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1 Introduction

The spinor-helicity formalism is a technique that allows to evaluate scattering amplitudes

in massless theories in four-dimensional flat space efficiently. It also brings them to a

very simple and compact form. Thanks to these virtues, the spinor-helicity formalism has

become an important part of modern amplitude methods; for review see [1–3]. Aiming

to achieve similar simplifications for computations that appear in the context of hologra-

phy and higher-spin theories, we recently extended the spinor-helicity formalism to four-

dimensional anti-de Sitter space [4, 5].1 In particular, we constructed the AdS4 counterpart

of the plane-wave solutions for spinning fields and then employed them to evaluate some

spinning three-point amplitudes. We also classified three-point spinor-helicity amplitudes

of spinning fields by requiring correct transformation properties with respect to the AdS4

isometry algebra.

In the present paper we initiate the analysis of spinor-helicity amplitudes in AdS4

beyond three points. Unlike three-point amplitudes, which are fixed by symmetries up to

a coupling constant, symmetries constrain four-point amplitudes up to a function of two

variables. Hence, it makes sense to talk about their analytic structure and study its relation

to the type of the diagram, the amplitude originates from. Understanding of the analytic

1Our approach is closely related to the twistor-space formalism applied to amplitudes in AdS space; see

e.g. [6, 7]. Moreover, there is an alternative spinor-helicity formalism for AdS4 suggested in [8]. For a more

comprehensive review of the relation of our formalism to other approaches, see [5].
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structure of amplitudes is a key step towards the development of the on-shell methods,

which proved to be an efficient approach to computing them.2

Below we will focus on contact four-point amplitudes of scalar fields involving arbitrary

number of derivatives. In flat space the result of this computation is well-known. Namely,

amplitudes are given by polynomials in the Mandelstam variables with the degree of a

polynomial being equal to the half of the number of derivatives. Moreover, the amplitude

comes supplemented with the momentum-conserving delta function as a factor, which

entails familiar equivalence relations for the Mandelstam variables. We would like to obtain

an analogous statement for the spinor-helicity amplitudes in AdS space.

The key difference of the AdS analysis is that translation invariance is absent. This

implies that the action contains manifest dependence on the space-time coordinates and,

as a result, amplitudes contain derivatives of the momentum-conserving delta function.

This, in turn, entails that the standard equivalence relations on the Mandelstam variables

no longer hold in AdS space. Instead, AdS space amplitudes satisfy more complicated

equivalence relations. We explore these relations and find that amplitudes in AdS space can

be brought to a certain particularly simple form, which we call canonical; see (3.13), (3.14)

for the definition.

We then proceed to the classification of consistent contact AdS four-point amplitudes.

To this end, we consider most general amplitude in the canonical form and require that

it transforms appropriately with respect to the AdS space isometries. Solving the ensuing

constraints, we find that, as in flat space, consistent amplitudes in AdS space can be

labelled by polynomials of two variables. We then provide an alternative perspective on

these results, which is based on the conformal equivalence of the flat and AdS spaces.

The paper is organized as follows. In the next section we briefly review the necessary

results from the spinor-helicity formalism in AdS4. In section 3 we compute few lower-

derivative four-point amplitudes from the action. We show that they can be brought to the

canonical form, which we define. Next, in section 4 we make a general ansatz for the four-

point amplitude in the canonical form and then require that it transforms properly under

AdS space isometries. By solving the resulting constraints, we establish a classification of

the contact four-point amplitudes. In section 5 we motivate the canonical form of the AdS

amplitudes from the conformal/Weyl symmetry. In section 6 we give our conclusions. A

number of appendices contains our notations and some technical details.

2 Preliminaries

In this section, we collect some useful results on the spinor-helicity formalism in AdS4. For

more comprehensive review and references, we refer the reader to [4, 5]. Our conventions

are collected in appendix A.

2See, for example, [9] for a classical review on the flat space S-matrix and its analytic structure. Analytic

structure of AdS Witten diagrams has been studied in various representations and in many cases it is

well understood; see [10–26] for a far from complete list of references. These achievements were used, in

particular, for bootstrapping holographic amplitudes in type-IIB supergravity [27] and for computing the

associated loop corrections from the dispersion relations [28, 29].
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The massless representations of the AdS4 isometry algebra so(3, 2) can be realized as

Jαβ = i

(
λα

∂

∂λβ
+ λβ

∂

∂λα

)
,

J̄α̇β̇ = i

(
λ̄α̇

∂

∂λ̄β̇
+ λ̄β̇

∂

∂λ̄α̇

)
,

Pαα̇ = λαλ̄α̇ −
1

R2

∂

∂λα
∂

∂λ̄α̇
,

(2.1)

where R is the AdS space radius. By taking the flat space limit R → ∞, we recover

the usual Poincaré algebra in the spinor form. This representation of the AdS isometry

algebra is often referred to as the twisted adjoint representation and is used extensively in

the higher-spin literature [30].

We will be working with AdS4 in the stereographic coordinates, as they make the

Lorentz symmetry manifest. The metric is given by

ds2 = G−2ηµνdx
µdxν , (2.2)

with the conformal factor

G ≡ 1− x2

4R2
. (2.3)

Covariant derivatives are defined by

∇νvλ ≡ ∂νvλ − Γν|
ρ
λvρ, ∇νvλ ≡ ∂νvλ + Γν|

λ
ρv
ρ (2.4)

and the Christoffel symbols read

Γν|
ρ
λ =

(
2R2G

)−1 (
xνδ

ρ
λ + xλδ

ρ
ν − xρηνλ

)
. (2.5)

The AdS space counterpart of the flat plane-wave solutions in the scalar case are

given by3

φ = Geipx with p2 = 0. (2.6)

As usual, by exploiting the vector-spinor dictionary, a light-like momentum p can be fac-

torized into a product of two sl(2,C) spinors

pa = −1

2
(σa)

α̇αλαλ̄α̇, (2.7)

where σa are the Pauli matrices. It is straightforward to check that (2.6) satisfies the

zero-mass free wave equation in AdS(
� +

2

R2

)
φ ≈ 0. (2.8)

By taking the limit R → ∞ of (2.6), we reproduce the familiar flat-space plane waves.

