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1 Introduction

Noncommutative gauge theories have been widely studied in the past years mixing suc-

cesses and defeats. It is of common knowledge that, while space-time noncommutativity

represents a natural resolution of the clash between general relativity and quantum me-

chanics in strong gravitational fields (see for example [1]), it doesn’t give rise to well defined

quantum field theories, which are generically affected by the so called UV/IR mixing [2, 3],

except for a few models with very special features. It is out of the scope of this paper to

present a comprehensive review of the subject. We shall just focus on the aspects which

shall be addressed here.

For the purposes of the paper, the “classical picture” which we refer to, is that of a

noncommutative theory of gauge and (when included) matter fields, which is described

in terms a noncommutative algebra (A, ?) representing space-time, a right A-module, M,

representing matter fields, a group of unitary automorphisms of M acting on fields from

the left, representing U(N) gauge transformations.1 In such a framework, the dynamics of

fields is described by means of a natural differential calculus based on derivations of the

NC algebra [4–9]. Moreover, the gauge connection is the standard noncommutative analog

of the Koszul notion of connection [8–11]. (See appendix A for a brief review of the latter

approach. For a physically inspired perspective see the pioneering work [12].)

Therefore, it is evident that, in the classical framework, one major problem is to have

a well defined differential calculus, namely, an algebra of ?-derivations of A such that

Da(f ? g) = Daf ? g + f ? Dag. (1.1)

1Notice however that in the paper we shall only consider pure gauge theories.
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For constant noncommutativity, assuming Θ to be non-degenerate, the latter are success-

fully realised by star commutators

Daf = (Θ−1)ab[x
b, f ]?

Θ→0−→ ∂af (1.2)

thus reproducing the correct commutative limit. For coordinate dependent Θ(x) the situ-

ation is much more complicated. Lie algebra type star products,

[xj , xk]? = cjkl x
l (1.3)

do admit a generalisation of (1.2) according to

Djf = k[xj , f ]? (1.4)

with k a suitable dimensionful constant, but the limit, Θ → 0, does not yield the correct

commutative limit (see [13–17] for details and applications). A related approach, is to use

twisted differential calculus for those NC algebras whose star product is defined in terms

of a twist [18–22].

To summarise, for generic coordinate dependence of Θ, where one needs to employ the

general Kontsevich star product [23],

f ? g = f · g +
i

2
Θab(x) ∂af∂bg + . . . , (1.5)

ordinary derivations violate Leibniz rule,

∂c(f ? g) = (∂cf) ? g + f ? (∂cg) +
i

2
∂cΘ

ab(x) ∂af∂bg + . . .

whereas twisted or star derivations, although giving rise to a well defined differential cal-

culus, might not reproduce the correct commutative limit. The problem is not new and

several attempts to its solution can be found in the literature.

Other than identifying a differential calculus which be compatible with noncommuta-

tivity and yield back the correct commutative limit, we mentioned another problem which

emerges in NCQFT, that is the UV/IR mixing, which certainly affects QFT with con-

stant noncommutativity and may or may not affect coordinate dependent cases. Given

the important role that NC field theory may play as an effective field theory implementing

quantum gravity effects in some low energy regime [1], it is therefore worth to explore a

novel approach which might help overcoming some of the problems encountered so far.

Here we shall consider specifically pure gauge theories (no matter fields) and address

the problem from a different perspective. Namely, we shall investigate how to modify the

very definition of gauge fields and gauge transformations in such a way that they be compat-

ible with space-time noncommutativity and reproduce the correct commutative limit. We

propose a novel strategy, which is inspired by a recent approach to gauge theories [24, 25],

which is based on the conjecture that any well defined gauge theory, including noncom-

mutative and non-associative ones, can be consistently constructed by bootstrapping some

starting commutative gauge theory with a noncommutative (resp. non-associative) defor-

mation in such a way to complete some L∞ algebra (see [26] for a physically oriented review
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of the role of L∞ algebras in field theory). However the purpose of the paper is to show

that it is possible to follow a simpler, constructive approach, which can be autonomously

understood, without recurring to the technical complexity of dealing with L∞ algebras.

