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suming large central charge c and a sparse spectrum, the leading contribution to this cor-

relation function is the six-point Virasoro identity block — corresponding to each distinct

pair of operators fusing into the identity and its descendants. We call this the star channel.

One particular term in the star channel identity block is the stress tensor SL(2,R) (global)

block, for which we derive an explicit expression. In the holographic context, this object

corresponds to a direct measure of nonlinear effects in pure gravity. We calculate additional

terms in the star channel identity block that contribute at the same order at large c as the

global block using the novel theory of reparametrizations, which extends the shadow oper-

ator formalism in a natural way. We investigate these blocks’ relevance to quantum chaos

in the form of six-point scrambling in an out-of time ordered correlator. Interestingly, the

global block does not contribute to the scrambling mode of this correlator, implying that,

to leading order, six-point scrambling is insensitive to the three-point graviton coupling in
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comb channel, and find the same result for the chaos exponent in this decomposition.
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1 Introduction

In order to understand the detailed mechanism by which gravitational dynamics is encoded

in conformal field theories (CFTs), we must understand the map from basic field theory

ingredients into gravity and vice versa. In a correlation function of CFT primary operators,

these “atomic” ingredients are often the conformal blocks, which describe the exchange of

a specified representation of the conformal group. Such a conformal block decomposition

instructs one to pick an OPE channel and then to sum over all possible operator exchanges

in that channel. The final result should be independent of which channel one chose in

the beginning.

The dual gravitational computation typically looks very different. On the gravity side,

in the semiclassical regime the prescription for computing correlation functions involves

standard perturbative graviton exchanges in the curved geometry provided by the leading

saddle point of the gravitational path integral. This calculation does not involve picking

any channel. Instead it picks a leading background geometry and sums over all channels

of graviton exchanges between probe operators. The standard lore is that the gravity
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calculation is reproduced in the CFT by assuming dominance of the identity block and

maximizing its contribution over all possible identity channels [1–3].

In this paper we will investigate a highly nontrivial example of these rules. We study

six-point functions of pairwise identical operators and assume that a suitable notion of

Virasoro identity block dominates. This does not uniquely fix the decomposition since

there exist topologically distinct OPE channels for six-point functions. Specifically, we

mostly consider the OPE channel which we call the star channel [4, 5]. As we will see, the

star channel is the most direct analogue of the four-point identity block, where all external

probe operators can be organized in pairs with identity monodromy. The star channel

contains cubic stress tensor exchanges, and thus is genuinely sensitive to nonlinear effects

in the bulk dual.

We will compare the star channel with the comb channel (see figure 1), which is

characterized by a different OPE channel topology [5–15]. The comb channel is not a

pure stress tensor block as it involves the exchange of an internal operator that is not

a descendant of the identity. Thus the comb channel block is generically insensitive to

the cubic graviton coupling. Of course, the final answer for the correlation function, after

summing over all possible exchanges, should not depend on the particular channel we chose

for our decomposition. Thus the cubic interaction of gravitons should be captured by heavy

exchanges in any comb-channel decompositon.

The correlation function we choose to study is the (maximally) out-of-time-ordered

six-point correlation function (OTOC) in a thermal state. From gravitational calculations

we know what to expect [16–24]: the OTOC should display black hole-like features and in

particular it should have an exponentially growing contribution, which signals scrambling

at the horizon. We indeed find such a contribution in both star and comb identity blocks.

Interestingly, the term responsible for this growing mode in the star channel is not the

global T block.

This paper touches upon a second topic of recent interest. It was pointed out that

a theory of reparametrization modes in two-dimensional CFTs is useful for understand-

ing identity blocks and quantum chaos [25–27]. One way to think about the theory of

reparametrizations is in terms of the geometric action describing the quantization of coad-

joint orbits of two copies of Diff(S1)/SL(2,R) [28–31]. In [32] it was observed that at the

linearized level this theory is in direct correspondence with the shadow operator formal-

ism [33, 34] applied to compute contributions of stress tensor exchanges to global conformal

blocks. While we will not say much about the reparametrization mode perspective, we will

make extensive use of the technical simplifications it brings about when phrased in terms of

the shadow operator approach to global blocks. A novel development in the present paper

is the computation of the reparametrization mode three-point function, see (2.3.2). It is

the basic ingredient in our derivation of the star channel identity block alluded to above.

This calculation illustrates clearly some of the advantages of the reparametrization mode

formalism for computing stress tensor blocks.

This paper is organized as follows. In section 2.1 and section 2.2 we discuss the different

OPE channel topologies and define the global six-point star-channel T block. We derive

this block using the shadow operator formalism and reparametrization modes in section 2.3.

– 2 –



J
H
E
P
0
8
(
2
0
2
0
)
0
0
2

In section 3 we generalize the formalism in order to discuss the Virasoro block in certain

kinematic regimes. In section 4 we analytically continue the star-channel identity block

to the second sheet such as to obtain a particular out-of-time-ordered six-point function.

We show that the global block is not sufficient to capture interesting out-of-time-order

dynamics, but the first nontrivial piece in the Virasoro block in fact dominates and allows

us to identify the relevant six-point scrambling time. We compare our results with the

similar looking block derived in the comb channel, see section 5. We end with a discussion

in section 6 and defer some technical details to appendices.

Note added. While this paper was nearing completion, ref. [35] appeared, which has

partial overlap with some of our discussion of the global star (which they refer to as

snowflake) and comb channel blocks.

2 The star-channel global T block

2.1 Review of the conformal block expansion

In this paper we consider 2d CFT correlation functions of six operators, grouped in pairs:

G(x1, x̄1, x2, x̄2, y1, ȳ1, y2, ȳ2, w1, w̄1, w2, w̄2) =

〈X(x1, x̄1)X(x2, x̄2)Y (y1, ȳ1)Y (y2, ȳ2)W (w1, w̄1)W (w2, w̄2)〉 . (2.1)

Generally, the operators have dimensions ∆X = hX + h̄X , ∆Y = hY + h̄Y and ∆W =

hW + h̄W and spin sX = hX − h̄X , sY = hY − h̄Y and sW = hW − h̄W . However, for the

remainder of the paper we will focus on scalar operators with sX/Y/Z = 0 . Since we work in

two dimensions, this is not a very restrictive choice and generalizations are straightforward.

