
J
H
E
P
0
8
(
2
0
2
0
)
0
4
7

Published for SISSA by Springer

Received: June 1, 2020

Revised: July 11, 2020

Accepted: July 13, 2020

Published: August 11, 2020

A systematic approach to Kähler moduli stabilisation

S. AbdusSalam,a S. Abel,b M. Cicoli,c,d F. Quevedoe and P. Shuklaf

aDepartment of Physics, Shahid Beheshti University,

Evin G.C., Tehran 19839, Islamic Republic of Iran
bInstitute for Particle Physics Phenomenology, Durham University,

South Road, Durham, U.K.
cDipartimento di Fisica e Astronomia, Università di Bologna,
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Abstract: Achieving full moduli stabilisation in type IIB string compactifications for

generic Calabi-Yau threefolds with hundreds of Kähler moduli is notoriously hard. This

is due not just to the very fast increase of the computational complexity with the num-

ber of moduli, but also to the fact that the scalar potential depends in general on the

supergravity variables only implicitly. In fact, the supergravity chiral coordinates are 4-

cycle volume moduli but the Kähler potential is an explicit function of the 2-cycle moduli

and inverting between these two variables is in general impossible. In this paper we pro-

pose a general method to fix all type IIB Kähler moduli in a systematic way by working

directly in terms of 2-cycle moduli: on one side we present a ‘master formula’ for the

scalar potential which can depend on an arbitrary number of Kähler moduli, while on the

other we perform a computer-based search for critical points, introducing a hybrid Ge-

netic/Clustering/Amoeba algorithm and other computational techniques. This allows us

to reproduce several known minima, but also to discover new examples of both KKLT and

LVS models, together with novel classes of LVS minima without diagonal del Pezzo divisors

and hybrid vacua which share some features with KKLT and other with LVS solutions.
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1 Introduction

Stabilising the moduli fields that determine the size and shape of the extra dimensions has

been one of the most important challenges for string compactifications for decades. Flux

compactifications of type IIB string theory are probably the most explored since 3-form

fluxes stabilise the complex structure moduli Uα (counted via α = 1, · · · , h1,2) and the dila-

ton S, producing a huge landscape of solutions. Conversely the Kähler moduli Ti (counted

by i = 1, · · · , h1,1) can be fixed only after perturbative and non-perturbative corrections to

the Kähler potential and superpotential are included. This last stage of the stabilisation is

under less control, due to the difficulty of computing quantum corrections, and of writing

the scalar potential explicitly in terms of the correct 4D supergravity chiral coordinates.

This issue becomes evident when we recall that the imaginary parts of the Ti fields

include the 4-cycle volume moduli τi which also give the gauge couplings of the gauge

theories living on D7-branes wrapped around internal 4-cycles. Thus the T -moduli appear

directly in the non-perturbative superpotential. On the other hand the tree-level Kähler

potential depends directly on the overall Einstein-frame volume:

V =
1

6
kijk t

i tj tk , (1.1)

where kijk are the triple intersection numbers of the underlying Calabi-Yau (CY) threefold

and ti are 2-cycle volumes. The 4-cycle moduli τi are determined in terms of their dual ti as:

τi =
∂V
∂ti

=
1

2
kijkt

jtk . (1.2)

In order to write the full effective action in terms of the T -fields, (1.2) needs to be in-

verted to express ti as a function of τj which can only be done for simple cases. However a

generic CY compactification features a large number of Kähler moduli, typically of order

h1,1 = 100 − 1000 (see for instance [1–3] for classifications on complete intersection CY

manifolds and [4, 5] for CY manifolds as hypersurfaces in toric ambient varieties).1

As well as the computational complexity of finding the minimum of a potential with

several variables, the fact that in general the scalar potential depends only implicitly on

the 4-cycle moduli creates a hard technical obstacle to finding explicit vacua for CY com-

pactifications with large h1,1. For this reason the vast majority of work in the literature has

so far focused only on simple examples such as the original KKLT model [10] for h1,1 = 1,

and vanilla LVS vacua for Swiss cheese and K3-fibred compactifications with h1,1 = 2, 3

and diagonal del Pezzo (dP) divisors, where (1.2) can be inverted exactly [11–13].

In this paper we propose a new approach to type IIB Kähler moduli stabilisation

which allows one to overcome these technical issues. Our key idea is to work directly in

terms of the 2-cycle volume moduli which appear explicitly in the scalar potential. In

combination with a computer-based search this can in principle discover the critical points

for an arbitrary number of Kähler moduli. Indeed we shall present a ‘master formula’ for the

scalar potential generated by α′ corrections to the Kähler potential and non-perturbative

1See also [6, 7] for partial classifications. Furthermore, it has recently been found that CY manifolds

with a comparably large number of moduli have interesting and distinctive properties [8, 9].
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contributions to the superpotential which is valid for arbitrary numbers of 2-cycle moduli.

Our subsequent numerical analysis then exploits both Lipschitz optimisation and a hybrid

Genetic/Clustering/Amoeba algorithm.

For convenience, we will illustrate the efficiency of our general method by focusing on

CY examples that still have a relatively small number of moduli, but our analysis should

be considered as a first step towards tackling more general cases with much larger h1,1.

In fact, even though in this paper we focus on h1,1 ≤ 3, our method is already able to

reveal the existence of entirely new classes of vacua. More precisely, we first show how

our ‘master formula’ for the scalar potential in terms of 2-cycle volume moduli combined

with our numerical techniques can reproduce several known models, such as standard AdS

KKLT vacua [10], dS KKLT solutions with α′ uplift [14–17] and both AdS and dS LVS

minima [11–13]. But we then go on to show that our method can also find new examples

of both KKLT and LVS models and, more interestingly, it can uncover entirely new classes

of LVS minima without diagonal dP divisors, and hybrid vacua that share features of both

the KKLT and the LVS solutions.

The developments that we make towards establishing a new systematic approach to

Kähler moduli stabilisation can be summarised as follows:

1. We present a ‘master formula’ for the scalar potential as a function of the 2-cycle

moduli for an arbitrary number of Kähler moduli. The scalar potential is generated

by generic single-instanton non-perturbative contributions to the superpotential and

the leading O(α′3) correction to the Kähler potential [18]. In this first-step approach

to Kähler moduli stabilisation we neglect string loop corrections [13, 19, 20] and

F 4 O(α′3) contributions [21] which depend explicitly on 2-cycle moduli, providing

further motivation for the idea of working directly in terms of the t-fields. Given that

these corrections are suppressed with respect to the leading O(α′3) contribution by

either direct powers of gs � 1 or inverse powers of the internal volume V � 1, it is

consistent to neglect them, although we will include them in future work which will

provide a more comprehensive analysis. For this work we should note that string

loops have been used to fix the moduli in [22–27] for simple K3-fibred LVS models

with 1 or 2 diagonal dPs, while ref. [28] showed that F 4 O(α′3) effects can fix all the

Kähler moduli of any CY with arbitrary large h1,1 and at least a single dP divisor.

In addition the stabilisation of an arbitrarily large number of Kähler moduli in [28]

has been achieved by minimising analytically with respect to 2-cycle moduli.

2. We consider the large database of CY threefolds constructed by Kreuzer and Skarke

as hypersurfaces in toric ambient varieties [5], and we identify the models with h1,1 =

1, 2, 3 that can be treated with KKLT and LVS techniques (recall LVS needs at least

two 4-cycles, a ‘big’ and a ‘small’ divisor). In addition, we find the percentage of

models where the relation between 2- and 4-cycle volume moduli cannot be inverted

explicitly, so identifying those models that cannot be studied by standard stabilisation

techniques, where our new method is particularly powerful.

– 3 –
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3. We introduce new powerful computational tools for locating and identifying local

minima, for example a hybrid Genetic+Clustering+Nelder-Mead algorithm. This

technique is of general applicability in systems with many local minima. Due to the

computational complexity of identifying local minima we will in practice combine of

such numerical approaches with analytical techniques.

4. We recover from our ‘master formula’ all the main scenarios that have been proposed

so far, for both AdS and dS vacua, including KKLT, α′-uplift and LVS, by specifying

just 3 quantities: the CY Euler number, the Hodge number h1,1 and the number of

non-perturbative contributions to the superpotential.

5. We focus on CY threefolds whose volume does not admit a simple expression in

terms of 4-cycle volume moduli, and we find new concrete examples of KKLT vacua

for h1,1 = 2 and LVS minima for CY compactifications with h1,1 = 3 and just a

single diagonal dP divisor. Moreover we find the first examples in the literature

of LVS models for CY compactifications with 3 Kähler moduli none of which is a

diagonal dP 4-cycle. We also discover novel vacua for CY threefolds with h1,1 = 2

and no diagonal dP 4-cycle. We call these entirely new solutions ‘hybrid’, because

the value of the volume at the minimum scales as in KKLT models but the effects

used to stabilise the moduli are the same as in LVS models.

This paper is organised as follows. In the section 2, after collecting all conventions, we

provide the general expression for the scalar potential of the Kähler moduli parametrised

by the 2-cycle moduli, and we then discuss the conditions that have to be satisfied to make

the effective field theory trustable. In section 3 we make a systematic study of all the

models in the Kreuzer-Skarke list with Hodge numbers h1,1 = 1, 2, 3, classifying those that

have a structure admitting LVS vacua and those whose volume form cannot be written

explicitly in terms of 4-cycle moduli. In section 4 we then show the power of our general

method by first reproducing known AdS and dS vacua, and then discovering novel classes of

stabilised vacua. Our conclusions are finally presented in section 5. We have also collected

several technical details in the appendices, starting with appendix A which shows how the

scalar potential of several known models can be easily read off from our ‘master formula’.

The details of the codes used to search for global and also local minima are then explained

in appendices B and C, the first describing the Lipschitz optimisation algorithm and the

second a hybrid of a genetic algorithm and Clustering and Nelder-Mead algorithms. All of

these methods (with their various strong and weak points) are used in combination with

analytic calculations to properly identify the local minima. Finally we have included tables

of CY models with h1,1 = 2, 3 in appendices D and E.

2 Type IIB effective theory

2.1 Type IIB preliminaries

The F -term contributions to the N = 1 scalar potential governing the dynamics of low en-

ergy effective supergravity are computed from the Kähler potential K and the holomorphic
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superpotential W via the following well-known relation:

V = eK
(
KAB̄DAW DBW − 3 |W |2

)
, (2.1)

where the covariant derivatives are defined with respect to all the chiral variables on which

K and W generically depend.

2.1.1 Fixing the conventions

The massless states in the 4D effective theory are in one-to-one correspondence with har-

monic forms which are either even or odd under the action of an isometric, holomorphic in-

volution σ acting on the internal CY threefold, and these generate the equivariant cohomol-

ogy groups Hp,q
± (X). Let us fix our conventions and denote the bases of even/odd 2-forms

as (µi, νa) while 4-forms are denoted (µ̃i, ν̃a) where i = 1, . . . , h1,1
+ (X), a = 1, . . . , h1,1

− (X).

Configurations with h1,1
− (X) 6= 0 have been studied much less than the simpler h1,1

− (X) = 0

case, and explicit constructions of such orientifold odd 2-cycles can be found in [6, 29–33].

Also, we denote the 0- and 6-forms as 1 and Φ6 respectively. In addition, the bases for the

even and odd cohomologies of 3-forms H3
±(X) are denoted respectively as the symplectic

pairs (aK , b
J) and (AΛ,B∆). Using the conventions of [34], let us fix the normalisation in

the various cohomology bases as:∫
X

Φ6 = 1,

∫
X
µi ∧ µ̃j = δ j

i ,

∫
X
νa ∧ ν̃b = δ b

a ,

∫
X
µi ∧ µj ∧ µk = kijk,∫

X
µi ∧ νa ∧ νb = k̂iab,

∫
X
aK ∧ bJ = δK

J ,

∫
X
AΛ ∧ B∆ = δ∆

Λ . (2.2)

For the orientifold choice with O3/O7-planes, K = 1, . . . , h2,1
+ and Λ = 0, . . . , h2,1

− , while

for O5/O9-planes, one has K = 0, . . . , h2,1
+ and Λ = 1, . . . , h2,1

− .

The various fields can be expanded in appropriate bases of the equivariant cohomolo-

gies. For example, the Kähler form J , the 2-forms B2, C2 and the RR 4-form C4 can be

expanded as [35]:

J = ti µi , B2 = ba νa , C2 = ca νa ,

C4 = ρi µ̃
i +Di

2 ∧ µi + V K ∧ aK + UK ∧ bK , (2.3)

where, as mentioned before, ti denotes 2-cycle volume moduli, while ba, ca and ρi are

various axions. Furthermore (V K , UK) forms a dual pair of space-time 1-forms and Di
2

is a space-time 2-form dual to the scalar field ρi. Also, since σ∗ reflects the holomorphic

3-form Ω3, we have h2,1
− (X) complex structure moduli Uα appearing as complex scalars.

