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1 Introduction and summary

The conformal bootstrap program aims to constrain consistent conformal field theories by

studying the implications of conformal symmetry [1, 2]. While originally studied in two

dimensions, following developments in [3] this has lead to a better understanding of CFTs

in spacetime dimensions d > 2. In particular, crossing relations between the conformal

block expansion of correlation functions in different channels put strong constraints on the

CFT data, i.e., the set of scaling dimensions and OPE coefficients. While the crossing

relations are in general intractable to solve, imposing extra conditions on the theory such

as a large central charge or by studying certain kinematical limits, progress can be made.

Simplifications are then typically due to the fact that the expansion in one channel makes

certain operators dominant. By crossing symmetry, these has to be reproduced by the
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expansion in the other channels which typically involve the exchange of infinitely many

operators and are, therefore, often complicated.

One reason for the increased interest in higher-dimensional CFTs is due to its connec-

tions to quantum gravity [4–6]. Weakly coupled gravitational theories in AdS are related

via the AdS/CFT-correspondence to CFTs with large central charge, CT , and large gap,

∆gap, living on the boundary of the spacetime. Restricting to CFTs with this property,

much progress has been made in using the bootstrap approach to constrain the CFT data

perturbatively in an expansion in 1/CT . Especially interesting are gravitational interac-

tions in the bulk; these are related to the exchange of multi-stress tensor operators in the

boundary theory, schematically denoted by [T k]n,l. One approach to studying this so-called

stress tensor sector in d > 2 is to consider a heavy-heavy-light-light scalar correlation func-

tion, where “heavy” and “light” refers to operators OH and OL with scaling dimension

∆H ∼ O(CT ) and ∆L ∼ O(1) [7–13]. Roughly speaking, scaling ∆H with the central

charge enhances contributions from the stress tensor sector compared to the exchange of

generic operators. In d = 2 the exchange of multi-stress tensors in this correlator are

contained in the Virasoro vacuum block [14–21], and has been used to study e.g. unitary

evaporation of black holes in AdS3 [22–27] as well as properties of entanglement entropy

and quantum chaos [28–35]. Compared to two dimensions where the infinite-dimensional

Virasoro algebra puts strong constraints on the stress tensor sector, the higher-dimensional

case remains elusive to understand.

Another approach to making the crossing relations tractable is to study the conformal

block expansion in different kinematical limits. Two particularly interesting limits are the

lightcone limit and the Regge limit. In the former, the behaviour of the conformal blocks

implies that operators with low twist are dominant in the channel OL × OL → O →
OH ×OH (direct-channel). This was e.g. used in (with both pair of operators being light)

[36, 37] to prove the existence of double-twist operators at large spin. In [11], the near

lightcone heavy-heavy-light-light correlator in large CT CFTs was studied in d = 4. There

the exchange of minimal-twist (τ = 4) double-stress tensors of spin s = 4, 6, . . . ,∞ was

computed. This was extended in [13] with a bootstrap approach to determine the exchange

of minimal-twist multi-stress tensor operators with arbitrary spin, see also [38]. While the

lightcone limit is sensitive to operators with low twist, the Regge limit is dominated by

operators with large spin and was originally studied in [39–43], mainly in the context of

AdS/CFT. In particular, the stress tensor sector contains operators of any spin, [T k]n,l for

k ≥ 2. Studying the Regge limit of this sector is therefore inherently involved. However,

in the subsector of minimal-twist multi-stress tensors obtained in[11, 13] one can approach

the Regge limit starting from the explicit resummation of such operators. Utilizing the

overlapping regime of validity, the large impact parameter limit of the Regge limit can

thus be studied by pure CFT arguments using lightcone bootstrap.

In this paper, the Regge limit of a scalar heavy-heavy-light-light correlation function

in CFTs with large central charge and large gap in d > 2 (mainly d = 4) is considered

using holography. The Regge limit of a four-point function of pairwise identical light

scalar operators is related to the phase shift of 2→ 2 elastic scattering of highly energetic

particles at fixed impact parameter in the bulk [39–43]. For further discussion about
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the Regge limit and the phase shift in holographic CFTs see also [44–47]. In the heavy-

heavy-light-light case, the phase shift [7] was defined in the bulk in terms of the Shapiro

time delay and the angle deflection of a highly energetic particle propagating in an AdS-

Schwarzschild background; it was then calculated to all orders in a perturbative expansion

in the Schwarzschild radius in units of the AdS radius. In the CFT the phase shift is

related to a Fourier transform of the correlator and the expansion parameter is given

by µ ∼ ∆H
CT

. At k-th order, the phase shift is given by a massive scalar propagator in

(k(d − 1) − (k − 1))-dimensional hyperbolic space. On the other hand, the leading Regge

behaviour of a conformal block in d dimensions takes the form of a scalar propagator in

(d−1)-dimensional hyperbolic space. The higher-dimensional propagators appearing in the

phase shift can, however, be decomposed into infinite sums of propagators with increasing

scaling dimensions in Hd−1 [9]. This appears to be a more natural representation of the

phase shift from the boundary point of view.

In particular, we will study the leading and next-to-leading singularities of the stress

tensor sector of the heavy-heavy-light-light correlator in the Regge limit. This is done

perturbatively in µ and the stress tensor sector of the correlator G(z, z̄) (to be defined

below) is given by

G(σ, ρ) =

∞∑
k=0

µkG(k)(σ, ρ), σeρ = 1− z

σe−ρ = 1− z̄. (1.1)

The stress tensor sector G of the correlator contains the contribution of multi-stress tensor

operators in the direct-channel expansion of the correlator OL×OL → µk[T k]n,l. Here it is

seen that the contribution at k-th order is due to multi-stress tensors made out of k stress

tensors.

At k-th order, the stress tensor sector G(k) behaves as follows in the Regge limit:

G(k)(σ, ρ) =
Fk,L(ρ)

σk
+
Fk,NL(ρ)

σk−1
+O(σ−k+2) σ → 0, ρ−fixed, (1.2)

for some functions Fk,L(ρ) and Fk,NL(ρ). We define the leading and next-to-leading Regge

singularity of the stress tensor sector of the correlator G(k) at O(µk) by

Leading Regge singularity :
Fk,L(ρ)

σk
,

Next−to−leading Regge singularity :
Fk,NL(ρ)

σk−1
. (1.3)

The aim of this paper is to calculate Fk,L and Fk,NL for any value of k and fixed ρ. This is

done by Fourier transforming the momentum space correlator given in terms of the bulk

phase shift.

1.1 Summary of results

We consider a heavy-heavy-light-light correlator in a four-dimensional CFT with large

central charge and large gap. The stress tensor sector G(z, z̄) of the heavy-heavy-light-light

– 3 –
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correlator is defined by the exchange of multi-stress tensors:

G(z, z̄) =
1

G0(z, z̄)
lim
x4→∞

x2∆H
4 〈OH(x4)OL(1)OL(z, z̄)OH(0)〉

∣∣∣
multi−stress tensors

, (1.4)

with G0(z, z̄) the disconnected correlator. The restriction to multi-stress tensor exchanges

refers to considering exchanges in the direct-channel of the following form:

OL ×OL → µk[T k]n,l → OH ×OH , (1.5)

where µ ∼ ∆H
CT

is kept fixed and its power counts the number of stress tensors in the

multi-stress tensor operator [T k]n,l, with n = 0, 1, . . . and l = 0, 2, 4, . . ..

We consider the Regge limit defined by

Regge limit : z → e−2πiz with σ → 0, ρ−fixed,

σeρ = 1− z σe−ρ = 1− z̄. (1.6)

In this limit, the momentum space correlator B(S,L) is assumed to be given by the ex-

ponentiation of the bulk phase shift δ(S,L;µ), where S is the energy and L the impact

parameter:

B(S,L) = B0(S)eiδ(S,L;µ). (1.7)

The phase shift δ(S,L;µ) was calculated in Einstein gravity in [7] to all orders in µ and

we denote the k-th term in that expansion δ(k). In the Regge limit S � 1, the phase shift

is linear in S and the leading (∼ σ−k) and next-to-leading Regge singularities (∼ σ−k+1)

of G(k)(σ, ρ) are due to terms in (1.7) of the form:

B(S,L)
∣∣∣
µk

= B0(S)

[
(iδ(1))k

k!
+ iδ(2) (iδ(1))k−2

(k − 2)!
+ . . .

]
, (1.8)

where the ellipses denote terms that contribute at subleading order in σ → 0.

By Fourier transforming the first term in the brackets in (1.8), it is found that the

leading Regge singularities of G are given by

G(k)(σ, ρ)
∣∣∣
σ−k

=

∞∑
n=0

(3iπ)k

k!