For scalar operators we can express the above correlation function as follows

G =
1

|x12|2∆X |y12|2∆Y |w12|2∆W
F (z, z̄, u, ū, v, v̄) (2.2)

where zij ≡ zi−zj and the function F only depends on the following conformally invariant

cross-ratios

z =
(x1 − y1)(y2 − x2)

(x1 − y2)(y1 − x2)
, u =

(x1 − y1)(y2 − w1)

(x1 − y2)(y1 − w1)
, v =

(x1 − y1)(y2 − w2)

(x1 − y2)(y1 − w2)
, (2.3)

and their anti-holomorphic counterparts. Two additional simplifications happen in two-

dimensional conformal field theory. By associativity of the operator algebra, the function F

can be decomposed as an infinte sum over intermediate exchanges of operators. The func-

tions labeling individual exchanges are known as conformal blocks and by holomorphy of 2d

CFT, they decompose into a product of a holomorphic function and an anti-holomorphic

function. In summary, we may write:

F (z, z̄, u, ū, w, w̄) =
∑
i,j,...

ci,j,...c̄i,j,...Vi,j,...(z, u, v)V̄i,j,...(z̄, ū, v̄) (2.4)

where the coefficients ci,j,... denote products of three-point coefficients and are theory depen-

dent. The functions V(z, u, v) are the individual blocks, which only contain kinematic data.
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Figure 1. Illustration of the two different OPE channel topologies relevant for universal contribu-

tions to the six-point block of pairs of operators X,Y,W . The left figure shows the star channel

identity block, which involves purely stress tensor exchanges. For comparison, on the right hand

side we also show the comb channel, which involves an intermediate exchange that is identical to

one of the external probe operators.

In 2d CFT these functions V label the possible exchanges of Virasoro primary op-

erators and all their descendents, thus containing the information of an entire Virasoro

representation. However, without specifying the microscopic data of our CFT, it is dif-

ficult to proceed beyond (2.4). In theories with gravity duals, on the other hand, we

may compute certain universal contributions to the correlator (2.1), since we have come

to expect the Virasoro block associated with the identity operator to dominate in certain

kinematics [36–38] as these have the universal features necessary to reproduce bulk AdS3

physics, including multi-graviton exchanges [39]. This has recently been used in a wide

range of applications related to 3d black hole spacetimes [3, 40, 41].

Even computing the individual Virasoro blocks is a difficult task, although recursion

relations exist for computing them order by order in a small cross-ratio expansion [42, 43].

At large-c, the blocks exponentiate and can be obtained using the monodromy method [44].

For four- and five-point functions, there is a unique choice of graph topology for the

conformal block expansion.1 This topology is known as the comb. However at six points,

we are faced with a choice between two types of graph topologies, both denoted in figure 1.

The new type of graph is called the star (or snowflake [35]) and is shown in the left hand

side of the figure, while the comb is drawn in the right side of the figure.

While the specific comb channel shown in the figure is still universal, it is clear that the

most direct analogue of the four-point Virasoro identity block — where pairs of external

operators with the same dimension are taken to fuse into the identity — is given by the

star channel OPE. As we will see, the leading contribution to the star channel Virasoro

identity block contains the star channel global block plus additional terms. As previously

noticed [45], in the case of four-point functions, knowledge of these global T blocks is

enough for extracting the chaos exponent in theories with a gravity dual. We will show

(see section 4) that the star-channel global T block is not entirely sufficient for extracting

the chaos exponent at six points.

1Of course there exist different channels for four-point functions, but we stress that they all have the

same topology.
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In this note we will always refer to Virasoro blocks as V and denote global blocks by G.

We shall carefully distinguish the global from the Virasoro block in what follows. It is very

instructive to first develop methods for computing the global block and then generalize

them for the Virasoro case.

Characterization of the global star T block. The global block G(6, star)
T will make

an appearance in what follows, so we characterize it here to make its identification more

obvious. Since G(6, star)
T is fixed by global conformal symmetry, it satisfies a set of differ-

ential equations known as the conformal Casimir equations (see e.g. [46]). For the sake of

pedagogy, we present here the Casimir equations satisfied by the star channel block in the

left of figure 1:[
−(b− c)2∂b∂c − hT (hT − 1)

]
G(6, star)
T (z, u, v) = 0 (2.5)[

(1− z)2 {∂zz∂z + (u ∂u + v ∂v) ∂z} − hT (hT − 1)
]
G(6, star)
T (z, u, v) = 0 (2.6)[

−(u− v)2∂u∂v − hT (hT − 1)
]
G(6, star)
T (z, u, v) = 0 (2.7)

with hT = 2 (for stress tensor exchanges) and b ≡ u
v

1−v
1−u and c ≡ 1−v

1−u . We will review how

to derive these equations in section 2.2.

2.2 The shadow operator formalism and definition of the star channel global

block

Consider the conformal six-point function G as denoted in (2.1). To decompose it into

conformal blocks, we must insert three complete sets of states (or resolutions of the iden-

tity) and obtain sums over products of three-point functions. For the global blocks, we

shall employ the shadow operator formalism [33, 34], where projection onto the confor-

mal family of a primary O and its global descendants is implemented by the conformally

invariant projector

|O| ≡ (2h− 1)(1− 2h̄)

COπ2

∫
d2zd2z′ |O(z)〉 1

(z − z′)2−2h(z̄ − z̄′)2−2h̄
〈O(z′)| (2.8)

where (h, h̄) are the dimensions of O and CO is the normalization of 〈OO〉. We will

generally work with CO = 1 except when O = T , in which case CT = c/2.2 The projector

can also be written in terms of the formal shadow operator3

Õ(z) ≡ (−2)h−h̄ Γ(2− 2h̄)

πΓ(2h− 1)

∫
d2z

1

(z − z′)2−2h(z̄ − z̄′)2−2h̄
O(z′) , (2.9)

which has dimensions
(
h̃,

¯̃
h
)

= (1 − h, 1 − h̄). Exchanges of the stress tensor T ≡ Tzz are

obtained by using the stress tensor projector

|T | = 6

π2c

∫
d2zd2z′ |T (z)〉 (z − z′)2

(z̄ − z̄′)2
〈T (z′)| ≡ 3

πc

∫
d2z |T (z)〉〈T̃ (z)| , (2.10)

2The normalization in (2.8) is chosen such that |O|2 = |O|.
3We leave spin indices implicit. For instance, operators in (2.9) should be understood as O ≡ Oz···z and

Õ ≡ Õz···z.

