates the polarization data.! This
extended introduction then introduces the six-dimensional spinor-helicity formalism [19],
polarized scattering equations, measures and integrands that underlie the formulae for the
various different theories, and then summarizes the amplitude formulae and other main

results of the paper.

2.1 Review of CHY

For a scattering process involving n null momenta k;, the scattering equations arise from

a meromorphic vector-valued function

n

P(o)u=) Ukz“al , (2.1)

i=1

where ¢ € C is a coordinate on the Riemann sphere CP!. When momentum is conserved,
P(0), naturally transforms as a 1-form on CP! under Mébius transforms. Equivalently,
P(0) has weight —2 in homogeneous coordinates and is a section of the line bundle O(—2)
on CP!. The scattering equations are then
P?(o ki k;
Resaié):k’i'P(O‘i):;;jJZO, Oij = 0; — 0j. (2.2)
The scattering equations imply that P2?(o) is global and holomorphic, but it must then
vanish as there are no global one-forms squared on CP*, so P(c) u is therefore null for all o.
The scattering equations then underpin the CHY formulae for massless scattering
amplitudes in the form

M= | dpS™ T (2.3)
0,n

where the CHY measure is defined by
I d CHY — 5d kz I Hzfl
/ Hn (; ) Vol(SL(2, C) x C3)

=5 (Z]ﬁ) /I |lmn||pgr| H 5(k; - P(a;)) H doj (2.4)

i#p,q,r J#ELmn
_ |lmn|[pgr|
=0 (E k:) E A dt@pqr .

Here, the Jacobians for the gauge-fixing and solving the scattering equations are given by

Ipgr| := 0pgOgrorp Q= ————, (2.5)
pqTqrrp J do;

In that paper, the equations were referred to as the refined scattering equations as the extra data and
measures distinguish the different MHV sectors so they were refined by MHV degree.



and the superscript pgr denotes the removal of the corresponding rows and subscript {mn
the corresponding columns. It is standard that (2.4) is permutation invariant [7]. The
integration is over My ,, the space of n marked points on the Riemann sphere, having
divided by the volume of the M&bius transformations SL(2, C) in the Faddeev-Popov sense.
(The second C? factor is removed by removing the pgr delta functions in the product and
replacing them with a further factor of |pgr|). The delta functions are understood as
complex delta functions that localize the integral to a sum over the (n—3)! solutions to the
scattering equations of residues given by the integrand Z divided by the given Jacobian.
The integrands denoted Z vary from theory to theory. They are usually a product of
two factors Z = IPIH with each “half-integrand” IER transforming under Md&bius trans-
formations as a 1-form in each o;. In the original CHY formulae, two possibilities for
these half-intgrands were discussed. The first was a Parke-Taylor factor that depends on

=[[——— - (2.6)

1 P (4) p(i+1)

=
The second was the CHY Pfaffian Pf’'(M) where M is the skew matrix that depends on
polarization vectors e;, associated to each null momenta k;,

ki-e; . .

A C ki ke e =1 ()

M= L Ay="U =S o= 7T e
-cT B Tij 0ij Y e =y,

014

a permutation p

On the support of the scattering equations, the matrices M have a two-dimensional kernel,
and so the Pfaffian Pf M vanishes. One can however define a non-trivial reduced Pfaffian
by deleting two rows and columns, say ¢ and j, and quotienting by the corresponding

generators of the kernel,

1
Pf'(M) := —Pf(M[ij]). (2.8)
This reduced Pfaflian is invariant under which rows and columns are removed. We then
obtain
Yang-Mills: / PT(a) Pf'(M) duS™Y (2.9a)
Gravity: / Pf'(M)Pf' (M) duSHY | (2.9b)

There are many related formulae. Biadjoint scalar amplitudes are constructed from a
product of two Parke-Taylors and further integrands for Einstein-Yang-Mills, DBI, and
other massless theories in [13, 23].

2.2 The refined/polarized scattering equations in 4d

In four dimensions, polarization data can be presented in terms of spinor-helicity variables.
A null momentum k,, p = 1,...,d, is expressed for d = 4 in terms of two-component
spinors kaq = Kaka, @ = 1,2, & = 1,2. We will use the conventional angle and square
bracket notation to denote undotted and dotted spinor contractions

(ei€j) == capele) . [GE] = %Bf“f . (2.10)



We will, for the most part use complexified polarization data as we will take our Maxwell
2-forms to be simple and null, although momenta can be taken to be real. So the little
group is the C* subgroup of the complexified Lorentz group that preserves the momentum
and acts by rescaling k. and k4. We take polarization data for a Maxwell field or gluon to
be a null vector e, that is null and orthogonal to k,. Null simple 2-forms are then either
self-dual or anti-self-dual given by F),, = e}, k,) with FadﬁB = €a€pE,; OF its conjugate in
terms of spinor-helicity data e, = €k, or €5 = €Rg respectively. Thus, polarization simply
associates a scale to either k., or K.

In order to polarize the scattering equations, we can seek global meromorphic \(0)4
and \(0)4 such that

P(0)ag = M0)aA(0)4 - (2.11)

The weights of A(¢)s and A(c)s must add up to —2 to give P and we will take them each
to take values in O(—1). In 4d we have the freedom to let them take values in different line
bundles Ao € QO(Z, L), Mg € Q0(X, £) such that £ ® £ = Ky. While this set-up emerges
naturally from the original twistor-string and related models [3, 24, 25], the higher dimen-
sional analogues of (2.11) will only make sense when both spinors take values in O(—1),
and so the 4d ambitwistor-string model [18] provides the more natural starting point.

Amplitudes in the 4d ambitwistor string are localized on scattering equations that are
refined by MHV degree as follows. Take k gluons i = 1,...,k to have negative helicity
polarization €;, = €k, and p = k 4+ 1,...,n positive with polarization data €, = €;Kis-
The equations then incorporate the polarization data via the following ansétze for \(o)q
and \(0)a;

k ) N n Wi
Moo= 0 NoYa= Y, (2.12)

, oc—o;’
i=1 p=k+1

where the o; and u; are together determined by the polarized scattering equations

up)\(ap)a:%, p=k+1,...n—k, uij\(ai)d:/?é, i=1,...,k. (2.13)
p i

It is easy to see that the o; satisfy the original scattering equations. In [18], these equations
were incorporated into a measure

k ~ n n
~ .. H i—1 dOdej/Uj
dutd =TI 6° (winon)a — Z2) TT &% (wpAop)a — 22 ) 222 2.14
ik =1 (U ) i/ piin upAL) & / Vol(GL(2,0C)) (2:14)

where the GL(2,C) extends the SL(2,C) Mobius invariance to include the little group
C* = GL(1) generated by
> w0 /ou; = upd/Ouy,. (2.15)
i<k p>k
The quotient by GL(2,C) removes the first three do; and one du; whilst introducing a
factor of 012093013 but no delta functions are removed. The four-momentum conserving
delta functions, do not need to be inserted manually, as they are implied by the delta



functions. This measure is related to the CHY measure by
Hezep / dppd, TV = / duS™ det’ H* 74 (2.16)

Although this is clear from an indirect general argument as described in section 6.2, we
also give a detailed proof there via 6d. Here the symmetric matrix H* is defined on each
MHYV sector by

<6i6j> ii<k _<6i)‘(oi)> 1 < k
HZk] _ ‘[;g] ) ] = for i 7& 7, szz — [~.5\'%i . ’ — (2.17)
Lol ij>k, T ik

with vanishing entries otherwise. It follows straightforwardly from (2.12) that H has a two-
dimensional kernel spanned by the vectors (u1,...,ug,0,...,0) and (0,...,0, ugq1, ..., Up).
Its reduced determinant is defined by

det F#I™
det'HF = — 1L (2.18)
Ui U5 Uy U,
where H[[ ]} is the matrix with rows 4,7 and columns [, m removed with [ < k < m,

i <k < j. We remark that det’H* is supported on the sectors appropriate to N*~2MHV
degree? [28]. The full (n — 3)! set of solutions to the scattering equations break up into the
N*¥=2MHYV sectors with k& = 2, ..., n—2 with Eulerian number® A(n—3, k—2) in each sector.

This reduced determinant plays a dual role in that it agrees with the CHY Pfaffian
Pf’(M) when the polarization data is restricted to the appropriate MHV degree. Thus,
because (2.16) already essentially contains one CHY Pfaffian, the integrand for Yang-Mills
formula is simply the Parke-Taylor factor and the one for gravity contains one additional
copy of det’(H).

These formulae directly extend to incorporate supersymmetry either by using chiral
or anti-chiral supermomenta. For super-Yang-Mills with A/ = 4 supersymmetries, our
supermultiplets will be either chiral or antichiral with the supermultiplet given by

~ /‘%
(Faﬁ7 1%17 q)ljv 77/%4; Fd[j’) = <€a€,87 €ad1,49147, iqu 2 IB q4>

AKakg K o .
= <q4 ‘;26 f‘qf, Seroeed T, anl,ec'xeg> e (2.19)

TIRE G 1 qreqe /6 and ¢* = ¢37q;/4 etc.. These are obtained from

respectively where ¢*7 = ¢
each other by € = 1/¢ and fermionic Fourier transform from ¢; to ¢*. At N = 4 these
multiplets are the same. For N/ < 4 we can define them in an obvious way so as to be

complementary.

2This can be seen from the ranks k — 1 and n — k — 1 respectively of the H and H matrices of the
Cachazo-Skinner formulae [6, 26] and their relationships to H* [27].

3A(n,m) is the number of permutations of n elements in which m elements are greater than their
predecessors after the permutation.



To obtain supersymmetric formulae at N¥"2MHV, we partition {1,...,n} =Y UY
with |Y| = k and particles i € Y in the first representation and i € Y in the second and
introduce the supersymmetry factor e’ N with

U U5 .
Fi= Y —Lquq. (2.20)

We now obtain the following supersymmetric 4d amplitude formulae
Super Yang-Mills: /PT(a) efN duiflk (2.21a)
Supergravity: /det’Hk efN duiflk, (2.21Db)
with N < 4 for Yang-Mills theory and N < 8 for gravity.

2.3 Polarized scattering equations framework in 6 dimensions

We here recall basic definitions from [17].

Spinor helicity in 6d. In six dimensions, vectors transform in the antisymmetric repre-
sentation of SL(4, C), the spin group of the Lorentz group Spin(6, C). Thus a 6-momentum
can be expressed as k48 = kM8l = v, "kH, where A, B = 0,...,3 are spinor indices and ~;;"”
are antisymmetric 4 x 4 Pauli matrices, the chiral constituents of the y-matrices satisfying
the Clifford algebra. The inner product of vectors is defined via the totally skew, SL(4)-
invariant tensor %6 ascp, Which is also used to raise and lower skew pairs of spinor indices.

For massless particles, the little group is given by Spin(4,C) = SL(2) x SL(2). Since
— ijBkCD

null momenta k4? with k2 €apcp = 0 are of rank two due to the antisymmetry of

the spinor indices, the on-shell condition can be solved by chiral (or antichiral) spinors [19],

AB ab, A
k a

=& KR

B
K

= [s"6"] | kap = k%K% eaq = (Kakis) . (2.22)
Here, a = 0,1, @ = 0,1 are the corresponding SL(2, C) little group spinor indices, and we
have introduced the four-dimensional notation (-,-) and [-,] brackets now used to denote
little group contractions.

Polarization data is made up of representations of the little group. A Dirac particle has
polarization data €, = €,x%. A Maxwell field strength is represented by F, with F'{ =0
because the Lie algebra of the Lorentz group is sl(4). For a momentum eigenstate, with a
null polarization vector orthogonal to k, we find

F = e'ey. (2.23)

kAB

The Maxwell equations require ke’ = 0 = €5, so that all polarization data is encoded

in little group spinors €, and e, with?

et = egr?, €4 = €qRY . (2.24)

4Note that €, and €; cannot be taken to be real in Lorentz signature.



6D polarized scattering equations. Now in 6d, we can seek a spinor-helicity factor-
ization for P(o) over CP*

1 N
PAB = )\AQA% = 55ABCD)\2)\DG . (225)

The scattering equation k; - P(0;) = 0 implies k; - P = det(x%,, A%) = 0. This determinant

vanishes iff there exists non zero (u?, v$

) defined up to scale so that

Ein = uigA\4(03) — vigkdy = 0. (2.26)
This is scale invariant in v and v, so we can normalize
(viei) = 1. (2.27)

We introduce an analogue of (2.1) for \44(0)

Aia(0) = Z Liacia (2.28)

Together, (2.26), (2.27) and (2.28) will constitute the polarized scattering equations. One
motivation for this latter formula arises from a heuristic twistorial ambitwistor-string model
that was presented in [17].

These provide our 6D polarized version of the 4d polarized scattering equation (2.13)
as equations on the (0, g, Vi) that determine the (w4, viq) on the support of a solution
o; to the ordinary scattering equations. More explicitly we can write

U5 ) €5
Ein = Z <UJJ>“‘ — (vikia) = 0. (2.29)
J

We can eliminate the v; from these equations by skewing with €;4 to get

€7j[AgB]i = Z 7@1“»?[3%2‘ —kiap =0, (2.30)
j 7ij
which follows from the normalization condition on v;. Although these are 6 equations,
skewing with €;- vanishes identically by construction and there are only three independent
equations per point that serve to determine the u;, and o;. Summing this version of the
equations over i, the first double sum vanishes being antisymmetric over i, j, leaving the
sum of momentum showing that these equations imply momentum conservation.
Although as presented, the equations for w;, appear nonlinear, later we will see that
they are underpinned by linear equations, and, in proposition 3.2, that there exists a unique

solution to these equations for each solution o; to the unpolarized scattering equation.’

®Unique up to an SL(2, C)-transformation on the global a index.



Integral formulae. Our integral formulae for amplitudes all take the form
A, = | T, dpp”! (2.31)

where the integrands Z,, are theory specific and will be specified in due course. We define
the measure based on the chiral 6D polarized scattering equations by

[T, & (Ei )5(<Ui€z’> - 1) do; d?u; d%v;
vol SL(2,C), x SL(2,C)+

dppel = (2.32)

Here the two copies of SL(2) are the Mdbius transformations on o and the little group on
the little a index and the division by their volumes are understood in the usual Faddeev-
Popov sense. We will however see that this measure is equal to the CHY measure in
section 3.2.

2.4 Supersymmetry in 6d

Here we review supersymmetry representations in 6d, in particular that in [17]. That
representation depends on individual solutions to the scattering equations, so we introduce
a variant that maintains the same simple structure, but that is global.

Supersymmetry representations in 6 dimensions have been explored in the context
of scattering ampitudes by a number of authors [19, 20, 29]. In six dimensions, (N, N)-
supersymmetry possesses an Sp(NN) X‘Sp(N ) R-symmetry group for which we introduce
indices I =1,...,2N,and I = 1,...,2N. On momentum eigenstates with momentum k43,
the supersymmetry generators @Q,; and Q;‘ satisfy, temporarily suppressing the particle
index ¢ for readability,

{QAh QBJ} = kap Q, {Q?, Q?} = k7 QU (2‘33)

where €);; and €);; are the R-symmetry symplectic metrics. The supersymmetry generators
thus reduce to the little group as

Qar = £4Qar,  QF =riQ8 (2.34)
where we now have
{Qar, Qvs} = e, {Qu>Qijy = €4 j - (2.35)

Super Yang-Mills. A key example is (1,1) super Yang-Mills theory. The linearized
‘super-Maxwell” multiplet is

F = (Ff7 w;la J}AD ¢If)7 (236)

consisting of a 2-form curvature F?, spinors of each chirality ¢¢ and ¥,; and four scalars
¢;i- On momentum eigenstates with null momentum k,p, Qc; acts on this multiplet by

Qs F = (kacth?, QuFL, kucdyis Qutbic) - (2.37)

~10 -



To construct a supersymmetry representation, we need to choose half of the Q,; as anti-
commuting supermomenta. The possibilities discussed in the literature [19, 20, 29] focus on
halving either the I or the a-indices manifesting only full little-group or only R-symmetry
respectively. The former was used successfully implemented in recent work on 6d scattering
amplitudes for a variety of theories [15, 16]. However, the latter is more natural from the
perspective of the ambitwistor string [30], and will be the formulation we work with here.
The two approaches are of course related by appropriate Grassmann Fourier transforms
and we discuss the details of the R-symmetry breaking approach and its correspondence
with the little group breaking approach used in this section in section 4.2.

For amplitudes in the representation (2.31) based on the polarized scattering equations,
there is a natural choice of supermomenta that manifests the full R-symmetry, because the
polarized scattering equations provide a natural basis (€4, v,) of the little group space for
each particle so that €* 2})1 anti-commute. They can therefore be represented as Fermionic
variables

q = e"QRy. (2.38)

This allows us to write the supersymmetry generators as

1 0 ~pol é s ag O
Qul = (Ua(h + EaQIJan> ) Q?O ¢ = <'an1' + Eanjaqj> . (2.39)
The full super Yang-Mills multiplet is then obtained from the pure gluon state .7 (0,0) =
(€4€7,0,0,0) as

Fool(r,@i) = ((ea + @ (wra)) (€ + @ (wr®)), q(e* + @ (vr™)), Gi(ea + ¢*(vka)), @id;) -
(2.40)
This gives a representation of the anti-commutation relations (2.35) such that the (1,1)-
super- Yang-Mills superfield becomes

O} = g+ " + G + P+ P9+ wdi o+ + PP g (2.41)

where ¢% = €, ¢°® is the gluon with polarization €,é, etc. This explicit form of the
multiplet highlights one of the peculiar features of this supersymmetry representation: since
the supersymmetry generators depend via v on the individual solutions to the polarized
scattering equations, so do all states in the bottom half of the multiplet, e.g. ¢*? or g*¢. The
supersymmetry representation is thus dynamic, not just particle-specific, and varies with
the solution to the scattering equations, i.e., v, is not specified in advance, but depends on
the momenta and polarization data and an individual solution to the scattering equations.
While any issues associated to this peculiarity can be easily avoided by only calculating
amplitudes with external states at the top of the multiplet,® we prefer to work with a global
supersymmetry representation that can be introduced as follows.

5i.e. taking all gluons as g, fermions as ¢ or 1/ and scalars as ¢'/. This can always be achieved by
a choice of polarization. Note in this context that the supermomenta themselves only depend on the €;,
from (2.38).
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The new representation. Instead of using the basis (€,,v,) of the little group in-
troduced by the polarized scattering equations (which depends on the solutions to the
scattering equations), let us choose a global basis for each particle

(eia,&a) , with <§l62> =1. (2.42)

Using this basis, €*Q,; again anti-commute, and can be represented by Grassmann variables
qr = €*Qq;. However, the supersymmetry generators are now globally defined,

9 Aa ax~ agy, O
Qar = <§aﬂh + eaQIJan> , Qj - <§ qi + € QU@(}_;) . (2-43)
Note that due to the normalization condition (ve) = 1, we know that v, and &, are related
by

Vg = &g + (€v)eq - (2.44)

pol and Qu; are not related by a linear

This implies that the supersymmetry generators ()
transformation of the respective supermomenta ¢;. Returning to the example of super

Yang-Mills, the multiplet now takes the form

F(a1,G1) = ((ea+ R + P(ER")), (e’ + P (ER™), Gilea+ P (Era))s @rdi)
(2.45)
and the (1, 1)-super-Yang-Mills superfield becomes

R = g% 4 g+ G0 + P+ P+ i 6 4+ PG g (2.46)

where as above ¢ = €,é; ¢** denotes the gluon with polarization €,é;. By construction,
this representation is now global and independent of the solution to the polarized scattering
equations. Of course, this global definition comes at the expense of having to introduce an
additional reference spinor &,, whereas the dynamic representation <I>§O1 only depends on a
single choice of polarization spinor.

For the most part hereon, we will work in the global R-symmetry preserving representa-
tion ®R. However, it is easy to convert our formulae to the little-group preserving represen-

0 o
tation: for this we break up Qur = (QL, Qu,) with 1 =1,..., N so that Q;; = ( 5 m)
_5m 0
l
and introduce supermomenta 7, so that

0
al — s Ta, . 2.47
Qar <877f 7 l) (2.47)

We explain the correspondence in more detail in 4.2 and give the alternative formulae
below.

2.5 Integrands

Supersymmetry determines the full super-amplitude from the amplitudes involving only
the top of the multiplet. We will see in section 4.2 that supersymmetry implies that
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the total dependence on the supermomenta is encoded in the exponential factor ef’, with
F=Fy+ FN where”

1 Wit

Fy = F' — 5 > (&) af =3 < U ‘J> qing! (2.48a)
i=1 i<j W

o prol LN~ frol _ N W] 5 431

N — N 22[511)1] q; » N —Z . qqu. ( A48 )
=1 i<j )

For example for A' = (1,1) super Yang-Mills we take the exponential factor exp FYM =

exp(Fy+F1). In the dynamic R-symmetry preserving representations (2.41) as used in [17],
ol terms in the exponential, e with F = F]{’,‘)l +F Z%OI. Alternatively,

we can Fourier transform in half the fermionic variables to make contact with the little-

we only keep the Iy

group-preserving representation of refs. [15, 16] as given in (2.47). To do so, we choose an
explicit off-diagonal representation for the R-symmetry metric, decompose the fermionic
variables q; = (ql, <em>) according to this representation, and Fourier transform one of
these half-dimensional fermionic subspaces,

/ [Tavd JTe em Hé“‘N > “Z?j,”<ejnﬂ><vm> . (2.49)
i1 ; (oF}

J J

On the right, we have relabeled ¢; = 1 := (en;), and grouped the fermionic variables into
a little-group spinor 7. In this representation, the fermionic delta-functions take the same
form as the polarized scattering equations with 7,; replacing .4, and we define dupOHNJFN
to be the measure obtained by combining the fermionic delta functions (2.49) into dupd,

In general, given a scattering amplitude of the form (2.31) for the top states of the

multiplet of an A = (N, N) theory, the fully supersymmetric amplitude is given by
A, / dpP T, eFv+Ey R-symmetry (2.50a)
A, = / AoV +N 7, little-group symmetry . (2.50b)

This gives our formulae for superamplitudes from the formulae for the top states of the
supermultiplets. We show in section 4.2 that these are correctly supersymmetric.
For the ambidextrous spin one contribution, define an n x n matrix H by

A
eiAej . .
=7 i
Ij[?“7 = Tij # J
ei - P(oy), 1=

(2.51)

where e; is the null polarization vector and P(o) is as defined in (2.1). We can define Hj;
equivalently by
Aaa(03)€f = —uiaHy , A (04)€ia = —ui Hy; . (2.52)

See section 4.1 for details.

"Here we decompose our factors for the new fixed SUSY representation in terms of the F 1{’,01 factors used
n [17].
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On the polarized scattering equations, the determinant det H vanishes because H has
co-rank 2 due to
Z uiaHij = )\aA(O'j)E;1 + UjaHjj =0. (2.53)
2
The first term follows from the definition (2.28) of A4 and the second equality from (2.52).
Similarly, Zj Hijuj, = 0. These identities nevertheless imply that H has a well defined
reduced determinant

. det(H )
det'H := ——M—~= |
<ui1ui2>[uj1uj2]

Here H [;21]3;}] denotes the matrix H with the rows i1, io and columns ji, jo deleted, and

(2.54)

det’H is well-defined in the sense that the (2.54) is invariant under permutations of particle
labels, and thus independent of the choice of i1 2, j1,2, see section 4.1 for the proof.

The reduced determinant det’H is manifestly gauge invariant in all particles, carries
SL(2,C), weight —2, as expected for a half-integrand Z°P""~! and is equally valid for
even and odd numbers of external particles. On the support of the polarized scattering
equations, it is verified using factorization in section 7.2 that det’H is equal to the CHY
half-integrand Pf'M.

