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theories that provide correct DM abundance and satisfy direct detection, indirect detection

and collider constraints. The intention of this paper was to verify to what extent it might

be possible to disentangle models of different DM spins by the measurement of the cross

section for e+e− → Z + · · · at future e+e− colliders. We specialize to the case of the ILC

operating at
√
s = 250 GeV, however our results apply as well for the FCC-ee and the

CEPC colliders. For each model the cross section maximized with respect to parameters

was calculated and compared to the expected 95% CL cross-section limits estimated for the

ILC. It turned out that near the 2mDM ' m1,2 resonances, where m1 and m2 are the SM
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regions where the models are testable. A special attention has been payed to calculation

of the cross section in the region where m1 ' m2.
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1 Introduction

In spite of the Higgs-boson discovery at CERN’s Large Hadron Collider (LHC) by the

ATLAS [1] and CMS [2] collaborations, the underlying theory of fundamental interactions

is still missing since the Standard Model (SM) does not provide a candidate for dark mat-

ter (DM), while its existence has been confirmed by many independent experiments (see

e.g. [3–11]). In this project we are going to discuss minimal extensions of the SM that de-

scribe dark matter of various spins (0, 1, 1/2) in a framework of a consistent, renormalizable

quantum field theory. Even if the ultimate theory of DM will prove to be non-minimal, it

is reasonable to expect that the minimal models discussed here will capture its major low-

energy properties. Our intention is to verify to what extent future e+e− colliders operating

near
√
s = 250 GeV: the Future Circular Collider (FCC-ee) [12–14], the Circular Electron

Positron Collider (CEPC) [15] and the International Linear Collider (ILC) [16–18], could
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be useful for detecting DM in the process of mono-Z production, e+e− → Z + · · · . Our

strategy is to impose existing constraints on simple models of pseudoscalar (pGDM), vector

(VDM) and fermion (FDM) dark matter and determine regions of parameters in which the

DM-production cross section at e+e− colliders is maximal. Then we compare the max-

imized predictions with the expected 95% CL cross-section limits at the ILC, assuming

that it will provide a satisfactory estimate for the other colliders as well. That way we are

trying to verify whether the future electron-positron colliders operating in the vicinity of√
s = 250 GeV could be used to test theories of DM.

DM production at future e+e− colliders has already been discussed in the literature,

see [19, 20]. However, our approach has another motivation, also the models adopted here

are not the same. The goal of this project is different as well.

The paper is organized as follows: after the introduction in section 1, in the subsequent

sections 2, 3 and 4 we describe the pseudo-Goldstone, vector and fermion dark matter

models, respectively. Section 5 is devoted to the constraints on dark matter scenarios, that

are adopted in the paper. In section 6 we calculate the cross section for the e+e− → Z+ · · ·
process and discuss subtleties of the mass degenerate case, m1 ' m2. The next section,

section 7, is to review the expected sensitivity to this process at the ILC. Section 8 contains

our numerical results with determination of regions in the parameter space that could be

tested at the FCC-ee, CEPC and ILC. In the final section, section 9, we summarize our

findings. In appendices we collect results concerning the Higgs boson decay widths and

2-point 1-loop scalar Green’s functions.

2 Pseudo-Goldstone dark matter

In spite of the fact that the minimal model of scalar (spin zero) DM [21, 22] assumes merely

an addition of a real scalar field odd under a Z2 symmetry, here we are going to consider

a model (pGDM) that requires an extension by a complex scalar filed S. The model is in

some sense very similar to vector and fermion dark matter models that will be discussed

here as well, so it is worth to compare all of them. In order to stabilize a component of

S we require an invariance under DM charge conjugation C : S → S∗, which guarantees

stability of the imaginary part of S, A ≡ ImS/
√

2. The real part, φS ≡ ReS/
√

2, is going

to develop a real vacuum expectation value (vev) 〈φS〉 = 〈S〉 = vS/
√

2.1 Therefore, φS will

mix with the neutral component of the SM Higgs doublet H, in exactly the same manner

as it happens for the VDM or the FDM. In order to simplify the potential we impose in

addition a Z2 symmetry S → −S, which eliminates odd powers of S. Eventually, the scalar

potential reads:

V = −µ2
H |H|2 + λH |H|4 − µ2

S |S|2 + λS |S|4 + κ|S|2|H|2 + µ2(S2 + S∗ 2) (2.1)

with µ2 real, as implied by the C symmetry. Note that the µ2 term breaks the U(1) ex-

plicitly, so the pseudo-Goldstone boson A is massive. In the limit of exact symmetry, A

1This is a choice that fixes the freedom (phase rotation of the complex scalar) of choosing a weak

basis that could be adopted to formulate the model. The model is defined by symmetries imposed in this

particular basis in which the scalar vacuum expectation value is real.
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would be just a genuine, massless Goldstone boson. Since the symmetry-breaking operator

µ2(S2 +S∗ 2) is of dimension less that 4, its presence does not jeopardize renormalizability

even if non-invariant higher dimension operators were not introduced, see for instance [23].

Note that dimension 3 terms are disallowed by the Z2 and gauge symmetries. In other

words, we can limit ourself to dimension 2 U(1)-breaking terms preserving the renormal-

izability of the model. The freedom to introduce solely the soft breaking operators offers

a very efficient and economical way to generate mass for the pseudo-scalar A without the

necessity to introduce dimension 4 terms like S4 or |S|2S2, and keeping the renormaliz-

ability of the model. It is also worth noticing that the Z2 symmetry S → −S is broken

spontaneously by vS and, therefore, φS , the real part of S, is not stable, making A the only

DM candidate.

The scalar fields can be expanded around the corresponding generic vevs, v for H and

vS for S, as follows:

S =
1√
2

(vS + ivA + φS + iA) , H0 =
1√
2

(v + φH + iσH) where H =

(
H+

H0

)
. (2.2)

The global minimum of the potential with corresponding value of the potential and the

scalar mass-squared matrix read:

v2 =
4λSµ

2
H − 2κ(µ2

S − 2µ2)

4λHλS − κ2
, v2

S =
4λH(µ2

S − 2µ2)− 2κµ2
H

4λHλS − κ2
, v2

A = 0 (2.3)

Vmin =
−1

4λHλS − κ2

{
λH(µ2

S − 2µ2)2 + µ2
H

[
λSµ

2
H − κ(µ2

S − 2µ2)
]}

, (2.4)

M2 =

 2λHv
2 κvvS 0

κvvS 2λSv
2
S 0

0 0 −4µ2

 (2.5)

in the basis (φH , φS , A). Note that the third spin-zero state A does not mix with the

former ones.

Conditions necessary to guarantee the asymptotic positivity of the potential and the

global minimum at (vH/
√

2, vS/
√

2) with non-zero vevs will be discussed in section 5.5.

It is worth to notice that in the vector DM model considered in the following section, A

becomes a genuine Goldstone boson (µ2 = 0) and disappears as a longitudinal component

of the massive DM vector X.

There are two mass eigenstates, h1 and h2, in this model. The mass matrix (2.5) can

be diagonalized by the orthogonal rotation matrix R−1 acting on the space spanned by the

two CP-even scalars φH and φS :(
h1

h2

)
= R−1

(
φH
φS

)
=

(
cosα sinα

− sinα cosα

)(
φH
φS

)
, (2.6)

with

tan 2α =
2M2

12

M2
11 −M2

22

. (2.7)
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Figure 1. Vertices relevant for the pGDM model.

We assume hereafter that h1 is the 125.09 GeV boson observed at the LHC. Moreover,

since sinα appears in calculations of sections 5 and 6 in the second power, we will assume

without losing generality that the sign of κ is chosen in such a way that sinα > 0.

We choose as independent parameters of the model the set: vS , sinα, m2 and

mDM = mA. Together with v = 246.22 GeV and m1 = 125.09 GeV this set is sufficient

to determine all the 6 parameters of the potential; relevant relations will be presented in

section 5.5. As it will be seen later, scalar potentials in other theories discussed in this

work could be also parametrized in terms of the same parameters, allowing for meaningful

comparison between the models.2

Vertices relevant for the calculation of annihilation cross section in the pGDM model

have been collected in figure 1.

Similar models have been considered in a more general context including a possibility

of fast first-order phase transition in [24–26]. However, those models have different phe-

nomenology, as the pGDM model possesses the unique and attractive feature of natural

suppression of DM scattering against nuclei. This property of the pGDM is a consequence

of the particular way of soft breaking of the U(1)X by the terms that are quadratic in S,

see [27]. This aspect will be particularly relevant in section 5.3.

