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1 Summary & discussion

Symmetry plays a key role in studying Quantum Field theories (QFT). To study a QFT

admitting a symmetry, we consider irreducible representations (irreps) of the group and

declare that the quantum fields transform as irreps. A very natural and fundamental ques-

tion is to ask whether there is any consistency condition telling us existence or absence of

particular kind of irreps. These conditions can come about due to mathematical consis-

tency and/or due to physical requirements like unitarity. Some of the famous examples in

this genre are Coleman Mandula theorem [1], which roughly implies the impossibility of

mixing space-time (Poincare) symmetry with internal symmetry unless one has supersym-

metry; the unitarity bounds in (3 + 1)-D CFT by Mack [2], Weinberg-Witten theorem [3],

which shows that impossiblity of having massless particles with higher spin in a theory

with Lorentz covariant energy momentum tensor/conserved current.

In this work, we consider unitary modular invariant 2D conformal field theory. The

consistency condition that we are going to leverage is modular transformation properties
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of Torus partition function with/without possible insertion of some operators. A standard

result along this line is the existence of infinite number of Virasoro primaries for c > 1

CFTs [4, 5]. Recently, it has been established that every integer spin has to appear in

the bosonic CFT [6] by projecting the grand canonical partition function of 2D CFT onto

a particular spin and studying the high temperature behavior of this fixed spin partition

function. In a similar spirit, to study the different sectors of a 2D CFT with global symme-

tries (more generically with insertion of topological defect lines), we project the canonical

partition function (with/without the insertion of topological defect lines) onto relevant sec-

tors and study the high temperature behavior to extract the growth of operators within

each sector. Further use of modular crossing equations can be found in [5–20] and some

aspects has been made symmetry sensitive in [21–24].

One of the motivations for undertaking such investigation stems from a related question

in holography. In the context of AdS-CFT, it is widely believed that all the irreps of internal

gauge group appears in the gravity side a.k.a “completeness hypothesis”; on the CFT side,

the gauge symmetry becomes a global symmetry and hence it implies the existence of

all the irreps of the global symmetry modulo some fine prints [25–29]. To understand

it better, consider the case of U(1). If we know that an operator with minimal charge

exists, we can create black holes of arbitrary charge by collapsing such minimal charged

objects in arbitrary number. On the CFT side, this amounts to taking OPE and generating

operators of arbitrary charge. One of the main challenges is to show that the such minimal

charged object exists, i.e. U(1) acts faithfully. Here we will not be saying anything about

faithfulness. Rather given the faithfulness condition on the CFT side, we will pose the

following question of whether one can generate operators of arbitrary charge with arbitrarily

high dimension in the way mentioned above. On the gravity side this amounts to having

black holes with arbitrary charge. By the OPE argument, one can generate primaries of

arbitrary charge and one needs to consider heavy descendants to answer positively to the

above question. Hence, a more refined and nontrivial question is to ask whether we can

say anything about heavy primaries with arbitrary charge and if possible, whether we can

estimate the growth of each irreps. It turns out that in a 2D CFT, one can investigate this

leveraging the modular invariance.

The recent study of partition function of 2-D JT gravity [30] with bulk gauge

field [31, 32] motivates us as well. It is well appreciated that the genus zero contribu-

tion to the partition function can be obtained by looking at dual quantum mechanical

system, which is known to be the Schwarzian limit of a 2-D CFT [33, 34]. Now considering

a bulk gauge field amounts to having a CFT with a global symmetry and then taking the

Schwarzian limit. One curious feature present in the calculation of [31] is the square of

dimension of irrep in the expression for density of states corresponding to the genus zero

partition function of JT gravity with bulk gauge field. Here we take up a CFT calculation

to precisely reproduce this curious factor.

Given a continuous global symmetry, we can turn on fugacity corresponding to the

conserved current and consider the grand canonical partition function. This idea can be

generalized to discrete symmetries by thinking of inserting topological defect lines (TDL)

while doing the path integral over the relevant manifold to define the grand canonical
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partition function. In fact, one can allow non invertible TDLs (which does not correspond

any global symmetry in conventional sense, nonetheless meaningful object, see section 1

of [35]) and define grand canonical partition functions. In this work, the relevant manifold is

square torus, i.e.we consider 2D CFT on a spatial circle of length 2π, at inverse temperature

β. If the topological defect line is inserted along the spatial circle, it is exactly the grand

canonical partition function. If the topological line is inserted along the temporal circle,

it creates a defect in the spatial manifold, thereby defines a “defect” Hilbert space of

operators. The partition function constructed out of operators in the defect Hilbert space

is related to the grand canonical partition function by a S modular transformation. Roughly

speaking, a S modular transformation exchanges the spatial and temporal circle, thereby

changes the role of TDLs. Given this set up, we ask following questions:

• Can we estimate the growth of operators in the defect Hilbert space? The spectrum

of operators in the defect Hilbert space is not same as the original Hilbert space. On

the other hand, one might think that introducing a defect only modifies the theory

globally by modifying the boundary conditions of the field, thus one should not expect

any change in asymptotic growth of operators compared to the original Hilbert space.

We will confirm this intuition in part by doing a rigorous calculation in this work.

Even though, the spectrum changes, the averaged behavior remains same (apart from

a possible multiplicative factor, which we explain below in the results) even in the

presence of defects.

• Given a 2D CFT with a global symmetry (finite group), do all the irreps of the global

symmetry group appear in the spectra of local operators? The answer turns out to

be yes.

• If the symmetry group is non-anomalous, it is possible to group the operators ap-

pearing in the defect Hilbert space into irreps of the group and we ask whether all

the irreps of the global symmetry group appear in the defect spectra. Here also the

answer turns out to be yes.

The basic strategy that we follow to answer these questions is to consider a partition

function of the sector of the CFT which we want to study and then to look at its high

temperature behavior. The relevant sector specific partition function can be obtained by

using appropriate projection operators onto the partition function in appropriate channel.

The precise way of doing this is explained in details in the paper. Below we summarize our

results and discuss the implications.

Results.

1. We consider a CFT on a torus with the topological defect line (TDL) being inserted

along the temporal direction. We estimate the growth of operators in the defect

Hilbert space HL as ∆→∞:

growth of operators in HL ' N0ρ0(∆) (1.1)

– 3 –
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where

ρ0(∆) =
( c

48∆3

) 1
4

exp

[
2π

√
c∆

3

]
. (1.2)

A rigorous statement is made in theorem 1 and in the eq. (3.2). The TDL can either

correspond to a Global symmetry or correspond to a non-invertible defect such as

duality defect. Here N0 is “quantum dimension”, obtained from the action of TDL

on the ∆ = 0 state. For TDL corresponding to global symmetry the vacuum remains

invariant and N0 = 1, for TDL corresponding to duality defects, N0 may not be 1.

2. We consider a CFT with a finite global symmetry group (acting faithfully). We find

that every irreducible representation has to appear in the spectrum of operators in

the untwisted sector and they have a Cardy like growth as ∆ → ∞. In particular,

we have
growth of occurence of particular irrep α ' dα|G|−1ρ0(∆) ,

growth of states in an irrep α ' d2
α|G|−1ρ0(∆) .

(1.3)

where ρ0(∆) is defined in eq. (1.2). Here |G| is the order of the group and dα is the

dimension of the representation of irrep α. We remark that if we sum over all the

irreps, we get back the usual Cardy like growth for all the operators, i.e. ρ0(∆) . A

more rigourous statement is made in theorem 2 and in eq. (4.10). If the symmetry

is non-anomalous, the result is true for any particular twisted sector. The rigorous

statement can be found in theorem 3. To illustrate, in the example of Z2, α can be

even or odd, dα = 1 and |G| = 2.

F A unified version of the above two results is presented in theorem 4 and in

eq. (5.6).

F Schwarzian sector-JT gravity : 2-D CFT is known to have a schwarzian sec-

tor [34], which is relevant for the study of JT gravity. The partition function

corresponding to the disk topology [30] corresponds to the identity character in

some particular limit, as explained in [33, 34]. Having a global symmetry on

the CFT side induces a bulk gauge field on the gravity side. In the set up [31],

the bulk gauge theory is taken to be topological BF theory. The corresponding

partition function has been calculated in [31, 32], the density of states has been

shown to have a d2
α|G|−1 factor multiplied with the seed gravity answer without

the gauge field. Our result precisely reproduces this factor, since we can readily

take the Schwarzian limit of our answer following [33, 34].