Moreover, the involutively-odd holomorphic 3-form Ω3 generically depends on the complex

structure moduli and can be written in terms of the period vectors as:

Ω3 ≡ XΛAΛ − FΛ BΛ , (2.4)

where F = (X 0)2 f(Uα) is a generic pre-potential, with Uα =
δαΛ X

Λ

X 0 and with f(Uα) being

some function dependent on the complex structure moduli [36]. Apart from the complex

– 5 –
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structure moduli, the dynamics of the N = 1 type IIB 4D effective theory can be described

using the following additional chiral variables (S,Ga, Ti) defined as in [37]:

S = C0 + i e−φ = C0 + i s , Ga = ca + S ba ,

Ti =

(
ρi + k̂iabc

abb +
1

2
C0 k̂iabb

a bb
)
− i

(
τi −

s

2
k̂iab b

a bb
)
, (2.5)

where τi = 1
2 kijkt

jtk is an Einstein frame 4-cycle volume. In addition we will introduce

the short-hand notation kij ≡
(
kijk t

k
)−1

.

At the perturbative level, the Kähler potential receives two kinds of corrections: α′

and gs corrections. Using appropriate chiral variables, a generic form for the Kähler po-

tential incorporating the leading O(α′3) correction can be written as the sum of two terms

motivated by their underlying N = 2 special Kähler and quaternionic structure:

K = Kcs +K , (2.6)

where:

Kcs = − ln

(
i

∫
X

Ω3 ∧ Ω̄3

)
and K = − ln

(
−i(S − S)

)
− 2 lnY . (2.7)

Here Y denotes the α′ corrected CY volume [18]:

Y = V +
ξ

2

(
S − S

2 i

)3/2

= V +
ξ

2 g
3/2
s

, (2.8)

where V is the tree-level CY volume V = 1
6 kijk t

i tj tk in Einstein frame and ξ is proportional

to the CY Euler characteristics χ: ξ = − ζ(3)χ(X)
2 (2π)3 (for reference ζ(3) ' 1.2). Further α′

and gs corrections have been estimated throughout the years, turning out to be either

subdominant or reabsorbable by field redefinitions. Finding all the possible α′ corrections

is an open question. For a recent discussion of these corrections see for instance [38].

The block diagonal nature of the total Kähler metric (and its inverse) admits the

following splitting of contributions:

e−K V = KAB (DAW ) (DBW )− 3|W |2 ≡ Vcs + Vk , (2.9)

where:

Vcs = Kαβ
cs (DαW ) (DβW ) and Vk = KAB (DAW ) (DBW )− 3|W |2 . (2.10)

Recall that the indices (α, β) correspond to the complex structure moduli Uα while the

indices (A,B) run over the remaining chiral variables {S,Ga, Ti}. For our purposes, we

choose the orientifold involution such that the odd (1, 1)-cohomology sector is trivial, and

so there will be no odd moduli present in the current analysis.

– 6 –
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2.1.2 Inverse Kähler metric and useful identities

The derivatives of the Kähler moduli dependent piece of the Kähler potential (K) in (2.7)

can be generically expressed as (with ξ̂ ≡ ξ/g3/2
s ):

KS =
i

2 s

(
1 +

3 ξ̂

2Y

)
= −KS , KTi = − i ti

2Y = −KT i
. (2.11)

Using these derivatives, the various Kähler metric components are found to be:

KSS =
1

4 s2

(
1− 3 ξ̂

4Y +
9 ξ̂2

8Y2

)
, KTi S

= − 3 ξ̂ ti

16 sY2
= KS T i

, KTi T j
=

9Gij
4Y2

, (2.12)

where, using our shorthand notation, the α′-corrected moduli space metric and its inverse,

G and G−1, are given by:

Gij
36

=
τi τj

Y (6V − 2Y)
− kijkt

k

4Y and 36Gij = 2 ti tj − 4Y kij . (2.13)

Hence the inverse Kähler metric components are found to be [39]:

KSS = γ1, KTi S = γ2 τi = KS T i , KTi T j =
4

9
Y2 Gij +

γ2
2

γ1
τi τj , (2.14)

where γ1 and γ2 are given by:

γ1 =
s2 (4V − ξ̂)

(V − ξ̂)
, γ2 =

3 s ξ̂

(V − ξ̂)
. (2.15)

Here let us note that in the absence of α′ corrections, i.e. setting ξ̂ = 0, we have γ1 = 4 s2

and γ2 = 0, and the inverse metric components in (2.14) reduce to the standard results

of [35]. Considering the explicit components of the inverse Kähler metric, we find the

following useful simplified relations:

KSK
SS =

i s (4V − ξ̂)(V + 2 ξ̂)

(V − ξ̂)(2V + ξ̂)
= −KSSKS ,

KSK
ST i =

3 i ξ̂ τi (V + 2 ξ̂)

(V − ξ̂)(2V + ξ̂)
= −KTiSKS ,

KTi K
Ti S = − 9 i s ξ̂ V

(V − ξ̂)(2V + ξ̂)
= −KS T i KT i

,

KTi K
TiT j = − i τj (4V2 + V ξ̂ + 4 ξ̂2)

(V − ξ̂)(2V + ξ̂)
= −KTjT i KT i

, (2.16)

together with:

KSK
SSKS =

(4V − ξ̂)(V + 2 ξ̂)2

(V − ξ̂)(2V + ξ̂)2
,

KSK
ST i KT i

= − 9 ξ̂ V(V + 2 ξ̂)

(V − ξ̂)(2V + ξ̂)2
= KTi K

TiSKS ,

KTi K
TiT j KT j

=
3V(4V2 + V ξ̂ + 4 ξ̂2)

(V − ξ̂)(2V + ξ̂)2
. (2.17)

– 7 –
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These identities will be used extensively in the derivation of the master formula for the

scalar potential. As a check, when α′ corrections are turned off, i.e. when ξ̂ = 0, these

useful identities reduce to the following well-known tree-level results:

KSK
SS = 2 i s = −KSSKS , KSK

ST i = 0 = KTiSKT i
,

KTi K
Ti S = 0 = KS T i KT i

, KTi K
TiT j = −2 i τj = −KTjT i KT i

,

KSK
SSKS = 1, KSK

ST i KT i
= 0, KTi K

TiT j KT j
= 3 . (2.18)

2.2 A master formula for the scalar potential

For a generic superpotential which depends on all closed string chiral variables, namely S,

Ti and Uα, the F -term scalar potential (2.1) can be rewritten as:

e−K V = Kαβ
cs (DαW ) (DβW ) +KSS (DSW ) (DSW ) +KST i KT i

(DSW )W

+KTi K
TiS (DSW )W +KST i (DSW )W T i

+KTiSWTi (DSW )

+KTiK
TiT jWW T j

+WTiK
TiT jKT j

W +WTiK
TiT jW T j

+
(
KTi K

TiT j KT j
− 3
)
|W |2 . (2.19)

In standard flux compactifications with F3 and H3 fluxes, the tree-level superpotential

depends only on the complex structure moduli and the axio-dilaton, i.e. W = W0(Uα, S).

This flux-dependent superpotential can fix all complex structure moduli and the axio-

dilaton supersymmetrically at leading order by enforcing:

DαW0 = 0 = DαW 0, and DSW0 = 0 = DSW 0 . (2.20)

The Kähler moduli can appear in W only via non-perturbative effects. In what follows,

we shall assume n non-perturbative contributions to W which can be generated by either

rigid divisors, such as shrinkable dP 4-cycles, or non-rigid divisors with non-zero magnetic

fluxes [40–42]. The corresponding non-perturbative superpotential is then:2

W = W0 +

n∑
i=1

Ai e
−i ai Ti . (2.21)

Note that in (2.21) there is no sum in the exponents (−i ai Ti), and summations are to be

understood only when upper indices are contracted with lower indices; otherwise we will

write an explicit sum as in (2.21). We will suppose that out of h1,1 Kähler moduli, only

the first n appear in W , i.e. i = 1, . . . , n ≤ h1,1.

Assuming that the S and U -moduli are stabilised as in (2.20) and considering a super-

potential given by (2.21), the scalar potential (2.19) reduces to:

V = eK
[
KTiK

TiT jWW T j
+WTiK

TiT j
(
W T j

+KT j
W
)

+
(
KTi K

TiT j KT j
− 3
)
|W |2

]
.

2The exponents (−i ai Ti) in (2.21) follow from the definition of the chiral variables in (2.5) which have

been chosen to make explicit the T-duality transformations between type IIA and type IIB [43].
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Moreover, using the identities in eqs. (2.16)–(2.17) which include O(α′3) corrections to the

Kähler potential, this scalar potential can be written as the sum of three terms:

V = VO(α′3) + Vnp1 + Vnp2 , (2.22)

where (introducing phases into the parameters as W0 = |W0| ei θ0 and Ai = |Ai| eiφi):

VO(α′3) = eK
3 ξ̂(V2 + 7V ξ̂ + ξ̂2)

(V − ξ̂)(2V + ξ̂)2
|W0|2 , (2.23)

Vnp1 = eK
n∑
i=1

2 |W0| |Ai| e−aiτi cos(ai ρi + θ0 − φi)

×
[

(4V2 + V ξ̂ + 4 ξ̂2)

(V − ξ̂)(2V + ξ̂)
(ai τi) +

3 ξ̂(V2 + 7V ξ̂ + ξ̂2)

(V − ξ̂)(2V + ξ̂)2

]
,

Vnp2 = eK
n∑
i=1

n∑
j=1

|Ai| |Aj | e− (aiτi+ajτj) cos(ai ρi − aj ρj − φi + φi)

×
[
−4

(
V +

ξ̂

2

)
(kijk t

k) ai aj +
4V − ξ̂
(V − ξ̂)

(ai τi) (aj τj)

+
(4V2 + V ξ̂ + 4 ξ̂2)

(V − ξ̂)(2V + ξ̂)
(ai τi + aj τj) +

3 ξ̂(V2 + 7V ξ̂ + ξ̂2)

(V − ξ̂)(2V + ξ̂)2

]
.

Notice that VO(α′3) reproduces the known O(α′3) contribution to the potential first derived

in [18]. This term vanishes for ξ̂ = 0, reproducing the standard no-scale structure in the

absence of a T -dependent non-perturbative W . On the other hand, for very large volume

V � ξ̂, this term takes the standard form which plays a crucial rôle in LVS models [11]:

VO(α′3) '
eKcs

2 sV2
× 3 ξ̂ |W0|2

4V . (2.24)

Let us also stress that VO(α′3) depends only on the overall volume V, while Vnp1 depends

on V and the 4-cycle moduli τi (with the additional dependence on the axions ρi). Hence

these two contributions to V could be minimised by taking derivatives with respect to

V and (h1,1 − 1) 4-cycle moduli. However Vnp2 depends on the quantity kijk t
k which in

general cannot be inverted to be expressed as an explicit function of the τi’s. Thus our

master formula for the scalar potential shows that moduli stabilisation is more naturally

performed in terms of the 2-cycle moduli ti. As discussed in the introduction, we will see

that this strategy allows the study of a much wider set of cases, leading to new interesting

moduli stabilisation schemes.

Moreover (2.23) determines the complete form of V simply by specifying topological

quantities such as the intersection numbers and the CY Euler number which controls O(α′3)

corrections, and the number n of non-perturbative contributions to W . Before proceeding

to find new vacua, in table 1 we show how our master formula can elegantly reproduce

known moduli stabilisation models parametrised by different choices of h1,1, n and ξ̂ (see

appendix A for an explicit derivation of these potentials from our master formula).
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Model h1,1 n ξ̂

1-modulus KKLT [10] h1,1 = 1 n = 1 ξ̂ = 0

1-modulus α′-uplift [15–17] h1,1 = 1 n = 1 ξ̂ > 0

2-moduli KKLT [44, 45] h1,1 = 2 n = 2 ξ̂ = 0

2-moduli α′-uplift [42] h1,1 = 2 n = 2 ξ̂ > 0

2-moduli Swiss cheese LVS [6, 11, 46, 47] h1,1 = 2 n = 1 ξ̂ > 0

3-moduli Swiss cheese LVS [48, 49] h1,1 = 3 n = 2 ξ̂ > 0

3-moduli fibred LVS [22] h1,1 = 3 n = 2 ξ̂ > 0

Table 1. Various classes of known models whose scalar potential can be easily read-off from our

master formula (2.23).

Furthermore, our master formula features an explicit dependence on all phases and

axion fields. In this paper we shall fix the axions analytically and scan numerically for

minima along the directions of the 2-cycle moduli. However (2.23) allows for a more

general numerical analysis of the many axion potential. We leave this for future work.