– 5 –



J
H
E
P
0
8
(
2
0
2
0
)
0
0
2

where in the second equality we have used the definition of the shadow stress tensor

T̃ (z) ≡ T̃ zz =
2

π

∫
d2z′

(z − z′)2

(z̄ − z̄′)2
T (z′) . (2.11)

Inserting these projectors into a correlation function will not produce an isolated global

block. It instead produces a conformal partial wave (CPW), which we shall hereafter

denote by Ψ. The CPW Ψ is a linear combination of the block associated with O exchange

plus the shadow block associated with the exchange of a shadow representation Õ. Since

both of these share the same Casimir eigenvalues, they are instead distinguished by their

short distance behavior. To obtain a global block from a CPW, we must further project

out the shadow representation. This is done via an additonal monodromy projection and

below, we will implement the monodromy projection in an efficient way.

The star channel CPW is defined by fusing each pair of operators into a stress tensor,

i.e.,

X(x1)X(x2) −→ 3

πc

∫
d2z 〈X(x1)X(x2)T (z)〉 T̃ (z) (2.12)

and similarly for Y and W operators. Using this OPE structure symmetrically in the

six-point function, we obtain the star channel CPW:

Ψ
(6, star)
T ≡

(
3

πc

)3 ∫∫∫
d2za d

2zb d
2zc

〈
X1X2Ta

〉
〈X1X2〉

〈
Y1Y2Tb

〉
〈Y1Y2〉

〈
W1W2Tc

〉
〈W1W2〉

〈
T̃aT̃bT̃c

〉
. (2.13)

We illustrate the OPE structure in the left panel of figure 1. The star channel has been

discussed in [4, 5]. Our first goal is to give an explicit expression for the block G(6, star)
T

describing external operators fusing pairwise into T .

As mentioned earlier, the CPW contains the block of interest as well as a shadow block.

The six-point global blocks are obtained from the CPWs by performing a monodromy

projection, which we denote abstractly as follows:

G(6, star)
T = Ψ

(6, star)
T

∣∣
phys.

, (2.14)

and will provide the details of this procedure in section 2.3, however, let us give a rough

intuition of the procedure now. In the next section, following [32], we will give Feyn-

man rules for computing CPWs with stress tensor exchanges. These Feynman rules are

built out of particular propagators, and similarly to the computation of correlation func-

tions in any quantum field theory, there are various propagators one can choose (e.g.

Feynman/retarded/advanced) which give rise to different observables, in practice. The

monodromy projection we discuss is simply a choice of propagator which results in a block

rather than a CPW.

Casimir equations. As alluded to above, the global six-point blocks can be characterized

as solutions to certain Casimir equations, which generally have the form:

[C(1, . . . , k)− hex(hex − 1)]G = 0 (2.15)

when k external operators fuse into an internal operator of dimension hex and C(1, . . . , k) is

a particular quadratic Casimir of the conformal group. In two dimensions these quadratic

– 6 –
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Casimirs can be constructed as follows. Define the action of (holomorphic) generators on

some operator O(zi) with holomorphic weight hi as:

L
(i)
−1 = ∂i , L

(i)
0 = zi∂i + hi , L

(i)
1 = z2

i ∂i + 2hizi . (2.16)

The quadratic Casimir acting on k external operators is

C(1, . . . , k) =
(∑

i L
(i)
0

)(∑
i L

(i)
0

)
− 1

2

(∑
i L

(i)
1

)(∑
i L

(i)
−1

)
− 1

2

(∑
i L

(i)
−1

)(∑
i L

(i)
1

)
(2.17)

where sums run over i = 1, . . . , k. In particular, we have:

C(z1) = h1(h1 − 1) ,

C(z1, z2) = (h1 + h2)(h1 + h2 − 1)− z2
12 ∂1∂2 + 2 z12 (h2 ∂1 − h1 ∂2) , (2.18)

C(z1, z2, z3) = (h1 + h2 + h3)(h1 + h2 + h3 − 1)− z2
12 ∂1∂2 − z2

13 ∂1∂3 − z2
23 ∂2∂3

+ 2z12(h2 ∂1 − h1 ∂2) + 2z23(h3 ∂2 − h2 ∂3) + 2z31(h1 ∂3 − h3 ∂1) .

Since the six-point blocks depend on three cross-ratios, there are also three independent

Casimir equations, which should be satisfied simultaneously. In the star channel, all pairs

of operators X1,2, Y1,2, and W1,2 fuse into stress tensor exchanges. Therefore, the CPW

and the global part of the block satisfy:

C(x1, x2)
[
〈XX〉〈Y Y 〉〈WW 〉Ψ(6, star)

T

]
= 2 〈XX〉〈Y Y 〉〈WW 〉Ψ(6, star)

T (2.19)

C(y1, y2)
[
〈XX〉〈Y Y 〉〈WW 〉Ψ(6, star)

T

]
= 2 〈XX〉〈Y Y 〉〈WW 〉Ψ(6, star)

T (2.20)

C(w1, w2)
[
〈XX〉〈Y Y 〉〈WW 〉Ψ(6, star)

T

]
= 2 〈XX〉〈Y Y 〉〈WW 〉Ψ(6, star)

T (2.21)

where hT (hT − 1) = 2 is the eigenvalue associated with fusion of holomorphic external

operators into stress tensors and e.g. 〈XX〉 is shorthand for (x1 − x2)−2hX .

2.3 Derivation of the star-channel six-point T block

In this section we show how to derive the result for the star channel block (see (2.43)). We

phrase the computation in terms of the shadow operator formalism applied to stress tensor

exchanges. Note, however, that due to the close relation between stress tensor shadows

and reparametrization modes in CFTs [32], the computations below find a natural home

in the context of the theory of reparametrizations developed in [26, 27, 32, 47].

2.3.1 Four-point blocks from the shadow operator formalism

To set the stage, we begin with a review of the global stress tensor four-point block both

from the perspective of the shadow operator formalism, and in terms of reparametrization

modes. We will briefly comment on the four-point Virasoro identity block.