F The factor d2
α as opposed to dα might be surprising because we expect the extra

dα-fold degeneracy due to the symmetry. Intuitively, this comes about due to

smearing.1 The growth formula is valid only after smearing over an order one

window, and it turns out that the order one window has dα number of α irreps.

This might hint at emergence of some approximate symmetry. This is exactly

similar to the scenario in [31] where they speculate about emergence of extra

1We thank Raghu Mahajan for discussion along this line.
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approximate symmetry. We discuss this after (4.6) as one of the remarks and

we explicitly look at 3-state Potts model (c = 4/5) to back up our claim.

F The rigorous bounds in theorem 1 and theorem 2 have order one error. With-

out any further input, that’s the best order of error that one can achieve. To

optimize over the order one error, we need to use Selberg-Beurling extremizers

as elucidated in [6].

3. All of the above estimates can be made in the limit c → ∞ and ∆ = c
(

1
12 + ε

)
for

ε > 1
12 following [5, 9]. We use ∆− c

12 instead of ∆ everywhere in the above formulas.

4. All of the above estimates can be made sensitive to Virasoro primaries for c > 1

following [5]. Instead of ρ0(∆) we will have

ρVir
0 (∆) =

(
c− 1

3
∆

) 1
4

exp

[
2π

√
(c− 1)∆

3

]
.

5. We find the analogous result for continuous group U(1) (acting faithfully). Under a

technical assumption, we show that every charged state has to appear in the spectrum

and they do have a Cardy like growth at large ∆ given by
√

c
3k

1
∆ exp

[
2π
√

c∆
3

]
. The

rigorous statement can be found in eq. (4.24). Again one can generalize this to

Virasoro primaries for c > 1 in one hand and on the other hand to the large central

charge regime.

Application and future avenues. We have already mentioned one application of our

result upon taking the Schwarzian limit and making contact with the results of JT gravity

with a bulk gauge field. Here we list out few more applications. For example, we can

consider the following table 1. A similar one appears in [36]. Same is explored in the

context of Z2 symmetry of Monster CFT in [35]. We consider a theory A with a non-

anomalous Z2. The untwisted sectors can be divided into two pieces: even and odd, named

as P and Q. This is obtained when the TDL corresponding to the Z2 symmetry is extended

along the spatial direction. The twisted sector is obtained by keeping the TDL along the

time direction, thereby creating a defect. Since, Z2 is non-anomalous, one can have even

and odd states in the twisted sector as well, we call them R and S respectively. Gauging

this Z2 symmetry lands us onto the theory D. Both the theory A and D can be fermionized

to theory F and F̃ . The effect of this amounts to permuting and relabelling the different

sectors P,Q,R, S. Using our result, we can estimate the growth of operators for each of the

sector P,Q,R, S. All of them have a Cardy like growth given by 1
2ρ0(∆) (corresponding to

dα = 1 and |G| = 2) for large ∆.

One can think of further applications of these ideas generalizing the results appearing

in [7, 10–13]. Moreover, one can also make all of the above results spin-sensitive follow-

ing [6]. It would also be interesting to explore other aspects of modular bootstrap for

example bounding the dimension of lowest nontrivial Virasoro primary, constructing the

extremal functionals [37–45] in presence of TDLs.

– 5 –



J
H
E
P
0
8
(
2
0
2
0
)
0
6
4

Table 1. The theory A and D are related by orbifolding by Z2. The theory A and F are related

by Bosonization-Fermionization and so are D and F̃ .

As a technique, we generalize the application of Tauberian formalism in context of

CFT beyond S modular invariant partition functions. In particular, the method can be

applied to vector valued modular functions as elucidated in section 5. One immediate

application would be generalizing the results of [10] for LL′H-squared for two different

operators using the Tauberian technique. Note that the positivity is guaranteed in one of

the channels while in other channel, it is not there. This scenario is reminiscent of the

partition function of the defect Hilbert space, where positivity is guaranteed but in the S

transformed channel, positivity is not guaranteed.

Organization. The paper is organized in following manner. The section 2 reviews the

idea of TDLs as generalization of global symmetry. A nice and brief exposition can also

be found in the introduction of [35]. In section 3, we study the defect Hilbert space. In

section 4 we study the growth of operators within an irrep. The section 4.1 expounds on

a simple example of Z2 symmetry, which we generalize and make rigorous in section 4.2.

The similar question relevant to U(1) symmetry is analyzed in section 4.3. The section 5

encapsulates the gist of applying the Tauberian technique to the vector valued modular

functions. In section A, we provide some numerics on known models to cross-check our

results. In section B, we review the derivation of spin selection rule for anomalous global

symmetry.

2 Lightning review of topological defect line

Given any continuous global symmetry, one can define Noether’s current jµ and the charge

Q is given by Q =
∫

dd−1x j0, an integral of jµ over a codimension one surface, here

the surface is given by x0 = constant. In general, one can define an operator, supported

on any codim-1 surface Σ and given by exp(ıθ
∫

Σ ?j). The statement that the charge

conservation, d?j = 0 boils down to the statement that the operator is invariant under

continuous small deformation Σ. We also note that here the charge Q is a scalar, we name

it 0 form symmetry. Now instead of codimension 1 surface, one can in general consider

topological surface operator of codim-(q+ 1) and define q-form global symmetries [46]. For

a 0 form symmetry, when the surface Σ is chosen to be the full spatial slice, this operator

is exactly the symmetry operator acting on the Hilbert space; while if one of the direction

of Σ is the time direction, then this operator creates a codim-1 defect in the space-any

local operator undergoes a twisting when crossing the defect. For this reason, topological

surface operators are sometimes called the topological defects.

– 6 –
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Figure 1. Lg denotes the g symmetry TDL; dashed line denotes the trivial line; O is arbitrary

local operator; and φ(0,0) is the operator correspond to the weight (0, 0) state in HLg . The existence

of φ(0,0) allows us to open the TDL to show that the Lg commutes with every local operator O. In

the main text, we drop the g subscript where it is redundant.

In 2-dim, ordinary 0-form symmetries correspond to topological defects lines (TDL).

A natural question to ask if whether converse is true. The answer is generically no for the

following reason. The fusion of the TDLs associated with global symmetries must respect

the group multiplication. Therefore, for any TDL corresponding to an group, there must

exist an inverse TDL; in fact, the inverse line can be obtained by simply reversing the orien-

tation of the line. However, there do exist the so-called non-invertible line operators which

don’t have an inverse, (e.g. the duality line N in the Ising CFT or Monster CFT [24, 35]).

As in the general dimension space-time, we can place the TDL L along the time

direction on Rt × S1, which amounts to imposing the twisted boundary condition on S1.

The resulting Hilbert space is called the defect Hilbert space HL whose states can be

labelled by the usual weights (h, h). This is possible because the energy momentum tensor

commutes with TDL. Via state-operator correspondence, a state in H corresponds to an

operator, sitting at the end of the L. A particular important question for our analysis is

whether there’s a state with conformal weight (0, 0) in the defect Hilbert space. As in [24], if

we require that the global symmetry acts faithfully on the Hilbert space of local operators,

that is, the only line operator that commutes with every local operators is the identity line,

then the defect Hilbert space HL contains no weight-(0, 0) state. Otherwise, the existence

of such state would allow line L to connect to the identity line via the corresponding

operator, thus it would commute with every local operator, violating our requirement (see

figure 1). As we will see, this makes sure the leading result in our analysis is universal in

the sense that it only depends on the central charge c and the symmetry group G. We also

remark here if the symmetry is anomalous (if one can not define action of the symmetry

in the defect Hilbert space consistently), then the ground state in the defect Hilbert space

has ∆ > 0. This follows from the spin selection rule [24]. We review it in the appendix B.