Before proceeding further, an important remark is in order. Although the procedure is

well defined for general space-time non-commutativity, we shall work within a simplified

scheme, which amounts to replace ? commutators with Poisson brackets. Then, in order

for the construction to be consistent, as long as the product is considered, in eq. (1.5) only

the zeroth order in the deformation parameter has to be retained. Strictly speaking this

means that space-time stays commutative, but it becomes a Poisson manifold with non-

trivial Poisson bracket among position coordinates. Gauge parameters in turn, which are

space-time functions, inherit such a non-trivial Poisson structure. It is therefore natural

to require that they close under Poisson brackets and it is a legitimate question to ask

how gauge theories have to be modified in order to preserve gauge covariance. We shall

see that there is no conceptual issue in generalising the whole construction to a genuine

non-commutative spacetime, although computationally more complicated.

The paper is organised as follows. In section 2 the Poisson algebra of deformed gauge

transformations is introduced and two guiding examples are described, respectively with

constant and Lie algebra type noncommutativity. In section 3 a recursive equation for

the field strength definition is established, and solved order by order in the deformation

parameter. Sections 4 and 5 contain respectively applications to Chern-Simons and Yang-

Mills theories. In section 6 we summarise our findings and discuss future perspectives.

Finally, appendix A contains a short review of gauge connections and field strength in

derivation-based NC gauge theories.

2 Non-commutative U(1) gauge algebra

Let us consider noncommutative space-time represented by the algebra AΘ with non-

constant non-commutativity parameter Θ(x).2 We look for a deformed theory of gauge

fields which satisfies two main requirements: it is gauge invariant and reproduces in the

commutative limit, Θ→ 0, the standard gauge theory.

For conventional U(1) gauge transformations, δ0
fA = ∂f, gauge parameters close un

Abelian algebra, [δ0
f , δ

0
g ] = 0. For non-Abelian gauge theories where gauge parameters are

valued in a non-Abelian Lie algebra , f = fiτ
i, we have instead δ0

fA = ∂f − i[A, f ] so that

[δ0
f , δ

0
g]A = ∂[f ,g]− i[A, [f ,g]] = δ0

[f ,g]A.

Namely, the algebra of gauge parameters closes with respect to a non-Abelian Lie bracket.

Noncommutative U(1) gauge theory, with gauge parameters now belonging to AΘ behaves

very much like non-Abelian theories in many respects. Therefore we shall require that the

algebra of gauge parameters closes with respect to the star commutator, namely

[δf , δg]A = δ−i[f,g]?A . (2.1)

2We use the symbol capital Θ for the NC tensor, [xi, xj ] = Θij(x), and lowercase θ to indicate a small,

real parameter.
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However, if gauge connections are defined as in appendix A, with gauge transformation

A′ = A+ ∂f − i[A, f ]? (2.2)

by composing two such transformations we get the result (2.1) only if ∂ is a derivation of the

star commutator, which, as we have discussed in previous section, in general is not the case.

Our aim in this section is somehow dual to what is usually done, namely, instead of

looking for a deformed differential calculus, we shall deform the very definition of gauge

transformations,

δ0
fA→ δfA = ∂f + . . . (2.3)

in such a way that (2.1) be satisfied.

As already noted, we shall work in the slowly varying, but not necessarily small fields.

In such a case we discard higher derivatives terms in the star commutator and take,

− i[f, g]? ≈ {f, g} = Θab(x) ∂af ∂bg . (2.4)

In the approximation which we have chosen eq. (2.1) becomes

[δf , δg]A = δ{f,g}A . (2.5)

and we look for gauge transformations in the form (2.3) which be compatible with the latter.