3 Vector dark matter

The next model that we want to compare with the pGDM is the popular vector DM (VDM)

model [28–33] that is an extension of the SM by an additional U(1)X gauge symmetry and

a complex scalar field S, whose vev generates a mass for the corresponding gauge field.

The quantum numbers of the scalar field are

S = (0,1,1, 1) under U(1)Y × SU(2)L × SU(3)c ×U(1)X . (3.1)

None of the SM fields are charged under the extra gauge group. In order to ensure stability

of the new vector boson a Z2 symmetry is assumed to forbid U(1)-kinetic mixing between

U(1)X and U(1)Y . The extra gauge boson X and the scalar field S transform under the

Z2 as follows

X → −X , S → S∗ . (3.2)

All other fields are neutral under the Z2.

2Here, the DM mass mA is also a parameter of the potential. In the remaining models discussed in this

paper, DM masses will be independent parameters.
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Figure 2. The vertices relevant for the VDM model.

The vector bosons’ masses are given by:

mW =
1

2
gv , mZ =

1

2

√
g2 + g′2 v and mX = gXvS , (3.3)

where g and g′ are the SU(2) and U(1) gauge couplings, while, as in the previous model, v

and vS are the vevs of H and S, respectively: (〈H〉, 〈S〉) = 1√
2
(v, vS).3 The scalar potential

for this model is given by

V = −µ2
H |H|2 + λH |H|4 − µ2

S |S|2 + λS |S|4 + κ|S|2|H|2. (3.4)

It is easy to find solutions of the potential minimization conditions for the scalar fields:

v2 =
4λSµ

2
H − 2κµ2

S

4λHλS − κ2
, v2

S =
4λHµ

2
S − 2κµ2

H

4λHλS − κ2
. (3.5)

Both scalar fields can be expanded around the corresponding vevs as follows

S =
1√
2

(vS + φS + iσS) , H0 =
1√
2

(v + φH + iσH) where H =

(
H+

H0

)
. (3.6)

The mass-squared matrix M2 for the fluctuations (φH , φS) is identical as the 2 × 2 block

of the mass matrix for the pGDM model (2.5), so that the diagonalization (2.6) and rela-

tion (2.7) remain applicable.

Conditions for existence of non-zero vevs, globality of the minimum and asymptotic

positivity of the potential will be discussed in section 5.5. The input parameters adopted

here are: vS , sinα, m2 and mDM = mX .

Vertices relevant for the calculation of annihilation cross section in the VDM model

have been collected in figure 2. It is interesting to notice similarity between the VDM and

the pGDM. In the latter one the U(1)X (that is a gauge symmetry of the VDM) is explicitly

(but softly) broken. The corresponding pseudo-Goldstone boson A in the pGDM model

remains in the spectrum of scalars, while in the VDM this degree of freedom disappears as

a longitudinal component of the massive vector X.

4 Fermion dark matter

In the case of minimal fermion DM, the gauge group remains the standard one, i.e. U(1)Y ×
SU(2)L × SU(3)c. This model can be treated as a special case of the singlet-singlet model

3〈H〉 and 〈S〉 could be chosen to be real and non-negative without losing generality.
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Figure 3. The vertex relevant for the FDM model.

discussed in [34]. The DM candidate χ (left-handed Dirac fermion) is introduced together

with a real scalar S that is necessary to mediate DM interaction with the SM.

The extra states are charged under Z4: S → −S while χ → iχ. The resulting sym-

metric Lagrangian reads:

L = LSM + iχ̄/∂χ+
1

2
∂µS ∂µS −

yX
2

(χ̄cχ+ χ̄χc)S − V (H,S) , (4.1)

V (H,S) = −µ2
H |H|2 + λH |H|4 −

µ2
S

2
S2 +

λS
4
S4 +

κ

2
|H|2S2 , (4.2)

where χc ≡ −iγ2χ
∗. Note that the above potential is the same as in the VDM case

(see (3.4)), up to normalization of the singlet mass and its couplings. The positivity

conditions of the potential remain, of course, the same for this model as for the previous

two since all the potentials have the same asymptotic behaviour.

We parametrize fluctuations of scalar fields as follows:

S = vS + φS , H0 =
1√
2

(v + φH + iσH) where H =

(
H+

H0

)
, (4.3)

with v and vS being the vevs of the neutral component of the doublet H and the singlet

S, respectively, determined by (3.5).

After SSB, relevant parts of the Lagrangian take the following form:

iχ̄/∂χ+
1

2
∂µS ∂µS−

yX
2

(χ̄cχ+χ̄χc)S→ i

2
ψ̄ /∂ψ+

1

2
∂µφS ∂µφS−

yXvS
2

ψ̄ψ− yX
2
ψ̄ψφS (4.4)

where ψ = ψc ≡ χ+ χc is a Majorana mass eigenstate with mψ = yXvS .

Here, as in the models discussed earlier, there are two physical (mass eigenstates)

scalar degrees of freedom, h1 and h2, that are linear combinations of φH and φS . Note that

because of appropriate normalization of terms involving S in the potential (4.2) the mass

matrix and its diagonalization remain the same as in the other models. It is convenient to

use the analogous input parameters to discuss this model: vS , sinα, m2, and mDM = mψ.

Positivity and minimization conditions for this model will be discussed in section 5.5.

Figure 3 presents the vertex relevant for the calculation of annihilation cross section

in the FDM model.
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5 Astrophysical and other constraints

Hereafter we are going to allow for resonant DM annihilation process, so we will adopt

the Breit-Wigner propagators for mediating particles, i.e. the Higgs bosons h1,2. Γ1,2 will

denote the total width of h1,2, respectively.

5.1 Dark matter abundance

The thermally averaged cross section for DM annihilation into a SM fermion-anti-fermion

pair, σ(DM DM→ f̄f), reads:4

〈σv〉 =
nc
3

mDMm
2
f

π
· X ·

(
m2

DM −m2
f

)3/2[
(4m2

DM −m2
1)2 +m2

1Γ2
1

] [
(4m2

DM −m2
2)2 +m2

2Γ2
2

] ·
×


12 +O

[(
mDM
T

)−1
]

(pGDM)

1 +O
[(

mDM
T

)−1
]

(VDM)

9
4

(
mDM
T

)−1
+O

[(
mDM
T

)−2
]

(FDM)

,

(5.1)

with nc = 1(3) for f being lepton (quark) and the variable X defined5 as

X ≡ (sinα cosα)2

[
(m2

1 −m2
2)2 + (m1Γ1 −m2Γ2)2

]
v2v2

S

. (5.2)

The DM abundance observed by the Planck Collaboration [10],(
Ωh2

)obs

DM
= 0.1186± 0.002 , (5.3)

constraints the annihilation cross section at the freeze-out temperature by

〈σv〉
∣∣∣
freeze out

= (n+ 1) · 2.2 · 10−26 cm3 s−1 = (n+ 1) · 1.9 · 10−9 GeV−2 , (5.4)

what corresponds to the current value of annihilation cross section equal to

〈σv〉
∣∣∣
now

= (T0/Tf )n · 〈σv〉
∣∣∣
freeze out

= (T0/Tf )n · (n+ 1) · 1.9 · 10−9 GeV−2 , (5.5)

where T0 is the present CMB temperature while Tf ∼ mDM/25 is temperature at the

moment of freeze out. Value of n is 0 for the bosonic models (pGDM, VDM) and 1 for

the FDM.

Hence, keeping only the leading (bb̄) contribution in eq. (5.1), we obtain the following

constraint

X '
[
(m2

1 − 4m2
DM)2 +m2

1Γ2
1

] [
(m2

2 − 4m2
DM)2 +m2

2Γ2
2

]
mDM(m2

DM −m2
b)

3/2
×

× 3.5 · 10−10 GeV−4 ·


1/12 (pGDM)

1 (VDM)

22 (FDM)

.

(5.6)

4Other final states are not accessible kinematically for mass ranges considered here.
5Note that at the tree level X reduces to κ2.
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5.2 Dark matter indirect detection

Since we fix the DM abundance to its observed value (5.3), the present annihilation cross

section is also fixed by (5.5), so that it remains to be a function of mDM only. Therefore, the

limit on the present annihilation cross section, for instance from Fermi-LAT [35], implies

a lower limit on DM mass. For the bosonic models (pGDM, VDM), adopting data for the

bb̄ final state, one obtains mDM & 20 GeV. Hereafter, we will consider this region only.