In the next section AdS plane waves (2.6) will be used to calculate some lower-derivative

four-point amplitudes.

3These solutions can be truncated to other patches without breaking AdS covariance. Here, we will

only consider (2.6), which are supported on the global AdS patch. This solution was constructed earlier in

the unfolded formalism [31] and is also used in the twistor literature, see e, g, [32, 33]. In the holographic

context solutions, that reduce to flat-space plane waves when the curvature corrections become negligible,

were discussed in [34, 35]. Solutions to the free equations of motion in AdS with the same property were also

constructed in [36]. The simplest way to derive (2.6) is to Weyl transform the usual flat-space plane waves.
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3 Amplitudes from plane waves

In anti-de Sitter space tree-level amplitudes can be defined as the on-shell action evaluated

on the solutions to the free equations of motion. In this section, we will use this definition

and solutions (2.6) to evaluate some simple lower-derivative contact four-point amplitudes

for scalar fields.

As a warm up exercise, we first consider a no-derivative four-point vertex

S4 =

∫
d4x
√
−gφ4. (3.1)

By plugging in (2.6) and the background metric (2.2) one can see that conformal factors

cancel out. Evaluating the resulting integral, we obtain

A4 =

∫
d4xei(p1+p2+p3+p4)x = (2π)4δ(4)(p), (3.2)

where p is the total momentum. This result is identical to what one gets in flat space,

because vertex (3.1) is conformally invariant.

Next, we proceed to a vertex with two derivatives

S4 =

∫
d4x
√
−g(∇µφ1)(∇µφ2)φ3φ4. (3.3)

By substituting the plane-wave solutions and the metric we find

S4 =

∫
d4x

[
x2

4R4
− i

2R2
(p1 + p2)xG− p1p2G2

]
eipx. (3.4)

Evaluating the Fourier integral, we arrive at the amplitude in the form

A4 = (2π)4
[
− �p

4R4
− 1

2R2
(p1 + p2) ·

∂

∂p
G̃− p1p2G̃2

]
δ(4)(p), (3.5)

where

G̃ ≡ 1 +
�p

4R2
(3.6)

is the Fourier transform of factor G.

The right hand side of (3.5) already gives a valid formula for the amplitude we are

computing. So, in principle, one can stop at this point and move on to other examples.

However, it is important to note that (3.5) is not the only representation for a given

amplitude. For example, by using that

pνG̃
2δ(4)(p) = − 1

R2

∂

∂pν
G̃δ(4)(p), (3.7)

we can rewrite the second term in (3.5) as

− 1

2R2
(p1 + p2) ·

∂

∂p
G̃δ(4)(p) =

1

2
(p1 + p2) · p G̃2δ(4)(p). (3.8)
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We will often refer to transformations of this type as integration by parts, because this is

what they are once the inverse Fourier transform is performed.

Of course, a similar phenomenon also exists in flat space. However, in flat space due to

translation invariance, the action does not contain space-time coordinates explicitly, which

makes integration by parts easy. Similarly, at the level of amplitudes, translation invariance

entails the presence of the momentum-conserving delta functions appearing as an overall

factor. This, in turn, leads to simple equivalence relations on the flat-space Mandelstam

variables, which can be easily taken into account.

In contrast, AdS space is not translationally invariant: the metric (2.2) and the

Christoffel symbols (2.5) manifestly depend on space-time coordinates bringing this de-

pendence into the action. In terms of amplitudes, this translates into the fact that the

momentum-conserving delta functions no longer appear in the bare form, instead, they

are supplemented with differential operators acting on them. Therefore, in AdS space mo-

mentum conservation does not hold identically, rather, it holds up to terms that result

from commuting the total momentum with the aforementioned differential operators. As a

result, integration by parts becomes far less trivial, especially, when the number of deriva-

tives in the vertex grows. In what follows, we will not attempt to classify all possible forms

of amplitudes, as this seems to be a tedious task. Instead, we will explore various forms of

any given amplitude and try to find the most convenient one.

One thing that one can learn from example (3.8) is that derivatives of the delta func-

tion, that are contracted with momenta of fields on external lines can be eliminated. Such

terms were absent for three-point amplitudes [4, 5] and it seems natural to try to achieve

their absence for four-point amplitudes as well. Another feature inherent to three-point

amplitudes is that derivatives of the momentum-conserving delta function always appear in

combination G̃. It is not hard to see that the same can be accomplished for (3.5). Indeed,

considering (3.8), the only term that has not yet been brought to such a form is the first

one, for which we have

− �p

4R4
δ(4)(p) = −p

2

6
G̃2δ(4)(p) +

2

3R2
δ(4)(p). (3.9)

Putting everything together, for the four-point amplitude (3.5), we obtain

(2π)−4A4 =

[
−p

2

6
+

1

2
p(p1 + p2)− p1p2

]
G̃2δ(4)(p) +

2

3R2
δ(4)(p)

=

[
−1

6
(s1 + s2) +

1

12
(t1 + t2) +

1

12
(u1 + u2)

]
G̃2δ(4)(p) +

2

3R2
δ(4)(p),

(3.10)

where

s1 ≡ 2p1p2 = −〈12〉[12], s2 ≡ 2p3p4 = −〈34〉[34],

t1 ≡ 2p1p4 = −〈14〉[14], t2 ≡ 2p2p3 = −〈23〉[23],

u1 ≡ 2p1p3 = −〈13〉[13], u2 ≡ 2p2p4 = −〈24〉[24]

(3.11)

are the AdS counterparts of the Mandelstam variables. Let us stress again that unlike in

flat space, in AdS one cannot use

s1 = s2, s1 + t1 + u1 = 0 (3.12)
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and other familiar identities. Indeed, e.g. s1 − s2 vanishes only when it multiplies the

momentum-conserving delta function. Instead, in (3.10) the delta function is acted upon

by G̃2, so setting s1 − s2 to zero is not legitimate.

One can note that (3.10) has one more property: the power of the G̃ operator acting

on the delta function is twice the degree of the polynomial in the Mandelstam variables

that appears in the prefactor. We will add this as an extra requirement for the sought form

of the amplitude, which will be called canonical.