On the other hand, if we place the TDL along the spatial direction, then it acts as a

group element on the Hilbert space of local operators. Instead of Rt×S1, one can consider

S1 × S1 and generalize the above story. Since the modular transformation exchanges two

– 7 –
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Figure 2. The partition function of the defect Hilbert space (the left figure, which we will denote

ZL(β, g)) is related to the partition function with the insertion of the corresponding charge operator

(the right figure, which we will denote ZL(β, g)).

cycles of S1 × S1, the configuration of TDL along the spatial circle must be related to the

configuration of TDL along the temporal circle. This brings us to the key property of the

partition function of defect Hilbert space, that is, it is related to the partition function with

the insertion of the corresponding charge operator (see figure 2) along the spatial cycle. To

be concrete, we define

ZL(β, g) := TrHLg (qL0−c/24qL−c/24),

ZL(β, g) := TrH(ĝ qL0−c/24qL−c/24),
(2.1)

and modular transformation tells us that

ZL(β, g) = ZL
(

4π2

β
, g

)
. (2.2)

We end this section by making a crucial remark that the low temperature expansion

coefficient of ZL(β, g) is positive, hence falls under the purview of Tauberian formalism

whereas in the dual channel, positivity is not guaranteed. One needs to keep this in mind

while expecting whether a Cardy like statement is true or not. For example, whereas we can

hope to prove the asymptotic growth of low temperature expansion coefficient of ZL(β, g),

the same is not true for ZL(β, g) without any further assumption because the positivity is

not guaranteed in this channel.

3 Charting defect Hilbert space HL associated with TDL L

In the usual Cardy formula, the asymptotic growth of operators is controlled by the low

temperature limit of the partition function in the dual (S transformed) channel. As ex-

plained in the previous section 2, the dual channel corresponding to the partition function

of a defect Hilbert space (ZL(β, g)) is the partition function evaluated on the original

Hilbert space with an insertion of group element g, which we call ZL
(

4π2

β , g
)

. The lead-

ing behavior (low temperature) in the later channel is controlled by the vacuum operator.

Thus one can expect a Cardy like growth for operators in the original channel i.e in the

defect Hilbert space.

ZL(β → 0, g) = ZL
(

4π2

β
→ 0, g

)
' e

π2c
3β (3.1)

– 8 –
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and hence we expect the growth of the operators in the defect Hilbert space is given by

inverse Laplace of e
π2c
3β , which is ρ0(∆). In what follows, we will be making this idea

rigorous using Tauberian techniques.

3.1 Cardy formula for defect Hilbert space

Theorem 1 Given a TDL L, the asymptotic behavior (∆→∞) of the growth of states in

an order one window of width 2δ, centered at ∆ in the defect Hilbert space HL is given by

c−N0ρ0(∆) ≤ 1

2δ

∫ ∆+δ

∆−δ
d∆′ ρHL(∆′) ≤ c+N0ρ0(∆) (3.2)

where N0 = 1 if the TDL is associated with a global symmetry, i.e. invertible one, otherwise

it is taken to be a positive number as defined below and ρ0(∆) is defined in eq. (1.2).

Here c± order one positive numbers. These numbers can be determined using the extremal

functionals appearing in [6]. In particular, we have c± = 1± 1/2δ. The above statement is

true under the following technical assumptions:

• The action of L on the states are uniformly bounded, i.e. |〈∆|L|∆〉| ≤ N for all ∆ in

the physical spectra. For example, if we consider Zn then, |〈∆|L|∆〉| ≤ 1, since the

matrix element is always a phase. In fact, this is true for any TDL associated with

a finite group. For non invertible TDLs, i.e. the ones which are not associated with

global symmetry, we take this as an assumption, which is true for a wide class of non

invertible TDLs.

• The vacuum is invariant under any topological defect line associated with global sym-

metry. Thus we have

L|0〉 = |0〉, (3.3)

• The action of a non-invertible topological defect line L (such as duality defects, not

associated with any global symmetry) on the vacuum state is given by:

L|0〉 = N0|0〉, N0 > 0. (3.4)

For example, in Ising model, we have duality defect line N̂ and N̂ |0〉 =
√

2|0〉.

The basic structure of the proof is similar to the one appeared in [5, 6, 20], though the

deatils are different as we will see. This comment applies to theorems proven in subsequent

sections as well. We start by considering two functions φ±(∆) whose Fourier transformation

has finite support [−Λ,Λ] and they majorise and minorise the characteristic function for

the interval [∆− δ,∆ + δ]:

φ−(∆′) ≤ θ[∆−δ,∆+δ](∆
′) ≤ φ+(∆′) . (3.5)

From the above it follows that

eβ(∆−δ)e−β∆′φ−(∆′) ≤ θ[∆−δ,∆+δ](∆
′) ≤ eβ(∆+δ)e−β∆′φ+(∆′) . (3.6)

– 9 –
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Multiplying both sides by the density of states of the twisted Hilbert space ρHL and inte-

grating from 0 to ∞, we find

eβ(∆−δ)
∫ ∞

0
dF (∆′)e−β∆′φ−(∆′) ≤

∫ ∆+δ

∆−δ
dF (∆′) ≤ eβ(∆+δ)

∫ ∞
0
dF (∆′)e−β∆′φ+(∆′) , (3.7)

where dF (∆′) = ρHL(∆′)d∆′. We emphasize β, δ are free parameters. We consider the

Fourier transformation of φ±(∆) =
∫∞
−∞ dt φ̂±(t)−ı∆t, such that in Fourier domain the

above inequality becomes

eβ(∆−δ)
∫ ∞
−∞

dt φ̂−(t)ZL(β + ıt)e−(β+ıt)c/12

≤
∫ ∆+δ

∆−δ
dF (∆′) ≤

eβ(∆+δ)

∫ ∞
−∞

dt φ̂+(t)ZL(β + ıt)e−(β+ıt)c/12.

(3.8)

The modular property implies

ZL(β + ıt) = ZL
(

4π2

β + ıt

)
. (3.9)

Thus in the dual channel we have an expression in terms of the original Hilbert space. We

split this original Hilbert space H into light part and heavy part:

ZL
(

4π2

β + ıt

)
= ZLL

(
4π2

β + ıt

)
+ ZLH

(
4π2

β + ıt

)
. (3.10)

Notice that the contribution from the light sector ZLL is not necessary real if it contains

operators arbitrarily charged under global symmetry group G. For example, if we consider

the Z3 symmetry, then the TDL L can act on a state such the state picks up a phase of

e2πı/3. One can circumnavigate this by assuming charge conjugation invariance.(∫ ∞
−∞

dt φ̂±(t)ZL(β + ıt)e−(β+ıt)c/12

)
=

(∫ ∞
−∞

dt φ̂±(t)ZL
(

4π2

β + ıt

)
e−(β+ıt)c/12

)
∈ R

(3.11)

Then we can split it as∫ ∞
−∞

dt φ̂±(t)ZL
(

4π2

β + ıt

)
e−(β+ıt)c/12

=

∫ ∞
−∞

dt φ̂±(t)ZLL

(
4π2

β + ıt

)
e−(β+ıt)c/12 +

∫ ∞
−∞

dt φ̂±(t)ZLH

(
4π2

β + ıt

)
e−(β+ıt)c/12.

(3.12)

At first, we consider the light sector where ∆ ≤ c/12 choose a ρL0 (∆) such that∫ ∞
0

d∆ ρL0 (∆)e−β(∆−c/12) = ZLL

(
4π2

β

)
. (3.13)
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As a result, the contribution from the light sector can be written as

eβ(∆±δ)
∫ ∞
−∞

dt φ̂±(t)ZLL

(
4π2

β + ıt

)
e−(β+ıt)c/12 = eβ(∆±δ)

∫ ∞
0

d∆′ ρL0 (∆′)φ±(∆′)e−β∆′ .

(3.14)

Notice that, in general, the light sector contains all the states with ∆ ≤ c/12. ρL0 (∆)

contains more than just contribution from the vacuum state N0ρ0(∆) where ρ0(∆) is the

crossing kernel of the vacuum state. The extra light operators would give exponentially

suppressed corrections and are not universal (model dependent). Since there are finite

number of operators below c/12, so that sum of the contribution coming from each of the

extra light operators is still suppressed. In the following, we shall only consider the vacuum

contribution.