2.3 Validity of the effective field theory

Before using the master formula in (2.23) to find new minima, let us list the conditions

that have to be satisfied to trust the validity of the low-energy 4D effective field theory:

1. Stringy corrections: stringy effects can be neglected if each 2-cycle Σ
(i)
2 , i =

1, . . . , h1,1, has a string-frame volume larger than the string scale, i.e. Vols

(
Σ

(i)
2

)
�

α′ ∀i = 1, . . . , h1,1. Given that string and Einstein frame volumes are related as

Vols

(
Σ

(i)
2

)
= g

1/2
s VolE

(
Σ

(i)
2

)
, and expressing the 2-cycle volumes in units of `s =

2π
√
α′ as VolE

(
Σ

(i)
2

)
= |ti| `2s, the condition to trust the supergravity regime is [26]:

|ti| �
1

g
1/2
s (2π)2

∀ i = 1, . . . , h1,1 . (2.25)

The 10D tree-level action receives higher derivative corrections at different orders in

α′ which, at the level of the 4D effective theory, appear as an expansion in inverse

powers of the Kähler moduli. Hence the condition (2.25) guarantees that the α′

expansion is well-behaved. In what follows, we shall consider only the leading O(α′3)

correction to the Kähler potential in (2.8) which generates VO(α′3) in (2.23). However

this expression can be trusted only if higher α′ effects can be neglected which requires:

ξ

2 g
3/2
s V

� 1 . (2.26)

2. String loops: a crucial requirement to trust moduli stabilisation is that perturba-

tion theory does not break down. Given that string loop corrections to the Kähler

– 10 –
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potential are proportional to the string coupling gs, we need therefore to impose:

g−1
s = e−φ =

(
S − S

)
2 i

� 1 , (2.27)

which can be met by an appropriate choice of background fluxes that fix S. In our

analysis we shall neglect gs corrections to the effective action. As explained in [13, 50],

this is justified by the existence of an ‘extended no-scale structure’ so that string loop

effects start contributing to the effective action only at O(g2
sα
′4).

3. Non-perturbative effects: the superpotential (2.21) contains only single-instanton

contributions while in general multi-instanton effects would also be present. These

can be safely neglected if:

ai τi � 1 ∀ i = 1, . . . , n . (2.28)

4. 4D supergravity regime: the low-energy supergravity theory admits a valid 4D

description only if the Kaluza-Klein (KK) modes are heavy. In a string compactifica-

tion, there can actually be several KK scales M
(i)
KK associated with either bulk modes

or open string excitations on D7-branes wrapped around 4-cycles. We therefore re-

quire the following hierarchy of mass scales:

m3/2,mmod �M
(i)
KK .Ms �Mp ∀ i , (2.29)

where mmod denotes generic moduli masses, m3/2 is the gravitino mass, Ms is the

string scale and Mp is the reduced Planck mass given by (see [27] for the proper

normalisation factor κ = gs e
Kcs/(8π) in 4D Einstein frame):

m3/2 = eK/2 |W | ' √κ |W0|
V Mp , M

(i)
KK =

√
π

√
V τ1/4

i

Mp ,

Ms ≡ 1/
√
α′ =

g
1/4
s
√
π√
V

Mp , Mp = (8πG)−1/2 = 2.4 · 1018 GeV . (2.30)

The condition Ms � Mp ∀ i is guaranteed by (2.25) while M
(i)
KK . Ms corresponds

to τi & g−1
s which is always true for ‘large’ 4-cycles while it is marginally satisfied for

relatively ‘small’ moduli. The condition m3/2 � M
(i)
KK is more severe when i = bulk

with τbulk ' V2/3. In this case we have therefore to impose:

m3/2 �M
(bulk)
KK ⇔

√
κ

π
|W0| � V1/3 , (2.31)

which sets an important upper bound on the vacuum expectation value of the flux-

generated superpotential |W0|.

5. Superspace higher-derivative expansion: ref. [51] established that the coupling

of heavy bulk KK modes to light states scales as g ∼ M
(bulk)
KK /Mp ∼ V−2/3 � 1.

Denoting the auxiliary field of the light fields as F ∼ m3/2Mp and the UV cut-off

as Λ ∼ M
(bulk)
KK , the superspace derivative expansion is therefore under control if

g F/Λ2 ∼ m3/2/M
(bulk)
KK � 1, which is guaranteed to hold if (2.31) is satisfied.
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Model χ k111 τ1 V Kähler cone

M1,1 -40 1 1
2 t

2
1

1
6 t

3
1 t1 > 0

M1,2 -200 5 5
2 t

2
1

5
6 t

3
1 t1 > 0

M1,3 -204 3 3
2 t

2
1

1
2 t

3
1 t1 > 0

M1,4 -288 1 1
2 t

2
1

1
6 t

3
1 t1 > 0

M1,5 -296 2 t21
1
3 t

3
1 t1 > 0

Table 2. Relevant data for CY geometries with h1,1 = 1.

3 Explicit CY examples

In this section we will present a classification of all CY threefolds with 1 ≤ h1,1 ≤ 3 from the

Kreuzer-Skarke list where these manifolds have been constructed via toric geometry [5]. We

will perform this analysis with the help of a database [7] which provides several topological

properties of all CY threefolds with 1 ≤ h1,1 ≤ 6 arising from triangulations of the polytopes

of the Kreuzer-Skarke list. The most relevant data that we will use are the GLSM charges,

the Stanley-Reisner (SR), the intersection tensor, the Mori cone and Euler characteristics.

Knowing the GLSM charges along with the SR ideal will enable us to analyse the divisor

topologies using the cohomCalg package [52, 53]. We will then perform a choice of divisor

basis which takes the overall volume V in its simplest possible form and makes some impor-

tant features for moduli stabilisation manifest (like the presence of diagonal dP divisors for

LVS constructions). This will also allow us to divide the models into those where the vol-

ume admits a simple form in terms of 4-cycle volume moduli, and those where it does not.

This classification will then be used in section 4.1 and 4.2 to show how our master

formula can be used to stabilise the Kähler moduli in generic situations where the volume

can be expressed in a simple way only as a function of 2-cycle moduli. In fact, we will show

that converting 2- into 4-cycle volume moduli can be hard even for simple examples where

only a few intersection numbers are non-zero. In what follows we denote the various models

as Mi,j , where i indicates the value of h1,1 while j labels a given CY threefold at fixed h1,1.

3.1 h1,1 = 1

In the presence of a single Kähler modulus the conversion from t to τ is trivially possible.

In this case the Kreuzer-Skarke database features 5 distinct CY threefolds whose details

relevant for moduli stabilisation are summarised in table 2.

3.2 h1,1 = 2

In the Kreuzer-Skarke database there are 36 reflexive polytopes with h1,1 = 2 leading

to 48 triangulations [7]. However given that different polytopes can lead to the same

triangulations, there are only 39 distinct CY geometries listed in table 11 in appendix D.3 As

3The number of distinct CY geometries can be obtained by analysing the topologies of various (coordi-

nate) divisors and their intersecting curves along with the intersection tensors for all 48 triangulations.
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can be seen from table 11, in all cases 1 intersection number can always be eliminated by an

appropriate choice of basis.4 All these 39 models with h1,1 = 2 can be classified as follows:

• 22 CY geometries feature 1 diagonal dP 4-cycle, allowing them to be written in the

strong Swiss cheese form V ∼ τ
3/2
1 − τ3/2

2 . The negative sign arises from the Kähler

cone condition t1 < 0 which characterises all LVS models, as can be seen in table 11.

• 10 CY threefolds are K3-fibred. In these cases at least 2 intersection numbers can be

removed by an appropriate choice of basis. For example, if D1 is the K3 divisor, one

can always find another suitable divisor D2 to form a basis where k111 = k112 = 0,

as a consequence of a theorem for K3-fibred CY threefolds [54, 55]. Moreover, in

some cases (like CP4[1, 1, 2, 2, 2]), it is even possible to make k222 = 0, leaving k122 as

the only non-zero intersection number and V ∼ t1 t
2
2 ∼
√
τ1 τ2. As can be seen from

table 11, M2,33 is an example with this simple form of the CY volume.

• 7 CY threefolds do not admit a simple volume form in terms of 4-cycle volume moduli.

These are the examples which are of interest to us and are highlighted as ‘hard’ in

table 11. The simplest example in this class of models is M2,1 with volume form:

V =
1

2

(
t21 t2 + t1 t

2
2

)
. (3.1)

This simple example already illustrates the difficulty to invert the relations between

2- and 4-cycle volume moduli which look like:

τ1 = t1 t2 +
1

2
t22 , τ2 = t1 t2 +

1

2
t21 . (3.2)

The conversion from 2- to 4-cycle moduli results in the following 4 sets of solutions:

t1 = ±
√

2

3
x±, t2 = ±

(
4 τ1 − 3 τ2 + x2

±
)

√
6 τ2

x± , (3.3)

where:

x± =

√
τ2 − 2 τ1 ± 2

√
τ2

1 − τ1 τ2 + τ2
2 . (3.4)

A unique solution is identified by the Kähler cone conditions {t1 > 0, t2 > 0} which

select in (3.3) the x+-dependent solution with positive signs. In order to illustrate our

numerical analysis, in what follows we shall consider M2,6 and M2,20 as representative

benchmark examples of this class of ‘hard’ CY models.

3.3 h1,1 = 3

In the h1,1 = 3 case, a generic CY geometry features 10 intersection numbers. In the

Kreuzer-Skarke database, there are 244 reflexive polytopes for h1,1 = 3 leading to 569

4Here we limit the discussion to the coordinate divisors but there may be some non-toric divisor combi-

nations that reduce this number further. However, such cases are likely to be non-smooth and hence they

are not suitable for phenomenology.
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triangulations [7]. However given that different polytopes can lead to the same triangula-

tion, analysing the topologies of various (coordinate) divisors and their intersecting curves

along with the intersection tensors for all 569 triangulations shows that there are only 305

distinct CY geometries which we classify as follows:5

• 232 CY geometries have at least 1 divisor, say Dp, whose corresponding intersection

numbers satisfy the following condition first derived in [56]:

kppi kppj = kppp kpij ∀ i, j . (3.5)

This condition allows to trade easily one 2-cycle modulus for τp since it guarantees

that τp can be written as a perfect square of a sum of 2-cycle volume moduli if

kppp 6= 0 (or trivially if kpij = 2
√
kpiikpjj with i 6= j for kppp = 0) since:

τp =
1

2
kpijt

itj =
1

2kppp

(
kppit

i
)2
. (3.6)

Out of these 232 cases, 132 are standard LVS models where Dp is a dP divisor with

kppp 6= 0, while in the remaining 100 cases Dp has a different topology, and so the

relation (3.6) is not guaranteed to hold. In turn, in these 100 cases the volume form

does not necessarily admit a simple expression in terms of 2-cycle volume moduli.

Following [56], the 132 LVS geometries can be classified as:

1. Strong Swiss cheese: 39 models have a volume given schematically by V ∼
τ

3/2
3 − τ

3/2
2 − τ

3/2
1 , which is equivalent to saying that for such models one can

always find a basis where the only non-zero intersections are k111, k222 and k333.

2. K3 fibrations: 43 models are K3-fibred, leading to a volume form which can be

written schematically as V ∼ τ3
√
τ2 − τ

3/2
1 , implying that the only non-zero

intersection numbers as k111 and k233.

3. Strong Swiss cheese-like: 36 models feature a volume which schematically looks

like V ∼ τ
3/2
3 − (a τ1 + b τ2)3/2 − τ1

3/2 where a and b are positive integers.

This geometry is similar but qualitatively different from a strong Swiss cheese

since (aD1 + bD2) does not correspond to a smooth divisor, and so (a τ1 + b τ2)

cannot be redefined as a new τx. These geometries have been used in [57] to

study poly-instanton effects and in [58–63] for cosmological applications.

4. Structureless: 14 models, despite admitting a diagonal dP, do not feature a

volume which can be written in terms of the τ ’s in a simple way. In these cases

the volume can be generically expressed as V ∼ f3/2(τ2, τ3)− τ3/2
1 where f is a

homogeneous function of degree 3/2. The relevant data for these 14 examples

are presented in table 12 in appendix E. In what follows we shall focus on model

M3,1 to illustrate our numerical analysis.

5The number of distinct CY examples is actually 306 but 1 is a non-favorable geometry which we do

not consider relevant for phenomenology.
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• 73 models do not admit a divisor like Dp which obeys the condition (3.5), implying

that in these cases the volume does not admit a simple form in terms of 4-cycle

volumes. These cases are definitely of interest for our numerical study, and so in

what follows we shall consider a representative example for this class of CY models,

which we call M3,15, characterised by the following topological data:

M3,15 : χ = − 240 , k111 = 4 , k112 = −2 , k113 = −2 , k123 = 2 ,

Kähler cone: t1 > 0 , t2 > t1 , t3 > t1 . (3.7)

Let us finally point out that this discussion shows that 118 models out of 132 LVS models

can definitely be studied using the conventional approach based on 4-cycle moduli, corre-

sponding to 38.7% of all 305 cases. However the 14 ‘structureless’ LVS models and the 73

models without a divisor which satisfies (3.5) are certainly better analysed using 2-cycle

moduli, corresponding to 28.5% of all 305 cases.

4 Moduli stabilisation results

4.1 Reproducing old vacua

As a warmup to check the validity of our numerical analysis, we first focus on standard

KKLT vacua with a single Kähler modulus and typical LVS models with 2 Kähler moduli

one of which is a diagonal dP divisor.

4.1.1 KKLT with a single modulus

The potential of the simplest KKLT model with a single Kähler modulus and no α′-

corrections is given by our master formula (2.23) which for h1,1 = n = 1 and ξ̂ = 0

reduces to (setting 〈s〉 = g−1
s ):

VKKLT =
9k111gs e

Kcs

τ2
1

a1|A1| e−a1τ1

[
|W0| cos (a1 ρ1 + θ0 − φ1) +

|A1|
3

e−a1τ1 (a1 τ1 + 3)

]
.

