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1 Introduction

Interfaces in a quantum field theory are codimension-one objects that connect two neigh-

boring regions in spacetime. Though they exhibit rich physical properties, they have been

as yet only partially explored. Interfaces appear in various physical contexts such as con-

densed matter physics, supersymmetric field theories, and string theory. In this paper we

are particularly interested in the interfaces that are characterized by a spatial change in

the values of the coupling constants; such interfaces are called Janus interfaces [1, 2]. More

specifically, we will study the entanglement entropy associated with the Janus interface in

four-dimensional (4d) N = 2 supersymmetric gauge theories.

For 2d N = (2, 2) superconformal field theories (SCFTs), the reference [3] found an

intriguing relation between the interface entropy (the g-function [4]) and the quantity D
known as Calabi’s diastasis. Let us consider the Kähler potential on the (super)conformal

manifold, i.e., the space of exactly marginal couplings τ = (τI) preserving N = (2, 2)

superconformal symmetry. For notational simplicity and without loss of generality we

assume that there is only one complex marginal coupling τ . Let τ∗ be the complex conjugate

of τ , and τ an independent complex variable. For τ−τ∗ small enough, one can analytically

continue the Kähler potential so that the function K(τ, τ) that depends holomorphically

on τ and τ reduces to it when τ = τ∗ [5]. Let τ+ and τ− be two points that are close enough.

Calabi’s diastasis is the function given by the following combination of the analytically

continued Kähler potentials:

D := K(τ+, τ+) +K(τ−, τ−)−K(τ+, τ−)−K(τ−, τ+) . (1.1)

It can be viewed as a measure of separation between the two points on the conformal man-

ifold; it becomes proportional to the usual metric when the two points are infinitesimally

close. The finding of [3] is that the g-function of the interface across which the couplings of

the SCFT take different values (τ+, τ+) and (τ−, τ−) is given in terms of Calabi’s diastasis

function D as

2 log g = D . (1.2)

This formula provides an interpretation of the interface entropy in terms of the geome-

try of the space of quantum field theories. The claim of [3] was further confirmed via

holography [6], super-Weyl anomaly [7], and supersymmetric (SUSY) localization [8].
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A generalization of the relation (1.2) to 4d N = 2 theories was conjectured in [9]. In

general one can define the entropy SI of an interface that separates CFT+ and CFT− as

SI = S
(ICFT)
E − 1

2

(
S

(CFT+)
E + S

(CFT−)
E

)
, (1.3)

where S
(ICFT)
E is the entanglement entropy for a spherical entangling surface in the interface

CFT (ICFT), and S
(CFT±)
E is the entanglement entropy computed using the same geometry

for CFT± without an interface. The reference [9] conjectured that the interface entropy

SI for a half-BPS Janus interface in a 4d N = 2 SCFT is again proportional to Calabi’s

diastasis on the N = 2 conformal manifold

SI ∝ D . (1.4)

In [9] the conjecture was confirmed for a special case, namely the large-N limit of N = 4

SU(N) super Yang-Mills, using the result of the holographic calculation of the interface

entropy performed in [10].

Both for 2d N = (2, 2) and 4d N = 2 SCFTs, the Kähler potential on the conformal

manifold is related to the sphere partition function Z[Sd] as logZ[Sd] ∝ K(τ, τ) [11–13].

Thus one can relate the interface entropy not just to Calabi’s diastasis but also to a ratio

of the sphere partition functions in the presence and in the absence of the interface. Indeed

the paper [14] formulated a relation between the entropy of a conformal defect of general

codimension defined in terms of the entanglement entropy and the ratio of the sphere

partition functions in the presence and in the absence of the defect. The main aim of this

paper is to derive the formula (1.4), based on a certain assumption, using CFT techniques

similar to [14]. We restrict to N = 2 superconformal theories realized as gauge theories

with Lagrangians, and to marginal couplings identified with complexified gauge couplings,

because part of our analysis uses SUSY localization. It is, however, formally possible to

apply the localization to a non-Lagrangian SCFT whose flavor symmetry is gauged by a

vector multiplet. It is conceivable that exactly marginal couplings in N = 2 SCFTs can

always be realized as gauge couplings.

We summarize the steps for deriving the formula (1.4) as follows.

1. Based on the replica trick and the Casini-Huerta-Myers map [15, 16] we show that

the interface entropy (1.3) is proportional to a ratio of the CFT sphere partition

functions in the presence and in the absence of the interface:

SI = log

[
Z(ICFT)[S4]

(Z(CFT+)[S4]Z(CFT−)[S4])1/2

]
. (1.5)

2. We assume that in the presence of a half-BPS superconformal interface I in an

N = 2 superconformal field theory, the conformal sphere partition function defined

in a conformally invariant scheme equals the absolute value of the SUSY sphere

partition function defined in a supersymmetric but not necessarily conformally in-

variant scheme:

Assumption: Z(ICFT)[S4] =
∣∣ZISUSY[S4]

∣∣ . (1.6)
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3. We show by SUSY localization that the SUSY sphere partition function with a Janus

interface is given by the analytic continuation of the sphere partition function without

an interface:

ZISUSY[S4](τ+, τ−) is holomorphic in τ+ and τ− ,

Z(CFT)[S4](τ, τ) = ZISUSY[S4](τ+ = τ, τ− = τ) . (1.7)

4. Use the relation

logZ(CFT)[S4](τ, τ) =
1

12
K(τ, τ) (1.8)

between the sphere partition function and the Kähler potential to derive the rela-

tion (1.4).

Our derivation of the relation (1.4) relies on the non-trivial assumption (1.6). We note,

however, that the quantity (1.5) with the replacement (1.6) naturally arises if we replace

S
(ICFT)
E by a limit of the supersymmetric Rényi entropy, which was introduced in [17] and

is defined using supergravity backgrounds that preserve the supersymmetries used for lo-

calization. Thus even without the assumption (1.6), Calabi’s diastasis naturally arises if we

use the supersymmetric Rényi entropy as an alternative definition of the interface entropy.

In performing SUSY localization, a useful tool is what we call the off-shell construction

of supersymmetric defects. Namely we promote a coupling constant to a supermultiplet

(coupling multiplet) and give it a non-trivial spatial profile. Part of supersymmetry can

be preserved by turning on auxiliary fields in the coupling multiplet in such a way that the

variations of the fermions vanish. This method was used in [8, 18–21] for various defects.

Here we apply it to the half-BPS Janus interface in a 4d N = 2 gauge theory, which was

studied previously based on different constructions [22–26].

The outline of this paper is as follows. In section 2 we begin with the discussion

of conformal interfaces in general, not necessarily supersymmetric, CFTs. We define the

interface entropy in terms of entanglement entropies and use the Casini-Huerta-Myers map

to relate it to a ratio of the sphere partition functions in the presence and in the absence

of the interface. We then explain our assumption (1.6) regarding half-BPS (not necessarily

Janus) superconformal interfaces in N = 2 SCFTs. We also explain that this assumption

is natural from the point of view of the supersymmetric Rényi entropy [17]. Section 3 is

devoted to the off-shell construction of the half-BPS Janus interface. We illustrate the

off-shell construction by the simpler case of the flat space, and then construct the Janus

interface on S4 using off-shell supergravity. In section 4 we perform SUSY localization

with the Janus interface to show the relation (1.7). The relation between the interface

entropy and the sphere partition functions is combined with the results of localization

to show that the entropy of the Janus interface is proportional to Calabi’s diastasis as

written in (1.7). In section 5 we perform two holographic computations. First, for N = 4

SU(N) super Yang-Mills theory, we compute holographically the sphere partition function

(or its logarithm, the free energy) in the presence of the Janus interface by evaluating the

on-shell action in the supergravity background dual to the interface [27]. This involves a

certain regularization near the AdS boundary. Second, again for the N = 4 theory, we

– 3 –
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revisit the computation of the holographic entanglement entropy of the interface, using the

same regularization method as for the on-shell action. The two calculations serve as a check

of (1.5). We conclude with discussion in section 6. Appendix A collects our conventions and

notations, as well as useful facts abound supersymmetry and supergravity. Appendices B

and C contain technical details that we use in the main text.

2 Interface entropies in CFT and SCFT

In this section we define the interface entropy in terms of entanglement entropies and

relate it to a ratio of the sphere partition functions in the presence and in the absence of

the interface. We also explain our assumption (1.6) regarding half-BPS superconformal

interfaces in N = 2 SCFTs.

2.1 Entanglement entropy in the presence of an interface

We begin by reviewing the standard definition of the entanglement entropy, with a confor-

mal interface included in a straightforward way. For a similar discussion with defects of

general codimensions, see [14].

We consider a 4d CFT in Minkowski space with coordinates (t, y1, y2, y3). Let us

introduce along the hyperplane y3 = 0 a conformal interface I that preserves a sub-

group SO(2, 3) of the conformal group SO(2, 4). We also use spherical coordinates (r, φ, χ)

related to the Cartesian coordinates as (y1, y2, y3) = (r sinφ cosχ, r sinφ sinχ, r cosφ). Let

us take the entangling surface Σ to be a 2-sphere with radius R inside the t = 0 time slice

Σ = {t = 0, r = R} . (2.1)

We decompose the Hilbert space modified by I, HI , into the tensor product of HA and HB
that correspond to the regions r < R and r > R in the constant time slice R3 at t = 0,

respectively:1

HI = HA ⊗HB . (2.2)

Inside the t = 0 slice, the entangling surface r = R intersects the interface along the

great circle at φ = π/2. Using the ground state |0〉 ∈ HI we form the density matrix

ρ = trB|0〉〈0| by the partial trace over HB. Next, by taking the partial trace over HA we

define the entanglement entropy

S
(ICFT)
E := −trA ρ log ρ , (2.3)

and the Rény entropy

S(ICFT)
n :=

1

1− n
log trA ρ

n . (2.4)

The two quantities are related as

lim
n→1

S(ICFT)
n = S

(ICFT)
E . (2.5)

By construction S
(ICFT)
E and S

(ICFT)
n are non-negative.

1We choose not to delve into to the subtleties associated with such a decomposition for a gauge theory.
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The replica trick identifies the quantity trA ρ
n with the partition function Z[Mn], i.e.,

the path integral on the n-fold branched cover Mn of the Euclidean space R4, normalized

by Z[M1]n:

trA ρ
n =

Z[Mn]

Z[M1]n
. (2.6)

Since we are interested in the continuous limit n → 1, we wish to define Mn for non-

integer n.

A useful tool to achieve this is the so-called Casini-Huerta-Myers map [15, 16]. We

perform the Wick rotation via the substitution t → −it and consider the Euclidean space

with coordinates (t, y1, y2, y3) and the metric

ds2
R4 = dt2 + dr2 + r2

(
dφ2 + sin2 φ dχ2

)
. (2.7)

Let us perform a change of coordinates to (τ, θ, φ, χ) via (the Euclidean version of) the

Casini-Huerta-Myers (CHM) map2

t = R
sin θ sin τ

1 + sin θ cos τ
,

r = R
cos θ

1 + sin θ cos τ
.