In the case of the FDM, the extra suppression by T0/Tf implies that the cross section is

by a factor of 10−11–10−13 smaller than for the bosonic models and, therefore, there is no

constraint on mψ.

5.3 Dark matter direct detection

The DM direct detection (DD) experiments impose severe constraints on the parameter

space of DM models. In the models discussed here the spin-independent cross sections for

the DM-nucleon scattering are given by

σSI '
µ2f2

N

π
· X ·

m2
DMm

2
N

m4
1m

4
2


[

A
64π2vv2S

]2
(pGDM)

1 (VDM), (FDM) ,
(5.7)

where mN denotes nucleon mass and µ is the reduced mass for the DM-nucleon system

while for the form factor we have adopted fN ' 0.3 GeV. Widths and momentum transfer

in the denominator have been neglected as much smaller than masses. It turns out that

in the pGDM model the cross section vanishes [27, 36, 37] in the limit of zero momentum

transfer, so 1-loop calculations are needed. The 1-loop results are encoded above through

the factor containing A, defined according to [36]6 as

A = a1 · C(0,mDM;m1,m2,mDM)+

a2 ·D(0, 0,mDM;m1,m1,m2,mDM)+

a3 ·D(0, 0,mDM;m1,m2,m2,mDM)

(5.8)

with

a1 = 4(m2
1 sin2 α+m2

2 cos2 α)
[
2v(m2

1 sin2 α+m2
2 cos2 α)− (m2

1 −m2
2)vS sin 2α

]
,

a2 = −2m4
1 sinα

[
(m2

1 + 5m2
2)vS cosα− (m2

1 −m2
2)(vS cos 3α+ 4v sin3 α)

]
,

a3 = 2m4
2 cosα

[
(5m2

1 +m2
2)vS sinα− (m2

1 −m2
2)(vS sin 3α+ 4v cos3 α)

]
,

(5.9)

where the functions C and D are defined in appendix B. In eq. (5.9), the sign of sinα is

relevant, what seems to contradict our statement that chosing sin α > 0 does not spoil

generality of our considerations. However, the only place where we use results of eq. (5.7)

for the pGDM is the comparison in figure 4. Regardless of the sign of sinα, the conclusion

that X (DD) is orders of magnitude larger than X (ΩDM
0 ) remains true, and hence, we do

not have to consider the sinα < 0 case separately.

6In appendix B of [36], the factor 1/(2π)4 in definitions of loop integrals should be replaced by 1/(iπ2).

Nonetheless, all results in the main text of the paper are correct.
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Figure 4. Comparison between the DD upper bound for the value of X (denoted by X (DD), see

eq. (5.11)) and the value providing correct relic density (denoted by X (ΩDM
0 ), see eq. (5.6)), in

the case of the pGDM. Since the upper bound is always higher than the required value, the DD

constraint does not affect the range of (m2,mDM) in the case of this model.

For practical purposes, the XENON1T limit [38] for mDM&40 GeV can be parametrized

as follows
σmax

SI

1 cm2
' mDM

1 GeV
· 10−48.05 . (5.10)

Hence, X is constrained from above by DD limit:

X .
m4

1m
4
2

mDMm2
Nf

2
N

π

µ2

1 cm2

1 GeV
· 10−48.05


[

A
64π2vv2S

]−2
(pGDM)

1 (VDM), (FDM) ,

' m4
2

mDM
· 2.5 · 10−11 GeV−3


[

A
64π2vv2S

]−2
(pGDM)

1 (VDM), (FDM)
. (5.11)

It turns out that in the considered range of parameters, in the case of the pGDM, the

DD upper bound on the value of X is always higher than the value corresponding to the

correct relic density, see figure 4. Therefore, in the case of the pGDM, the DD constraint

does not limit the range of (m2,mDM).

5.4 Collider constraints

The mixing angle α is constrained from the measurement of the SM signal strength µLHC.

The latest LHC bound is µLHC = 1.09 ± 0.11 which amounts to sin2 α < 0.13 at the 2σ

CL [39]. Hereafter we will adopt a bit stronger limit sinα < 0.30.
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When the DM mass is smaller than half of the SM-like Higgs boson h1, mDM < m1/2,

the Higgs invisible decay provides another constraint on DM scenarios. In the models

discussed here, the width for invisible decays are as follows

Γhi→DM =
R2

2i

v2
S

· m
3
i

32π

√
1−

4m2
DM

m2
i

×

×


1 (pGDM)

1− 4
m2

DM

m2
i

+ 12
(
m2

DM

m2
i

)2
(VDM)

2
m2

DM

m2
i

(
1− 4

m2
DM

m2
i

)
(FDM)

. (5.12)

Current LHC measurements [40] provides the following limit on the invisible branchig ratio:

BR(h1 → inv) < 19% (5.13)

at the 95% CL.

5.5 Theoretical constraints

In order to ensure that the leading order calculations adopted here are meaningful, we

impose the following perturbativity conditions on the U(1)X gauge coupling in the VDM

model and the Yukawa coupling in the FDM model: gX < 4π and yX < 4π. Both of them

correspond to vS >
mDM

4π . In the pGDM model, the AAhi coupling is proportional to m2
i /vS

(cf. figure 1), therefore we also require mi/vS < 4π (i = 1, 2). It is interesting to note that

there exist regions (e.g. m2 ∼ m1) in the parameter space where the proper abundance of

DM requires small vS . In these regions some quartic couplings might be too large (non-

perturbative), since λS ∝ m2
i /v

2
S and κ ∝ (m2

1 −m2
2)/(vvS), see figure 11. Therefore we

also impose the conditions: λS , |κ| < 4π. Summing up, the conditions adopted here in

order to ensure perturbativity within considered models are

mDM

vS
< 4π︸ ︷︷ ︸

for VDM and FDM

,
mi

vS
< 4π︸ ︷︷ ︸

for pGDM

, λS < 4π , |κ| < 4π . (5.14)

Let us now consider conditions for stability of the vacuum state. Scalar potentials of

the models read (see eqs. (2.1), (3.4) and (4.2)):

VpGDM(H,S) = −µ2
H |H|2 + λH |H|4 − µ2

S |S|2 + λS |S|4 + κ|H|2|S|2+ (5.15)

+ µ2(S2 + S∗2) ,

VVDM(H,S) = −µ2
H |H|2 + λH |H|4 − µ2

S |S|2 + λS |S|4 + κ|H|2|S|2 , (5.16)

VFDM(H,S) = −µ2
H |H|2 + λH |H|4 −

µ2
S

2
S2 +

λS
4
S4 +

κ

2
|H|2S2 . (5.17)

To ensure asymptotic positivity of all the potentials, the following conditions must be

satisfied:

λH > 0 , λS > 0 , κ > −2
√
λHλS . (5.18)

– 10 –
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Vacuum expectation values of the scalar fields H, S are denoted as follows

〈H〉 = v/
√

2 , 〈S〉 = vS/
√

2 (pGDM, VDM) , (5.19)

〈H〉 = v/
√

2 , 〈S〉 = vS (FDM) . (5.20)

In each case, v, vS 6= 0 must minimize the value of the potential. The corresponding

point in the (H,S) space is a critical one if and only if

v2 = 2
2λSµ

2
H − κ(µ2

S − 2µ2)

4λHλS − κ2
, v2

S = 2
2λH(µ2

S − 2µ2)− κµ2
H

4λHλS − κ2
(5.21)

in the case of the pGDM and

v2 = 2
2λSµ

2
H − κµ2

S

4λHλS − κ2
, v2

S = 2
2λHµ

2
S − κµ2

H

4λHλS − κ2
(5.22)

in the case of the VDM and the FDM.

To ensure that the critical point is a strict minimum, we demand the second derivative

of the potential to be positive definite, therefore

0 < ∂2
H,HV = 4λHv

2 , (5.23)

0 < det(D2V ) = 4v2v2
S(4λHλS − κ2) ·

{
1 (pGDM, VDM)

1/2 (FDM)
. (5.24)

Hence, assuming v2, v2
S and λH are positive, the following condition must hold

4λHλS − κ2 > 0 . (5.25)

Positivity of the vevs squared requires (cf. eqs. (5.21) and (5.22))

2λSµ
2
H − κ(µ2

S − 2µ2) > 0 , 2λH(µ2
S − 2µ2)− κµ2

H > 0 (5.26)

in the case of the pGDM and

2λSµ
2
H − κµ2

S > 0 , 2λHµ
2
S − κµ2

H > 0 (5.27)

in the case of the VDM and the FDM.