Another important building block, relevant for the D5 and M5 theory, is the skew
matrix A, familiar from the CHY formulae [7, 31], with

Aij = o (2.55)

Again, the Pfaffian PfA vanishes on the scattering equations (2.2), but the reduced Pfaffian
)i+j

PfA =N

7

PfAZ is well-defined and non-zero for even numbers of particles [7, 31].
The final ingredients are constructed from (o;, uq, U;s), and are only needed for M5-

branes. These only lead to amplitudes with even numbers of particles. We present a formu-

lation pointed out by [21] using [32], giving a useful alternative formulation to that in [17],

the connections to which we discuss in section 4.3. Define the family of matrices U@ by

Ui(]q,b) _ (uauy)® Rk ' (2.56)
Oij
In fact we will only need U9 and U2 although for even numbers of particles we have
the identity
Pf" A
pPfuy)”’
allowing for the use of U1 according to taste.

det'H = (2.57)

With these ingredients, we have the following integrands of various supersymmetric

theories as follows

(1,1)-Super Yang-Mills: PT(a) det’H e th (2.584)
(2,2)-Supergravity: det’H det'H ef2+F: (2.58Db)
(1,1)-D5-branes: det’A det’H ef+F (2.58¢)

Pf/A
(2,0)-M>5-branes: det’A PEUE el (2.58d)
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The resulting superamplitudes are SL(2,C), x SL(2,C)+ invariant, the super Yang-Mills
and supergravity amplitudes are gauge invariant, and the supergravity amplitudes are
permutation invariant. We also see colour-kinematics duality expressed in the form of the
super Yang-Mills and supergravity amplitudes. The M5 amplitudes are manifestly chiral.

The integrands used here improve the formulae in [17] by having a static, fixed once
and for all supersymmetry representation. We have furthermore replaced the determinants
of n/2 x n/2 blocks of U-matrices with manifestly permutation invariant Pfaffians. These
integrands are quite different from those of [16], not only in the supersymmetry represen-
tation, but also in the Pfaffians of our U matrices and our spinorially constructed det’H
replaces the CHY Pfaffians.

The main result of this paper, expressed and proved in detail in section 7, is:

Theorem 1 The amplitude formulae (2.31) with integrands (2.58) all factorize correctly.
There exists good BCFW shifts for the gauge and gravity formulae so that their equivalence
with the corresponding tree-level S-matrices is guaranteed by recursion and the three-point
examples of section 5.

We will see later explicitly that these formulae all correctly reproduce the known three-
and four- point amplitudes. We will see further that the supergravity and super Yang-
Mills amplitudes reduce to the four-dimensional expressions given in terms of the four-
dimensional polarized scattering equations above.

2.6 The double copy and Gerbe-theories

As remarked in [17], our half-integrands provide a double-copy matrix of theories given in
terms of the improved half-integrands of this paper in the first four columns of table 1 below.
This table is analogous to those obtained in [13, 31] in the CHY and RNS ambitwistor-
string framework and the entries provide nodes in the web of theories of [33]. The table
contains the amplitude formulae for the theories described above, but the last column also
gives three expressions that may not correspond to an amplitude in a well-defined theory.
Analogous formulae were also found in the framework of [16].

A key feature of this last column is that is provides amplitude-like formulae of the
type that might arise for theories that contain Gerbes in their linear multiplets. Gerbes
are closed self-dual 3-forms and correspond to fields Bap = B(4p) in spinors. The spin-
2 analogues have spinors ¢§CD for (3,1) and ¥ apcp for (4,0) in their linear multiplets
(whereas the spinor corresponding to the Weyl tensor of a genuine gravitational field is the
trace-free symmetric spinor WGB). See [34-37] for further discussion of these spin-2 linear
fields and their possible links with interesting interacting theories.

The example that may be of most interest in this column is the ‘(2,0)-PT for-
mula’, obtained from combining the M5 half-integrand Pf’A det X ef2/PfU 20 with
a Parke-Taylor factor, i.e. replacing the det’A of the Mb5-integrand by a Parke-Taylor
half-integrand. This leads to an expression with a non-abelian structure and N' = (2,0)
supersymmetry. While this formula may seem suggestive of amplitudes for the famous
(2,0)-theory arising from coincident M5-branes, this is certainly too simplistic, because
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~ Pf’A
PT det’A  det’H ef1*1 S TE0 £
PT Bi-adjoint scalar NLSM N = (1,1) sYM N = (2,0)-PT
det’A Galileon N = (1,1) D5 N =(2,0)-M5b
det’H eF1+E N =(2,2) sugra N =(3,1)
Pf'A o
Pr0 © N = (4,0)

Table 1. All integrands constructed from the building blocks discussed above.

that theory lacks a perturbative parameter and thus has no S-matrix.® Ref. [16] have
further shown that the equivalent four-particle expression in their framework factorizes
into non-local three-particle formulae that are not even well-defined,’ and thus cannot
be interpreted as amplitudes. Moreover, the formulae in the right-hand column are not
obviously defined for an odd number of particles. The (2,0)-M5 theory is not expected
to have amplitudes for odd numbers of particles, but that is already guaranteed by the
additional det’A factor which, being the determinant of a skew matrix, automatically
vanishes for odd n. However, for the other factor we have no analogue of (2.57) to provide
a meaning for odd n. This issue may well be connected to the difficulties in defining three-
particle extensions for the (2,0)-PT mentioned above and discussed in [16]. Despite these
difficulties in identifying underlying theories for these formulae, they are all well-defined
and manifestly chiral and supersymmetric, and we discuss them further in section 8.

Further theories, (2,0) supergravity. Our matrix in table 1 can be extended further
using the half-integrands from [13, 31] to give potentially supersymmetric 6d versions of
the theories discussed there. Further half-integrands in [39, 40] will give further potentially
supersymmetric formulae for the higher order theories treated there.

This larger matrix will by no means be exhaustive and many further theories can
be constructed by stripping out some of the supersymmetry and adjoining fewer or more
fields than are present in the maximally supersymmetric multiplet. This yields further
half-integrands and theories. In many settings the correct couplings will then be ensured
from the original supersymmetric theory. We give an example that follows the analysis
of Heydeman et al. [41]. In the context of their 6d framework, they extract all chiral
N = (2,0) 6d supergravity amplitudes together with the abelian (2,0) tensor multiplets
from the known formulae for A" = (2, 2) supergravity. The number of tensor multiplets can
then be changed with impunity. If there are 21 of them, this leads to anomaly cancellation
and a correspondence with a K3 reduction of type IIB string theory.

The (2,2) supergravity multiplet can be regarded as the tensor product of the (2,0)
multiplet with the (0, 2) multiplet. The latter consists of fields (B?, ¥4, ¢;;) with ¢;;Q =
0 so that there are only 5 scalars. This can be truncated to throw out the \I/? and the

8See also the no-go theorems of [20, 38] for the existence of a 3-point amplitude.
9The three-particle kinematics carries a special redundancy, under which amplitudes must be invariant
— but these three-particle formulas are not.
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number of scalars can be reduced or increased. In the tensor product with the (2,0)
multiplet, the scalars correspond to (2,0) abelian tensor multiplets. With just one flavour
of (2,0) abelian tensor multiplet embedded into the (2,2) multiplet (together with the
(2,0) gravity), integrating out the (0,2) part of the supersymmetry from the (2,2) formula
yields, with m abelian multiplets and n graviton multiplets

MZ0) :/dupol det’H det’H det ULV ! (2.59)

n+m n+m
where Ué? Y is the m x m matrix of (2.56) whose particle indices are those for the m abelian
tensor multiplets. If we now wish to have an arbitrary number of flavours of abelian tensor
multiplets, we can extend U,(,? D to

u(q,l) _ [ﬁiaj]éfifj
1] UZ]

(2.60)

into which the flavour vectors of the m abelian tensor multiplets can be contracted before
taking the determinant in (2.59).
We remark that this formula superficially contains more polarization data than ex-

A in addition to the e, for

pected for the m abelian tensor multiplets as it contains an €
each tensor multiplet, coming from the (n + m) x (n + m) reduced determinant det’ H.
However, it will be seen in section 4.4 that these expressions are independent of the spurious

e as they should be.

3 Polarized scattering equations and measure

In this section we prove various statements made in the introduction. We first give an
alternative form of the scattering equations that manifests that the scattering equations
imply momentum conservation. In section 3.1 we prove the existence and uniqueness for
solutions to the polarized scattering equations given an initial solution to the scattering
equations. Underlying this is a linear formulation of the polarized scattering equations that
we make explicit in section 3.1.1. This is not used explicitly in what follows and can be
omitted by a casual reader. The final subsection 3.2 proves that the polarized scattering
equations measure is equivalent to the standard CHY measure.

We first recall the form of the polarized scattering equations in which we eliminate the
Vi by skew-symmetrizing the ith polarized scattering equation with €;4 to obtain

Ugy Uj)€Ei[A€ER]T
€ilaEn)i = €ialuirp (00)) + kiap = Z w — kiap - (3.1)

I 0; — 0
These leads to

Lemma 3.1 We have the identity
KAB = Z kiAB == Z Ei[A]gB]i . (32)

Thus if &4 = 0 then momentum conservation K,z =Y. k; =0 follows.
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Proof. This follows from
> A (33)
o ’ '

Z?] J

as the argument of the double sum is skew symmetric in i, j. Il

We also wish to know that A\, provides a spinor-helicity decomposition of P (o).

Proposition 3.1 On the support of the polarized scattering equations

M aa(0)N%(0) = Pup(o) = Z Uk_f‘”; i (3.4)

Proof. We have

a a uiauqeiA6 iB
M(OAG(0) =) ——=. (3.5)

>~ (00)(00;)
There are no double poles because u;qui = 0. The residue of the Lh.s. at o; is

G
UiaW;€j|B)

(Gioj) €ilatiaA(7i)5)

Resg, Aa(0)N5(0) = €14 Y
J

The polarized scattering equations reduces the r.h.s. of this to
Resq, Aaa(0) NG (0) = eic/if[A/@'%]iv,-b = (Vi€i) Ki[alak'p); =t Kian ,

as desired. 0
When the scattering equations are not imposed, although the residue of Res,, P(0) is
no longer k;, there is nevertheless an alpha-plane that contains both P(o;) and k;.

3.1 Linear form of equations, and existence and uniqueness of solutions

In this subsection we prove existence and uniqueness using algebro-geometric arguments.
We define the bundle over CP! in which Ay4, a = 0,1, takes its values to show that it
is a rank-two bundle with canonically defined skew form, and so generically has a pair of
sections that can be normalized.

We work with bundles on CP! which will be direct sums of line bundles O(n) whose
sections can be represented in terms of homogeneous functions of degree n in terms of
homogeneous coordinates oo, @ = 0,1 on CP! with skew inner product (0i0j) == 04001 —
0;1050. We prove:

Proposition 3.2 For each solution {o;} to the scattering equations and compatible polar-
1zation data in general position, there exists a unique solution to the polarized scattering
equations (2.26), (2.27) and (2.28) up to a global action of SL(2,C) on the little-group index.
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Proof. Let PAB(o) arise from the given solution to the scattering equations as the spinor
form of (2.1). To remove the poles, define II(¢)4? := PAB [[(00;) which is now holomor-
phic object of weight n — 2 on CP! and is a null 6-vector so as a skew matrix has rank 2
on CP! (for momentum and o; in general position it will be vanishing on CP?).

We require A\ga P48 = 0 for a = 0,1 so to study solutions to this equation, define
the rank-2 bundle E = ker P € S4 on CP! where S4 is the rank four trivial bundle of
spinors over CP!. To calculate the number of sections we wish to compute the degree of
this bundle. To do so consider the short exact sequence

0—E—S4s— E'(n—-2)—0, (3.6)

where the second map is multiplication by II(c)*? and E°(n — 2) C S*(n — 2) is the
annihilator of F twisted by O(n — 2), that being the weight of TT4Z. In such a short
exact sequence the degree of §4 is the sum of that of E and E°(n — 2) since the degree
is the winding number of the determinant of the patching function, and the maps of the
exact sequence determine these up to upper triangular terms that don’t contribute to the
determinant. Since S4 is trivial, it has degree 0, so we find

deg E +deg E* +2(n—2) =0. (3.7)

Because EY = (S/E)* and S is trivial, we have deg E° = deg E so this gives deg E = 2 —n.

Now Aga := Aa [[(00;) is a section of E(n —1) which by the above has degree n. Our
Ay 4 is subject to the n conditions, one at each marked point, as we impose A, A|U:Uj X €j4.
This has the effect of defining a subbundle with a reduction of degree by 1 at each marked
point, so the total degree is now zero. Thus this subbundle therefore has degree zero.
For data in general position, it will therefore be trivial with a two-dimensional family of
sections spanned by Ag4, @ = 0,1. These can be normalized because AgaA1p = fllap
where f is a holomorphic function of the sphere of weight n. The conditions on A 4 at o;
imply that f vanishes at each o; so f = c¢[[;(c0;) and we can normalize our sections so
that ¢ = 1 reducing the freedom in the choices of frame A, 4 to SL(2). On dividing through
by [[;(c 0;)% we obtain Psp = XA . O

For the non-chiral theories that we are considering, we will need both chiralities of
spinors satisfying polarized scattering equations i.e, we can also define

)‘dA(U) = Z % , uia)\aA(O'i) = Uide?A. (3.8)

7

3.1.1 An explicit linear version of the polarized scattering equations

This is not essential to the logical structure of the paper and can be omitted by the casual
reader. However, the above argument is rather abstract and it is helpful to see explicitly at
least the underlying linearity of the problem of solving the polarized scattering equations.
However we have not been able to give explicit versions of all the algebro-geometric proofs
above.
According to the above, we are trying to find a pair of solutions Aq4, a = 1,2 to the
equations
P(o)*®X\g(0) =0, (3.9)
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where A4(o) has projective weight —1 in o and P weight —2. The argument above gives
A [[(o0;) as a section of E(n — 1) which has degree n and rank 2 so generically has n + 2
global sections. To make this more explicit, make the ansatz'’

A=Y D (3.10)

(o0i)

which removes double poles from (3.9). Given that the total weight of (3.9) is negative, it
will be satisfied if the residues at its poles vanish. The vanishing of the residue at o; yields

K
KD Py + P(oi) P kija, = 0. (3.11)

Now define p?d after solving the CHY scattering equations (2.2) by
PP (03)rfy = Rfpie . (3.12)

This makes sense at o; as k¢, annihilates the pole, and a second contraction with %, leads
to zero as it gives k; - P, so it must be a multiple of x7,. We can understand this also by
considering the 2-form P(o;) A k; which in spinors gives, using the above,

P(Ui)AckZBC = P(Ui)BCkiAc = PfA, PEA = /‘GiAa’igP?d- (3.13)
We can now see for example that
ei - P(oi) = [eilpilei) , (3.14)

using ejap = €;4€5); Where &7 = €. Following Cheung and O’Connell [19], we further
define

/@'?Jq = H?dﬁ?A, (3.15)

that relate the ij-particles little group indices.
With this notation we see that (3.11) can be written as i, multiplied by
aa; ; ﬂ i 7£ ]
> Hii =0, By =370
a,j b; t=7.

(3.16)

The discussion of the previous subsection implies that generically these equations have
n + 2 solutions. These equations reduce to the original polarized scattering equations if we
supplement them with n further equations (e;u;) = 0, since we will then have uq;; = €jq,;u;
as in the original ansatz (2.28). We then expect to find a pair of linearly independent
solutions u;q, with a = 1,2 now global little group indices, so that we now have

Ug ; = €ig,Uj - (3.17)

a;t

9We attach the additional i-index to a; here to distinguish this w4,;; from the u;, in the original ansatz
for Aiq; the a; is a little group index associated to momentum k; rather than the global one associated to
Aq. We will drop these sub-indices when the equations are unambiguous.
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In order to normalize these solutions, observe that for a pair of solutions AL, A2 to (3.9),
we must have that

AuAy = [Pas (3.18)

for some meromorphic function f on CP! with poles at the o;. However, when we im-
pose (3.17), the double poles in (3.18) vanish and f must be constant, so we can normalize
the pair of solutions uf so that the coefficient is 1. The full n + 2-dimensional space of
solutions also has a volume form determined by (3.18).

In general (3.16) are 2n-equations on 2n-unknowns, so we must have n + 2 relations
to agree with the discussion of the previous subsection and to allow us to impose these
extra n conditions. The relations follow from the original equation (3.9) and the nilpotency
P48 Py = 0 that follows from the original scattering equations. This leads to the nilpotency

> HYHub =0. (3.19)
ja
This can be checked explicitly using a Schouten identity. We can use this nilpotency to
generate solutions

Ai(0) = P(0)sWo (o),  W(o)* = Z ! (3.20)

(o0i)

where the W7* has weight 1 in o so wg; has weight 1 in o; and 2 in 0. The ansatz guarantees

no double poles in A, and by taking residues we obtain!!
uf = > Hifwg; . (3.22)
a,j

3.2 The equivalence of measures

We first show that

5(k-P) = /dQu d?v 64(E4)d((ev) — 1), with €4 1= (ula) — (vK4) . (3.23)

After integrating out the four components of (u,, vp), we are left with a single delta-function
on both sides of the equation. It is easy to see that they have the same support as the
latter delta function on the left implies that v, # 0, but this can only be true when (A%, k%)
ABCD)\O )\1

have rank less than four, which happens iff ¢ LkQkL := k- P = 0. Furthermore the

weights in A4 and % are —2 on both sides. A systematic proof uses a basis with ¢, = (0, 1),
mg =k} = 1 and all other components zero. This allows us to integrate out the v® directly

against the delta functions reducing the right side to

/ 2 5 (1 A2) 6(1aAD) S Xe — 1) = (Do Ar)) | (3.24)

1'We also have the special solutions when W (o)* has no poles that leads to the 8 solutions

Uqi = K,/L‘a,\(W; + O’LW1A) . (3.21)
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where the latter equality follows by direct calculation integrating out the wu,; this
gives (3.23) in this basis.
The CHY measure is defined to be

W= 0% (K) géT(ls(gf;’.SiU;)gg:56(K)(012023031)2H5(ki-P(ai))dai, (3.25)

=4

dpiy,

where K = ). k;, the volume of SL(2, C), quotients by the Mébius invariance of o, and the
C? is a symmetry of the ambitwistor string whose quotient removes the linearly dependent
scattering equations delta functions.

Proposition 3.3 We have

pol . / Hz 1 d*u; d*v; do; 54(51A)5(<6ivi> —1) _ dﬂ(‘HY’ (3.26)
Vol(SL(2,C), x SL(2,C),)

where SL(2,C), denotes Mobius invariance of o as above in the CHY measure, the
SL(2,C), is acting on the little group index of u,, and the integrals are over the (u;,v;)
variables.

Proof. We first reduce the SL(2,C), factor fixing (o1, 02,03) to be constant with the
standard
L doi

_ALd% do; . 2
Vol SL(2, C), 70130 [ [ do (3.27)

>4

Similarly Faddeev-Popov gauge fixing'? SL(2, C),, by

=(1,0),  ul=(0,u), ugz(—“”’,ulg), (3.28)

so that u;; = (u;u;) for i < j < 3 yields

M = dujaduizdu ﬁd%- (3.29)
Vol SL(2)s 120U130U23 1 i .
On the support of the delta functions [];. ;6*(&;4) we can write, using (3.2),
3
Kup = (Z ei[ASZ-B]> . (3.30)
i=1
We can trivially perform one of each of the v; integrals against the §((vie;) — 1) delta
functions by choosing a basis of the little group spin space for each i so that €, = (1,0)

fixing v = (v, 1).
Choosing a basis of spin space consisting of {€;4, €04} with ¢ = 1,2,3 and €y, chosen
so that (0123) = 1, and dual basis €, i =,0,...,3 we find via (3.30)

Koi = &, Kij = &y s (3.31)

2This entails contracting a normalized basis of the Lie algebra of SL(2,C), into the form [], d°u; and
restricting to the given slice.
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so that these polarized scattering equations can be replaced by 6°(K). The remaining

scattering equations in H?:l 64(&;4) are, fori,j =1,...,3,
uij . .
Eajy = " i (3.32)
Vit t=7
where the ... denotes terms involving 4,7 > 3. Thus we can integrate out du;; and dv;

against these remaining polarized scattering equation delta functions §(&;;)) for 4,5 < 3
yielding an extra numerator factor of o190930713.

Finally we can use (3.23) to replace the remaining polarized scattering equations delta
functions by standard ones thus yielding the desired formula. O

4 Integrands

In this section, we discuss the integrands Z,, and the supersymmetry representation in more
detail. We first show that the spin-one contribution det’H is permutation invariant, and
that it is equivalent to the CHY pfaffian Pf’M in providing the correct dependence on
the spin-one polarization data. We move on to giving further details of the supersymme-
try factors and of the ingredients required for brane theories. Finally, we prove crucial
properties such as linearity of the spin-one contribution in the polarization data, and the
compatibility of the reduced determinant with the supersymmetry representation.

4.1 The kinematic reduced determinant det’H

For our ambidextrous spin one contribution, recall that we defined an n X n matrix H by

w4
J— T44q
H;j = i ,

(4.1)
€i-P(O'Z'), iZj

where e; is the null polarization vector above and P(o) is as defined in (2.1). We first prove
the equivalence between this definition of H;; and that in (2.52). In order to use the vector
representation of the polarization vector, we introduce a spinor é4 so that et = k4Bép.
Then the polarization vector is eap = €[4€p). The equivalent definition of H;; (2.52) is

Xaa(oi)eft = —uigHi, X (07)€eia = —ul Hy; . (4.2)

The left side is a multiple of u;, (or uf) due to the scattering equation and the identity
kAB k% = 0. Starting from the second last formula we obtain the first from

[ P(Ol) = G[AgB])\aA(O'i)A%(JZ') = — iiEBua)\‘fg(ai) = — iigB’UaHaB = _Hii . (4.3)

This then, being neither chiral nor antichiral justifies the equivalence.
The matrix H;; is not full rank because

Z uiaHij = )\aA(O'j)E}4 + UjaHjj = 0, (4.4)

~ 93 -



and so, as above, we define the generalized determinant

y [i12]
det(H!) det(H; ' %)
det/(H) — € ( ) — [7172] (45)
(uiwg)[uiug] (i wiy)[ug, wj,]
where HU! denotes the matrix H with the ij rows and columns deleted and H [[ﬁ;i the

matrix with the with rows 41,42 and columns j1, jo removed. These are well-defined as
Lemma 4.1 The generalized determinant defined above is permutation invariant.

Proof. We can extend the argument of appendix A of [26] on such generalized determi-
nants as follows.

Consider an n X n matrix HZ] with a p-dimensional kernel and cokernel, i.e., that
satisfies ), w}IHZJ = 0and ), Hijzi)? = 0 where a,b = 1,...,p. We must also assume
that there are volume p-forms on these kernels, (w; ...w,) and [Wy,...Wp,]. Our reduced
determinant can be understood as the determinant of the exact sequence

oscrlcrBenBeroo. (4.6)
To make this explicit, note that we have

&g I HI T (wy - wp) (@ 0P) = det (HDw L w i o (47)

for some det’(H). This formula follows because skew symmetrizing a free index on the left
with a w, or w, vanishes as it dualizes via the € to contraction with Hl] . Thus it must
be a multiple of the right hand side as defined. The definitions (4.5), (2.54) then follow
by taking components of this definition in the case p = 2 on the i1, s, j1, jo indices. In
our context the natural volume form on the kernel is defined on the 2-dimensional space
of ujq, = ui€q; by the f on the right hand side of (3.18) but for our polarized scattering
equation framework, the normalizations are such that this is 1 so the bracketed terms on
the left of (4.7) reduce to unity in (4.5). O

Note that the first term on the left side of (4.7) is simply the p' derivative of det H
where we have to relax the scattering equations and momentum conservation to make the
determinant not identically zero. The CHY matrix is also non-degenerate away from the
support of the scattering equations and momentum conservation. We have

Proposition 4.1 The determinant is related to the full CHY Paffian by det(H) = Pf M.

Proof. We use the form of the CHY Pfaffian due to Lam & Yao [42]. They show that
the full Pfaffian of M can be expanded into a sum over the permutations p € 5, of the

particle labels,

PF(M) = > sen(p)M;... My, (4.8)
pESH

where each term has been decomposed into the disjoint cycles I = (i1 ...i7), J = (ji...j7)
of the permutation p. The terms in this cycle expansion are given by

tr(Fil"'FiI) f I > 1
T (49)
i it 1= {i},

and oy = (Um-2 ... O m)_l denotes the Parke-Taylor factor associated to the cycle.
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Euler’s formula for the determinant of H similarly gives

det(H) = > sgu(p)H;... Hy (4.10)
PESn

where the terms Hj are given by

F, ..Fy .
Ul Fy) e gy s,
Hr=H;,...Hijiy = I ' . (4.11)
Hi' if I = {Z} s
Here the trace over the F's is taken in the spin representation and we have C;; = H;; hence
the equivalence. O
This result provides some circumstantial evidence that Pf'M = det’ H on the support
of the scattering equations, but we do not have a direct proof. We prove this only indirectly
via factorization in section 7.2. Our det’ H can therefore be used as a half-integrand in

place of Pf'(M) in the theories as described in [31] to give full integrands

Yang-Mills: PT(a) det’'H (4.12a)
Gravity: det’H det’H (4.12b)
D5-branes: det’A det'H . (4.12¢)

4.2 The supersymmetry factors and transform to little-group preserving rep-
resentation

Here we show that the supersymmetry factors ef™, with

n

1 Uil
Fy = F]I\),Ol -5 Z@ﬂh) q; F]I\DIOI = Z < ;Hj>quq§, (4.13a)
i=1 ie; i
SRR B e e spol _ N [Wily] - b
N =Yy 9 Z [&ivi] G5 FN = Z ——qiiq; - (4.13Db)
i=1 iy i

are invariant under supersymmetry. The full supersymmetry generator for n particles is
defined by the sum Q.; = > ; Qi for each particle as defined by (2.43),

9 ~ . .
Qiar = (&ikia)Qir + €4 Qy5—, g= &K Qi+ e Qpjm—. (4.14)
0qiy 9, j

Superamplitudes must be supersymetrically invariant and so are annihilated by the total
@47 and indeed this determines the amplitude for the whole multiplet from the amplitudes
involving only the top of the multiplets.