(2.8)

Through this, the Euclidean space is conformally equivalent to the round sphere as

ds2
R4 = Ω2ds2

S4 , (2.9)

with the conformal factor

Ω =
R

1 + sin θ cos τ
(2.10)

and the round sphere metric

ds2
S4 = dθ2 + sin2 θ dτ2 + cos2 θ

(
dφ2 + sin2 φ dχ2

)
. (2.11)

The entangling surface Σ is mapped to the 2-sphere at θ = 0. The translation in the τ direc-

tion fixes Σ and corresponds to the modular flow generated by the modular Hamiltonian H

defined by ρ = e−H [15]. See figure 1. The n-fold cover Mn has the metric

ds2
Mn

= Ω2ds2
S4n
, (2.12)

with

ds2
S4n

= dθ2 + n2 sin2 θ dτ2 + cos2 θ
(
dφ2 + sin2 φ dχ2

)
. (2.13)

The range of τ is 0 ≤ τ < 2π. This metric is singular for n 6= 1.

2We believe that the reader can distinguish, based the context, the coordinate τ from the coupling τ .
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Figure 1. (Left) A codimension-one conformal interface I and the entangling surface (within

the constant time slice t = 0) in the 4d Euclidean spacetime R4. The τ direction (blue arrow)

corresponds to the modular flow. (Right) The conformal interface extends along the equator S3 at

φ = π/2 of the 4-sphere S4.

2.2 Interface entropy and the sphere partition function

Armed with the CHM map (2.12) associating the replica space Mn to the n-fold cover of

a 4-sphere S4
n, we will derive a relation between the entanglement entropy and the sphere

partition function in ICFT. While we are only concerned with ICFT in four dimensions

there is no difficulty in repeating the same argument for the CHM map in general d di-

mensions (just by replacing the entangling region S2 with Sd−2). So we closely follow the

derivation in [14] which uses the dimensional regularization for calculating the entangle-

ment entropy in CFT with conformal defects for a moment. This approach is not only

general enough, but also simplifies the derivation by avoiding an extra care for conformal

anomalies as they are automatically incorporated into poles at even dimensions. We defer

the discussion about conformal anomalies in ICFT to section 6.4.

In the dimensional regularization we adopt a scheme such that the theory is strictly

conformal even at quantum level. In other words, we start with an odd-dimensional CFT

without conformal anomalies and analytically continue it to general dimensions. Hence

the CFT partition functions, even in the presence of an interface, on the n-fold covers

of the Euclidean space and d-sphere are the same under conformal transformation of the

type (2.12):

Z(ICFT)[Mn] = Z(ICFT)[Sdn] . (2.14)

Note that the equality between the two partition functions holds only up to power-law

UV divergences. It follows from this relation together with (2.4) and (2.6) that the Rényi

entropy across a sphere in ICFT is given by

S(ICFT)
n =

1

1− n
log

Z(ICFT)[Sdn](
Z(ICFT)[Sd]

)n . (2.15)

We note that this expression is trivially valid in the absence of an interface.

Now we consider an interface CFT built out of two CFTs, CFT+ and CFT−, glued

together along the interface I. We define the interface entropy as the contribution to the

– 6 –
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entanglement entropy by the interface I:

SI ≡ S(ICFT)
E −

S
(CFT+)
E + S

(CFT−)
E

2
. (2.16)

Using (2.5) and (2.15) we can write the quantity S
(ICFT)
E in (2.16) as

S
(ICFT)
E = log Z(ICFT)[Sd]− ∂n logZ(ICFT)[Sdn]

∣∣∣
n=1

. (2.17)

We wish to show that the second term in (2.17) vanishes, i.e., that the relation

S
(ICFT)
E = log Z(ICFT)[Sd] (2.18)

holds. For this we need the behavior of the Rényi entropy (2.15) in ICFT at n = 1 + ε

with small ε. In the framework of general, not necessarily supersymmetric, conformal field

theory, logZ(ICFT)[Sdn] and logZ(ICFT)[Sd] differ by the variation of the background metric

δgττ = (n2 − 1) sin2 θ. In terms of the stress tensor defined by

〈Tµν〉 = − 2
√
g

δ logZ

δgµν
, (2.19)

where Z is a general partition function that depends on the metric, we can write

− log Z(ICFT)[Sdn] + log Z(ICFT)[Sd] = +
1

2

∫
Sd
δgµν 〈Tµν 〉(ICFT)

Sd +O(ε2) . (2.20)

To study the one-point function of the stress tensor we use a conformal mapping between Sd

and the flat space. This map may be but does not have to be the CHM map (2.8). In

general the one-point function 〈Tµν 〉(ICFT)

Sd transforms under a conformal transformation as

〈Tµν 〉(ICFT)

Sd = (Weyl factor)2〈Tµν 〉(ICFT)

Rd . (2.21)

One can easily show 〈Tµν 〉(ICFT)

Rd vanishes due to the residual conformal symmetry SO(1, 4)

preserved by the interface [28, 29], so we conclude that the interface entropy is given by

the combination

SI = log

[
Z(ICFT)[Sd]

(Z(CFT+)[Sd]Z(CFT−)[Sd])1/2

]
, (2.22)

of the sphere partition functions with and without an interface. In what follows we will

use this relation in the calculation of the interface entropy in d = 4 dimensions.

2.3 Interface entropy in SCFT

We now turn to half-BPS superconformal interfaces in 4d N = 2 superconformal field

theories. For our conventions, see appendix A.1.

In flat space with Cartesian coordinates yµ the Poincaré supersymmetry and special su-

perconformal transformations are parametrized as δQ = εiQi + εiQ
i and δS = ηiSi + ηiS

i,

where a bar on a 4-component spinor parameter indicates the Weyl conjugate defined

– 7 –
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in (A.15).3 The spinors εi and ηi are left-handed, while εi and ηi are right-handed. The

operators Qi and Si are left-handed, while Qi and Si are right-handed. A half-BPS super-

conformal interface at y3 = 0 preserves the fermionic symmetries with parameters satisfying

εi = ρijγ
3εj , ηi = −ρijγ3ηj , (2.23)

where the fixed symmetric tensor ρij satisfies ρijρ
jk = δki with ρij := (ρij)

∗.4 In other

words, the preserved supercharges and special superconformal charges are

Qi − ρijγ3Q
j , Si + ρijγ3S

j . (2.24)

They generate the 3d N = 2 superconformal algebra OSp(2|4)sc.

Since such an interface is a special kind of conformal interface, our discussion in sec-

tions 2.1 and 2.2 applies to it. There are, however, two important differences between the

conformal case and the superconformal case.

The first difference is that superconformal field theories and interfaces naturally couple

to background supergravity (or conformal supergravity) fields other than the metric. The

partition functions are functionals of these fields. In general a supersymmetric background

involves non-zero supergravity fields.5

The second difference is that the counterterms dictated by supersymmetry involve

supergravity fields other than the metric. When we turn off supergravity fields other

than the metric, as in the supersymmetric S4 background, such terms reduce to non-

SUSY counterterms that involve only the metric (and other non-supergravity background

fields), but their coefficients are related by supersymmetry. This mechanism gives universal

meanings to some, a priori non-universal, terms in the effective action [13].

To establish the relation (1.4) between the interface entropy and Calabi’s diastasis, an

important step for us — Step 3 in the introduction — involves localization that computes

the supersymmetric partition function ZISUSY[S4] of the system with an interface in a super-

symmetric background. As we will see in section 4, the SUSY partition function ZISUSY[S4]

is in general complex. On the other hand, so far we have related the interface entropy only

to the conformal partition function Z(ICFT)[S4], which is real and positive by unitarity.

Based on these motivations we make the assumption (1.6) in Step 2, i.e.,

Z(ICFT)[S4] =
∣∣ZISUSY[S4]

∣∣ . (2.25)

Combined with (2.22), this gives the interface entropy

SI = log

[ ∣∣ZISUSY[S4]
∣∣

(Z
(CFT+)
SUSY [S4]Z

(CFT−)
SUSY [S4])1/2

]
, (2.26)

3The parameters here are related to the parameters in appendix A.3 as (εi, εi)there = (εi + yµγµη
i, εi +

yµγµηi).
4Such ρij can be parametrized as ρij = eiα~n · ~τij , where α is real and ~n is a real unit vector. They

transform under U(1)R and SU(2)R.
5In the supersymmetric S4 background, the metric is the only non-zero field in the Poincaré supergravity

multiplet [30, 31]. There are non-zero fields in compensating multiplets [32] that violate conformal invariance

and unitarity. See (4.12) and (4.13).
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in terms of supersymmetric sphere partition functions with and without an interface. We

note that the combination (2.26) coincides with the “boundary free energy” considered

in [33–35].6

We explain in section 6.1 that one can use the super-Weyl anomaly of [7] to prove the

2d version of the assumption (2.25).

2.4 Interface entropy and the supersymmetric Rényi entropy

We now explain that the assumption (2.25) is natural from the point of view of the super-

symmetric Rényi entropy [17]. More precisely (2.25) is equivalent to the statement that

the entanglement entropy S
(ICFT)
E coincides with the n → 1 limit of the supersymmetric

Rényi entropy S
(ICFT)
SUSY n that we define below.

Even in the presence of a conformal interface, one can relate the (ordinary) Rényi

entropy to the partition function on the n-fold covering of the round sphere, as we wrote

in (2.15). This expression is somewhat formal because we do not specify how we deal

with the conical singularities for n 6= 1. One can make it more precise by considering a

supersymmetric background S̃4
n that regularizes the n-fold covering S4

n [31, 37]. We review

the supergravity background S̃4
n in appendix C.1.7 In the limit n → 1 the background

reduces to the round sphere S4 with all supergravity fields other than the metric vanishing.

Let us denote the partition function for S̃4
n by ZISUSY[S̃4

n] and define the supersymmetric

Rényi entropy

SISUSY n :=
1

1− n
Re log

ZISUSY[S̃4
n](

ZISUSY[S4]
)n . (2.27)

We take the real part of the logarithm, or equivalently the absolute value inside the loga-

rithm, mimicking the original definition in 3d (without an interface) [17]. (See also [38, 39]).

The supersymmetric Rényi entropy is a natural and meaningful physical quantity in general

dimensions [37, 40–48].

If we assume that the entanglement entropy is related to the supersymmetric Rényi

entropy as

S
(ICFT)
E = lim

n→1
SISUSY n , (2.28)

we have the supersymmetric version of the equality (2.17):

S
(ICFT)
E = log

∣∣ZISUSY[S4]
∣∣− ∂n Re log ZISUSY[S̃4

n]
∣∣∣
n=1

. (2.29)

In appendix C.2 we show that the second term vanishes. Thus

S
(ICFT)
E = log

∣∣ZISUSY[S4]
∣∣ . (2.30)

Comparing (2.30) with (2.18), we see that (2.28) is equivalent to the assumption (2.25).

6In 3d it is common to define the free energy as F = − log |ZSUSY[S3]| in terms of the absolute value of

the partition function computed by SUSY localization. See for example [36].
7Although we do not show this explicitly, we expect that in the supersymmetric S̃4

n background one

can construct a SUSY preserving Janus interface that reduces to the half-BPS interface in the n → 1

limit. The worldvolume of the interface is invariant under the Killing vector generated by the square of the

supercharge preserved by the background. The S̃4
n background is a member of the more general family of

supersymmetric backgrounds that includes the ellipsoid of [30], for which a Janus interface has a natural

interpretation in the context of the AGT correspondence [26].
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3 Off-shell construction of the Janus interface

In this section we provide an off-shell construction of the Janus interface in a general N = 2

SCFT in flat space and on S4. We borrow tools from N = 2 supergravity. Supersymmetry

transformations of the relevant supermultiplets are summarized in appendix A.3.