We can define the global stress tensor four-point block using the shadow operator

formalism. We begin by repeating expression (2.11) for the shadow of the holomorphic

stress tensor [33, 34]:

T̃ (z) =
2

π

∫
d2z′

(z − z′)2

(z̄ − z̄′)2
T (z′) . (2.22)

– 7 –
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A central purpose of this formal definition is that it allows us to define the projectors

onto stress tensor blocks, (2.10). We can use these to project the four-point function onto

the exchange of a stress tensor and its global descendants. This defines the following

four-point CPW:

Ψ
(4)
T (y1, y2, w1, w2) ≡

〈
Y1Y2|T |W1W2

〉
〈Y1Y2〉〈W1W2〉

(2.23)

where we assume for simplicity that Y and W are purely holomorphic operators. According

to (2.10) and (2.22), the computation of this object involves two conformal integrals. One

can perform these explicitly [33] and obtains the following result:

Ψ
(4)
T (z, z̄) =

2hY hW
c

[
z2

2F1(2, 2, 4, z) + 12
z̄

z
2F1(−1,−1,−2, z) 2F1(1, 1, 2, z̄)

]
(2.24)

where z ≡ (y1−y2)(w1−w2)
(y1−w1)(y2−w2) . This CPW is the sum of the well-known global four-point block

G(4)
T (z) and the shadow block G(4)

T̃
(z, z̄). Both solve the four-point Casimir equation,

C(y1, y2)
[
〈Y1Y2〉〈W1W2〉 G(4)

T/T̃

]
= 2 〈Y1Y2〉〈W1W2〉 G(4)

T/T̃
, (2.25)

but only G(4)
T has the desired short distance behavior corresponding to stress tensor ex-

change. The monodromy projection amounts to dropping the shadow block from the

CPW [34, 48]. This leaves us with the global stress tensor block:

G(4)
T (z) ≡ Ψ

(4)
T (z, z̄)

∣∣∣
phys.

=
2hY hW

c
z2

2F1(2, 2, 4, z) . (2.26)

Formulation in terms of reparametrization modes. Let us now recall how the above

calculation can be phrased in terms of the exchange of a nonlocal operator of negative di-

mension (closely related to a holomorphic reparametrization mode). We will refer to this

as the reparametrization mode method. The following discussion is mostly a review of [32],

building partly on previous work [26, 27]. At the level of global blocks, the reparametriza-

tion mode method is equivalent to the shadow operator formalism, but simpler to perform

in practice for at least three reasons:

1. The reparametrization mode calculation is local in the sense that it eliminates the

need to perform any conformal integrals.

2. The monodromy projection can be performed at the level of the reparametrization

mode propagator. We can then compute the physical conformal block directly with-

out having to extract it from the conformal partial wave.

3. The fact that the block satisfies Casimir equations will be manifest in the calculation.

While these simplifications are minor in case of the global four-point block with T ex-

changed, they will be crucial when we turn to the six-point case.4

4Some simplifications due to the reparametrization mode formalism also become apparent for four-point

blocks in higher dimensions [32].
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In order to write the above calculation in terms of reparametrization modes, let us

write the shadow of the stress tensor as a derivative:5

T̃ =
c

3
∂̄ε . (2.27)

We will often refer to ε as the reparametrization mode. This is based on the observation

that its correlation functions can be obtained from an effective action of holomorphic

reparametrizations. We refer the reader to [26, 27] for a more in depth explanation. At

present, we simply treat ε as an operator with dimensions (h, h̄) = (−1, 0), which can be

defined nonlocally in terms of the stress tensor through (2.27) and (2.22).

We can now rewrite the four-point stress tensor CPW (2.23) as follows:

Ψ
(4)
T =

1

〈Y1Y2〉〈W1W2〉

(
3

πc

)2 ∫
d2za d

2zb
〈
Y1Y2Ta

〉〈
T̃aT̃b

〉〈
TbW1W2

〉
=

1

〈Y1Y2〉〈W1W2〉
1

π2

∫
d2za d

2zb ∂̄a
〈
TaY1Y2

〉〈
εaεb

〉
∂̄b
〈
TbW1W2

〉 (2.28)

Note that the two conformal integrals are now trivial to do. We simply use the conformal

Ward identity

∂̄a
〈
TaY1Y2

〉
= −π

∑
i=1,2

(
hY ∂zaδ

(2)(za − yi)− δ(2)(za − yi)∂yi
)
〈Y1Y2〉 (2.29)

to eliminate the integrals. We can write this as:

Ψ
(4)
T =

〈
B(1)
ε,hY

(y1, y2)B(1)
ε,hW

(w1, w2)
〉
≡ (2.30)

where we have introduced diagrammatic notation to indicate a single ε-exchange (similar

to diagrams in [49]) between two bilocal operators B(1)
ε,h : each bilocal can be thought of as

a local operator (or OPE block) in kinematic space [50, 51] and is therefore indicated by

a single dot. We note here the superscript (1), but defer its meaning to section 3. The

ε-exchange is depicted by a line in the diagram, and the bilocal is defined as

B(1)
ε,h(z1, z2) ≡ h

(
∂ε(z1) + ∂ε(z2)− 2

ε(z1)− ε(z2)

z1 − z2

)
. (2.31)

This diagram is more of a mnemonic than an actual Feynman diagram, as the bilocals

themselves also depend on ε.

With this formalism introduced, the four-point CPW with T -exchanges can be ex-

pressed as a two-point function of these bilocal reparametrization mode insertions. All

we need in order to evaluate this object is the Euclidean two-point function of the

reparametrization mode ε. This can be reverse-engineered from the two-point function

of the stress tensor shadow:

〈T̃1T̃2〉 =
2c

3

z2
12

z̄2
12

≡
( c

3

)2
〈∂̄ε1 ∂̄ε2〉 (2.32)

5The normalization is arbitrary, but will ensure consistency with the formalism used in section 3.
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where εi = ε(zi, z̄i) etc. Note that due to the relation6

T (z) =
˜̃
T (z) =

3

πc

∫
d2z′ 〈T (z)T (z′)〉 T̃ (z′)

= − 1

π

∫
d2z′ ∂̄′〈T (z)T (z′)〉 ε(z′) = − c

12
∂3ε(z) ,

(2.33)

we obtain further constraints on derivatives of the 〈εε〉 two-point function:

〈∂3ε1 ∂
3ε2〉 =

144

c2
〈T1T2〉 =

72

c

1

z4
12

, 〈∂̄ε1 ∂3ε2〉 = −36

c2
〈T̃1T2〉 = −12π

c
δ(2)(z12) .