It is easily verified that the supersymmetry factors give an amplitude that is supersy-
metrically invariant, since

QuefN = Z ((Eiﬁm) + <§wi>€m) qir — Z Wf]ﬂ e

ij

i 4,
(uiu;) €ia Fy
= Z(%‘Fﬂiﬁ qir — Z TCI]'I eV =0, (4.15)
i ij "

— 95—



and similarly Qf ef” = 0. Here, the second equality follows from v; = & + (&vi)ei, and the
sum vanishes on the support of the polarized scattering equations. Conversely, given an in-
tegrand Z,, for the top states of a multiplet, (2.50) is the unique supersymmetric completion
using the supersymmetry representation (2.43), as can be verified using supersymmetric
Ward identities.

The little-group preserving supersymmetry representation. In six dimensions,
amplitudes can alternatively be written in a supersymmetry representation that breaks
R-symmetry, but preserves little group symmetry. We construct this representation by
choosing an N-dimensional subspace on which €;; vanishes indexed by I,m = 1...N so
that o’ = (a!, q;) with Q,,a’b’ = alb; — b'a;. Then

QL = (Q4, Qu) = r%(Q, Qu) (4.16)

satisfying
{Q4 Q1 =0={Qu, Qom}»  {Qui, Q'} = eard]", (4.17)

with similar relations for Q4 = (Q*, QY = kH(Q¥,Q%). Thus we can introduce supermo-
menta 7, as fermionic eigenvalues of @), so that our supermomentum eigenstates satisfy

_ la, 09 s ~la 09
Qua® = Ma® Q% = F Qra® = Ma® , Q= B (4.18)

This clearly gives a representation of (4.17). For N' = (1,1) super Yang-Mills, we can
replace the [-index by ‘1’ when [ = 1 is an upper index and ‘2’ when [ is a lower index to find

q)LG — (Zsll + nawal 4 ﬁd,&ld + naﬁdAad + n2¢21 + ﬁ2¢12 4ot 7]27‘772¢22 ’ (419)
for the R-symmetry breaking representation.!
Fermionic Fourier transform. The sets of supermomenta from the R-symmetry pre-
serving representing are related to those above by decomposing ¢ = (g, ¢') and observing
that the definitions allow us to identify

0
M= "Na = €N = q1, Moy := et = £ Nat = o (4.20)

The latter relation implies a fermionic half-Fourier transform on the supermultiplets written
for general (N, N) as

n=q Q="el

Nii=q q ="z
(4.21)
As discussed in section 2.5, we can implement the fermionic half-Fourier transform at the
level of the amplitudes. Starting from the exponential (R-symmetry preserving) represen-

tation, we find that the supersymmetry factors turn into delta-functions that mimic the

3The indices are chosen to agree with the conventions in [15, 16].
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polarized scattering equations,

L Al Ui U5
/ [TV J]e e e~ = o™ Z< J><emﬂ> — (o) | = AWV (4.22)
i=1 J

O
i j K

In this representation, it is convenient to include the fermionic delta-functions in the defi-
nition of the measure, d,u,IiOllN+N = dMEC’lA%'NA%'N. We remark that in this delta-function
representation of the superamplitude, all components are monomials in the Grassmann
variables 7, and the all-gluon amplitude sits in the middle of the multiplet (4.19). It is
straightforward to check that we recover the integrand det’H of the gluon amplitude in
the top state by extracting the component proportional to [[,(vin;)[0i7:].

N . .
are invariant under

We can also verify directly that the supersymmetry factors A?L
supersymmetry, and that superamplitudes in the delta-function representation are annihi-
lated by the supersymmetry generator @Q;, defined as before by the sum Q4 = > ;| Qi as-
This is particularly easy to see for the multiplicative operator @ ,;, which vanishes on the

support of the polarized scattering equations,

" U U4
Qu AN =" kfmaa AN =" M( — (€ini)eja + <€j77jl>€m) AN =0.  (4.23)
i=1

—  0jj
Z?] ]

Here we have used both the support of the polarized scattering equations and their
fermionic analogues, and the last equality holds because the argument of the sum in
and j is skew symmetric. The remaining supersymmetry generators annihilate the super-
amplitude by a similar argument,

0
on

AN =% (uit) (—ejael +ensh) AN =0, (4.24)

O-ij n [iljl

n

l O|N __ a

QA Anl - E :"iiA
i=1

/L‘?j

OV i the usual product (4.22), but
n [iy5i]

with the delta-functions 55 , Eﬁ removed. The sum vanishes again by the skew-symmetry

where SiF denote the fermionic delta-functions, and A

of its argument.

4.3 M5 and D5 theories

We first recall the ingredients for D5 and M5-branes. These are supersymmetric theories
that share a scalar sector with Lagrangian of the form L ~ \/—det(nu, + k>, 0,070,¢").
For D5 branes r = 1,...,4 and for M5 branes » = 1,...,5 thought of as transverse coor-

dinates to 6d worldvolumes in 10d or 11d respectively. D5-branes are naturally completed
with (1, 1)-supersymmetry, and M5 with (2,0)-supersymmetry. In the case of D5-branes,
the linearised multiplet then coincides with the (1,1) super-Maxwell multiplet (2.36). The
Lagrangian for the bosonic parts of the multiplet extends the Born-Infeld action to give

L~ |—det <77W +EY 0,70,¢" + KFW,> :

3
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For M5 branes, the (2, 0) supermultiplet is (G ap, %14, ¢17) With ¢1; = ¢y and br U =
0. Here the spinor Gap = G(4p) corresponds to a self-dual 3-form whose linearized equa-
tions are that it should be closed (and hence co-closed by self-duality). Such a field is
known as a Gerbe, often thought of as a curvature associated to a 2-form potential BE .
See [43] for a modern review.

There are CHY formulae [31] for the bosonic brane theories with any number of scalars,
and further including the Born-Infeld contribution. As in [17], we follow the strategy in [15]
that obtains full superamplitudes for D5 and M5 theories by incorporating supersymmetry
factors on top of these CHY formulae for scalar amplitudes. This makes use of the fact that
both theories share an SU(2) subsector of the scalars. The full supersymmetric amplitudes
can then be reconstructed from the known scalar amplitudes in this sector by applying
supersymmetry. We go on to explain their relationship with the half-integrands (2.56)
given in the introduction.

The D5 integrand. The bosonic part of this is well-known from [31] in the original
CHY-format, where it takes the form Zps = det’APf’M. Substituting the spin-one half-
integrand in the 6d spinor-helicity formalism, and inserting the correct supersymmetry
factors immediately gives the 6d integrand

Tps = det’A det’H P +F1 (4.25)

of the full superamplitudes. We can now extract the shared subsector of scalar amplitudes
from this D5 integrand by a suitable integration over the super momenta ¢;, ¢;. For an
all-scalar amplitude where we scatter generic scalars qﬁ'i] /i the integrand takes the form

T Indn — /Hd2 i d%; ¢ G Tps = det’ A det’H (PEU)™"» (PEU)n . (4.26)
i=1

Here, U and U are n x n matrices carrying the R-symmetry indices of the scalars, with

entries .
U = MQ”“, u' = MQW’J‘, (4.27)

Oij 0ij
and Pfif and PfU are defined by specifying the R-symmetry indices, and then taking the
Pfaffian as usual. To construct the M) integrand, we further have to restrict this amplitude
to the shared SU(2) scalar subsector between M5 and D5 theory, which is the subspace of
non-self-interacting scalars of the respective theories. This sector can be constructed along
similar lines to the discussion in section 4.2. Let us choose again an NV -dimensional subspace
of the supersymmetry generators on which the metric Q,; vanishes, indexed by a’ = (a!, a;)
with Q,,a'b’ = alb; — blal.. From this we can directly construct two non-self-interacting
scalar subsectors, Y = {¢!'} and Y = {¢,;} for D5, and Y = {¢/™} and Y = {¢y,,} for M5.
Any other non-self-interacting subsector is related to Y and Y by an SU(2) transformation.
Note that each of the non-self-interacting subsectors contains exactly one scalar state; this
is obvious for D5, where qﬁ” = (j)%({ and ¢, = (;SE% in the notation of the last section, and for
M5 theory this follows from the antisymmetry constraint on the scalar indices, ¢’/ = —¢”.
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Moreover, amplitudes in this SU(2) subsector are non-trivial, as long as n/2 of the scalars
are in Y, and the other n/2 in Y. This is most easily seen in the R-symmetry breaking
representation, where the multiplets take the form

DL = oL+ natb™ + [ah 4 Nafa A%+ POt + P ole 4 -+ PP (4.28a)
Y = dra + 0™ + €™ nanpm B + nan ' + (0% ey + 0 dra (4.28b)

with ¢rq = '™, QNSLG = ¢ and gblﬂg =™ ¢!, in the M5 multiplet. In this representation,
amplitudes are monomials of degree 2n in the fermionic variables, so scalar amplitudes
from the SU(2) subsector are generically non-trivial when n/2 particles are in Y, as claimed
above.

Using this construction, we can restrict the generic scalar amplitudes of (4.26) to the
SU(2) subsector with |Y| = [Y| = n/2. The matrices I and I/ then take the form

0 U - 0 U
u: Y 3 Z/{: ~ Y ) (4’29)
-UL o -UL o

U(lvo) U(Ovl)
_ ip ip
i €Y and p € Y. In this SU(2) scalar subsector, the scalar D5 amplitudes are thus given

by

where Uy and Uy are n /2 x n/2 matrices with entries Uy ), = and 0y,‘p = for

729®) — det’A det’H det Uy det Uy . (4.30)

We can compare this to the same scalar subsector in the CHY formalism [31], where the
integrand is given by I]SJI;(Z) = (Pf’A)3det Xy. Here, Xy is an n/2 x n/2 matrix with
-1

ip > again with for ¢ € Y and p € Y. This gives the identity

entries Xy;p = o

_ AU XY  pprg —det’H (4.31)

det Uy det Uy
The M5 integrand. As discussed above, the scalar amplitudes (4.30) are the same in
both the M5 and D5 theory. Supersymmetry then uniquely determines the M5 integrand
IM5 from this SU(2) scalar subsector as follows. Consider the following generic ansatz for
the M5 superamplitude,

AMS — / dpP®! Tygs ef? (4.32)

By integrating over suitable supermomenta ¢;, we can again extract the SU(2) scalar sector,
and a similar calculation to the above D5 case gives

7@ = Ty det2Uy . (4.33)

There is no contribution of the local terms —% > {&viYg? C F in the exponential because
the scalars obey Q;¢'' = 0. As discussed above, the amplitudes (4.33) in the SU(2)
scalar subsector have to agree with the D5 case (4.30), which uniquely determines the M5
integrand to be ~
det Uy ;3 det Xy
= (pt'4) :
det Uy det 2Uy
where the second equality follows from (4.31).

Tns = det’A det’H (4.34)
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While this gives a valid formula for the M5 integrand, it obscures the permutation
invariance of the Gerbe amplitudes, because the integrand superficially seems to depend
on Y. However, it turns out that all of the combinations

det Uy det Xy det Xy
det Uy ’ det 2Uy det Uy det Uy’

(4.35)

are in fact permutation invariant, and in particular independent of the choice of Y. This
can be made manifest, as pointed out in [21], by using results first derived in [32] relating

the above ratios to Pfaffians of a family of matrices U(®?) defined as before by
af~ ~ 1b
i —Uij . .

The main theorem we will need here, derived in [32], gives a fundamental identity for the
splitting of the Pfaffian Pf U(%") into two determinants,

det Uyt det Uy2>")

Pf U@ =
Wy, YV,

Vv, with a =a1 +ao, b="5b1 + bsy. (4.37)

Here, V' denotes the Vandermonde determinant, and Vy,, are the Vandermonde de-
terminants for the subsets Yo etc. Ref. [32] further proves that each of the factors
det U)(ffl’bl) /Vx, Vg, are invariant under the full S, permutation group, despite only mani-
festing permutation invariance on the subgroup Sy, /2 X Sy, /2 X Zz2. The only further identity
we will need is for det Xy, which can be expressed as

V3Evz
det Xy = Y (4.38)
V
If we choose Y1 = Yo =Y in (4.37), we thus find that
det UL det U
PfU@d) = Y Yy . 4.39
det Xy ( )
This gives manifestly permutation invariant formulae for all of the ratios in (4.35),
det 2Uy det Uy det Uy
pfU0 = — “*  prytt = — X 1 4.40
det Xy det Xy ( )

from which we deduce the following manifestly permutation invariant representation fo
the M5 half-integrand, as well as the following relation between the reduced determinant
det’H and det’A,
Pf’A Pf’A
h Iy —
IM5 = Pf U(270) y det H 7Pf U(l,l) . (441)

In particular, the full M5 superamplitude takes the form

Pf'A

AMS — /duf;(’l det’A

— 30 —



This integrand now manifests A/ = (2,0) supersymmetry and is manifestly chiral and
permutation invariant. We note that all dependence on the polarization data is encoded
by the Pfaffian Pf U(29)_ an argument similar to the one presented in section 4.5 guarantees
that the amplitude is indeed linear. While the integrand is guaranteed to be correct by
construction (supersymmetry and agreement with the SU(2) scalar subsector of D5 theory),
we verify in section 6 that both M5 and D5 amplitudes agree upon dimensional reduction
to five dimensions as an additional check.

4.4 Consistency of the reduced determinant with the supersymmetry repre-
sentation

Our gauge (and gravity) formulae in effect give two different representations of bosonic
amplitudes with gluons coming from different parts of the multiplets. One comes from
simply substituting gluon polarizations from different parts of the multiplet in the kinematic
integrand det’H and the other from expanding out the supersymmetry factors. In this
subsection we show that these give the same formulae.

When a subset I of the particles are in states at the bottom of the (chiral part of the)
supersymmetry multiplet, the integrals over the supercharges lead to the integrand

I = det U' det'H ' +F | (4.43)
where Uilj = Ui(jl’o) and the superscripts indicate the restriction to the subsets I and I
respectively. On the other hand, for any choice of polarization data, the integrand for
gluons (gravitons) takes the form of a reduced determinant,

Viq - Vg I, i H;; ,L¢I
T, = det/HT eF'HF with Hj = e 4 (4.44)
# = 17
Oij
where H' is defined with polarization spinors (&) instead of €;, for i € I. For the super-
symmetry to be compatible with the representation of the integrand, the two prescriptions

for the amplitude must agree, Z = Iiilm&m.

A lemma on reduced determinants. To prove the equivalence of (4.43) and (4.44),
the general strategy will be to first identify the relation between H and H!. To draw
conclusions about the behaviour of their reduced determinants though, we will need a few
results discussed in appendix A of [26], which we review here for convenience.

In contrast to regular determinants, it does not make sense to ask how a reduced
determinant behaves under the addition of an arbitrary vector to a row or column of H,
because this will in general spoil the linearity relations among its rows and columns. On the
other hand, we can define a new reduced determinant by multiplication with an invertible
n X n matrix U, since this leaves the (full) determinant det H = det H = 0 unaffected,

il .= Uk H. (4.45)
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Since the kernel and co-kernel of H are spanned by w and @,'* the kernel of H=UH is
W = U~ w. To be explicit, H and o satisfy relations analogous to (2.53),

Swiil=0, Y abhl =0, for @}, = (U™1), wk. (4.46)
( J

We can thus define a reduced determinant det’H as in (4.7) by

eviztng g, g P H Gy ) [0 0P] = det H ot @l

(4.47)
Let us multiply this equation by p factors of U. On the right-hand-side, this cancels
the factors of U~! from the kernel wfl e uﬁjf’ }, whereas on the left, it combines with the
(n—p) factors from H = UH to det U. Putting this all together, we arrive at the following

lemma [26]:

Lemma 4.2 Under multiplication by an invertible matriz U, the reduced determinant of

a matriz H := U H behaves as
det’H = det U det'H , (4.48)
with the reduced determinant defined using the kernel 1 = U~ lw.

This implies in particular that the usual row- and column operations leave the reduced
determinant unaffected, det’H = det’H, due to det U = 1.

Equivalence of the reduced determinants. Lemma 4.2 now allows us to prove the
compatibility of the supersymmetry representation with the reduced determinant. We first
note that on the support of the polarized scattering equations, H! and H are related via

A A
UiUE ) EKAE; €;4€5
PR S LA L

ki Oik Oij Oij
U UL 1
= Z < o >ij - Ui Z(uzuk>HkJ —<€Z"Ui> Hl‘j = Z Uﬁngj s (4.49)
kti ik 0 ki k
=0

for ¢ € I. In the second equality, the middle term vanishes because u spans the kernel of
H, and we use the last equality to define U’. Combining the above result with HZIJ = H;;
for i ¢ I, we thus have

Us? i#jiel
H' =U'H, with Ul =14 —(gu)) i=jel (4.50)
(5@' 1 ¢ I.
Since det U is generically non-zero, and Lemma 4.2 gives directly that

det’H" = det U’ det'H , (4.51)

confirming the equivalence of the two prescriptions.

14 As discussed above, for super Yang-Mills and supergravity, we take W = i, where a denotes the
b

chiral little group index, and similarly for ’LZ)? = ;.
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4.5 Linearity in the polarization data

As another important check on the amplitudes (2.58), we verify that they are multilinear
in the polarization data. This is of course a mandatory requirement for amplitudes, but
is not manifest in the integrands for gauge and gravity theories because the reduced de-
terminants depend on the u-variables and these can potentially depend in a complicated
way on the polarization data via the polarized scattering equations. We first observe that
linearity is manifest for amplitudes with two external scalars and n — 2 gluons. Given the
supersymmetry of the formulae this provides strong circumstantial evidence. Then we show
explicitly that the reduced determinant is linear on the support of the polarized scattering
equations and go on to the full superamplitude.

4.5.1 Linearity from supersymmetry

Linearity of the gluon states is most easily seen from the mixed amplitudes with two
external scalars, e.g. j = 1,2, and n — 2 gluons. In this case, we can choose to reduce the
determinant det’H on the scalar states, giving

€3€3... o 1 12
Ab1P2€383. — /duﬁ 1 T%Qdet H[[IQ]] PT(a). (4.52)

The integrand is then manifestly independent of {u;, v;} as well as €1 2, and only depends on
the punctures o; and the polarization of the gluons. Due to the invariance of the measure
established by Proposition 3.3, the ‘polarization’ spinors of the scalars €; 2 are choices of
reference spinors. For the gluons on the other hand, the integrand is now manifestly linear
in ¢;. Supersymmetry then guarantees that linearity extends to the all-gluon amplitude.
The consistency between the supersymmetry representation and the reduced determi-
nant discussed in the last section further guarantees that the argument above holds for
gluons both at the top and the bottom of the multiplet; we simply replace H by H!. For
gravity and brane-amplitudes, the argument is completely analogous, and follows again
from the multilinearity of the amplitude M®192€3- with two scalars and n — 2 gravitons.

4.5.2 Linearity for non-supersymmetric amplitudes

We now study the dependence of the reduced determinant on the polarization data directly
by expanding the spinors €” in a basis. This gives the desired linearity for pure Yang-Mills
and gravity directly, where the above supersymmetry argument seems excessive, but can
equally be applied to supersymmetric theories. We first discuss (chiral) linearity for gluons,
but the proof extends straightforwardly to linearity in the anti-chiral polarization data, as
well as (bi-)linearity for gravity amplitudes.

Consider the amplitude At or the superamplitude A, where one of the particles is a
gluon with polarization €1, and all other particles are in arbitrary states. We can expand
€1 in an (arbitrarily chosen) polarization basis ({, (§ via

€l = (] + aa(y, with ((2€1) = 1. (4.53)

It will be helpful to think of this new basis ({1, (2 =: &') as playing a similar role to (€1, &1),
both in the polarized scattering equations and in the integrands. To prove linearity of the
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(super-) amplitudes in the polarization, we then have to show that amplitudes in the two
different bases are related via

AT =y AS 4 g A (4.54)

where the amplitudes A and AS are respectively given by
A = / dpPldet'H PT (o), AY = / dpP°er det' HS PT(av) (4.55)

and the superscripts (. indicate that the respective quantities are defined using the po-
POl — guBb but the
integration variables uCT = u;(¢,) defined by dupo “r enter into the definition of the reduced

larization (.. For the measure, Proposition 3.3 guarantees that dun

determinant det’H% . Since the measure and the Parke-Taylor factors are invariant un-
der changes of polarization, the linearity relation (4.54) for the amplitude is equivalent to
linearity of the spin-one contribution;

det’H = oy det"H® + ap det'H? , (4.56)

where the (implicit) map between {u;,v;} on the left-hand side and {u } on the right

1 Z
hand side is determined by the polarized scattering equations.

Proposition 4.2 For ¢} = a1({ + a2($ expand also v§ = B1C1 + B2 so that (e;vy) =1

gives a1fB2 — aaffy = 1. Then we have that {u;,v;} and {u } are related by

271

v = B2 U§1 ¢ uf = Brug” (4.57a)

C1, C1\2
uty

vl = C —l—a627< L >6f ul =u 2:1 — 93y o

14 )

C1,, 8
furug) ust® (4.57b)

with identical expressions for {u;,v;} in terms of {uZ ,V; }

Proof. First note that the punctures o; are unaffected so we omit the superscripts here.
First write €} = (¢{ + agv{)/B2. Using this, the polarized scattering equations & can be
written in the form

UL
51A=Z< ! ']>€jA_<U1H1A> (4.58)
21 7Y
(wjug) @z (uru;) <u1uj>> 1 (ujug) ( s (urug)? >
Eia= —t = €ja+ — Kia) — | (Vikia) — == €ia | -
A ];l( Oij B2 o1 01y T By oy (Gurra) = | (vikia) B2 o2 .
L) Lmen)

It is now simple to map this to the polarized scattering equations 551 via the change of
variables (4.57a). O

As an aside, although Proposition 3.3 implies that the measures are unchanged, it is

1
pOl d,UzEO 7<1

easily checked directly that dup, : the rescaling (4.57a) gives an overall factor
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of By 4 coming from the scattering equation 6(&;) = By ) (51(1), which exactly compensates
the factor from d?ujd?v; = 33 d2u§1 dzv?. The remaining part of the measure is invariant
under the linear shift in aof2, and thus the polarized measure is invariant under the choice
of polarization data.

Theorem 2 With the above definitions
det’H = oy det’HY + vy det "H® . (4.59)

Proof. For each solution to the scattering equations, the above correspondence (4.57)
maps the reduced determinant by

1 ; 1
det'H = —————det H|{}] = — det'H%. (4.60)

(urug) [t;] B2
Here, we have reduced on particle 1 for convenience, and used the fact that the diagonal
entries Hj; for i # 1 are independent of the polarization €; by (4.3). Similarly, the map

§27 UZ@

from {u;,v;} to {u; } induced by the polarized scattering equations gives

det'H = — 2 detHS (4.61)
6j1
Note that (12 depend on the solutions to the polarized scattering equations, so the rela-
tions (4.60) and (4.61) between the reduced determinants only hold on individual solutions
to the scattering equations, and do not lead to an analogous relation for the amplitudes.
However, by combining the two expression we get the following linearity relation

det’H = (a1 82 — apf81) det’H = oy det’ HS + ag det ' H®? (4.62)

as required. This is now independent of the solutions to the scattering equations, and thus
lifts to the full amplitudes, confirming (4.54). O

Superamplitudes. The above analysis extends straightforwardly to superamplitudes to
give checks on the supersymmetry factors. As before, we take particle 1 to be a gluon,
though we do not restrict its position in the multiplet in the supersymmetric case. In the
top state, its polarization is €; = a1(] + a2(s as above, and in the bottom state we choose
the polarization

€1 = a1+ a3, (4.63)

with constant 0452 such that alag—agaf = 1 due to the normalization condition (€;&;) = 1.