Let us check when the points given by eqs. (5.21) and (5.22) are global minima. In

the case of the pGDM, due to the presence of the µ2(S2 + S∗2) term, in principle the

phase of the vacuum expectation value of S could be relevant. Hence, let us assume that

〈S〉 = (vS + ivA)/
√

2. Now, we have to minimize the potential with respect to v, vS and

– 11 –
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vA. There are six critical points of the potential, namely

(v2 , v2
S , v

2
A) = (0 , 0 , 0) , V = 0 , (5.28)

(v2 , v2
S , v

2
A) =

(
µ2
H

2λH
, 0 , 0

)
, V = −

µ4
H

4λH
, (5.29)

(v2 , v2
S , v

2
A) =

(
0 ,

µ2
S − 2µ2

2λS
, 0

)
, V = −

(µ2
S − 2µ2)2

4λS
, (5.30)

(v2 , v2
S , v

2
A) =

(
0 , 0 ,

µ2
S + 2µ2

2λS

)
, V = −

(µ2
S + 2µ2)2

4λS
, (5.31)

(v2 , v2
S , v

2
A) =

(
2

2λSµ
2
H − κ(µ2

S + 2µ2)

4λHλS − κ2
, 0 , 2

2λH(µ2
S + 2µ2)− κµ2

H

4λHλS − κ2

)
,

V = −
λH(µ2

S + 2µ2)2 + λSµ
4
H − κµ2

H(µ2
S + 2µ2)

4λHλS − κ2
, (5.32)

(v2 , v2
S , v

2
A) =

(
2

2λSµ
2
H − κ(µ2

S − 2µ2)

4λHλS − κ2
, 2

2λH(µ2
S − 2µ2)− κµ2

H

4λHλS − κ2
, 0

)
,

V = −
λH(µ2

S − 2µ2)2 + λSµ
4
H − κµ2

H(µ2
S − 2µ2)

4λHλS − κ2
. (5.33)

Assuming the asymptotic positivity conditions (5.18), the strict-minimum condition (5.25)

and positivity of m2
DM = −4µ2, minimum (5.33) is always smaller than (5.29) and (5.30).

To ensure that minimum (5.33) is smaller than (5.32), the following additional condition

must hold:

2λHµ
2
S − κµ2

H > 0 . (5.34)

Value of (5.31) is obviously greater than (5.30) and, therefore, greater than (5.33) if

µ2
S > 0 . (5.35)

Both of these conditions are checked for considered region of parameter space at the end

of this subsection.

In the case of the VDM and the FDM, we can assume that 〈S〉 is purely real without

losing generality. Therefore, V is minimized with respect to v and vS . The critical points are

(v2 , v2
S) = (0 , 0) , V = 0 , (5.36)

(v2 , v2
S) =

(
µ2
H

2λH
, 0

)
, V = −

µ4
H

4λH
, (5.37)

(v2 , v2
S) =

(
0 ,

µ2
S

2λS

)
, V = −

µ4
S

4λS
, (5.38)

(v2 , v2
S) =

(
2

2λSµ
2
H − κµ2

S

4λHλS − κ2
, 2

2λHµ
2
S − κµ2

H

4λHλS − κ2

)
,

(5.39)

V = −
λHµ

4
S + λSµ

4
H − κµ2

Hµ
2
S

4λHλS − κ2
.

This time, the asymptotic positivity conditions (5.18) and the strict-minimum condi-

tion (5.25) are enough to keep (5.39) a global minimum.
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We can express parameters of the potential in terms of the input parameters: m1, m2,

v, vS , mDM and sinα as follows:

µ2 = −1

4
m2

DM (pGDM case only) , κ =
(m2

1 −m2
2) sin 2α

2vvS
, (5.40)

µ2
H =

1

2
m2

1 cos2 α+
1

2
m2

2 sin2 α+
1

4

vS
v

(m2
1 −m2

2) sin 2α , (5.41)

µ2
S =

1

2
m2

1 sin2 α+
1

2
m2

2 cos2 α+
1

4

v

vS
(m2

1 −m2
2) sin 2α+

(5.42)

−

{
1
2m

2
DM (pGDM)

0 (VDM, FDM)
,

λH =
m2

1 cos2 α+m2
2 sin2 α

2v2
, λS =

m2
1 sin2 α+m2

2 cos2 α

2v2
S

. (5.43)

It appears that the stability and positivity conditions (5.18), (5.25) and (5.26) ex-

pressed in terms of the input parameters are automatically satisfied:

0<λH ⇔ 0<
m2

1 cos2α+m2
2 sin2α

2v2
, (5.44)

0<λS ⇔ 0<
m2

1 sin2α+m2
2 cos2α

2v2
S

, (5.45)

0< 4λHλS−κ2 ⇔ 0<
m2

1m
2
2

v2v2
S

, (5.46)

0<

{
2λSµ

2
H−κ(µ2

S−2µ2) (pGDM)

2λSµ
2
H−κµ2

S (VDM, FDM)
⇔ 0<

m2
1m

2
2

2v2
S

, (5.47)

0<

{
2λH(µ2

S−2µ2)−κµ2
H (pGDM)

2λHµ
2
S−κµ2

H (VDM, FDM)
⇔ 0<

m2
1m

2
2

2v2
. (5.48)

In fact, our choice of the input set implicitly assumes that coefficients of V are such

that v2, v2
S ,m

2
1,m

2
2 > 0.

The global-minimum conditions (5.34) and (5.35) for the case of the pGDM are ex-

pressed in terms of the input parameters as follows:

0< (2λHµ
2
S−κµ2

H) ⇔ 0<
2m2

1m
2
2−(m2

1+m2
2)m2

DM+(−m2
1+m2

2)m2
A cos(2α)

4v2
, (5.49)

0<µ2
S ⇔ 0<

1

2
m2

1 sin2α+
1

2
m2

2 cos2α+
1

4

v

vS
(m2

1−m2
2)sin2α− 1

2
m2

DM . (5.50)

It can be numerically shown (see figure 5) that in the considered range of masses these

conditions are always satisfied.
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Figure 5. Numerical test of the conditions (5.49) (left pannel) and (5.50) (right pannel) for

globalness of the minimum of the scalar potential in the pGDM model. If the plotted values are

positive, the conditions are satisfied. Value of sinα has been assumed to be 0.3. Value of vS has

been calculated from eq. (5.6).

e−

e+ Z

DM

DM
Z

Q

hi

Figure 6. Feynman diagram for the considered channel of DM production. In the diagram, DM

denotes the dark particle that is either A, X or ψ.

6 Production of DM pairs at future e+e− colliders

The DM models can be tested at e+e− collider experiments. In particular, these exper-

iments allow for the copious production of DM states associated with a Z boson, what

is referred to as so called Higgsstrahlung process or mono-Z emission [19, 20, 41–45], see

figure 6. We assume that the energy of the Z boson can be reconstructed from data, there-

fore allowing for determination of the recoil mass (
√
Q2), corresponding to the invariant

mass of the dark particles.
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The differential cross section for DM pair production at e+e− colliders reads

dσ

dQ2
=
σSM(s,Q2) v2

32π2

X ·
(
Q2
)2[

(Q2 −m2
1)2 + (m1Γ1)2

] [
(Q2 −m2

2)2 + (m2Γ2)2
]×

×

√
1− 4

m2
DM

Q2
·


1 (pGDM)

1− 4
m2

DM
Q2 + 12

(
m2

DM
Q2

)2
(VDM)

2
m2

DM
Q2

(
1− 4

m2
DM
Q2

)
(FDM)

, (6.1)

where the parameter X is defined in eq. (5.2) and

σSM(s,Q2) ≡
g2
V + g2

A

24π

(
g2

cos θ2
W

1

s−m2
Z

)2

×

×
λ1/2(s,Q2,m2

Z)
[
12 sm2

Z + λ(s,Q2,m2
Z)
]

8s2

(6.2)

is the cross section for the e+e− → ZhSM process, with mass of the SM Higgs particle equal

to
√
Q2. Here, λ(a, b, c) denotes the Källén function, defined in appendix A, and gV , gA

stand for the vector and axial coupling, respectively.7 The above result has been obtained

by adopting the standard Breit-Wigner propagators for the virtual/real Higgs bosons hi.