Next, we treat contribution from the heavy sector and show they are suppressed in

magnitude, hence can be dropped from both the lower and the upper bound.

eβ(∆±δ)
∣∣∣∣ ∫ ∞
−∞
dt φ̂±(t)ZLH

(
4π2

β + ıt

)
e−(β+ıt)c/12

∣∣∣∣ ≤ eβ(∆−c/12±δ)
∫ ∞
−∞

dt

∣∣∣∣ZLH( 4π2

β + ıt

)∣∣∣∣|φ̂±(t)|

(3.15)

Now we do the following estimation∣∣∣∣ZLH( 4π2

β + ıt

)∣∣∣∣ =

∣∣∣∣ ∑
∆>c/12

N∆ exp

[
− 4π2

β + ıt

(
∆− c

12

)]∣∣∣∣
≤ N

∑
∆>c/12

exp

[
− 4π2β

β2 + t2

(
∆− c

12

)]

= NZH

[
4π2β

β2 + t2

]
≤ NZH

[
4π2β

β2 + Λ2
±

]
for t2 ≤ Λ2

±

(3.16)

where N∆ denote the action of L on a state with conformal dimension ∆ and N denote the

upper bound of all N∆’s. We use this bound in (3.15) and the fact that φ̂±(t) has finite

support [−Λ±,Λ±] to have the following inequality

eβ(∆−δ)
[ ∫ ∞

0
d∆′ ρL0 (∆′)e−β∆′φ−(∆′)−Ne−βc/12ZH

(
4π2β

β2 + Λ2
−

)∫ Λ−

−Λ−

dt |φ̂−(t)|
]

≤
∫ ∆+δ

∆−δ
dF (∆′) ≤

eβ(∆+δ)

[ ∫ ∞
0

d∆′ ρL0 (∆′)e−β∆′φ+(∆′) +Ne−βc/12ZH

(
4π2β

β2 + Λ2
+

)∫ Λ+

−Λ+

dt |φ̂+(t)|
]
.

(3.17)

The bounds get greatly simplified once we consider the large ∆ region. Indeed, as

in [5] using HKS bound, one can show

eβ∆ZH

(
4π2β

β2 + Λ2
±

)
∼ eβ∆e

π2c
3β

(
Λ±
2π

)2

∼ ρL0 (∆)1+ 1
2

((
Λ2
±

2π

)
−1
)
, (3.18)

where we choose β = π
√

c
3∆ � 1. Therefore the contribution from ZH is sub-leading

once we choose Λ± < 2π. Then the upper bound at large ∆ (the lower bound is similar

– 11 –
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φ+ → φ−) simplifies to∫ ∆+δ

∆−δ
d∆′ ρHL(∆′) ≤ eβ∆

∫ ∞
0

d∆′N0ρ0(∆′)φ+(∆′)e−β∆′ . (3.19)

Upon doing integrals by the saddle point approximation, we have in the ∆ →∞ limit

N0c−ρ0(∆) ≤ 1

2δ

∫ ∆+δ

∆−δ
dF (∆′) ≤ N0c+ρ0(∆) , where c± =

π

δ
φ̂±(0) . (3.20)

This concludes the proof of the theorem. For c > 1 CFTs, the analysis can be made

sensitive to primaries only. We end this subsection with two remarks.

• As in [6, 18], we can derive a spectral gap for the defect Hilbert HL. The upper

bound on the gap is found to be 1. This is the optimal gap as one can consider the

Monster CFT with insertion of Identity line; now the defect Hilbert space is same

as the original Hilbert space, as a result the gap is exactly 1. For further discussion

related to optimality, we refer the readers to [6].

• Following [5], we can also derive a global approximation of the number of states

FL(∆) in the defect Hilbert space HL valid for large ∆:

FL(∆) ≡
∫ ∆

0
d∆′ρL(∆′) =

N0

2π

(
3

c∆

)1/4

e2π
√

c
3

∆
[
1 +O(∆−1/2)

]
, ∆→∞. (3.21)

4 Charting Hilbert space HL associated with invertible TDL L

In this section we consider invertible TDLs associated with a global symmetry G. In

particular, we will be focussing on the case where the symmetry group is finite. The primary

goal is to focus on the untwisted sector (we are imposing periodic boundary condition along

the spatial circle) estimate the growth of operators which transforms under a particular

irreducible representation of the group G. Later on we will generalize our result to a given

twisted sector, where another TDL is inserted along the temporal direction if the symmetry

is non-anomalous.

4.1 Warm up: G = Z2

The symmetry group Z2 has two elements: identity e and the element p, which squares to

Identity. We set up the following notation for any group element g ∈ G:

ZL(β, g) = Tr
(
ge−β(L0+L̄0− c

12)
)
. (4.1)

Thus for g = e we have the usual partition function while for g = p we have

ZL(β, p) = Zeven(β)− Zodd(β) , (4.2)

where Zeven (Zodd) is the partition function for all the even (odd) operators. Clearly,

Zeven(β) + Zodd(β) = ZL(β, e). In the usual Cardy formula, we want to have an estimate

– 12 –



J
H
E
P
0
8
(
2
0
2
0
)
0
6
4

of partition function at high temperature. Similarly, we want to have an expression for

Zeven(β) and Zodd(β) in the β → 0 limit.

We have

Zeven(β) =
1

2

(
ZL(β, e) + ZL(β, p)

)
=

dim(even)

|G|
∑
g

χ∗even(g)ZL(β, g) ,

Zodd(β) =
1

2

(
ZL(β, e)− ZL(β, p)

)
=

dim(odd)

|G|
∑
g

χ∗odd(g)ZL(β, g) .

(4.3)

We remark that 1
|G|
∑

g χ
∗
α(g)ZL(β, g) calculates the number (weighted by e−β(∆−c/12),

where ∆ is the conformal weight) of times the irrep α is appearing, and the number of

states is obtained by multiplying the dimension of irrep to the quantity. We briefly review

the representation theory of finite group in section C. For any Abelian group, the dimension

of irrep is 1 always, so it is simpler in that scenario. The reason we wrote it in terms of

characters χ is that they immediately generalize to any finite group. For Z2 the trivial

representation is the one where χeven(g) = 1 for all g ∈ G = Z2. The nontrivial irrep is the

one where we have χodd(e) = 1 and χodd(p) = −1. For G = Z2, we have |G| = 2, the order

of the finite group.

Before delving into the rigorous Tauberian formalism, let us gain some intuition by

doing usual Cardy like analysis. For brevity, let us write Z+ ≡ Zeven, Z− ≡ Zodd and

similarly χeven ≡ χ+, χodd ≡ χ−; dim(even) ≡ d+, dim(odd) ≡ d−. Now in the dual

channel, we have

Z±(β → 0) =
d±
|G|

[
χ∗±(e)ZL(β′ →∞, e) + χ∗±(p)ZL(β′ →∞, p)

]
, β′ =

4π2

β

=
1

2

[
ZL(β′ →∞, e)± ZL(β′ →∞, p)

]
, β′ =

4π2

β
.

(4.4)

Here ZL(β′, e) is the usual partition function evaluated at the dual temperature β′. The

quantity ZL(β′, p) is obtained by doing modular transformation on ZL(β, p). Now ZL(β, p)

is not modular invariant, because it has an insertion of TDL along spatial direction. Under

S modular transformation, cycles of the torus get exchanged, thus we have a torus configu-

ration where the TDL is along the time direction. We can interpret this as having a defect

in the spatial circle. Thus ZL(β′, p) is the partition function for the defect Hilbert space.

If the ground state in the defect Hilbert space (corresponding to g 6= e) has ∆ > 0,

we have

Z±(β → 0) =
d±
|G|

χ∗±(e)ZL(β′ →∞, e) =
d2
±
|G|

exp

[
π2c

3β

]
=

1

2
exp

[
π2c

3β

]
. (4.5)

Let us pause for a moment and discuss when we can ensure that ∆ > 0 in the defect

Hilbert space. According to [24], if the Z2 is anomalous, then the spin is constrained to be

of the form 1
4 +Z/2, thus excludes the possibility of having ∆ = 0 state. Similar argument

is true for anomalous Zn for any n. Since any finite group has a subgroup Zm for some

m ∈ Z+, if the subgroup is anomalous, the argument applies and we can not have ∆ = 0
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state in the defect Hilbert space corresponding to that subgroup. If Z2 is non-anomalous,

then we can not apply this argument. Nonetheless, we can gauge the Z2 group in such

scenario to obtain the orbifold theory. We note that ∆ = 0 states is an even state, so it will

be in the even sector of the defect Hilbert space if it is there in defect Hilbert space to begin

with. The orbifolded theory has even operators from the usual Hilbert space (untwisted

sector) and the even operators from the defect Hilbert space (twisted sector). Now if we

assume the uniqueness of the ∆ = 0 state in the orbifolded theory, the defect Hilbert space

can not have any ∆ = 0 state.The another way to phrase the statement is to demand that

the action of symmetry group is faithful, thus the only TDL which commutes with all the

operators is the Identity line as explained in the section 2. In what follows, we will assume

this as a generic condition that in the defect Hilbert space ∆ > 0. We mention that the

assumption is true for the Ising model.