As indicated above, in the supersymmetric case it will be helpful to treat the basis
spinors ((1,(2) as the new basis for the multiplet of particle 1. In the explicit change of
variables given in Proposition 4.2, (1 plays the role of the original €1, and (s provides the
additional polarization spinor to parametrize the full multiplet, i.e. &' = (2.'% Using this

150f course, we are free to reverse the roles of ¢; and (2 in this discussion, at the expense of a minus sign
due to our normalization conventions.
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choice, we can verify by expanding out both sides and using the relation between {u;,v;}

and {u } from Proposition 4.2 that

/dQCh q e’ :/ &g B (Oq (¢ + a2> e (4.64)

The superscript (; again indicates that the supersymmetry factor is deﬁned with the mul-

177,

tiplet parametrized by the polarization (7, as well as the variables u . Similarly, for gluon
states at the bottom of the multiplet, we find

/d2q1 el :/ d? Cl Bo ( (¢ Cl) +a2> ef™ . (4.65)

Combining this with the result (4.60) for the reduced determinant det’H = 85 ' det’ H,
we find the expected linearity relations for supersymmetric integrands with one gluon,

det’'H /d2q1 g el = det’ HY /al2q§1 (a (g <1) —|—0¢2> e (4.66)

and similarly for the gluon at the bottom of the multiplet with polarization &;. The
simplicity of this relation is due to our choice of &' = (a: using this, as well as the results
from section 4.4, the second term on the right gives indeed the amplitude for a gluon
with polarization (5 with a proportionality factor of as. As in the bosonic case, the final
linearity relation (4.66) is independent of the solution to the polarized scattering equations,
and thus lifts to the full superamplitude,

AT = g AS 4 ap A A8t = b AS 0§ A% (4.67)

5 The three and four-point amplitudes

In this section, we discuss the three-particle and four-particle amplitudes in our polarized
scattering equations formalism (2.58), and compare them to previous results available in
the literature, e.g. [19]. We first focus on the three-particle amplitudes that will serve as
the seed amplitudes for the BCFW recursion relation of section 7. Since the configuration
of three momenta is highly degenerate, we include a treatment of the four-particle case for
further illustration.

For the calculations below, two general observations will be helpful. First, for low
numbers of external particles, the most useful formulation of the scattering equations arise
from (2.30), obtained by skew-symmetrizing the ith polarized scattering equation with €;,
to give

Z <uiuj>6j[A€B]i — K. (5.1)
j 7ij
This can be skewed with further polarization spinors to obtain formulae for w;; :=
(ujuj)/oi;. We will use this below to construct explicit solutions to the polarized scat-
tering equations, both for three and four particles.

After solving the polarized scattering equations and simplifying the integrands on these

solutions, amplitudes are expressed in the form A€€énén with all little group indices
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contracted linearly into the polarization spinors €] and 6? To compare our results to the
formulae obtained in e.g. [19], we thus have to convert between our polarized formalism and
the standard, little-group covariant spinor-helicity formalism, where amplitudes A4141--andn
carry the little group indices of the scattered particles. Using that the amplitudes (2.58)
are linear in the polarization spinors €} and €§‘ as shown in section 4.5, the two formalisms

are related via

€1€1...€n€n __ ~ a1ai...ana
A ne= Heiaieidi c. An nene, (52)
7

5.1 Three-point amplitudes

We now compute the three particle case to compare to the Yang-Mills result given in [19].
This case is somewhat degenerate as momentum conservation implies that the three null
momenta are also mutually orthogonal. In Lorentz signature they would of necessity be
proportional, which would be too degenerate to calculate with. We therefore allow complex
momenta so that they span a null two-plane. This can be expressed by the non-vanishing
2—form that is given in spinors by

KBKA = (k’l AN ]{32)}3 = —(k‘l A k‘g)g = (/6‘2 VAN ]{73)}3 . (5.3)

The spinors x4 and x* are defined up to an overall scale and its inverse and are orthogonal
to each momentum.

We can represent each momentum k;z as a line in the projective spin space CP?
through the two spinors k;q4 for a = 1,2. That each line contains k, means that they are
concurrent and that they are orthogonal to x* means that they are co-planar as in the
diagram 1.

To compare to the results of [19], we introduce little group spinors m¢, ﬁzf for each ¢

K4 =, K =ikl . (5.4)
These are defined in [19] equivalently by

= Mg . (5.5)

A.
jb J

KviAaK]
As in [19], we further introduce spinors w;, w; normalized against m;, m; such that
migwd =1, w0t =1. (5.6)

This normalization does not fully fix w;, w;, since we have the further freedom to add on
terms proportional to m;, m;. We can partially fix this redundancy w;, — wiq, + ¢;miq by
the condition

W] K14a + WiK24q + WK34a = 0, (5.7)

which imposes co-linearity of the three points (w;k;4) on the lines k; and reduces the
redundancy to shifts satisfying ¢; + ¢o + ¢3 = 0.

In what follows we will compute the three gluon amplitude from the general for-
mula (2.50) in Yang Mills theory. For three particles the o; can be fixed to (0,1, 00)
and the formula reduces to B

As = det'H|, = 42 (5.8)
UasUs
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ks

(v3kaza)

Figure 1. Each k; corresponds to a line in the projective spin space spanned by ki, 4. The lines lie
in a common two-plane orthogonal to x* and are concurrent meeting at 4 defined by (5.4). Thus
the line k; joins €14 and k4 and so on. The polarized scattering equations give 3 further lines, e.g.
with €14 giving the line joining es4 and €34 and intersecting ky at (vik14).

evaluated on the solution to the polarized scattering equations, as indicated by the star.
Note that the Jacobian from solving the polarized scattering equations is trivial due to
Proposition 3.3. Having gauge fixed three of the u variables as in section 3.2, we only need
to solve the polarized scattering equations for the three U;; := Z-(jl’o) = (u;uj) /oy, with
Uij = Uji for 1 7& j,

Uigeas + Urzess = (vik14),  and cyclic, (5.9)

together with the normalization conditions (v;e;) = 1. These three scattering equations
define lines in the plane spanned by the three momenta in the projective spin space as in
the diagram 1.

In order to solve the polarized scattering equations we use the €;4 as a basis of the
plane in the projective spin space orthogonal to x* to write

Ka = Eazfm (5.10)
i

Using the normalization (v;e;) = 1, we can further expand v; in the polarization basis
€iy TN45
1

m ((mivi)€ia + Mia)

Vig =

and solve the system (2.2) to obtain

a; a;
Upj = ——=—2_ ) = a;. 5.11
IS ) ey e (5.11)
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To compare to [19], we can similarly decompose

1 iW;
w; = — o 4 Sawi (5.12)

(eimi) " (eimi)

and impose the condition (5.7) to obtain:

o Hk¢i<€kmk>
i = (e1mq){€ama){e3ws) + cyc. (5.13)

The scattering equations for spinors in the antifundamental representation are solved en-
tirely analogously and together we obtain from (5.8) the three point amplitude as

Az = ((61m1><62m2><63w3> n cyc.) ((elm1><52m2><g3w3> v cyc.) , (5.14)

where we have used that €465 = (e3my)[eanz] from (5.5). This is precisely the result
n [19], contracted into the polarization spinors as discussed around (5.2).

5.2 Four-point Yang-Mills amplitudes

To illustrate these techniques in a slightly more generic setting, consider next the four-gluon
amplitude in Yang-Mills theory. As before, we can fix three of the marked points on the
sphere, e.g. 01,09 and o4, so that the solution to the scattering equation in homogeneous
coordinates is

512

o1 = [(1,0)] 02 = [(1,1)] o3 = [(1-”’)] o4 = [(0,1)]. (5.15)

From the measure, we thus pick up the CHY Jacobian |®| 171177;7;] = |0&; /00 Hfllfjj;] as well as
the usual Faddeev-Popov factors (0i,i,0iyis0igiy) and (05, j5042550555,) due to the equality
between the polarized measure and the usual CHY measure established in Proposition 3.3.

Combining this with the four-particle Yang-Mills integrand (2.58a) gives

(Uiﬂz Oigi30i3i1 ) (lejz 0342430 jaj1 ) PT(1234) det'H
det (b [g15233)

[i172i3]

A61€1...64€4 o
4

*

_ 024(013034041) (023034042 PT(1234) Hi3Hoy — His4Hoz (5.16)
512 (uguq) [0r 2] |,
1 012034 ( A B 031042 4 B)
= — €14€3€25€68 — €14€1€2E
(uguq) [U1U2]  s12 ATTI T oy AT .

where * again denotes evaluation on the (single) solution to the polarized scattering equa-
tions. Using (5.15), the amplitude then becomes

1

edeapel + 36 edeopel
= —————=—| €14€35€2p€4 14A€3€2B€,
S14

A21€1...64E4
512U34U12

: (5.17)

*

evaluated on the solution to the scattering equations. At four points there are 8 — 3
independent variables u{ and we can take them to be U;; = (u;u;)/0ij = Uji, © # j, with
the extra relation

(wiug) (upu) + ( eye jkl) =0, (5.18)
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given by the Schouten identity. The skewed form (5.1) of the scattering equations give

Z Uij€jla€ip) = Kian, (5.19)
J#i
In order to solve for Usy we contract this for i = 3 with €42“P¢;.eap to obtain
(k312)
Usy = — (1234) (5.20)
where we define
(1234) = e*%“Pey qeapesceap (k312) = e" Pl percerp . (5.21)

Similarly we obtain, using square brackets for 4-brackets of upper-indexed quantities,

- [k134]
=— . 5.22
Using these we can solve for the v;, to give
<H1a234>
=t 5.23
Ula <1234> i ( )

and so on.
The resulting expression for A4 can be simplified by expanding the product of upper
and lower € tensors as skew product of Kronecker deltas. Consider the quantity

<k312>[k‘134] =4 ElDEé) ]433,43 kaEEEQC + 2]431 . kg(ElAei 62365 - €1A6§ 62365). (524)
The first term can be rewritten using momentum conservation as

1
AC B AC ,.B A
k3ap k’1 KyaR2ca = _kQABkl RaaR2ca = —5 R24aR4q k1 - ko, (5-25)

such that (k312)[k134] is proportional to the numerator of the amplitude,
s
<k312>[k‘134] = S14 <€1A€§ 62362 + (91:3611462623631?) . (5.26)
14

The amplitude then agrees with the result of [19],
(1234)[1234]

€1€1...€4€4
Ay =
512514

(5.27)
upon the usual identification (5.2).

As discussed in section 2.4, the supersymmetry representation we use breaks little
group symmetry so that little group multiplets are spread in different degrees in the su-
perfield expansion (2.46) in terms of supermomenta. All above expressions are for gluons
in the top state g, but the calculations extend directly to other amplitudes as well. As
we have seen in section 4.4, amplitudes for gluons appearing at order ¢ in the multiplet
can be calculated either from the supersymmetry representation, or by replacing ¢; — &;
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in the integrand. At four points, this can be seen explicitly: consider first the amplitude
Ay (ger& ge2%2 g&3 g€ obtained from the supersymmetry representation,

A4(961€1962€29£3€3‘g£4€4) — AZ1€1...€4€4 QIJQKLii 8 a €F+ﬁ'

dqs 0q4 Oqf Oqf (5.28)

x1q;=0

The only non-vanishing term comes from the F? in the expansion of the exponential, and
gives an extra factor of det U3 = —U2, + (£&w3) (€4v4) in the amplitude. When we
evaluate this on the solutions to the polarized scattering equations we obtain, using (5.20)
and (5.23),

(126560

{34}
det U (1234)

(5.29)

- <12;4>2 (<f3 312) (£4412) — (&3 124) (&4 123>> =

Here we have used k; ap = §;[4€;/) in the first equality, as well as the notation &;4 := (&ikia),
and the last equality follows from a Schouten identity in the two-dimensional space defined
by e4%“Pejce9p. Using the result (5.27) for the amplitude where all gluons are in the top

state, we thus find
A (g1 oo gfols ey — (12&384)[1234] _ (5.30)
512514
This clearly agrees with the result from the integrand det’Hj for I = {3,4}, i.e. by replacing
€ia bY &ia for i = 3,4 in (5.27). Similar conjugate formulae apply for amplitudes with a

pair of external particles in the g¢ states.

5.3 Other theories

The Yang-Mills calculations extend directly to the other theories expressed as integrals over
the polarized scattering equations. For any theory that admits the representation (2.50),
the four point amplitude for the top states of the supersymmetry multiplet has the form:

1
Ay = —— T Th 5.31
4 det/® LR *’ ( )
where the x indicates that the formula is evaluated on the solutions to the polarized scat-
tering equations. Having solved the polarized scattering equations at four point, (5.15), it
is now an easy task to evaluate the amplitude for other theories than Yang-Mills (2.58).
We have already discussed the Jacobian,

4
1 _ (Ui1i2ai2i30i3i1)(Jj1j20j2j30j3j1) - _ 512 (5 32)
det'® det O $12513514 '

i14943)

The main ingredients that appear in the half integrands evaluated on such solutions are as

follows:
S12 / 5%2
PT(1234) = ——= det'H = (1234)[1234] ——=— (5.33a)
514 512513514
prpyLy — _ 513514 pf(20) — 513514 5.33b
(1234) [1234] (1234)2 (5.33D)
Pf/A = S12. (533C)
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It is then straightforward to calculate all four-particle amplitudes for the theories we have
discussed. In (2,2) supergravity, for all particles in the top state, we obtain:

(1234)2[1234]2

grav __
M4 =
512513514

(5.34)
which corresponds to the result in [16, 29] and reproduces the KLT relation. For the brane
theories we have

ADS = (1234)[1234] (5.35)
AV = (1234)2 (5.36)

agreeing with [15]. As expected these give the same result on reducing to four or five

dimensions where fundamental and anti-fundamental spinors are identified, see section 6.

The more exotic and controversial formulae in table 1, obtained by double-copying the

above integrands. When combining the M5 half integrand with a Parke Taylor factor, we
get

APOPT (12347 (5.37)

512514
As expected, the formula is chiral, and has the same reduction to 5d as the Yang-Mills
amplitude. We can also look at the formulae for other ‘double copied’ theories in table 1:

1) _ (12341234

A 5.38

4 512513514 ( )
1234)4

Ao - 12847 (5.39)
512513514

We note that (5.38)-(5.39) give the same result as the gravity amplitudes (5.34) upon
reduction to four and five dimensions. However, in six dimensions, as remarked in [16, 20],
the formulae are more problematic as soft limits (or factorization) to three-point amplitudes
are not obviously well-defined. This is because the three-particle kinematics K4 = m{ Kiqa

and k4 = Mkl of (5.4) each have a scaling ambiguity

m — amy, md — o~ tmnd (5.40)

that cancels in kax®. In our discussion of the Yang-Mills three-particle amplitudes, this
was reflected in the two factors ({e1m1)(e2ma)(esws) +cyc.) x (its tilded version) not being
individually invariant under the scaling (5.40), although of course this ambiguity cancels in
the full amplitude (5.14). In the chiral double-copied amplitudes (5.37)—(5.39) however, this
scaling ambiguity cannot cancel anymore, so there are no invariant three-point amplitudes
for gerbe theories. On reduction to 5d, there is an identification between the chiral and
anti-chiral spinors so the scaling in (5.40) is fixed up to sign. This is also reflected in
the factorization discussion of the related formulae in [16], where it was shown that the
resulting three-particle formulae are non-local. As discussed there, the non-locality can
be made manifest in two different ways. To factorize the four-particle formula into the
product of two three-particle objects summed over internal states, we have to either fix
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a scale « or fix the shift redundancy w;, — w;q + ¢;myq of the dual variables. In both
cases, the required ‘frame choice’ depends on the kinematics of all four particles, and the
three-particle objects are not invariant under the a rescaling of « (in the first case) or a
shift in ¢; (in the latter case).

Thus it seems unlikely that the formulae (5.37)-(5.39) can be interpreted as tree-level

S-matrices in the normal sense.

5.4 Fermionic amplitudes

We can also evaluate amplitudes involving the fermionic sector. We will show here how
this works for the scattering of two gluons with two gluini in (1,1) super Yang-Mills, but
the results can be adapted easily to supergravity and the brane theories.

Consider the four particle amplitude A4(g$¢, g5¢, ¥i¢, 14¢) for two gluons and two gluini,
obtained in our supersymmetry representation by extracting the fermionic components as
follows,

(1234)[1234] & 0

A Ie JEY 1+ F; F
(g]_ 7g2 ? 4 ) 812814 aq ( + ! + ! + ) qi:qi:[)
1234)[1234
512514

Inserting the solution to the polarized scattering equations (5.20) we obtain,

(12ks3)[1234]

€€ Jéy
) 512514

A (gieag2 ) 4 QIJ (542)

We can compare this to the amplitude representation of [29] in the little-group preserving

supersymmetry representation;

54 O]
512514
where the supercharges are ¢4 = Eab/-{;‘ng and ¢} = eur%n?.  The amplitude

Ay(ge, gb ,¢3, 1/14) is now the following coefficient of the Grassmann variables n and 7,

o 0 0 9 0 0 90 0 OO

Augt o v ) = g 0 08 O D e
PR T ong o on b 015 aig Ong Oy 512514 7:=17};=0
_ (La2k3) [1a25364] (5.44)
512514

This agrees with our result (5.42) after contraction into the external polarization states.

6 Dimensional reduction

As an additional check on our formulae, we examine their behaviour under dimensional
reduction. When we reduce D5 and M5 amplitudes to 5d, both expressions are expected
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to agree there. Similarly when we reduce our (controversial) (0, 2) formula with the Parke-
Taylor, the formulae agree with those of the reduced (1, 1) super Yang-Mills formula. Sim-
ilarly the reduced (3,1) and (0,4) formulae also agree with the reduced (2, 2) supergravity
formulae. When (1,1) super Yang-Mills and (2,2) super gravity theories are reduced to
5d, we see that our supersymmetry representation naturally extends the R-symmetry to
Sp(2) and Sp(4) respectively.

We further reduce the super Yang-Mills and supergravity to the 4d massless case, where
we recover the 4d version of the polarized scattering equations reviewed in section 2.2.
The main new feature of the 4d massless case is the emergence of (MHV) sectors for the
amplitude, whereas neither the 4d massive nor the higher dimensional amplitudes split into
sectors. We will see below that the dimensional reduction gives rise to a unified formula for
all sectors, with the separation into different MHV sectors appearing naturally from differ-
ent classes of solutions to the 6d polarized scattering equations. The reduction to massive
4d kinematics, and in particular the Coulomb branch in super Yang-Mills, has already
been discussed in previous work [17], and we refer the interested reader to that paper, as
well as [16] for related topics in the little-group preserving supersymmetry representation.

6.1 Dimensional reduction to 5d

On reduction to 5d, the sixth direction is represented as a skew spinor that we will denote
Q 4p so that a five vector kap must satisfy kapQAB = 0. In 5d spinor indices can now be
raised and lowered with Q4p and its inverse. This reduces the spin group from SL(4,C)
to Spin(5) = Sp(2).

Starting with a theory in 6d with (N, N )-supersymmetry, we can lower the su-
persymmetry generator spinor index Q Wi = QBAQ? so that now in bd we can write
Qar = (QAI,QAI') where Z = 1,...,2N where N = N + N. We can define the skew
form Q7 7 = Qp; D 2;; and WiEh this the R-symmetry has the possibility of extending
from Sp(INV) x Sp(N) to Sp(N + N). Thus we see that reduction of theories with (1,1) and
(0,2)-supersymmetry in 6d can naturally reduce to theories with identical supersymme-
try in 5d if there is nothing in the spectrum to break the increased R-symmetry. This is
typically the case in the massless sectors of the reduced theories (although differences will
generally be seen in Kaluza-Klein massive modes).

5d spinor helicity and scattering equations from 6d. In 5d, the massless little
group will be Spin(3,C) = SI(2,C) rather then Spin(4) = S1(2,C) x S1(2,C). Given a 5d

massless momentum k,p, we can introduce the spinor helicity frame 9 satisfying
kap = k%K%, k-Q=0 (6.1)

But we can now raise the indices with Q4% to obtain k%% providing also the k4% thus
identifying the dotted little group in 6d with the undotted one. Now k% transforms in
the fundamental representation of Spin(5,C) = Sp(4,C), and a labels the little group for
massless particles, Spin(3,C) = SL(2,C).

Spin one polarization data are 2-forms given in 5d by symmetric spinors Fap = F(4p)
satisfying k4P Fgc = 0. Thus they arise from little group spinors e, = €(ap) With Fap =
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mjm%eab and we can take €, = €,€6,. When reduced from 6d, we therefore identify both
the 6d ¢, and ¢, with the 5d €,s. This therefore becomes the same polarization data as
one obtained from the symmetry reduction of the 6d Gerbe field.

The chiral polarized scattering equations reduce straightforwardly, with the u’s, €’s
and v’s now all transforming in the 5d little group. However, the same is true for the
anti-fundamental scattering equations, where the 4’s etc now transform under the same
SL(2,C), i.e. ¢ — @¢. Moreover, we have seen that we should take & = ¢; after reduction.
Thus the fundamental and anti-fundamental scattering equations are identified

EA = Qg1 (6.2)

u—a
v—=0

We therefore have the same equations for both (u;,v;) and (4, ?;). By the uniqueness of
the solution ensured by Proposition 3.2, we have

i = uyf, o = vy . (6.3)

We can implement the reduction from 6d amplitude formulae to 5d via a projection
operator

n n—1
H6_>5:/H dki - Q] 6 (k- Q) . (6.4)
i=1 Jj=1

The second product goes only up to n — 1 so that the nth integral can absorb the sixth
component of the momentum-conserving delta-function. The resulting formula then has
the correct count of variables vs symmetries and delta-functions, and leading to the required
§° for momentum conservation. We therefore define

dpPoP? =Tl 5, duP®!. (6.5)

The polarized measure duEOI’E)d in 5d thus has none of the subtleties of the 6d case, and all
constraints are manifestly imposed via delta-functions.

Dimensional reduction of the integrands and formulae. Upon reduction, the spin-
one matrix Hiﬁjd — Hi5jd becomes symmetric as ¢; = €; gives
A_B
€ e?Oap o
A L
Oij
This is sufficient to give Yang-Mills with integrand det’ H°*PT and gravity with
(det’ H>4)2,
The dimensional reduction of the supersymmetry factors proceeds along the same lines,
driven again by the equality (6.3). We find

n

1 (ujug) 1 (
FN‘M 5 ; ;ijj Girq ¥ — 3 ;<§ivi>CIiIQiJQ” ) (6.6a)
SR S X ULT) PP TR o ¥ b
N|., = Z ~ %45 - Z<§2Uz>%1q]‘] . (6.6b)
5d 2 i 2 —
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For N' = (1,1) supersymmetry, we can thus naturally combine the fermionic variables
¢ir = (qii, ;) into N' = 2 supermomenta, with the symplectic metric Q = diag(Q,Q)
composed of the N =1, N = 1 metrics in 6d. This manifests that

P+ F| = Bl = e, 6.7
L+ =1 2|, = 2 (6.7)

Thus for maximally supersymmetric Yang-Mills we obtain the integrand e’ 5% det’ H5 PT.
Similarly, the 6d (2,2)-supersymmetry factor reduces to F, fd giving the maximal super-
gravity integrand ef%” det’ (H5%)2,

Finally, for the brane integrands, we first note that from u; = @;, that U(®?) reduces

to U™
. (uing)™

o 6.8
g = 65)
with a + b = m. Further, from (2.57), we find
Pf’A
I rr5d _
detH™ = S5 (6.9)

On the other hand, the M5 integrand reduces to the same expression due to the equality
between u; and u;,

Pf’'A  Pf'A

pry0  PEU®

=det'H, (6.10)

This in particular gives a nontrivial meaning to the right hand side for odd particle number
in 5d, and the D5 and M5 integrands become the same. With both the integrands and the
supersymmetry factors agreeing among M5 and D5, we conclude that both theories give
the same amplitudes when reduced to 5d.

The above reductions imply that the integrands of the (0,2)-PT theory reduced to
5d now makes sense for both even and odd numbers of particles, and agrees with the
reduction of maximal super Yang-Mills. Similarly the 5d reductions of (1,3) and (0,4)
theories make sense for both odd and even numbers of particles and agree with the 5d
maximal supergravity formulae.