(4.1)

After performing the axion minimisation by setting (a1ρ1+θ0−φ1) = π, a simple calculation

leads to the following relation in a generic extremum for the saxion τ1:

V0 ≡ 〈VKKLT〉 = −3k111gs e
Kcs

〈τ1〉
a2

1|A1|2e−2a1〈τ1〉 ≤ 0 , (4.2)

which excludes dS vacua in the minimal KKLT model. This problem can be circumvented

by adding uplifting contributions which can come from several different sources. In the

case of anti-branes, the uplifting term can be simply written as:

V up
KKLT = VKKLT + Vup with Vup =

δ

τp1
, (4.3)

where δ > 0 is a tunable flux dependent parameter. The new term Vup modifies the

condition in (4.2) as follows:

V up
0 ≡ 〈V up

KKLT〉 = V0 + 〈Vup〉
(

1− p

a1〈τ1〉+ 2

)
, (4.4)
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Model 〈t1〉 〈V〉 V0 × 1015 δ × 108 〈t1〉 〈V〉 V up
0 × 1015

M1,1 15.0724 570.688 −3.97181 5 15.1637 581.12 0.220944

M1,2 6.7406 255.220 −19.8590 0.3 6.80975 263.155 11.265

M1,3 8.70207 329.487 −11.9154 1 8.81984 343.046 10.3356

M1,4 15.0724 570.688 −3.97181 5 15.1637 581.12 0.220944

M1,5 10.6578 403.537 −7.94361 2 10.7779 417.331 5.30588

Table 3. KKLT vacua with and without anti-brane uplifting for all CY threefolds with h1,1 = 1.

The underlying parameters are set as W0 = −10−4, a1 = 0.1, gs = 0.1, Kcs = 0.1, A1 = 1 and the

axion ρ1 is minimised at 〈ρ1〉 = 0.

showing that the dS no-go condition can be avoided for 0 < p < a1〈τ1〉+ 2. Using table 2,

the potentials (4.1) and (4.3), where we have set p = 3, can be minimised numerically for

all 5 CY threefolds with h1,1 = 1, leading to the results given in table 3. One can easily

check that all minima lie in a region where the effective field theory is under control since

each condition of section 2.3 is satisfied.

In the KKLT framework, dS vacua can also be achieved by including α′ corrections

which are captured by our master formula (2.23) for ξ̂ 6= 0. In this case, the scalar potential

is the sum of the following 3 terms (after fixing again (a1ρ1 + θ0 − φ1) = π):

VO(α′3) = eK
3 ξ̂(V2 + 7 ξ̂ V + ξ̂2)

(V − ξ̂)(2V + ξ̂)2
|W0|2, (4.5)

Vnp1 = −2 eK |W0| |A1| e−a1τ1

[
(4V2 + V ξ̂ + 4 ξ̂2)

(V − ξ̂)(2V + ξ̂)
(a1τ1) +

3 ξ̂(V2 + 7 ξ̂ V + ξ̂2)

(V − ξ̂)(2V + ξ̂)2

]
,

Vnp2 = eK |A1|2 e−2a1τ1

[
−4 a2

1

(
V +

ξ̂

2

) √
2 k111 τ1 +

4V − ξ̂
(V − ξ̂)

(a1τ1)2

+
(4V2 + V ξ̂ + 4 ξ̂2)

(V − ξ̂)(2V + ξ̂)
(2 a1 τ1) +

3 ξ̂(V2 + 7 ξ̂ V + ξ̂2)

(V − ξ̂)(2V + ξ̂)2

]
.

This scalar potential can be minimised numerically with respect to either t1 or τ1, since

in this simple case the conversion between 2- and 4-cycle moduli is trivial. The results of

our numerical analysis are presented in table 4 which shows that these dS vacua tend to

be located at relatively small volume. However the effective field theory is still marginally

under control since all conditions listed in section 2.3 are satisfied. In particular, the

condition (2.31) is still slightly met even for relatively small values of V since m3/2 '
0.1M

(bulk)
KK . For a condensing gauge group with rank N = 32, (corresponding to a1 = π/16),

τ1 at the dS minimum is around 15 as can be seen from figure 1. Notice that a relatively

large value of N is needed to obtain a minimum where the volume is large enough to

trust the effective field theory.6 Larger values of 〈V〉 of O(50 − 100) can be realised for

6Ref. [42] found an explicit example with N = 24 in a globally consistent CY orientifold model.
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Model gs −W0 〈t1〉 〈τ1〉 〈V〉 ξ̂ V0 × 107

M1,1 0.1 4.55 5.56456 15.4822 28.7172 1.53245 0.327441

M1,2 0.2 0.68 2.43598 14.8350 12.0459 2.70901 0.404328

M1,3 0.2 0.93 3.20034 15.3633 16.3892 2.76319 6.30582

M1,4 0.2 1.24 5.61173 15.7457 29.4536 3.90097 9.80739

M1,5 0.2 0.74 3.86787 14.9604 19.2883 4.00933 7.42126

Table 4. dS KKLT vacua with α′-uplift for all CYs with h1,1 = 1. The underlying parameters are

set as a1 = π
16 , Kcs = 1, A1 = 1 and the axion ρ1 is minimised at 〈ρ1〉 = 0.

15 20 25 30 35 40

τ1
1

2

3

V(τ1 )

Figure 1. KKLT scalar potentials V (τ1) (×105) with α′-uplift for all 5 models in table 4.

N ∼ O(100) and |W0| ∼ O(50 − 100) [14–16, 42] even if these values have their own

limitations and criticism [51, 64].

4.1.2 LVS with diagonal del Pezzo

The potential of the simplest LVS model with 2 Kähler moduli and volume of the form

V ' τ
3/2
2 − τ3/2

1 , can be obtained from our master formula (2.23) setting h1,1 = 2, n = 1

and ξ̂ 6= 0. Taking the large volume limit and minimising the axionic direction ρ1, this

scalar potential can be approximated as the sum of 3 terms:

VLVS = V1 + V2 + V3 , (4.6)

with:

V1 =
α
√
τ1 e
−2 a1 τ1

V > 0 , V2 = −β τ1 e
−a1 τ1

V2
< 0 , V3 =

γ

V3
, (4.7)

where the model-dependent parameters α and β are positive while the sign of γ ∝ −χ
depends on the sign of the CY Euler number χ. Notice that the minus sign in front of
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V2 is due to the ρ1 minimisation for β > 0. The 3 terms in (4.6) are of the same order if

V ∼ ea1τ1 , and so any extremum of this potential lies at exponentially large volume.

Let us now analyse the vacuum structure of the LVS potential (4.6). Trading τ2 for the

overall volume V, the extremisation conditions ∂VVLVS = ∂τ1VLVS = 0 lead to the following

relations among the 3 terms of the LVS potential at any extremum:

〈V1〉 = 〈V3〉
(

1− 1

a1〈τ1〉

)
> 0 , 〈V2〉 = −〈V3〉

(
2− 1

2 a1〈τ1〉

)
< 0 , (4.8)

which imply that at any extremum:

〈VLVS〉 = − 〈V3〉
2 a1〈τ1〉

. (4.9)

In the regime where the instanton series is under control, i.e. for a1〈τ1〉 � 1, the second

expression in (4.8) simplifies to 〈V2〉 = −〈V3〉 < 0 which implies that a solution can exist

only if 〈V3〉 > 0, i.e. for negative CY Euler number since γ ∝ −χ. In turn, (4.9) forces the

potential to be negative at any extremum, i.e. 〈VLVS〉 < 0. This is a no-go result for any

dS extremum, both potential minima and maxima. This is consistent with the known fact

that LVS models without any uplifting term give rise just to AdS minima.

This no-go result can be evaded by adding an additional positive contribution to the

LVS potential (4.6) which can be expressed as V4 = δ/Vp with δ > 0. This term can come

from either anti-D3s [10], non-perturbative effects at singularities [65] or T-branes [66], and

modifies the relation (4.9) for the value of the potential V = VLVS + V4 at any extremum

as follows:

〈V 〉 = − 〈V3〉
2 a1〈τ1〉

+ 〈V4〉
(

1− p

3
− p

6a1〈τ1〉

)
. (4.10)

For p = 3, V4 can be reabsorbed into V3 via a proper shift of γ to include δ, and so 〈V 〉
is still negative. More generally, one can see that 〈V 〉 < 0 for p ≥ 3. Hence, the only way

to evade the dS no-go result found above is to consider p < 3. In this case, (4.10) shows

clearly that one can easily obtain 〈V 〉 > 0 since the term proportional to 〈V4〉 becomes

positive (for a1〈τ1〉 � 1) and can compensate the fact that the term proportional to 〈V3〉
is negative. This is natural since in order to obtain dS minima the uplifting term has to

dominate at large volume.

4.2 Discovering new vacua

Let us now show how new classes of type IIB vacua can be found with the help of numerical

techniques and minimising the scalar potential with respect to 2-cycle volume moduli.

4.2.1 New KKLT vacua

Let us now focus on a case with h1,1 = 2, which leads to new KKLT vacua. This is model

M2,6 in table 11 in appendix D which we classify as ‘hard’ since V does not admit a simple

form in terms of the 4-cycle volume moduli. In this case we shall perform numerical moduli

stabilisation using the 2-cycle volume moduli.

The CY threefold of model M2,6 corresponds to the polytope ID #10 in the CY

database of [7] and it is defined by the following toric data:

– 18 –



J
H
E
P
0
8
(
2
0
2
0
)
0
4
7

CY x1 x2 x3 x4 x5 x6

3 1 1 1 0 0 0

3 0 0 0 1 1 1

SD1 SD1 SD1 SD2 SD2 SD2

where what we call the ‘special deformation’ (SD) divisors SD1 and SD2 (following the

nomenclature of [25, 26, 33]) are represented by the following Hodge diamond:

SD1 ≡

1

0 0

2 30 2

0 0

1

≡ SD2 . (4.11)

This nomenclature is used in the sense that the simplest non-rigid divisor, i.e. one which

can be deformed, has h2,0(D) = 1, and K3 is one such example. ‘Special deformation’

(SD) divisors are those which have instead h2,0(D) > 1. For this CY threefold the Hodge

numbers are (h2,1, h1,1) = (83, 2), the Euler number is χ = −162 and the SR ideal is

SR = {x1 x2 x3, x4 x5 x6}. As can be seen from table 11 in appendix D, the intersection

numbers and the Kähler cone in the basis of smooth divisors D1 = {1, 0} = SD1 and

D2 = {0, 1} = SD2 are:

k111 = k222 = 0 , k112 = k122 = 3 , Kähler cone: t1 > 0 , t2 > 0 . (4.12)

In this case the overall volume and the 4-cycle moduli take the following form:

V =
3

2

(
t21 t2 + t1 t

2
2

)
, τ1 = 3 t1t2 +

3

2
t22 , τ2 = 3 t1t2 +

3

2
t21 .

The scalar potential of this non-standard KKLT model can be obtained from our master

formula (2.23) by setting h1,1 = n = 2 and ξ̂ = 12.4128 which follows from χ = −162

and our choice of the string coupling gs = 0.1. Let us mention here that non-perturbative

contributions to the superpotential arise in general from rigid divisors while in our case we

have 2 special deformation divisors with h2,0(D) = 2. Hence we need to assume that these

divisors can be ‘rigidified’ by turning on appropriate background fluxes [40, 41].

Notice that, under the exchange t1 ↔ t2, both V and the Kähler cone are invariant

and τ1 ↔ τ2. Thus the scalar potential is symmetric if A1 = A2 and a1 = a2. In this

case, the minimisation solutions have therefore to be symmetric. In table 5 we present

such symmetric solutions, along with non-symmetric ones for A1 6= A2 and/or a1 6= a2.

We only show vacua which are AdS, but larger values of |W0| would give rise to α′-uplifted

dS solutions. All minima lie in a region where the effective 4D theory is under control.

Larger values of the CY volume can be realised by increasing the rank of the condensing

gauge group, which may be beneficial to gain better control over the effective theory. In

figure 2 we present contour plots for the scalar potential in the (t1, t2)-plane, showing the

AdS minimum of the last two cases presented in table 5.
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W0 {A1, A2} a1 a2 〈t1〉 〈t2〉 〈V〉 V0 (×109)

−0.01 {100, 100} π/8 π/8 2.62890 2.62890 54.5059 −8.97384

−0.01 {50, 50} π/10 π/10 2.84489 2.84489 69.0745 −5.73264

−0.10 {50, 50} π/16 π/16 3.17337 3.17337 95.8698 −291.656

−0.01 {100, 100} π/12 π/8 2.07977 3.89165 72.4963 −5.30985

−0.01 {170, 180} π/12 π/11 3.01803 3.43224 100.224 −2.91829

Table 5. Benchmark examples for Model M2,6.
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t t
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2
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Figure 2. Contour plots of the potential in the (t1, t2)-plane for the last two models of table 5.

4.2.2 New LVS vacua with a diagonal and a non-diagonal del Pezzo

We now focus on a new LVS model with h1,1 = 3 which we classified as ‘structureless’

since V does not admit a simple form in terms of 4-cycle moduli. This is model M3,1 in

table 12 in appendix E. In this case we will stabilise the moduli numerically using the

2-cycle moduli.