From (4.5), we immediately derive the growth of operators in even and odd sector:

ρ±(∆) '
∆→∞

1

2

( c

48∆3

) 1
4

exp

[
2π

√
c∆

3

]
, (4.6)

where ρ± stands for density of states for even and odd operators respectively.

We make some remarks below:

F Smearing turns dα into d2
α. Presence of symmetry predicts an extra-fold degener-

acy of dα where dα is the dimension of α irrep. Thus it is somewhat surprising to find

d2
α in the expression for density of states. But as we will show in the next subsection,

the expression for the density of states is true only after smearing over an order one

window. This smearing2 allows for an effective extra-fold degeneracy of d2
α. This be-

comes particularly clear if we examine the 3-state Potts model (c = 4/5), which has

S3 symmetry (See [47] for a quick and nice exposition of this theory with an emphasis

on TDLs). S3 is a generated by two elements: one element generates the Z3 symme-

try, while the other element acts as Z3 charge conjugation. There are two doublet

of primaries in this CFT sitting in the nontrivial 2 dimensional S3 representation.

Each of the doublet contains a primary of Z3 charge ω and a primary of Z3 charge

ω∗ = ω2. One doublet has dimension 2/15 while the other one has dimension 4/3.

All the descendants of these primaries sit in the same representation. If we consider a

window of width 2δ ' 1, it contains descendants of both the doublets. Thus it gives a

factor of 22 = 4. Should we able to resolve the actual density of states, we would have

found degeneracy of 2 as predicted by the actual symmetry. Furthermore, note that

for S3, we have |G| = 6, thus we have a growth of 4/6ρ0 for the doublet irrep. From

the perspective of Z3, we are counting all the operators with charge ω and ω2, thus

we should have a growth of (1 + 1)/3ρ0, lo and behold 4/6 = 2/3. Roughly speaking,

the irrep α has to appear dα times in a window of width 2δ → 1+, this might hint at

some approximate symmetry which emerges only because we smear. The scenario is

very much similar to the one present in the calculation of disk partition function of

JT gravity and bulk gauge field theory [31].

2We thank Raghu Mahajan for discussion along this line.
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F It might seem very tempting to discuss the growth of ρ+ − ρ−. Naively, asymptotic

growth of ρ+− ρ− is controlled by inverse Laplace transformation of ZL(β → 0, p) =

ZL(β′ →∞, p) [24]. Nonetheless this argument does not pass the rigorous treatment

of Tauberian since the positivity of ρ+ − ρ− is not guaranteed, in fact it can in

principle widely oscillate. Nonetheless, it is also possible to prove the following as a

corollary of the theorem proven in the next section.∣∣∣∣ ∫ ∆+δ

∆−δ
d∆′

[
ρ+(∆′)− ρ−(∆′)

] ∣∣∣∣ ≤ ( c

48∆3

) 1
4

exp

[
2π

√
c∆

3

]
(4.7)

where we have used the extremal functions appearing in [6] to fix the order one

number.

F For c > 1, the analysis can be made sensitive to Virasoro primaries only. In the

following section, we will be generalizing the idea to arbitrary finite group G using

the notion of character as well as we will make our analysis rigorous using Tauberian

formalism [5, 18, 20].

4.2 Arbitrary finite group G ala Tauberian

4.2.1 Untwisted sector

The partition function for the operators transforming under particular irreducible repre-

sentation α is given by

ZLα (β) =
dα
|G|

∑
g∈G

ZL(β, g)χ∗α(g) ≡
∫ ∞

0
d∆′ ρα(∆′) (4.8)

where dα is the dimension of the irrep α. Under S modular transformation we have

ZLα (β)→
S
ZLα(β′) =

dα
|G|

∑
g∈G

ZL(β′, g)χ∗α(g) (4.9)

where β′ = 4π2

β . Our objective is to establish the following theorem:

Theorem 2 We consider untwisted sector of a CFT admitting a global symmetry under

a finite group G. The states transforming under the irreducible representation α, has an

asymptotic growth, which is given by:

c−d
2
α

|G|
ρ0(∆) ≤ 1

2δ

∫ ∆+δ

∆−δ
d∆′ ρα(∆′) ≤ c+d

2
α

|G|
ρ0(∆) (4.10)

Here ρ0(∆) is defined in (1.2) and c± are order one positive numbers. These numbers

can be determined using the extremal functionals appearing in [6]. In particular, we have

c± = 1 ± 1/2δ. The above statement is true under the assumption that HL(g) does not

contain ∆ = 0 state for g not equal to the identity (e) element. This ensures that the sum

defining ZLα(β′) in eq. (4.9) is dominated by the ∆ = 0 state coming from the original

Hilbert space, i.e. from ZL(β′, e).
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The proof of the theorem closely resembles the one in the previous section. The leading

answer comes from inverse Laplace transformation of dα
|G|ZL(β′, e)χ∗α(e) = d2

α
|G|Z(β′). The

only non-trivial part is to show the suppression of the heavy part of ZLα(4π2/(β + ıt)).

Now we have two ingredients, the character and the heavy part of the defect partition

function. Like before, the absolute value of the heavy part is dominated by |t| = Λ. Then

we can use the following chain of inequality

ZLH

(
4π2β

β2 + Λ2
, g

)
≤ ZL

(
4π2β

β2 + Λ2
, g

)
= ZL

(
β2 + Λ2

β
, g

)
≤ NZ

(
β2 + Λ2

β

)
'
β→0

Ne
Λ2

β .

On the other hand, the character can be bound using

|χ∗α(g)|2 ≤

(∑
g

|χ∗α(g)|2
)

= |G| ⇒ 1

G
|χ∗α(g)| ≤ 1

|G|1/2
. (4.11)

Using the above two, we estimate the heavy part integrand for |t| ≤ Λ∣∣∣∣ dα|G|∑
g∈G

ZLH(β′, g)χ∗α(g)

∣∣∣∣ ≤ dα

|G|1/2
∑
g

ZLH

(
4π2β

β2 + Λ2
, g

)
≤
β→0

N |G|1/2dα exp

[
Λ2

β

]
(4.12)

Thus we have ∣∣∣heavy part
∣∣∣ ≤ N |G|1/2dα exp

[
Λ2

β

] ∫ Λ

−Λ
dt |φ̂±(t)| (4.13)

Again we use the bandlimited functions φ± and choose the support of φ̂± to be [−Λ,Λ]

with Λ = 2π. One can choose Λ < 2π. In fact by careful treatment, it is possible to

choose Λ = 2π and the extremal functions appearing in [6] to deduce the value of order

one numbers c± appearing in the theorem.

4.2.2 Twisted sector

One can consider the twisted sector by introducing the TDL corresponding to the global

symmetry G along temporal direction. This is what we called defect Hilbert space. Now if

the symmetry is non-anomalous G, we can insert another TDL along the spatial direction

and unambiguously resolve the crossing of two TDLs. Within a twisted sector (twisted

by a given element g ∈ G) one can estimate the growth of operators transforming under

particular irrep of G.

Here we use slightly different notations because now we have to deal insertion of two

TDLs. By ZL(β, g0, g) we mean the partition function evaluated with TDL corresponding

to g0 inserted along temporal direction and TDL corresponding to g inserted along spatial

direction. We also put in g0 as argument of density of states to remind ourselves that we are

dealing with the twisted sector. Thus the partition function Z
(α)
L (β, g0) for the operators

in the α irrep in the twisted sector is given by

Z
(α)
L (β, g0) ≡ dα

|G|
∑
g∈G

ZL(β, g0, g)χ∗α(g) ≡
∫ ∞

0
d∆′ ρα(g0,∆

′) (4.14)
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where dα is the dimension of the irrep α. Under S modular transformation3 we have

Z
(α)
L (β, g0)→

S

dα
|G|

∑
g∈G

ZL(β′, g, g−1
0 )χ∗α(g) , where β′ =

4π2

β
. (4.15)

The final result is again given by eq. (4.10). In particular we have

Theorem 3 We consider twisted sector (twisted by the g0 ∈ G) of a CFT admitting a

symmetry (non-anomalous) under a group G. The (4.10) holds true for the growth of

operators in this sector. The assumptions are same as the one in theorem 2.