A remark is here in order. In the chosen approximation, space-time is still commuta-

tive, namely the product between fields is the usual point-wise product, but its geometry

is deformed, because it acquires a non-trivial Poisson bracket. Therefore one should rather

talk about commutative field theory on Poisson-deformed space-time. Once such a dis-

tinction made, in the following we shall refer to the latter as noncommutative space time

without any further specification, unless otherwise stated.

A solution to this problem has been proposed in [24, 27] in terms of field dependent

gauge transformations, in the form

δfAa = γka(A) ∂kf + {Aa, f} , (2.6)

Indeed, it may be verified that the latter close the algebra (2.5) if the matrix γ(A)ka satisfies

the equation,3

γlb ∂
b
Aγ

k
a − γkb ∂bAγla + Θlm ∂mγ

k
a −Θkm ∂mγ

l
a − γma ∂mΘlk = 0 , (2.7)

where we set, γ
k(0)
a = δka , to ensure the correct commutative limit. For arbitrary non-

commutativity parameter Θkl(x) eq. (2.7) was solved in the form of a perturbative se-

ries [27],

γka(A) =
∞∑
n=0

γk(n)
a = δka −

1

2
∂aΘ

kbAb (2.8)

− 1

12

(
2 Θcm∂a∂mΘbk + ∂aΘ

bm∂mΘkc
)
AbAc +O(Θ3) .

3The convention used here is: the partial derivative with the upper index is the derivation with respect

to the field, ∂b
A = ∂/∂Ab, while the partial derivative with the lower index is a derivation with respect to

coordinate, ∂m = ∂/∂xm.
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Note that the order of each term γ
k(n)
a in the gauge fields A coincides with the order of

this term in the deformation parameter Θ. We also stress here that the Ansatz in eq. (2.6)

takes into account only the leading order contribution in derivatives ∂f and ∂A. However

all orders in Θ are included, this being necessary to close the algebra (2.5). In this sense

eq. (2.6) is exact.

For some specific choices of non-commutativity, one may also discuss the convergence

of the series (2.8) and exhibit a closed expression for the gauge transformation (2.6). Here

we discuss two particular cases.

Canonical non-commutativity. Canonical non-commutativity corresponds to con-

stant NC parameter Θkl. Since, ∂mΘkl = 0, the constant solution γka = δka solves eq. (2.7),

yielding the gauge transformations,

δfAa = ∂af + {Aa, f} . (2.9)

Let us notice here that γka = δka is also a solution for the fully noncommutative case where

we replace Poisson brackets by ?-commutators. Eq. (2.9) becomes δfAa = ∂af − i[Aa, f ]? .,

which coincides with the standard definition of NC gauge transformation (2.2) and eq. (2.1)

is satisfied.

Lie algebra noncommutativity: R3
θ. The three dimensional rotationally invariant

non-commutative space, R3
θ, [13, 14, 28–32] corresponds in the approximation we have

chosen, to the su(2)-like Poisson algebra,

{xk, xl} = 2 θ εklm x
m , (2.10)

where the real number θ is a small parameter and εklm is the Levi-Civita symbol. The

factor of 2 is just a matter of convenience. In this case the solution of equation (2.7)

reads [25]

γka(A) =
[
1 + θ2A2χ

(
θ2A2

)]
δka − θ2χ

(
θ2A2

)
AaA

k − εaklAl , (2.11)

where

χ(t) =
1

t

(√
t cot

√
t− 1

)
, χ(0) = −1

3
. (2.12)

We use the Kronecker delta to raise and lower indices, and summation under the repeated

indices is understood, A2 = AmA
m.

The corresponding non-commutative deformation of Abelian gauge transformations

reads [25],

δfAa = ∂af + {Aa, f}+ θ εa
klAk∂lf + θ2

(
∂afA

2 − ∂kfAkAa
)
χ
(
θ2A2

)
. (2.13)

The latter may be verified to close the algebra (2.5) and to reproduce the correct commu-

tative limit θ → 0.