To summarize, we will say that the amplitude is written in the canonical form, if it is

presented as

A4 =
∑
N

fN (s1, s2, t1, t2, u1, u2)G̃
2Nδ(4)(p), (3.13)

where fN are polynomials of the total homogeneity degree N in the Mandelstam variables,(
s1

∂

∂s1
+ s2

∂

∂s2
+ t1

∂

∂t1
+ t2

∂

∂t2
+ u1

∂

∂u1
+ u2

∂

∂u2

)
fN = NfN . (3.14)

To finish the discussion of two-derivative vertices, we note that all of them either reduce

to (3.3) by permutations of fields’ labels or to (3.1) by virtue of the free equations of motion.

Moreover, one can see that by subtracting from (3.10) the amplitude for no-derivative

interaction (3.2) with a proper prefactor, one can eliminate the last term in (3.10). In

other words, the G̃2 part of (3.10) is a consistent amplitude on its own.

Having established the canonical form for two-derivative vertices, let us verify whether

this can be achieved in more complicated cases. Consider a four-point vertex with

four derivatives

S4 =

∫
d4x
√
−g∇µφ1∇µφ2∇νφ3∇νφ4. (3.15)

Plugging in the metric and the scalar plane waves we get

S4 =

∫
d4x

(
x4

16R8
− ix2

8R6
pxG− x2

4R4
(p1p2 + p3p4)G

2

− 1

4R4
(p1 + p2)

ixi(p3 + p4)
jxjG

2

+
i

2R2
[p1p2(p3 + p4)

ixi + p3p4(p1 + p2)
ixi]G

3 + pi1p2|ip
j
3p4|jG

4

)
eipx.

(3.16)

Evaluating the Fourier transform and using

∂

∂pi
G̃3δ(4)(p) = −R

2

2
piG̃

4δ(4)(p),

∂

∂pi
∂

∂pj
G̃2δ(4)(p) =

(
R4

3
pipjG̃

4 − 2R2

5
ηijG̃

2 − R4

30
ηijp

2G̃4

)
δ(4)(p),

∂

∂pi
�pG̃δ

(4)(p) =

(
12R4

5
piG̃

2 − 2R6

15
pip

2G̃4

)
δ(4)(p),

�2
pδ

(4)(p) =

(
8R4 − 16R6

5
p2G̃2 +

R8

15
G̃4

)
δ(4)(p),

(3.17)
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we obtain

(2π)−4A4 =
1

2R4
δ(4)(p) +

1

R2
f1G̃

2δ(4)(p) + f2G̃
4δ(4)(p), (3.18)

where

f1 = − 1

10
(s1 + s2) +

1

20
(t1 + t2) +

1

20
(u1 + u2) (3.19)

and

f2 =
1

16

(
1

5
s21 +

26

15
s1s2 −

2

5
s1t1 −

2

5
s1t2 −

2

5
s1u1 −

2

5
s1u2 +

1

5
s22

− 2

5
s2t1 −

2

5
s2t2 −

2

5
s2u1 −

2

5
s2u2 +

1

15
t21 +

2

15
t1t2 +

2

15
t1u1

+
2

15
t1u2 +

1

15
t22 +

2

15
t2u1 +

2

15
t2u2 +

1

15
u21 +

2

15
u1u2 +

1

15
u22

)
.

(3.20)

One can see that amplitude (3.18) is, indeed, in the canonical form.

In total, there are three independent four-derivative vertices on-free-shell. All these can

be given as linear combinations of (3.15) and two other vertices, generated by permutations

of field’s labels. Hence, we conclude that all four-derivative amplitudes in AdS space

admit the canonical form. Moreover, as in the case of the two-derivative amplitude, it is

straightforward to see that the G̃4 part of (3.18) is consistent on its own.

As a last example, we consider a six-derivative vertex

S4 =

∫
d4x
√
−g∇ρ∇µφ1∇µφ2∇ρ∇νφ3∇νφ4. (3.21)

It turns out, that the associated amplitude can be brought to the canonical form as well.

The result of this computation is lengthy so we give it in appendix B. Again, by permut-

ing fields’ labels one obtains other amplitudes, which together generate all independent

amplitudes with six derivatives. Moreover, as in previous examples, the piece of the am-

plitude for (3.21) with the highest power of G̃ — which is six in this case — is a consistent

amplitude by itself.

To summarize, in this section we evaluated and explored various forms of lower-

derivative four-point amplitudes in AdS4 in the spinor-helicity representation. We found

that in all cases we considered, amplitudes can be brought to the canonical form, which

is defined in (3.13), (3.14). Moreover, our experience shows, that for every amplitude, its

canonical form is unique. In the following, we will assume that these two properties of

the canonical form — that it can be always achieved for consistent amplitudes and that

it is unique — are true in general. The proofs of these two statements look feasible, but

technical and we leave them for future research.

Finally, we would like to stress again that all forms of amplitudes are equally valid. We

chose to deal with the canonical form, because it is simple and allows to fix the freedom of

integration by parts. This, in turn, is helpful for developing systematics for the AdS four-

point amplitudes in the spinor-helicity representation, such as their classification, which

will be performed in the next section.
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4 Amplitudes from symmetries

In the previous section, we used scalar plane waves to calculate certain simple 4-particle

amplitudes. In this section, we will use symmetry arguments to construct all contact

four-point amplitudes of scalar fields. Analogous arguments were used in [5] to classify

three-point amplitudes of spinning fields.

Lorentz invariance implies that all Lorentz indices should be contracted covariantly.

Hence, our ansatz for the four-point amplitude should involve arbitrary functions of all

Lorentz scalars that one can construct out of momenta of fields involved and their deriva-

tives. However, in the previous section we saw that dependence on some of these variables

can be removed using integration by parts. Moreover, it is of more interest to classify in-

equivalent amplitudes, rather than all amplitudes, which include inequivalent amplitudes

and all their forms that can be achieved using integration by parts. Therefore, below we will

take into account the intuition gained in the previous section and study a more constrained

ansatz. Our goal will be to show that amplitudes in the canonical form transform properly

under AdS isometries, provided certain constraints are imposed on the polynomials of the

Mandelstam variables, that this form features. Then, we will solve these constraints and

show that there are as many solutions to these constraints as vertices in AdS, that are

independent on-shell.