3.1 Off-shell construction in flat space

Let us illustrate the off-shell construction method of the Janus interface in a general N = 2

SCFT by first considering the simpler set-up of Minkowski space with coordinates yµ. While

the physical reality conditions are clearer in Minkowski signature (see [49]), all the formulas

in this subsection are also valid in Euclidean signature. Without loss of generality we focus

on a single marginal coupling τ .

A crucial ingredient is the coupling chiral multiplet of Weyl weight zero

T = (τ,Ψ
(τ)
i , B

(τ)
ij , F

(τ)−
µν , Λ

(τ)
i , C(τ)) . (3.1)

It is accompanied by an anti-chiral multiplet

T = (τ , Ψ(τ)i, B(τ)ij , F (τ)+
µν , Λ(τ)i, C(τ)) , (3.2)

where we take τ to be the complex conjugate of τ : τ = τ∗. See appendix A for our

conventions. We wish to construct an interface characterized by a general profile of the

complexified coupling τ(y3) with part of Lorentz symmetry unbroken. We set the fermions

in the coupling multiplet to zero. To preserve some supersymmetry, we require the auxiliary

fields in T to take appropriate values so that the variations of the fermions vanish. Using

the unbroken Lorentz symmetry we obtain, for constant εi and εi,

δΨ
(τ)
i = (∂3τ)γ3εi +

1

2
B

(τ)
ij ε

j , (3.3)

δΛ
(τ)
i = −1

2
∂3B

(τ)
ij ε

jkγ3εk +
1

2
C(τ)εijε

j , (3.4)

δΨ(τ)i = (∂3τ)γ3εi +
1

2
B(τ)ijεj , (3.5)

δΛ(τ)i = −1

2
∂3B

(τ)ijεjkγ
3εk +

1

2
C(τ)εijεj . (3.6)

We demand that these expressions vanish on a half-dimensional subspace of the space of

(εi, εi). As functions of y3, B
(τ)
ij must be proportional to ∂3τ , C(τ) to ∂2

3τ , B(τ)ij to ∂3τ ,

and C(τ) to ∂2
3τ . The solutions are parametrized by a U(1) phase eiα and a real unit vector

~n, which naturally transform under U(1)R and SU(2)R, respectively. We write

ρij = eiα ~n · ~τij , ρij = e−iα ~n · ~τ ij . (3.7)

Then

εi = ρijγ
3εj , (3.8)

B
(τ)
ij = −2ρij ∂3τ , B(τ)ij = −2ρij ∂3τ , (3.9)

C(τ) = −2e+2iα ∂2
3τ , C(τ) = −2e−2iα ∂2

3τ . (3.10)

We note that (3.8) coincides with the first equation in (2.23).
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We now specialize to a step function profile

τ(y3) =

{
τ+ for y3 > 0 ,

τ− for y3 < 0 .
(3.11)

Let us define ∆τ := τ+ − τ−. In the expressions for the auxiliary fields in (3.9) and (3.10),

we get ∂3τ = ∆τ δ(y3), ∂2
3τ = ∆τ δ′(y3), where the prime denotes the derivative. Explicitly,

B
(τ)
ij = −2ρij∆τ δ(y

3) , B(τ)ij = −2ρij∆τ δ(y3) ,

C(τ) = −2e+2iα∆τ δ′(y3) , C(τ) = −2e−2iα∆τ δ′(y3) .
(3.12)

We are interested in special superconformal transformations, which we denote by δη. We

take ηi and ηi constant and make substitutions εi → yµγµη
i and εi → yµγµηi in (A.26)

and (A.29) to get δηΨ
(τ)
i = 0 and

δηΛ
(τ)
i = −1

2
∂3B

(τ)
ij ε

jkyµγ3γµηk +
1

2
C(τ)εijy

µγµη
j −B(τ)

ij ε
jkηk

= 2∆τ ∂3(y3δ(y3))ρij ε
jkηk (3.13)

−∆τ e2iα δ′(y3)
(
y3 +

2∑
a=0

yaγaγ
3
)
εijρ

jk(ηk + ρklγ
3ηl) .

As a distribution, i.e., as a linear functional on the space of smooth functions with compact

support, ∂3(y3δ(y3)) is zero. Then δηΛ
(τ)
i vanishes precisely when the second equation

in (2.23) is satisfied. The same is true for δηΨ
(τ)i and δηΛ

(τ)i, which are obtained from (3.13)

by charge conjugation.

Thus we succeeded in constructing a half-BPS superconformal Janus interface in flat

Minkowski space by an off-shell method. It preserves the subalgebra OSp(2|4)sc of the 4d

N = 2 superconformal algebra SU(2, 2|2).8 The former is the 3d N = 2 superconformal

algebra. We note that the background values of the coupling multiplet in flat space respect

the physical reality conditions, i.e., B(τ)ij = (B
(τ)
ij )∗, (C(τ))∗ = C(τ).

3.2 Massive superalgebra on S4

Because S4 is conformally flat, the full N = 2 superconformal algebra on S4 is again

SU(2, 2|2). Similarly a half-BPS superconformal interface along S3 ⊂ S4 preserves the

3d N = 2 superconformal algebra OSp(2|4)sc. Another relevant algebra is the massive

superalgebra OSp(2|4)m generated by the SUSY parameters [32]

εi = e−
i
2
βPLχ

i , εi = e
i
2
β ~n · ~τij PRχj , (3.14)

where χi is a Killing spinor satisfying

∇µχi =
i

2r
γµχ

i . (3.15)

8Our notations do not distinguish different real forms of the algebras that arise in Minkowski and

Euclidean signatures. We also use group (capital letter) notations even though we really mean Lie algebras.
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Here r is the radius of S4 and ~n is a unit three-vector, which we will identify with the

vector denoted by the same symbol in (3.7) when we introduce a Janus interface. We also

introduced a U(1)R phase β.

We take the stereographic coordinates xµ and set x := (
∑

(xµ)2)1/2. The metric is

given by

gµν = f(x)2 δµν , f(x) =
1

1 + x2

4r2

. (3.16)

The gamma matrices in upper and lower cases are related by the vielbein as γµ = Γaea
µ,

with Γa being constant gamma matrices satisfying ΓaΓb + ΓbΓa = 2δab, and the vielbein

given by ea
µ = f(x)δµa . In the stereographic coordinates xµ, the Killing spinors can be

written as

χj =
√
f

(
1 +

i

2r
xµΓµ

)
χj0 , (3.17)

where χj0 is a constant spinor. Then we can write εi, εi as

εi = e−
i
2
β
√
f

(
PLχ

i
0 +

i

2r
xµΓµPRχ

i
0

)
, (3.18)

εi = e
i
2
β
√
f ~n · ~τij

(
PRχ

j
0 +

i

2r
xµΓµPLχ

j
0

)
. (3.19)

If we further restrict the symmetry by imposing the chirality condition

PLχ
i
0 = 0 , (3.20)

then the corresponding symmetry is OSp(2|2)m [32]. We do not lose generality by imposing

this condition, as we will explain in section 6.3. It will, however, also be useful to consider

an alternative choice of massive subalgebra given by replacing (3.20) with

(alternative) PRχ
i
0 = 0 . (3.21)

3.3 Off-shell construction on S4

We now perform the off-shell construction of the Janus interface on S4. As in section 3.1 this

is done by introducing the coupling chiral multiplet T = (τ,Ψ
(τ)
i , B

(τ)
ij , F

(τ)−
ab , Λ

(τ)
i , C(τ))

with weight w = 0 and its anti-chiral partner T = (τ , Ψ(τ)i, B(τ)ij , F
(τ)+
ab , Λ(τ)i, C(τ)).

We consider a one-dimensional profile of the coupling τ(x) as a function of x and de-

mand invariance under the SO(4) subgroup of the SO(5) isometry group. In particular we

have F
(τ)+
ab = F

(τ)−
ab = 0.

We wish to preserve the supersymmetry corresponding to the parameters given

by (3.18)–(3.20). We set ηi = 1
4γ

µ∇µεi, ηi = 1
4γ

µ∇µεi. For the coupling chiral multi-

plet, the conditions for supersymmetry

δΨ
(τ)
i = ( /∇τ) εi +

1

2
B

(τ)
ij εj = 0 , (3.22)

δΛ
(τ)
i = −1

2
/∇B(τ)

ij ε
jkεk +

1

2
C(τ)εijε

j −B(τ)
ij ε

jkηk = 0 , (3.23)
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determine B
(τ)
ij and C(τ) to be given by

B
(τ)
ij =

4ieiβ r

xf(x)
τ ′(x)~n · ~τij , C(τ) =

8e2iβr2

x2f(x)2

(
τ ′′(x)− 1

x
τ ′(x)

)
. (3.24)

Similarly, for the anti-chiral coupling multiplet, the conditions

δΨi = ( /∇τ) εi +
1

2
B(τ)ij εj = 0 , (3.25)

δΛi = −1

2
/∇B(τ) ijεjkε

k +
1

2
C(τ)εijεj −B(τ)ijεjkη

k = 0 , (3.26)

whose expressions are related formally to (3.22) and (3.23) by charge conjugation in

Minkowski signature, lead to

B(τ)ij = − i e−iβ x

rf(x)
τ ′(x)~n · ~τ ij , C

(τ)
=

e−2iβ x2

2r2f(x)2

(
τ ′′(x) +

3

x
τ ′(x)

)
. (3.27)

To compare with the analysis in section 3.1, let us introduce the variable θ via

x = 2r tan
θ

2
. (3.28)

Then

B
(τ)
ij =

2 i eiβ

r
cot(θ/2)

dτ

dθ
~n · ~τij , B(τ)ij = −2 i e−iβ

r
tan(θ/2)

dτ

dθ
~n · ~τ ij , (3.29)

C(τ) =
e2iβ

r2

cos(θ/2)

sin3(θ/2)

[
(cos θ − 2)

dτ

dθ
+ sin θ

d2τ

dθ2

]
, (3.30)

C(τ) =
e−2iβ

r2

sin(θ/2)

cos3(θ/2)

[
(cos θ + 2)

dτ

dθ
+ sin θ

d2τ

dθ2

]
. (3.31)

We now take a limit to the step function profile

τ(θ) =

{
τ+ for 0 ≤ θ < π

2 ,

τ− for π
2 < θ ≤ π .

(3.32)

We again set ∆τ = τ+−τ−. By applying the identities xnδ(x) = 0 (n ≥ 1), x δ′(x) = −δ(x),

xn δ′(x) = 0 (n ≥ 2), we get

B
(τ)
ij = −2 i eiβ

r
~n · ~τij ∆τ δ

(
θ − π

2

)
, B(τ)ij =

2 i e−iβ

r
~n · ~τ ij ∆τ δ

(
θ − π

2

)
,

C(τ) = −2 e2iβ

r2
∆τ δ′

(
θ − π

2

)
, C(τ) = −2 e−2iβ

r2
∆τ δ′

(
θ − π

2

)
.

(3.33)

As we explain in appendix B, these expressions are related to the flat space results (3.12)

by the Weyl transformation, with the identification ρij = i eiβ ~n · ~τij , or equivalently

eiβ = −i eiα.