The CY threefold of model M3,1 corresponds to the polytope ID #61 in the CY

database of [7] and it is defined by the following toric data:

x1 x2 x3 x4 x5 x6 x7

7 0 2 1 1 0 1 2

4 1 0 0 0 1 1 1

3 1 1 0 0 0 0 1

dP1 NdP22 SD1 SD1 dP8 SD2 SD3

The Hodge numbers are (h2,1, h1,1) = (66, 3), the Euler number is χ = −126 and the SR

ideal is:

SR = {x1x5, x5x6, x1x2x7, x3x4x6, x2x3x4x7} .
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The analysis of the divisor topologies shows that they can be represented by the following

Hodge diamonds:

dPn or NdPn ≡

1

0 0

0 n+1 0

0 0

1

, SD1 ≡

1

0 0

1 21 1

0 0

1

,

SD2 ≡

1

0 0

2 30 2

0 0

1

, SD3 ≡

1

0 0

4 44 4

0 0

1

.

As can be seen from table 12, the intersection numbers and the Kähler cone in the basis of

smooth divisors D1 = {0, 1, 0} = dP8, D2 = {0, 1, 1} = dP1 and D3 = {1, 1, 0} = SD2 are:

k111 = 1, k222 = 8 , k223 = −5 , k233 = 3 , k333 = 0 ,

Kähler cone: t1 < 0 , t3 − 2t2 > 0 , t1 + t3 > 0 , t1 + 3 t2 > 0 , (4.13)

which shows clearly that D1 is a diagonal dP8 while D2 is a non-diagonal dP1. In addition,

the overall volume and the 4-cycle volume moduli are as follows:

V =
1

6
t31 +

1

6

(
8 t32 − 15 t22 t3 + 9 t2 t

2
3

)
,

τ1 =
1

2
t21 , τ2 = 4 t22 − 5 t2 t3 +

3

2
t23 , τ3 = 3 t2 t3 −

5

2
t22 . (4.14)

This shows clearly that V does not admit a simple expression in terms of 4-cycle mod-

uli. The potential of this structureless LVS model can be obtained from our master for-

mula (2.23) by setting h1,1 = 3, n = 2 and ξ̂ 6= 0. In table 6 we present the results of our

numerical minimisation with respect to 2-cycle moduli for different choices of the micro-

scopic parameters, while figure 3 shows the minima for each of the 3 t-moduli for a particular

example (E5 in table 6). All minima are within the regime of validity of the effective theory.

As can be seen from table 6, smaller values of the string coupling give rise to larger

values of V which improve the control over the effective field theory. This is expected since

it resembles the behaviour of standard LVS where the small 2-cycle t1 and the volume V
would scale respectively as 〈t1〉 ∝ g−1/2

s and 〈V〉 ∝ e〈t1〉2 .

A qualitative understanding of the results of our numerical minimisation can be gained

as follows. First note that, given that dP8 is a diagonal divisor, O(α′3) corrections to K

and a single non-perturbative effect in W with A1 6= 0, would be sufficient to fix the volume

exponentially large and 〈t1〉 ∼ g−1/2
s together with the axion ρ1. This would however leave

3 flat directions which can be parametrised for example by t2, ρ2 and ρ3. Because of the

axionic shift symmetry, the 2 flat directions ρ2 and ρ3 can be lifted only by T2- and T3-

dependent non-perturbative corrections to W which would generate a potential also for t2.

– 21 –



J
H
E
P
0
8
(
2
0
2
0
)
0
4
7

Example gs 〈t1〉 〈t2〉 〈t3〉 〈V〉 ξ̂ V0

E1 0.14 −2.29369 6.12009 13.0085 639.008 5.8282 −1.93895×10−10

E2 0.13 −2.38288 7.87495 16.4338 1291.22 6.51345 −1.79005×10−11

E3 0.12 −2.51017 11.3404 23.243 3658.79 7.34436 −5.73649×10−13

E4 0.11 −2.69616 19.6372 39.673 18208.5 8.36829 −3.67679×10−15

E5 0.10 −2.92776 40.3554 80.9498 154711.0 9.65442 −5.94805×10−18

Table 6. Benchmark examples for model M3,1 where we have set Kcs = A1 = A2 = 1, W0 = −1,

a1 = π, a2 = π/2 and A3 = 0.

-3.4 -3.3 -3.2 -3.1 -3.0 -2.9 -2.8
t
1
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20
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50

V(t1)

40.31 40.32 40.33 40.34 40.35 40.36 40.37
t
2

2

4

6

V(t2)

80.95 81.00 81.05 81.10
t
3

2

4

6

V(t3)

tt t

V(t  ) V(t  )V(t  )1 2 3

1 2 3

Figure 3. Scalar potential for each of the 3 Kähler moduli (t1, t2, t3) (with the other 2 fixed at

their minima) for example E5 of table 6.

However t2 can develop a potential also via perturbative corrections to K which would in

general dominate over non-perturbative effects if τ2 and τ3 (the 2 combinations appearing

in the exponent of the non-perturbative superpotential) were both large cycles.

Examples where the remaining saxionic flat direction is fixed by higher order α′ cor-

rections are given in [28]. However our master formula (2.23) does not include this kind

of effect, and so we looked for minima where the remaining saxionic flat direction is fixed

at small values, so that the dominant source of its potential is non-perturbative physics.

This is possible for A2 6= 0 and A3 = 0 if the moduli are stabilised close to the Kähler cone

condition t3 > 2t2 in (4.13), but still far enough from it to be able to trust the effective

field theory. In fact, for t3 → 2t2, the expressions (4.14) show that τ2 → 0 and τ3 → 7
2 t

2
2,

and so a superpotential contribution of the form A2 e
−a2T2 would not be suppressed, while

A3 e
−a3T3 would be negligible for t2 stabilisation even if it would be crucial to fix ρ3. Ta-

ble 7 shows that the minima displayed in table 6 are still fully within the regime of validity

of the effective field theory since each 4-cycle modulus, in particular τ2, turns out to be

fixed at values much larger than unity.

In the general case where also A3 6= 0 the scalar potential should feature two minima:

(i) an LVS-like AdS vacuum with the same properties described just above but with a

massive, even if ultra-light, ρ3 axion; and (ii) an α′-uplifted KKLT-like dS minimum where

however the CY volume would take values smaller than the one shown in table 6 which

would affect the trustability of the effective field theory.
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Example 〈τ1〉 〈τ2〉 〈τ3〉 〈V〉
E1 2.63050 5.58806 145.201 639.008

E2 2.83905 6.08695 233.208 1291.22

E3 3.15047 6.84907 469.243 3658.79

E4 3.63465 8.06464 1373.15 18208.5

E5 4.28590 9.73469 5728.89 154711.0

Table 7. Values of the 4-cycle moduli for the benchmark examples of model M3,1 listed in table 6.

Let us finally point out that our numerical analysis has shown how model M3,1 can

lead to an LVS-like vacuum where not only the diagonal dP8 modulus τ1, but also the

non-diagonal dP1 modulus τ2, can be fixed at ‘small’ size. This observation raises the

question of whether it is possible to find new LVS vacua for CY threefolds which do not

admit diagonal divisors. This issue is addressed in the next section.

4.2.3 New LVS vacua without a diagonal del Pezzo

In this section we discuss a 3-moduli CY model that does not feature any diagonal dP

divisor. We shall show that despite this an LVS-like AdS minimum at exponentially large

volume still exists thanks to a particular symmetry of the Kähler moduli space. We shall

perform a detailed analysis of Kähler moduli stabilisation both via numerical techniques

and analytical approximations in terms of 2-cycle volume moduli focusing on model M3,15

introduced in section 3.3. The CY threefold of model M3,15 corresponds to the polytope

ID #263 in the CY database of [7] and it is defined by the following toric data:

x1 x2 x3 x4 x5 x6 x7

6 0 0 1 1 0 1 3

6 0 1 0 0 1 1 3

4 1 0 0 0 0 1 2

dP5 K3 K3 K3 K3 SD1 SD2

The Hodge numbers are (h2,1, h1,1) = (123, 3), the Euler number is χ = −240 and the SR

ideal is SR = {x1x6, x2x5, x3x4x7}. The analysis of the divisor topologies shows that they
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are represented by the following Hodge diamonds:

dP5 ≡

1

0 0

0 6 0

0 0

1

, K3 ≡

1

0 0

1 20 1

0 0

1

,

SD1 ≡

1

0 0

4 46 4

0 0

1

, SD2 ≡

1

0 0

29 196 29

0 0

1

.

As can be seen from (3.7), the intersection polynomial in the basis of smooth divisors

D1 = {0, 0, 1} = dP5, D2 = {0, 1, 0} = K3 and D3 = {1, 0, 0} = K3 is given by:

I3 = 4D3
1 − 2D2

1 D2 − 2D2
1 D3 + 2D1D2D3 . (4.15)

The linearity of I3 in D2 and D3, together with the divisor analysis, shows that this CY

threefold is K3-fibred. Moreover the fact that k112, k113 and k123 are all non-zero implies

that D1 is a non-diagonal dP5 divisor. The CY volume and the 4-cycle moduli become:

V =
2

3
t31 − t21 (t2 + t3) + 2 t1 t2 t3 ,

τ1 = 2 (t1 − t2) (t1 − t3) , τ2 = t1 (2 t3 − t1) , τ3 = t1 (2 t2 − t1) . (4.16)

The potential of this model can be obtained from (2.23) by setting h1,1 = 3, n = 1 and

ξ̂ > 0. In table 8 we present the results of our numerical minimisation with respect to

2-cycle moduli for different choices of the microscopic parameters, while figure 4 shows the

minima for each of the 3 t-moduli for example E6 in table 8. The large values of 〈V〉 show

that this model features an LVS-like AdS vacuum even though it does not have a diagonal

dP divisor. All minima lie in a region where the effective field theory is fully under control.

The emergence of this novel LVS vacuum can be qualitatively understood as follows.

The T1-dependent non-perturbative W , in combination with O(α′3) effects, stabilises τ1 at

‘small’ size and the CY volume exponentially large. The remaining flat direction in the

2-cycle volume moduli space, which we will parametrise as t∗, is also lifted since the non-

diagonality of D1 introduces a dependence of V on t∗. Notice that the axions ρ2 and ρ3 can

become massive only after including T2- and T3-dependent non-perturbative contributions

to W . These terms would however be negligible for the stabilisation of the 2-cycle volume

moduli since all our minima are located at τ2 = τ3 � τ1, as can be seen from table 9.

It is important to stress here that in general the non-diagonality of a dP divisor mod-

ifies the scaling behaviour with the overall volume of the different contributions to V , so

destroying the existence of an LVS minimum. However in our model this is not the case
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Example gs N 〈t1〉 〈t2〉 = 〈t3〉 〈V〉 ξ̂ V0

E1 0.20 4 15.4545 17.1932 3384.8 6.50162 −1.9727× 10−12

E2 0.20 3 39.6462 41.3674 47190.1 6.50162 −5.1269× 10−16

E3 0.20 2 267.289 269.001 1.2977×107 6.50162 −1.6471× 10−23

E4 0.10 4 378.003 380.424 3.6704×107 18.3894 −1.0294× 10−24

E5 0.15 3 163.346 165.325 3.0125×106 10.0099 −1.7065× 10−21

E6 0.25 2 76.0825 77.6175 311734.7 4.65218 −1.3231× 10−18

Table 8. Benchmark examples for model M3,15 where we have set Kcs = A1 = 1, W0 = −1,

a1 = 2π/N and A2 = A3 = 0.

75.8 75.9 76.0 76.1 76.2

t1

2

4

6

VHt1L

77.55 77.60 77.65 77.70 77.75 77.80

t2 or t3

1

2

3

4

5

6

VHt2L or VHt3L

Figure 4. Scalar potential V (×1017) for each of the Kähler moduli (t1, t2, t3) (with the other two

fixed at their minima) for example E6 of table 8.

Example 〈τ1〉 〈τ2〉 〈τ3〉 〈V〉
E1 6.04622 17.1932 17.1932 3384.8

E2 5.92451 1708.3 1708.3 47190.1

E3 5.86144 72358.4 72358.4 1.2977×107

E4 11.7229 144716.88 144716.88 3.6704×107

E5 7.83456 27328.40 27328.40 3.0125×106

E6 4.71267 6022.13 6022.13 311734.7

Table 9. Values of the 4-cycle moduli for the benchmark examples of model M3,15 in table 8.

due to the presence of a symmetry of the moduli space under the exchange t2 ↔ t3, as can

be seen from (3.7) and (4.16).