So, we consider an asatz

A =
∑
N

fN (s1, s2, t1, t2, u1, u2)gN (�p)δ
(4)(p). (4.1)

With the Lorentz invariance taken into account, it remains to impose invariance with

respect to deformed translations,(
P1|αα̇ + P2|αα̇ + P3|αα̇ + P4|αα̇

)
A = 0, (4.2)

which were defined in (2.1). Direct evaluation gives

∑
N

[
fN

(
pc +

2

R2

∂

∂pc
+

1

2R2
pa

∂

∂pa
∂

∂pc
− 1

4R2
pc�p

)
gN (�p) δ

(4)(p)

+
1

R2

(
s1

∂

∂s1
+ s2

∂

∂s2
+ t1

∂

∂t1
+ t2

∂

∂t2
+ u1

∂

∂u1
+ u2

∂

∂u2

)
fN

∂

∂pc
gN (�p)δ

(4)(p)

+
1

2R2
σ̄cα̇α

4∑
m=1

∂2fN
∂λαm∂λ̄

α̇
m

gN (�p)δ
(4)(p)

]
= 0.

(4.3)

Taking into account (3.14), the first two lines in (4.3) give

∑
N

fN

(
pc +

N + 2

R2

∂

∂pc
+

1

2R2
pa

∂

∂pa
∂

∂pc
− 1

4R2
pc�p

)
gN (�p) δ

(4)(p)

=
∑
N

fN
((
�p + 4R2

)
g′N (�p)− 2NgN (�p)

) ∂δ(4)(p)
∂pc

.

(4.4)

– 8 –
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For

gN (�p) = G̃2N , (4.5)

which is its value in the canonical form (3.13), the bracket in the last line of (4.4) vanishes.

So the AdS covariance condition (4.3) reduces to

∑
N

4∑
m=1

∂2fN
∂λαm∂λ̄

α̇
m

gN (�p)δ
(4)(p) = 0 (4.6)

with gN given in (4.5).

Equation (4.6) has four components, which are labelled by α and α̇. To extract these

components, we contract (4.6) with four momenta λαnλ̄
α̇
n, n = 1, 2, 3, 4. Next, we use inte-

gration by parts and the spinor algebra to get rid off all spinor products that cannot be ex-

pressed in terms of the Mandelstam variables. This computation is rather straightforward,

but tedious, so we present it in appendix C. Eventually, we find that the AdS-covariance

conditions imply

D(s1, s2, t1, t2, u1, u2)fN = 0,

D(s1, s2, u2, u1, t2, t1)fN = 0,

D(t2, t1, s2, s1, u1, u2)fN = 0,

D(u2, u1, t1, t2, s2, s1)fN = 0,

(4.7)

where the operator D is given by

D(s1, s2, t1, t2, u1, u2) ≡
(
s1

∂

∂s1
+ t1

∂

∂t1
+ u1

∂

∂u1

)2

+ (t1 + u1)
∂

∂s2
s2

∂

∂s2

+ (s1 + u1)
∂

∂t2
t2
∂

∂t2
+ (s1 + t1)

∂

∂u2
u2

∂

∂u2

+ (t1t2 + u1u2 − s1s2)
∂2

∂t2∂u2
+ (s1s2 + t1t2 − u1u2)

∂2

∂t2∂s2

+ (s1s2 + u1u2 − t1t2)
∂2

∂s2∂u2
.

(4.8)

Before proceeding with the solution of (4.7), let us note that operators D commute

with the total homogeneity degree in the Mandelstam variables, which means that so-

lutions with different N are independent. This is consistent with our observations from

the explicit amplitude computations in the previous section. One can also check that all

amplitudes we computed so far do satisfy (4.7). From now on, we will drop label N for

notational simplicity.

In flat space, there are N + 1 independent amplitudes of the homogeneity degree N

in the Mandelstam variables. These can be given, for example, as polynomials in s and t,

with the u dependence eliminated by momentum conservation. Similarly, in the AdS case,

when the total homogeneity degree in the Mandelstam variables is fixed to N , we should

find N + 1 independent amplitudes. One can label these in different ways. To strengthen

the analogy with the flat-space case, we will label the solutions to (4.7) by their values
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at a hypersurface where four out of six Mandelstam variables are set to zero, that is by

a polynomial of the two remaining Mandelstam variables. For example, we can set the

boundary data as

f(s1, 0, t1, 0, 0, 0) = h(s1, t1). (4.9)

Below we will show that (4.7) allow to reconstruct f completely once the boundary condi-

tion (4.9) is set.

To do that, let us first consider the third equation in (4.7). More specifically, we will

be interested only in the equations, that are s2-, t2- and u2-independent. In other words,

we focus on a sector of

D(t2, t1, s2, s1, u1, u2)f = 0 (4.10)

that satisfies

N̂s2Df = 0, N̂t2Df = 0, N̂u2Df = 0. (4.11)

Here we use the notation

N̂s2 ≡ s2
∂

∂s2
, N̂t2 ≡ t2

∂

∂t2
, N̂u2 ≡ u2

∂

∂u2
,

N̂s1 ≡ s1
∂

∂s1
, N̂t1 ≡ t1

∂

∂t1
, N̂u1 ≡ u1

∂

∂u1
.

(4.12)

If we take into account that f is a polynomial, it is not hard to see that most of terms

in (4.10) drop out. Consider, for example,

s1s2
∂2

∂s1∂u2
f ⊂ Df. (4.13)

Since, we demand that Df has the homogeneity degree zero in s2, for f to contribute to it

via the term on the left hand side of (4.13), the homogeneity degree of f in s2 should be

minus one. However, this is impossible, since f is a polynomial. By using the same type

of arguments, we find that the only terms that remain, lead to(
N̂2
u1 + u1

∂

∂t1
t1
∂

∂t1
+ u1

∂

∂s1
s1

∂

∂s1

)
f(s1, 0, t1, 0, u1, 0) = 0. (4.14)

Next, it is not hard to see that

[N̂u1 , Ô1] = Ô1, (4.15)

where we denoted

Ô1 ≡ −u1
∂

∂t1
t1
∂

∂t1
− u1

∂

∂s1
s1

∂

∂s1
. (4.16)

Considering that

N̂u1f(s1, 0, t1, 0, 0, 0) = 0, (4.17)

we can solve for the u1-dependence of f from the boundary data (4.9) by expanding it in

powers of u1 and solving (4.14) order by order. As a result, one finds

f(s1, 0, t1, 0, u1, 0) = I0(2

√
Ô1)h(s1, t1) ≡

∞∑
n=0

Ôn1
(n!)2

h(s1, t1). (4.18)
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Though, this formula features an infinite sum, it, actually, truncates to the first N + 1

terms due to the fact that h is a polynomial of Nth degree.