In Euclidean signature chiral and anti-chiral multiplets are independent. Indeed for a

generic profile τ(x), (B
(τ)
ij , C

(τ)) and (B(τ)ij , C(τ)) as given in (3.24) and (3.27) are not the
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complex conjugate of each other even though we demand that τ(x) = τ(x)∗. In the limit

that the profile τ(x) becomes a step function, however, (B
(τ)
ij , C

(τ)) and (B(τ)ij , C(τ)) given

in (3.33) are the complex conjugate of each other.

Our construction involving a general profile τ(x) manifestly preserves OSp(2|2)m at

every step. In the limit where τ(x) becomes a step function (3.32), the symmetry enhances,

classically, to the full 3d superconformal algebra OSp(2|4)sc. We regard a smooth profile

as a UV regulator for the superconformal Janus interface on S4.

Repeating the analysis for the alternative choice (3.21) leads to

(alternative)



B
(τ)
ij = −2 i eiβ

r
tan(θ/2)

dτ

dθ
~n · ~τij , B(τ)ij =

2 i e−iβ

r
cot(θ/2)

dτ

dθ
~n · ~τ ij ,

C(τ) =
e2iβ

r2

sin(θ/2)

cos3(θ/2)

[
(cos θ + 2)

dτ

dθ
+ sin θ

d2τ

dθ2

]
,

C(τ) =
e−2iβ

r2

cos(θ/2)

sin3(θ/2)

[
(cos θ − 2)

dτ

dθ
+ sin θ

d2τ

dθ2

]
.

(3.34)

These expressions are related to (3.29)–(3.31) via θ → π − θ. In the limit (3.32) they

are related to (3.12) with ρij = −i eiβ ~n · ~τij , or equivalently eiβ = +i eiα, by the Weyl

transformation.

3.4 Janus interface in gauge theory on S4

In this section we review the general N = 2 superconformal gauge theory on S4 and explain

how to incorporate the half-BPS Janus interface that we constructed in section 3.3 using

the off-shell method.

A general N = 2 gauge theory involves a vector multiplet for a gauge group G and

matter hypermultiplets. We allow G to be a product of simple Lie groups and ignore the

global structure because it plays no role for us. Since we are interested in the conformal

case, we assume that the hypermultiplets are in an appropriate representation of G such

that the beta functions for the gauge couplings exactly vanish. As we will explain below,

the hypermultiplets will enter our discussion only indirectly, and will be dropped for the

most part. To ease the notation we focus on a single gauge group factor with a complexified

gauge coupling

τ =
ϑ

2π
+

4π i

g2
YM

. (3.35)

Let V = (X,Ωi, Aµ, Yij) be the corresponding vector multiplet. In flat Euclidean space,

the action is given as

Iflat
vector =

∫
d4xTr

[
1

g2
YM

(
4DµXDµX − 1

2
εik εjl Yij Ykl + 2Ωi /DΩi

+
1

2
FµνF

µν

)
+ i

ϑ

16π2
FµνF̃

µν

]
.

(3.36)

Here Tr(• •) denotes an appropriately normalized inner product on the Lie algebra and

reduces to the trace if G = SU(N), and Dµ = ∂µ − iAµ denotes the gauge covariant
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derivative. We use hermitian generators TI and expand fields as X = TIX
I , Aµ = TIA

I
µ,

etc. See appendix A.3.1. The dual field strength is defined as F̃µν = 1
2εµν

ρσFρσ, where

εµν
ρσ is the Levi-Civita tensor. The action on the round sphere of radius r can be obtained

by a conformal transformation and is given as

Ivector =

∫
d4x
√
gTr

[
1

g2
YM

(
4DµXDµX +

8

r2
XX − 1

2
εik εjl Yij Ykl + 2Ωi /DΩi

+
1

2
FµνF

µν

)
+ i

ϑ

16π2
FµνF̃

µν

]
.

(3.37)

Here g is the determinant of the metric. To make this physical action positive semi-definite,

as in [30, 50], we impose the reality condition

(Y I
ij)
∗ = −Y Iij

(
⇐⇒ (~Y I)∗ = −~Y I

)
. (3.38)

This is different from the physical reality condition in Minkowski signature.

The vector multiplet V can be embedded into a chiral multiplet of Weyl weight w = 1,

which we note as A(V), as

A|A(V) = X , Ψi|A(V) = Ωi , Bij |A(V) = Yij ,

F−ab|A(V) =
1

2

(
Fab − F̃ab

)
, Λi|A(V) = −εij /DΩj , C|A(V) =

(
−2DµD

µ +
4

r2

)
X .

(3.39)

See appendix A.3 for notations.

To introduce the Janus interface in gauge theory, we apply the construction of sec-

tion 3.3. We promote the gauge coupling constant τ to a position-dependent field τ(x),

and further promote it to the coupling chiral multiplet T whose bottom component is τ(x).

The coupling multiplet directly couples to the vector multiplet only; it affects the dynamics

of hypermultiplets only indirectly through interactions involving the vector multiplet. We

also consider the anti-chiral multiplet whose bottom component is τ(x) and denote it by

T . By using these multiplets, we can construct a SUSY invariant action as

IJanus =
1

8π i

∫
d4x
√
gTr

[
C|T A(V)2 − C|T A(V)2

]
, (3.40)

where T A(V)2 is the chiral multiplet constructed by the tensor calculus. We give a short

explanation for tensor calculus in appendix A.4 (with explicit formulas only given for the

bosonic components). For a constant profile τ(x) = τ , (3.40) reduces to the ordinary action

for a vector multiplet (3.37):

1

8π i

∫
d4x
√
gTr

[
τ C|A(V)2 − τ C|A(V)2

]
= Ivector . (3.41)

4 SUSY localization, interface entropy, and Calabi’s diastasis

In this section, we compute the sphere partition function in the presence of the Janus

interface via SUSY localization. We will study in detail only those aspects of localization

which are affected by the Janus interface.
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In the absence of an interface, the localization calculation proceeds in several steps that

we sketch here [50]. On top of the chirality condition (3.20), one further constrains the

SUSY parameters so that they generate an SU(1|1) subalgebra [32]. By supersymmetry, the

path integral is invariant under the deformation of the physical action Iphys → Iphys + tδV ,

where t is a real deformation parameter, δ is the supersymmetry variation, and V is an

appropriate fermionic functional of fields. By taking the limit t → ∞, the path integral

reduces to a sum over the saddle points of δV , or more precisely a finite-dimensional integral

and a discrete infinite sum over the saddle point field configurations. The saddle points

are parametrized by a ∈ LieG and two non-negative integers k and k. The variable a

parametrizes the so-called saddle point locus, which is the space of smooth saddle point

configurations. The integer k parametrizes topologically non-trivial, zero-size instanton

configurations localized at the north pole (x = 0). The integer k on the other hand

parametrizes zero-size anti-instantons localized at the south pole (x =∞). In the absence

of an interface, the partition function takes the form [50]

ZSUSY[S4](τ, τ) =

∫
[da] e−Icl(τ,τ)Z1-loop(a)Zinst(a, q)Zinst(a, q) . (4.1)

Here Icl is the classical action (3.37) evaluated at the localization locus. Z1-loop(a) is the one-

loop determinant that arise from the Gaussinan integration around the localization locus.

Zinst(a, q) =
∑

k q
kZk and Zinst(a, q) =

∑
k q

kZk are the instanton partition functions with

equivariant parameters ε1 = ε2 = 1/r and instanton counting parameters q = e2πiτ and

q = e−2πiτ . For details, we refer the reader to [30, 31, 50, 51].

By the presence of an interface, the localization locus and the one-loop determinant

are not affected because these are determined by δV only. But the value of the on-shell

action Icl and the instanton partition functions will be modified.

4.1 On-shell action

On the localization locus, the scalar field X in the vector multiplet is constant. We denote

by Vcl the vector multiplet V evaluated at the localization locus. It is given as9

A|A(Vcl) = X , Bij |A(Vcl) = −2 i eiβX

r
~n · ~τij , C|A(Vcl) =

4 e2iβ X

r2
. (4.2)

From the tensor calculus rules given in appendix A.4, we can compute the components of

the chiral multiplet A(Vcl)
2:

A|A(Vcl)2 = X2 , Bij |A(Vcl)2 = −4 i eiβ X2

r
~n · ~τij , C|A(Vcl)2 =

12 e2iβ X2

r2
. (4.3)

Then we get

C|T A(Vcl)2 =
12 e2iβ X2 τ(x)

r2
+X2C(τ) +

2 i eiβ X2

r
~n · ~τ ij B(τ)

ij

= e2iβX2

[
12

r2
τ(x) + q(1)(x) τ ′(x) + q(2)(x) τ ′′(x)

]
,

(4.4)

9These are valid without imposing a chirality condition (3.20) or (3.21).
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where

q(1)(x) = − 8 r2

x3f(x)2
− 16

xf(x)
, q(2) =

8 r2

x2f(x)2
. (4.5)

The chiral part of the classical action (3.40) is computed as∫
d4x
√
g C|T A(Vcl)2 = 2π2

∫ ∞
0

dxx3 f4C|T A(Vcl)2 = 32π2 e2iβ X2 r2 τ(0) . (4.6)

A similar computation can be done for the anti-chiral part using

A|A(Vcl) = X , Bij |A(Vcl) = −2 i e−iβ X

r
~n · ~τ ij , C|A(Vcl) =

4 e−2iβ X

r2
. (4.7)

We obtain ∫
d4x
√
g C|T A(Vcl)2 = 32π2e−2iβ X

2
r2 τ(∞) . (4.8)

For the chiral and anti-chiral multiplets that arise from a single vector multiplet, Bij
and Bij are related: Bij |A(Vcl) = ~Y · ~τij , Bij |A(Vcl) = ~Y · ~τ ij . In Euclidean signature the

vector ~Y is pure imaginary rather than real. See (3.38). Comparing (4.2) and (4.7) we

can write

X =
1

2
e−iβ a , X =

1

2
eiβ a (4.9)

with a real. The normalization for a is chosen to be consistent with [50].

The on-shell value of the action (3.40) is the sum of the chiral and anti-chiral parts

IJanus = −iπ r2 (τ+ − τ−) Tr a2 , (4.10)

where τ+ ≡ τ(0) and τ− ≡ τ(∞). This result is related to the classical action without the

interface by analytically continuing (τ, τ) to (τ+, τ−):

IJanus = Icl(τ+, τ−) . (4.11)

4.2 Instanton partition functions

The instanton partition functions without the Janus interface in (4.1) arise from the fluc-

tuation modes around the instantons and the anti-instantons localized at the north and

south poles, respectively. These localized topological excitations contribute to the phys-

ical action (3.41) and yield the weights qk and qk. In the presence of the Janus inter-

face, the weights are modified to qk+ and qk−, where q+ = e2πiτ+ , q− = e−2πiτ− . In other

words, the Janus interface induces an analytic continuation of the instanton partition func-

tions (τ, τ)→ (τ+, τ−).

Thus in the expression (4.1), Icl(τ, τ), Zinst(a, q), and Zinst(a, q) are replaced

by Icl(τ+, τ−), Zinst(a, q+), and Zinst(a, q−), respectively. We assume that at least when

the difference between τ+ and τ− is small enough, the integral in (4.1) remains convergent

with the contours of integration suitably chosen. Then the whole partition function in the

presence of the Janus interface is given by the analytic continuation (τ, τ)→ (τ+, τ−).
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4.3 Kähler ambiguity and finite counterterms

SUSY localization computes the partition function in a specific renormalization scheme.