In the large volume limit where V � ξ̂ and a1τ1 � 1, and after stabilising the axion ρ1

such that cos(a1〈ρ1〉+θ0−φ1) = −1, the scalar potential of this model derived from (2.23)

can be very well approximated as:

V =
eKcs

2s

(
4|A1|2a2

1

V2
h(ti) e

−2a1τ1 − 4|W0||A1|a1

V2
τ1 e
−a1τ1 +

3ξ̂|W0|2
4V3

)
, (4.17)
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where:

h(ti) = −V
(

3∑
k=1

k11ktk

)
+ τ2

1 = 2V (t2 + t3 − 2 t1) + τ2
1 . (4.18)

Thanks to the symmetry of the moduli space under the exchange t2 ↔ t3, if we now write

t3 = t2 + t∗, the h(ti) function takes the simple form:

h(ti) = 2V
√

2τ1 + t2∗ + τ2
1 . (4.19)

The potential (4.17) therefore depends on only 3 variables: V, τ1 and t∗. The dependence

on t∗ is very simple, signaling that there is a minimum at t∗ = 0, which implies t2 = t3 and

τ2 = τ3 from (4.16). Notice that this minimum lies well inside the Kähler cone since t∗ = 0

does not correspond to any boundary of the moduli space. More interestingly, for t∗ = 0,

the potential (4.17) takes the standard LVS form with h(ti) ' 2
√

2V√τ1 for V � τ
3/2
1 :

V =
eKcs

2s

(
8
√

2|A1|2a2
1

√
τ1
e−2a1τ1

V − 4|W0||A1|a1 τ1
e−a1τ1

V2
+

3ξ̂|W0|2
4V3

)
. (4.20)

This potential has an LVS AdS minimum located at:

〈V〉 ' |W0|
√
〈τ1〉

4
√

2a1A1

ea1〈τ1〉 and 〈τ1〉 '
(

3ξ̂√
2

)2/3

. (4.21)

These relations correctly reproduce the scaling behaviour of the numerical solutions pre-

sented in tables 8 and 9. Let us stress that this is the first example of a CY threefold which

admits LVS vacua even without the presence of a diagonal dP divisor, implying that LVS

vacua in the string landscape occur more frequently than previously thought.

4.2.4 New hybrid vacua

In this section we shall study if numerical moduli stabilisation in terms of 2-cycle moduli

can reveal the existence of new LVS vacua in ‘hard’ h1,1 = 2 models where V does not

admit a simple form in terms of 4-cycle moduli. We will find that the absence of a diagonal

dP divisor combined with the simplicity of this model which has only 2 Kähler moduli

prevents the existence of an LVS-like vacuum. We will discover instead new vacua which

we term ‘hybrid’ since they share some features with standard LVS vacua and others with

typical KKLT models. We shall illustrate our claim by focusing on model M2,20 in table 11

in appendix D. The CY threefold of model M2,20 corresponds to the polytope ID #23 in

the CY database of [7] and it is defined by the following toric data:

CY x1 x2 x3 x4 x5 x6

7 0 1 1 2 1 2

3 1 0 0 1 0 1

dP1 SD1 SD1 SD2 SD1 SD2
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Example gs W0 a1 〈t1〉 〈t2〉 〈V〉 ξ̂ V0 (×1011)

E1 0.13 −0.1 π/4 −1.04315 4.44218 198.187 9.61509 −22.4614

E2 0.10 −0.2 π/5 −1.05354 5.87528 465.138 14.2518 −5.15813

E3 0.09 −0.8 π/6 −1.00075 7.18459 856.799 16.6919 −9.78060

E4 0.08 −1.0 π/7 −1.07603 7.48456 967.979 19.9174 −12.2713

E5 0.07 −1.8 π/8 −1.02386 9.55669 2025.12 24.3344 −2.76468

Table 10. Benchmark examples for model M2,20 where we have set Kcs = 1, A1 = 10 and A2 = 0.

The Hodge numbers are (h2,1, h1,1) = (95, 2), the Euler number is χ = −186 and the SR

ideal is SR = {x1 x4 x6, x2 x3 x5}. The analysis of the divisor topologies shows that they

are represented by the following Hodge diamonds:

dP1 ≡

1

0 0

0 2 0

0 0

1

, SD1 ≡

1

0 0

2 30 2

0 0

1

, SD2 ≡

1

0 0

7 66 7

0 0

1

.

As can be seen from table 11, the intersection numbers and the Kähler cone in the basis

of smooth divisors D1 = {0, 1} = dP1 and D2 = {2, 1} = SD2 are:

k111 = 8 , k112 = −2 , k122 = 0 , k222 = 14 , Kähler cone: t1 < 0 , t1 + t2 > 0 ,

which shows clearly that the dP1 divisor D1 is non-diagonal. The CY volume and the

4-cycle moduli become:

V =
4

3
t31 − t21 t2 +

7

3
t32 , τ1 = 4 t21 − 2 t1 t2 , τ2 = 7 t22 − t21 . (4.22)

The potential can be obtained from our master formula (2.23) by setting h1,1 = 2, n = 1

and ξ̂ 6= 0. In table 10 we present the results of our numerical minimisation with respect to

2-cycle moduli for different choices of the microscopic parameters, while figure 5 shows a

contour plot of the potential for 2 particular examples (E1 and E5). Notice that the effective

field theory is still under control even if |〈t1〉| ∼ O(1) since all examples in table 10 satisfy

the condition (2.25) which guarantees that stringy corrections can be neglected.

We stress that we considered only a T1-dependent non-perturbative W since A2 = 0,

and so the Kähler moduli are fixed by balancing the leading α′-correction to K against the

superpotential generated by gaugino condensation in a hidden gauge group with rank N .

This is the same stabilisation mechanism used in LVS models which are characterised by

an exponentially large volume 〈V〉 ∼ e1/(gsN) that increases when either gs or N decreases.

However, as can be seen from table 10 where we limit ourselves to N ≤ 16, in our new

vacua 〈V〉 increases when gs decreases but it reduces when N goes to lower values. Hence

these new vacua are not really LVS-like. This difference can be traced back to the absence
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-1.050 -1.045 -1.040 -1.035

4.40

4.45

4.50

-1.030 -1.025 -1.020 -1.015

9.50

9.55

9.60

9.65

Figure 5. Contour plot of the scalar potential of the 2 Kähler moduli (t1, t2) for examples E1 (left)

and E5 (right) of table 10.

of a diagonal dP divisor together with the fact that this model has only 2 Kähler moduli

while the CY threefold discussed in section 4.2.3 had h1,1 = 3.

The behaviour of these new vacua can be understood analytically as follows. Table 10

shows that, in all examples, the 2-cycle volume moduli t1 and t2 are fixed at |t1| ' 1 and

t22 � t21. In this limit of the Kähler cone, the expressions for V and τ2 in (4.22) simplify to

τ2 ' 7 t22 and V ' 7
3 t

3
2 ' 1

3
√

7
τ

3/2
2 . Moreover, as can be seen from table 10, all solutions

are located at V � ξ̂ and a1τ1 � 1, and so our master formula (2.23) can be very well

approximated by (after ρ1 minimisation):

V ' −4 a2
1 |A1|2f(τ1,V)

e−2a1τ1

V − 4 |W0| |A1| a1 τ1
e−a1τ1

V2
+

3 ξ̂ |W0|2
4V3

, (4.23)

where:

f(τ1,V) = (k111t1 − k112t2) ' −2

√(
3

7
V
)2/3

+ 4τ1 . (4.24)

Notice that, similarly to LVS models, the negative sign in (4.24) is crucial to find a min-

imum. However the potential (4.23) does not give rise to a minimum at exponentially

large volume. In fact, if one takes the limit V � τ
3/2
1 , the function in (4.24) simplifies to

f(τ1,V) ' −2
(

3
7 V
)1/3

and the potential (4.23) becomes schematically:

V = c1
e−2a1τ1

V2/3
− c2 τ1

e−a1τ1

V2
+
c3

V3
with c1,2,3 > 0 . (4.25)

Extremising this potential with respect to τ1 yields:

∂V

∂τ1
= 0 ⇔ V =

(
c2

2c1

)3/4

τ
3/4
1 e

3
4
a1τ1 , (4.26)
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which appears to indicate the presence of a solution at exponentially large volume. However

using this expression to integrate out τ1, the scalar potential reduces to:

V ' −c4 (lnV)2 + c3 V1/3

V10/3
with c4 =

4c2
2

9a2
1c1

> 0 . (4.27)

The behaviour of this potential at large volume is qualitatively different from standard

LVS models where, after integrating out τ1, one has:

VLVS '
−λ1 (lnV)3/2 + λ2

V3
with λ1,2 > 0 . (4.28)

For V � 1, the LVS potential (4.28) is dominated by the logarithmic term proportional

to λ1, and so it goes to zero from negative values, while for V ∼ O(1) it is dominated by

the term proportional to λ2, and so it is positive. Clearly the potential has to admit an

AdS minimum at large volume. On the other hand, the potential (4.27) is not guaranteed

to feature a minimum since the term proportional to c3 dominates the potential for both

V ∼ O(1) and V � 1, implying that at large volume it goes to zero from positive values.

In fact there is a window at intermediate volume values, i.e. for O(1) . V . O(100), where

the 2 terms in (4.27) can compete. This reveals the existence of a minimum, which is

however in a strong string coupling regime where the effective field theory is out of control,

and only a maximum at exponentially large volume. However, given that the axion ρ1 has

been kept fixed at its minimum, this would-be maximum is actually a saddle point.

The presence of a saddle point at exponentially large volume can be explicitly seen by

taking the first and second derivatives of (4.27) with respect to V which read as follows

(for x ≡ lnV):

∂V

∂V = 0 ⇔ V1/3 =
10c4

9c3
x2

(
1− 3

5x

)
⇒ V ∂

2V

∂V2
= −10c4

3
x2

(
1− 33

5x
+

9

5x2

)
.

(4.29)

For x � 1, the second derivative is clearly negative, signaling the existence of a saddle

point. The second derivative can actually become positive, so giving rise to a minimum,

for x . 6.3. In order to trust the initial approximation f(τ1,V) ' −2
(

3
7 V
)1/3

for the

function in (4.24), one needs to have at least x & 5.3 for τ1 & 1 so that 4τ1

(
3
7 V
)−2/3

. 0.2.

Minima with 5.3 . x < 6 would be AdS, x = 6 would give Minkowski and 6 < x . 6.3

would yield dS. However one can check that none of these vacua can be trusted since they

would lie at gs > 1, in a regime where perturbation theory would break down. This can be

easily seen by using the minimisation equation in (4.29) as an expression for c3 with the

volume fixed in the regime 5.3 . x . 6.3, and then using this result to find the value of gs
knowing that c3 can be also expressed as c3 = 3ξ W 2

0 /(4g
3/2
s ).

This discussion implies that there is no minimum in the region of moduli space where

the function in (4.24) can be approximated as f(τ1,V) ' −2
(

3
7 V
)1/3

. In fact, defining:

R ≡
(

3

7

)2/3 〈V〉2/3
4〈τ1〉

, (4.30)
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the two terms in (4.24) are always of the same order of magnitude since 0.5 . R . 1 for

all vacua listed in table 10. The potential (4.23) can then be minimised analytically giving

(for a1〈τ1〉 � 1):

〈V〉 ' d1

a1

√
〈τ1〉 ea1〈τ1〉 and 〈τ1〉 '

d2

gs
, (4.31)

with:

d1 =
|W0|

8|A1|
√

1 +R
and d2 = (3ξ)2/3 (1 +R)1/3 . (4.32)

The relations (4.31) resemble those of standard LVS AdS vacua but the condition (4.30)

with R ∼ O(1) now implies also (setting a1 = 2π/N):

N gs '
d2

d3
with d3 =

1

2π
ln

[(
d4

d1

)
ln

(
d4

d1

)]
and d4 =

56

3
R3/2 . (4.33)

Interestingly, for all examples in table 10, d2 ' d3 ' O(1), and so N gs ' O(1). Thus the

value of the overall volume at the AdS minimum is given by:

〈V〉 ' d4 〈τ1〉3/2 '
(
d4 d

3/2
2

) 1

g
3/2
s

'
(
d4 d

3/2
2

)
N3/2 , (4.34)

which reproduces the behaviour of the volume in table 10, since 〈V〉 increases when either gs
decreases or N increases. Moreover (4.34) implies that the combination r ≡ 〈V〉(gs/R)3/2

should be more or less constant, and this is confirmed by all examples in table 10 which

feature r ' O(40). This analytical estimate is useful also to perform our numerical study

since it provides reasonable initial conditions to easily find convergent solutions.

It is for these reasons that we term these new vacua ‘hybrid’: they clearly have some

similarities and also some differences with known stabilisation mechanisms which can be

summarised as follows:

• KKLT: both cases admit an AdS vacuum where 〈V〉 ∝ N3/2 even if, contrary to

KKLT, in our new vacua supersymmetry is broken, α′ effects play a crucial rôle and

|W0| does not need to be tuned exponentially small;

• LVS: both cases feature a non-supersymmetric AdS vacuum where non-perturbative

effects compete with α′ corrections for natural values of |W0| even if, contrary to

LVS, in our new vacua the volume in string units is not exponentially large;

• α′ uplift: both cases have a minimum which breaks supersymmetry via balancing

non-perturbative against α′ contributions without tuning |W0| even if, contrary to α′

uplift, our new vacua are AdS and require non-perturbative effects just for 1 modulus.

5 Conclusions

In this article we have presented a new systematic approach to type IIB moduli stabilisation

which is based on fixing the Kähler moduli through the 2-cycle volume moduli as opposed

to the standard approach which uses the 4-cycle volume moduli.
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With the help of numerical techniques, we have been able to reproduce all known

approaches to type IIB Kähler moduli stabilisation and to identify new classes of models

that could not be determined with previous methods. In particular we discovered the first

examples in the literature of LVS vacua for CY threefolds which do not admit a diagonal dP

divisor. This implies that the presence of LVS vacua in the string landscape is more generic

than previously thought. An interesting future line of investigation would be to perform a

more systematic analysis of the frequency of LVS in type IIB flux compactifications.