(2.34)

The constraints (2.32) and (2.34) can easily be solved by integration. This gives:

〈ε(z1, z̄1)ε(z2, z̄2)〉 =
6

c
(z1 − z2)2 log |z1 − z2|2 (2.35)

We could add further “integration constants” to the result (2.35) (such as a purely quadratic

term ∝ z2
12), but these would be superfluous in the sense that they do not contribute to any

physical correlation functions. One can immediately verify that the evaluation of (2.30)

using this propagator reproduces the global CPW, (2.24).

The reparametrization mode formulation gives us another advantage: we can perform

the monodromy projection at the level of the ε-propagator such that the exchange (2.30)

yields the physical conformal block directly. To this end, note that it is natural to split

this propagator into the sum of a physical and a shadow part [32]:

〈ε1ε2〉 = 〈ε1ε2〉phys. + 〈ε1ε2〉shad.

where: 〈ε(z1, z̄1)ε(z2, z̄2)〉phys. =
6

c
(z1 − z2)2 log(z1 − z2)

〈ε(z1, z̄1)ε(z2, z̄2)〉shad. =
6

c
(z1 − z2)2 log(z̄1 − z̄2)

(2.36)

Using the physical propagator in (2.30) produces the physical stress tensor conformal block.

On the other hand, the shadow block is computed by using the shadow propagator in (2.30)

(this is explained in detail in [32]).

Finally, let us discuss the four-point Casimir equation (2.25) in the reparametrization

mode language. Note the following identity:

C(y1, y2)
[
〈Y1Y2〉 B(1)

ε,hY
(y1, y2)

]
= 2 〈Y1Y2〉 B(1)

ε,hY
(y1, y2) . (2.37)

That is, the bilocal B(1)
ε,h is itself an eigenfunction of the Casimir with eigenvalue correspond-

ing to stress tensor exchange.7 It is therefore manifest that the CPW as computed in the

reparametrization mode formalism, (2.30), solves the defining Casimir equation. This re-

mains true for any choice of reparametrization mode propagator (the full propagator (2.35),

its physical piece, or its shadow piece).

6Recall that ∂̄ 1
z

= π δ(2)(z).
7In the kinematic space picture, the Casimir acts as a wave operator and (2.37) is interpreted as a wave

equation for the OPE block [50, 51].
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2.3.2 Star channel six-point block from reparametrization modes

Having reviewed the computation of the global four-point block, we now turn to the star

channel six-point block where the advantages of the formalism presented become apparent.

We are confronted with two problems when evaluating the CPW Ψ
(6, star)
T as defined

in (2.13): first, just performing these conformal integrals is very tedious. Second, once the

integrals have been done, one still needs to identify the physical block and project out the

shadow contributions. Note that now there will be 5 shadow blocks in addition to the one

physical block.

We will circumvent these issues by using the simplifications in stress tensor exchanges

due to Ward identities. Using the same arguments as for the four-point block, it is imme-

diately clear that the evaluation of (2.13) reduces to the following three-point function of

bilocal operators:

Ψ
(6, star)
T =

〈
B(1)
ε,hX

(x1, x2)B(1)
ε,hY

(y1, y2)B(1)
ε,hW

(w1, w2)
〉

= (2.38)

This calculation becomes straightforward once we figure out the three-point function 〈εεε〉.
Note that this will a priori again give a CPW rather than the physical block. The latter is

obtained by means of a monodromy projection:

G(6, star)
T (z, u, v) ≡ Ψ

(6, star)
T (z, u, v)

∣∣∣
phys.

=
〈
B(1)
ε,hX

(x1, x2)B(1)
ε,hY

(y1, y2)B(1)
ε,hW

(w1, w2)
〉

phys.

(2.39)

We will momentarily define the right hand side by deriving 〈εεε〉phys..

To obtain the three-point function 〈εεε〉, we can follow the same strategy as for the

two-point function. By expressing T and T̃ in terms of ε (see (2.27) and (2.33)) we get

differential constraints:

〈∂̄ε1 ∂̄ε2 ∂̄ε3〉 =
72

c2

z12z23z13

z̄12z̄23z̄13
, 〈∂3ε1 ∂̄ε2 ∂̄ε3〉 = −72

c2

z4
23

z2
12z̄

2
23z

2
13

〈∂3ε1 ∂
3ε2 ∂

3ε3〉 = −123

c2

1

z2
12z

2
23z

2
13

, 〈∂3ε1 ∂
3ε2 ∂̄ε3〉 =

123

c2

z̄12z23z13

z5
12z̄23z̄13

(2.40)

as well as four more equations arising from permutations of the insertions in the correlators

in the right column. These constraints have the following solution:

〈ε1ε2ε3〉 = 〈ε1ε2ε3〉phys. + 〈ε1ε2ε3〉shad. (2.41)

where the physical three-point function is the purely holomorphic quantity:

〈ε1ε2ε3〉phys. =
24

c2
z12z23z13

[{
Li2

(
z13

z12

)
− Li2

(
z12

z13

)}
+

{
Li2

(
z12

z32

)
− Li2

(
z32

z12

)}
+

{
Li2

(
z23

z13

)
− Li2

(
z13

z23

)}]
and the shadow piece needs to be chosen such that the full three-point function 〈εεε〉
is (i) covariant and (ii) consistent with (2.40). While it is easy to find expressions for
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〈ε1ε2ε3〉shad. that satisfy condition (ii), the first condition is harder to implement. Since

we will not be interested in computing shadow blocks anyway, we shall not explore these

intricacies further. Note that 〈ε1ε2ε3〉 is symmetric under permuting any of the labels

(these permutations are captured by the permutation group S3), as one would expect for a

Euclidean correlation function. For instance, (2.3.2) can be written as a sum over the six

possible permutations of a single term:

〈ε1ε2ε3〉phys. =
24

c2

∑
π∈S3

(zπ(1)−zπ(2))(zπ(2)−zπ(3))(zπ(1)−zπ(3)) Li2

(
zπ(1) − zπ(3)

zπ(1) − zπ(2)

)
. (2.42)

Again the correlator 〈εεε〉 splits into a physical and shadow piece, which are distin-

guished by their short distance monodromy. We could add various integration constants

to the final output of this procedure, but they will not contribute in physical observ-

ables. Thus we choose them such that the vertex takes a particularly simple form. Now

when computing the six-point star channel block, we can perform the monodromy projec-

tion at the outset by simply working with the physical vertex 〈εεε〉phys. and dropping the

shadow contribution.