It is hard to proceed further directly. We can note, however, that all amplitudes that

we computed in the previous section enjoy symmetry with respect to three independent

permutations of the Mandelstam variables s1 ↔ s2, t1 ↔ t2, and u1 ↔ u2. It seems rea-

sonable to expect that this symmetry holds in general. Assuming that this symmetry does

hold, we consider the first equation in (4.7) with {s1, t1, u1} and {s2, t2, u2} interchanged.

This gives (
N̂s2 + N̂t2 + N̂u2

)2
f − Ô2f = 0, (4.19)

where

Ô2 ≡− (t2 + u2)
∂

∂s1
s1

∂

∂s1
− (s2 + u2)

∂

∂t1
t1
∂

∂t1
− (s2 + t2)

∂

∂u1
u1

∂

∂u1

− (−s1s2 + t1t2 + u1u2)
∂2

∂t1∂u1
− (s1s2 + t1t2 − u1u2)

∂2

∂t1∂s1

− (s1s2 − t1t2 + u1u2)
∂2

∂s1∂u1
.

(4.20)

Noting that [
N̂s2 + N̂t2 + N̂u2 , Ô2

]
= Ô2 (4.21)

and (
N̂s2 + N̂t2 + N̂u2

)
f(s1, 0, t1, 0, u1, 0) = 0, (4.22)

we solve for f as

f(s1, s2, t1, t2, u1, u2) = I0(2

√
Ô2)f(s1, 0, t1, 0, u1, 0)

= I0(2

√
Ô2)I0(2

√
Ô1)h(s1, t1).

(4.23)

The method of solving (4.7) that we presented here is just a compact way to summarize

our findings obtained with the Frobenius method. Unfortunately, more explicit evaluation

of the right hand side in (4.23) is obstructed by the fact that Ô2 is given by a sum of

operators, that do not commute. Still, representation (4.23) can be used rather efficiently

to generate solutions with low N from the boundary data.

It is worth stressing that, while solving equations, we only used some of them. We also

used the symmetry of the solutions with respect to {s1, t1, u1} ↔ {s2, t2, u2}, which was

not derived from the equations, but observed from particular solutions. This means that

one still has to verify that (4.23) does solve (4.7). It does not seem to be easy to do that

in general, though, we checked this for particular examples.

5 Derivation from conformal primaries

In the previous sections we saw that AdS amplitudes after certain manipulations have the

same form as flat-space amplitudes multiplied with the appropriate powers of the AdS

conformal factor. It is natural to try to connect this property of amplitudes with the
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behaviour of the associated vertices under Weyl transformations. Due to our choice of

AdS plane waves, Weyl-invariant vertices have identical amplitudes in flat and AdS spaces.

Even if the vertex is not Weyl-invariant, but scales with a certain power of the conformal

factor, it can be made Weyl-invariant by multiplying it with an auxiliary field, that scales

appropriately to compensate scaling of the vertex. As a result, the associated amplitudes

in AdS and flat spaces are equal up to a power of the AdS conformal factor. Moreover,

for this relation to hold, we do not need to require that vertices transform appropriately

under general Weyl transformations, instead, it suffices to know how they behave under

the Weyl transformation that maps flat space to AdS.

To find out how vertices transform with respect to this particular Weyl transformation

and select the appropriate ones, we would need to do a separate analysis. Instead, we

will use that Weyl invariance is typically connected to conformal invariance and, instead,

consider vertices that transform as conformal primaries. In the latter case, many relevant

results are already available. It is worth keeping in mind that conformal invariance does

not necessarily imply Weyl invariance — some counterexamples can be found, e.g. in [37].

Therefore, without doing further analysis it is not guaranteed that our shortcut can be

used in general, though, as we found, it does allow to produce consistent AdS amplitudes

in the examples that we considered.

More explicitly, let us assume that we are given a Lagrangian density

L(∂, η, φm) = L(∂1, ∂2, ∂3, ∂4, φ1, φ2, φ3, φ4), (5.1)

which is linear in each of the four massless fields φi and, in addition, under conformal

transformation it transforms as a scalar conformal primary of dimension ∆ = 2N+4, where

2N is the number of derivatives L features. Then, by employing an auxiliary massless field

φ0, we can construct a conformally invariant vertex

S[∂, η, φm, φ0] =

∫
d4xL(∂, η, φm)φ−2N0 . (5.2)

By our assumption, it can be promoted to a vertex of the form

S′[∇, g, φm, φ0] =

∫
d4x
√
−gL(∇, g, φm)φ−2N0 + . . . , (5.3)

which is invariant with respect to the Weyl transformation, that maps flat space to AdS.

Here . . . refer to terms, that involve the curvature tensor.

Let us now consider a flat-space amplitude in background φ0 = 1

A ≡ S[∂, η, eipmx, 1]. (5.4)

This amplitude takes the form

A = (2π)4f(s1, s2, t1, t2, u1, u2)δ
(4)(p). (5.5)

Note that when evaluating (5.5) we should not use momentum conservation or, equivalently,

integration by parts. The reason is that we would like to avoid derivatives acting on φ0,

which is necessary for our argument to work.
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Then, we make the Weyl transformation that relates flat and AdS space metrics. Weyl

invariance of the vertex (5.3) implies that in AdS space the amplitude remains the same

A′ ≡ S′[∇AdS, gAdS, Ge
ipmx, G] = S[∂, η, eipmx, 1] = A. (5.6)

Using this result, it is straightforward to compute a usual four-point amplitude in AdS

A′′ ≡
∫
d4x
√
−gAdSL(∇AdS, gAdS, Ge

ipmx) + . . . , (5.7)

which is of the form, we considered in section 3. Namely, this amplitude differs from A′

only by an overall factor, contributed by φ0. Taking this difference into account, we obtain

A′′ = S′[∇AdS, gAdS, Ge
ipmx, 1] = (2π)4f(s1, s2, t1, t2, u1, u2)G̃

2Nδ(4)(p). (5.8)

In other words, we find that there is a class of contact four-point vertices in AdS space

that gives amplitudes immediately in the canonical form. Moreover, for these vertices, one

can avoid a tedious AdS computation: by employing Weyl transformation the computation

reduces to the flat-space one, which is much simpler.