Moreover our innovative approach to Kähler moduli stabilisation allowed us also to

reveal a new class of hybrid models where the volume is stabilised at values large enough

to be of phenomenological and cosmological interest, as well as to guarantee control over

the effective field theory approximation, but not exponentially large as in standard LVS

models. More work in this direction is certainly needed, both to explore the physical

implications of this new class of models and also to obtain better computational control

over the effective field theory.

In order to consider concrete models, we have been systematic in our approach and

started by covering all known models constructed from hypersurfaces in toric varieties by

Kreuzer and Skarke with Hodge numbers h1,1 = 1, 2, 3. We have classified them according

to whether they are of the LVS type: standard Swiss cheese LVS models, K3 fibrations

with a diagonal dP divisor, strong Swiss cheese-like examples and structureless LVS CY

models which can still lead to stabilised vacua with exponentially large internal volume.

The underlying message for analysing the dataset with 1 ≤ h1,1 ≤ 3 is that, while

all examples with h1,1 = 1 can be studied via the conventional approach based on 4-cycle

moduli, only 72% of the models with h1,1 = 2 and 50% of the models with h1,1 = 3 can be

analysed with this standard approach. Thus the new strategy described in our paper to

find stable vacua by working in terms of 2-cycle volume moduli is essential for achieving full

moduli stabilisation with supersymmetry breaking for h1,1 = 3, and indeed our approach

seems to be the only way to proceed for larger h1,1.

This article can then be considered as only the first step towards the more systematic

aim of performing full moduli stabilisation with an arbitrarily large number of Kähler

moduli. With the analytic and numerical techniques developed in this article, we hope in

the future to approach concrete models with h1,1 ≥ 4, possibly even in the regime of large

h1,1 ∼ O(102 − 103) where we may be able to use a large Hodge number approximation.

Interesting directions for future work are the inclusion in our master formula of string

loop corrections and higher order α′ effects, as well as a detailed exploration of the axion

landscape for cases with large h1,1. The presence of many axions allows for a potentially

large landscape inside the actual string landscape, with the added value that extrema

should be computable within the effective field theory as proposed in [67–69]. We hope to

come back and address these questions in the future.

Acknowledgments

We would like to thank Francesco Muia, Andreas Schachner and Roberto Valandro for use-

ful conversations and ICTP for hospitality at different stages of this project. We especially

thank Nicole Edmea Bollan for collaborations at an early stage of this project.

– 31 –



J
H
E
P
0
8
(
2
0
2
0
)
0
4
7

A Known potentials from our master formula

In this appendix we will show how our master formula (2.23) reduces to different known

scalar potentials by just choosing 3 parameters: the Hodge number h1,1, the number n of

non-perturbative contributions to the superpotential, and CY Euler-number ξ̂. Some of

these models are collected in table 1.

A.1 1-modulus KKLT

For reproducing the standard KKLT potential [10], we need to consider h1,1 = n = 1 and

ξ̂ = 0. In this case the 3 contributions to the general potential given in (2.23) become:

VO(α′3) = 0, Vnp1 = 4 eK |W0| |A1| a1 τ1 e
−a1 τ1 cos(a1ρ1 + θ0 − φ1),

Vnp2 = 4 eK |A1|2 e−2a1τ1
(
−V a2

1 k111 t1 + (a1 τ1)2 + a1 τ1

)
, (A.1)

where:

V =
1

6
k111 t

3
1 , τ1 =

1

2
k111 t

2
1 , eK =

eKcs

2 sV2
. (A.2)

This leads to the standard KKLT scalar potential which admits a supersymmetric AdS

vacuum:

VKKLT =
9 eKcs a1 k111 |A1|

s τ2
1

e−a1 τ1

[
|W0| cos(a1ρ1 + θ0 − φ1) +

|A1|
3

e−a1 τ1 (a1 τ1 + 3)

]
.

A.2 2-moduli KKLT

For reproducing the potential of KKLT models with 2 Kähler moduli [44, 45], we need to

consider h1,1 = n = 2 and ξ̂ = 0. In this case the 3 contributions in (2.23) become:

VO(α′3) = 0 , Vnp1 =
eKcs

2sV2

2∑
i=1

4aiτi|W0||Ai| cos(aiρi + θ0 − φi) e−aiτi ,

Vnp2 =
eKcs

2sV2

[
2∑
i=1

4a2
i |Ai|2

(
−V kiiiti + τ2

i +
τi
ai

)
e−2aiτi (A.3)

+8a1a2|A1||A2| e−(a1τ1+a2τ2) cos(a1ρ1 − a2ρ2 − φ1 + φ2)

(
τ1τ2 +

a1τ1 + a2τ2

2a1a2

)]
,

where, similarly to the CP4[1, 1, 1, 6, 9] model studied in [44], we focused on a CY example

with only k111 6= 0 and k222 6= 0. Hence the 4-cycle moduli and the overall volume read:

τ1 =
1

2
k111t

2
1 ⇒ t1 = −

√
2 τ1

k111
and k111t1 = −

√
2k111τ1 ,

τ2 =
1

2
k222t

2
2 ⇒ t2 = +

√
2 τ2

k222
and k222t2 = +

√
2k222τ2 ,

V =
1

6

(
k111 t

3
1 + k222 t

3
2

)
=

√
2

3
√
k222

(
τ

3/2
2 −

√
k222

k111
τ

3/2
1

)
, (A.4)
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where the minus sign in the relation between t1 and τ1 is due to the fact that τ1 is the volume

of a diagonal dP divisor whose Kähler cone condition is t1 < 0. Thus the potential (A.3)

reduces to the standard 2-moduli KKLT form mentioned in [45]:

V =
eKcs

2sV2

[
2∑
i=1

4aiτi|W0||Ai| cos(aiρi + θ0 − φi) e−aiτi

+

2∑
i=1
i 6=j

4

3
|Ai|2a2

i τ
2
i e
−2aiτi

(
1 + 2

√
kiii
kjjj

(
τj
τi

)3/2

+
3

aiτi

)

+8a1a2|A1||A2| e−(a1τ1+a2τ2) cos(a1ρ1 − a2ρ2 − φ1 + φ2)

(
τ1τ2 +

a1τ1 + a2τ2

2a1a2

)]
.

A.3 2-moduli Swiss cheese LVS

For reproducing the standard LVS potential [6, 11, 46, 47], let us consider h1,1 = 2, n = 1

and ξ̂ > 0. In this case the 3 contributions to the general potential given in (2.23) become:

VO(α′3) = eK
3 ξ̂ (V2 + 7 ξ̂ V + ξ̂2)

(V − ξ̂)(2V + ξ̂)2
|W0|2, (A.5)

Vnp1 = 2 eK |W0| |A1| e−a1τ1 cos(a1ρ1 + θ0 − φ1)

×
[

(4V2 + V ξ̂ + 4 ξ̂2)

(V − ξ̂)(2V + ξ̂)
(a1τ1) +

3 ξ̂ (V2 + 7 ξ̂ V + ξ̂2)

(V − ξ̂) (2V + ξ̂)2

]
,

Vnp2 = 4 eK |A1|2 e−2a1τ1

[
−
(
V +

ξ̂

2

)
a2

1 k111 t1 +
4V − ξ̂

4(V − ξ̂)
(a1τ1)2

+
(4V2 + V ξ̂ + 4 ξ̂2)

2(V − ξ̂)(2V + ξ̂)
(a1τ1) +

3 ξ̂ (V2 + 7 ξ̂ V + ξ̂2)

4(V − ξ̂)(2V + ξ̂)2

]
.

Focusing on the large volume limit, the leading order contributions in all terms above give:

V ' eKcs

2s

[
3ξ̂|W0|2

4V3
+

4a1τ1|W0||A1|
V2

e−a1τ1 cos (a1ρ1 + θ0 − φ1)− 4a2
1|A1|2k111t1
V e−2a1τ1

]
.

(A.6)

In Swiss cheese LVS models with 2 Kähler moduli, the only non-zero intersection numbers

are k111 and k222 and the relations between 2- and 4-cycle moduli look as in (A.4) where τ1

plays the rôle of the ‘small’ modulus while τ2 corresponds to the ‘big’ divisor. Hence (A.6)

takes the form:

V ' eKcs

2s

(
βα′

V3
+ βnp1

τ1

V2
e−a1τ1 cos (a1ρ1 + θ0 − φ1) + βnp2

√
τ1

V e−2a1τ1

)
, (A.7)

with:

βα′ =
3ξ̂|W0|2

4
, βnp1 = 4a1|W0||A1| , βnp2 = 4a2

1|A1|2
√

2k111 . (A.8)

Notice that (A.7) matches the form of the potential of standard Swiss cheese LVS models

with 2 Kähler moduli [6, 11, 46, 47].

– 33 –



J
H
E
P
0
8
(
2
0
2
0
)
0
4
7

A.4 3-moduli Swiss cheese LVS

The scalar potential of Swiss cheese LVS models with 3 Kähler moduli [48, 49] can be

reproduced by our master formula (2.23) by setting h1,1 = 3, n = 2 and ξ̂ > 0, yielding:

VO(α′3) = eK
3 ξ̂(V2 + 7ξ̂V + ξ̂2)

(V − ξ̂)(2V + ξ̂)2
|W0|2 , (A.9)

Vnp1 = eK
2∑
i=1

2|W0||Ai| e−aiτi cos(aiρi + θ0 − φi)

×
[

(4V2 + V ξ̂ + 4ξ̂2)

(V − ξ̂)(2V + ξ̂)
aiτi +

3 ξ̂(V2 + 7ξ̂V + ξ̂2)

(V − ξ̂)(2V + ξ̂)2

]
,

Vnp2 = eK
2∑
i=1

2∑
j=1

|Ai||Aj | e−(aiτi+ajτj) cos(ajρj − aiρi − φj + φi)

×
[
− 4

(
V +

ξ̂

2

)
aiaj

(
3∑

k=1

kijktk

)
+

4V − ξ̂
(V − ξ̂)

aiajτiτj

+
(4V2 + V ξ̂ + 4ξ̂2)

(V − ξ̂)(2V + ξ̂)
(aiτi + ajτj) +

3 ξ̂(V2 + 7ξ̂V + ξ̂2)

(V − ξ̂)(2V + ξ̂)2

]
.

In the large volume limit, this potential can very well be approximated as:

V =
eKcs

2s

[
3ξ̂|W0|2

4V3
+

2∑
i=1

4|W0||Ai|ai
V2

τi e
−aiτi cos(aiρi + θ0 − φi) (A.10)

−
2∑
i=1

2∑
j=1

4|Ai||Aj |aiaj
V e−(aiτi+ajτj) cos(ajρj − aiρi − φj + φi)

(
3∑

k=1

kijktk

)]
.

Given that we are interested in Swiss cheese CY models where the only non-vanishing

intersection numbers are k111, k222 and k333, we have:

3∑
k=1

kiiktk = kiiiti = −
√

2 kiii τi for i = 1, 2 and

3∑
k=1

kijktk = 0 for i 6= j .

Hence (A.10) reduces to the potential of known 3-moduli Swiss cheese LVS models [48, 49]:

V =
eKcs

2s

[
βα′

V3
+

2∑
i=1

(
βnp1,i

τi
V2

e−aiτi cos(aiρi + θ0 − φi) + βnp2,i

√
τi
V e−2aiτi

)]
,

with:

βα′ =
3ξ̂|W0|2

4
, βnp1,i = 4a1|W0||A1| , βnp2,i = 4a2

1|A1|2
√

2k111 . (A.11)

A.5 3-moduli fibred LVS

We now focus on 3-moduli fibred LVS models whose potential can be derived from our

master formula (2.23) by setting h1,1 = 3, n = 2 and ξ̂ > 0. Hence its form is the same as
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in (A.9) but now
∑3

k=1 kijktk is different since the underlying CY threefold has a distinct

topological structure. In fact, in this case the CY features a K3 or T 4-fibration over a

P1 base together with a diagonal dP divisor (for explicit CY threefolds with this topology

see [24–26, 70]). Via an appropriate choice of basis, the only non-zero intersection numbers

can be chosen to be k111 and k233, signaling that D1 is a diagonal dP divisor, D2 is a K3

or T 4 fibre and D3 contains the P1 base of the fibration. Thus we obtain:

3∑
k=1

k11ktk = −
√

2k111τ1 , and

3∑
k=1

k12ktk =

3∑
k=1

k22ktk = 0 ,

V =
1

6
k111 t

3
1 +

1

2
k233 t2 t

2
3 =

τ3
√
τ2√

2
√
k233

−
√

2 τ
3/2
1

3
√
k111

. (A.12)

By substituting these expression in (A.9) we can easily read off the potential of fibred LVS

models with 3 Kähler moduli. Interestingly, in [22] it has been shown that this potential

cannot give rise to any LVS vacuum in a regime where the effective field theory is under

control. In order to achieve this goal, one has to consider additional perturbative α′ or gs
corrections to the potential which are however not captured by our master formula (2.23).