(
n+ k − 2

n

)
(∆L)2k+n−1(∆L − 1)1−k−n

× e−(3k+2n)ρ

σk(1− e−2ρ)
, (1.9)

for k = 1, 2, . . . . This agrees with the result in [12] obtained by considering a light particle

propagating in a shockwave background. In this case, we see that the leading Regge singu-

larities are fully determined by the phase shift at first order in µ. The first-order phase shift

is in turn fixed by the exchange of the stress tensor in the CFT and is therefore universal.

The next-to-leading Regge singularity ∼ σ−k+1 at O(µk) gets two contributions, there

is a subleading correction in σ coming from (δ(1))k in (1.8) as well as a contribution from
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δ(2)(δ(1))k−2 in (1.8). The former gives the following contribution:

G(k)(σ, ρ)
∣∣∣
(δ(1))k,σ−k+1

=
1

2

∞∑
n=0

(3iπ)k

k!

(
n+ k − 2

n

)
(∆L)2k+n−1(∆L − 1)1−k−n

×
[
(k + n− 1)e−ρ − (2k + n)eρ

] e−(3k+2n)ρ

σk−1(1− e−2ρ)
, (1.10)

while the latter gives:

G(k)(σ, ρ)
∣∣∣
δ(2)(δ(1))k−2,σ−k+1

=
1

320

∞∑
p=0

p∑
n=0

ik−1(3π)k−2

(k − 2)!

(
k + p− n− 3

p− n

)

× (∆L)2k+p−2(∆L − 1)1−k−pλ2(n)c̄6+2n,2
e−(3k+2p−1)ρ

σk−1(1− e−2ρ)
, (1.11)

where c̄6+2n,2 are constants given in (2.17). The coefficients λ2(n) are related to the

decomposition of the second-order phase shift into Regge conformal blocks in (4.3) and

are valid assuming there are no higher-derivative corrections in the bulk gravitational ac-

tion. Adding (1.10) and (1.11) gives the full expression for the next-to-leading singularities

∼ σ−k+1 at O(µk) due to multi-stress tensor of the schematic form [T k]n,l.

In particular, in the large impact parameter limit ρ→∞, only the p = 0 term in (1.11)

contributes

G(k)(σ, ρ)
∣∣∣
δ(2)(δ(1))k−2,σ−k+1

≈
ρ→∞

35

6

(3iπ)k−1

(k − 2)!
(∆L)2k−2(∆L − 1)1−k

e−(3k−1)ρ

σk−1
. (1.12)

The result at finite impact parameter in (1.11) is valid assuming Einstein gravity in the bulk.

In the large impact parameter regime given in (1.12), the result is expected to be universal

since there is by now much evidence of universality in the minimal-twist subsector of multi-

stress tensors [8, 12, 13, 48]. We find perfect agreement between (1.9)–(1.11) and known

results for minimal-twist double-stress and triple-stress tensors obtained using lightcone

bootstrap [11, 13].

In section 2, general properties of the heavy-heavy-light-light correlator in CFTs with

large central charge is considered as well as its connection to the bulk phase shift. In

section 3, the procedure for decomposing products of Regge conformal blocks in d = 2, 4

is described. In section 4, the leading and next-to-leading Regge singularities in four

dimensions are found from the exponentiation of the phase shift. Section 5 is devoted to

discussion and the appendices contain some technical details and further matching with

results obtained from lightcone bootstrap.

2 Heavy-heavy-light-light correlator in holographic CFTs

This section contains a review of the stress tensor sector of a heavy-heavy-light-light scalar

four-point function in CFTs with a large central charge, CT , and a large gap, ∆gap. This

– 5 –



J
H
E
P
0
8
(
2
0
2
0
)
0
3
7

sector consists of multi-stress tensors labeled by their twist and spin. In the lightcone

limit, multi-stress tensors with minimal twist and arbitrary spin dominate. Since the

twist is bounded from below, one can study the correlator perturbatively in a kinematical

expansion close to the lightcone. On the other hand, in the Regge limit multi-stress tensors

of highest spin dominate due to the behaviour σ1−J of the blocks in the Regge limit σ → 0,

with J being the spin. This limit is therefore difficult to study a priori in CFTs. Instead, we

use the bulk phase shift calculated in the dual gravitational theory to extract contributions

to the stress tensor sector of the correlator in the Regge limit. Approaching the large

impact parameter limit of the Regge limit, we can make contact with results obtained

using lightcone bootstrap.

In section 2.1, the heavy-heavy-light-light correlator in CFTs is reviewed with emphasis

on its behaviour in the lightcone- and the Regge limit. In section 2.2, known results for the

subsector of minimal-twist double- and triple-stress tensors are studied in the large impact

parameter regime of the Regge limit. In section 2.3, the connection between the bulk phase

shift and the heavy-heavy-light-light correlator is explained following [7].

2.1 Review of the heavy-heavy-light-light correlator in CFTs with large cen-

tral charge

The stress-tensor sector of a heavy-heavy-light-light four-point function of pairwise identical

scalars 〈OH(x4)OL(x3)OL(x2)OH(x1)〉 is defined by

G(z, z̄) =
1

G0(z, z̄)
lim
x4→∞

x2∆H
4 〈OH(x4)OL(1)OL(z, z̄)OH(0)〉

∣∣∣
multi−stress tensors

, (2.1)

with z, z̄ the cross-ratios

u = (1− z)(1− z̄) =
x2

14x
2
23

x2
13x

2
24

,

v = zz̄ =
x2

12x
2
34

x2
13x

2
24

, (2.2)

and G0(z, z̄) = [(1 − z)(1 − z̄)]−∆L is the disconnected correlator. The precise meaning of

the stress tensor sector is described below. “Heavy” in this case refers to taking the scaling

dimension ∆H of OH to be O(CT ), with CT → ∞ being the central charge. The scaling

dimension ∆L of the “light” operator OL remains O(1) in this limit. The multi-stress

tensor sector is then studied perturbatively in µ

G(z, z̄) =
∞∑
k=0

µkG(k)(z, z̄), (2.3)

with

µ :=
4Γ(d+ 2)

(d− 1)2Γ(d2)2

∆H

CT
. (2.4)
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The notion of the stress tensor sector comes from the conformal block expansion in

the “T-channel” (direct-channel) OL(1)×OL(z, z̄)→ λOLOLO∆,s
O∆,s

G(z, z̄) =
∑
O∆,s

P
(HH,LL)
O∆,s

g∆,s(1− z, 1− z̄), (2.5)

where g∆,s(1 − z, 1 − z̄) is the conformal block for a primary operator with dimension ∆

and spin s, and we have defined the product of OPE coefficients by

P
(HH,LL)
O∆,s

:=

(
−1

2

)s
λOHOHO∆,s

λOLOLO∆,s
. (2.6)

At O(µk) in the T-channel expansion (2.5), “multi-stress tensor” operators which we

denote by [T k]
(i)
n,l contribute. For k = 1 this is the exchange of the stress tensor Tµν with

P
(HH,LL)
Tµν

determined by Ward identities

P
(HH,LL)
Tµν

= µ
∆L

4

Γ(d2 + 1)2

Γ(d+ 2)
. (2.7)

Naively, at O(µ2) there are three infinite families of double-stress tensors of the fol-

lowing schematic form:

[T 2]
(0)
n,l = : Tµν(∂2)n∂µ1 . . . ∂µlTρκ :,

[T 2]
(1)
n,l = : Tµρ(∂

2)n∂µ1 . . . ∂µlT
ρ
ν :,

[T 2]
(2)
n,l = : Tρκ(∂2)n∂µ1 . . . ∂µlT

ρκ :, (2.8)

where the superscript denotes the number of contracted pair of indices between stress

tensors and n = 0, 1, 2, . . . and l = 0, 2, 4, . . .. The double-stress tensors in (2.8) have the

following twist (τ = ∆− s) τ (2,i)
n,l and spin s

(2,i)
l :

τ
(2,0)
n,l = 4 + 2n s

(2,0)
l = 4 + l,

τ
(2,1)
n,l = 6 + 2n s

(2,1)
l = 2 + l,

τ
(2,2)
n,l = 8 + 2n s

(2,2)
l = l. (2.9)

From (2.9) it is seen that the operators in (2.8) have the same quantum numbers for suitable

values of n, l and therefore possibly mix among each other. At O(µk), for k > 1, there again

exist different multi-stress tensor operators with overlapping quantum numbers, similar to

the double-stress tensor case in (2.8).