Note that in the limit of m2 → m1 the cross section dσ/dQ2 (6.1) seems to be amplified

for hi being on-shell, i.e. Q2 → m2
1,2. This is a surprising observation since, on the other

hand, the second relation in (5.40) between masses and the portal coupling κ implies that

in the limit m2 → m1, whenever vS 6= 0, κ → 0 so that the dark sector decouples in each

model discussed here. Therefore, all cross sections for DM production or annihilation from

the SM must vanish in this limit. Behaviour of the cross sections in this limit is potentially

important phenomenologically, therefore in the following we are going to investigate the

Q2 → m2
1,2 limit in more details.

Let’s investigate the parameter X . First, it is easy to see that

lim
m2→m1

X =

[
sin 2α

m1 (Γ1 − Γ2)

2vvS

]2

. (6.3)

From (5.40) one finds that if vS 6= 0 then the limit m2 → m1 implies κ → 0 and λHv
2 −

λSv
2
S → 0. Therefore, according to (2.7) tan 2α is undefined. For instance, for fixed λH , v

and vS it is easy to see that, approaching the limiting point (λH(v/vS)2, 0) in the (λS , κ)

plane, one can get α = 0, α = π/4 or α = 1/2 arctan(v/vS), choosing the corresponding

trajectories: κ = 0, λS = λH(v/vS)2 or κ = −λS + λH(v/vS)2, respectively. Since in the

limit m2 → m1 neither sin 2α→ 0 nor Γ1 → Γ2, so X does not vanish, in spite of justified

arguments mentioned above. The solution to this puzzle lies in the fact that for m2 → m1

also off-diagonal (i 6= j) Higgs boson self-energies (see figure 7) are relevant and should

be resummed so the naive, diagonal, Breit-Wigner propagators are not appropriate. To

7In the case of polarized beams, g2V + g2A factor has to be replaced with (1 − P+P−)(g2V + g2A)

+2gV gA(P+ − P−), where P± denotes polarizations of e± beams.
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Z

Z

Πij

X

X

hi hj

Q

Figure 7. The Higgs-boson mediators with their self-energies.

illustrate this point let us consider the e+e− → ZXX process. The matrix element reads

M =Me+e−→Zhi(Q
2) ·∆ij(Q

2) · Mhj→XX(Q2) =

=Me+e−→Zh(Q2) · R1i ·∆ij(Q
2) · R2j︸ ︷︷ ︸

∆̂(Q2)

·Mh→XX(Q2) . (6.4)

By ∆̂ we denote the propagator contracted with the mixing matrix. From [46] (see

also [47]), the contracted propagator can be expressed explicitly as

∆̂(Q2) = R1iR2j ·
1

detD

D︷ ︸︸ ︷[
Q2 −m2

2 + Π22 −Π12

−Π21 s−m2
1 + Π11

]
ij

=

= sinα cosα · (m2
1 −m2

2)− (Π11 −Π22) + (tanα ·Π12 − cotα ·Π21)

(Q2 −m2
1 + Π11)(Q2 −m2

2 + Π22)−Π12Π21
,

(6.5)

where Πij ≡ Πij(Q
2) denotes the imaginary part (multiplied by i) of the hihj self energy,

satisfying Πii(m
2
i ) = imiΓi. In magnitude, all of them are comparable to miΓi. Results

for Πij are collected in appendix A.

If |m1 − m2| � Γ1,Γ2, then the first term in the denominator, (Q2 − m2
1 + Π11)

(Q2−m2
2+Π22), dominates for any Q2, as well as the first term of the numerator, (m2

1−m2
2).

In such a case, the propagator can be approximated by

∆̂(Q2) ' sinα cosα · m2
1 −m2

2

(Q2 −m2
1 + Π11)(Q2 −m2

2 + Π22)
. (6.6)

It is easy to see that the above propagator could be rewritten (dropping terms proportional

to Γ1,2 in the numerator) as

∆̂(Q2) ' ∆̂(BW )(Q2) ≡ sinα cosα ·
[

1

Q2 −m2
1 + im1Γ1

− 1

Q2 −m2
2 + im2Γ2

]
, (6.7)

which reduces to the standard Breit-Wigner propagator. This simplified result has to be

replaced by the full formula whenever |m1 − m2| is comparable to the widths. In order

to investigate the case m1 ∼ m2 one has to calculate Πij . The explicit calculation (see

appendix A) confirms that

[(Π11 −Π22)− (tanα ·Π12 − cotα ·Π21)]
∣∣∣
m1=m2

= 0 . (6.8)
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Hence, the full propagator (6.5) vanishes in the limit m1 = m2, exactly as it should. An im-

portant consequence of this result is that in the double-resonance region of Q2 ∼ m2
1 ∼ m2

2,

in the closest vicinity of m1 = m2, the straightforward application of the Breit-Wigner

strategy is not appropriate.

However, in practice, the region |m1 −m2| . Γ1,2 is so narrow that the naive Breit-

Wigner approximated resummation (6.7) could be adopted, keeping in mind that exactly

on the diagonal m1 = m2 the cross sections do vanish.

7 Constraints expected from future e+e− colliders

Production of the Standard Model Higgs boson in the Higgsstrahlung process is considered

as a “golden channel” for a model independent determination of the Higgs boson properties

at future e+e− colliders. By reconstructing the produced Z bozon, Higgsstrahlung events

can be selected with high efficiency independently on the Higgs boson decay.

Largest sample of events can be selected when both leptonic and hadronic decay chan-

nels of the Z boson are considered. Reconstructing just the Z boson is of particular interest

when we look for rare processes involving the Higgs boson, for instance possible decays into

DM states. Events with mono-Z production, and no other activity in the detector, can

be considered as candidate events for the invisible Higgs boson decays, if the recoil mass,√
Q2, reconstructed from energy-momentum conservation, is consistent with the Higgs

boson mass. Highest sensitivity to invisible decays of the 125 GeV boson is expected at√
s ' 250 GeV, corresponding to the maximum of the Higgsstrahlung cross section. The

main background processes that limit the sensitivity at this energy range are the production

of ZZ and W+W− pairs, as well as single Z production via the WW fusion, e+e− → νeν̄eZ.

For the Z-boson pair production with one boson decaying into neutrinos, the final state

reconstructed in the detector is identical to the one expected for the invisible Higgs boson

decays and the recoil mass can be significantly overestimated due to beams spectra8 or

large initial state radiation. For hadronic Z-boson decays, also detector resolution effects,

dominated by the jet energy resolution, are very important. Nevertheless, due to branching

fraction much larger than in the leptonic case, the expected limits on the invisible decays of

the 125 GeV Higgs boson are dominated by hadronic Z decay measurements. For 2000 fb−1

of data collected at 250 GeV ILC, the expected limit on the invisible branching fraction is

0.23%, when combining hadronic and leptonic channels [48]. Similar sensitivity is expected

also for other future e+e− collider projects [49].

The Higgsstrahlung analysis can be extended to the search for production of a generic

scalar of arbitrary mass, assuming it is produced in association with the Z boson, as

described in the previous section. The analysis procedure is the same as for the 125 GeV

Higgs boson, only the event selection criteria have to be tuned to the considered scalar mass.

The cleanest sample of Higgsstrahlung events is obtained when selecting Z boson decaying

into muons, as the invariant mass of the µ+µ− pair can be reconstructed with sub-GeV

8At linear e+e− colliders the beamstrahlung effects result in the long tail in the beam energy spectra

towards low energies. When the electron or positron participating in the collision has the initial energy

much smaller than the nominal beam energy, the recoil mass can be significantly overestimated.
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Figure 8. The 95% CL exclusion limits [18, 50, 51] on the cross section for σ(e+e− → Z+ · · · )/σSM
at the ILC at

√
s = 250 GeV as a function of the mass of the extra Higgs boson h2. The ellipsis

denotes an undetected final state of invariant mass m2. The SM cross section assumes mhSM
= m2.

Limits calculated using the CL(s) approach [53].

precision and the background levels are significantly smaller than for the hadronic channel.