4.3 TDL associated with continuous symmetry U(1)

The idea presented above for the finite group can be generalized to continuous group as

well. The tricky part is to determine the behavior of ZLg(β → 0, α) = ZLg(β
′ → ∞, α).

Earlier knowing that for g 6= e, the defect Hilbert space has states with ∆ > 0 only sufficed

because we have a sum over group elements. But here we have an integral over the group

manifold and as g → e, the ground state of the defect Hilbert space goes to 0. Thus we

need to know the behavior of the ground state of the defect Hilbert space as g → e, to say

something concrete.

In what follows, we can consider the compact U(1) group, which is generated by

J ≡ J0− J̄0, coming from the Kac-Moody algebra. For a nice discussion related to compact

vs non compact we refer the readers to [48]. The partition function is given by

ZLg(β, ν, ν̄) =
∑
n,J

e−β(∆n− c
12)e2πıνJ (4.16)

where g = e2πıν ∈ G = U(1) and ν ∈ (−1/2, 1/2]. Usually we think of this as partition

function for Grand Canonical ensemble. Alternatively, we can think of this as a partition

function evaluated on Torus with insertion of TDLs corresponding to U(1).

We wish to estimate asymptotic growth of states with a definite J . We write down a

partition function for a fixed J ≡ Q:

Z
Lg
Q (β) =

∫ 1/2

−1/2
dν e−2πıνQZLg(τ) =

∑
n

dn,Qe
−β(∆n− c

12) (4.17)

We pause here to comment about the integral range of ν, i.e. ν ∈ (−1/2, 1/2]. This implies

that we are considering “single” cover of U(1) and all the charges are integer. We further

assume that this action is faithful. Thus we exclude scenarios like where all the charges

are even. Instead of “single” cover, we can also consider N ∈ Z+ cover , so that possible

charges are of the form q
N with N − 1 > |q| ∈ N; in that scenario the ν integral would have

been from −N/2 to N/2 with a multiplicative factor of 1
N for correct normalization. In this

way of thinking, the scenario, where all the charges are even can be treated as effectively

3When g and g0 are both non-identity elements, under S modular transformation, the relative orientation

of the TDLs corresponding to them changes. Hence in the dual channel we have g−1
0 inserted along the

spatial direction.
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making N = 1
2 . In what follows, we will be considering N = 1 case. Without loss of

generality, we also assume the spectra is invariant under Q → −Q as they correspond to

taking ν → −ν. As an example, readers might keep in mind compact boson with level

k = 1 and radius R = 2, where the charge under J0 is e
R + mR

2 and the charge under J̄0 is
e
R −

mR
2 with e,m ∈ Z.

Modular transformation of ZLg(β) gives us the partition function of the defect Hilbert

space and we have

ZLgQ

(
4π2

β

)
=

∫ 1/2

−1/2
dν e−2πıνQZLg

(
4π2

β

)
=
∑
n,q,q̄

dn,q,q̄

∫ 1/2

−1/2
dν e−2πıνQe

− 4π2

β (∆n− c
12

+kν2−ν(q+q̄)) ,

(4.18)

where k is a parameter coming from the Kac-Moody algebra, q,q̄ are the charge under J0

and J̄0. We want to evaluate this integral in the β → 0 limit.

ZLgQ

(
4π2

β

)
'
√

β

4πk

∑
∆̂n

|q+q̄|≤′k

d
∆̂n,q,q̄

e
− 4π2

β (∆̂n− c
12)−βQ

2

4k
−ıπQ(q+q̄)

k

(4.19)

where ∆̂n =
(

∆n − (q+q̄)2

4k

)
. The prime over ≤ indicates whenever q+ q̄ becomes ±k, there

is a factor of 1
2 associated with the ν integral. The crucial point is to observe that the

states in the defect Hilbert space has dimension ∆̂ + (ν − q+q̄
2k )2. Thus in the β → 0 limit,

the ν integral can contribute only if (ν − q+q̄
2k ) = 0 for some ν ∈ (−1/2, 1/2]. Thus the

sum over q, q̄ is restricted. Thus the leading piece is given by ∆̂ = 0 states. Of course

∆ = q = q̄ = 0 would contribute. We observe that the unitarity bound tells us that

∆ ≥ q2 + q̄2

2k
≥ (q + q̄)2

4k
, (4.20)

where the saturation of the second inequality can happen only if q = q̄. Thus the states

that would contribute to the leading order is given by ∆̂=0, q = q̄, |q| ≤′ k4 . Hence we have

Z
Lg
Q,Q̄

(β → 0) ' N0

√
β

4πk
e
π2c
3β (4.21)

where N0 =
∑

q=q̄,|q|≤′k/2w(q)e−
2πıqQ
k and w(q) = 1 if |q| < k/2 and w(q) = 1

2 if |q| = k
2 .

Since we have assumed q → −q symmetry, N0 is a real number. N0 = 1 if only such

state is the vacuum. In what follows, we will assume that this is the case4 and N0 = 1.

Strictly speaking, in the Tauberian analysis, we would require the above argument to hold

for complex β + ıt.

The next step is to split up the Hilbert space into the light and the heavy sector. Now

we divide the Hilbert space using the quantity ∆̂ ≡ ∆− q2+q̄2

4k . The light sector is defined

4We note that if the action of U(1) is not faithful, for example, if all the charges are even, then for odd

charges, the asymptotic expression should give 0, as a result N0 should have been equal to 0, in those cases

the phases in the sum defining N0 play a key role.
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as ∆̂ + (ν − q
2k )2 ≤ c/12 while the heavy sector is the one with ∆̂ + (ν − q

2k )2 > c/12.

Thereafter, we restrict our attention to the heavy sector and show it is suppressed. Recall

the quantity related to the heavy sector that appears in the Tauberian analysis is following:

I ≡ eβ(∆±δ−c/12)

∣∣∣∣ ∫ Λ

−Λ
dt e−ıtc/12φ̂(t)

∑
n,q,q̄

dn,q,q̄

∫ 1/2

−1/2
dν e−2πıνQe

− 4π2

β+ıt(∆n− c
12

+kν2+ν(q+q̄))
∣∣∣∣ .

Now we pull in the absolute value inside the integral and notice the exponential is

maximized for |t| = Λ. Thus we have

I ≤ eβ(∆±δ−c/12)

∫ 1/2

−1/2
dν

∑
n,q,q̄
heavy

dn,q,q̄ e
− 4π2β

β2+Λ2 (∆n− c
12

+kν2+ν(q+q̄))
∫ Λ

−Λ
dt |φ̂(t)|

≤ eβ(∆±δ−c/12)

∫ 1/2

−1/2
dν ZLg

(
4π2β

β2 + Λ2

)∫ Λ

−Λ
dt |φ̂(t)|

= eβ(∆±δ−c/12)

∫ 1/2

−1/2
dν ZLg

(
β2 + Λ2

β
, ν

)∫ Λ

−Λ
dt |φ̂(t)|

≤ eβ(∆±δ−c/12)

∫ 1/2

−1/2
dν ZLg

(
β2 + Λ2

β
, ν = 0

)∫ Λ

−Λ
dt |φ̂(t)|

'
β→0

eβ(∆±δ−c/12)e
π2c
3β

Λ2

4π2

∫ Λ

−Λ
dt |φ̂(t)| '

β=π
√

c
3∆

exp

[
Λ2

4π2
2π

√
c∆

3

]

(4.22)

We will see that the suppression requires Λ < 2π. The light sector produces the leading

Cardy like behavior for density of states ρQ,Q̄(∆′) of operators with fixed order one charge

Q, Q̄ and large conformal dimension ∆. This can be obtained by doing the following integral

and realizing that the integral is dominated by t = 0 in the β → 0 limit:

eβ(∆±δ−c/12)

∫ Λ

−Λ
e−ıtc/12

√
β + ıt

4πk
exp

[
π2c

3(β + ıt)

]
φ̂±(t)

= eβ(∆±δ−c/12)φ̂±(0) exp

[
π2c

3β

]√
β

4πk

(
3

πc

)1/2

β3/2

= 2πφ̂(0)

√
1

k

(
1

4∆

√
c

3
exp

[
2π

√
c∆

3

]) (4.23)

where the factor ( 3
πc)

1/2β3/2 comes from the integrating over the fluctuation around the

saddle at t = 0. Thus we have following estimate:

c−

√
c

48k∆2
exp

[
2π

√
c∆

3

]
≤ 1

2δ

∫ ∆+δ

∆−δ
d∆′ ρQ(∆′) ≤ c+

√
c

48k∆2
exp

[
2π

√
c∆

3

]
. (4.24)

Here c± = 2π
2δ φ̂±(0) is order one positive number.