To illustrate this idea, let us consider

L(∂, η, φm) = Jab(φ1, φ2)J
ab(φ3, φ4), (5.9)

where J is the traceless and symmetric spin-2 conserved current

Jab(φm, φn) = 2(∂a∂bφmφn+φm∂a∂bφn)−4(∂aφm∂bφn+∂aφn∂bφm)+ηab∂
cφm∂cφn. (5.10)

By a straightforward evaluation, we find that A defined in (5.4) equals (5.5) with

f = −4s1s2 + t21 + 8t1t2 + t22 − 4t1u1 − 4t2u1 + u21 − 4t1u2 − 4t2u2 + 8u1u2 + u22. (5.11)

Then, taking into account the contribution from the conformal factor, we obtain the AdS

amplitude

A′′ = (2π)4f(s1, s2, t1, t2, u1, u2)G̃
4δ(4)(p). (5.12)

One can check that this result is consistent with the symmetry constraints from section 4:

it has the correct power of the conformal factor and f satisfies (4.7).

In an analogous manner we considered a Lagrangian with two spin-1 currents con-

tracted as well as Lagrangians of the form4

�n(φ1φ2)φ3φ4 + . . . , (5.13)

up to n = 10 and found that the resulting amplitudes, indeed, solve the constraints from

the previous section.

Finally, we note that the set of conformal primaries (5.1) is large enough to provide

a basis for amplitudes in flat space and, hence, in AdS space as well. Indeed, one can

consider primaries of the form

Ln,l = �nJa1...al(φ1, φ2)J
a1...al(φ3, φ4) + . . . , (5.14)

4Explicit expressions for primaries (5.13) can be found in [38].

– 13 –



J
H
E
P
0
8
(
2
0
2
0
)
0
1
2

where J ’s are conserved, traceless and symmetric spin-l currents and . . . refer to other

terms with 2N derivatives, that are necessary to make L primary. By construction, the

associated flat-space amplitude has spin l in the s channel. Moreover, no matter what is

the exact way the derivatives are distributed in the terms that we omitted in (5.14), they

contribute an extra factor of sn to the amplitude. In other words, four-point vertex (5.14)

results in a flat-space amplitude of the form

A ∝ sn+lPl(cos θ)δ(4)(p), cos θ ≡ t− u
s

, (5.15)

where Pl are the Legendre polynomials. It is well-known that (5.15) provides a basis in

the space of polynomial flat-space amplitudes. For example, keeping n + l = N fixed and

changing l from 0 to N , we obtain a basis of N + 1 elements in the space of polynomial

amplitudes of order N in the Mandelstam variables.

6 Conclusion and outlook

In the present paper we explored AdS4 spinor-helicity amplitudes for contact four-point

diagrams from different angles. To start, we computed a number of lower-derivative ampli-

tudes employing the standard Feynman rules. At a technical level, this involves evaluation

of some simple Fourier transforms. The key difference of this computation with its flat

space counterpart is that due to the absence of translation invariance in AdS space, the

action manifestly depends on space-time coordinates, and, as a result, amplitudes involve

derivatives of the momentum-conserving delta function. This, in turn, implies that momen-

tum is not conserved in AdS space and the associated machinery has to be deformed. In

particular, one cannot simply trade the Mandelstam variables one for another in the stan-

dard manner to bring amplitudes to a more convenient form. In AdS, similar equivalence

relations between different forms of amplitudes still exist, but become more complicated.

In the first part of the paper we explored various forms of amplitudes and found that

each amplitude can be brought to the form, which is especially simple. We call this form

canonical. In this form, all derivatives of the momentum-conserving delta-function combine

into powers of the Fourier transform of the AdS conformal factor, while the remaining part

of the amplitude is given by a polynomial in the Mandelstam variables — just like in flat

space. We then used the canonical form to classify consistent amplitudes associated with

contact four-point diagrams, by requiring correct transformation properties with respect

to the AdS isometry algebra. The result of this analysis is consistent with our expecta-

tions: in particular, we find that, as in flat space, contact four-point amplitudes can be

labelled by polynomials of two variables. Finally, we establish a connection between the

canonical form of amplitudes and scalar conformal primary operators constructed out of

four massless fields.

Our main motivation in this paper was to make the first step towards understanding

the relation between the analytic structure of AdS amplitudes in the spinor-helicity repre-

sentation and the type of the diagram they result from. In this respect, we can conclude

that amplitudes for contact diagrams do have distinctive analytic structure: leaving aside
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the AdS conformal factor, they are given by polynomials of the Mandelstam variables. An

obvious next step would be to compute amplitudes for exchange diagrams and compare

their analytic structure with what we found here for contact interactions. Eventually, these

results may serve as a basis for the development of the on-shell methods for the AdS spinor-

helicity representation in future. It would also be interesting to explore AdS generalizations

of other modern amplitude techniques such as the color-kinematics duality [39]5 and the

CHY formalism [42, 43].

Finally, let us note that this paper was devoted to four-point amplitudes of scalar

fields, while the power of the spinor-helicity formalism becomes more apparent when one

deals with fields with spin. Though, we expect that, as in flat space, spinning contact

diagrams have similar analytic structure to scalar ones, it would be interesting to consider

them in future.
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A Conventions and useful formulae

In this appendix we collect our notations and some formulae used in the text. For more

details we refer the reader to [5].

We are dealing with the four-dimensional Minkowski and AdS spaces in the mostly

plus signature. For vector Lorentz indices we use letters from the beginning of the Latin

alphabet, while letters from the middle of the Latin alphabet are used to label particles.

We also use Greek letters from the beginning of the alphabet for spinor indices and Greek

letters from the middle of the alphabet for base indices.