This channel gives the best sensitivity to the production of light scalars, below 125 GeV,

as the hadronic background levels increase rapidly towards low recoil masses, and superior

recoil mass reconstruction in muon channel allows for much better suppression of non-

resonant background. No assumptions are made on the scalar decay modes or branching

ratios. The expected number of events due to SM background processes remaining after

the optimized selection cuts and the corresponding signal selection efficiency can be used

to extract the expected cross-section limit on the new scalar production as a function of

its mass. Shown in figure 8 are the 95% CL exclusion limits expected for the ILC running

at
√
s = 250 GeV, normalized to the cross section for the SM Higgs boson production of

a given mass [18, 50, 51]. Presented results assume Z-boson identification by its µ+µ−

decays only. In the frequentist approach, the limit value is defined as the signal production

cross section which, with probability of 95%, would result in the observed number of events

higher than the SM expectation. The sensitivity is weakest for the scalar mass close to the

mass of the Z boson, due to the background from Z-boson pair production (with one Z

decaying into muons). Scalar masses up to the kinematic limit of
√
s−mZ ∼ 160 GeV can

be probed at 250 GeV.

To extend the limits towards higher scalar masses, e+e− collider running at higher

energies is needed. If the new scalar is heavier than 125 GeV and it is expected to decay

predominantly in invisible channels, the cross-section limits can be improved by considering

hadronic Z boson decays. This gives increase by a factor of 20 in the expected signal event

statistics (compared to the Z → µ+µ− decay channel) with only moderate increase in back-

ground levels, as the mono-Z signature allows for efficient suppression of SM background

processes [52].
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8 Numerical results

Here we will apply the strategy described in earlier sections to investigate how large the

total cross section for Z and DM production at an e+e− collider could be. In order to

maximize the cross section we will focus on colliders running at the CoM energy close

to
√
s = 250 GeV, while drawing figures we specialize to the case of the ILC at exactly√

s = 250 GeV [18, 50].

The cross section depends on four independent variables: m2, mDM, sinα and vS .

Instead of vS one can use X defined by (5.2), which is fixed by the relic abundance. Then,

for each point (m2,mDM) in our plots, figures 9–13, we choose such a value of sinα ≤ 0.3

that maximizes the cross section. Due to the resonant enhancement the cross section is

much greater in the area where at least one of on-shell mediators (h1,2) can decay into a

pair of DM particles. As seen from (6.1), the differential cross section is maximized when

the two Higgs bosons are on-shell at the same missing invariant mass
√
Q2 ' m1 ' m2.

Therefore, the total cross section is largest when m1 ' m2. Hence, the maximum appears

in the lower-left quarter as close to the diagonal m1 = m2 as allowed by the invisible-

branching-ratio condition.9 In the case of vector and fermion DM models, the direct

detection limits on the DM-nucleon cross section are very strong, a consequence of that is

that couplings between DM and the SM (parametrized by X ) must be severely suppressed.

Therefore, in general, in order to satisfy the DD constraint and at the same time provide

appropriate DM abundance, the early-Universe DM annihilation must occur in a vicinity

of a resonance, i.e. either 2mDM −m1 ' 0 or 2mDM −m2 ' 0. For the pGDM, because

of the natural suppression of the DD cross section (which is vanishing at the tree level

in the limit of zero momentum transfer, see section 5.3), the resonant annihilation is not

necessary to reproduce the correct DM abundance. Nevertheless, to compare the models,

we have found it convenient to plot the cross section in the space spanned by mDM−m1/2

and mDM −m2/2 in the vicinity of the resonance, i.e. mDM ' m1/2 and/or mDM ' m2/2.

The DM and h2 masses adopted hereafter satisfy the following constraints∣∣∣mDM −
m1,2

2

∣∣∣ < 5 GeV (8.1)

what implies that 57.5 GeV < mDM < 67.5 GeV and 105 GeV < m2 < 145 GeV.10

In figures 9–10 we plot maximized cross section for the Z and DM production (normal-

ized to the SM prediction for the ZhSM production, i.e. σSM = σ(e+e− → ZhSM)|mhSM
=m1)

at the ILC for pGDM, VDM and FDM models, respectively. The greenish colors de-

note regions where the models satisfy adopted constraints showing (by color) the corre-

sponding cross section. The cyan marks regions excluded by the SM invisible BR limit,

BR(h1 → DM) < 0.19, while the black corresponds to parameters excluded by the DD

limit (see section 5.3). As explained earlier, the allowed regions for the VDM and the

FDM models appear in the vicinity of resonant DM annihilation. For the gray region, the

9It should be remembered that in the closest vicinity of m1 = m2 one should adopt the results discussed

at the end of section 6. However, with the resolution adopted to draw plots in this paper those effects

are invisible.
10Region in (mDM,m2) plane that corresponds to (8.1) is not a rectangle.
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benchmark point for pGDM

m2 = 120.8 GeV , mDM = 58.9 GeV ,

sinα = 0.30 , vS = 646 GeV ,

Γ1 = 7.4 · 10−3 GeV , Γ2 = 9.8 · 10−3 GeV ,

BR(h1 → DM) = 19% , BR(h2 → DM) = 95% ,

σ = 62 fb

Figure 9. The figure shows, for the pGDM, the allowed region (greenish), the region forbidden by

the invisible BR of h1 (cyan) where BR(h1 → DM) > 19% and the gray region where the normalized

cross section falls below its expected precision at the 95% CL shown in figure 8. Coloring of the

greenish area, explained in the legend, shows the value of the normalized total cross section σ/σSM .

The star denotes the chosen benchmark point, characterized by relatively high cross section.

expected 95% CL sensitivity limit for σ/σSM (shown in figure 8) is above the σ/σSM predic-

tion. Therefore, one can conclude that the greenish regions are those which are detectable

at the ILC, assuming that the sinα is close to the value that maximizes the cross section.

It turns out that usually the sinα that provides maximal cross section is just at the largest

value allowed by the LHC Higgs signal measurement, sinα ' 0.3. The fair conclusion

from inspecting figures 9–10 is that in the substantial part of the parameter range that

was shown, the DM production can be detected at future e+e− colliders running around√
s = 250 GeV.

The simplest and straightforward way to disentangle the models is to measure m2

and mDM and then verify if the measured masses are consistent with any of the discussed

models after imposing constraints. In other words, one would need to check if for the

measured values of m2 and mDM the corresponding point (mDM − m1/2,mDM − m2/2)

is located in the greenish area in any of figures 9–10. In order to facilitate and illustrate

the verification, we have made plots shown in figure 11. The upper-left panel shows the

cyan region where the pGDM is excluded by the h1-invisible-BR condition, while the white

region is allowed. In the upper-right panel the yellow regions denote region where the

FDM model is disallowed, while white color stands again for region that agrees with all the

constraints. Similarly, the lower-left panel shows forbidden (magenta) and allowed (white)

regions for the VDM model. The lower-right plot combines results for all the models;

again, white denotes the region where all the models are allowed. As it is seen, there exist

regions where two or even three models coexist. However, there is also, in the lower-right

panel, the magenta region where only the pGDM may exist. Therefore, the very first step
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benchmark point for VDM

m2 = 118.4 GeV , mDM = 58.5 GeV ,

sinα = 0.30 , vS = 561 GeV ,

Γ1 = 7.4 · 10−3 GeV , Γ2 = 6.4 · 10−3 GeV ,

BR(h1 → DM) = 18% , BR(h2 → DM) = 92% ,

σ = 61 fb

benchmark point for FDM

m2 = 123.6 GeV , mDM = 61.1 GeV ,

sinα = 0.30 , vS = 76 GeV ,

Γ1 = 7.4 · 10−3 GeV , Γ2 = 5.9 · 10−3 GeV ,

BR(h1 → DM) = 18% , BR(h2 → DM) = 91% ,

σ = 59 fb

Figure 10. As in figure 9 for the VDM model (left) and the FDM model (right). The region

forbidden by the DD constraint is denoted by black color.

in an attempt to disentangle the models should be a measurement of m2 and mDM and its

verification against the results shown in figure 11. Even though there is a substantial region

of full degeneracy (white), there exists also significant area where some valuable conclusions

could be drawn. It is even conceivable that this measurement would be consistent with the

spin 0 (pGDM) hypothesis only.

Now, we would like to focus on estimating chances to disentangle pairs of the models by

the measurement of the normalized cross section σ/σSM. In order to verify this option, we

plot (figures 12 and 13) differences between model predictions and compare them against

the expected experimental precision given by the limit provided by figure 8. As previously,

it turns out that the highest differences are obtained for sin α as large as allowed, i.e.

sinα ' 0.3. More reddish color indicate parameter regions for which models that are

being compared are easier to disentangle since there an absolute value of the corresponding

difference of cross sections is larger. It is clear that the disentanglement is a very ambitious

task. It seems that only the VDM and the pGDM could be relatively easily disentangled

by the measurement of e+e− → Z + · · · cross section at future e+e− colliders operating

near
√
s = 250 GeV if the parameters are in the more reddish regions of figure 12.
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Figure 11. The parameter space allowed or forbidden for the discussed models. Top-left: pGDM

model, top-right: FDM model, bottom-left: VDM model, bottom-right: the three models combined.