We conclude this section with two final remarks that one can generalize the analysis

for Virasoro primaries for CFT with c > 1 and one can generalize this to large central

charge.
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5 Tauberian for Vector-valued modular function

The results for the finite group can nicely be encapsulated in terms of something known as

vector valued modular function. The vector-valued modular function Z obeys the following

transformation law under S modular transformation:

Z

(
4π2

β + ıt

)
= F · Z(β + ıt) (5.1)

where Z is a column vector consisting of bunch of functions and F is a constant (β inde-

pendent) matrix. The condition S2 = I boils down to F2 = I.

• In the example of CFT with Z2 symmetry we can consider

Z = (Z+, Z−, Zp)
T ,

where Z± are the partition functions for even and odd operator and Zp is the defect

Hilbert space with insertion of non-identity Z2 TDL. The matrix F, in this case, is

given by

F =
1

2

1 1 1

1 1 −1

2 −2 0

 (5.2)

and F2 is indeed identity.

• For a generic compact group G, the vector Z will have 2k − 1 entry , where k is the

number of conjugacy classes of the group G. The k entries correspond to k different

irreps (recall the number of conjugacy class is equal to number of irreps) and k − 1

entries correspond to the partition function for the defect Hilbert space with insertion

of non-identity element. It suffices to consider one representative element from each

conjugacy class as the partition function with insertion of TDL along spatial direction

is sensitive to conjugacy class only. For Zn, we have n different conjugacy classes,

i.e. n irreps.

To estimate the growth of operators in each of the sectors, we define a vector valued

density of states ~ρ(∆). The upper bound (the lower bound is similar) on the integral of

~ρ(∆) is given by a matrix inequality∫ ∆+δ

∆−δ
d∆′ ~ρ(∆′) ≤ eβ(∆+δ)

∫ Λ

−Λ
dt F ·

[
Z

(
4π2

β + ıt

)]
e−ıtc/12φ+(t) (5.3)

Thus we need to estimate the integrals of the form

eβ(∆+δ)

∫ Λ

−Λ
dt F ·

[
Z

(
4π2

β + ıt

)]
e−ıtc/12φ+(t)

in the β → 0 limit.

At this point, we separate out the light contribution and the heavy contribution in

the usual way. If we further assume that ∆ = 0 state appears in one and only one of the
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sectors, without loss of generality we can keep it as first entry. Then the light sector Z(L)

will give∫ ∆+δ

∆−δ
d∆′ ~ρ(∆′) ≤ eβ(∆+δ)

∫ Λ

−Λ
dt F ·

[
Z(L)

(
4π2

β + ıt

)]
e−ıtc/12φ+(t) = 2πφ̂+(0)ρ0(∆)~F1 ,

where ~F1 is the first column of the F matrix. This determines the parameter N0 (or d2
α)

appearing previously.

We still need to show that the heavy sector Z(H) gives a suppressed contribution in

magnitude. In order to achieve that we will use that |Fij | < Ki. This is true for all the

calculations done previously and generically true because F is finite matrix and F2 = I. A

more mathematical way to saying this is that

||F||∞ = Maxi

{∑
j

|Fij |
}

is finite .

We note that for |t| ≤ Λ,∣∣∣∣ (F ·
[
Z(H)

(
4π2

β + ıt

)])
i

∣∣∣∣ ≤∑
j

|Fij |
∣∣∣∣Z(H)

j

(
4π2

β + ıt

) ∣∣∣∣ ≤ ||F||∞∑
j

Z
(H)
j

(
4π2β

β2 + Λ2

)
.

(5.4)

To estimate the sum appearing in the rightmost, we observe that

∑
j

Z
(H)
j

(
4π2β

β2 + Λ2

)
≤
∑
j

Zj

(
4π2β

β2 + Λ2

)
=
∑
j

F ·
[
Z

(
Λ2 + β2

β

)]
. (5.5)

Again we use the fact that ∆ = 0 appears in one and only one sector to have

∑
j

F ·
[
Z

(
Λ2 + β2

β

)]
' Z1

(
Λ2 + β2

β

)∑
j

Fj1 ' e
Λ2c
12β .

Choosing Λ < 2π suppress the heavy part. Thus we arrive at our general theorem.

Theorem 4 We consider vector valued modular function as defined in (5.1). Each entry

in the column vector Z denotes different sector of the CFT. The growth of operators in

each of these sectors obey the following inequality:

c−ρ0(∆)Fj1 ≤
1

2δ

∫ ∆+δ

∆−δ
d∆′ ρj(∆

′) ≤ c+ρ0(∆)Fj1 , (5.6)

where c± are order one numbers. These numbers can be determined using the extremal

functionals appearing in [6]. In particular, we have c± = 1± 1/2δ.

One can further apply similar technique to any rational CFT where characters are

indeed vector-valued modular functions, this would facilitate estimation of growth of de-

scendants for each primary (primary of the full chiral algebra). For c < 1, one can apply

this to Minimal models and estimate the growth of descendants of each Virasoro primary.
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A Verification

A.1 Ising CFT with Z2 symmetry

The Ising model has three primaries: I, ε, σ. Under the Z2 symmetry, I (with h = h̄ = 0)

and ε (with h = h̄ = 1
2) are even while the σ (with h = h̄ = 1

16) is odd. The central charge

is given by c = 1
2 . Let us denote the characters corresponding to I, ε, σ as χ0, χ1/2, χ1/16

respectively. A nice exposition of the Ising model in context of TDLs can be found in [24].

Here we briefly recapitulate the necessary ingredients for verifying our formulas (4.10)

and (3.2) against the Ising model.

The partition function of the Ising model with TDL (name it η) corresponding to Z2

group element (the identity element e and the non-identity element p) inserted along the

spatial direction is given by

Zη(β, e) = Z(β) = |χ0|2 + |χ1/2|2 + |χ1/16|2 ,
Zη(β, p) = |χ0|2 + |χ1/2|2 − |χ1/16|2 .

(A.1)

• Irreps: The growth of the even and the odd operators (denoted by ρ± respectively)

are controlled by 1
2 (Zη(β, e)± Zη(β, p)) in the β → 0 limit. From eq. (4.10), we have

s−(δ) ≤ log

[
1

2δ

∫ ∆+δ

∆−δ
d∆′ρ±(∆′)

]
−2π

√
∆

6
− 1

4
log

(
1

96∆3

)
+log(2) ≤ s+(δ) (A.2)

where s± = log(c±). We use the value of c± presented in [18]. We verify the above

inequality in figure 3.

• Defect Hilbert space: The partition function corresponding to the defect Hilbert

space is given by the S modular transformation of Zη(β, p):

Zη(β) = χ0χ̄1/2 + χ1/2χ̄0 + |χ1/16|2 . (A.3)

The Virasoro primaries have weights (0, 1/2), (1/2, 0) and (1/16, 1/16). We note

that there is no ∆ = 0 state in the defect Hilbert space. The states with ∆ = 1/2

corresponds to Fermions. We can verify following estimate of the growth of number

of operators in the defect Hilbert space (defect corresponding to Z2, here the TDL is

extended along the time direction) of the Ising CFT:

s−(δ) ≤ log

[
1

2δ

∫ ∆+δ

∆−δ
d∆′ρHη(∆′)

]
− 2π

√
∆

6
− 1

4
log

(
1

96∆3

)
≤ s+(δ) (A.4)
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ISING CFT Z2 even,δ=1.1 Upper bound Lower bound

100 200 300 400 500
Δ

-0.6
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0.0
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0.4

s(1.1,Δ)

ISING CFT Z2 odd,δ=1.1 Upper bound Lower bound

100 200 300 400 500
Δ

-0.6

-0.4

-0.2

0.0

0.2

0.4

s(1.1,Δ)

Figure 3. Here, we estimate the number of even and odd operators (under Z2) in Ising CFT. We

plot the logarithm of the ratio of actual number of operators in the interval of size 2δ = 2.2 and

the leading prediction from Tauberian-Cardy analysis (in cyan). We see that they are well within

the bounds (the black and the red line) as predicted in the main text.