We use the following conventions for the Pauli matrices

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (A.1)

These allow to convert Lorentz vector indices to spinor ones and vice versa. For example,

pαα̇ ≡ pa(σa)αα̇, pa = −1

2
(σa)

α̇αpαα̇. (A.2)

We raise and lower spinor indices according to

λα = εαβλβ , λβ = εβγλ
γ , (A.3)

where

εαβ = εα̇β̇ =

(
0 1

−1 0

)
= −εαβ = −εα̇β̇ . (A.4)

5See [40, 41] for discussions of the color-kinematics duality in the context of the AdS/CFT correspon-

dence.
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Derivatives with respect to spinors are defined in a natural way

∂λα

∂λβ
= δαβ ,

∂λα
∂λβ

= δβα. (A.5)

In our conventions one has

(σa)αα̇(σa)ββ̇ = −2εαβεα̇β̇ , (σa)αα̇(σa)
ββ̇ = −2εαβεα̇β̇ ,

(σa)αα̇(σb)α̇α = −2δba, Aαβ −Aβα = εαβA
γ
γ ,

(σa)α̇β(σb)ββ̇ + (σb)α̇β(σa)ββ̇ = −2ηabδα̇
β̇
,

(σa)βα̇(σc)α̇α(σb)αγ̇ + (a↔ b) = −2
(
ηac(σb)βγ̇ + ηcb(σa)βγ̇ − ηab(σc)βγ̇

)
.

(A.6)

In addition, we use the shorthand notations

〈mn〉 ≡ λmα λnα = λiαλ
j
βε
αβ , [mn] ≡ λ̄mα̇ λ̄nα̇ = λ̄mα̇ λ̄

n
β̇
εα̇β̇ ,

〈mxn] ≡ λαmxαα̇λ̄α̇n, 〈λxµ] ≡ λαxαα̇µ̄α̇.
(A.7)

B Computation of a six-derivative amplitude

In this section we give some intermediate results and useful relation, relevant for the com-

putation of the canonical form of the amplitude for vertex (3.21).

As usual, we start by plugging in the plane wave solutions and expressions for the

metric and the Christoffel symbols into the vertex. Next, we evaluate the Fourier transform.

Using that

∂

∂pi
G̃5δ(4)(p) =−R

2

3
piG̃

6δ(4)(p),

∂

∂pi
∂

∂pj
G̃4δ(4)(p) =

(
2R4

15
pipjG̃

6− 2R2

7
ηijG̃

4− R4

105
ηijp

2G̃6

)
δ(4)(p),

∂

∂pi
∂

∂pj
∂

∂pk
G̃3δ(4)(p) =

(
R4

7
(ηjkpi+ηikpj +ηijpk)G̃

4

−R
6

15
pipjpkG̃

6+
R6

210
(ηjkpi+ηikpj +ηijpk)p

2G̃6

)
δ(4)(p),

∂

∂pi
∂

∂pj
�pG̃

2δ(4)(p) =

(
4R4

5
ηijG̃

2− 16R6

21
pipjG̃

4+
2R8

105
pipjp

2G̃6

+
2R6

105
ηijp

2G̃4− R8

630
ηijp

4G̃6

)
δ(4)(p),

∂

∂pi
�2
pG̃δ

(4)(p) =

(
−32R6

5
piG̃

2+
64R8

105
pip

2G̃4− 2R10

315
pip

4G̃6

)
δ(4)(p),

�3
pδ

(4)(p) =

(
−128R6

5
+

64R8

5
p2G̃2− 16R10

35
p4G̃4+

4R12

1575
p6G̃6

)
δ(4)(p),

(B.1)

we find the associated amplitude to be

(2π)−4A4 =
19

480R6
δ(4)(p) +

1

R4
f1G̃

2δ(4)(p) +
1

R2
f2G̃

4δ(4)(p) + f3G̃
6δ(4)(p), (B.2)
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where

f1 =− 1

240
(s1+s2−17t1−17t2+16u1+16u2),

f2 =
1

6720
(57s21+494s1s2+57s22−202s1t1−202s2t1+41t21−202s1t2−202s2t2

+302t1t2+41t22−26s1u1−26s2u1+38t1u1+38t2u1−3u21

−26s1u2−26s2u2+38t1u2+38t2u2−226u1u2−3u22),

f3 =
1

16800
(6s31+198s21s2+198s1s

2
2+6s32−2s21t1−34s1s2t1−2s22t1−7s1t

2
1

−7s2t
2
1+ t31−2s21t2−34s1s2t2−2s22t2−164s1t1t2−164s2t1t2

+63t21t2−7s1t
2
2−7s2t

2
2+63t1t

2
2+ t32−52s21u1−344s1s2u1

−52s22u1+36s1t1u1+36s2t1u1−2t21u1+36s1t2u1+36s2t2u1

+56t1t2u1−2t22u1+43s1u
2
1+43s2u

2
1−7t1u

2
1−7t2u

2
1−4u31

−52s21u2−344s1s2u2−52s22u2+36s1t1u2+36s2t1u2−2t21u2

+36s1t2u2+36s2t2u2+56t1t2u2−2t22u2+236s1u1u2+236s2u1u2

−74t1u1u2−74t2u1u2−72u21u2+43s1u
2
2+43s2u

2
2−7t1u

2
2

−7t2u
2
2−72u1u

2
2−4u32).

(B.3)

In the above computation we used tensor algebra package xAct for Mathematica.

C Constraint equations

In this appendix we show how the constraint equations (4.6) can be brought to the

form (4.7).

To start, we contract (4.6) with four momenta of fields on external lines, thus obtaining

four equations

λαnλ̄
α̇
n

4∑
m=1

∂2fN
∂λαm∂λ̄

α̇
m

g(�p)δ
(4)(p) = 0, n = 1, 2, 3, 4. (C.1)

A straightforward computation gives

∂2f

∂λα1∂λ̄
α̇
1

=− λ2αλ̄2α̇
∂f

∂s1
− λ4αλ̄4α̇

∂f

∂t1
− λ3αλ̄3α̇

∂f

∂u1

+ λ2αλ̄2α̇〈12〉[12]
∂2f

∂s21
+ λ4αλ̄4α̇〈14〉[14]

∂2f

∂t21
+ λ3αλ̄3α̇〈13〉[13]

∂2f

∂u21

+ λ4αλ̄2α̇〈12〉[14]
∂2f

∂t1∂s1
+ λ3αλ̄2α̇〈12〉[13]

∂2f

∂u1∂s1

+ λ2αλ̄4α̇〈14〉[12]
∂2f

∂s1∂t1
+ λ3αλ̄4α̇〈14〉[13]

∂2f

∂u1∂t1

+ λ2αλ̄3α̇〈13〉[12]
∂2f

∂s1∂u1
+ λ4αλ̄3α̇〈13〉[14]

∂2f

∂t1∂u1
.