2.4 Explicit form of the star channel T block

We can now compute the global six-point block for pairs of identical operators. It is

given by the three-point function of bilocals in (2.39), using the physical vertex function

〈ε1ε2ε3〉phys.. Conceptually, this computation is quite simple: it is just a linear combination

of the connected three-point function 〈ε1ε2ε3〉phys. (and its derivatives). This computation

is a purely algebraic task (it does not involve any conformal integrals, nested infinite sums,

or solving coupled partial differential equations). The resulting algebraic expression can

be simplified and gives:

G(6, star)
T (z, u, v) = −144hXhY hW

c2

[
I (z, u, v) + I (z, v, u) + I

(
1

z
,
u

z
,
v

z

)
+ I

(
1

z
,
v

z
,
u

z

)]
(2.43)

where the function I in the above expression is:

I(z, u, v) ≡ 1 +
1

(u− v)(1− z)

[
u

(
u(v − u+ z(1− v))

1− u
+ 2(z − v)

)
log u

− (1− u)

(
(1− u)(zv + u)

u
+ 2(z − v)

)
log(1− u)

− 2(uv − z)
(
Li2(u)− Li2(1− u)

)]
(2.44)

Note the intricate branch cut structure due to the logarithms and dilogarithms. Analytic

continuation to the second sheet of various cross-ratios will be crucial in the analysis of out-

of-time-ordered correlation functions in section 4. Compared to the well known four-point

identity block, note the increased transcendentality due to the appearance of dilogarithms.

We will now discuss a few consistency checks of the above result.
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Casimir equations. The global block (2.43) satisfies the defining six-point Casimir equa-

tions, i.e., (2.5)–(2.7). This is trivial to check explicitly. Our derivation in section 2.3 makes

this property manifest from the beginning due to the identity (2.37) and the definition of

the block in terms of reparametrization modes, (2.39).

OPE limits. As identical external operators approach each other, the six-point block

should reduce to a suitable five-point block involving the remaining two pairs of identical

operators in addition to an external stress tensor. These OPE limits take the following form:

lim
y1→y2≡y

G(6,star)
T ∼−8hXhY hW

c2
(y1−y2)2(x1−x2)2

(x2−y)2(w1−y)2 g
(c)
5

(
(x1−x2)(w1−y)

(w1−x2)(x1−y)
,

(w1−w2)(x2−y)

(w1−x2)(w2−y)

)
lim

x1→x2≡x
G(6,star)
T ∼−8hXhY hW

c2
(x1−x2)2(y2−w1)2

(y2−x)2(w2−x)2 g
(c)
5

(
(y1−y2)(w1−x)

(w1−y2)(y1−x)
,

(w1−w2)(y2−x)

(w1−y2)(w2−x)

)
lim

w1→w2≡w
G(6,star)
T ∼−8hXhY hW

c2
(w1−w2)2(y2−x1)2

(y2−w)2(x1−w)2 g
(c)
5

(
(y1−y2)(x1−w)

(x1−y2)(y1−w)
,

(x1−x2)(y2−w)

(x1−y2)(x2−w)

)
(2.45)

where the “bare” five-point (comb channel) block with two pairs of identical external

operators and one external stress tensor takes the following form as a function of two

cross-ratios [9]:8

g
(c)
5 (χ1, χ2) = χ2

1 χ
2
2 F2(2, 2, 2; 4, 4;χ1, χ2)

=
6

χ1χ2

[ (
1− 2χ2 − χ2

1 − χ1χ2

)
(1− χ1)2 log(1− χ1)

+
(
1− 2χ1 − χ2

2 − χ1χ2

)
(1− χ2)2 log(1− χ2)

−
(
1− χ2

1 − χ2
2 + χ1χ2

)
(1− χ1 − χ2)2 log(1− χ1 − χ2)

− χ1χ2

(
1− χ1 − χ2 +

χ1χ2

2
+ χ2

1 + χ2
2

)]
(2.46)

where F2 is the second Appell series, which evaluates to the explicit expression in the

second line for our particular configuration of stress tensor exchanges.

Note that each line in (2.45) contains a factor such as (y1 − y2)2 that approaches zero

in the respective OPE limit y1 → y2 with weight 2, corresponding to fusion of two external

operators into a stress tensor. The remaining part of the prefactors should be understood

as the “leg factors” used in [9] in order to have a canonical normalization of the bare

five-point block g
(c)
5 . It is straightforward to express the coordinate dependence of the

five-point blocks in (2.45) in terms of the two independent combinations of cross-ratios out

of (z, u, v) which remain finite in the respective OPE limit.9 We refer the reader to [5, 14]

for more details on OPE limits of higher-point blocks.

8The function g
(c)
5 was denoted as gh,h,2,h

′,h′

2,2 (χ1, χ2) in [9].
9The limits z34 → 0 and z56 → 0 respectively correspond to z → 1 with independent parameters (u, v),

and u→ v with independent parameters (z, u). In the limit z12 → 0 all of z, u, v → 1, but one can choose

independent parameters such as
(

1−z
z−u ,

1−z
z−v

)
to parametrize the five-point block.
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Figure 2. Permutation symmetries of the star channel identity block.

Symmetric presentation of the star channel block. The star channel block is in-

variant under a number of permutation symmetries of the form
(
Z(X)

2 ×Z(Y )
2 ×Z(W )

2

)
oS3:

• From the definition (2.39), it is clear that G(6, star)
T should have a Z(X)

2 × Z(Y )
2 ×

Z(W )
2 symmetry corresponding to exchanging any of the pairs X1 ↔ X2, Y1 ↔ Y2,

and W1 ↔W2.