This result is essentially different from what one would get in standard approaches. See

for example [15], where the infinitesimal transformation of the gauge potential for Lie su(2)-

type noncommutativity reads δfAa = Daf + i[f,Aa]∗ with Da = − i
θ [xa, ·]∗

θ→0→ εabcxb∂c.

Lie algebra type ?-commutators do not converge to usual derivations in the commutative

limit and the whole gauge theory behaves quite differently from the commutative analogue

(see [15] for related duscussion).
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3 Non-commutative field strength

In previous section the U(1) gauge potential has been introduced as a vector-valued ele-

ment of the NC algebra AΘ, {Aa}, a = 1, . . . dimAΘ, whose gauge transformation (2.6)

was fixed by the request that it be compatible with the closure of the algebra of gauge

parameters (2.5). Similarly, we look here for a deformation of the U(1) field strength,

Fab = ∂aAb − ∂bAa +O(Θ) , (3.1)

which be covariant under gauge transformations (2.6), namely satisfying

δfFab = {Fab, f} , (3.2)

where, δfFab := Fab(A + δfA) − Fab(A) . In three space-time dimensions such a field was

constructed in [27].

In this section we address the general n-dimensional case. Following [27] we are looking

for a solution of eq. (3.2) in the form,

Fab = Pab
cd (A) ∂cAd +Rab

cd (A) {Ac, Ad} , (3.3)

where we choose

Pab
cd (A) = δcaδ

d
b − δdaδcb +O(Θ) , Rab

cd (A) =
1

2

(
δcaδ

d
b − δdaδcb

)
+O(Θ) , (3.4)

to match (3.1). By construction, Rab
cd (A) should be antisymmetric in upper indices since

it is contracted with the Poisson bracket {Ac, Ad}.
Eq. (3.2), upon replacing the Ansatz (3.3), becomes after simplification,[

γkl ∂
l
APab

cd + Θkl ∂lPab
cd + Pab

cl ∂dAγ
k
l + Pab

ld ∂lΘ
ck + 2Rab

ld ∂mγ
k
l Θmc

]
∂cAd ∂kf+

Pab
cd γkd ∂c∂kf +

[
Pab

cd − 2 γclRab
ld
]
{Ad, ∂cf}+ (3.5)[

γkl ∂
l
ARab

cd + Θkl ∂lRab
cd +Rab

cl ∂dAγ
k
l +Rab

ld ∂cAγ
k
l

]
{Ac, Ad} ∂kf = 0 .

The latter should hold for any gauge parameter f and any gauge field Aa. Thus, eq. (3.2)

yields four separate equations for the coefficient functions Pab
cd and Rab

cd. The first equa-

tion involves Pab
cd and Rab

cd,

γkl ∂
l
APab

cd + Θkl ∂lPab
cd + Pab

cl ∂dAγ
k
l + Pab

ld ∂lΘ
ck + 2Rab

ld ∂mγ
k
l Θmc = 0 . (3.6)

The second one,

Pab
[cd γ

k]
d = 0 , (3.7)

is an algebraic relation on the coefficient Pab
cd. The third equation relates Pab

cd and Rab
cd,

Pab
cd = 2 γclRab

ld (3.8)

and the last one is an equation for Rab
cd reading,

γkl ∂
l
ARab

cd + Θkl ∂lRab
cd +Rab

cl ∂dAγ
k
l +Rab

ld ∂cAγ
k
l = 0 . (3.9)

– 6 –
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To start with, we look for a perturbative solution in Θ of equation (3.9) using the expression

for γkl found previously, eq. (2.8). On using the second of eqs. (3.4) up to first order in Θ

and observing that, at first order γ
k(1)
l = −∂lΘkbAb/2, one obtains from (3.9),

Rab
cd(1) =

1

4

(
δca ∂bΘ

kd − δda ∂bΘkc − δcb ∂aΘkd + δdb ∂aΘ
kc
)
Ak . (3.10)