ISING CFT Z2 defect Hilbert,δ=1.1

Upper bound Lower bound

100 200 300 400 500
Δ

-0.6

-0.4

-0.2

0.0

0.2

0.4

s(1.1,Δ)

Figure 4. Here, we estimate the number of operators in the defect Hilbert space corresponding to

Z2 in Ising CFT. We plot the logarithm of the ratio of actual number of operators in the interval

of size 2δ = 2.2 and the leading prediction from Tauberian-Cardy analysis (in cyan). We see that

they are well within the bounds (the black and the red line) as predicted in the main text.

where s± = log(c±). The above follows from eq. (3.2). Again we use the value of c±
presented in [18] and verify the inequality in figure 4.

The Ising model also has a duality defect line N̂ . This is non invertible TDL. The

fusion rule is given by N̂ × N̂ = I + η, thus the action of N̂ is given by

N̂ |even〉 =
√

2|even〉 , N̂ |odd〉 = 0〉 .

The growth of the operators in the defect Hilbert space corresponding to the duality

line can be estimated via eq. (3.2):

s−(δ) ≤ log

[
1

2δ

∫ ∆+δ

∆−δ
d∆′ρH

N̂
(∆′)

]
−2π

√
∆

6
− 1

4
log

(
1

96∆3

)
− 1

2
log(2) ≤ s+(δ) , (A.5)

which we verify in the figure 5.
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ISING CFT duality defect Hilbert,δ=1.1

Upper bound Lower bound

50 100 150 200
Δ

-0.6

-0.4

-0.2

0.0
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0.4

s(1.1,Δ)

Figure 5. Here, we estimate the number of operators in the defect Hilbert space corresponding to

the duality defect line N̂ in the Ising CFT. We plot the logarithm of the ratio of actual number of

operators in the interval of size 2δ = 2.2 and the leading prediction from Tauberian-Cardy analysis

(in cyan). We see that they are well within the bounds (the black and the red line) as predicted in

the main text.

A.2 Compact boson at R = 1
2 with U(1) symmetry

For compact boson at radius R = 1
2 , the U(1) generated by J0 − J̄0 acts faithfully. The

partition function for the charge Q is given by

ZQ(q) = q
m2

4
− 1

12

[
θ3(q)

η2

]
= q

m2

4
− 1

12
(
1 + 4q + 9q2 + 20q3 +O(q4)

)
. (A.6)

For compact boson k = 1, thus the growth of operators with charge Q is given by

s−(δ) ≤ log

[
1

2δ

∫ ∆+δ

∆−δ
d∆′ρHη(∆′)

]
− 2π

√
∆

3
− log

(
1

4∆

)
+

1

2
log(3k) ≤ s+(δ) , (A.7)

which follows from eq. (4.24). This is verified in figure 6.

B Spin selection rule for anomalous symmetry

The defect Hilbert space is defined by having a TDL along the time like direction. Now if we

want to define the action of the symmetry in the defect Hilbert space, we need to introduce

another TDL along the spatial direction. Since, the two TDLs cross each other, we need

to resolve the crossing. And this is how the global symmetry can turn out to have ’t Hooft

anomaly, which is related to the ambiguity in locally resolving the crossing configuration of

two TDL (see figure 7). Two different ways of resolution leads to defining two operators L±
acting on the states in the defect Hilbert space. Relationship between these two different

ways of resolving ambiguity leads to the “crossing relations”, which naturally generalize to

the any TDLs (not only the one corresponding to the global symmetry). We will see that

such ’t Hooft anomaly of global symmetry will impose spin selection rules on the defect

Hilbert space (see figure 9).
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Compact Boson charge 0,δ=1.1

Upper bound Lower bound

50 100 150 200
Δ

-0.6

-0.4

-0.2

0.0

0.2

0.4

s(1.1,Δ)

Compact Boson charge 1,δ=1.1

Upper bound Lower bound

50 100 150 200
Δ
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0.4

s(1.1,Δ)

Figure 6. Here, we estimate the number of operators with charge Q = 0, 1 corresponding to the

U(1) symmetry in compact boson at R = 1
2 . We plot the logarithm of the ratio of actual number of

operators in the interval of size 2δ = 2.2 and the leading prediction from Tauberian-Cardy analysis

(in cyan). We see that they are well within the bounds (the black and the red line) as predicted in

the main text.

Figure 7. Here, we consider the non-trivial line (black) generating Z2 symmetry on a torus. There

are two ways to resolve the crossing configuration on the top, which are related by α = ±1 where

1 is for non-anomalous Z2 and −1 is for the anomalous Z2. We note the left configuration as L̂+

and the right configuration as L̂−.

We will focus on the group Z2 for rest of the appendix. Following [24], to derive a spin

selection rule, we first determine the action of L̂± on the defect Hilbert space and then

consider a specific configuration which relates the action of L̂± to the spin of the state. We

consider the figure 8 to derive α2 = 1. On the other hand, we have

(L̂+)2|h, h〉 = α|h, h〉 ⇒ L̂+|h, h〉 = ±
√
α|h, h〉 . (B.1)

For the next step, we consider mapping L̂+|h, h〉 from Rt × S1 to R2 and unwind the

L+ to deduce

L̂±|h, h〉 = e±2πıs|h, h〉. (B.2)

Combining the previous results, we find:
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Figure 8. Here we consider two L̂+ on the left figure and show it is equal to α acting on states in

the defect Hilbert space.

Figure 9. Here, we consider the action of L̂+ acting on the state |h, h〉 on Rt × S1 and maps to

R2 via the operator-state correspondence map. Then unwinding L̂+ shows L̂+|h, h〉 = e2πıs|h, h〉.

• in the non-anomalous case where α = 1, we have

s ∈

{
Z if L̂+ acts as + 1,
1
2 + Z if L̂+ acts as − 1;

(B.3)

• in the anomalous case where α = −1, we have

s ∈

{
+1

4 + Z if L̂+ acts as + i,

−1
4 + Z if L̂+ acts as − i.

(B.4)

Analogously, one can generalize the above result to Zn [47]. Thus the spin selection rule

automatically rules out the existence of ∆ = 0 states in the defect Hilbert space if the

symmetry is anomalous. For completeness, we remark here that if the symmetry is non-

anomalous, we can rule out the existence of ∆ = 0 state by requiring that symmetry group

acts faithfully on the Hilbert space.
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C Review of representation theory for finite group

We review some basic notions and results in the representation theory for finite group. For

a more detailed exposition including proofs and jokes, see II.1 and II.2 of [49].

Given a finite group G and a unitary (reducible or irreducible) representation r of G

given by matrices D(r)(g), we define the character χ(r)(g) to be

χ(r)(g) ≡ trD(r)(g). (C.1)

The Great Orthogonality Theorem together with one of its corollary states that, given

two irreducible representation r, s,∑
g

D(r)†(g)ijD
(s)(g)kl =

|G|
dr
δrsδilδ

k
j (C.2)

where |G| is the order of the group, dr is the dimension of the irrep r, and δrs = 1 if two

irreps are the same and δrs = 0 otherwise. For a proof of this result, see II.2 of [49].

From the above result, one can derive the so-called character orthogonality. By taking

trace, we find ∑
g

(χ(r)(g))∗χ(s)(g) = |G|δrs. (C.3)

We can use the character orthogonality to count how many times a given irrep r

appears in a reducible representation. First, notice that if a reducible representation R can

be decompose into a direct sum of irreps ri, then

χ(R)(g) =
N∑
i=1

χ(ri)(g). (C.4)

Applying the character orthogonality, we find

1

|G|
∑
g

(χ(r)(g))∗χ(R)(g) = No of times irrep “r” appears . (C.5)

In context of conformal field theory, the finite symmetry group G commutes with the

Virasoro algebra, thus the states with the same scaling dimension ∆ form a reducible

representation of G. Therefore,

1

|G|
∑
g

χα(g)∗ZL(β, g) =
1

|G|
∑
g

χα(g)∗Tr

(
ĝqL0−c/24qL0−c/24

)
=

1

|G|
∑
g

∑
∆

χα(g)∗(TrH∆
ĝ)e−β(∆−c/12)

=
∑
∆

Nα,∆e
−β(∆−c/12)

(C.6)

where Nα,∆ is the number of irrep α with scaling dimension ∆. We used this basic fact in

the statements below (4.3).
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