The T-channel conformal blocks in d = 2, 4 are given by [49, 50]:

gd=2
∆,J (1− z, 1− z̄) = f∆+J

2
(z)f∆−J

2
(z̄) + (z ↔ z̄),

gd=4
∆,J (1− z, 1− z̄) =

(1− z)(1− z̄)

z̄ − z

[
f∆+J

2
(z)f∆−J−2

2
(z̄)− (z ↔ z̄)

]
, (2.10)

– 7 –
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with fa(z) a SL(2, R) conformal block

fa(z) = (1− z)a2F1(a, a; 2a; 1− z). (2.11)

We are interested in the lightcone- and the Regge limit defined respectively by:

Lightcone limit : z̄ → 1, z fixed,

Regge limit : ze−2πi → 1,
1− z
1− z̄

fixed, (2.12)

wherein the Regge limit ze−2πi denotes analytic continuation of z clockwise around z = 0.

It is further convenient to introduce coordinates (σ, ρ) in the Regge limit (after analytic

continuation):

σeρ = 1− z
σe−ρ = 1− z̄, (2.13)

in which the Regge limit corresponds to σ → 0 with ρ fixed. We further define the

subsequent limit ρ → ∞ as the large impact parameter limit. The latter regime can be

reached from the lightcone limit by analytically continuing z → e−2πiz and taking z → 1.

In the lightcone limit, the blocks g∆,J(1− z, 1− z̄) are given to leading order in 1− z̄
in any dimension by:

g∆,J(1− z, 1− z̄) ≈
z̄→1

(1− z̄)
τ
2 f∆+J

2
(z), (2.14)

where τ = ∆ − J is the twist and by ≈
z̄→1

we keep only the leading term in the expan-

sion. Thus it is seen that in the lightcone limit operators with low twist will dominate.

From (2.9), it is clear that the multi-stress tensor operators with the lowest twist are those

with n = 0 and no contractions.

It was argued in [13] that the subsector of minimal-twist multi-stress tensor operators

is universally fixed by crossing symmetry in terms of the exchange of the stress tensor.

The contribution of minimal-twist multi-stress tensors [T k]
(0)
0,l to the heavy-heavy-light-

light correlator takes the following particular form:

G(k)
LC(z, z̄) = (1− z̄)k( d−2

2
)
∑
{ip}

ai1...ikfi1(z) . . . fik(z),
k∑
p=1

ip = k

(
d+ 2

2

)
. (2.15)

Here the subscript LC denotes that this is the leading contribution of the stress tensor

sector in the lightcone limit. The coefficients a
(d=4)
i1i2

were first computed in [11] due to the

exchange of minimal-twist double-stress tensors in four dimensions. In [13], a bootstrap

procedure to calculate ai1...ik for any k in even dimensions was given. Explicitly, the

contribution from minimal-twist double-stress tensors in d = 4, 6 were found as well as

that from minimal-twist triple-stress tensors in d = 4. Note that each term G(k)
LC sums an

infinite number of multi-stress tensor operators [T k]0,l with twist k(d− 2) and spin 2k+ l,

for l = 0, 2, . . .. For more details on the minimal-twist multi-stress tensors, see [13].

– 8 –
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The leading behaviour of the block g�∆,J(1 − z, 1 − z̄) in the Regge limit, σ → 0, is

given by

g�,d=2
∆,J (σ, ρ) = ic̄∆,J

e−(∆−1)ρ

σJ−1
+ . . . ,

g�,d=4
∆,J (σ, ρ) = ic̄∆,J

e−(∆−1)ρ

(1− e−2ρ)σJ−1

×
[
1− σ

4

(
(∆ + J − 2)eρ + (2 + J −∆)e−ρ

)
+O(σ2)

]
(2.16)

with

c̄∆,J =
4∆+J−1Γ

(
∆+J−1

2

)
Γ
(

∆+J+1
2

)
Γ(∆+J

2 )2
. (2.17)

Here we have included the first subleading correction in σ → 0 in four dimensions since

this will be needed later on. More generally, the leading behaviour in the Regge limit in

any dimension is given by, see e.g. [46, 51],

g�∆,J(σ, ρ) = ic∆,Jσ
1−JΠ∆−1,d−1(ρ) + . . . , (2.18)

where Π∆−1,d−1(ρ) is (d − 1)-dimensional hyperbolic space propagator of a particle with

mass-squared m2 = (∆− 1)2

Π∆−1,d−1(ρ) =
π1− d

2 Γ(∆− 1)

2Γ(∆− d−2
2 )

e−(∆−1)ρ
2F1

(
d− 2

2
,∆− 1; ∆− d− 2

2
; e−2ρ

)
(2.19)

and

c∆,J =
4∆+J−1Γ

(
∆+J−1

2

)
Γ
(

∆+J+1
2

)
Γ(∆+J

2 )2

2Γ
(
∆− d

2 + 1
)

π1− d
2 Γ (∆− 1)

. (2.20)

2.2 The Regge limit of minimal-twist double- and triple-stress tensors

The contribution of minimal-twist operators in (2.15) was obtained by solving crossing

relations in a large CT CFT; a holographic dual was not assumed. In this paper we assume

a large CT CFT with large ∆gap. Explicitly, we use the bulk phase shift calculated in the

gravitational dual to study the CFT correlator in the Regge limit. To make contact between

the Regge limit and the lightcone limit, we analytically continue G(k)
LC(z, z̄) according to

z → e−2πiz:

G(k),�
LC (z, z̄) := G(k)

LC(ze−2πi, z̄). (2.21)

Sending also z → 1, this is the large impact parameter limit of the Regge limit.

Using the explicit results for G(2)
LC in d = 4 [11], we find the following leading and next-

to-leading singularities in the large impact parameter limit due to minimal-twist double-

stress tensors

G(2),�
LC (σ, ρ) = − 9π2∆L(∆L + 1)(∆L + 2)

2(∆L − 2)

e−6ρ

σ2

+

[
35iπ∆L(∆L + 1)

2(∆L − 2)
+

18π2∆L(∆L + 1)(∆L + 2)

2(∆L − 2)

]
e−5ρ

σ
+ . . . , (2.22)
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where the ellipses denote non-singular terms as σ → 0. Likewise, in the large impact

parameter limit of G(3),�
LC due to the exchange of minimal-twist triple-stress tensors [13],

one finds the following leading and next-to-leading singularities in the Regge limit:

G(3),�
LC (σ, ρ)

∣∣∣
σ−3

= −9iπ3∆L(∆L + 1)(∆L + 2)(∆L + 3)(∆L + 4)

2(∆L − 2)(∆L − 3)

e−9ρ

σ3
,

G(3),�
LC (σ, ρ)

∣∣∣
σ−2

=

[
− 105π2∆L(∆L + 1)(∆L + 2)(∆L + 3)

2(∆L − 2)(∆L − 3)

+
27iπ3∆L(∆L + 1)(∆L + 2)(∆L + 3)(∆L + 4)

2(∆L − 2)(∆L − 3)

]
e−8ρ

σ2
. (2.23)

The results (2.22)–(2.23) from lightcone bootstrap will be compared to the results obtained

using the bulk phase shift to study the Regge limit. While we are mainly interested in terms

that behave as σ−k and σ−k+1 at O(µk) in the Regge limit, the term proportional to σ−1

at O(µ3) is further given by:

G(3),�
LC (σ, ρ)

∣∣∣
σ−1

=

[
i

(
1155π∆L(∆L + 1)(∆L + 2)

8(∆L − 2)(∆L − 3)

− 9π3∆L(∆L + 1)(∆L + 2)(∆L + 4)(19 + 7∆L)

4(∆L − 2)(∆L − 3)

)
+

525π2∆L(∆L + 1)(∆L + 2)(∆L + 3)

4(∆L − 2)(∆L − 3)

]
e−7ρ

σ
. (2.24)

2.3 Bulk phase shift of a light particle in an AdS black hole background

The relationship between the bulk phase shift and the heavy-heavy-light-light correlator

was described in [7] which we briefly review here for completeness. We consider a four-point

function defined on the cylinder parameterized by time τ and a unit vector n̂ on Sd−1:

G(x) ≡ 〈Ocyl
H (τ4, n̂4)Ocyl

L (τ3, n̂3)Ocyl
L (τ2, n̂2)Ocyl

H (τ1, n̂1)〉. (2.25)

Inserting the heavy operators at τ4,1 = ±∞ and going to the plane using the transformation

r = eτ , we have

G(x) = (r2r3)∆L
Ĝ(z, z̄)

x2∆L
32

, (2.26)

where the cross-ratios are given by

zz̄ =
x2

2

x2
3

= e2(τ2−τ3)

(1− z)(1− z̄) =
x2

23

x2
3

= 1 + e2(τ2−τ3) − 2eτ2−τ3 n̂2 · n̂3. (2.27)

The function Ĝ(z, z̄) can be expanded in conformal blocks on the plane. Especially, we will

be interested in the stress tensor sector G of Ĝ:

G(z, z̄) ≡ Ĝ(z, z̄)
∣∣∣
multi−stress tensors

(2.28)
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As we will see, when Fourier transforming the phase shift, there are contributions to Ĝ(z, z̄)

coming from double-trace operators that are of the schematic form [OLOL]n,l. By defini-

tion, these do not contribute to G(z, z̄)

We introduce two points P2 and P3 on the cylinder which differ by Lorentzian time π

and are diametrically opposite on the sphere, i.e. n̂(P3) = −n̂(P2). By translational and

rotational invariance, the operator OL(x2) is inserted at P2 and OL(x3) is inserted close to

P3 with n̂3 · n̂(P3) = cosϕ. Starting from Euclidean kinematics, we Wick-rotate by τi → iti
and set t3− t2 = π+ x0− i ε2 , where x0 ≥ 0 parameterizes the time delay. Using (2.27) one

can solve for z, z̄ in terms of x± = x0 ± ϕ:

z = e−ix
+

z̄ = e−ix
−
. (2.29)

Note that a highly energetic light particle in pure AdS starting at P2 will propagate to the

point P3; the (x0, ϕ)-coordinates measure the position of OL(x3) relative to the point P3.