• From the three-point vertex 〈ε1ε2ε3〉phys. it is manifest that G(6, star)
T should fur-

ther have an S3 symmetry corresponding to all permutations of the pairs (X1, X2),

(Y1, Y2), (W1,W2). This corresponds to performing any of the following exchanges:

xi ↔ yi , yi ↔ wi , wi ↔ xi ,

(xi, yi, wi)↔ (yi, wi, xi) , (xi, yi, wi)↔ (wi, xi, yi) .
(2.47)

Since the S3 permutations do not commute with the Z2 symmetries when acting

on the space of operator insertion points, the full permutation group is a semi-

direct product.10

Figure 2 illustrates the symmetries pictorially. These symmetries of the identity block were

manifest in our derivation in section 2.3. However, not all of the symmetries of the star

channel block are manifest in (2.43). The full result for the star channel block indeed takes

the following form:

G(6, star)
T = −12hXhY hZ

c2

∑
σx∈Z2

∑
σy∈Z2

∑
σw∈Z2

∑
π∈S3

I
(
zσx,σy ,σw,π, uσx,σy ,σw,π, vσx,σy ,σw,π

)
(2.48)

where the function I(z, u, v) was given in (2.44), and zσx,σy ,σw,π etc. denote the cross-ratios

evaluated on insertion points that are permuted according to the composition of the four

permutations σx ◦ σy ◦ σw ◦ π. On the cross-ratios these permutations act explicitly as

10We thank J.-F. Fortin, W.-J. Ma, and W. Skiba for bringing this subtlety to our attention.
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follows:

σx : (z,u,v) 7→ (z′,u′,v′)∈
{

(z,u,v),
(

1

z
,
u

z
,
v

z

)}
,

σy : (z,u,v) 7→ (z′,u′,v′)∈
{

(z,u,v),
(

1

z
,

1

u
,

1

v

)}
,

σw : (z,u,v) 7→ (z′,u′,v′)∈
{

(z,u,v), (z,v,u)
}
,

π : (z,u,v) 7→ (z′,u′,v′)∈
{

(z,u,v),
(
z,
z−u
1−u ,

z−v
1−v

)
,
(

(1−u)(z−v)

(1−v)(z−u)
,

1−u
1−v ,

v(1−u)

u(1−v)

)
,(

v

u
,

1−v
1−u ,

z−v
z−u

)
,
(
v

u
,

1

u
,
z

u

)
,
(

(1−u)(z−v)

(1−v)(z−u)
,

1−u
z−u ,

z(1−u)

z−u

)}
(2.49)

The expression (2.48) of writing the block makes manifest all of its symmetries. However,

for practical purposes, it is often useful to simplify the 48 terms in (2.48) at the expense of

some symmetries still being present but not being manifest anymore. The result is (2.43).

A remark on the coefficient. It goes without saying that the global block, being a

solutions of a particular set of differential equations, is defined up to an overall normal-

ization. Yet here we have written it with a very particular prefactor, including explicit

dependence on external dimensions and the central charge c. The reason for this is that we

view it as contributing individually to a large-c expansion to the entire Virasoro identity

block. The block presented in this section will come with these particular coefficients when

appearing in the said expansion of the Virasoro block, as dictated by the Feynman rules

for the reparametrization modes.

3 The star-channel Virasoro identity block

The shadow operator formalism is only appropriate for global blocks. However, we have

intentionally presented it in a way that allows an immediate generalization to the Virasoro

case. We will argue that it is sensible to compute higher order exchanges of reparametriza-

tion modes between bilocal operators. From the previous discussion it is already clear one

should think of self-interactions of ε as originating from stress tensor correlators. We will

now explain how to study the six-point Virasoro block in the star channel for certain ranges

of operator dimensions.

In order to study Virasoro blocks, we will interpret the ε field in a way that differs

from a simple rewriting of the shadow stress tensor. We will instead think of it as a

reparametrization field whose dynamics captures arbitrary multi-T exchanges. For global

blocks the relation between reparametrization modes and the shadow of T was clarified

in [32]. It was furthermore verified in [27, 47] that the nonlinear extension of the formalism

is appropriate for highly nontrivial aspects of Virasoro blocks.

Inspired by these studies, our proposal is that the stress tensor contributions to the

star channel Virasoro six-point block of pairwise equal external operators is given by a
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normalized sum over all reparametrization mode exchanges:11

V(6, star)
T =

〈
Bε,hX (x1, x2)Bε,hY (y1, y2)Bε,hW (w1, w2)

〉 〈
Bε,hX (x1, x2)

〉 〈
Bε,hY (y1, y2)

〉 〈
Bε,hW (w1, w2)

〉〈
Bε,hX (x1, x2)Bε,hY (y1, y2)

〉 〈
Bε,hY (y1, y2)Bε,hW (w1, w2)

〉 〈
Bε,hX (x1, x2)Bε,hW (w1, w2)

〉 ∣∣∣∣
phys.

(3.1)

Here, Bε,h denotes the all-order bilocal operator, describing the coupling of pairs of pri-

maries to any number of ε. To define this coupling, it is useful to take the perspective that

ε describes the universal reparametrizations z → f(z, z̄) = z + ε(z, z̄) +O(ε2). The higher

order bilocals can then be read off from a reparametrized conformal two-point function:

Bε,h(z1, z2) ≡ (z1 − z2)2h

(
∂f(z1, z̄1) ∂f(z2, z̄2)

(f(z1, z̄1)− f(z2, z̄2))2

)h
= 1 +

∑
p≥1

B(p)
ε,h(z1, z2) , (3.2)

where B(p)
ε,h is the term that occurs at p-th order in ε. In order to expand to higher orders

in ε, we need to decide how to expand the function f(z) = z + ε+ . . .. The natural choice

turns out to be f(z) = eε∂z = z+ ε+ 1
2 ε∂ε+ . . .. This exponentiation simply describes the

finite action of an infinitesimal diffeomorphism. The bilocals then have a nice structure:12

B(p)
ε,h can be built out of “atomic” building blocks b(q), which are the truly connected pieces

that everything else is built from. The atomic bilocal b(p) shows up for the first time as

the O(h) term in B(p)
ε,h :

B(1)
ε,h(z1, z2) = b(1)(z1, z2) ,

B(2)
ε,h(z1, z2) =

1

2!

(
b(1)(z1, z2)

)2
+ b(2)(z1, z2) ,

B(3)
ε,h(z1, z2) =

1

3!