6.2 Dimensional reduction to 4d

The 6d formalism similarly allows for a natural embedding of both 4d massive and massless
kinematics. On reduction, the 6d spin spaces each reduce to the sum of the dotted and
undotted spin spaces so €4 = (€q, €5). The massive little group in 4d is Spin(3, C) = S1(2, C)
and we can choose the 6d little group frames so that both SL(2, C)-factors align with the
massive 4d little group,

0 ~a0 « «

R, K K, K
G =1 =170 ). (6.11)
A 1 zal )’ a P

Ko R Ra0 Ral

Here, a = 0,1 denote the 4d massive little group indices. Massive momenta, as well as the
mass m, are constructed via

ki = ﬁaa’%o}beaba ’iaaﬁﬁbﬁab — MECM,B7 Rdaﬁgbé‘ab — Mﬁdﬁ' . (612)
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with M = M and M2 = m?2. For more details of the reduction to the Coulomb branch,
see [16, 17].

From hereon we focus on the reduction to massless kinematics. When M = M = 0,
the two spinors become proportional, and following already from the reduction to 5d, we
can identify the dotted and undotted little groups. We choose a little-group frame with

0
gy =0 FY)e=0 ri=(1" 0 e (6.13)
Ra 0 a=1 0 —Ra ) a

KO =k} =0so0
With this, the polarization data and 2-forms reduce as
_ - - B 2 2~
€A = (€1Ka, €0Ra) , €A€” = €1KakgE s T €0RaksEaB - (6.14)

We see that the two components of ¢;, are naturally distinguished by helicity.

Scattering equations. When reduced to the four-dimensional massless case as in (6.13),
the polarized scattering equations become

gz'a = ; <U;ZJ> Gj lmja — Vj1Kia gia = zj: <uol_u]>€j ol:;»ja — ’Uj Ufiia . (615)
At this stage, the scattering equations have a unified form valid for all MHV sectors si-
multaneously. They can be reduced to the 4d polarized scattering equations (2.13) refined
by MHYV sector by dividing the external particles into two sets with k and n — k parti-
cles respectively, corresponding to positive and negative helicities. This determines the
€ia Up to scale from (6.14). With this we can embed the massless 4d polarized scattering
equations (2.13) into (6.15) with the following consequent choices for the w;, and v;,

1 .
€ia = (0, €;) §ia = Via = ——(1,0) Uia = (u;,0) ie—, (6.16a)
(2
- 1
€pa = (€p,0) €pa = Upg = E—(O, 1) Upg = (0, up) pE+. (6.16Db)
P
This assignment automatically solves the scattering equations &, = 0 for i € — and

Epa = 0 for p € 4. Thus the remaining polarized scattering equations reduce to the refined
scattering equations for the N"2MHYV sector

UpUj; 1 1
gpa = Z 14 .Z €ia — = Kpa = up)\a(ap) — = Kpa (617&)
je Ipi €p €p
5 4 Ui U . 1_ . ~ . 1 .
£ = Z LR R = X (o) — =R, (6.17b)
o; €; e
pe+ P v v
where we have written
€ia = €1Ka, fori€ —, and € = €pokips - (6.18)
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Thus the 4d refined scattering equations are clearly a subset of the solutions to the dimen-
sionally reduced polarized scattering equations (6.15) for the given choice of polarization
data. Conversely, these are indeed all solutions, since the refined scattering equations have
A(n — 3,k —2) solutions, where A denotes the Eulerian number. Summing over all sectors,
the ansatz (6.16) these give the full (n — 3)! solutions of the polarized scattering equa-
tions. We will also see below that any division not lining up with the particle helicities has
vanishing contribution.

The reduced determinants. To study the reduction of det’ H in terms of the 4d data
above, note that ¢; ~ (0,1) for negative helicity particles, and €, ~ (1,0) for positive
helicities. Thus the entries in the H become H* with

(€i€j)
HZ = A ’ ng = , H;,,=H, =0. (6.19)

Oij Opq

for i,j € — and p,q € +. This agrees with the Hodges matrix (2.17) as reviewed in
section 2.2. In particular, the relations among its entries become the row- and column
relations described in [18]:

S wHE =0, > u HE =0. (6.20)

je— qe+

We can now understand how the polarized scattering equations restrict to the correct
MHYV sector for a given configuration of particle helicities. To see this, we need to show
that if the split in (6.16) into — and + does not line up with the helicities of the respective
particles, the contribution to the amplitude vanishes. But since the integrand is always
formulated for the correct MHV sector due to our discussion above, this is just the familiar
result of ref. [28] that the reduced determinant vanishes when evaluated on scattering
equations refined to a different sector.

Measure. To obtain the correct measure on reduction to 4d, we have to include the
appropriate delta-function restricting the kinematics to 4d. A convenient choice is

n n
H4d = /H dk‘i’lg dkﬁi734 H (S(k‘j712) (5(]4%34) y (621)
i=1 gl=1
J#1,l#n
since it reproduces the reduction to x given in (6.13). Note that although we integrate over
all n momenta, only n — 1 delta-functions are included, the remaining constraints follow
from momentum conservation.
It follows from general considerations that we should have

Lemma 6.1
dppt T eiep = det’ H Tyq dpb® (6.22)
1,
so that du® gives det’ H* as Jacobian relative to the duP® = du®?Y on the solutions (6.16)
refined to the given MHV sector. In particular det’ H* vanishes on the other MHYV sectors.
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The general considerations arise from comparing the CHY gauge and gravity formulae
of (2.9) to the corresponding 4d ambitwistor string formulae of (2.21). The first step to
notice is that the gauge theory formulae of (2.9) and (2.21) are identified if we have

n

dppt, = P (M)dp™Y . (6.23)

Then the fact that the gauge and gravity formulae for CHY are related by exchanging the
Parke-Taylor factor for Pf’(M), whereas for the 4d ambitwistor-string one exchanges the
Parke-Taylor for det’H* suggests that in the kth MHV sector

Pf'(M) = det'H". (6.24)

This was shown explicitly in [28, 32]. Finally recall that the measure d,uEOl was shown to
be equivalent to the CHY measure in section 3.2 and putting this together suggests the
lemma. We now prove this explicitly, albeit via 6d.

Proof. We have seen above that the 6d polarized scattering equations reduce to the 4d
version and so have the correct support restricted to the given MHV sector. To calculate
the Jacobian, consider a fixed MHV sector, corresponding to the solutions (6.16) to the
polarized scattering equations. We first fix part of the SL(2,C), invariance by setting
U1 = uno = 0 for 1 € — and n € +, giving a contribution to the Jacobian of wuju,.
Similarly, we use the corresponding scattering equations &1 and é:no to solve for k;, 12 and
ky,34, introducing a Jacobian of ¢; OETiL. We used (6.16b) to solve the polarized scattering
equations that don’t survive in the 4d measure or framework

Ui U4
gioz = E < : j>€ja — Vi1Riaq = 0, (625&)
je— U
2 {upug) - ”
&y = qu+ - € — Vpoky, =0, (6.25D)

for the variables u;1, up0, vi1 and vy (using the normalization conditions to fix the other
components of v). This gives a further Jacobian that we denote Jpo so that we have

n
My dpP® = /dﬂfl‘fk Jool U1y, €10 € H Ui, (6.26)
i=1

where the extra factor of [[;" ; u; cancels its inverse explicitly in the definition of the mea-
sure dut?. The Jacobian matrix whose determinant Jpol arises from solving the polarized
scattering equations (6.25) has a block-diagonal form due to

o0&y 0ES i OE;
P _ P _ o 0 6.27
8vi 1 8uz 1 ’ 8Up0 8up0 ’ ( )

on the solutions (6.16b), so we have J,o = J~JT, with J~ and J* the determinants
of the respective block matrices. On the solutions (6.16), the entries of the matrix with
determinant J~ are given by

S = —8ijKia —= = 7 74 o (6.28)

8vj 1
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The Jacobian J~ is the determinant of this (2k — 1) x (2k — 1) matrix (as we have already
dealt with ui1). To simplify this, introduce the index notation &,, ;| = & o and &, =
&ia=1 so that the Jacobian J~ is given by

g = ey o 00, oy Doy (6.29)
Ovi1  Ovpq Ou2i Oug
ogs _

The first equation in (6.28) gives 627 k0 + 62'k;1 so monomials in the expansion

0v; 1
of the determinant with 0&9;_1/0v;1 must multiply some 0&2;/0u;; and similarly 0&2;/0v;;
must multiply some 0&;_1/0u;; with the opposite sign leading to a contraction on the
spinor index. Thus the sum collapses to one over half the indices, and after some re-

ordering of the terms and relabeling of the indices, we find

- _ 1201 [e %) ag’iZOlZ ayg agzkak
J =Kippe Kiy |\ Kip
Oug 1 Ougq

_ IluZ k1] _ ||ul 17k

= K10 ' ZL det Hi = U1 €10 4 ?’L det H_ . (630)
1€E— 1€—
i#1

In the second equality, we have used (6.28) to see that contraction into the respective ; re-
produces the entries of H_, and the last equality holds due to the reduction relations (6.20)
for the reduced determinant. Similarly,

=1
Un €n” [Tyeq tg

JT =
Hp€+ €p

det ' H . (6.31)
The extra factors €; 05711 thus cancel against the Jacobian from integrating out k112 and
kn 34, the factors of u cancel against the measure and partial gauge fixing, and we indeed
are left with (6.22). O

As a corollary we briefly mention that for momenta in four dimensions, the (n —
3)! solutions to the scattering equations can be refined by MHV degree k& with Eulerian
number!'® A(n—3, k—2) in the kth sector [4, 44]. The above relation between measures gives

Corollary 6.1 The 4d measure d,ufffk is supported on the A(n — 3,k — 2) solutions to the
scattering equations in the kth sector.

Proof. This follows from the fact that det’H* is supported on the kth sector. To see
this, define the matrices H* by

Hj = <(,j> = [Uj] . i#j.  Hi=e Pl).  (632)
On the one hand, minors of these appear as the blocks in H*¥. On the other hand, as
explained in [27], these are gauge fixed versions of the n x n matrices appearing in the
Cachazo-Skinner gravity twistor-string-like formulae [6, 26]. In those papers it is shown
that at degree k — 1 in the twistor-string, appropriate to MHV degree k — 2, these matrices
have ranks k — 1 and n — k — 1 respectively. Thus det’H* will vanish because one or other
block will have insufficient rank when restricted to the inappropriate MHV sector. [

16The Eulerian number A(p, q) is the number of permutations of 1 to p where ¢ elements are larger than
their preceding element. They are defined recursively by A(p,q) = (p—q)A(p—1,¢—1)+(¢+1)A(p—1,q).
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Supersymmetry. The reduction of the supersymmetry generators @ ,; and Q;‘ on the
solutions (6.16) in 4d give

y O a1 5
— helicity : Qé = fags QT = —F%qr, Qé = €u
q1 €

|

0 =4 G n
876' 5 Q? = I{aql' N (633)
i
for negative helicity particles. where we have raised the Sp(V) R-symmetry indices with
the symplectic metric 2, i.e. Qur = Q77Q7 and Qi = ijQi. Similarly, for positive

helicity,
+ helicity : QL = QF =& a0 Ql—f QY =e¢* —, (6.34)
elicity : K/aq ’ I — 8qI K:aq ) I~ € a(jl ) .
where ¢! = Q!/q; etc. The index placement is chosen to manifest the embedding of

Sp(N) x Sp(N) into the bigger 4d SU(N) R-symmetry group. We can make this explicit
by introducing ¢r = (qr,¢;) and ¢* = (¢’,§"), where Z =1,...,.N' = N + N is the SUW)
R-symmetry index in 4d. The supersymmetry generators then become

0 1.
— helicity : QL =ea—, QF = —-k%q, (6.35a)
gz €
+ helicity : QL = L ai® QY =& 0 (6.35b)
y - o= 7 aq 7 = 8q~Ia .

and the supersymmetry multiplet takes the familiar form (2.19),

_=AT gt + arqz 9™ + (@) +q* AT, (6.36a)
Oy = AT+ O + erieed @ O 4+ (P)t + AT (6.36Db)

Here g; and ¢* are conjugate supermomenta, related by a fermionic Fourier transform and
~—1
€4 €
When implementing this reduction in the amplitude, only terms containing one particle
of each helicity survive in the exponential supersymmetry factors due to the form of the
solutions (6.16) to the 4d scattering equations,

uZ up

Fy+F ‘ i = FE. (6.37)

In particular, all local terms of the form <§ivi>qi2 vanish due to & = v{. As reviewed in
section 2.2, this is one of the standard supersymmetry representations in 4d, sometimes
referred to as the link representation [45].

Combining the above results, we find that the 6d amplitudes for super Yang-Mills and
supergravity reduce correctly to the 4d amplitudes (2.21). The reduced determinant in the
numerator cancels against the Jacobian from the measure, and we have

4y = / dpP! det’H T P HEy Z / dpins Hezep Ihefv = Al (6.38)
7p

with Z!' = PT(a) for super-Yang-Mills, Z! = det’H for supergravity, and Z" = det’A for
Born-Infeld.

An
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7 Super-BCFW in 6d

In this section, we give a proof of the gravity and Yang-Mills formulae using BCFW recur-
sion [46, 47], cf. Theorem 1. This is a powerful on-shell tool that has been used to prove
a variety of explicit amplitude representations. This technique has two main ingredients.
The first is to introduce a deformation of the formula for the amplitude depending on a
complex parameter z, and to use complex analysis to reconstruct the amplitude in terms
of its residues at poles in z. The second key ingredient in the argument is the factorization
property of amplitudes. We know from the Feynman diagram representation of amplitudes
that they are multilinear in the polarization vectors and rational in the momenta. The
only poles arise from propagators, so that they can only arise along factorization channels,
where partial sums of the momenta go on shell. At tree-level, factorization is the statement
that the residues at such poles are tree amplitudes on each side of the propagator. This
then allows us to identify the residues in z in terms of lower point amplitudes, setting up
the recursion. In the following we give more details of the generalities of this argument.
In section 7.1 we introduce the complex shift adapted to our formulae. In section 7.2 we
prove that our formulae factorize correctly; this includes also our brane formulae giving a
key check on these also. In section 7.3 we show that there is no pole as the deformation
parameter is taken to infinity in our formulae, completing the BCFW recursion proof of
our supersymmetric gauge and gravity formulae (2.58).

BCFW shifts are generally based on the following one-parameter deformation of the
external momenta,

I%I/L = klu +z2qu, ];'nu = knu —2qu, (71)

with ¢> = ¢ - k1 = q - k, = 0. Cauchy’s theorem applied to A/z then gives an equality
between the original undeformed amplitude at z = 0 and the sum over all other residues
at the possible factorisation channels of the amplitude and at co. If
lim A(z) =0, (7.2)
Z—r00
we say that there are no boundary terms at z = co. The residue theorem then expresses
the amplitude at z = 0 as a sum over products of lower point amplitudes A, +1 arising at
and Ay ,11, with n;, + 1 and np +1 = (n — n;) + 1 particles respectively, but at shifted
values of z

-An = ZATLL+1 (ZL)

L.R

kl% A (1) (7.3)
The sum runs over partitions of the n particles into two sets L and R, with one of the
deformed momenta in each subset, 1 € L and n € R. In the propagator, ky = > ;. ki
denotes the (undeformed, off-shell) momentum, whereas the amplitudes are evaluated on
the on-shell deformed momentum l%L = ZieL k; + z;, q with z; = —k%/?q - k.. See also
figure 2 for a diagrammatic representation of the recursion. For particles transforming in
non-trivial representations of the little group, the BCFW shift (7.1) has to be extended to
the polarization vectors as well [48], and the boundary terms vanish if the shift vector g,
is chosen to align with the polarization vector of one of the shifted particles, g, = e1,. In
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Figure 2. A diagrammatic representation of the BCFW relation (7.3).

this case the sum over partitions in the BCFW recursion relation (7.3) also includes a sum
over a complete set of propagating states, labeled for example by their polarization data
for gluons or gravitons.

The recursion (7.3) has been a useful tool to prove novel amplitude representations. In
particular, it guarantees that any expression satisfying factorization'” and the boundary
condition (7.2) is a representation of the amplitude. In section 7.1 we adapt the shift to our
formulae, in section 7.2, we show that our amplitudes factorize correctly, and in section 7.3
we verify that our boundary terms (7.2) vanish.

7.1 The BCFW shift for 6d spinors

The higher dimensional BCFW-shifts discussed in the literature (e.g. [19, 48, 49]) are
ambidextrous, and this makes it difficult to verify that the boundary terms vanish. We
need to adapt (7.1) to the spinor-helicity formalism in 6d. Such shifts were introduced in
ref. [19], but, as discussed in appendix B, this does not sit naturally within the framework
of the chiral scattering equations. We therefore introduce a novel BCFW shift to start the
recursion in the 6d spinor-helicity formalism. Our shift vector g, does not coincide with
the polarization vector ey, but is instead related to the chiral polarization data of both
shifted particles 1 and n.

Fundamental spinors.  We choose instead the following chiral BCFW shift, dependent
on the (chiral) polarization data of the shifted particles:

sa a a ~.a _ a a
Riy=K{,+ z€ €na, Rpy = FKpi+ 2Z€n€1a. (7.4)

This shift evidently leaves the polarization spinors €, invariant, but shifts the spinors
(v1k14) and (v Ky 4) featuring in the polarized scattering equations by a term proportional
to the polarization spinor of the other particle,

(ViR14) = (V1K1 4) + 2€na, €14 = €14, (7.5a)

<Un’%n A> = <Un"§nA> + z€14, €na = €na - (75b)

including the correct 3-particle amplitudes
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The invariance of the polarization spinors €1, ensures that the shift is well-defined, in the
sense that the ‘shift-spinors’ éx{, = €] €p4 and k%, = €2 €14 are themselves unaffected.
This mirrors the usual BCF'W shift, where the vector g, does not transform. It is easily
seen that the spinorial deformation (7.4) is indeed a valid vectorial BCFW shift (7.1).
However, in contrast to the usual construction the shift vector g,z is composed of the
polarization spinors of both particles 1 and n,

qap = 2€, [a€1 ] - (7.6)

It is clear that the shift preserves momentum conservation from the vector representa-
tion (7.1), and it preserves Maxwell’s equations by construction. Since the shift vector g,z
is constructed from the polarization spinors of both particles, it is not only orthogonal to
the momenta of the shifted particles, ¢> = ¢ - k1 = q - k, = 0, but also to their polarization
vectors e; and ey, q-e1 = q-e, = 0. We will verify in section 7.3 that this defines a
‘good’ BCFW shift, in the sense that the boundary terms vanish for Yang-Mills theory and
gravity. We discuss the comparison with shifts of other authors in section B.

Anti-fundamental spinors. We will see that the chiral BCFW shift (7.4) ties in
well with the polarized scattering equations. However, for ambidextrous theories such as
super Yang-Mills or supergravity however, the shift for spinors in the anti-fundamental
representation plays an equally important role. The anti-fundamental shift

EfP = kP 4 2 g2 kAP = kAP — 2 g7 (7.7)

is of course related to the chiral one via ¢*? = 4P, but this does not fully determine

the shift of the anti-chiral spinors 4. We will use this freedom to choose a BCFW shift

where both deformations dx{, and §x, are proportional to the same spinor é4,18

Ry = kg —2€ (enprr}) , (7.8a)
/%ng‘ = ﬁnﬁ —zéet (61 Bﬁnf) . (7.8b)

A A

The spinor € is constructed such that it is a valid choice for € = é! and €} = €,

- (7.9)

et = €1 a/{'ng1 (K'n[zB Hl%)_l + 6naﬂlg1 (H’ldB KN%’)

The first term corresponds to the canonical choice for €, constructed in complete analogy
to (B.2), where we have chosen the reference spinor k. = ky. The second term is similarly
the canonical choice for & with reference spinor x, = k1. Due to this choice of reference
spinor, the second term is proportional to x{,, and is thus pure gauge for particle 1. An
analogous argument shows that the first term is pure gauge for particle n. Thus we can
choose ¢/ = é* and &l = &, and we have the useful relations

~A  a __ _a __ .a
€ kY, = €7, E Ky =€n. (7.10)

8The choice of & in the anti-fundamental shift will turn out to be crucial in proving that the boundary
terms vanish. However, it is also the key distinction from previously defined shifts like the covariant shift
of [19]. We discuss this in more detail in section B.
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The anti-fundamental BCFW deformation then leads to the standard shift (7.7) for the
momenta, but where the shift vector ¢ is again determined by the chiral polarization spinors
of both shifted particles,

¢ = 2eUkP0¢, o = —2elAgPICe . (7.11)

The latter equality follows from the definition of é and the relations (7.10).!Y Using the
same identities, it is also readily verified that ¢*” indeed satisfies ¢*®e4pcp = qep as claimed
above.

While not manifest in (7.8), the ‘shift-spinors’ (defined by &1,4 = K114 + 0k105)

Okig ==& (enprrg)  and  Okng = —& (e1pkng) , (7.12)

are themselves invariant under the BCFW deformation. To see this, let us focus on 0k,

and recall that e,p is unaffected by the shift. Then (e, pr17) does not transform because
¢4 is orthogonal to €,4 as we have seen in (7.10), so the only deformation can come from

¢ itself. To see how é! behaves under BCFW, it is useful to rewrite its definition (7.9) as
1

= _k-l ) kn (k;;lBElB + k‘fBenB) . (713)

~A

In this form, the relations (7.10) are manifest, and it is clear that it transforms at most
linearly in z because the denominator is invariant due to ¢ - k1 = ¢ -k, = 0. However,
neither of the polarization spinors €15 and €,p transform, and

ey =k epcery = 0. (7.14)

4 as well as the shift-spinors dk1% and 0k,? are invariant under the BCFW

Therefore € a

deformation, and the shift (7.8) is well-defined.

Shifting the supermomenta. In the R-symmetry preserving supersymmetry represen-
tation, the supershift is not implemented via a linear shift in the fermionic variables, but
rather by a multiplicative exponential factor

7, — I, exp (—z qlfanQ”) . (7.15)

This is clearly the fermionic Fourier transform of the standard linear super-BCFW shift in
the little-group preserving representation, see e.g. ref. [49]. As expected, the Fourier Trans-
form interchanges linear shifts of the variables in z with a multiplication by an exponential
factor.

To see this explicitly, consider the amplitude in the little-group preserving representa-
tion of eq. (2.50), obtained from the R-symmetry representation via a fermionic half-Fourier

transform as discussed in section 4.2,

- _dl U U4
/ [V [Je @™ e =II°V > < Juﬂ> (ejmb) — (o) | - (7.16)
i=1 t

J Q="Nel i J

19 Az

. CALA2A A7 <A
using €12 e, popy, = 3!(5[311532533],
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On the right, we have grouped the fermionic variables into a little-group spinor né, with
n'. = (em!) and néi = (&nl). In this representation, the fermionic BCFW-shift mirrors the
shift in the chiral spinors,

it =i+ z e (enny,) i =+ z e eny) (7.17)
Our discussion from the polarized scattering equations is then directly applicable to the
fermionic case: only (v ,M1,) are shifted, while (€1 »71,,) remain invariant. In particular,
all z-dependence resides in the delta-functions

O 32 ity — o) = steunky | N | 3 ey — G 2t
; J ; nj

(7.18)
We can then transform back to the R-symmetry preserving representation, where the z-
dependent terms combine to give the exponential of (7.15), while the other terms give back
the usual supersymmetry factor ef’.2 We thus conclude that the BCFW shift amounts to
the insertion of an exponential factor exp (—z q1;¢,,2"’) in the integrand of the exponential
supersymmetry representation. Due to the chiral nature of the spinorial shift, it is only
necessary to shift the chiral supermomenta, so no corresponding factor exp ( — z G, Q17 )

appears in the integrand.