Other schemes are possible, and two different schemes are related by a finite counterterm.

As shown in [13] for 4d N = 2 superconformal field theories coupled to an off-shell Poincaré

supergravity, a renormalization scheme corresponds to a particular choice of the Kähler

potential on the conformal manifold. Two choices are related by a Kähler transformation,

which corresponds to a finite supergravity counterterm [32]. In this section, we evaluate

this counterterm in the presence of the Janus interface.

The relevant off-shell Poincaré supergravity is obtained by gauge fixing conformal

supergravity using compensating multiplets. One of the compensators is the vector mul-

titplet Vc whose components take values [32]10

X|Vc = µe−iβ , Yij |Vc = −2 iµ

r
(~n · ~τ)ij , Ωi|Vc = F−µν |Vc = 0 , (4.12)

X|Vc = µe+iβ , Y ij |Vc = −2 iµ

r
(~n · ~τ)ij , Ωi|Vc = F+

µν |Vc = 0 , (4.13)

where µ > 0 is an arbitrary mass scale. This vector multiplet can be embedded into the

anti-chiral multiplet Φ := A(Vc) with Weyl weight one. We can further construct a chiral

multiplet T(log Φ) with Weyl weight two from Φ.11 Its components are given by

A|T(log Φ) =
2 e−2iβ

r2
, (4.14)

Bij |T(log Φ) = −8 i e−iβ

r3
(~n · ~τ)ij , (4.15)

C|T(log Φ) =
24

r4
. (4.16)

Next, we compute the components of F(T ) for an arbitrary holomorphic function F(·)
via the tensor calculus rules given in appendix A.4. Its components are given by

A|F(T ) = F(τ) , (4.17)

Bij |F(T ) =
dF(τ)

dx

i r eiβ

xf(x)
(~n · ~τ)ij , (4.18)

C|F(T ) =
8 r2 e2iβ

x2f2

(
d2F(τ)

dx2
− 1

x

dF(τ)

dx

)
. (4.19)

The SUSY invariant counterterm considered in [32] is the top component of the product

chiral multiplet F(T )T(log Φ). It can be computed by the tensor calculus rules given in

Appeneix A.4. Note that the components of F(T ) are obtained from those of the coupling

multiplet T given in (3.24) by replacing τ with F(τ). Similarly the components of T(log Φ)

are obtained from those of A(Vcl)
2 given in (4.3) by replacing X2 with 2e−2iβ

r2
. Therefore

10We note that Yij |Vc and Y ij |Vc violate the physical reality condition: (Yij |Vc)∗ 6= Y ij |Vc .
11In flat space, with Φ viewed as an anti-chiral superfield, the top component of log Φ is a chiral primary

of Weyl weight 2 [52]. A chiral multiplet can be constructed by repeated SUSY transformations such that

the chiral primary is its bottom component. T(log Φ) is the curved version of this chiral multiplet.
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the top component of F(T )T(log Φ) can be obtained from C|T A(Vcl)2 in (4.4) by the same

substitutions:

C
∣∣
F(T )T(log Φ)

=
2

r2

[
2

r2
F(τ) + q(1)(x)

dF(τ)

dx
+ q(2)(x)

d2F(τ)

dx2

]
. (4.20)

Thus ∫
d4x
√
g C|F(T )T(log Φ) = 64π2F(τ+) . (4.21)

Similarly we can compute the anti-chiral counterterm constructed from the anti-chiral

coupling multiplet T and the compensating vector multiplet Vc:∫
d4x
√
g C|F(T )T(log Φ) = 64π2F(τ−) . (4.22)

The anti-holomorphic F(τ) is the complex conjugate of the holomorphic function F(τ)

when τ = τ∗.

4.4 Interface entropy as Calabi’s diastasis

By assembling the results above, we now relate the sphere partition function in the presence

of the Janus interface to Calabi’s diastasis. By a previous result [13] the sphere partition

function in the absence of the Janus interface can be written as

ZSUSY[S4](τ, τ) = eK(τ,τ)/12 . (4.23)

We saw that the sphere partition function with the Janus interface can be obtained by

analytically continuing (τ, τ) → (τ+, τ−) in the sphere partition function (4.1). Then by

using (4.23) we can write the sphere partition function in the presence of the Janus interface

in terms of the analytically continued Kähler potential as follows:

ZISUSY[S4] = eK(τ+,τ−)/12 . (4.24)

Besides we can add the counterterms constructed in the previous section to the action.

These terms modify the sphere partition function. With proper normalizations this modi-

fication is (an analytically continued version of) the Kähler transformation

K(τ+, τ−)→ K(τ+, τ−) + F(τ+) + F(τ−) . (4.25)

Then by substituting the result (4.24) into (2.26), we conclude that the interface en-

tropy can be written in terms of the analytically continued Kähler potentials as

SI = − 1

24
[K(τ+, τ+) +K(τ−, τ−)−K(τ+, τ−)−K(τ−, τ+)] . (4.26)

The combination in the bracket is Calabi’s diastasis (1.1) defined in the introduction.

Calabi’s diastasis (1.1) and the entropy of the Janus interface (4.26) is invariant under the

transformation (4.25).
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5 A holographic example

N = 4 supersymmetric Yang-Mills theory with the maximally supersymmetric conformal

interface has a dual gravity description by the supersymmetric Janus solution in the type

IIB supergravity [27]. The solution respects SO(1, 4)×SO(3)×SO(3) symmetry associated

with the conformal symmetry on the three-dimensional interface and the unbroken R-

symmetry. The metric takes the form

ds2 = f2
4 ds2

AdS4
+ ρ2 dvdv + f2

1 ds2
S2 + f2

2 ds2
S2 , (5.1)

where ds2
S2 is the metric of a unit 2-sphere and v = x + iy is a complex coordinate on a

strip with the ranges x ∈ R and 0 ≤ y ≤ π/2. The functions f4, ρ, f1, f2 are determined by

two real functions h1(v, v) and h2(v, v) as

f8
4 = 16

F1F2

W 2
, ρ8 =

28F1F2W
2

h4
1h

4
2

,

f8
1 = 16h8

1

F2W
2

F 3
1

, f8
2 = 16h8

2

F1W
2

F 3
2

,

(5.2)

where

Fi = 2h1h2|∂vhi|2 − h2
iW (i = 1, 2) , W = ∂v∂v(h1h2) . (5.3)

The real functions are given by

h1(v, v) = −iα1 sinh

(
v − ∆φ

2

)
+ c.c. , h2(v, v) = α2 cosh

(
v +

∆φ

2

)
+ c.c. . (5.4)

This solution has two asymptotic regions at x → ±∞ corresponding to the two sides of

the Janus interface. The real parameters α1, α2 and ∆φ fix the AdS radius L and the

Yang-Mills couplings g±YM by the relations:

L4 = 16|α1α2| cosh ∆φ , (g±YM)2 = 4π

∣∣∣∣α2

α1

∣∣∣∣ e±∆φ . (5.5)

5.1 Sphere free energy

We are interested in the sphere free energy of the interface CFT dual to the SUSY Janus

solution. It can be calculated holographically by evaluating the on-shell action after a

consistent truncation to four dimensions [53]:

I = −3 · 26 Vol(S2)2

16πGN

∫
AdS4

d4x
√
g(4)

∫
dx dyWh1h2 , (5.6)

where GN is the Newton constant in ten dimensions. In terms of the coordinate λ such that

ds2
AdS4

=
1

cos2 λ

[
dλ2 + sin2 λ ds2

S3
]
, (5.7)

– 20 –



J
H
E
P
0
8
(
2
0
2
0
)
0
4
8

with 0 ≤ λ ≤ π/2, the integral becomes

I =
3 Vol(S2)2 Vol(S3)L8

26πGN

∫ π/2

0
dλ

sin3 λ

cos4 λ

∫ π/2

0
dy sin2(2y)

∫ ∞
−∞

dx

(
1 +

cosh(2x)

cosh(∆φ)

)
.

(5.8)

This is divergent and requires a cutoff.

To regularize the integral, we adopt the single cutoff procedure [54, 55],12 which cuts

out the spacetime outside the UV boundary hypersurface satisfying

f4

Z
=
L

δ
, Z ≡ cosλ . (5.9)

Then the integration for x is restricted from x−(Z, y) to x+(Z, y) defined by f4(x±) = LZ/δ

for Z fixed. It also restricts the range of Z from Z∗ ≡ f4(0)δ/L to 1. We can perform the

integration over x by expanding x± in δ/Z:13

x±(Z, y) = ±1

2
log

(
4 cosh(∆φ)

Z2

δ2

)
− cos(2y) tanh(∆φ)± 2

8

(
δ

Z

)2

+O
(
δ4

Z4

)
. (5.10)

It follows that the integral over x becomes∫ x+(Z,y)

x−(Z,y)
dx

(
1 +

cosh(2x)

cosh(∆φ)

)
= log

(
4 cosh(∆φ)

Z2

δ2

)
+ 2

Z2

δ2
− 1 +O

(
δ2

Z2

)
. (5.11)

Hence the regularized on-shell action becomes

I =
3 Vol(S2)2 Vol(S3)L8

26πGN

∫ π/2

0
dy sin2(2y)

∫ 1

Z∗

dZ
1− Z2

Z4

×
[
log

(
4 cosh(∆φ)

Z2

δ2

)
+ 2

Z2

δ2
+ 1 +O

(
δ2

Z2

)]
=

Vol(S2)2 Vol(S3)L8

27GN

[
c3

δ3
+
c2

δ2
+
c1

δ
+ log

(
4 cosh(∆φ)

δ2

)
+

5

3
+O(δ2)

]
,

(5.12)

where we do not bother to write down the coefficients ci (i = 1, 2, 3) which contain loga-

rithmically divergent terms. Subtracting the bulk contribution, the universal part of the

free energy is

∆I = I − I|∆φ=0 =
Vol(S2)2 Vol(S3)L8

27GN
log cosh(∆φ) . (5.13)

Using the relation of the Newton constant and the rank N of the gauge group

GN =
Vol(S2)2 Vol(S3)L8

26N2
, (5.14)

we find the sphere free energy of the supersymmetric Janus solution of the form

∆I =
N2

2
log

[
1 +

(g+
YM − g

−
YM)2

2g+
YMg

−
YM

]
, (5.15)

12There are other cutoff procedures for regularization in Janus geometry [10, 55].
13This expansion differs from (3.10) in [55].

– 21 –



J
H
E
P
0
8
(
2
0
2
0
)
0
4
8

which is minus the interface entropy obtained in [10]. This is in accordance with the

universal relation between the sphere free energy and entanglement entropy across a sphere

in ICFT [14].

Applying an SL(2,R) transformation of the type IIB supergravity on the Janus solution

without a theta-angle generates a new solution with a complexified coupling

τ =
ϑ

2π
+

4πi

g2
YM

, (5.16)

jumping across an interface. Hence the universal part of the sphere free energy of the

supersymmetric Janus solution with the coupling taking values τ± across an interface is [9]

∆I =
1

24
[K(τ+, τ+) +K(τ−, τ−)−K(τ+, τ−)−K(τ−, τ+)] , (5.17)

where K is the Kähler potential given by

K(τ, τ) = −6N2 log [i (τ − τ)] . (5.18)

If we identify the holographic free energy with the sphere partition function by the relation

∆I = − log
Z(ICFT)[S4]

(Z(CFT+)[S4]Z(CFT−)[S4])1/2
, (5.19)

we find the sphere partition function

Z(ICFT)[S4](τ+, τ−) ∝
∣∣eK(τ+,τ−)/12

∣∣ , (5.20)

which is consistent with our assumption (1.6).