As for the second order, substituting the latter back into (3.9) and using the expression

for γ
k(2)
l given in (2.8) one finds,

Rab
cd(2) =

(
1

12
δca Θnm ∂b∂mΘkd − 1

12
δda Θnm ∂b∂mΘkc (3.11)

− 1

12
δcb Θnm ∂a∂mΘkd +

1

12
δdb Θnm ∂a∂mΘkc

+
1

12
δca ∂bΘ

nm ∂mΘkd − 1

12
δda ∂bΘ

nm ∂mΘkc

− 1

12
δcb ∂aΘ

nm ∂mΘkd +
1

12
δdb ∂aΘ

nm ∂mΘkc

+
1

8
∂aΘ

kc ∂bΘ
nd − 1

8
∂aΘ

nd ∂bΘ
kc

)
AkAn .

The process can be thus iterated to all orders in Θ.

It is remarkable that since eq. (3.8) expresses the coefficient functions Pab
cd in terms of

Rab
cd and γcl , eqs. (3.6) and (3.7) become consistency conditions for the solution of eq. (3.2).

One may check that (3.6) holds as a consequence of (3.8), (3.9) and (2.7), while (3.7) is

satisfied as a consequence of (3.8) and the antisymmetry of Rab
cd.

Let us notice that the result we have found for the strength field F is valid in any

dimension, whereas previous result in [27] was specific of three dimensions. Moreover, the

latter was only valid for linear Θ, while now we have considered a general dependence in x.

In the linear case , Θkl(x) = cklmx
m, the coefficient functions γka(A), Pab

cd(A) and Rab
cd(A)

are only functions of the gauge field A and do not depend explicitly on coordinates. For

general Θkl(x) they may have explicit x dependence. This in turn produces additional

contributions of the form Θkl ∂lPab
cd, 2Rab

ld ∂mγ
k
l Θmc and Θkl ∂lRab

cd which have been

included in eqs. (3.5)–(3.9).

Canonical non-commutativity. Since in this case, γkl = δkl , one finds from

eqs. (3.8), (3.9) ,

Rab
cd (A) =

1

2

(
δcaδ

d
b − δdaδcb

)
, and Pab

cd (A) = δcaδ
d
b − δdaδcb , (3.12)

which results in,

Fcanab = ∂aAb − ∂bAa + {Aa, Ab} . (3.13)

Similarly to the result we found for the gauge potential, if we repeat the procedure just

described for a fully canonical non-commutative theory, with Poisson brackets replaced by

star commutators, one obtains [24]

FNCab = ∂aAb − ∂bAa − i[Aa, Ab]? . (3.14)

which is consistent with the standard definition of NC field strength (A.8).
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Lie algebra noncommutativity: R3
θ. For su(2)-like noncommutativity, in the slowly

varying fields approximation, the matrix γkl (A) was determined in (2.11). The solution of

equation (3.9) reads,

Rab
cd (A) =

1

2

(
δcaδ

d
b − δdaδcb

)
λ
(
θ2A2

)
(3.15)

+
θ

2

(
εab

cAd − εabdAc
)
λ
(
θ2A2

)
+
θ2

2

(
δcaAbA

d − δcbAaAd − δdaAbAc + δdbAaA
c
)
λ′
(
θ2A2

)
,

where

λ(t) =

(
sin
√
t√

t

)2

(3.16)

and λ′ indicates its derivative. The function λ(t) satisfies the equation, λ′ = χλ, with initial

condition, λ(0) = 1. Being in 3d any totally antisymmetric tensor of rank four vanishes.