Light- and dark-gray regions denote violation of perturbativity conditions (5.14). Note that the

|κ| < 4π condition is not violated in any place of the considered range of parameters.
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Figure 12. The difference between predictions for the pGDM and the VDM. The gray region

denotes parameter space for which the difference is smaller than the limit of figure 8. The models

are compared in the region where both of them are consistent with the data, see figure 11.

Figure 13. The difference between predictions for the pGDM and the FDM (left panel), and the

FDM and the VDM (right panel). The gray region denotes parameter space for which the difference

is smaller than the limit of figure 8. The models are compared in the region where both of them

are consistent with the data, see figure 11.
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9 Summary

In this analysis, our goal was to investigate how could one disentangle models of dark

matter of different spin at future e+e− colliders operating near
√
s = 250 GeV. For that

purpose, we adopted the ILC project with the CoM energy at
√
s = 250 GeV. Our strategy

was pragmatic and phenomenological. We considered three nearly simplest models of dark

matter of spin 0, 1 and 1/2. The models adopted here were not the “simplified” ones,

discussed often in a phenomenological literature on dark matter; in contrast, they were

simple but attractive, consistent and renormalizable quantum field theories. In spite of

dark-matter-spin differences, the models considered here share exactly the same parameter

space, so the comparison point by point was meaningful. It turned out that the most

promising region of the parameter space is located near the double resonance 2mDM ∼ m1,2.

It has been shown that in this region, in the closest vicinity of m1 = m2, the naive Breit-

Wigner strategy must be replaced by a proper resummation of 1-loop Higgs-boson self-

energies that takes into account their off-diagonal elements.

In order to verify if a model was testable, we had adopted expected 95% CL sensitivity

for the measurement of the e+e− → Z + · · · cross section obtained for the ILC project.

It has been assumed that only the Z boson is reconstructed without any other detector

activity. Predictions of the models were calculated taking into account the dark matter

abundance, indirect and direct detection experiments and the collider constraints on the

Higgs-boson invisible branching ratio and limits on the mixing angle (present in all the

models). That way, regions of the parameter space where the cross section would be

measurable were obtained for each of the models. We have also discussed the possibility to

disentangle the models by a measurement of the cross section. It turned out that the most

optimistic case is the detection of differences between the pseudo-Goldstone dark matter

(spin 0) and the vector dark matter (spin 1). Regions of the parameter space where no

model is allowed or some models could coexist were also determined.

Acknowledgments

The work was partially supported by the National Science Centre (Poland) OPUS re-

search projects under contracts nos. UMO-2017/25/B/ST2/00191 and UMO-2017/25/

B/ST2/00496, and HARMONIA project under contract no. UMO-2015/18/M/ST2/00518

(2016–2019).

A Higgs boson self-energies and decay widths

Here we collect results for imaginary parts of two-point functions Πij(Q
2) for Higgs bosons

hi,j . Each self-energy is a sum of contributions of loops with various intermediate states11

being on-shell:

Πij = ΠDM
ij + ΠW+W−

ij + ΠZZ
ij +

∑
q

Πqq̄
ij +

∑
l

Πl+l−
ij +

∑
k,l

Πhkhl
ij , (A.1)

11We omit tadpole and seagull diagrams.

– 24 –



J
H
E
P
0
8
(
2
0
2
0
)
0
5
2

where DM stands for dark matter particle A, X or ψ while q denotes SM quarks and l

denotes SM leptons. These contributions are given by (see [46] for the VDM case12):

ΠDM
ij (Q2) = I(Q2,mDM,mDM)

R2iR2j

32π2v2
S

(mimj)
2×

×


1 (pGDM)

1− 2m2
DM

4Q2−m2
i−m2

j

(mimj)2
+ 12

(
m2

DM
(mimj)2

)2
(VDM)

2
m2

DMQ
2

(mimj)2

(
1− 4

m2
DM
Q2

)
(FDM)

, (A.2)

ΠW+W−
ij (Q2) = I(Q2,mW ,mW )

R1iR1j

16π2v2
(mimj)

2×

×

[
1− 2m2

W

4Q2 −m2
i −m2

j

(mimj)2
+ 12

m4
W

(mimj)2

]
, (A.3)

ΠZZ
ij (Q2) = I(Q2,mZ ,mZ)

R1iR1j

32π2v2
(mimj)

2×

×

[
1− 2m2

Z

4Q2 −m2
i −m2

j

(mimj)2
+ 12

m4
Z

(mimj)2

]
, (A.4)

Πqq̄
ij (Q2) = I(Q2,mq,mq) ·

3R1iR1j

8π2v2
m2
qQ

2

(
1− 4

m2
q

Q2

)
, (A.5)

Πl+l−
ij (Q2) = I(Q2,ml,ml) ·

R1iR1j

8π2v2
m2
lQ

2

(
1− 4

m2
l

Q2

)
, (A.6)

Πhkhl
ij (Q2) = I(Q2,mk,ml) ·

ViklVjkl
32π2

, (A.7)

where

V111 ≡ 3m2
1

(
sin3 α

vS
+

cos3 α

v

)
, (A.8)

V112 = V121 = V211 ≡ (2m2
1 +m2

2) sinα cosα

(
sinα

vS
− cosα

v

)
, (A.9)

V221 = V212 = V122 ≡ (m2
1 + 2m2

2) sinα cosα

(
cosα

vS
+

sinα

v

)
, (A.10)

V222 ≡ 3m2
2

(
cos3 α

vS
− sin3 α

v

)
(A.11)

are the couplings corresponding to the hihjhk vertices (i, j, k = 1, 2) [46] and

I(Q2,ma,mb) ≡ i · Im
[
B0(Q2,m2

a,m
2
b)
]

=

= i · Im
[

1

iπ2

∫
d4l

(l2 −m2
a)[(l +Q)2 −m2

b ]

]
=

= iπ ·
λ1/2(Q2,m2

a,m
2
b)

Q2
· 1Q2>(ma+mb)2

⇒ I(Q2,m,m) = iπ ·

√
1− 4m2

Q2
· 1Q2>4m2

(A.12)

12In [46], there is an additional i factor in the definition of Vijk, hence additional minus in their version

of eq. (A.7).
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are imaginary parts13 (times i) of appropriate loop integrals B0 [54], where λ denotes the

Källén function, defined as

λ(a, b, c) ≡ a2 + b2 + c2 − 2(ab+ bc+ ca) . (A.13)

By straightforward calculations it can be shown that[(
Πab

11 −Πab
22

)
−
(

tanα ·Πab
12 − cotα ·Πab

21

)] ∣∣∣
m1=m2

= 0 (A.14)

for ab = DM, W+W−, ZZ, qq̄, l+l−, hkhl (in the last case one has to sum over k, l = 1, 2).

Hence, also the sum over all contributions vanishes in this limit:

[(Π11 −Π22)− (tanα ·Π12 − cotα ·Π21)]
∣∣∣
m1=m2

= 0 . (A.15)

The h1’s and h2’s partial widths can be calculated as

Γhi→ab =
Πab
ii (m2

i )

imi
.