These kinematics are obtained starting with the operators close to P2, corresponding to

x+ ≈ −2π, and then OL(τ3, n̂3) is moved close to P3 by taking x+ → x+ + 2π. In terms

of the cross-ratios, this corresponds to taking z → e−2πiz. With these kinematics, the

correlator G(x) in (2.26) is given in the Regge limit x± → 0, with their ratio kept fixed, by

G(x) =
Ĝ(z, z̄)

(−x2 − iεx0)∆L

[
1 +O((x+)2)

]
, (2.30)

with −x2 = (x0)2 − ϕ2.

The phase shift is defined by the following Fourier transform:

B(p) ≡ B0(p)eiδ =

∫
ddxG(x)e−ipx, (2.31)

where B0(p) denotes the Fourier transform of the disconnected correlator and eiδ contain the

(non-trivial) dynamics of the correlator. In the language of the dual CFT, the phase shift

encodes the Fourier transform of the conformal block expansion and the corresponding OPE

coefficients of non-trivial operators in the direct-channel. Explicitly, the Fourier transform

of the disconnected correlator is given by

B0(p) =

∫
ddx

e−ipx

(−x2 − iεx0)∆L
= θ(p0)θ(−p2)eiπ∆LC(∆L)(−p2)∆L− d2 (2.32)

where

C(∆L) =
2d+1−2∆Lπ1+ d

2

Γ(∆L)Γ(∆L − d−2
2 )

. (2.33)

Here the combination θ(p0)θ(−p2) ensures that p lies in the upper Milne wedge M+.

We further introduce the parametrization pµ =
√
−p2ωµ in terms of two vectors ω and

ē, such that ω2 = ē2 = −1 and ē0 = 1 with all other components set to 0. Then

S =
√
−p2, coshL = −ē · ω =

p+ + p−

2
√
−p2

. (2.34)
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Likewise, we define xµ =
√
−x2eµ with e2 = −1 such that√
−x2 =

√
− log z log z̄,

−e · ē =
i log zz̄

2
√
− log z log z̄

. (2.35)

Expanding (2.35) in the Regge limit σ → 0, one finds√
−x2 = −iσ

(
1 +

σ

2
coshρ+ . . .

)
,

−e · ē = coshρ+
e−2ρ(1− eρ)2(1 + eρ)2

8
σ + . . . , (2.36)

where the ellipses denote subleading corrections in σ.

3 Fourier transforming products of Regge conformal blocks

Following [7], we review how a single Regge conformal block in momentum space can be

transformed into position space in any dimension. The leading result in σ → 0 can then

be identified with the leading Regge behaviour of a conformal block due to an operator

exchange in the direct-channel. In the case when the operator appears in the spectrum, its

coefficient is related to the product of OPE coefficients.1

In section 3.1, we show that a product of Regge conformal blocks in two dimensions

is again a Regge conformal block. In section 3.2, the four-dimensional case is considered

where, on the other hand, it is shown that products of Regge conformal blocks can be

decomposed into an infinite sum of Regge conformal blocks of different twist ∆−J . Using

this decomposition, it is straightforward to do the Fourier transform and read off the

contribution to the position space correlator. In particular, in the large impact parameter

limit ρ � 1, only the term with minimal twist in the decomposition is important. In this

limit one can, therefore, approximate products of Regge conformal blocks in d = 4 with a

single Regge conformal block. This is reminiscent of what happens in d = 2.

A Regge conformal block was defined in [9] by

gR
∆,J(S,L) = ic∆,JS

J−1Π∆−1,d−1(L), (3.1)

with Π∆−1,d−1(L) a (d−1)-dimensional hyperbolic space propagator of a particle with mass-

squared m2 = (∆ − 1)2, defined in (2.19), and c∆,J given by (2.20). Note that the Regge

conformal blocks in (3.1) is identical to the leading Regge behaviour of the analytically

continued blocks in (2.18) with the following replacement S → σ−1 and L→ ρ.

The hyperbolic space propagator in (2.19) can be written in terms of functions Ωiν =
iν
2π (Πiν+ d

2
−1 −Π−iν+ d

2
−1) as2

Π∆−1(L) =

∫ ∞
−∞

dν
Ωiν(L)

ν2 + (∆− d
2)2

, (3.2)

1The term “effective operator” is used below when the Fourier transform of a Regge conformal block

can be identified with the leading Regge behaviour of a conformal block even though such an operator does

not appear in the expansion (2.5).
2For brevity, we denote Π∆−1 ≡ Π∆−1,d−1 and likewise for Ωiν .
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which can be shown using (2.19) and deforming the integration contour to compute the

integral. The functions Ωiν constitute a basis of regular eigenfunctions of the Laplacian

operator on Hd−1, for more details, see e.g. [52].

Consider the contribution to the correlator due to a single Regge conformal block of

dimension ∆ and spin J :

B(S,L)
∣∣∣
∆,J

= B0(S)λgR
∆,J(S,L), (3.3)

where λ is a numerical coefficient and B0(S) is the disconnected correlator given in (2.32).

The position space result from (3.3) is given by the Fourier transform

G(x)
∣∣∣
∆,J

= λ

∫
M+

ddp

(2π)d
eipxB0(S)gR

∆,J(S,L), (3.4)

which by inserting (3.1) and using (3.2) can be written as

G(x)
∣∣∣
∆,J

= ic∆,Jλ

∫
M+

ddp

(2π)d
eipxB0(S)SJ−1

∫ ∞
−∞

dν
Ωiν(ω · ē)

ν2 + (∆− d
2)2

. (3.5)

We then need the following identity derived in [7]:

21−ae
iπa
2

π
d−2

2

∫
M+

ddpeipxSa−dΩiν(ω · ē) =
Γ(

a− d−2
2

+iν

2 )Γ(
a− d−2

2
−iν

2 )

(−x2)
a
2

Ωiν(e · ē). (3.6)

Using this identity with a = 2∆L + J − 1 and the disconnected correlator in (2.32), (3.5)

gives

G(x)
∣∣∣
∆,J

=λic∆,J2J−1e
−iπ(J−1)

2 (−x2)
−2∆L−J+1

2

×
∫ ∞
−∞

dν
Γ(

2∆L+J− d
2

+iν

2 )Γ(
2∆L+J− d

2
−iν

2 )

ν2 + (∆− d
2)2

Ωiν(e · ē). (3.7)

The integrand in (3.7) has simple poles at ±iν = ∆− d
2 coming from the denominator as well

as poles due to the Γ-functions. The latter corresponds to the exchange of the double-trace

operators [OLOL]n,l; we will not consider these since by definition they do not contribute

to the stress tensor sector. One can perform the integral in (3.7) by deforming the contour

in the lower half-plane where, in particular, one picks up the pole at iν = ∆ − d
2 . This

gives the following contribution to the correlator:

G(x)
∣∣∣
∆,J

= (−x2)−∆Lλ p[∆, J ]
ic∆,JΠ∆−1,d−1(e · ē)

(e
iπ
2

√
−x2)J−1

+ . . . (3.8)

with the ellipses denoting double-trace operators which will not contribute to the stress

tensor sector G(z, z̄) and we have defined

p[∆, J ] = 2J−1(∆L)∆+J−d
2

(
∆L −

d− 2

2

)
−∆+J+d−2

2

. (3.9)
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In particular, we see that by Fourier transforming a contribution in momentum space

of the form (3.3), i.e. the disconnected correlator times a Regge conformal block, one finds

from (3.8) the following contribution to the stress tensor sector of the correlator:

G(σ, ρ)
∣∣∣
∆,J

= λ p[∆, J ] gR∆,J(
√
−x2, e · ē), (3.10)

valid to subleading order in σ → 0 and we have defined the position space Regge confor-

mal block

gR∆,J(
√
−x2, e · ē) = ic∆,J

Π∆−1,d−1(e · ē)
(e

iπ
2

√
−x2)J−1

. (3.11)

Note that in (3.10), we have used the relation (2.30) between the correlator on the cylinder

and G(z, z̄) which is valid to subleading order in the Regge limit.