In particular,

εabcAe − εbceAa + εceaAb − εeabAc = 0 . (3.17)

By taking into account the above relation and its consequences in eq. (3.8) we represent

the coefficient Pab
cd in a more convenient form,

Pab
cd (A) =

(
δcaδ

d
b − δdaδcb

)
φ
(
θ2A2

)
+ 2 θ εab

cAd φ
(
θ2A2

)
(3.18)

−θ εabmAmδcd λ
(
θ2A2

)
− θ εabdAc λ

(
θ2A2

)
+θ2

(
δcaAbA

d − δcbAaAd
)

[χφ− λ]
(
θ2A2

)
−θ3εabmA

mAcAd λ′
(
θ2A2

)
,

with,

φ(t) = (1 + tχ(t))λ(t) =
sin
√
t cos

√
t√

t
. (3.19)

It is remarkable that there are only two independent functions χ(t) and λ(t) which deter-

mine the whole construction.

In this case we can simplify the expression for the field strength. One may check that,

∂lARab
cd + cycl.(cdl) = 0 . (3.20)

Consequently,

Rab
cd = ∂cA ρab

d − ∂dA ρabc , (3.21)

where

ρab
c =

1

4
(δcbAa − δcaAb) λ

(
θ2A2

)
− 1

4θ
εab

c Λ
(
θ2A2

)
, (3.22)

with, Λ′(t) = λ(t). The same procedure can be applied for Pab
cd. Since,

∂lAPab
cd = ∂dAPab

cl , (3.23)
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we may represent it as,

Pab
cd = ∂dA πab

c , (3.24)

where

πab
c = (δcaAb − δcbAa) φ

(
θ2A2

)
− θ εabmAmAc λ

(
θ2A2

)
+

1

θ
εab

c Φ
(
θ2A2

)
, (3.25)

with, Φ(t) =
∫
φ(t)dt = − cos(2

√
t)/2. Then the expression for the non-commutative field

strength becomes,

Fsu(2)
ab = ∂c πab

c + 2 {ρabc, Ac} . (3.26)

In the standard approach the field strength is defined as in (A.3). Then the Bianchi

identity is satisfied by definition. See for example [15] for a comparison in case of su(2)-like

noncommutativity.

Within the present approach Bianchi identity is not automatically built-in because

the field strength is not defined as the curvature of a connection. However one may still

ask whether the non-commutative field strength (3.26) satisfies some deformed Bianchi

identity. We leave it as an open problem.

4 Noncommutative Chern-Simons model

Noncommutative deformation of Chern-Simons (CS) theory was constructed in [27]. In

this section for completeness and for the convenience of the reader we recollect the main

findings of [27]. Just like in the standard commutative case, non-commutative Chern-

Simons equations are obtained by requiring that the NC Field strength should vanish

everywhere. Since we are in three dimensions we may set,

Fa(A) :=
1

2
εabcFbc = P abc (A) ∂bAc +Rabc (A) {Ab, Ac} = 0 . (4.1)

With respect to the comment made at the end of last section, let us notice that this

definition of the field strength looks like a deformation of the covariant derivative, through

the coefficient functions P abc and Rabc. Eq. (4.1) satisfies the following two requirements.

It transforms covariantly under the NC gauge transformations (2.6), δfFa = {Fa, f} , and

reproduces in the commutative limit, Θ→ 0, the standard Abelian CS equation of motion,

i.e., limΘ→0 Fa(A) = εabc∂bAc. These two properties are exactly what we expect from a

suitable noncommutative deformation of Chern-Simons theory.

It is important to stress that the noncommutative CS equations (4.1) are non-

Lagrangian. Indeed, they do not satisfy the criterium of commutation of second variational

derivatives,
δFa

δAb
6= δF b

δAa
.

This is a main difference between our proposal and previous approaches. It is not based on a

deformation of the commutative action as a consequence of a modification of the geometric

structures involved, but on the request of gauge covariance and the correct commutative

limit of the corresponding field equations. The dynamics that is obtained in such a way

may not admit the existence of an action principle, as it is the case for CS equations (4.1).

– 9 –
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5 Non-commutative Yang-Mills theory

Having defined the NC field strength as in (3.3), differently form CS dynamics, it is possible

for U(1) Yang-Mills theory to introduce a non-commutative deformation by means of an

action principle.