Reduction to 4d. Under dimensional reduction, the 6d shift (7.4) reduces to the well-
known BCFW shift in four dimensions. To see this, consider the case where the particles
1 and n have negative and positive helicity respectively. In the conventions of section 6.2,
this can be embedded into 6d via

€la = (07 61) > €na = (gny O) . (7.21)

The six-dimensional shift (7.4) for fundamental spinors then reduces straightforwardly to
the usual BCFW shift in four dimensions,

0 &f 0 &S 0 &é 00
R 4 = Y zad M), A= ") = zerén . (7.22)
Fia O 00 Fona 0 Kl 0

20Tt is of course sufficient to only transform the fermionic variables in 1 and n to see this. Alternatively,

we can also choose to perform a full fermionic Fourier transform on only one of the particles, e.g. n,
2N, —anrn JF _ §O12N (wivn) 17 1§ (wwg)qro, 1
/d Gn € e =6 <Z o Q' 7qiy | exp 5 Z¢ - Q" qirgig — M | - (7.19)
i i,j#n

This clearly comes at the expense of having to treat the two shifted particles differently. In this case, we
choose the following BCFW shift for the new fermionic variables 7,,:

i =mn+ 20" q1s. (7.20)

After transforming back to the R-symmetry breaking representation, this leads to the same exponential
factor.
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up to the manifest scale €€, in the polarization data, which could be absorbed into z.
The shift vector gaa = €1a€na again agrees with the usual choice up to the polarization-
dependent scale €1é,. Proving that the shift of the anti-fundamental spinors gives the
same results is a little more involved due to §xf,, ~ & (rather than dx{ ~ &' and dk;, ~ €,
respectively). Using the definition (7.13) for ¢, we find

- W _ O\ T

- En K €1 Rna -

et = (—I— <1n;’ — 1[1n] > , enphit, = (0, —&, [1n]) e1pkl, = (€q (1n), —0) .
(7.23)

Inserting this into (7.8) then leads to the following shift for the anti-fundamental spinors;

k¢ 0 0 &nllnl o kS0 K§ 0
I%fd B ( : 2 ) Tt ( €1<1?> 1 ’ /%114”@ = " - —z€16n 61(17}L> p? ’
0 —Kia 0 —Fna 0 —Fkna T Enlin) Fna 0

(7.24)

To see that this gives the same four-dimensional shift, note that the off-diagonal entries are
proportional to x§ and ke respectively, so they can be absorbed into a (z-dependent) 6d
little group transformation of x{, and x2 .. Moreover, since one of the off-diagonal terms
always vanishes, this little group transformation leaves the diagonal entries unaffected, and

t21
- a0 0 0
R~ ULRY, = (”1 ) ) + 26160 (0 ) ) , (7.26a)

R - kS 0 . (KT O
R~ Ugnfbb = <0n . ) — 2€16n (0 0) , (7.26b)
no

in agreement with our result from the chiral spinors (7.24). Above, we have used >~ to

we ge

indicate that the relations hold up to a 6d little-group rotation. We emphasize that the
need for this additional little-group rotation to bring /%f’n into diagonal form was expected
from the embedding of 4d kinematics into 6d, see section 6.2: even after restricting to
4d massless kinematics, k¢ are only required to be proportional, in general an additional
little-group rotation is needed to bring it into the diagonalized form of (6.13).

7.2 Factorization

For scattering-equations-based amplitude representations, it is well-known that factoriza-
tion of the momenta arises from factorization of the of the moduli-space 9 ,, of n-points
on the Riemann-sphere modulo M&bius transformations [50]. The boundary 09, of My,
consists of loci where a collection of points o; for ¢ € L come together at a point. This is

21To be explicit, the relevant little group transformations are

i 16 1 1
Ug = ( 1) , with b= —z 531% , ¢=0 for particle 1, b=0, c=zé <[12]> for particle n.
c

(7.25)
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understood geometrically as a limit where the Riemann surface ¥ = CP! decomposes into
two CIP’IS, Y1, and X joined at a node, with the o;, ¢« € L on X, and the rest on ¥ z. We
denote by ﬁ?tom the Deligne-Mumford compactification of the moduli space of marked Rie-
mann surfaces [51], obtained by including such nodal surfaces of genus zero, with arbitrarily
many components and nodes, but with at least 3 marked points/nodes on each component.

Singularities in the integrand Z,, for any theory only depend on the kinematic data via
polynomials. All poles in the formula stem from those in the o;; and (u;u;) which come
from the boundary of the moduli space aimgjﬁ. Here the moduli space 93?82 encodes the
locations of the punctures o; as well as the values for u;, v;, modulo the symmetry group
SL(2,C),xSL(2, C),,. However, the additional boundary components in E)ﬁg;i correspond to
spurious singularities involving the polarization data as seen for example in (5.20) and other
formulae in section 5. But, for super Yang-Mills and supergravity theories, we have proven
linearity of det’H in the polarization data in section 4.5. Thus, all poles of the integrand

originate from boundaries of the moduli space of the Riemann sphere 8ﬁo,n - 893?8?1.

At tree level, 8@0,,1 is the union of components 0;, Rﬁo,n that correspond to separating
degenerations that split the sphere ¥ into two components, ¥; and Y; partitioning the
punctures into L U R, with R the complement of L so n = n; + ng,

OL,RSDTM ~ m07nL+1 X mO,nR—H . (7.27)

The component 0, jo\tgm can be parametrized by gluing two Riemann spheres ¥; and 33
as follows. Choose a marked point on each sphere, oz € ¥ and x; € X;, and remove
the disks |0 — op| < €2 and |z — ;| < £!/?
degeneration. Then we can form a single Riemann surface by identifying,

, where ¢ is the parameter governing the

(r—xp) (0 —op) =€. (7.28)

The component Oy, Rﬁgm corresponds to the limiting case ¢ — 0. Often we simplify this
degeneration by choosing z; = 0o, where (7.28) becomes

o =op+ex,, with & = 271, (7.29)
Let us briefly review how factorization works in the CHY formalism.

Lemma 7.1 Suppose that the marked points o; satisfy the scattering equations

ki ki

& = Z 0, (7.30)

o
g#i Y

then {o;} € 8L’R§3\107n implies k2 = 0 where k;, = — Yier ki

Proof. This follows by inserting (7.28) into the following combination of the scattering

v

i€l ijeL ijeL

equations

where the second equality holds to order O(g) as the denominator is O(1) for j € R. O
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Thus, in the degeneration limit k; is null, and the propagator goes on-shell. The

CHY

scattering equations further ensure that the CHY measure du;,"" mirrors the behaviour of

the moduli space at the boundary [50, 52],

271[ 1
CHY g2 ) de

oot - — 6 (b} —eF) dut duc . (7.32)

dpty,

Each ‘half integrand’ Z,, for Yang-Mills theory and gravity — either a Pfaffian or a Parke-
Taylor factor — also factorizes into two subamplitudes, linked by a sum over states in the

) | D D T (733

€L states

internal propagator,

Combining the measure and the integrand, we see that gravity and Yang-Mills amplitudes
in the CHY-representation factorize correctly, in accordance with (7.3).

In the rest of this section, we will follow a similar strategy to the one outlined above for
the CHY formalism, and first establish the map between the polarized scattering equations
and factorization channels. Based on this, we determine how the measure d,ugol behaves
on the boundary of the moduli space. In line with the equivalence between the polarized
measure and the CHY measure established in section 3.2, we find

g2n=1) (g d®k%
[Lic, =5 e volSL(2,C)

ol ol
dube! = T T (7.34)

The delta-functions ¢ (k:% - 5]—") enforcing that ¢ ~ k% ~ k% are part of the momentum
conservation contained in the polarized measure. Finally, we show that the integrands
obey (7.33), and that the sum over states is encoded in a suitable superspace integral,

, -1 r
Yl = /d2 1 d*qe I, 1 Iy (<€L€R>N€Z<6L€R> auran ) - (7.35)
states
The formulae based on the polarized scattering equations thus factorize as expected for
super Yang-Mills and supergravity amplitudes.
7.2.1 Polarized scattering equations and measure
Factorisation of the polarized scattering equations. We wish to find an analogue

of lemma 7.2 for the factorization properties of the polarized scattering equations. We have

Lemma 7.2 Define €}, := > ;. uf€;s. Factorization {o;} € 8L,Rﬁ0,n and the polarized
scattering equations then implies the factorization

€pa = Z Ug €4 = Ug€pa - (7.36)
€L
Proof. We consider the form (2.30)
UiUj) €51 pE;
E,L»[AgiB] = Z w _ kiAB — 0, (737)

- Oij
j J
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and by analogy with (7.31) consider the sum

_ {ujug)eirge; 1
0= Zamfi[ASiB] = Z »’UjLM = ) Z (uiuj>€j[B6iA] = <€R[A€RB}> . (7‘38)

i€L i,jEL i,j€L

Again, the second equality holds to order O(e) in the degeneration parameter, and in the
last equality, we have introduced the spinor €}, := > .. uf€;4. The relation (7.38) tells us
that (epa€rp) = O(€), so to leading order in ¢, €, factorizes into an SL(4) spinor and a
little group spinor, €%, = u%era for some u$, eps as desired. [

Corollary 7.1 In the degeneration limit, the original worldsheet spinor \(o) thus induces
a spinor \®) (o) on the sphere ¥y, with

ule a
)\ElR)O/(O') _ Z p DA + URERA 7 wh@r@ u%GRA = ZugeiA . (739)

o — O g —0
pER p R i€l

By an extension of the same argument, A(o) also induces a spinor A(") () on the sphere X,
which can be seen as follows. Since A(o) is a worldsheet spinor, the combination A\(¢)vdo

is invariant under the inversion (o — og)(x — x1) = ¢,

Ny(o)Wdo = X)Wz, with Ag(z) = 3 LG (7.40)

where w{" denote the little group spinors in the coordinates x. The invariance of A% (o)vdo
then implies that the u; transform as worldsheet spinors of the local bundle at the marked

point o;,

ud vVdo  wiVdx . e
= and thus u; = wy .
g — 0; r — X Tir

(7.41)

At this stage, the same reasoning as above ensures that A(x) descends to A(¥)(x) on %,
with " "
)\ElL)“(;p) - Z Wicia | Wit , where wfer, = ngem. (7.42)

‘e~ T —x; T — X
i€l pPER

In the CHY amplitude representation, the relation (7.31) makes it clear that the scat-
tering equations map the boundary of the moduli space to a factorization channel of the
amplitude. To see this from (7.38), note that momentum conservation on each subsphere
(encoded in the polarized scattering equations) gives

(upup)
kpap = — Z kp AB = €g[a Z ;717}26733] , (7.43)
pER PER
where we have used the form (7.37) of the polarized scattering equations on g,

pB] T

Upl Upl
ep[AE(R) = Z <;q>ep[Aqu] + WER[AEPB] —kpap =0, (7.44)
qgER p
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and the first term does not contribute due to the antisymmetry in the SL(4) spinor index.
The relations (7.43) guarantees that to leading order in the degeneration parameter ¢, the
internal momentum ky is on-shell, k2 = O(e), and the boundary of the moduli space indeed
corresponds to a factorization channel of the amplitude. The same reasoning can also be
applied to the momentum k; on the sphere ¥,

(wiwp) (uiup)
kpap = — Z kiap = Z g; L €plain] = Z %%{AQB] = —kgap, (7-45)
icL e, R e, P
PER PER
so k; goes on-shell as ¢ — 0 and k;, = —kp, as expected for a factorization channel. Here,

the second identity follows again from the polarized scattering equations on ¥, the third
from the degeneration relations (7.41) for u, and w;, and the last from the definition of €g
and the relation (7.43) for kg.

The scaling weights in €. Before proceeding further, it is helpful to take a closer look
at the scaling in the parameter € in the degeneration limit ¢ < 1. Near the boundary of the
moduli space, a marked point ¢ lies on the sphere X, if x;; ~ 1 is of order one, and similarly
a point p lies on Xy if opr ~ 1. Using the parametrization (7.28) of the degeneration, this
gives immediately

1€ L: Tip ~ 1, Oig ~ €, (7.46a)
pER: Tpp ~ €, opr ~ 1. (7.46b)

As a direct consequence, the separation x;; ~ 1 of two marked points 4, j that lie on ¥, is of
order one in the degeneration limit (and 0,4 ~ 1 for p,q on ;). Using Proposition 3.2 on
the spheres ¥; and X, we can also infer the scaling of little-group invariants constructed
from w’s and w’s. Proposition 3.2 implies that there only exist solutions to the polarized
scattering equations if all terms in <wi)\£f) (x;)) and <up)\£13) (0p)) remain of order one. For
points ¢, j € L and p,q € R, this means

i,jeL: (wjwr) ~ 1, (wjwj) ~ 1, (7.47a)
p,qE R: (upug) ~ 1, (upug) ~ 1, (7.47Db)
and the order of all other contractions follows from the relation (7.41) between u and w
and (7.46).?2 We can further use the definitions of u; and w; to derive the order of the

remaining spinor brackets: from the dominant balance in (u;ug)epa, (wWpwy)era, (UpUp)€epa

and (wyug)era, we find respectively
icL,peER: (wug) ~ e,  (wywr) ~e,  (uiup) ~1, (ugw,) ~et/?. (7.48)

Summarizing the above discussion, we have seen that both the worldsheet spinor A(o)vdo
and the polarized scattering equations descend to the subspheres, with leading terms of
order one throughout the degeneration,

n

I15 &) =1+ (5}”) I+ (5]@) (7.49)

=1 €L PER

2280, for example, (u;wy) ~ /2 and (uw;) ~ e'/2.
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where the scattering equations on the subspheres ¥; and X are given by the usual con-

struction,
5i(L) _ <wiA§f)(xi)> — (vitia) ielL, (7.50a)
gz()R) - <up)‘51R)(Up)> — (Uphipa) peER. (7.50b)

We stress that in contrast to the CHY formalism, the polarized scattering equations do not
contribute powers of the degeneration parameter ¢ to the measure. As we will see below, the
factor of €2 =11 instead comes entirely from the integration over the variables (o, u;).

Factorization of the measure. Armed with the insights on how the polarized scattering
equations behave on the boundary of the moduli space, let us now take a closer look at the
measure. The degeneration of the measure d” 3¢ on the sphere is entirely analogous to the
CHY case, but it provides a good introduction and we will review it here for completeness.
For any values of the degeneration parameter, Mobius invariance on the sphere allows
us to fix three marked points, two of which we choose to lie on one subsphere in the limit
e K 1, op,,0p, € X, and one on the other, z;, € ¥;.22 At the boundary of the moduli
space, we have the further freedom to fix the junction points oy, x; of the two spheres, as
well as one additional point ¢;, on ;. To leading order in &, the Jacobian J™ for this
gauge fixing becomes the Jacobian JM for gauging {0}, ,0p,, 08} C Tg,2*
JOb = Oi1p19p1p29p2in = ORp1Op1p20par = J;znéb‘ (7.51)
Together with the differentials Hpe R dop, which descend directly to ¥, this Jacobian gives
the usual Mé6bius invariant measure on . For the punctures o; with ¢ € L on the other
hand, we find from (7.28)

e T
dai =3 dwi y ClO’i2 =%z de . (752)
'CciL Tiy L LisL
Combining these factors gives both the correct differentials and the Jacobian J™ for the
measure on Y, after gauge-fixing {z;,,z;,, x;}. Putting this all together, the measure on
the moduli space of marked Riemann spheres factorizes as

[T, do; g™ 2de
— = (TiyiaTint Triy) dx; (CRp,Tp1paTpar) do (7.53)
VOISL(Q,C) HieL x?L 2122712 11 g g P11~ P1P2~ P2 };}L p
#1112 PFP1,P2
_em2de day [[iep du dog [l )cr dop

a HiELxZZL vol SL(2,C); volSL(2,C)x

(7.54)

ZIn the ambitwistor string, this has a particularly elegant interpretation in terms of picture changing
operators. We start out on the Riemann sphere with n vertex operators and n—3 picture changing operators.
In the degeneration limit, the only non-trivial assignment of these onto the two subspheres correlates the
number of picture changing operators with the number of vertex operators as described above. All other
possibilities give zero after integration over the ghost zero modes.

24While the degeneration appears to treat ¥, and Xy differently, their roles can be interchanged by
starting from a parametrization of the sphere in z-coordinates instead of o.
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Consider next the part of the measure dependent on v. By the same argument as
above, Proposition 3.2 ensures that all v; for i = 1, ..., n remain of order one throughout the
degeneration. The part of the measure involving v’s, including the delta-functions encoding
the normalization, thus factorize directly into the contributions on each subsphere,

ﬁd%i 5<<viei> - 1) = H d*v; 5(<viei> - 1) H d2vp6(<vpep> - 1) . (7.55)
=1

i€l PER

In contrast to the measure d" 3o for the punctures however, the right hand side of (7.55)
does not yet give the full v-dependence of the measure on ¥; and Xy, because we are
missing the contributions v; and vy from the junction points. We will see later how these
extra variables are defined and in what form they appear in the amplitude.

For the u-dependent part of the measure, it will again be convenient to first work with
a gauge-fixed measure, and restore gauge invariance on each sphere ¥, p after factorization.
In the same manner as for the punctures o;, we gauge the SL(2,C), by fixing two moduli
on ¥ and one on ¥, (cf. (3.28))

Upa = (1, 0), (ujus) =0, forppe R, 11 €L, (7.56)
where u, is an arbitrarily chosen reference spinor. For convenience, let us also introduce -,

normalized such that (u*uﬁ = 1. The usual Faddeev-Popov procedure gives the Jacobian

J* = (ui, up,) (up,us), and thus the u-part of the measure becomes

n 2Ui ny
vg éle(;i Cu I o {win) (up) <d<wi1ui> 11 dzwi) <H d2up> ,  (7.57)

.t
i€L ViR icl peER
i1

where we used that the wu; transform as worldsheet spinors of the local bundles at oy,
see (7.41). As was the case for the marked points o;, this does not fully fix the SL(2,C)
gauge on each component sphere at the boundary of the moduli space, and we have the
further freedom to fix both of the ‘junction moduli’ w; on X;, as well as one component of
up € Y. As above, the right side is not yet in a recognizably factorized form, but misses
components of the Jacobians for gauge-fixing on the subspheres, as well as the measure for
one of the junction moduli d(uzu;).

For a full factorization of the measure, we are also still missing the delta-functions
enforcing the polarized scattering equations on the junction points, as well as an integral
over the internal momentum in the propagator, d®k; = d®x%,/vol SL(2,C). We introduce
these, as well as all missing factors discussed above, by inserting a conveniently chosen
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factor of 1,%°

810,
1=¢"1 / VO];le d{ugut) d*v, d*vp (upwp)(wpus) 6 ((vper) — 1) 8 ((vpeg) — 1)

X 64 <<UJL)\I(4L)(.TL)> — <ULK?LA>> 54 <<UR)\£1R)(O'R)> —1 <’UR,HLA>) . (759)
The spinors ; encode the intermediate momentum k; = —kj, with?%
kiap = <HLA/€LB> ) kpap = —kpap = <(iKLA)(iHLB)> = <HRA"<GRB> ) (7-60)

and the integral fully localizes on the normalization conditions for v, and vg, as well as the
delta-functions enforcing the scattering equations at the node

(wiAP (@) = > (in) o) | (7.61a)

. Lir
icL
UpU .
<UR)\£1R)(UR)> = Z <OZ_7RR>€pA = <’UR/<}RA> =1 <’URK/LA> . (761b)
PER p

The little group-spinors €7 ; relate x7, to the previously defined are defined objects €14
and epy via €4K7, = €ra and epek%, = €ga. By directly comparing (7.61) to the defini-
tions (7.36) and (7.42) of €4 and €g,, we find that

<uRA51R)(UR)> = —ie V% (upw,) era, <wL)\E4L) ($L)> = —ie V2 (upw,) era.  (7.62)

so that the nodal scattering equations are indeed consistent with our previous definitions.
Note that despite the factors of e~1/2, the right side is of order one due to (u wg) ~ e'/2.
The nodal scattering equations thus imply that the variables (e;,v;) and (ep,vgp) are
related by

vy = 5_1/2<uRwL>ef?, vy = *6_1/2<URU)L>€%, (7.63)
and so the integration over v; and vy should be understood as an integration over the
polarization choices of the particle running through the cut propagator.

We can now combine the elaborate factor of 1 in (7.59) with the remaining part of
the measure as follows. It evidently provides the missing factors for the v-dependent part
of the measure and the polarized scattering equations to factorize correctly, as well as the
missing measure d(u,u;) for the u-dependent part. Using a Schouten identity and dropping

terms of subleading order in e, we can further combine the factors (w;, up,)(up, us) from

25 This is quickly checked: first note that a quick weight count in the spinors x; shows that the right hand
side is weightless in k., and indeed the Faddeev-Popov Jacobian from fixing the SL(2,C) freedom cancels
against (part of) the Jacobian from solving the scattering equations. We can make this explicit e.g. by
fixing k7o, as well as e;1. Then

JsL2). = krot€ro, Jp;ll =& " (upwr) (wrus) krotero, (7.58)

and thus the integral indeed gives one.
26We have chosen a little-group frame where kg = ix, to simplify the expression.
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the measure and (uzw;)(wu,) from (7.59) to give the missing Jacobians for gauge-fixing
the u’s and w’s on X g,

(wiywp) (up, wn) (up ue) (Wrne) = JgJ; (7.64)

Combining everything, the u-part of the measure factorizes with the expected degeneration

factor
n 2, np—1 2 ) 200 d2 Hn d2u
-1 1y i a7 et d wy [T, d*wi d™urllper d™up
* d L = )
e fwwr) (wrwn) d{ures) ZTeE 5 [l 2% volSL(2,C)5, volSL(2,C)k
(7.65)
and so the polarized measure dub® indeed factorizes as (7.34),
2(np—1) de A3k
A = = = R M ML 7.66
Hn, HieL m;lL c vol SL(Q,C) IU’nLJrl iunR+1 ( )

7.2.2 Factorization of the integrands

Parke-Taylor factors and the reduced determinants. The Parke-Taylor factors

factorize as usual; when all punctures ¢ € L are consecutive in the colour-ordering «, then

PT(o) =~ ™ V][ 27, PT(cr)PT(er), (7.67)
€L

where PT(a;) denotes the Parke-Taylor factor on the 3, with the ordering o, = a‘ L Uzr.
If the marked points ¢ € L do not appear in a consecutive order in «, the pole is of lower
order of €, and there is no factorization in this channel.

The factorization of the reduced determinant is similarly straightforward. On the
boundary of the moduli space, its components are given by

. LA A A A
T T €iAC €in€p €pA€; €pa€y
H;; = — H;, = , Hy = —-, Hyy = —. (7.68)
€ Lij ORp Opr Opq

Due to the permutation invariance of the reduced determinant, we can make a convenient
choice and remove one row and column from each side, i1,i9 € L and p1,ps € R,

[i1p1] [i11] [p1R]

— det H, liapa] R ) det H; li2.] det H R{py ]
det'H = = == sz‘L — . (7.69)
<ui1 Upy > [uiQ uPQ] <wi1 Up,y > [wiz up2]

i€l
In the last step, we have identified the leading term in ¢ as determinants of H; and Hp
respectively, with the rows and columns associated to z; and op removed. Using the

Schouten identity (w;, up,)(upwr) = (w;, wr)(up, ur) (to leading order in ¢), as well as the
relations (7.63), the reduced determinant becomes

1

(er€r)[€rér]

det’H = ¢~ (me=1) [1=7 det’H, det’Hy. (7.70)

€L
To see that this is the correct factorization behaviour for the bosonic case, let us com-
pare (7.70) to the sum over states. To implement this sum in our framework, we introduce
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again a global basis for the little group space of the internal particle. With €} and €% as
defined above, it is natural to choose the other basis elements (on each component sphere)
€k

£ = ; p =

(erer)

a
€L

<€L€R>

, (7.71)

i.e. we choose the same basis (e;,£;) (up to normalization constants) for both the left and
the right component sphere. Consider now the amplitude A,, := AS€ with all external
particles in states at the top of the multiplet.?” Then the sum over states reads

Z AnLHAszrl = Eab&4j AZ%+1AZZ+1 = £L[a€L|b] éL[dgL‘[)] AZ(ZHAZZ;H (7-72)

states
AR AT leen) qee qentn | [C0fR] el gente | (C1€R) f ent

L AﬁLq A&RGR LER AéL&L A€H£H LER A&LéL A£H£R )
evenlere] | [exa] LT (e Tt et T g S

In the second equality, we have used the definition (7.71) of the little group basis choice
for the internal particle, and contracted the polarization data back into the amplitudes.
While this does not yet look reminiscent of the factorization property (7.70), let us take a
closer look at the amplitudes Aff;_ﬁl etc., arising from contracting &;, or &5 in the respective
subamplitudes. Using either the supersymmetry representation or the results of section 4.4,
the (half-) integrand of these amplitudes is given by?® det’H (£;v,). However, due to (7.63),
v? = ¢£¢, and so all of these amplitudes vanish,

ASLeL = A = A =0, (7.73)
and similarly for A,,+;. The sum over states thus simplifies drastically, and only the first
term contributes,

1 ~ N
Z AnL+1AnR+1 = 7‘4;&11‘4%{6—4}31 : (774)

states <6L6R> [ngR]

Thus the reduced determinant indeed factorizes as expected for gluon amplitudes, cf. (7.70).