In particular, we will be interested in d = 4 where (3.11) can be written in terms of

(z, z̄) as

gR∆,J(z, z̄) = ic̄∆,Je
iπ(1−J)

2

(
log z

log z̄

)−(∆−1)
2 (− log z log z̄)

1−J
2

1− log z̄
log z

, (3.12)

which to subleading order in the Regge limit σ → 0 reduces to

gR∆,J(σ, ρ) = ic̄∆,J
e−(∆−1)ρ

σJ−1(1− e−2ρ)

×
[
1− σ

4

(
(∆ + J − 2)eρ + (2 + J −∆)e−ρ

)
+O(σ2)

]
. (3.13)

Comparing the position space Regge conformal block in (3.13) with the conformal block

in the Regge limit (2.16), it is seen that in four dimensions, the former can to subleading

order in σ → 0 be identified with a conformal block g�∆,J(σ, ρ). To leading order this holds

in any dimension, i.e., using the relation between (σ, ρ) and (z, z̄) in (2.36) and the known

form of the conformal blocks (2.18), the contribution to the stress tensor sector G(z, z̄)

in (3.10) can be identified with:3

G(σ, ρ)
∣∣∣
∆,J

= λ2J−1(∆L)∆+J−d
2

(
∆L −

d− 2

2

)
−∆+J+d−2

2

g�∆,J(σ, ρ) + . . . . (3.14)

In what follows, we describe how to decompose products of Regge conformal blocks

into sums of Regge conformal blocks. As we will see in section 4, this is relevant when one

considers the exponentiation of the phase shift which, when expanded into a series, will

result in products of Regge conformal blocks. After having decomposed these products into

sums of Regge conformal blocks, it is straightforward to use (3.10) to find the contribution

to the stress tensor sector of the correlator. We further note that while the phase-shift is

only known to leading order in S � 1, the leading and next-to-leading singularities in the

Regge limit σ → 0 are not affected by subleading corrections to the phase shift. This is

discussed further in section 4.2 and 4.3.
3We have not checked if this holds also at subleading order in arbitrary dimensions.
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3.1 Two dimensions

Consider a Regge conformal block in two dimensions:

gR
∆,J = ic̄∆,JS

J−1e−(∆−1)L, (3.15)

where c̄∆,J a constant given in (2.17). A product of Regge conformal blocks with (∆i, Ji)

weighted with constants λi is trivially given by:

p∏
i=1

λig
R
∆i,Ji = ip−1λgR

∆,J(S,L), (3.16)

with

∆ =

p∑
i=1

∆i − (p− 1)

J =

p∑
i=1

Ji − (p− 1)

λ =
1

c∆,J

p∏
i=1

λic̄∆i,Ji . (3.17)

From (3.16), it is seen that the product of Regge conformal blocks in d = 2 is also a Regge

conformal block with (∆, J, λ) given by (3.17). Assume a contribution in momentum space

of the form

B(p)

B0(p)

∣∣∣
{∆i,Ji}

:=

p∏
i=1

λig
R
∆i,Ji(S,L). (3.18)

Using (3.16)–(3.17), it follows from the Fourier transform in (3.10) that the product of

Regge conformal blocks in (3.18) gives the following contribution to the stress tensor sector

to subleading order in σ:

G(
√
−x2, e · ē)

∣∣∣
{∆i,Ji}

= ip−1λ2J−1(∆L)∆+J−2
2

(∆L)−∆+J
2

gR∆,J(
√
−x2, e · ē). (3.19)

Because a product of Regge conformal blocks in two dimensions is again a Regge conformal

block, we see that it is trivial to perform the Fourier transform.

3.2 Four dimensions

In this section, products of Regge conformal blocks in four dimensions are considered. In

particular, the decomposition of such products into a sum of Regge conformal blocks is

described. Using this decomposition, one can do the Fourier transform using (3.10).

A Regge conformal block in four dimensions is given by:

gR
∆,J = ic̄∆,J

SJ−1e−(∆−1)L

1− e−2L
. (3.20)
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Consider a product of p Regge conformal blocks with scaling dimension and spin

(∆i, Ji), i = 1, 2, . . . , p, together with some weights λi:

p∏
i=1

λig
R
∆i,Ji = ip−1S

J−1e−(∆0−1)L

(1− e−2L)p

p∏
i=1

λic̄∆i,Ji , (3.21)

where

∆0 =

p∑
i=1

∆i − (p− 1),

J =

p∑
i=1

Ji − (p− 1). (3.22)

Expanding the factor (1− e−2L)−p+1 in (3.21) into a sum, the product of Regge conformal

blocks in (3.21) can be written as

p∏
i=1

λig
R
∆i,Ji =

ip−1SJ−1e−(∆0−1)L

(1− e−2L)

p∏
i=1

λic̄∆i,Ji

∞∑
n=0

(
n+ p− 2

n

)
e−2nL. (3.23)

Compared to the two-dimensional case, it is seen from (3.21)–(3.23) that products of Regge

conformal blocks in four dimensions decompose into an infinite sum of Regge conformal

blocks with dimensions ∆n = ∆0 + 2n and spin J . Explicitly, the product of Regge

conformal blocks have the following decomposition:
p∏
i=1

λig
R
∆i,Ji(S,L) = ip−1

∞∑
n=0

λng
R
∆n,J(S,L), (3.24)

with

∆n =

p∑
i=1

∆i + 2n− (p− 1),

J =

p∑
i=1

Ji − (p− 1),

λn =
1

c∆n,J

(
n+ p− 2

n

) p∏
i=1

λic̄∆i,Ji . (3.25)

Using the decomposition (3.24), it is straightforward to write down the Fourier trans-

form of products of Regge conformal blocks using (3.10). Explicitly, a term in momentum

space of the form (3.24)

B(p)

B0(p)

∣∣∣
{∆i,Ji}

:=

p∏
i=1

λig
R
∆i,Ji(S,L), (3.26)

with ∆n, J, λn given by (3.25), gives the following contribution to the stress tensor sector:

G(
√
−x2, e · ē)

∣∣∣
{∆i,Ji}

= ip−1
∞∑
n=0

p[∆n, J ]λng
R
∆n,J(

√
−x2, e · ē), (3.27)

to subleading order in σ. Here p[∆, J ] is the product of Pochhammer symbols defined

in (3.9).
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4 Regge limit of the stress tensor sector and the bulk phase shift

In this section, the heavy-heavy-light-light correlator is studied assuming that the correlator

in momentum space is given by

B(p) = B0(p)eiδ(S,L;µ), (4.1)

where δ(S,L;µ) is the bulk phase shift. The phase shift was calculated to all orders in a

perturbative expansion in µ in [7]:

δ(S,L;µ) =

∞∑
k=0

µkδ(k)(S,L). (4.2)

It was further shown in [9] that δ(k) :=
∑∞

n=0 δ
(k)
n can be decomposed in terms of Regge

conformal blocks as

i δ(k)
n (S,L) = f(k) λk(n) gRτ0(k)+2n+2,2(S,L)

λk(n) = a(n)
2−4n

[(
τ0(k)+4

2

)
n

]2

(
τ0(k)+3

2

)
n

(
τ0(k)+5

2

)
n

, τ0(k) = k(d− 2) (4.3)

with

f(k) =

√
π

64

1

2k(d−2) k!

Γ
(
kd+1

2

)
Γ
(
k(d−2)+4

2

)
Γ
(
k(d−2)+5

2

)
Γ
(
k(d−2)+3

2

) ,
a(n) =

22n

n!

τ0(k) + 2

τ0(k) + 2 + 2n

( τ0(k)−d+2
2 )n( τ0(k)+1

2 )n

(τ0(k) + n+ 2− d
2)n

. (4.4)

Note that λ1(n) = 0 for n = 1, 2, . . . implying that the first-order phase shift reduces to

a single term in (4.3). Expanding the exponential in (4.1) results in a sum of products

of Regge conformal blocks. Using the decomposition of such products in four dimensions

described in section 3, we read off the contribution to the stress tensor sector G of the

correlator from the phase shift.