On defining the non-commutative Yang-Mills Lagrangian as,

L = −1

4
FabFab (5.1)

it is possible to verify that it transforms covariantly under the NC gauge transforma-

tions (2.6), δfL = {f,L} . Consequently the corresponding action, S =
∫
L, is gauge

invariant, δfS ≡ 0. By Noether’s second theorem the gauge invariance of the action func-

tional implies the existence of non-trivial differential relations (Noether identities) among

the corresponding Euler-Lagrange equations. See, e.g., [33] for the derivation of the Noether

identities within the L∞-formalism.

Canonical noncommutativity. For canonical noncommutativity it is particularly easy

to derive the equations of motion which yield the noncommutative analogue of Maxwell

equations. Taking into account eq. (3.12) for the coefficient functions Rab
cd and Pab

cd which

correspond to constant Θ, we get from the Lagrangian (5.1) Euler Lagrange equations in

the form:

∂aFadcan + {Aa,Fadcan} = 0 (5.2)

where Fcanab was found in eq. (3.13) to be

Fcanab = ∂aAb − ∂bAa + {Aa, Ab} .

They correspond to NC Maxwell equations of the standard approach, when the star com-

mutator is replaced with the Poisson bracket, and reproduce the correct commutative limit

as expected.

Lie algebra noncommutativity: R3
θ. Taking into account that for the su(2)-like non-

commutativity the coefficient functions Rab
cd and Pab

cd satisfy eqs. (3.20) and (3.23), one

finds for the Euler-Lagrange equations corresponding to (5.1),

Ed(A) := DabdFab = 0 , (5.3)

where the field strength is defined in eq. (3.26) and

DabdFab =
1

2
Pab

cd(A) ∂cFab −Rabcd(A) {Ac,Fab} . (5.4)

By construction these equations are gauge-covariant and reproduce the U(1) Yang-Mills

equations in the commutative limit.

It is interesting to notice that eq. (5.4) acquires the form of a deformed covariant

derivative, with the coefficient functions Rab
cd and Pab

cd taking care of the deformation.

We plan to come back to this issue elsewhere.
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6 Conclusions

In the paper we have proposed a novel approach to U(1) noncommutative gauge theory,

which is based on the request that the commutative limit be retrieved for Θ → 0 and

the dynamics of pure gauge fields be gauge covariant. This is achieved by constructively

defining the gauge potential and the field strength through recursive equations which may

be solved order by order in the NC parameter, and, generalising previous derivations [24,

25, 27], are valid in any space-time dimension and for generic dependence of Θ on space-

time coordinates. As for the examples considered, especially interesting is the Lie-algebra

type noncommutativity. We are presently investigating another instance of such a family,

which is the so-called k-Minkowski spacetime [34].

Two immediate research questions which would be interesting to investigate are the

following. First, prior to any quantum field theory application, one should solve the classical

equations of motion and check fundamental problems such as the propagation of light in

such a deformed space-time. Secondly, one should address the problem of coupling gauge

fields with matter fields. Indeed, since the gauge potential is not introduced as a connection

one-form, the notion of covariant derivative in such a theory is not automatic. A related

problem is the possibility of reformulating the above defined field strength as a consistent

deformation of the notion of curvature of the gauge potential. We plan to come back to

these issues in the near future.
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A Gauge connection

A natural noncommutative extension of the notion of connection is introduced in [8, 9],

where one replaces complex vector bundles of physical fields over space-time, with right-

modules, M over noncommutative space-time, namely the non-commutative algebra A.