(C.2)
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Other terms in the sum in (C.1) are obtained similarly. Focusing on equation (C.1) with

n = 1, we find

λα1 λ̄
α̇
1

4∑
m=1

∂2f

∂λαm∂λ̄
α̇
m

= s1

(
∂f

∂s1
+
∂f

∂t2
+

∂f

∂u2

)
+ t1

(
∂f

∂t1
+
∂f

∂s2
+

∂f

∂u2

)
+ u1

(
∂f

∂u1
+
∂f

∂s2
+
∂f

∂t2

)
+ s21

∂2f

∂s21
+ t21

∂2f

∂t21
+ u21

∂2f

∂u21

+ 2s1t1
∂2f

∂s1∂t1
+ 2s1u1

∂2f

∂s1∂u1
+ 2t1u1

∂2f

∂t1∂u1

+ (t1 + u1)s2
∂2f

∂s22
+ (s1 + u1)t2

∂2f

∂t22
+ (s1 + t1)u2

∂2f

∂u22

+ (〈23〉[24]〈14〉[13] + 〈24〉[23]〈13〉[14])
∂2f

∂t2∂u2

− (〈34〉[23]〈12〉[14] + 〈23〉[34]〈14〉[12])
∂2f

∂s2∂t2

+ (〈34〉[24]〈12〉[13] + 〈24〉[34]〈13〉[12])
∂2f

∂s2∂u2
.

(C.3)

First four lines of (C.3) are already in the desirable form: they involve only the Mandel-

stam variables and their derivatives. We would like to bring the remaining lines to the same

form. In flat space this can be achieved using momentum conservation. Instead, in (C.1)

the momentum-conserving delta function appears together with the operator g(�p), there-

fore, the total momentum does not vanish identically. So, each time that we use

pαα̇ ≡ λα1 λ̄α̇1 + λα2 λ̄
α̇
2 + λα3 λ̄

α̇
3 + λα4 λ̄

α̇
4 , (C.4)

we should keep the contribution coming from pαα̇.

To illustrate how this works in practice, we consider the contribution from the fifth

line of (C.3)

I ≡ ∂2f

∂t2∂u2
(I1 + I2), (C.5)

where

I1 ≡ 〈23〉[24]〈14〉[13]g(�p)δ
(4)(p), I2 ≡ 〈24〉[23]〈13〉[14]g(�p)δ

(4)(p). (C.6)

We start by eliminating |4〉|4] from I1 by means of (C.4)

I1 = −〈23〉[23]〈13〉[13]g(�p)δ
(4)(p) + 〈23〉λ̄α̇2λα1 [13]pαα̇g(�p)δ

(4)(p)

= −u1t2g(�p)δ
(4)(p)− 2〈23〉[13]〈1 ∂

∂p
2]g′(�p)δ

(4)(p).
(C.7)

Analogously, eliminating |3〉|3] from I2, we find

I2 = −u2t1g(�p)δ
(4)(p)− 2〈24〉[14]〈1 ∂

∂p
2]g′(�p)δ

(4)(p). (C.8)
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So,

I1 + I2 = (−u1t2 − u2t1)g(�p)δ
(4)(p) + I3, (C.9)

where

I3 ≡ −2

(
〈23〉[13]〈1 ∂

∂p
2] + 〈24〉[14]〈1 ∂

∂p
2]

)
g′(�p)δ

(4)(p). (C.10)

Next, we proceed with I3 by eliminating |3〉|3] + |4〉|4]

I3 = −2〈2p1]〈1 ∂
∂p

2]g′(�p)δ
(4)(p). (C.11)

By commuting p to the right until it multiplies the delta function and using the standard

spinor algebra, we get

I3 = 16pi1p
j
2

∂2

∂pi∂pj
g′′(�p)δ

(4)(p)− 4s1g
′′(�p)�pδ

(4)(p)− 4s1g
′(�p)�pδ

(4)(p). (C.12)

Then, for the first two terms we use

pi1p
j
2

∂2

∂pi∂pj
g′′(�p)δ

(4)p =
1

4
(p1p)(p2p)g(�p)δ

(4)(p)− 1

2
p1p2g

′(�p)δ
(4)(p),

g′′(�p)�pδ
(4)(p) =

1

4
p2g(�p)δ

(4)(p)− 2g′(�p)δ
(4)(p),

(C.13)

which leads to

I3 = (4(p1p)(p2p)− s1p2)g(�p)δ
(4)(p). (C.14)

Collecting (C.5), (C.9) and (C.14), we, finally, find

I = (4(p1p)(p2p)− s1p2 − u1t2 − u2t1)
∂2f

∂t2∂u2
g(�p)δ

(4)(p). (C.15)

The last two lines in (C.3) can be obtained from (C.15) by the appropriate permutations

of fields’ labels

− (〈34〉[23]〈12〉[14] + 〈23〉[34]〈14〉[12])
∂2f

∂s2∂t2
g(�p)δ

(4)(p)

= (4(p1p)(p3p)− u1p2 − t1s2 − t2s1)
∂2f

∂t2∂s2
g(�p)δ

(4)(p),

(C.16)

(〈34〉[24]〈12〉[13]+〈24〉[34]〈13〉[12])
∂2f

∂s2∂u2
g(�p)δ

(4)(p)

= (4(p1p)(p4p)−t1p2−u1s2−u2s1)
∂2f

∂u2∂s2
g(�p)δ

(4)(p).

(C.17)

Combining all the contributions to (C.1) with n = 1 and equating the prefactor of

g(�p)δ(p) to zero, we find the first equation in (4.7). Other equations, again, can be

obtained by permuting fields’ labels.
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