The widths relevant for this project are therefore given by

Γhi→DM =
R2

2i

v2
S

m3
i

32π

√
1−

4m2
DM

m2
i

×

×


1 (pGDM)

1− 4
m2

DM

m2
i

+ 12
(
m2

DM

m2
i

)2
(VDM)

2
m2

DM

m2
i

(
1− 4

m2
DM

m2
i

)
(FDM)

, (A.16)

Γhi→SM = R2
1i · γ(mi) (A.17)

(γ denotes the decay width of SM Higgs particle of given mass) ,

Γh1→h2h2 = sin2 α cos2 α (m2
1 + 2m2

2)2

(
cosα

vS
+

sinα

v

)2
√
m2

1 − 4m2
2

32πm2
1

'

' sin2 α cos4 α

v2
S

(m2
1 + 2m2

2)2

√
m2

1 − 4m2
2

32πm2
1

, (A.18)

Γh2→h1h1 = sin2 α cos2 α (2m2
1 +m2

2)2

(
sinα

vS
− cosα

v

)2
√
m2

2 − 4m2
1

32πm2
2

'

' sin2 α cos4 α

v2
(2m2

1 +m2
2)2

√
m2

2 − 4m2
1

32πm2
2

. (A.19)

13The choice of the sign depends on the corresponding choice in ln(−1) = ±iπ. We want the imaginary

part to be positive, since it corresponds to the correct asymptotic value, i.e. Πii(m
2
i ) = +imiΓi.
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B Passarino-Veltman functions

Functions used in eq. (5.8) are defined in terms of Passarino-Veltman functions [54]:

D(0, 0,
√
p2;ma,mb,mc,md) ≡

pµ

p2
Dµ(0, 0, p;ma,mb,mc,md) , (B.1)

C(0,
√
p2;ma,mb,mc) ≡

pµ

p2
Cµ(0, p;ma,mb,mc) . (B.2)

Explicit values are:

D(0, 0,mDM;m1,m1,m2,mDM) = (B.3)

=
pµ

m2
DM

1

iπ2

∫
d4l

lµ

(l2 −m2
1)2(l2 −m2

2)
[
(l + p)2 −m2

DM

]∣∣∣
p2=m2

DM

=

=
1

m2
1 −m2

2

[C(0,mDM;m1,m1,mDM)− C(0,mDM;m1,m2,mDM)] ,

D(0, 0,mDM;m1,m2,m2,mDM) = (B.4)

=
pµ

m2
DM

1

iπ2

∫
d4l

lµ

(l2 −m2
1)(l2 −m2

2)2
[
(l + p)2 −m2

DM

]∣∣∣
p2=m2

DM

=

= − 1

m2
1 −m2

2

[C(0,mDM;m2,m2,mDM)− C(0,mDM;m1,m2,mDM)] ,

C(0,mDM;m1,m2,mDM) = (B.5)

=
pµ

m2
DM

1

iπ2

∫
d4l

lµ

(l2 −m2
1)(l2 −m2

2)
[
(l + p)2 −m2

DM

]∣∣∣
p2=m2

DM

=

=
1

m2
1 −m2

2

[B(mDM;m1,mDM)−B(mDM;m2,mDM)] ,

where the following auxiliary functions are used:

C(0,mDM;mi,mi,mDM) = (B.6)

= − 1

m2
DM

[
1 +

x+
i (x+

i − 1)

x+
i − x

−
i

ln

(
x+
i − 1

x+
i

)
−
x−i (x−i − 1)

x+
i − x

−
i

ln

(
x−i − 1

x−i

)]
,

B(mDM;mi,mDM) = (B.7)

= −1

2

[(
2

ε
− γ + ln

µ2

m2
DM

)
+

+1 +
m2
i

m2
DM

+ (x+
i )2 ln

(
x+
i − 1

x+
i

)
+ (x−i )2 ln

(
x−i − 1

x−i

)]
,

x±i ≡
m2
i ±

√
m4
i − 4m2

im
2
DM

2m2
DM

. (B.8)

The
(

2
ε − γ + ln µ2

m2
DM

)
term present in eq. (B.7) appears due to the chosen regularization

scheme and cancels out in eq. (B.5).
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[41] H. Dreiner, M. Huck, M. Krämer, D. Schmeier and J. Tattersall, Illuminating Dark Matter at

the ILC, Phys. Rev. D 87 (2013) 075015 [arXiv:1211.2254] [INSPIRE].

[42] Z.-H. Yu, X.-J. Bi, Q.-S. Yan and P.-F. Yin, Dark matter searches in the mono-Z channel at

high energy e+e− colliders, Phys. Rev. D 90 (2014) 055010 [arXiv:1404.6990] [INSPIRE].

[43] N. Wan, M. Song, G. Li, W.-G. Ma, R.-Y. Zhang and J.-Y. Guo, Searching for dark matter

via mono-Z boson production at the ILC, Eur. Phys. J. C 74 (2014) 3219

[arXiv:1403.7921] [INSPIRE].

[44] J. Liu, X.-P. Wang and F. Yu, A Tale of Two Portals: Testing Light, Hidden New Physics at

Future e+e− Colliders, JHEP 06 (2017) 077 [arXiv:1704.00730] [INSPIRE].

[45] S. Dutta, D. Sachdeva and B. Rawat, Signals of Leptophilic Dark Matter at the ILC, Eur.

Phys. J. C 77 (2017) 639 [arXiv:1704.03994] [INSPIRE].

[46] M. Duch, B. Grzadkowski and A. Pilaftsis, Gauge-Independent Approach to Resonant Dark

Matter Annihilation, JHEP 02 (2019) 141 [arXiv:1812.11944] [INSPIRE].

[47] G. Cacciapaglia, A. Deandrea and S. De Curtis, Nearby resonances beyond the Breit-Wigner

approximation, Phys. Lett. B 682 (2009) 43 [arXiv:0906.3417] [INSPIRE].

[48] Y. Kato, Probing the dark sector via searches for invisible decays of the Higgs boson at the

ILC, in 2019 European Physical Society Conference on High Energy Physics, (2020)

[arXiv:2002.12048] [INSPIRE].

[49] J. de Blas et al., Higgs Boson Studies at Future Particle Colliders, JHEP 01 (2020) 139

[arXiv:1905.03764] [INSPIRE].

[50] International Large Detector Concept Group collaboration, Search for Light

Scalars Produced in Association with a Z boson at the 250 GeV stage of the ILC, PoS

ICHEP2018 (2019) 630 [INSPIRE].

[51] Y. Wang, Search for Extra Scalars Produced in Association with a Z boson at the ILC, talk

at The International Workshop on Future Linear Colliders (LCWS) 2018, Arlington, U.S.A.,

22–26 October 2018.

[52] CLICdp collaboration, Sensitivity to new physics scenarios in invisible Higgs boson decays at

CLIC, in International Workshop on Future Linear Colliders, (2020) [arXiv:2002.06034]

[INSPIRE].

[53] A.L. Read, Presentation of search results: The CLs technique, J. Phys. G 28 (2002) 2693

[INSPIRE].

[54] A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop

level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [arXiv:0709.1075]

[INSPIRE].

– 30 –

https://doi.org/10.1103/PhysRevLett.121.111302
https://arxiv.org/abs/1805.12562
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.12562
https://doi.org/10.1103/PhysRevD.97.055020
https://doi.org/10.1103/PhysRevD.97.055020
https://arxiv.org/abs/1711.05722
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.05722
https://doi.org/10.1016/j.physletb.2019.04.025
https://arxiv.org/abs/1809.05937
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.05937
https://doi.org/10.1103/PhysRevD.87.075015
https://arxiv.org/abs/1211.2254
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1211.2254
https://doi.org/10.1103/PhysRevD.90.055010
https://arxiv.org/abs/1404.6990
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1404.6990
https://doi.org/10.1140/epjc/s10052-014-3219-2
https://arxiv.org/abs/1403.7921
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1403.7921
https://doi.org/10.1007/JHEP06(2017)077
https://arxiv.org/abs/1704.00730
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.00730
https://doi.org/10.1140/epjc/s10052-017-5188-8
https://doi.org/10.1140/epjc/s10052-017-5188-8
https://arxiv.org/abs/1704.03994
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.03994
https://doi.org/10.1007/JHEP02(2019)141
https://arxiv.org/abs/1812.11944
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.11944
https://doi.org/10.1016/j.physletb.2009.10.090
https://arxiv.org/abs/0906.3417
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0906.3417
https://arxiv.org/abs/2002.12048
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.12048
https://doi.org/10.1007/JHEP01(2020)139
https://arxiv.org/abs/1905.03764
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.03764
https://doi.org/10.22323/1.340.0630
https://doi.org/10.22323/1.340.0630
https://inspirehep.net/search?p=find+J%20%22PoS%2CICHEP2018%2C630%22
https://arxiv.org/abs/2002.06034
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.06034
https://doi.org/10.1088/0954-3899/28/10/313
https://inspirehep.net/search?p=find+J%20%22J.Phys.%2CG28%2C2693%22
https://doi.org/10.1002/prop.2190410402
https://arxiv.org/abs/0709.1075
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0709.1075

	Introduction
	Pseudo-Goldstone dark matter
	Vector dark matter
	Fermion dark matter
	Astrophysical and other constraints
	Dark matter abundance
	Dark matter indirect detection
	Dark matter direct detection
	Collider constraints
	Theoretical constraints

	Production of DM pairs at future e**(+) e**(-) colliders
	Constraints expected from future e**(+) e**(-) colliders
	Numerical results
	Summary
	Higgs boson self-energies and decay widths
	Passarino-Veltman functions