At k-th order, the stress tensor sector of the correlator behaves as

G(k)(σ, ρ) =
Fk,L(ρ)

σk
+
Fk,NL(ρ)

σk−1
+O(σ−k+2) σ → 0, ρ−fixed, (4.5)

for some functions Fk,L(ρ) and Fk,NL(ρ) in the Regge limit. The leading and next-to-leading

Regge singularity of the stress tensor sector of the correlator G(k) at O(µk) were defined

in (1.3) by

Leading Regge singularity :
Fk,L(ρ)

σk
,

Next−to−leading Regge singularity :
Fk,NL(ρ)

σk−1
. (4.6)
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By expanding (4.1) and Fourier transforming terms propoportional to Sk and Sk−1 at

O(µk), the leading- and next-to-leading singularities are found to all orders in µ at finite

impact parameter. In particular, the leading singularities in the Regge limit comes from

the exponentiation of the first-order phase shift. We find perfect agreement with the

calculation of a light particle propagating in a shockwave background in [12]. It is then

shown, from the exchange of stress tensor, that there is no correction to δ(1) of O(S0) for

large S � 1. Using this knowledge, we calculate the next-to-leading Regge singularities

to all orders in µ at finite impact parameter. Both the leading and next-to-leading order

Regge singularities agree in the large impact parameter limit with known results obtained

using lightcone bootstrap [11, 13].

4.1 Leading Regge singularities

In this section, the leading terms in the correlator as σ → 0, which were defined in (1.3)

as the leading Regge singularities, at each order in µ are studied in four dimensions. Ex-

panding (4.1), these come from the exponentiation of the first-order phase shift δ(1):

B(p) = B0(p)eiµδ
(1)

+ . . .

= B0(p)

∞∑
k=0

µk
[
ik

k!
(δ(1))k +O(Sk−1)

]
. (4.7)

A term proportional to Sk will, after Fourier transform to position space, scale as σ−k

when σ → 0. This will be the leading Regge singularity at O(µk).

The first-order phase shift is given by (4.3)

iδ(1) =
1

240
g4,2(S,L)

= i
3π

2

Se−3L

1− e−2L
. (4.8)

The term at O(µk) in (4.7) is a product of k Regge conformal blocks with dimension ∆ = 4

and spin J = 2. Using the decomposition of products of Regge conformal blocks (3.24)–

(3.25), the expansion of the momentum space correlator in (4.7) can be written in terms

of Regge conformal blocks with

∆k,n = 3k + 2n+ 1,

Jk = k + 1, (4.9)

where n = 0, 1, . . .. Using (3.10) to do the Fourier transform of each Regge conformal

block, this gives the following contribution to the stress tensor sector of the correlator:

G(k)(σ, ρ)
∣∣∣
(δ(1))k

=
∞∑
n=0

1

k!

(
ic̄4,2

240

)k (n+ k − 2

n

)
(∆L)∆k,n+Jk−4

2

(∆L − 1)−∆k,n+Jk+2

2

× (−i)
c∆k,n,Jk

gR∆k,n,Jk
(
√
−x2, e · ē), (4.10)

valid to subleading order in σ with k = 1, 2, . . ..
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The leading Regge singularities can be written in terms of (σ, ρ) using
√
−x2 ≈ −iσ

and −e · ē ≈ coshρ. From (4.10) one finds:

G(k)(σ, ρ)
∣∣∣
(δ(1))k

=
∞∑
n=0

(3iπ)k

k!

(
n+ k − 2

n

)
(∆L)∆k,n+Jk−4

2

(∆L − 1)−∆k,n+Jk+2

2

× e−(∆k,n−1)ρ

σJk−1(1− e−2ρ)
+ . . . , (4.11)

where the ellipses denote terms subleading in σ → 0. Explicitly, inserting the dimensions

and spins (∆k,n, Jk) given in (4.9), we find

G(k)(σ, ρ)
∣∣∣
(δ(1))k

=

∞∑
n=0

(3iπ)k

k!

(
n+ k − 2

n

)
(∆L)2k+n−1(∆L − 1)1−k−n

× e−(3k+2n)ρ

σk(1− e−2ρ)
+ . . . . (4.12)

The sum over n can further be written as a hypergeometric function:

G(k)(σ, ρ)
∣∣∣
(δ(1))k

=
(3iπ)k

k!σk(1− e−2ρ)
(∆L)2k−1(∆L − 1)1−k

× e−3kρ
2F1(k − 1,∆L + 2k − 1;−∆L + k + 1;−e−2ρ) + . . . . (4.13)

These are the leading Regge singularities, i.e., terms that behave as σ−k at O(µk), to all

orders in µ at finite impact parameter. The result (4.13) agrees with the calculation in

a shockwave background in [12], for details, see appendix A. In particular, consider the

terms in the sum in (4.13) with k = 2, 3:

G(2)(σ, ρ)
∣∣∣
σ−2

≈
ρ→∞

−9π2∆L(∆L + 1)(∆L + 2)

2(∆L − 2)

e−6ρ

σ2
,

G(3)(σ, ρ)
∣∣∣
σ−3

≈
ρ→∞

−9iπ3∆L(∆L + 1)(∆L + 2)(∆L + 3)(∆L + 4)

2(∆L − 2)(∆L − 3)

e−9ρ

σ3
, (4.14)

where we have further taken the large impact parameter limit ρ→∞. The leading Regge

singularities in (4.14) agree with those in (2.22)–(2.23); the latter were found using lightcone

bootstrap [11, 13] and are due to minimal-twist double-stress and triple-stress tensors.

We note that the first-order phase shift is to leading order in σ fixed by the exchange

of stress tensor in the direct channel in the CFT [7]. It is therefore universally fixed by

Ward identities and does not depend on higher derivative corrections to the gravity action.

This is discussed further in section 4.2.

It is seen that the leading Regge singularities in (4.12), which can be identified with the

leading behaviour of a conformal block in the Regge limit with dimension ∆k,n = 3k+2n+1

and spin Jk = k + 1, have poles and zeroes specified by the Pochhammer symbols to be

given by:

Zeroes : ∆L = −(2k + n− 2),−(2k + n− 3), . . . , 0

Poles : ∆L = 2, 3, . . . , k + n. (4.15)
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The position of the poles and zeroes are seen to be related to the dimension and spin of

the blocks that are present in the decomposition of (δ(1))k. Possible implications of the

position of poles and zeroes were discussed in [12]. In particular, it is expected that the

OPE coefficients of multi-stress tensors with minimal-twist have the same poles as predicted

by (4.15) with n = 0. This agrees with the results in [8, 11, 13]. Moreover, we further

expect from (4.15) the OPE coefficients for non-minimal-twist multi-stress tensors to have

poles at ∆ = 2, 3, . . . , k + n, with n being related to the twist by τ = k(d− 2) + 2n.

4.2 The first-order phase shift and the stress tensor exchange

The phase shift in (4.2) calculated in the bulk is linear in the energy S � 1. In principle, it

could receive corrections in an 1
S expansion that will be important when expanding (4.1).

On the other hand, from the CFT point of view, the stress tensor is the only operator that

appears at O(µ) in the stress tensor sector. Using this, we show that there is no correction

to δ(1) in four dimensions of order O(S0). This will important in section 4.3 where the

next-to-leading Regge singularities are studied.

The stress tensor exchange in four dimensions is found using the knwon OPE coeffi-

cients in (2.7) and the conformal block given in (2.10). Explicitly, one finds the following

contribution as σ → 0:

P
(HH,LL)
Tµν

g�4,2(σ, ρ) = µ
3πi∆Le

−3ρ

(1− e−2ρ)

1

σ
− µ3πi∆Le

−2ρ

(1− e−2ρ)
+O(σ). (4.16)

On the other hand, expanding the momentum space correlator in (4.1) one finds

at O(µ):

B(p) = B0(p)iµδ(1) +O(µ2), (4.17)

with the first-order phase shift in d = 4 given in (4.8). Fourier transforming (4.17) us-

ing (3.10) gives the following contribution to the correlator in position space:

G(σ, ρ)
∣∣∣
δ(1)

= µ
3πi∆Le

−3ρ

(1− e−2ρ)

1

σ
− µ3πi∆Le

−2ρ

(1− e−2ρ)
+O(σ). (4.18)

where we used p[4, 2] = 2∆L. Comparing the contribution from the stress tensor in the

Regge limit (4.16), with the contribution from δ(1) in (4.18), we find that both the leading

and next-to-leading terms as σ → 0 agree.4 This shows that there is no O(S0) correction

to the first-order phase shift.

4.3 Next-to-leading Regge singularities

In this section, the next-to-leading Regge singularities are considered, i.e. terms propor-

tional to σ1−k at O(µk), to all orders in µ. These will be due to terms in (4.1) of the form

(δ(1))k that were calculated in section 4.2, and terms of the form (δ(1))k−2δ(2) which are of

O(Sk−1) for S � 1. Note that it was shown in section 4.2 that there is no O(S0) correction

4Since the leading terms were known to agree, this follows immediately from the observation below (3.13).
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to the first-order phase shift. The contribution to the next-to-leading Regge singularities

from terms of the form (δ(1))k are therefore given by (4.10).