Generalising the standard definition which is proper of geometric approaches to gauge

theory, a connection on M can be conveniently defined by a linear map ∇ : Der(A)×M→M
satisfying

∇X(mf) = mX(f)+∇X(m)f, ∇cX(m) = c∇X(m), ∇X+Y (m) = ∇X(m)+∇Y (m) (A.1)

for any X,Y ∈ Der(A), f ∈ A, m ∈ M, c ∈ Z(A), the center of the algebra. Hermitian

connections satisfy for any real derivation X ∈ Der(A)

X(h(m1,m2)) = h(∇X(m1),m2) + h(m1,∇X(m2)), ∀m1,m2 ∈M, (A.2)

where h : M ⊗M → A denotes a Hermitian structure on A. The curvature is the linear

map F (X,Y ) : M→M defined by

F (X,Y )m = [∇X ,∇Y ]m−∇[X,Y ]m, ∀X,Y ∈ Der(A). (A.3)
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The group of gauge transformations of M, U(M), is defined as the group of automor-

phisms of M compatible both with the structure of right A-module and the Hermitian

structure, i.e

g(mf) = g(m)f, h(g(m1), g(m2)) = h(m1,m2) ∀g ∈ U(M), ∀m1,m2 ∈M (A.4)

For any g ∈ U(M) we have

∇gX : M→M, ∇gX = g−1 ◦ ∇X ◦ g (A.5)

F (X,Y )g : M→M, F (X,Y )g = g−1 ◦ F (X,Y ) ◦ g. (A.6)

For U(1) gauge theory, where the relevant vector bundle is a complex line bundle, the

corresponding NC generalisation is a one-dimensional A-module M = C ⊗ A. As Hermi-

tian structure one chooses h(f1, f2) = f †1f2 and takes real derivations. Then a Hermitian

connection is entirely determined by its action on the one-dimensional basis of the module,

∇X(1). We have ∇X(f) = ∇X(1)f + X(f),with ∇X(1)† = ∇X(1). This defines in turn

the gauge connection 1-form, A, by means of

A : X → A(X) := i∇X(1), ∀X ∈ Der(A) (A.7)

From the compatibility condition with the Hermitian structure, eq. (A.4), one obtains that

gauge transformations are the group of unitary elements of the noncommutative algebra

A. Indeed, on using g(f) = g(1f) = g(1) ? f and imposing compatibility, one obtains

h(g(f1), g(f2)) = h(f1, f2) which implies g(1)† ? g(1) = 1. We pose g(1) ≡ g ∈ U(A) the

group of unitary elements of the NC algebra A, acting multiplicatively on A from the left.

To give an explicit example of the whole construction, let us consider the 2-dimensional

Moyal plane, A = R2
θ, with constant noncommutative parameter, θ. The latter is referred

to as canonical noncommutativity in the paper. The algebra of derivations is in this case

the Abelian algebra generated by derivatives ∂µ. From eqs. (A.5), (A.6) we obtain

Fµν = F (∂µ, ∂ν) = ∂µAν − ∂νAµ − i[Aµ, Aν ]? (A.8)

with Aµ = i∇µ(1), and, to make contact with usual notation, we have rescaled F by a

factor of i. The unitary gauge group U(R2
θ) acts as ∇gµ = g† ◦ ∇µ ◦ g, yielding

Agµ = g ? Aµ ? g
† − i∂µg ? g†, F gµν = g ? Fµν ? g

†, ∀g ∈ U(A) (A.9)

Being unitary elements of A gauge transformations may be written as star exponentials

g[f ] = exp? (if) , (A.10)

and the star exponential is by definition

exp?(if) ≡
∞∑
n=0

(i)n

n!
f ? . . . ? f︸ ︷︷ ︸
n times

(A.11)

where the gauge parameters f are functions of x ∈ R2
θ. Hence, for the Moyal plane we get

infinitesimal gauge transformations in the form

δAµ = ∂µf + i[f,Aµ]? δFµν = i[f, Fµν ]?. (A.12)
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U(N) gauge theory is generalised to the NC case along the same lines. Matter fields are

represented by complex A modules M = CN ⊗ A while gauge transformations are auto-

morphisms of M which may be realised as Lie algebra valued ?-exponentials according to

g(f) = exp?
(
if jej

)
, j = 1, . . . , N (A.13)

with f j ∈ A and ej a Hermitian basis in CN .
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