5.2 Entanglement entropy

Next we consider the entanglement entropy across a sphere centered at the origin of the

Janus interface. In the holographic system described by the metric (5.1) it is convenient

to use the Poincaré coordinates of the Lorentzian AdS spacetime, in terms of which the

metric is

ds2
AdS4

=
1

z2

[
dz2 − dt2 + dr2 + r2 dφ2

]
. (5.21)

The spherical entangling surface is on the boundary at a constant time slice

Σ = {t = 0, r = R, z = 0} . (5.22)

The holographic entanglement entropy is given by the area of the minimal surface anchored

on Σ [56, 57],

S =
Vol(S2)2 Vol(S1)

4GN

(∫
dx dy (f1 f2 f4 ρ)2

)∫
dz

r

z2

√
1 + (∂zr)2 , (5.23)
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where the minimal surface is determined by a function r(z) which is independent of (t, φ)

due to the spherical symmetry. Varying the area functional with respect to r(z) yields the

equation of motion, which turns out to allow for a simple solution [16]

r =
√
R2 − z2 . (5.24)

To evaluate the entropy (5.23) on shell, we need a regularization for the UV divergence. In

the single cutoff prescription we cut out the spacetime by the UV boundary hypersurface14

f4

z
=
L

ε
, (5.25)

which restricts the integration range for x to x−(z, y) ≤ x ≤ x+(z, y) with x±(z, y) given

by (5.10), where (z, δ) are replaced with (z, ε). Also the z integral is restricted to z∗ ≡
f4(0)ε/L ≤ z ≤ R. The regularized expression of the entropy becomes

S =
24πVol(S2)2 L8

24GN

∫ π/2

0
dy sin2(2y)

∫ 1

z∗/R

dz

z2

∫ x+(z,y)

x−(z,y)
dx

(
1 +

cosh(2x)

cosh(∆φ)

)
. (5.26)

Repeating the same type of the calculation as for the free energy, we find the universal

part of the interface entropy

SI |univ = −N
2

2
log cosh(∆φ) , (5.27)

which agrees with the result obtained using another regularization [10]. We note that the

interface entropy is minus the sphere free energy as expected from the CFT consideration,

i.e., from the relation (1.5).

6 Discussion

6.1 Super-Weyl anomaly

In 2d with N = (2, 2) SUSY one can use the super-Weyl anomaly of [7] to prove the 2d

and boundary (B) version of the relation (1.6), i.e., Z(BCFT)[S2] =
∣∣ZBSUSY[S2]

∣∣. Indeed

Z(BCFT)[S2] is the overlap of the boundary state and the ground state in the NSNS sector.

This overlap is nothing but the g-factor, which was shown to be a boundary contribution

to the entanglement entropy in [58]. The NSNS overlap on the other hand was shown to

be the absolute value of the SUSY partition function in the presence of a boundary in [7]

using the super-Weyl anomaly.

Somewhat more explicitly, on a half-plane x1 ≤ 0 and in Euclidean signature, the

super-Weyl variation of the logarithm of the partition function reads, in superconformal

gauge,

δΣ logZ ⊃ δ
[
− 1

4π

∫
d2x

(
�(σ − i a)hΩ + �(σ + i a)hΩ

)
+

i

4π

∫
dx2(whΩ − whΩ)

]
.

(6.1)

14The UV regulator ε is different from δ used for the free energy calculation. It is not clear how to relate

them as ε and δ are introduced for the Lorentzian and the Euclidean spacetimes, respectively.
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See [7] for notations. The inside of the large bracket is essentially log Z. The twisted

chiral superfield Σ = σ + i a + θ+χ+ + θ−χ− + θ+θ−w is the supersymmetric version of

the Weyl factor σ that represents the metric gµν = e2σδµν in the conformal gauge. For

the round sphere σ = − log(1 + |z|2), where z = x1 + ix2. If one demands supersymmetry

used for localization but gives up conformal invariance, we get w = w = −2i/(1 + |z|2)

and a = 0.15 This gives the supersymmetric hemisphere partition function [60–62] as

ZISUSY[S2] ∼ exphΩ. If one demands conformal invariance we get w = w = a = 0.

This gives Z(ICFT)[S2] ∼ exp 1
2(hΩ + hΩ). We thus have Z(ICFT)[S2] =

∣∣ZISUSY[S2]
∣∣. This

explanation is similar in spirit to [63].

It would be nice to extend the analysis of [7] to 4d.

6.2 Complex partition functions and a Chern-Simons counterterm

For 3d N = 2 superconformal field theories, a relation similar to (1.6), Z(CFT)[S3] =∣∣ZSUSY[S3]
∣∣, was shown using a supersymmetric Chern-Simons coupling as follows [63].

The conformal partition function Z(CFT)[S3] is defined in a conformally invariant renormal-

ization scheme and is real and positive. The supersymmetric partition function ZSUSY[S3]

is computed by SUSY localization in some renormalization scheme and is complex. The

two schemes and the two partition functions should differ by finite counterterms. The rel-

evant counterterm is the Z-Z Chern-Simons term constructed from the off-shell Poincaré

supergravity multiplet. It violates conformal invariance, and involves a field H which

in the supersymmetric S3 background takes a value that violates unitarity. The on-

shell value of the Z-Z Chern-Simons term is pure imaginary, and is responsible for mak-

ing ZSUSY[S3] complex.

We expect that an essentially identical explanation should be possible. Indeed in the

extreme case that the bulk 4d N = 2 superconformal theory on S4 is trivial, a half-BPS

interface is nothing but a 3d superconformal field theory living on S3.

It seems plausible that the assumption (1.6) can be shown along the following line.

One can impose boundary conditions on symmetry parameters in a way similar to [64] so

that the 4d N = 2 Weyl multiplet restricted to a 3d boundary decomposes into 3d N = 2

multiplets. The restricted 4d Weyl multiplet would include the 3d Weyl multiplet [65].

The vector compensator Vc in section 4.3 decomposes into a vector multiplet and a chiral

multiplet [66]. The auxiliary fields Yij and Y ij in (4.12) and (4.13) violate the physical

reality condition and hence violate unitarity (as H does in 3d). They descend to an

auxiliary field in the 3d vector multiplet that violates the physical reality condition. It seems

likely that the off-shell Poincaré supergravity (or at least its supersymmetric background)

considered in [63] can be obtained from 3d conformal supergravity with the 3d vector

multiplet as a compensator. We conjecture that the imaginary part of log ZISUSY[S4] arises

from a counterterm that corresponds to the Z-Z Chern-Simons term.

15The values of w and w violate unitarity [59].
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6.3 Dependence of the SUSY interface partition function on the chirality con-

dition

The full 4d N = 2 superconformal algebra is SU(2, 2|2).16 The Janus interface of

our interest preserves the 3d N = 2 superconformal algebra OSp(2|4)sc. The mas-

sive subalgebra OSp(2|4)m of the SU(2, 2|2) is generated by SUSY parameters given

by (3.14) and (3.15). A chirality condition, (3.20) or (3.21), further restricts the sym-

metry to OSp(2|2)m.17

The localization result (4.24)

ZISUSY[S4] = eK(τ+,τ−)/12

for the SUSY interface partition function was obtained by imposing the chirality condi-

tion (3.20), PLχ0 = 0, on the SUSY parameter. We point out that if we instead impose

the alternative condition (3.21), PRχ0 = 0, we obtain

ZISUSY[S4] = eK(τ−,τ+)/12 ,

which means that the roles of the north and south poles get exchanged. Since K(τ+, τ−)∗ =

K(τ−, τ+), the phase of the supersymmetric partition function depends on the choice of

the chirality condition, or equivalently the choice of OSp(2|2)m.

In the absence of an interface, the role of a chirality condition is to choose the

point xµ = 0 and its antipodal point as the special points to which various quantities

such as the on-shell action and the instanton partition functions “localize”. Once the con-

dition is imposed, the SUSY parameters generate an OSp(2|2)m subalgebra of the massive

subalgebra OSp(2|4)m. The bosonic factor Sp(2) ' SO(3) contains the isometries that

preserve the two special points. If we do not impose either the condition PLχ0 = 0 or

PRχ0 = 0 we obtain, in the absence of an interface, the same partition function; indeed

given a non-zero χj0 we can take, as the special point (the north pole), the solution xµ to

the equation

(
εj ∝ PLχj ∝

)
PLχ

j
0 +

i

2r
xµΓµPRχ

j
0 = 0 . (6.2)

This is a system of four equations (j = 1, 2 and two components for a chiral spinor) for

four unknowns xµ (µ = 1, . . . , 4) and (at least generically) has a solution.

6.4 Conformal anomaly in the presence of an interface

In section 2.2 we derived the relation (2.22) between the interface entropy and the sphere

partition functions on S4 using the dimensional regularization. (2.22) provides us an easier

and more pragmatic way to calculate the interface entropy than the original definition (2.5),

and is the key to proving the equivalence between the interface entropy and Calabi’s dias-

tasis in this paper. The crucial point of the derivation in [14] is that in the dimensional

16We do not distinguish between a group and its Lie algebra, and ignore the global structure of the former.
17The algebra OSp(2|2)m coincides with the intersection of OSp(2|4)m and OSp(2|4)sc.
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regularization there are no conformal anomalies, hence one can ignore a possible contri-

bution from the conformal anomaly in calculating the interface entropy. The anomaly is

automatically incorporated as poles at even dimensions in the final result. The validity of

the approach in [14] was supported by the holographic computation, so we believe (2.26)

universally holds in any dimensions. In our case the holographic calculation of the sphere

partition function and the interface entropy in section 5 gives an additional evidence for

the relation (2.26).

On the other hand, the use of the dimensional regularization in section 2.2 obscures how

conformal anomalies could have appeared if the same line of argument would be followed

in four dimensions. So it would be instructive to revisit the derivation in section 2.2, but

now in d = 4 dimensions.

First the partition function is no longer invariant under the CHM map and gets a

contribution from the anomaly:

Z(ICFT)[Mn] = Z(ICFT)[S4
n]× e−

∫
S4n

d4xA[gµν ]
. (6.3)

The conformal anomaly is a functional of the background metric A[gµν ]. In CFT without

an interface, it transforms under an infinitesimal conformal transformation δgµν = 2σ gµν as

δA(CFT)

δσ
= aE + c I , (6.4)

where a and c are the central charges, and E and I are the Euler density and Weyl

invariant in four dimensions [67]. In ICFT, there is an additional contribution localized on

an interface to the conformal anomaly

A = A(CFT) + δI A(I) , (6.5)

where δI is the delta function supported on the interface. The anomaly gives rise to an

additional contribution to the entanglement entropy:

S
(ICFT)
E = · · · − lim

n→1

1

1− n

[(∫
S4n

d4x− n
∫
S4

d4x

)
A

]
, (6.6)

whose ambient part A(CFT) are shown to yield the logarithmically UV divergent term [68],

but it is cancelled by the same anomaly from CFT± in the interface entropy (2.16). The

localized term A(I), on the other hand, remains unsubtracted and contributes to SI .