Consider terms in (4.1) of the form (δ(1))k−2δ(2):

B(p)

B0(p)

∣∣∣
δ(2)(δ(1))k−2

=
µkik−1

(k − 2)!
(δ(1))k−2δ(2), (4.19)

with k = 2, 3, . . .. Inserting the decomposition of δ(2) from (4.3)

iδ(2) = f(2)
∞∑
n=0

λ2(n)gR4+2n,2(S,L) (4.20)

and the first-order phase shift (4.8), we rewrite (4.19) as

B(p)

B0(p)

∣∣∣
δ(2)(δ(1))k−2

=
µkik−1

(k − 2)!

(3π

2

)k−2
∞∑
n=0

f(2)λ2(n)c̄6+2n,2
Sk−1e−(3k+2n−1)L

(1− e−2L)k−1
. (4.21)

Expanding (1− e−2L)−k+2, we find

B(p)

B0(p)

∣∣∣
δ(2)(δ(1))k−2

= f(2)
µkik−1

(k − 2)!

(3π

2

)k−2

×
∞∑

n,m=0

(
m+ k − 3

m

)
λ2(n)c̄6+2n,2

Sk−1e−(∆n,m−1)L

1− e−2L
, (4.22)

with

∆n,m = 3k + 2(n+m). (4.23)

Comparing the product of Regge conformal blocks in (4.19) with (4.22), it is seen that the

latter is a decomposition into Regge conformal blocks with dimensions 3k + 2(n+m) and

spin k. This can conveniently be organized into blocks with different twists

B(p)

B0(p)

∣∣∣
δ(2)(δ(1))k−2

= f(2)
µkik−1

(k − 2)!

(3π

2

)k−2

×
∞∑
p=0

p∑
n=0

(
k + p− n− 3

p− n

)
λ2(n)c̄6+2n,2

Sk−1e−(3k+2p−1)L

1− e−2L
. (4.24)

To get the next-to-leading order Regge singularities from (4.24), it is enough to use

the leading order relation
√
−x2 = −iσ and −e · ē = coshρ. This is so since terms in (4.24)

are of O(Sk−1) and therefore start to contribute at σ−k+1 in position space. Using (3.10)

to perform the Fourier transform of each term in the sum, one finds that (4.24) gives the

following contribution to the next-to-leading order Regge singularities in the stress tensor

sector:

G(k)(σ, ρ)|δ(2)(δ(1))k−2 = 2f(2)
∞∑
p=0

p∑
n=0

ik−1(3π)k−2

(k − 2)!
(∆L)2k+p−2(∆L − 1)1−k−p

×
(
k + p− n− 3

p− n

)
λ2(n)c̄6+2n,2

e−(3k+2p−1)ρ

σk−1(1− e−2ρ)

+ . . . , (4.25)
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where the ellipses denote subleading corrections in σ. To get the full result for the

next-to-leading Regge singularities we need to add the contribution from (4.10). This is

found using the correction to the position Regge conformal block (3.13) and the leading

order expression (4.12)

G(σ, ρ)(k)
∣∣∣
(δ(1))k,σ−k+1

=
1

2

∞∑
n=0

(3iπ)k

k!

(
n+ k − 2

n

)
(∆L)2k+n−1(∆L − 1)1−k−n

×
[
(k + n− 1)e−ρ − (2k + n)eρ

] e−(3k+2n)ρ

σk−1(1− e−2ρ)
. (4.26)

The next-to-leading Regge singularities to all orders in µ at finite impact parameter is

therefore given by the sum of (4.25) and (4.26).

Consider the large impact parameter limit in which only the p = n = 0 term in (4.25)

contributes. In this limit, (4.25) reduces to

G(σ, ρ)(k)|δ(2)(δ(1))k−2 ≈
ρ→∞

35

6

(3iπ)k−1

(k − 2)!
(∆L)2k−2(∆L − 1)1−k

e−(3k−1)ρ

σk−1
. (4.27)

This is the contribution of δ(2)(δ(1))k−2 to the next-to-leading Regge singularity at k-th

order in the large impact parameter limit.

Including the contribution to the next-to-leading Regge singularity from (4.26) due to

(δ(1))k together with (4.27), we find for large impact parameter at O(µ2):

G(2)(σ, ρ)
∣∣∣
σ−1

=

[
35iπ∆L(∆L + 1)

2(∆L − 2)
+

18π2∆L(∆L + 1)(∆L + 2)

2(∆L − 2)

]
e−5ρ

σ
. (4.28)

Likewise, consider the next-to-leading singularity at O(µ3) which using (4.26) and (4.27)

gives

G(3)(σ, ρ)
∣∣∣
σ−2

=

[
− 105π2∆L(∆L + 1)(∆L + 2)(∆L + 3)

2(∆L − 2)(∆L − 3)

+
27iπ3∆L(∆L + 1)(∆L + 2)(∆L + 3)(∆L + 4)

2(∆L − 2)(∆L − 3)

]
e−8ρ

σ2
. (4.29)

Comparing the next-to-leading Regge singularities in the large impact parameter

limit, (4.28) and (4.29), with (2.22)–(2.23), respectively, we find agreement between the

result obtained here using the phase shift and known results obtained using lightcone boot-

strap.

Similarily to the leading Regge singularities, the next-to-leading singularities due to

δ(2)(δ(1))k−2 have a simple dependence on the scaling dimension ∆L – the poles and ze-

roes are fixed by the dimension and spin of the Regge conformal blocks appearing in the

decomposition (4.24). From (4.25), the poles and zeroes are found to be given by:

Zeroes : ∆L = −(2k + p− 3),−(2k + p− 3), . . . , 0

Poles : ∆L = 2, 3, . . . , k + p. (4.30)

Note that the poles are the same as those for the leading Regge singularities in (4.15).
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5 Discussion

Using the first- and second-order phase shift, we derived the leading and next-to-leading

Regge singularities of the stress tensor sector to all orders. The leading Regge singularity

at each order was shown to be determined by the first-order phase shift. This is universally

fixed by the stress tensor exchange and our results agree with the expression obtained

in [12]. The next-to-leading Regge singularity at each order further depends on the second-

order phase shift. In general, the second-order phase shift is expected to be non-universal

in the sense that it depends on higher derivative corrections to the gravitational action in

the bulk.

It has been argued in [8, 12, 13, 48] that the minimal-twist multi-stress tensor sector of

CFTs with large central charge is universal. This was argued from the holographic point of

view in [8, 12]. There the two-point function of a minimally coupled scalar propagating in

an AdS black hole background was studied in higher derivative gravity. In [13] it was shown

that the ansatz (2.15) solves the crossing relations and that the minimal-twist subsector

of the stress tensor sector is, therefore, determined in terms of the exchange of the stress

tensor. Since the stress tensor exchange is fixed by Ward identities, this implies that the

minimal-twist subsector is universal. In terms of the phase shift, this would imply that

when decomposing the phase shift in terms of Regge conformal blocks, the contribution

proportional to the block with the lowest twist at each order is universal. It would be

interesting to study explicitly the effect of higher derivative terms on the phase shift and

verify this. Universality in the minimal-twist sector would imply that the large impact

parameter limit of our results for the next-to-leading Regge singularities is universal.

While we have focused on d = 4, it would be interesting to understand how to extend

this to general dimensions. In particular, in d = 6, the hyperbolic space propagators take

a similar form as in d = 4 and it would be interesting to find a similar decomposition

of products of Regge conformal blocks. Moreover, for large impact parameter L, the

hypergeometric function in (2.19) can be set to 1 in any dimension. In this limit the Regge

conformal blocks in any dimension resemble the two-dimensional blocks.

Consider the exponentiation of the phase shift in d = 4 at O(µ3):

B(p)
∣∣∣
µ3

= B0(p)

[
− i(δ

(1))3

3!
− δ(1)δ(2) + iδ(3)

]
. (5.1)

The leading and next-to-leading Regge singularities obtained from (5.1) were already dis-

cussed in section 4.1 and 4.3 respectively. In appendix B, it is shown that including the

first subleading correction for σ → 0 to the Fourier transform of the δ(1)δ(2) term in (5.1),

one finds for ρ→∞

G(3)(σ, ρ)
∣∣∣
δ(1)δ(2),σ−1

≈
ρ→∞

525π2∆L(∆L + 1)(∆L + 2)(∆L + 3)

4(∆L − 2)(∆L − 3)

e−7ρ

σ
. (5.2)

This agrees with the third line in (2.24) obtained using lightcone bootstrap. More interest-

ing is the last term in (5.1) given by the phase shift at third order. It gives the following
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contribution to the stress tensor sector of the correlator:

G(3)(σ, ρ)
∣∣∣
δ(3)

= f(3)
∞∑
n=0

λ3(n)p[τ0(3) + 2n+ 2, 2] g�τ0(3)+2n+2,2(σ, ρ), (5.3)

to leading order in σ → 0 and λk(n) is given by the decomposition of the phase shift in (4.3).