The sum over states in the supersymmetry representation. Before discussing
factorization of the full supersymmetric amplitudes, let us first derive an expression for
the sum over states as an integral over the fermionic variables of propagating particle. For
readability, we focus on the chiral case below, all statements extend straightforwardly to
N = (N, N) supersymmetry. In general, these fermionic integrals take the form

1
L

where G(q;,qr) is a ‘gluing factor’ for the internal propagator that depends on the choice
of supersymmetry representation, and is determined — up to an overall normalization—

2TFor readability, we suppress the e- indices for external particles below.
2The other integrands are Z" = det’H [£,7,] for A;Lfil and " = det’H (£;v1) [€191] for Afflifl respec-
tively.
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by supersymmetric invariance. This can be seen as follows. The left hand side of (7.75)
vanishes under the full supersymmetry generator @ ;. Using further that

QAIAnL+1 - _QLAIAnL-H ) QAIAnR—i-l - _QRAIAnR—‘rl ) QAI G(QL; QR) = 07 (7‘76)

due to the supersymmetric invariance of the amplitudes on the right, we find that G has
to satisfy

0= / 0.0y ((QuarAn+1) Angit + Anys1 (QuarAngi1) ) Glav,an). (7.77)

Using the explicit form of the supersymmetry representation (2.48), we can easily verify
that this is solved by??

Gar. an) = |G(0,0) exp <“1<qu§2> | (7.78)

To further fix the normalization ’G (0,0)|, we compare the factorization for external gluons
from (7.75) to the sum over states (7.74). In the notation A, := AS€- the fermionic
integrals give

1 1 1 ¢
An = 5[G(0,0)] <2N AL ARt AgLLHAgf;H) : (7.79)
L

(erer)

where we used A/, ;| to indicate that the particle flowing through the on-shell propagator
is in the top state of the chiral supersymmetry multiplet, parametrized by €;. For the
terms Ai’L 41 with the propagating particle at the bottom of the multiplet, we have used
the consistency of the integrands with the supersymmetry representation, see section 4.4.3°
By matching (7.79) to the sum over states (7.74), the normalization is given by

1G(0,0)] = (erer)” (7.80)
and the fermionic integral representing the sum over states in the R-symmetry preserving
supersymmetry representation takes the form

1
=52

29We can see this as follows. Using the explicit form of the supersymmetry representation, the condi-

-An /d2NQLd2NQR ATLL+1~AnR+1 <<6L5R>N€i<€L€R>_1 quqR']Q”> : (781)

tion (7.77) contains two terms proportional to €, and ex respectively, C, + Cr = 0, with

Cr = /dQNqLd2NqR efi+tr G(qr,qr) €ra <—<ULUR>(1L1 +1 Z W‘ZM)

PER fp

Cr = /dQNqLdQNQR " Glqr, qr) €ra <i<ULUR>QRr + Z wqu) .

e w
Then we can straightforwardly integrate out gr in C; (and g in Cr) using the ansatz (7.78) for G and the
vanishing of the local terms in the supersymmetry factors at the node ({ vr) = (€rvr) = 0, and confirm
that indeed C;, = Cr = 0.
30 As discussed above, these terms vanish if all external particles are in the top state of the multiplet.
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Factorization of the supersymmetry factors. Given that the measure and the inte-
grands factorize correctly, we can isolate the supersymmetry factors in the relation (7.81).
To prove that the superamplitudes factorize correctly, we thus need to show that at the
boundary of the moduli space

el oo L <€L€R>2N/d2NqLd2NqR eFrt+Fr ei<EL€H>_1IZLM‘!RJQ”7 (7.82)

Our strategy will be to first calculate the left side of this equation, and then simplify the
right to see that they match. On the left, the parametrization of (o;,u;) on the boundary

gives
L <wzw]> 7y 1 <upuq) 1J > -
F’aim - 5 Z Tis Q 2 Z o dp1dqs Y +Z — qir qp]Q (7-83)
ijeL Y pgeR P ier, IR
PER
=Fy =Fp

Here, we have introduced the factors F, and E} for later convenience.3! On the right hand
side, we can integrate out ¢; and ¢p,

<€L€R>2N€FL+FR/ H5 1 UIUR qrr + Z

1L

wW;wW
Qpl exp <Z < ; ) QiIQLJQIJ>

PER ieL
b4 E u;w) (URU
eFLt R exp _5_1/2<€L€R>ZM%IQ}).IQ” ’ (7.84)
icL Trp
PER

where, we have used that exp({£zvz)q2) = 1 due to vy = &;. To simplify the exponent
in the last line, we use a Schouten identity and the relations (7.63) for the polarization
spinors of the propagating particle to obtain to leading order

() ) = (g ) + ) () =~V 4 0 (92) (759
LYR
The exponent thus agrees with (7.83), and so our formulae (2.50) factorize as expected of
amplitudes in super Yang-Mills theory and supergravity.

As an aside, we give an alternative way of deriving the factorization of the super-
symmetry factors that mirrors the bosonic discussion of the polarized scattering equations
more closely. First, note that the delta-functions in the first line of (7.84) can be solved in
analogy to the bosonic case (7.38) by

uf qrr = Y uf gir + 0%, (wpBr;) =0, (7.86a)
i€L

wg qrr = Z U)Z Qpl + 0%[ ) <UR0LI> = O . (786b)
pPER

31The ‘hat’-notation is intended as a reminder that these are not yet the factors F; and Fj for the
subamplitudes since they do not include the contributions from the junction point.
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Here the 2N conditions imposed by the delta-functions have been replaced by 4N con-
straints, but supplemented by 2N degrees of freedom encoded in 6; and 0. We can now
solve the constraints (w;0z;) = 0 by taking 6%, = azrw?fg;, and similarly for 6;. For
convenience, we have defined 6y to be of order one, and kept a normalization factor aj
explicit. Contracting the resulting relations into u; (or wy, respectively) gives the dominant

balance ay = /2, and so we are left with
Uy qrr = Z ug gir + el/? wiOrs , Wi qrr = Z wZ Qpr + el/? uglir, (7.87)
1€l pPER

on support of the delta-functions. The exponent then directly gives the correct factoriza-
tion (7.82).

Factorization of Pf’A and the M5 half-integrand 1&5. While the brane theories
are not known to satisfy a BCFW recursion, the above treatment of the integrands can be
extended easily to prove that the M5 and D5 amplitudes factorize correctly. It would be
interesting to extend this to a full soft recursion as introduced in [53], but this is beyond
the scope of this paper.
Let us first consider the Pfaffian Pf’A. On a boundary 9y z9Mo, the matrix entries
become
Aij _ Tikjr M’ Aip _ ki - kp , Aip _ ky - kq .

€ Lij ORp Opq

(7.88)

If ny, ny are odd (so the subamplitudes A, +1 and A, +1 have an even number of particles),
it is convenient to define Pf’A by reducing on ¢ € L, p € R. Since the block-matrix
proportional to e~! is of even rank n; — 1, the reduced Pfaffian then factorizes as
—1)¢tp .
pi/a = EV T pp gl ~du-y) [ =) PtA, PE/ A, (7.89)
Oip ;
jJjeL

Here, the powercounting of € is due to the removed row and column ¢ € L.

On the other hand, if n;, nyp are even, i.e. we are studying factorization channels
into subamplitudes with an odd number of particles, it is still convenient to reduce on
i € L, p € R to avoid leading-order cancellations. In contrast to the odd case however, the
factorization now involves a sum over states as shown in [50], and the leading order term
gives Pf/A ~ (%1 For amplitudes with half-integrand Z!' = det’A, there are thus no
factorization channels with odd-point subamplitudes, and for n; even, we indeed find

det’A =gl H x?L det’A; det’Ap, (7.90)
JjeL
as expected for half-integrands.
The calculation of the factorization of PfU(%0) featuring in the M5 half-integrand is
more involved due to the structure of its entries, and we have delegated the discussion to
appendix C. The final property for odd n; however is very compact,

L (€r€r)

PrU0 — 55— Do o Pf UL(Q’O) Pf U}(%Q,U) ’ (7.91)
JjeL =]
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and gives the following factorization of the M5 half-integrand,

[ L$2'L
ﬁ III\I/IE),L II}\I/[E),R : (7‘92)

Ty =< ™Y

Repeating the arguments used in the factorization of the reduced determinant det’H, the
only non-vanishing contribution to sum over states comes from the top of the multiplet, in
agreement with (7.92). We thus conclude that the brane amplitudes also factorize correctly.
As discussed above, for the brane theories factorization into odd-point subamplitudes is
ruled out by the presence of det’A in the integrand. On the other hand, the novel formulae
in the web of theories in table 1 are composed of II{I/E with another half-integrand that sup-
ports factorization channels with odd-particle subamplitudes (such as the Parke-Taylor fac-
tor for the (2,0)—PT formulae). From this perspective, we would also like to study the fac-
torization of 111\145 for even n;. A straightforward counting shows that in that case Pf U(20) ~
5%, SO 111\1/15 does give a non-zero contribution to factorization channels with even n,. While
it would be interesting to pursue this further to gain some insights into the (2,0)—PT for-

mulae, or construct odd-particle versions, this is beyond the scope of this paper.

7.3 Boundary terms

As we have seen in section 7.2 and section 5.1, the formulae (2.50) based on the polarized
scattering equations factorize correctly, and reproduce the correct three-particle Yang-Mills
and gravity amplitudes. To demonstrate that they satisfy the BCFW recursion relation —
and are thus representations of the tree-level amplitude — we still need to show that the
boundary terms in the BCFW recursion relation vanish,

lim A(z) =0. (7.93)

Z—00

We will follow a similar strategy to the one employed in the discussion of factorization,
and discuss first how the polarized scattering equations and the measure behave under the
BCFW deformation (7.4) and (7.8),

Riy =Ky +2€ €na, Ry =r1y — 2 € (enprry) , (7.94a)

Roy =Ko+ zerers, I%m-lA = mng —zéet (61 B/inaB) . (7.94Db)

As expected from the equivalence of the polarized measure d,ugo1 and the CHY-measure
dpStY | we find that the measure scales as 272,

lim dpP® = 27 2djP! (7.95)

Z—00

and thus only integrands scaling at most as Z,, ~ z as z — oo can give vanishing boundary
terms. In the case of super Yang-Mills theory and supergravity, we find that e’ +F 20,
and det’ H ~ 2% while PT(a) ~ z for colour-ordered partial amplitudes where the shifted
particles 1 and n are adjacent, and PT(a) ~ 2° otherwise. Putting this together, the

supergravity and super Yang-Mills expressions scale as

M(z) ~ 272, A(z) ~ 271, (7.96)
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in the large-z limit, so the boundary terms vanish in both cases. We conclude that the
formulae based on the polarized scattering equations satisfy the BCFW recursion relation,
and thus give representations of the respective tree-level amplitudes.

7.3.1 The polarized scattering equations

Polarized scattering equations and measure. A crucial feature of the BCFW de-
formation of the fundamental spinors is that it leaves the polarization spinors €; , of the
shifted particles invariant. The polarized scattering equations are thus unaffected for all
particles i # 1, n, and become

éi = Z <Uiuj>€jA — <Uz‘f€iA> s (7.97&)

&= <u1u,j>€jA — (v1k1a) + (<u1u"> - z) €na (7.97b)

i#n 01j O1n

5 (unuy) (urun)

gn = E EjA — <’l)nI€nA> =+ — Z | €14 (797C)
o Onj Oln

In the large-z limit, the scattering equations & and &, require that oy, ~ z~! while
(ujuy) ~ 1 remains of order one. We can refine this dominant balance by explicitly solving
for the difference 0,1 = 27! (u,u1) to leading order, which suggests the following change of
variables:

on =01+ 2 Hupur) + 272y, (7.98)

The shifted polarized scattering equations are indeed manifestly independent of z when
expressed in terms of the variables o1 and ¥,

A UjU; 1

&= Z ( - ‘J>€jA + ;(<ulu1) €14 + (Uittn) €na) — (Vikia) (7.99a)
]#17’” K !

A ULUj n

=Y {us ?>ejA — (01k1a) + — D (7.99b)
Ol (uguy)

~ UnUWUq n

En = Z < ]>ejA — (Unkna) + y72 €14 - (7.99c¢)
j#1 01y <u1un>

Let us define a new polarized measure dﬂgd in analogy to (2.32), but now using the z-
independent scattering equations (7.99) as well as the new variable y,, specifying the marked
point o,,. Then the shifted measure dil obeys
lim djP®' = 2~ 2djaP (7.100)
zZ—00
due to do, = 272 dy,. This makes is clear that only theories with integrands scaling at

most as Z,, ~ z for large z will have vanishing boundary terms in the BCFW recursion
relation.

32We have omitted higher order terms in 2z lin 51 and z‘fn.
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Anti-chiral scattering equations. While the anti-chiral equivalent to the polarized
scattering equations does not play a prominent role in the amplitude expressions, we will
need the behaviour of the variables ﬂf to determine the scaling behaviour of the integrands.
On support of the chiral polarized scattering equations, the marked points o; and o,
factorize in the large-z limit,

Op =01+ z_1<unu1> + 272y, . (7.101)

Using this, the anti-chiral scattering equations are given to order O(z) by

6 [@it1] oy, [Uitin] c ) ~A
Ei =—z €ncer”) + ercen’) ) €

O(z) ( 041 ( ot ) oi1 (10 )
5 _ [Wtn] 4 (61t oy =42 [U1ln] C\ zA CT1\ =4
& e L Ly mere (erc€.) € —2 () (e10€,°) & + 2 (€nc [v181°]) €
o _ [t 1] A [t C\ zA 2 [t 1] C\ zA C1) =4
gn O(z) — <Unul> “a +Zyn <unu1>2 (enc “ ) ‘ : <unul> (Enc “ ) €t (elc [vn/{/n ]) <

Due to the terms proportional to 22 as well as the different spinors in & and én, the
only dominant balance for this set of equations is [@11,] ~ 27!. We will parametrize this

balance by
~ (W] - 1.~6
Uy = +——=u] + 2~ 0, . 7.102
[wnul] 1 ( )
Using this, the anti-chiral polarized scattering equations simplify to
5 [ﬁ,@l] C [wnan] c ~A
& = — , 7.103
(’)(z) 0_11 (enc‘ €1 ) + [wn'LL1] (610 67’1 ) € ( a‘)
. [1]171)”] c c ~A
E = - n n ’ 7.103b
! O(z) : ( <U1Un> (6106 ) * (6 ¢ [Ulﬁl ]) ‘ ( )
En =z (— [f10n] (Gnc elc) + (610 [Unlinc])) ét (7.103c¢)
0(2) (u1ty)
Together with the normalization condition [vi€;] = 1, the leading order of 51 determines

vy to order one; in other words we can set v; = v} + 2719, where 51‘0(2) (vf) = 0, and

similarly for v,. All remaining scattering equations &; are solved to leading order by

B
g = ) pa 1 (7.104)

" (51(7 6nc)

Changing variables to {o;,a¢,v¢} for i # 1,n and {oy,a$,9¢} and {y,, @2, o} thus

renders the anti-chiral scattering equations manifestly independent of z as z > 1.

7.3.2 Supersymmetry

As discussed in section 7.1, in the R-symmetry preserving supersymmetry representation
the supershift is implemented via multiplication by an exponential factor

- -~ _ 1J F
FHF _y o HF — P2 oF (7.105)
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rather than a linear shift in the fermionic variables. From the solutions to the antifunda-
mental polarized scattering equations (7.104), it is easily checked that F remains of order
one in the limit z — oo, so the only z-dependent term is proportional to (ujuy,)/o1, — 2.
On the support of the polarized scattering equations (7.98), this combination remains of
order one, and as a consequence, so does F;

~ 1 Ui Uj U; U
F=2 E s j>Qi1QjJQU+ E s >(]z'JQnJQ”+ yinzqn%.lgl‘]~ (7.106)
2~ o0y ; oi1 (u1n)
] ’L?é].
i.j#n

The supersymmetry factors are thus of order one in the large-z-limit, e ™% ~ 20, Al-
ternatively, this can be seen from the little-group preserving representation, where the
fermionic-delta functions (2.49) and the shift (7.17) manifestly mirror the polarized scat-
tering equations. As z — oo, the same argument as for the polarized scattering equations
thus guarantees that the delta-functions remain of order one.

7.3.3 The integrand

The Parke-Taylor factor. The large-z limit for the colour half-integrand PT(«) is
familiar from the original d-dimensional CHY amplitude representation. Since the Parke-
Taylor factor only depend on the moduli of the marked Riemann sphere, its behaviour as
z — oo is determined by (7.98).

On =01+ 27 Huguy) + 2 2y, . (7.107)

For colour-ordered Parke-Taylor factors, we thus find

PT(a) = ﬁ# ~ {Z a (1) =a"t(n)£1,

(7.108)
i=1 Oa(i)a(i+1)

1 otherwise,
so the colour half-integrands are of order z if the legs 1 and n are adjacent in the colour-
ordering o and of order 20 otherwise.

The reduced determinant. In contrast to the Parke-Taylor factor, the reduced de-
terminant det’H depends on z not only via the marked points o1, ~ z~!, but also via
the anti-chiral spinors ;' and €:. There is however no chiral contribution of order z since
€14 =¢€14 and €, 4 = €, 4, and so all z-dependence stems from the columns 1 and n,

. ZA . A
Hiyp = 224 (e, pef) + 20 (7.109a)
Ji1 Ji1
~A A ~A
S . €; 4€ B €;4€ €; A€ B
Hip = —2 - (e1p€)) + Uﬂ” “ 2 (1 5€2) (upur) . (7.109b)

The entries H 1, I:Inl as well as the diagonal entries I:In and ﬁnn depend quadratically on
z, and we find to subleading order

~ A
€1 4€ €1 4€),,

N €1 A€
Hy, = —2° ﬁ (e1z€n) +2n (upur)2 (e1pen) +2 (tptty) (7.110a)
n mn n
~A A A
A €n A€ €n A€ €n A€
Hy =422 BY — py, 1 7.110b
nl = +2 <Unul> (anel) ZYn <Unu1>2 (EnBel) <unu1> ) ( )
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which uniquely determines Hyi and H,, from hnearlty relations (2.53) among the columns

t33

of H. We remark that all remaining diagonal entries H;; are independent® of z, as can be

seen from the (row) linearity relation

<u1un>I:I“ = — Z <u]un>ﬁﬂ = — Z (ujun>HjZ-, (7.111)

J#ni jn,i
which is manifestly of order one. All z-dependence of H is thus confined to the columns
1 and n, suggesting that we define the reduced determinant by removing these columns.
Naively this would imply det’H ~ z because of the denominator factor [i1t,] = 2! [G1Wy],
but its coefficient vanishes, as can be seen from a judicious choice of row and column
operations on H3* In practice, however, it is easier to extract the large-z behaviour by
using row- and column operations to remove the z-dependence from one of the two columns,

say column 1, and reduce on a different column.

To make this explicit, let us construct a new matrix H’ whose column 1 is independent

of z (apart from H/, and H',, which will still be removed),

B
~ ~ EnBE 1 o €n BET 4
o}, = Hy — LM, W't = ad + L, (7.112)
€1 BE €1 g€

Due to Lemma 4.2, the reduced determinants agree, det’H’ = det’H, and in particular so
do their large-z-limits. But by construction, H’ only depends on z via the n-th column and
the entries Hy,, and H,,,, so we can manifestly remove all dependence on z by reducing on
the rows 1 and n and the columns i # 1 and n,

. N 1
det’H = det’H’ = . det A1}, (7.113)
~ €n BET [~ ~
(urun) ([Uzun] + 20 [um])
The expression on the right hand side is now manifestly of order O(z°).
Yang-Mills theory and gravity. Over the last section, we derived that
e 0 Z PT(a) ~ z, det’H ~ 2°, (7.114)

aESn/Zn
in the large-z limit. Combining this with the behaviour of the measure, we find that the
boundary terms in supergravity and super Yang-Mills both vanish as expected,

M(z) ~ 272, Az) ~ 271 (7.115)

This completes the BCFW-recursion proof of our formulae.

As a brief aside, we mention here the curious observation that our brane formulae also
do not receive boundary contributions in the BCFW recursion, despite their poor behaviour
for large momenta. Though we are not aware of a discussion of this in the literature, this
is also true for the D-brane amplitudes in the usual CHY-framework, and just relies on
the additional observation that Pf’A ~ 20 in the large-z limit, which in turn follows from
similar row- and column operations on A as are used on M to show that Pf'M ~ 20, It
would be interesting to investigate this cancellation from the field theory perspective.

33Here and below, independence of z refers to the large-z limit, and thus only entails independence to
order z°, with possible contributions of order z~! that vanish as z — co.
34Recall from Lemma 4.2 that the reduced determinant is invariant under row and column operations.
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8 Discussion

In this article we have argued that the polarized scattering equations provide a natural gen-
eralization of the twistor and ambitwistor supersymmetric formulae from four dimensions.
They lead to formulae for a full spectrum of supersymmetric gauge, gravity and brane
theories in six-dimensions. These formulae are furthermore shown to factorize properly as
a consequence of properties of the polarized scattering equations themselves, as described
in section 7.2.1. This led to a proof of the main formulae by BCFW recursion.

There remain issues that are not optimally resolved in our framework. Because the
solutions to the polarized scattering equations themselves depend on the polarization data,
it is no longer obvious that the formulae we obtain are linear in each polarization vector
as they need to be, although the proof is relatively straightforward. As shown in section 3,
there is an n + 2 dimensional vector space of potential solutions to the polarized scattering
equations whose dimensionality is then reduced by choice of polarization spinors. It should
be possible to develop this further to produce formulae that are manifestly linear in the
polarization data, or alternatively with free little-group indices as is more usually in higher-
dimensional spinor-helicity frameworks.

There remain many avenues for further development and investigation. Omne is the
treatment of massive amplitudes in four and perhaps five dimensions. Here there is ongoing
work both by the authors of this paper and [54], who further apply these to construct
formulae for loop amplitudes for brane and other theories in four dimensions. Further
avenues are as follows.

Grassmannians, polyhedra, and equivalence with other formulations. In four
dimensions, twistor-string formulae for amplitudes, and indeed general BCFW terms, can
be embedded as 2n — 4-dimensional cycles in the Grassmannian G(k,n) for amplitudes
with k& negative helicity particles, [55, 56].

In [16] it was similarly shown that their 6d formulae could be embedded into a La-
grangian Grassmannian, i.e., the Grassmannian LG(n,2n) of Lagrangian n-spaces in a
symplectic 2n-dimensional vector space. Ref. [21] further discussed how the polarized
scattering equation formulation of [17] and this paper can also be embedded in the same
Grassmannian, allowing one to see that the two formulations are essentially gauge equiv-
alent representations. In the formulation in this paper, an element of the Grassmannian
can be represented as an n x 2n matrix Clm with a being the little group index for k; and
[ being also a particle index.?® The symplectic form is given by Qiajp = €apdij and the
condition that C’lm defines an element of the Lagrangian Grassmannian is that

Cl*Cibyajp = 0. (8.1)

This skew form is natural in the sense that it arises from momentum conservation in the
form
KAkl pQiajp = 0. (8.2)

35For [16, 21] this I-index is replaced by ak where a is the global little group index, and k = 0, ..., (n—2)/2
indexes a basis in the space of polynomials on C of degree (n — 2)/2.
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The Grassmannian integral formula then takes the form
/ T / TT54(Cirian) (8.3)
T h
J

Here 7 is a theory dependent integrand, I' a cycle in the Grassmannian of dimension 4n—6,
and dp a measure on I'. Our data embeds into the Grassmannian by

cit = %Zﬂeg — d;vf, (8.4)
with T' parametrized by (o;,u;,v;) subject to the constraints (v;e;) = 1 and modulo the
Mobius transformations on the o;, and SL(2) on the u;. A different parametrization®S for I'
is given in [16], and in [21] it was argued that the two representations are gauge equivalent
in LG(n,2n).

In this paper in section 4.5, the argument for linearity of the reduced determinants in
the polarization data relies on a map between solutions to the polarized scattering equations
that have different polarization data. This map should therefore similarly arise from an
analogous gauge transformation in the Grassmannian LG(n,2n).

Polyhedra such as the amplituhedron [57] emerge when BCFW cycles in a Grass-
mannian are united into one geometric object whose combinatorics are determined by a
certain positive geometry. The original amplituhedron was adapted to momentum twistor
or Wilson-loop descriptions of N = 4 super Yang-Mills amplitudes [58-60], but there is, at
least as yet, no analogue of this in six dimensions. The version of the 4d amplituhedron
ideas that are most natural in the context of the Grassmannian descriptions here is that
described in [22], a 2n — 4-dimensional space. It follows from the above that the analogue
in 6d should therefore be a 4n — 6 dimensional space. In our context this space will then
be naturally embedded in R*" (perhaps projected onto some quotient) as the image of the
positive Lagrangian Grassmannian LG4 (n,2n) under the map

Yia = Ci%iqa - (8.5)
There is of course an anti-chiral version also. It remains to explore these frameworks.