The conformal anomaly also modifies the transformation law of the one-point func-

tion 〈Tµν 〉(ICFT)
S4 from (2.21),

〈Tµν 〉(ICFT)
S4 = (Weyl factor)2〈Tµν 〉(ICFT)

R4 +Aµν |S4 = Aµν |S4 , (6.7)

where Aµν is the anomalous part of the stress tensor,

Aµν ≡
2
√
g

δ
∫

d4xA[gµν ]

δgµν
. (6.8)
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It also consists of the ambient and localized terms:

Aµν = A(CFT)
µν + δI A(I)

µν . (6.9)

The explicit form of its ambient part can be found in [69, 70]. On S4 the ambient part

A(CFT)
µν can be fixed from the type-A trace anomaly [69, 70] as

A(CFT)
µν = − a

(4π)2

[
gµν

(
R2

2
−RρλRρλ

)
+ 2RµλRν

λ − 4

3
RRµν

]
. (6.10)

On the other hand the localized anomaly A(I)
µν associated with the interface is not known

except for the trace part in BCFT

A(I)µ
µ =

1

16π2

(
aE

(bry)
4 − b1 tr K̂3 − b2 hαγK̂βδWαβγδ

)
. (6.11)

We refer to [71] for the definitions of various symbols. See also the paper [72] that focuses

on interfaces. The quantity A(I)
µν should be a geometric functional of the background metric

and the extrinsic curvature, but it remains open how to fix the explicit form.

A moment’s thought shows that the ambient terms A(CFT)
µν are there both in ICFT and

CFT± with the same value, hence cancel out in the interface entropy (2.16) in the same

way as A(CFT) in the previous paragraph.

Collecting the possible contributions from the localized anomalous term, we find a

deviation ∆SI from (2.22):

∆SI =

∫
S4

d4x δ(φ− π/2) sin2 θA(I) ττ

− lim
n→1

1

1− n

[(∫
S4n

d4x− n
∫
S4

d4x

)
δ(φ− π/2)A(I)

]
.

(6.12)

Compared with the dimensional regularization result, this result indicates that the anoma-

lous terms from the interface-localized anomaly A(I) should integrate to zero on a sphere

while the ambient anomalous parts nicely cancel out in the definition of SI .

It would be nice to determine the explicit forms of A(I) and A(I)
µν from (6.11) along

the lines of [69, 70] and directly check that it does not contribute to the interface entropy.
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A Supersymmetry and supergravity

A.1 Notations and conventions

We use the notation and the convention in [49, 73] unless otherwise noted. Complex

conjugation is indicated by ∗ and hermitian conjugation by †. The imaginary unit is i.

Coordinates have indices µ, ν, . . .. The vielbein is eµ
a, and its inverse is ea

µ with tangent

(or flat) space indices a, b, . . ..

A.1.1 Gamma matrices

In Minkowski signature we have ηab = diag(−1, 1, 1, 1) with a, b = 0, . . . , 3, while in Eu-

clidean signature ηab = diag(1, 1, 1, 1) with a, b = 1, . . . , 4. The gamma matrices γµ (with

a Greek alphabet) satisfy

{γµ, γν} = 2gµν , (A.1)

while the gamma matrices γa (with a Latin alphabet) satisfy18

{γa, γb} = 2ηab . (A.3)

They are related as

γµ = γaea
µ . (A.4)

In flat space there is no distinction. The matrix γa is anti-hermitian if a = 0, and is

hermitian otherwise. We have γa=0 = −iγa=4. In terms of the chirality matrix γ∗ =

iγ0γ1γ2γ3 = γ1γ2γ3γ4,19 we define the chirality projections PL, PR by

PL =
1

2
(1 + γ∗) , PR =

1

2
(1− γ∗) . (A.5)

A.1.2 SU(2)R multiplets

We denote by i, j, . . . SU(2)R doublet indices. We regard an SU(2)R triplet as a three-

component vector, from which we can form a tensor with two indices

Yi
j = ~τi

j · ~Y , (A.6)

where ~τi
j = i~σi

j . Let εij and εij be anti-symmetric tensors such that

ε12 = ε12 = 1 . (A.7)

Sometimes but not always, we use them to raise and lower doublet indices, as in

~τ ij = εik~τk
j = (~τij)

∗ = εikεjl~τkl . (A.8)

18In the Weyl representation we have

γa =

(
0 σµ

σµ 0

)
, (A.2)

where σµ = (σ1, σ2, σ3, i), σa = (σ1, σ2, σ3,−i), and σi (i = 1, 2, 3) are Pauli matrices.
19Here each gamma matrix is γa. More generally γµ and γa should be distinguished based on the context.

As in [12], we sometimes write Γa for γa.
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Using ~τ ij we can convert the SU(2)R triplets into symmetric matrices

Y ij = ~τ ij · ~Y . (A.9)

We note a useful formula

AijB
jk = δki ~A · ~B + ( ~A× ~B) · ~τik . (A.10)

A.1.3 Conjugations in Minkowski signature

The charge conjugation matrix C satisfies20

CC† = 1 CT = −C , CγµC
−1 = −γTµ . (A.11)

We also introduce21

B = iCγ0 . (A.12)

In Minkowski signature we define the charge conjugation ΨC of a 4-component spinor Ψ by

ΨC = B−1Ψ∗ . (A.13)

We have (ΨC)C = Ψ, (γµ1 . . . γµNΨ)C = γµ1 . . . γµNΨC . The matrix B satisfies the relation

B−1(γµ)∗B = γµ . (A.14)

We indicate the Weyl conjugate of a spinor by a bar:

Ψ := ΨTC . (A.15)

For two spinors ε and η, we have

(εγµ1 . . . γµN η)∗ = ±εCγµ1 . . . γµN η
C , (A.16)

where we take the upper sign when they are both odd and the lower sign otherwise.

A.2 Supersymmetry parameters

In Minkowski signature the parameters for Poincaré supersymmetry satisfy

(εi)C = εi . (A.17)

For such parameters, the Weyl conjugate (A.15) coincides with the Dirac conjugate:

εi = (εi)
†iγ0 . (A.18)

The parameters for special superconformal symmetry similarly satisfy

(ηi)C = ηi . (A.19)

Both in Minkowski and Euclidean signatures, these parameters are chiral:

εi = PLε
i , εi = PRεi , ηi = PRη

i , ηi = PLηi . (A.20)
20We choose t0 = 1, t1 = −1, etc. in table 3.1 of [49].
21In the Weyl representation (A.2), we can take C = iγ3γ1, B = (γ0γ1γ3)−1.
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A.3 N = 2 supermultiplets

In the rest of appendix A, we assume that the background values of the Weyl multiplet

are all zero except the metric and the vielbein. We now explain N = 2 vector and chiral

multiplets following [73]. Formulas are given for the Minkowski signature and for anti-

commuting parameters satisfying ηi = 1
4γ

µ∇µεi, ηi = 1
4γ

µ∇µεi [32]. Care must be taken

when applying them in Euclidean signature and with commuting SUSY parameters. The

transformations valid in these cases are obtained from the formulas in [73] by explicitly

computing “h.c.” by (A.16) to have expressions with odd parameters on the left. For

example, the “h.c.” of εiγµΩj with εi and Ωj odd gives the expression εiγµΩj , which is

valid in Euclidean signature and with εi even.

A.3.1 Vector multiplet

A vector multiplet has (X,Ωi, Aµ, Yij) as its components. The spinor Ωi is the left-handed

gaugino, and its charge conjugate Ωi is right-handed. We use hermitian generators TI
such that [TI , TJ ] = ifIJ

KTK and expand X = TIX
I , Aµ = TIA

I
µ, etc.22 Their SUSY

transformations are [73]

δXI =
1

2
εiΩI

i , (A.21)

δΩI
i = /DXIεi +

1

4
γµνF Iµν εijε

j +
1

2
Y I
ij ε

j +XJXKfJK
Iεij ε

j + 2XIηi , (A.22)

δAIµ =
1

2
εij εiγµΩI

j +
1

2
εij ε

iγµΩjI , (A.23)

δ~Y I =
1

2
~τ ij εi /DΩI

j − fJKI ~τij εj XJΩiK + h.c. . (A.24)

In Minkowski space we have (ΩI
i )
C = ΩIi.

A.3.2 Chiral multiplet

A chiral multiplet A has (A,Ψi, Bij , F
−
ab, Λi, C) as its components. Their SUSY transfor-

mations are [73, 74]

δA =
1

2
εiΨi , (A.25)

δΨi = /∇(Aεi) +
1

2
Bij ε

j +
1

4
ΓabF−ab εij ε

j + (2w − 4)Aηi , (A.26)

δBij = ε(i /∇Ψj) − εk Λ(i εj)k + 2(1− w) η(i Ψj) , (A.27)

δF−ab =
1

4
εij εi /∇Γab Ψj +

1

4
εi ΓabΛi −

1

2
(1 + w) εij ηi ΓabΨj , (A.28)

δΛi = −1

4
Γab /∇(F−ab εi)−

1

2
/∇Bij εjk εk +

1

2
Cεij ε

j

− (1 + w)Bij ε
jk ηk +

1

2
(3− w) ΓabF−ab ηi , (A.29)

δC = −∇µ(εij εi γ
mΛj) + (2w − 4) εij ηi Λj , (A.30)

where w is the Weyl weight of the multiplet.

22Our hermitian generators TI are related to the anti-hermitian generators tI in [49, 73] as tI = −iTI .

Most of the formulas in the references are given in terms of the coefficient fields XI , AIµ, etc.
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An anti-chiral multiplet A has (A,Ψi, Bij , F+
ab, Λ

i, C) as its components. In Minkowski

signature, its transformations are obtained from those of the chiral multiplet A by complex

or charge conjugation. In Euclidean signature, the transformations are obtained from those

in Minkowski signature by the procedure described at the beginning of this subsection.

A.4 Tensor calculus for chiral multiplets

Given two chiral multiplets A and B with vanishing fermionic components

A = (A|A, Ψi|A = 0, Bij |A, F−ab|A, Λi|A = 0, C|A) , (A.31)

B = (A|B, Ψi|B = 0, Bij |B, F−ab|B, Λi|B = 0, C|B) , (A.32)

the product chiral multiplet AB is given as [75]

A|AB = A|AA|B , (A.33)

Bij |AB = A|ABij |B +A|B Bij |A , (A.34)

F−ab|AB = A|A F−ab|B +A|B F−ab|A , (A.35)

C|AB = A|AC|B + C|AA|B −
1

2
εikεjlBij |ABkl|B + F−ab|A F

−ab|B . (A.36)

The n-th power of a chiral multiplet A [76] is given as

A|An = (A|A)n , (A.37)

Bij |An = n (A|A)n−1Bij |A , (A.38)

F−ab|An = n (A|A)n−1 F−ab|A , (A.39)

C|An = n (A|A)n−1C|A −
1

4
n(n− 1) (A|A)n−2

[
εikεjlBij |ABkl|A − 2

(
F−ab|A

)2]
. (A.40)

For fields in the adjoint representation, we should apply these formulas to the coefficients

of the generators TI .