In particular, in the large impact parameter limit only the n = 0 term contributes:

G(3)(σ, ρ)
∣∣∣
δ(3)

≈
ρ→∞

1155iπ∆L(∆L + 1)(∆L + 2)

8(∆L − 2)(∆L − 3)

e−7ρ

σ
. (5.4)

This agrees with the term in the first line in (2.24) due to minimal-twist triple-stress tensors

obtained from lightcone bootstrap. The remaining term in (2.24) presumably comes from

subsubleading corrections to (δ(1))3 as well as possible subleading corrections to the second-

order phase shift.

Following the discussion5 above on the term linear in S at O(µ3), it is interesting to

study terms linear in S at any order in µ:

B(p)
∣∣∣
µk,S

= B0(p)iδ(k). (5.5)

The corresponding contribution to the stress tensor sector to leading order in σ → 0 can,

in any dimension, be identified with the leading Regge behaviour of operators O∆k,n,J=2

with scaling dimension and spin given by

∆k,n = k(d− 2) + 2n+ 2,

J = 2. (5.6)

We refer to these operators as effective in the sense that they are not necessarily present in

the spectrum, but rather are due to the resummation of multi-stress tensor with arbitrary

spin. The contribution linear in S in (5.5) is easily Fourier transformed using (3.10) and

the decomposition of the phase shift in terms of Regge conformal blocks (4.3). Explicitly,

it is found that (5.5) gives the following contribution to the stress tensor sector of the

correlator to leading order in σ → 0 in any dimension d:

µkG(k)(σ, ρ)
∣∣∣
δ(k)

= µkf(k)

∞∑
n=0

p[k(d− 2) + 2n+ 2, 2]λk(n) g�k(d−2)+2n+2,2(σ, ρ), (5.7)

where λk(n) and f(k) are given in (4.3), p[∆, J ] is a combination of Pochhammer symbols

defined in (3.9) and g�∆,J(σ, ρ) is the leading contribution of a conformal block in the Regge

limit. Interpreting each term in (5.7) as due to the exchange of an effective operator

O∆k,n,2, the coefficients in (5.7) are products of the corresponding OPE coefficients for

such exchanges PHH,LLO∆k,n,J=2
= µkf(k)p[k(d− 2) + 2n+ 2, 2]λk(n):

PHH,LLO∆k,n,2
=µk

√
π(k(d− 2) + 2)( (k−1)(d−2)

2 )n

[
(k(d−2)+4

2 )n

]2
(k(d−2)+1

2 )n

25+k(d−2)+2nk!n!(k(d− 2) + 2n+ 2)(2k(d−2)−d+2n+4
2 )n

×
Γ(k(d−2)+4

2 )Γ(dk+1
2 )Γ(∆L + k(d−2)+2n−d+4

2 )Γ(∆L − k(d−2)+2n
2 )

Γ(∆L)Γ(∆L − d−2
2 )Γ(k(d−2)+2n+3

2 )Γ(k(d−2)+2n+5
2 )

. (5.8)

5A similar discussion was previously considered in [9] and we elaborate on it here.
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In [53] it was shown using conformal Regge theory that when the correlator is domi-

nated by an isolated pole in the J-plane, the corresponding exchange is due to a light-ray

operator. It would be interesting to understand if there is an interpretation of the oper-

ators O∆k,n,2 mentioned here, which are directly related to the phase shift, in terms of

such light-ray operators. See also [54, 55]. Note that λk(n) from (4.3) are valid assuming

Einstein gravity in the bulk. While expected to be non-universal for general n, we expect

the λk(0) coefficient in the phase shift to be universal and therefore (5.8) with n = 0 to be

universal.
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A Comparing leading Regge singularities with the shockwave calculation

In order to compare the leading Regge singularities in (4.12) with the stress tensor sector

calculated in [12], the following identity is useful

e2(∆L+ k
2

)ρ

e2ρ − 1

Γ(1− k)Γ(∆L + 2k − 1)Γ(2∆L + k)

k!Γ(∆L)Γ(∆L − 1)Γ(∆L + k)(2∆L + k − 1)

×
[
F̃∆L,n,−1 +

(e2ρ−1)(∆L+2k−1)

∆L + k
F̃∆L,n,0 −

e2ρ(∆L+2k−1)(∆L+2k)

(∆L + k)(∆L + k + 1)
F̃∆L,n,1

]
=

e−3kρ

1− e−2ρ

Γ(∆L − k)Γ(∆L + 2k − 1)

k!Γ(∆L − 1)Γ(∆L)
2F1(k − 1,∆L + 2k − 1;−∆L + k + 1,−e−2ρ),

(A.1)

where6

F̃∆L,n,a(e
−2ρ) =

Γ(∆− k − a)Γ(∆L + k + a+ 1)

Γ(1− k)Γ(2∆L + k)

× e−2(∆L+2k+a)ρ
2F1(∆L + 2k + a, k;−∆L + k + a+ 1;−e−2ρ). (A.2)

With (A.1) one can check that (4.12) agrees with the contribution from the stress

tensor sector for fixed ρ, or η, in [12].

B Further comparison with lightcone results

In this section, we further compare predictions obtained using the phase shift with known

results in the lightcone limit.

6F̃∆L,n,a is related to F∆L,n,a in [12] if one uses their identity eq. (44) and keep only the part relevant

to the stress tensor sector and set (η)there = (e−2ρ)here.

– 25 –



J
H
E
P
0
8
(
2
0
2
0
)
0
3
7

B.1 Triple-stress tensors in four dimensions

Consider the momentum space correlator (4.1) at O(µ3). In the large impact parameter

limit, this is compared with the explicit resummation of minimal-twist triple-stress tensors

discussed in section 2.

Consider the correlator (4.1) at O(µ3):

B(p)

B0(p)

∣∣∣
µ3

= −i(δ
(1))3

3!
− δ(1)δ(2) + iδ(3). (B.1)

The leading and next-to-leading singularities are due to the first two terms in (B.1) and

were discussed in section 4. At O( 1
σ ) there will be a contribution from the last term

iδ(3) in (B.1). Using the decomposition of the phase shift in (4.3), it is straightforward to

use (3.10) to find the corresponding contribution to the stress tensor sector:

G(3)(σ, ρ)|δ(3) = f(3)

∞∑
n=0

λ3(n)p[τ0(3) + 2n+ 2, 2] g�τ0(3)+2n+2,2(σ, ρ) + . . . , (B.2)

in any dimension d and the ellipses denote subleading corrections in σ → 0. Here

τ0(k) = k(d − 2) is the minimal-twist of multi-stress tensors at k-th order. To compare

the large impact parameter limit with the contribution from minimal-twist multi-stress

tensors, consider the term in (B.2) with n = 0:

G(3)(σ, ρ)|δ(3) ≈
ρ→∞

1155iπ∆L(∆L + 1)(∆L + 2)

8(∆L − 2)(∆L − 3)

e−7ρ

σ
. (B.3)

We thus see that (B.3) agree with the first line in (2.24) at O(µ3) due to minimal-twist

triple-stress tensors in d = 4.

There will also be a contribution at O( 1
σ ) due to the first subleading correction to

the second term −δ(1)δ(2) in (B.1). It is straightforward to include the correction to the

position space Regge conformal block in (3.13) to the expression (4.25) found in section

4.3. Taking the large impact parameter with k = 3 one finds:

G(3)(σ, ρ)|δ(1)δ(2),σ−1 ≈
ρ→∞

525π2∆L(∆L + 1)(∆L + 2)(∆L + 3)

4(∆L − 2)(∆L − 3)

e−7ρ

σ
, (B.4)

which agree with the last line in (2.24) obtained using lightcone bootstrap.

B.2 Double-stress tensors in six dimensions

Consider the correlator (4.1) at O(µ2) in d = 6:

B(p)

B0(p)

∣∣∣
µ2

= −(δ(1))2 + iδ(2). (B.5)

The last term iδ(2) in (B.5) can be transformed to position space using (3.10). From (4.3),

one finds that the lowest-twist contribution to the second-order phase shift in six dimensions

is given by

δ
(2),d=6
0 =

693π

16

S(4e2L − 3)e−11L

(1− e−2L)3
. (B.6)
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Explicitly, Fourier transforming (B.6), we find the following contribution to the stress

tensor sector in the limit ρ→∞

G(2),d=6(σ, ρ)|δ(2) ≈
ρ→∞

iπ693p[10, 2]

4

e−9ρ

σ
. (B.7)

This agrees with the imaginary term at O( 1
σ ) after analytically continuing the resummation

of minimal-twist double-stress tensors given by eq. (4.8) in [13].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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