Worldsheet models in 6d. Another gap in our description is to identify ambitwistor
string models that underlie the formulae. Ambitwistor-string models that admit vertex
operators that yield the polarized scattering equations and supersymmetry factors were
introduced in [17], together with worldsheet matter that provides the reduced determinants.
However, these were chiral, and combining both chiralities to produce the gauge and gravity
formulae has so far proved problematic: there are constraints needed to identify the two
otherwise independent chiral halves. However, as seen here such constraints don’t seem to
matter too much at the level of the formulae. The chiral models would seem to be a better
bet for the various (XN, 0) theories, but for these the worldsheet matter required to provide
the integrands has yet to be identified. The issues facing the 6d worldsheet models are
resolved on reduction and we plan to write about this elsewhere.

35Tn the notation of those references, the 4n — 6-cycles are parametrized by (o3, w?a) subject to a normal-
ization of the determinants of the W, in terms of the o;.
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Higher dimensions. Representations of ambitwistor space, in terms of twistor coor-
dinates with little-group indices exist in higher dimensions also. Furthermore, naive am-
bitwistor models in those coordinates lead to higher-dimensional analogues of the polarized
scattering equations. A discussion of such models was given in [61]. Again one can obtain
supersymmetric amplitude formulae without worrying too much about the detailed imple-
mentation of the models. In particular, there are many more constraints required to restrict
the representation to ambitwistor space as in the space of null geodesics, and again these
were not implemented in any systematic way. Indeed closely related models were proposed
over the years by Bandos and coworkers [30, 62-66]. Bandos takes the attitude that the
additional constraints should not be imposed, and instead that it should be possible to find
genuine M-theory physics in these extra degrees of freedom [62, 67, 68].

Gerbe amplitudes. In addition to the well understood gauge, gravity and brane formu-
lae, we also obtain more controversial formulae with (2,0), (3,1) and (4, 0) supersymmetry.
The linear super-multiplets are Gerbe-like analogues of YM and gravity theories in the
sense that Gerbes, self-dual closed 3-forms, appear in the multiplets. In particular in the
(2,0) case with the Parke-Taylor factor in the integrand, there is an important and much
studied theory with (2,0) supersymmetry that one might hope to say something about.
This theory is expected to reduce to super-Yang-Mills in five dimensions as indeed our
(2,0) formulae with a Parke-Taylor does for even numbers of particles. In six dimensions
however, this is thought to be a strongly coupled theory and so shouldn’t give rise to mean-
ingful amplitudes. It has furthermore been argued that there are no invariant three point
amplitudes for such models in 6d [20]. On the other hand, the four point formulae has s
and t singularities (5.37), so that soft limits should give a nontrivial limit involving the
3-point amplitude. Thus such soft limits are likely to be ambiguous and not make sense.
Similar issues arise for the other Gerbe-like theories with (3,1) and (4, 0) supersymmetry.
See section 5.3 for more discussion and [16] where for more detail in the context of the
little-group preserving representation.

The amplitude formulae we obtain are problematic for odd particle number. Being
ratios of Pfaffians of matrices whose size depends on the particle number n, one obtains
zero divided by zero for odd n and like the 3-particle case, might not have a sensible
meaning. For the (N, N)-theories, analogous formulae can also be obtained, but identities
such as (2.57) allow us to obtain a well-defined non-zero formula when n is odd. Such
relations also hold for the Gerbe theories reduced to 5d because they coincide with the
reductions of (IV, N) theories. However, we have not been able to find such relations in 6d.
Thus the prognosis for some physical interpretation of these formulae is not clear. Some
reasonable definition must be found for odd n that is compatible with factorization, see
the discussion after (7.92) for additional details. If so, a further test will be to investigate
massive modes on reduction to 5d as the R-symmetry of reduced (0,2) massive modes is
distinct from that of (1,1) massive modes. For massive modes the little group in 5d is still
SO(4) with spin group SL(2) x SL(2). Thus the dotted and undotted scattering equations
remain distinct and there is no longer an identification between the U@ for fixed a + b.
There is therefore no clear analogue of (6.10) so analogues of the odd-point formulae for
5d massive modes reduced from 6d massless modes remain problematic.
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There are speculations that such theories might play an important role in M-theory [34—
37] so despite all these issues, these formulae perhaps deserve further study as one of the
few handles we have on the possible interactions in such theories.
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A Direct proof of permutation invariance of H

As an alternative to the abstract proof in Lemma 4.1, we can show directly that the reduced
determinant det’H is permutation invariant by using row and column operations, as well
as the constraints

> ufHi;=0, > alH;=0. (A1)
Recall the definition (2.54) of the reduced determinant;

det (H

[i112]
[jljﬂ)

det’(H) := (—1 i1+i2+J1+72 ’
== ()t ]

(A.2)

]

where H [[;i;z] denotes the matrix H with rows ¢; and 45 and columns j; and jo removed,

. H?
det (H[?”?]> =% det(H). A3
Livgz] aHiljl 8Hi2j2 ( ) ( )
By definition, det’(H) is s invariant under exchanging two particle labels i, j # 412, j1,2,
since the determinant picks up a sign under each exchange of rows or columns. To prove
permutation invariance, we thus only need to show that the reduced determinants obtained
from removing different rows or columns are identical. Moreover, it is clearly sufficient to
consider the case of different choices for the row io, all other cases are straightforward
extensions. To be specific, consider det(H[[rlﬁ]1 n]) and det(H [%i}l n}), and let us suppress
the subscript (,,_1,) for the removed columns to keep the expressions readable. Then the
reduced determinant (A.2) is permutation invariant if

(urug) det (H[l 21) = —(ujus) det (H[l 2]> . (A.4)
First, multiply the row in H!'? associated to particle 3 by (ujus) (and similarly for H!13]),

ﬁg{t 2 _ (uruz)Hsi -ﬁ2[1 o (uiug)Hy; . (A.5)
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The determinants of the hatted matrices are then related to the original determinants via

det (ﬁ[l 21) = (ujus) det <H[l 2}) , det (ﬁ[l 3]> = (ujug) det <H[l 31) : (A.6)

To compare the two determinants det HI2 and det HI 31 proceed as follows: multiply

I associated to particle j # 3 by (uiu;), and add it to the row ﬁ?[i 2],

=112
each row Hj[l
ﬁ:& A= Z (uruj)Hji = —(uiug) Hyi = —ﬁg[f)] . (A.7)
J#1,2

In the second equality, we have used the constraint (A.1), and the last identity follows from
our definitions above. In particular, note that (A.7) holds for i = 2 as well, so there is
no subtlety associated to the diagonal entries. Since row and column operations leave the
determinant invariant, we can thus conclude that

det (ﬁ“ 21) = —det (ﬁ[l 31) : (A.8)

and permutation invariance follows by using (A.6).
Note that we can easily use the same idea to show that det(H) = 0. In this case, we
follow the same steps as above, but now for the unreduced matrix H. Again, we define

ﬁQi = <u*UQ>HQi, (Ag)

for any reference spinor u, in the little group. The determinants are again related by
det H = (u,us)det (H). As before, we can use the constraint equations, together with
convenient row operations on the matrix (adding (u.u;)Hj; to Hy;). However, since no
rows have been removed from the matrix, this time we find

ﬁzi = Z(u*u]>Hﬂ = O, (A.lO)
J
and so the determinant vanishes.

We can also extend this proof to the determinant with only one row and column

removed, H [[:L} = ﬁ det(H) = 0: proceed as above, but choose u, = u; to coincide with

the removed row. Then again

Y =S (uu)Hy: =0, (A.11)
i#1
since the term from the omitted row does not contribute to the constraint when u, = u,
and we conclude H, [[H = % det(H) = 0.

B Comparison to other BCFW shifts in higher dimensions

For generic polarization data of the particles 1 and n, the BCFW shift (7.6) differs from the
BCFW shift for Yang-Mills theory and gravity of [48], as well as the 6d spinorial shift of [19].
In these, for gluons and gravitons, the shift vector is chosen to align with the polarization
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of one of the shifted particles, ¢, = e1,, to ensure that the boundary terms vanish.?” In
the 6d spinor-helicity formalism, the polarization vector e; is given by (cf. section 4.1)

- . A_ =4, A _ = LAB
€148 = €1[4€1 5] 5 with €14 = €14K7, and €] = (K], = €1k . (B.1)

Due to the gauge freedom e, ~ e, + k,, the spinor €, is only defined up to terms
proportional to k§ ,. Up to this freedom, a canonical choice [19] is given by

~ ~ b b5\
€14 = €1aKxy (H*B "éla) , (B.2)
where .5 is a reference spinor satisfying .5 k15 # 0, and the inverse is defined as the
matrix inverse in the little group spaces of the particles 1 and n. This choice for €4
clearly satisfies €} = € 4 k7 ,, and thus reproduces F¥ = (%l,)ﬁ FH = ¢ €P.
The spinorial BCFW shift gip = €,[4€1 5 is thus only equivalent to the standard
BCFW shift iz = e1 45 if we can choose a little group spinor v], such that

€na = —€14+ Vi K- (B.3)

However, for generic momenta and polarization, no such v, exists: upon choosing the
reference spinor /i*z = mng in (B.2), we see that ¢ = e; only if the polarization spinors for
particles 1 and n satisfy ¢ = —e, 4 51 % Thus, the BCFW shift g,5 = €, (4€1 p] generically
differs from those discussed previously in the literature [19, 48]). Note however that since
q is constructed from the chiral polarization spinors of both shifted particles, it does lie in

the space of possible polarization vector for both particles.

Comparison to the 6d BCFW shift of Cheung & O’Connell. In the bosonic case,
the super-BCFW shift discussed in section 7 is strongly reminiscent of the shift used in the
work [19] of Cheung and O’Connell on the 6d spinor-helicity formalism to derive higher
point gluon amplitudes. Here we compare our shift to that of [19], and comment on the
similarities and differences in the resulting recursion relations.

Let us briefly review the work of [19].3% For bosonic Yang-Mills theory, it is advanta-
geous to keep the little-group symmetry manifest, see also section 2.4 for a discussion on

the trade-off between the little-group and R-symmetry for super Yang-Mills. Amplitudes

LG

are thus of the form ALS := AL

a,» Which relates to our representation (due to the
linearity in the polarization spinors proven in section 4.5) via

___ a1z01 an ~an ALG U -
A€€ =€ €6 €y Ey Aaldl...anan ) Aee = Aelq.

(B.4)

L En€n *

The BCFW-shift of Cheung and O’Connell is then designed to keep this little-group sym-
metry of the amplitude representations manifest. Note that the standard d-dimension
BCFW recursion relation does not interact well with the little-group preserving amplitude
representation, because the shift vector has to be chosen to align with the polarization of

one of the particles, ¢g* = €, see [48]. In the spinor-helicity formalism however, there is

37In addition, we also have to work in a gauge where g, = e1, does not transform under the shift.
38See also [49] for related work in higher dimensions.
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no natural candidate for ¢ = ej, essentially by construction. Cheung and O’Connell avoid
this complication by studying partially contracted amplitudes of the form

XA i, (B.5)
where X is a little group vector for particle 1. For these amplitudes, they can use the
standard BCFW construction and choose the deformation vector to be ¢t = X% el ad
where e, is a basis of polarization vectors for particle 1. Requiring that the shift leaves

the external momenta on-shell is equivalent to ¢> = det X = 0, and thus X% = z%3%
factorizes, where we can identify

=, i =é. (B.6)

This construction leaves the direction of the deformation free (parametrized by X), but still
aligns it with the polarization vector of particle 1, since for any X we have ¢* = e‘f%‘f el 0i =
e'. Since linearity in X% = e{€{ is guaranteed, the full little-group-preserving AL¢ can

still be extracted this way. Having defined this covariantized, but vectorial BCFW shift3?

. . . . -1
ki =ki+zq, kn=ky—2q, whereq" =¢el =¢fejel,, and ef},; = fi(fAfiiB (ﬂicmf[l ,
(B.7)
Cheung and O’Connell then implement it at the spinorial level as follows:
Ri, = K4+ 2 €] €14 ki, = ki, — 2 €156, (B.8a)
Foy=ko +2zy*eis KA. = Khy — 27a €] . (B.8Db)

Here, €14 and € are defined as in (B.2), such that ejup = €1],4€1p), and similarly for the
antichiral case. Moreover, y and g are little group spinors of particle n, and are determined
by the spinors k1, p, as well as ¢ and &, via

. a—1 - i —1
Yo = & (Knaki®) o Ja =€t (81450°) (B.9)
Using this shift, the BCFW recursion relation for the little-group preserving representation
becomes

brbr ~brbr
. E E . ~ ~ A
€01 g1 ALG eper A (krk) 4G (k)

a1ail...andn k% 1 *1 aldl---bLbL ij)Rn_anan

(B.10)

The shift of Cheung & O’Connell and the polarized scattering equations.
Naively, this recursion relation seems quite suitable to the framework based on the po-
larized scattering equations — contracting both sides into the remaining €’s and €’s leads
directly to the recursion relation of section 7. This however is not true for the BCFW
shift (B.8), which is inherently ambidextrous, and does not seem natural from the point of

39We use the notation kl,n here to facilitate the comparison to the chiral shift denoted by lAcl,n.
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view of the (chiral) polarized scattering equations. It is difficult to verify that the bound-

40 and it thus doesn’t seem feasible to apply the original recursion in

ary terms are absent
our framework. Note that the ambidextrous nature of the shift can be traced back to the
choice of the deformation vector ¢ = e;, and thus seems to be an intrinsic feature of any

BCFW-relation closely related to the general-d recursion of [48].

Comparison. To illustrate how the our chiral BCFW shift relates to the ambidextrous
Cheung and O’Connell shift, it is helpful to recast (B.8) in terms of some still-to-be-specified

variables x and y, related as before via
yo =3 (ko) G =t () (B.12)

We stress that at this point these are the only constraints on the variables {x, Z,y, 7}, and
that = and Z may not align with the polarization of particle 1. The shift (B.8) is then

given by?*!
RYy = k{4 +22%Y Kna) ’Vifa = Kf('z — 2T [?J ’ffb] ) (B.13a)
Koy =Ky + 2y (T K1a) Fing = Fing — 2 a [T K1] (B.13b)

We note that this is the 6d-version of the super BCFW-shift of [49], using a slightly modified
notation to keep it more in line with [19]. As above, we use the notation & ,, for the shifted
variables to make it easier to compare this ambidextrous shift to the chiral one of section 7.
The shift (B.13) can then be chosen to partially agree with the chiral BCFW shift (7.4)
and (7.8) by setting

" =€}, Y =€, (B.14)
which leads to the same shift for fundamental spinors, &1, = £1,,. To see what happens
to the antifundamental spinors, we first observe that the relations (B.12) become

A
-1 €1aRp,

.= . B.15
w = oy ks (B.15)

Ta = €nakls, o= €] (Kiakp)

In comparison to (7.8), this shift is missing the ‘pure gauge’ terms of €, and so the two shifts

do not agree for the antifundamental spinors. While the shift (B.14) may be interesting in

its own right, the proportionality of the antifundamental shift to é* was crucial in proving
that the boundary terms vanish.

More generally, we can show that the antifundamental shift &1, never agrees with #f,

for any choice of {z,Z,y,§}. To see this, contract both shifted spinors #{, and &1, into x{,

(and equivalently for n). This vanishes for the chiral shift, 4, {, = 0, but is generically

non-zero for the little-group preserving shift, #{,x{, # 0, and we conclude that &, # &7,.

40T illustrate this difficulty, note that the scattering equations for i # 1, n contain a single term of order z,

£ D <M +z <eny)M) €1a. (B.11)

0il Tin

“IThis is in fact the original notation for the BCFW shift given in [19], though with the interpretation
of z = ¢ and Z = € as in (B.6) and (B.8).
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A more general shift. Eq. (B.13) is not the most general spinor deformation giving
rise to the vecorial shift & = ki + zq, kn, = kn — z¢. In fact, it is easily checked that we
have the freedom to add terms proportional to z%(x k1) to k§, etc,

kS, =Ky, + zxa<(y/<am> + ay (z /<;1A>> ki = Kiy — zid< [Gry] + [T kT ) , (B.16a)

+
Ko, =Ko+ zy“((x K1a) + an (y nnA>) /%fm = /ifm — z;&d< [i ﬁf] + ay, [g]ﬁ;ﬁ] ) . (B.16b)

From the point of view of this more general shift, we can finally understand both the shift
of Cheung and O’Connell (B.8) and our chiral shift (7.4), (7.8) as special choices of the
free variables. As discussed above, Cheung and O’Connell pick

= €7, =67, ol =ap=0a1 =0, =0, (B.17)

whereas our chiral shift corresponds to

xt =¢€f, Yy =€ dflzdn:kl'kn, a1 = o, =0. (B.18)
Note that despite the six degrees of freedom in resolving the vectorial shift, most of the
choices for {z,Z,y,§} will not give rise to a ‘good’ BCFW shift for any oy, &1,. To our
knowledge, the only two options to be found in the literature are the two discussed above:
g = ey (the ambidextrous shift of [48] and [19]), or ¢ - e1 = ¢ - e, = 0 (the chiral shift of

this paper).*?

C Factorization of Pf U (39

In this appendix, we provide details on the following factorization properties of the Pfaffian
Pt U0,

Lemma C.1 On boundary divisors O gfMo.n >~ Mo ni+1 X Mo npr1 with odd n;, and npg,

np—1 <6LER>

2
PrU@0) = M LR ppgy(20) pp g (2.0). (C.1)
jeL TjL

Proof. Despite the availability of permutation symmetric formulae, it will actually be
easier to use the representation (4.37)

det U2
Pf (2,0) — Y
v det Xy

(C.2)

in terms of det Xy and det Uy, since these readily factorize. Restricting again to odd
n; and ny odd, i.e. even subamplitudes, we can choose a partition Y with %(nL -1)
particles in L, and 3 (np + 1) particles in R, or in other words [Y' N L| = % (n; — 1) and
Y NR|=3(ng+1).

42The latter is of course only possible in d > 6.
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Consider first the factorization of det Xy. Using the above partition, X decomposes
into a block-diagonal form, with

gt BB
—_—— ——
I [R] nyp—
Xy = (E 1*XPYL [Z] _XR\YH [L]) Lz : . (C?))
XR|YR Xy;j nR2+1

where, with ¢ € L and p € R (for readability we raise the matrix labels),

Yo _ L Ry, _ 1 oY _ . o yvYr _ iy
X¥e=— xMh= XV =gy X = T (C.4)
Opq ORp Lij

The leading order term in det Xy is thus given by

nr—1

det Xy = e Z(—1)1+p det XYLU{p} (1] det XYR [ﬁ , (C.5)
PER

where the subscript det XYLU{p} indicates the (n; + 1)/2 square matrix constructed from
Xy;

. and the additional row p of Xpjy,. As usual, we use square brackets to denote the

removal of the respective rows and columns. We may now expand this determinant along

the row p,
~ —1 1+i = . €T
det XYLU{p} ] = H i Z i det XY [[ZL]] = —@ det Xy, . (C.6)
€L ey, O ' 7Hp
Here, we used X ;;'YR = ﬁ = ngl, and the additional factor of x{Ll originates from factoring
D

out the product [] jer TiL- In the last equality, we noted that the factors conspire to let
us recover the full determinant det Xy,. Inserting this identity back into (C.5), we get the
following factorization property for det Xy;

nL

det Xy = —e~ 7~ [ js det Xy, det Xy, . (C.7)
JeL

One observation worth mentioning is that the factorization of Xy is solely responsible for
the power-counting in the degeneration parameter €. This is in line with what we expect,
since U9 (and also U%V) remaining of order one throughout the degeneration.

On the other hand, it is precisely this property that naively obscures the factorization
properties of det Uy: since all components remain of order one, we do not expect to find a
natural factorization corresponding to the two subspheres. However, the combination

UipUjq — UiqgUsjp = ) (uipu(ﬁ ~E, (C.8)

O'RpO'Rq

is actually of subleading order in €. Here, we have used that the denominators become
independent of i and j, as well as a Schouten identity in the u’s. This in turn ensures with
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Y chosen as above,

2t nat
—_—— ——
3 (B] np—
Uy:< Uy, 1] _UYL|YR[L]> 2= (C.9)
UYL|YH UX[i] nRT-H

the leading order term in det Uy can have at most one entry from the off-diagonal blocks,
i.e. the determinant factorizes similarly to det Xy,

det Uy = Z (_1)1+p det UYLU{p} (] det UYR E;]] . (C.10)
PEYR

Here the subscripts are defined in complete analogy to the X above. We can thus follow
the same strategy as before, and expand det Uy, y(p} 1) in the additional row p,

det UYLU{p} ] = Z (*1)1—"—gw det UYL E:]} . (C.11)
o
ie?L Bp
As before, this expression can actually be resummed to give the full det Uy, , which relies
on the Schouten identity

() () = () ) + O(9%) = /2122 1 O(&32). (c.12)

Using this, we recover the full determinant det Uy,

T R ) (tptun) S (-t g det Uy, 1) = i {esen) (Wptn) e Uy, ,

Ipr 7, Lir Opr
(C.13)
which in turn gives the following factorization property for det Uy;
det Uy =1 <€L€R> det UYL det UYR . (C.14)

Combining the factorization properties (C.7) and (C.14) for det Xy and det Uy with the
independence of the choice of Y}, and Yy ensured by (4.39) (and proven in [32]) then gives
the factorization property of Lemma C.1. O

D Recursion 3 to 4 points

We show here how the BCFW shift defined in (7.4) allows us to construct the four point
amplitude from the three point in N' = (1, 1) super Yang-Mills. Having shown in section 7.3
that the boundary terms vanish, the standard recursion procedure gives:

A4(1234) = A3(1, 2, P)aaSiAg(K, 3,4)% (D.1)
12

with kp = —kg = 12:1 + ks. We have shifted here particles 1 and 4. The contraction between
the little group indices of particles P and K comes from summing over the polarization
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states of the propagating particle, as prescribed by the BCFW procedure, to yield the
numerator of the propagator. Taking the result we obtained for the three point amplitude
we can write this expression as:

1
Ay(1234) = —({egmy){eama)wpg + cyc.)((esms) (eamy)wh + cyc.) x (antifundamental) ,

S12
(D.2)
where the contribution of antifundamental spinors is analogous to the two factors in paren-
thesis, only with tilded variables. All the variables m and w are defined with respect to
shifted spinors, i.e. m; = m4 but we omit the hats to make the expressions more readable.
Eq. (D.2) can be expanded into:

+ (im2w3m21w + ime?)u/lm + i11)2171311)21771 + iu}2m3mélw) <umK>
+ (1 2m3mdw + 1m2m3uwdn) (wpmi) + (1w2m3mdm + 1n2uw3mdn) (mpwik))
x (antifundamental) .

We have used a shorthand notation: i,, = (e;m;) and i, = (€;w;).

The computation of this amplitude is carried out in [19]. One needs to specify the
little group objects m and w for the internal particles P, K. Since kp = —kg, we can fix
KpA = ikpa and ﬁ;‘ = im?. Then mp, mp are defined by (5.4) and w,w are their inverses.
We can then write:

(kl VAN kg)i = mpampaK%AlilB;d
= —mpampd/iﬁ{Am%l .
Contracting with /%fé/%BjczDidwjdeédeCd, where i,j = 3 or 4:

~ a ~a BrA ~ éd ed
MpeMpeMMp = —(kl A\ kg)AHiélﬁBjcwidwjde € =

—S14 . (D3)
Exploiting this property one can impose
(mpwg) =0, (D.4)

and choose normalizations so that:

(D.5)

1 . . R . .
Ag(1234) = — ———— (1n2m3mdm — s14(1n2uw3mdw + 1n2u3wdnm + Low2m3uwin
s12 (mpmpg)

+ 1w2m3m4y) x (antifundamental) . (D.6)

One can then check that:

Ln2m3mam — 514(1n2w3maw + Lin2w3wdm + Lw2m3widm + Lw2m3mde) = (1234), (D.7)
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by projecting it on the base m;, w;. This gives:

(i23d)[i23d] = (1234)[1234]

Aq(1234) =
512514 512514

(D.8)

where the second equality follows from the invariance of the polarization spinors under the
shift.
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