A.5 Definition of T(log Φ)

In this appendix we give the expression for T(log Φ) computed from an anti-chiral multi-

plet Φ with vanishing fermionic and field strength components. First, the components of

log Φ are given by [52]

A|log Φ = log
(
A|Φ

)
, (A.41)

Bij |log Φ =
Bij |Φ
A|Φ

, (A.42)

C|log Φ =
C|Φ
A|Φ

+
1

4
(
A|Φ

)2 εikεjl (Bij |Φ
) (
Bkl|Φ

)
. (A.43)

The chiral multiplet T(anti-chiral multiplet) is the so-called N = 2 kinetic multiplet [76].

The components of the kinetic multiplet made from log Φ are given as [52]

A|T(log Φ) = C|log Φ , (A.44)

Bij |T(log Φ) = −2εikεjl�CB
kl|log Φ , (A.45)

C|T(log Φ) = 4�C�CA|log Φ , (A.46)

where �C is the so-called conformal d’Alembertian.
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B Conformal transformations between S4 and the flat space

Let us consider the embedding coordinates YM (M = 1, . . . , 5) for S4 satisfying∑
(YM )2 = r2 , ds2

S4 =
∑

(dYM )2 . (B.1)

Recall the coordinates xµ used in section 3.2 and yµ used in section 3.1. We define x =

(
∑

µ(xµ)2)1/2, y = (
∑

µ(yµ)2)1/2. We also define two functions of a single variable z:

f(z) :=
1

1 + z2

4r2

, g(z) := r
1− z2

4r2

1 + z2

4r2

. (B.2)

By (3.28) we have

f(x) = cos2 θ

2
. (B.3)

The coordinates xµ and yµ are related to YM as
Y 1

Y 2

Y 3

Y 4

Y 5

 =


f(x)


x1

x2

x3

x4


g(x)

 =


g(y)

f(y)


y4

y1

y2

y3



 . (B.4)

From the relations f(x)x1 = g(y) and g(x) = f(y)y3 we find

y3 =
2r cos θ

1 + sin θ cos θ1
, f(y) =

1

2
(1 + sin θ cos θ1) , (B.5)

where cos θ1 = x1/x. Then

1

r
δ
(
θ − π

2

)
=

1

f(y)
δ(y3) ,

1

r2
δ′
(
θ − π

2

)
= − 1

f(y)2
δ′(y3) . (B.6)

Since the sphere metric can be written as ds2
S4 = f(y)2dyµdyµ, f(y) is the conformal factor

that relates the metrics in sections 3.1 and 3.2. The Weyl weights of B
(τ)
ij , B(τ)ij , C(τ), and

C(τ), are 1, 1, 2, 2, respectively [73]. The identities (B.6) then imply that (3.12) and (3.33)

are related by the Weyl transformation.

C Details on the supersymmetric Rényi entropy

In this appendix we provide some details that we use in section 2.4 when we discuss the

supersymmetric Rényi entropy.

C.1 SUSY background on the branched 4-sphere

To complete the definition of the supersymmetric Rényi entropy (2.27), we review the

relevant part of the supersymmetric background S̃4
n that regularizes the n-fold branched

cover of the 4-sphere with metric (2.13). For simplicity we set the radius of the sphere to
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one. First let us consider a four-manifold X4 that is a torus fibration over a 2d surface.

One can pick coordinates (φ1, φ2) and (η, ρ) for the torus and the surface respectively, and

introduce the metric of the form [31]

ds2
X4

= sin2 ρ
(
ε−2
1 cos2 η dφ2

1 + ε−2
2 sin2 η dφ2

2

)
+ (f1(η, ρ) sin ρ dη + f3(η, ρ) dρ)2 + f2(η, ρ)2 dρ2 ,

(C.1)

where ε1, ε2 are constants and f1, f2, f3 are functions on the surface.

We regularize the singularity of the branched sphere metric (2.13) in four dimensions

by replacing it with the resolved branched sphere S̃n4 ,

ds2
S̃n4

= f(θ)2 dθ2 + n2 sin2 θ dτ2 + cos2 θ
(
dφ2 + sin2 φ dχ2

)
, (C.2)

where we introduced a smooth function f(θ) such that

f(θ → 0) = n , f(θ � δ) = 1 , (C.3)

for a small parameter δ � 1. By changing the coordinates via

sin θ = sin η sin ρ , tanφ = cos η tan ρ , χ = φ1 , τ = φ2 , (C.4)

the metric takes the form (C.1) with ε1 = 1, ε2 = 1/n and23

f1(η, ρ) =

(
f(θ)2 cos2 η + sin2 η cos2 ρ

cos2 η + sin2 η cos2 ρ

)1/2

,

f2(η, ρ) =
f(θ)

f1(η, ρ)
,

f3(η, ρ) =
(f(θ)2 − 1) sin(2η) cos ρ

2f1(η, ρ) (cos2 η + sin2 η cos2 ρ)
.

(C.5)

For n = 1 and f(θ) = 1, (C.2) reduces to the round sphere metric (2.11). We note that

the interface is placed at φ = π/2 or equivalently at ρ = π/2.

Part of supersymmetries can be preserved by tuning on the background supergravity

fields V ij
µ , Aµ, T

±
µν and D in the Weyl multiplet [31].24

C.2 Vanishing of one-point functions

We now show that the second term in (2.29) vanishes.

An N = 2 SCFT has the supercurrent multiplet [77–80]25

J = (Tµν , S
i
µ, j

ij
µ , jµ, J, j

i, j±µν) , (C.6)

23The expressions in (C.5) are equivalent to (C.3) of [37] with (f1, f2, f3) = (F,G,H)there.
24In the singular limit δ → 0 the SUSY background of S̃n4 [37] reduces, away from the singularities, to

(Vτ )ij = Aτdiag(1,−1), Aτ = n−1
2

, and T±µν = D = 0.
25It was shown in [32] that the system with the massive superalgebra OSp(2|4)m symmetry corresponds

to an off-shell formulation of N = 2 Poincaré supergravity with vector and tensor multiplets used as

compensators. The SUSY parameters for OSp(2|4)m are compatible with this off-shell formulation, but not

with the off-shell formulation that involves a non-linear multiplet or a hypermultiplet as a compensator.

For a similar hidden dependence of theory on the off-shell formulation of supergravity, see [81]. The

compensating tensor multiplet in general affects the conservation equation for the supercurrent [82]. In our

set-up, however, the tensor multiplet does not actually couple to the field theory and hence does not affect

the conservation equation.
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which includes the stress tensor Tµν , the supersymmetry current Siµ, the SU(2)R current jijµ ,

and the U(1)R current jµ. The supercurrent also contains a real scalar J , self-dual and

anti-self-dual anti-symmetric tensors j±µν , and a spinor ji. The spinorial operators are

chiral: Siµ = PRS
i
µ, ji = PRj

i. We suppressed their conjugates Sµi = PLSµi and ji = PLji
in (C.6).

The supercurrent multiplet couples to the Weyl multiplet. Among the fields in the

Weyl multiplet, those which couple to the SCFT supercurrent are

W = (gµν , ψµ
i, Vµ i

j , Aµ, D, χ
i, T±µν) . (C.7)

Spinorial fields are chiral: ψµ
i = PLψµ

i, χi = PLχ
i. In (C.7) we suppressed their con-

jugate ψµi = PRψµi and χi = PRχi. The partition function ZISUSY[S̃4
n] on the branched

sphere (2.13) can be expanded around n = 1 as

− Re logZISUSY[S̃4
n] + Re logZISUSY[S4]

=

∫
S4

d4x
√
g
〈1

2
δgµνT

µν + δψµ
iSµi + δψµiS

µi + δVµ
ijjµij + δAµj

µ

+ δD J + δχi ji + δχi j
i + δT+µνj+µν + δT−µνj−µν

〉(ICFT)

S4
+O((n− 1)2) .

(C.8)

Here we took the real parts on the left-hand side and assumed that they coincide, at least in

the n→ 1 limit, with the conformal partition functions. The variations of fermions are ac-

tually zero because the ZISUSY[S̃4
n] background is bosonic. In flat space one-point functions

of operators with non-zero spin have to vanish due to the conformal symmetry SO(1, 4)

preserved by the interface [28, 29]. Most operators in the supercurrent multiplet transform

as primary operators of definite weights under the Weyl transformation from flat space

to a sphere, so their vevs should vanish on S4 as well. An exception is the stress tensor

whose one-point function has a non-vanishing contribution from the conformal anomaly on

a 4-sphere as in (2.21); this case is discussed in sections 2.2 and 6.4. Assuming that the

localized part of Aµν in (2.21) does not contribute to the interface entropy, the only non-

trivial contribution from the couplings in (C.8) comes from the scalar one-point function

〈 J 〉(ICFT)
S4 in the second line.

We now show that, for a half-BPS superconformal interface, 〈J 〉(ICFT)
S4 vanishes and

gives no contribution to (C.8). The SUSY transformation of ji in flat space is given by26

δji = −1

2
(/∂J)εi +

1

2
jµi

jγµεj +
i

2
jµγ

µεi + j−µνγ
µνεijε

j . (C.9)

26The components of the supercurrent multiplet for an abelian vector multiplet can be obtained by

linearizing the Weyl multiplet in the superconformal action (20.89) of [49]. Explicitly, they are given

by Tµν = 8∂(µX∂ν)X − 4gµν |∂ρX|2 + 4
3
(gµν∂2 − ∂µ∂ν) |X|2 − gµν(X∂2X + X∂2X) + Ωiγ(µ

↔
∂ ν)Ωi −

1
4
gµνΩ

i↔
/DΩi + 2FµρF

νρ − 1
2
gµνFρσF

ρσ, Sµi = − 1
2
Fρσγ

ρσγµεijΩ
j − 2X

↔
∂
µ

Ωi + 2Xγµ /∂Ωi − 2
3
γµν∂ν

(
XΩi

)
,

jµ
i
j = −2ΩiγµΩj + δijΩ

kγµΩk, jµ = −4iX
↔
∂ µX + iΩiγµΩi, J = −4XX, ji = 4XΩi, j

+
µν = XF+

µν , and

j−µν = XF−µν . Here L = −4∂µX∂
µX + 1

2
εikεjlYijYkl − 2Ωi/∂Ωi − 1

2
FµνF

µν and f
↔
∂ µg = f∂µg− (∂µf)g. See

also [78]. One can obtain (C.9) and the other transformations from these expressions.
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As we explained earlier, the one-point functions of non-scalar operators in an ICFT vanish

thanks to conformal symmetry [29]. For constant SUSY parameters εi and εi parametrizing

the supersymmetry preserved by the interface, the Ward identity 〈 δji 〉(ICFT)
R4 = 0 and the

transformation (C.9) imply that

0 = ∂µ 〈 J 〉(ICFT)
R4 γµεi . (C.10)

Since ∂µ 〈 J 〉(ICFT)
R4 = 0 for µ 6= 3, we have

〈 J 〉(ICFT)
R4 γ3εi = constant . (C.11)

On the other hand, because J has Weyl weight 2

〈 J 〉(ICFT)
R4 ∝

∣∣y3
∣∣−2

. (C.12)

For a non-zero εi (C.11) and (C.12) are compatible only if 〈 J(y) 〉(ICFT)
R4 = 0. Since J is a

conformal primary, we conclude that 〈 J 〉(ICFT)
S4 = 0.

Therefore, we have

log ZISUSY[S4
n] = log ZISUSY[S4] +O((n− 1)2) , (C.13)

for the supersymmetric Rényi entropy. This shows that the second term in (2.29) vanishes.
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