B Lipschitz optimisation algorithm

Exploring string theory models and related mathematical data vis-a-vis observations calls

for new approaches to moduli stabilisation. Central to the stabilisation exercise is the

need to minimise supergravity potential, a function of moduli fields that arises upon string

compactification. The classical approach were via the selection of CY base geometry by

hand and analytical minimisation of the one- or few-moduli potentials. In order to go

beyond this, numerical automisation is required for selecting geometries and finding the

positions of corresponding minima positions in moduli space. Here we describe a global

optimisation algorithm, Lipschitz optimisation (LIPO), used for numerically stabilising the

moduli fields of the example geometries addressed in this paper.7

Lipschitz optimisation falls within the class of deterministic global optimisations (see

for instance [71]). The task is to find the absolutely best set of parameters for achieving a

mathematically-formulated objective. In [72] the LIPO algorithm for finding x ∈ Rd which

globally maximises a function f(x) was introduced. The DLIB library (see http://dlib.net/)

implements LIPO algorithm and improves it with local trust tests at the global maximum

point. The basic principle for the Lipschitz optimisation is as follows.

A piecewise linear upper bound, U(x), of f(x) is used to decide which x to evaluate

at each of the optimisation steps. Given already evaluated points x1, x2, . . . , xj , U(x) can

be represented by:

U(x) = max
i=1...j

(f(xi) + k |x− xi|) , (B.1)

where k is the Lipschitz constant for f(x). By the definition of the Lipschitz constant, this

will give U(x) ≥ f(x) for all x. The algorithm selects a test point, xt randomly, and then

7There are many optimisation algorithms in the literature. The application of these for CY selections

and for finding corresponding minima in moduli space is an interesting research direction to pursue further.
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X X XXk,t

Figure 6. From [72]. (a) A simple Lipschitz function f(x) evaluated over a sample of 4 points

(dots). (b) The upper limit function, U(x) is sketch in grey. (c) Here the domain of f(x) is reduced

to regions containing the maximum.

check if U(xt) is better than the best of the points so far chosen. If true, then xt is selected

as the next point at which f(x) should be evaluated. For illustration, figure 6 (a) shows a

4-point sample for a simple function f(x). The grey lines in plot (b) show the upper bound

function U(x) constructed from the 4 sample points in (a). Plot (c) shows the region of

f(x) which satisfies the decision rule for selecting xt at which to evaluate f(x) next. It can

be seen that the procedure evolves such that over subsequent steps the selected points will

eventually reach the global maximum of the f(x).

In practice the Lipschitz constant is not known, the functions to be minimised (known

or unknown) can be very noisy, discontinuous or stochastic. LIPO could also be slow in

converging to the maximum though it finds the local region near the maximum quickly. The

implementation in DLIB is modified to tackle these problems. Few examples of potential

minimisation are available at https://github.com/shehu0/DlibOptimisationExamples.git.

C A hybrid GA/Clustering/Amoeba algorithm to find all minima in a

potential

Finding all the stable or metastable minima in a system is a common problem in physics,

but heuristic search techniques tend to focus on the more iconic problem of correctly

finding the global minimum. While individual algorithms may be well suited to this one

task, collecting the locations of all the local minima as well as the global one in a given

search space may be more efficiently done by combining them, as indeed suggested by the

analysis in the previous appendix. In this appendix we describe an algorithm that is a

combination of a Genetic Algorithm (GA) [73–76], followed by a Cluster Algorithm (CA),

followed by a Nelder-Mead (or amoeba) algorithm (NM) [77–79].

GAs seek optimal solutions by evolving a population of models in the search-space

which, by means of a suitable definition of ‘fitness’, is transformed into a fitness landscape.

Such algorithms are able to avoid stagnation and attempt to find the global minima in

NP-hard problems, and there has been some interest in their use in various contexts in

particle physics, for example in [80–94]. However it is known that once a GA begins to

select the favoured minimum the final stage of convergence is relatively slow. On the other
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Figure 7. Initial evolution of a genetic algorithm over a test function. There is rapid convergence

to local clusters but further convergence takes place slowly. The population in this case is 100

individuals.

hand optimisation methods such as the Nelder-Mead algorithm flow to local minima and

cannot address NP-hard problems, but in the basin of attraction of a minimum the NM

method can converge much more quickly than a GA, if the function does not have many

discontinuities and the dimensionality of the search-space is not too large. This suggests

that a combination of these techniques may be beneficial. As we will see, for the problem

at hand there are other benefits.

In order to illustrate our procedure, we will consider finding the local minima for the

test function:

V (x, y) = −(36 sin(2y) cos(2x) + 12(x+ y)− x2 − y2) . (C.1)

This function can be seen plotted in the background of figure 7. The evolution of a

standard GA with 100 individuals is also plotted in the figure. Although many popular

GAs are available, for our purposes it is more convenient to use our own tailored code.

In particular in order to treat very flat potentials we use a simple roulette wheel selection

genetic algorithm with fitness based on ranking (so the GA works for potentials with

directions that are arbitrarily flat). As can be seen, within only a few generations the

genetic algorithm clusters around the local minima. Continued convergence to the global

minimum then proceeds slowly. It can be enhanced by dialing down the mutation rate (due

to the relevant theorem of Holland) but then one risks losing all the information about the

local minima. One approach to the problem of identifying all the local minima is to dial

down the mutation ‘too early’, so that sub-populations gets trapped in them. However it

is much faster to pass to a NM algorithm as soon as clusters have formed.

We therefore treat the problem in 3 stages. First we perform the genetic algorithm

itself but with a relatively large (optimal) mutation rate. For the function we show here, a

population of around 100 was found to be optimal. The process is terminated at an early
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Figure 8. Instead we run the GA several times for a few generations. Then a kmeans algorithm

determines a set of clusters. A representative d + 1 = 3 dimensional simplex is chosen from

each cluster, and a Nelder-Mead optimisation determines the local minimum (corresponding to the

maximum fitness in the figure) for each simplex.

stage after only a few generations, resulting in clusters located around the local minima as

we observed in figure 7. Note that if we wait too long, some of these clusters will begin to

disappear unless we also impose some kind of crowding penalty. An additional interesting

point is that (in contrast with a straight genetic algorithm) the overall process is better with

larger populations as the clusters that are initially established are better defined. We then

formally identify the clusters using a kmeans clustering algorithm. From each cluster we

then select the best d+ 1 points (for a d dimensional function) in order to form a represen-

tative d+1 dimensional simplex. Finally we determine the local minimum for each simplex

using an NM (or amoeba) algorithm. Overall the process is very fast for our example, and

yields the outcome shown in figure 8. We include pseudo-code for the procedure in Algo-

rithm 1, and actual code is available at http://www.maths.dur.ac.uk/∼dma0saa/GANM/.

There are several other advantages since for cases of relatively low dimension and

without discontinuities, the NM algorithm is known to converge rapidly and (like the GA

itself) does not need a differentiable function [78, 79]. However the problem in this paper

becomes 6D and some local minima appear close to the Kähler cone where there is a

discontinuity. Thus the NM algorithm is somewhat less efficient even if the method still

functions well.
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Data: Potential to be minimised over specified domain in d-dimensional space

Result: Array of location and depth of local minima within domain

GA;

for population do
Initialise genotype

end

while generations < gen-number do

for population do
Find phenotype (potential)

Assign fitness by ranking
end

for new-population do
Roulette wheel select breeding pair from population

Two-point crossover to create new individual

Elitist Mutation of new individual
end

population = new-population
end

Clustering: Run K-means clustering algorithm to produce clusters

simplices = []

for clusters do
Find phenotype

Assign fitness by ranking

Select first d+ 1 elements to form simplex

simplices += simplex
end

Nelder-Mead;

local-minima = []

for simplices do
Find several trial-minima from simplex and perturbations

for trial-minima do
test for unbounded below

test for flat directions and form basis

if trial-minimum passes && minimum /∈ local-minima then
local-minima += trial-minimum

end

end

end
Algorithm 1: Pseudo-code for combined GA+Cluster+Amoeba algorithm.
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D List of CY threefolds with h1,1 = 2

Model −χ k111 k112 k122 k222 Kähler cone LVS K3-fibred Hard

M2,1 54 0 1 1 0 t1 > 0, t2 > 0 X
M2,2 72 9 0 0 9 t1 < 0, t1 + t2 > 0 X
M2,3 144 1 0 0 3 t1 < 0, t1 + t2 > 0 X
M2,4 144 1 0 0 3 t1 < 0, t1 + t2 > 0 X
M2,5 144 1 0 0 3 t1 < 0, t1 + t2 > 0 X
M2,6 162 0 3 3 0 t1 > 0, t2 > 0 X
M2,7 164 2 0 0 5 t1 < 0, t1 + t2 > 0 X
M2,8 168 0 0 4 8 t1 > 0, t2 > 0 X
M2,9 168 −4 4 0 0 t1 > 0, t2 − t1 > 0 X
M2,10 168 0 0 4 −4 t1 − t2 > 0, t2 > 0 X
M2,11 168 2 4 0 0 t1 > 0, t2 > 0 X
M2,12 168 0 0 4 5 t1 > 0, t2 > 0 X
M2,13 168 2 0 0 3 t1 < 0, t1 + t2 > 0 X
M2,14 168 −1 0 4 11 t1 < 0, t1 + t2 > 0 X
M2,15 168 −1 −2 0 5 t1 < 0, t1 + t2 > 0 X
M2,16 168 −1 0 4 14 t1 < 0, t1 + t2 > 0 X
M2,17 168 8 −2 0 6 t1 < 0, 3t1 + t2 > 0 X
M2,18 176 3 0 0 5 t1 < 0, t1 + t2 > 0 X
M2,19 180 3 0 0 3 t1 < 0, t1 + t2 > 0 X
M2,20 186 8 −2 0 14 t1 < 0, t1 + t2 > 0 X
M2,21 200 8 0 0 24 t1 < 0, t1 + t2 > 0 X
M2,22 208 9 0 0 36 t1 < 0, t1 + t2 > 0 X
M2,23 208 9 0 0 36 t1 < 0, t1 + t2 > 0 X
M2,24 208 9 0 0 36 t1 < 0, t1 + t2 > 0 X
M2,25 228 1 0 0 1 t1 < 0, t1 + t2 > 0 X
M2,26 236 1 0 0 2 t1 < 0, t1 + t2 > 0 X
M2,27 240 9 0 0 63 t1 < 0, t1 + t2 > 0 X
M2,28 240 9 0 0 63 t1 < 0, t1 + t2 > 0 X
M2,29 240 9 0 0 63 t1 < 0, t1 + t2 > 0 X
M2,30 252 0 0 2 4 t1 > 0, t2 > 0 X
M2,31 252 −2 2 0 0 t1 > 0, t2 − t1 > 0 X
M2,32 252 0 0 2 −2 t1 − t2 > 0, t2 > 0 X
M2,33 252 0 0 2 0 t1 > 0, t2 > 0 X
M2,34 252 −4 2 0 0 t1 > 0, t2 − t1 > 0 X
M2,35 252 2 0 0 1 t1 < 0, 2t1 + t2 > 0 X
M2,36 260 2 0 0 2 t1 < 0, t1 + t2 > 0 X
M2,37 260 9 0 0 9 t1 < 0, t1 + t2 > 0 X
M2,38 284 8 0 0 8 t1 < 0, t1 + t2 > 0 X
M2,39 540 9 0 0 72 t1 < 0, t1 + 2t2 > 0 X

Table 11. Topological data for CYs with h1,1 = 2 which are relevant to check the consistency of

the extrema. Notice that M2,17 and M2,20 are ‘hard’ but admit a non-diagonal dP divisor.
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E List of structureless LVS with h1,1 = 3

Model −χ k111 k222 k223 k233 k333 Kähler cone

M3,1 126 1 8 −5 3 0 t1< 0, t3−2t2> 0, t1 + t3> 0, t1 +3t2> 0

M3,2 132 2 −1 3 −5 8 t1< 0, 3t3− t2> 0, t1 + t3> 0, t2−2t3> 0

M3,3 132 2 −1 2 0 −2 t1< 0, 2t3− t2> 0, t1 + t3> 0, t2− t3> 0

M3,4 138 3 0 3 3 0 t1< 0, t1 + t2> 0, t1 + t3> 0

M3,5 144 3 −1 1 3 0 t1< 0, t1 + t2> 0, t3− t2> 0

M3,6 144 3 −1 −1 3 0 t1< 0, t1 + t2> 0, t3− t2> 0

M3,7 144 3 −1 2 0 −2 t1< 0, 2t3− t2> 0, t1 + t3> 0, t2− t3> 0

M3,8 144 3 −1 3 −5 8 t1< 0, 3t3− t2> 0, t1 + t3> 0, t2−2t3> 0

M3,9 162 3 8 −5 3 0 t1< 0, t1 + t2> 0, t3−2t2> 0

M3,10 164 8 −2 −2 6 14 t1< 0, t1 + t2> 0, t3− t2> 0

M3,11 164 9 −4 −2 8 22 t1< 0, t1 + t2> 0, t3− t2> 0

M3,12 200 9 −1 −3 9 48 t1< 0, t1 + t2> 0, t3− t2> 0

M3,13 216 9 −1 1 17 64 t1< 0, t1 + t2> 0, t3− t2> 0

M3,14 216 9 −1 1 17 64 t1< 0, t1 + t2> 0, t3− t2> 0

Table 12. List of structureless LVS models with h1,1 = 3.
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