(
b(1)(z1, z2)

)3
+ b(2)(z1, z2) b(1)(z1, z2) + b(3)(z1, z2) , . . .

(3.3)

where the first few atomic bilocals are given by the following kinematic space fields:

b(1)(z1,z2) = =h
[
∂ε1+∂ε2−2

ε1−ε2
z1−z2

]
b(2)(z1,z2) = =h

[
1

2

(
ε1∂

2ε1+ε2∂
2ε2
)
− 1

z12
(ε1∂ε1−ε2∂ε2)+

1

z2
12

(ε1−ε2)2
]

b(3)(z1,z2) = =h

[
z2

12

6
ε1∂1

(
ε1∂

2ε1
z2

12

)
+
ε1(ε1−ε2)∂ε1

z2
12

− ε1(∂ε1)2

3z12
− (ε1−ε2)3

3z3
12

+(z1↔ z2)

]
(3.4)

Diagrammatically, we can write the general bilocal at order p as follows:

B(p)
ε,h(z1, z2) =

∑
{a1,...,ap}:∑

kak=p

1

a1! · · · ap! (3.5)

11This expression should be thought of as 〈BY BWBX〉
〈BY 〉〈BW 〉〈BX〉

(
〈BXBY 〉
〈BX〉〈BY 〉

〈BY BW 〉
〈BY 〉〈BW 〉

〈BXBW 〉
〈BX〉〈BW 〉

)−1

. This particu-

lar normalization is also motivated by the expectation that the Virasoro blocks should exponentiate: if the

four- and six-point blocks do exponentiate, then dividing blocks in this way serves to subtract disconnected

(lower-point) contributions in the exponential. One is left with the genuinely connected six-point piece of

the block. As we will see, this indeed works as advertised.
12We thank W. Reeves and M. Rozali for discussions about this.
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where the inner sum runs over integer partitions p = 1 · a1 + 2 · a2 + . . . + p · ap and the

power in h of any given term is q ≡
∑
ak. This expression is just a sum over collections

of atomic pieces such that each collection has a total of q dots (i.e., powers of h) and p

emanating lines (i.e., reparametrization fields ε). More simply, we can observe that the

symmetry factors conspire to give an exponential structure:

Bε,h(z1, z2) = exp
[∑

q≥1
b(q)(z1, z2)

]
= exp

( )
(3.6)

as one can easily check from the above definitions and properties. Note that the expression

inside the exponent is O(h).

Virasoro block as a sum of diagrams. The expression (3.1) corresponds to fusing pairs

of external operators into any number of stress tensors and descendants. By expanding

the bilocals to arbitrary orders in ε, it is clear that the Virasoro block (3.1) corresponds to

an infinite sum of reparametrization mode Feynman-type diagrams: each bilocal contains

sums over collections of atomic graphs such as (3.5). Inside a correlation function these get

Wick contracted in all possible ways (i.e., all open lines need to be connected up to form

ε-propagators or self-interaction vertices). The normalization in (3.1) is engineered such as

to precisely remove all disconnected diagrams; here, by ‘disconnected’ we mean any diagram

with at least one contraction of atomic bilocals that involves not all three of the operators

X,Y,W . We are left with an infinite sum of products of connected diagrams. This is

perhaps not immediately clear, but will become more transparent in our examples below.

In general we can note that any propagator scales as c−1, every self-interaction vertex

scales as c, and any p-th order external bilocal operator B(p)
ε,h has terms of orders hq for

q = 1, . . . , p. Under certain assumptions about the scaling of operator dimensions with

central charge, a subset of diagrams dominates at large c, which we can sum explicitly. We

shall now illustrate this for simple cases.

3.1 Light external operators: hi ∼ O(c0)

We refer to the regime where all operator dimensions scale as O(c0) as ‘semiclassical’. In

terms of reparametrization mode diagrams we are interested in diagrams with few propaga-

tors and vertices in order to get leading results for large c. The leading connected diagrams

(for the holomorphic part of the Virasoro block) are of the following form:

V(6,star)
T = 1+

{〈
b
(1)
X b

(1)
Y b

(1)
W

〉
+
[〈
b
(1)
X b

(1)
Y b

(2)
W

〉
−
〈
b
(1)
X b

(1)
Y

〉〈
b
(2)
W

〉
+(W ↔X)+(W ↔Y )

]}
+. . .

= 1+ +. . . (3.7)

where we abbreviate b
(p)
X ≡ b(p)(x1, x2) etc., and colors are merely to distinguish the opera-

tors graphically. Note that these leading diagrams are indeed fully connected. The square

bracket has various four-point functions of ε. The leading contribution will be the discon-

nected Wick contractions (of the form 〈εXεY εW εW 〉 → 2〈εXεW 〉〈εY εW 〉 + 〈εXεY 〉〈εW εW 〉,
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and our normalization explicitly removes the second term as it is a truly a part of a four-

point block). Diagrammatically, we capture this process compactly by writing:

〈
b
(1)
X b

(1)
Y b

(2)
W

〉
−
〈
b
(1)
X b

(1)
Y

〉〈
b
(2)
W

〉
= O(c−1) (3.8)

That is, the diagram on the right hand side describes the disconnected part (in the sense

of Wick contractions) of the four-point function, which is nevertheless connected in a

diagrammatic sense (i.e., not constructible out of blocks involving less than all of the

operators). Evaluating the expression (3.7) gives:

For hX ∼ hY ∼ hW ∼ O(c0) : V(6, star)
T = 1 + G(6, star)

T + U (6,ext.)
T +O(c−3) (3.9)

with the global block G(6, star)
T given in (2.43), and

U (6,ext.)
T ≡ 18hXhY hW

c2

[
Ĩ(z, u, v) + Ĩ(z, v, u) + Ĩ

(
1

z
,
u

z
,
v

z

)
+ Ĩ

(
1

z
,
v

z
,
u

z

)]
(3.10)

with

Ĩ(z,u,v) =

[
2(2+u+v)

1−z − 1+2u2

1−u −
1

1−v−
(u−v)z

(z−u)(z−v)
− 2u(v+(2+u)z)

z(u−v)
− 8uv logz

(u−v)(1−z)

]
logu

− 4(1−u)

(u−v)(1−z)

[
1+

vz−u2

u
−vz+2(z−v)

+
4(1−v)z

1−z logz+
2(uv−z)
(1−u)

logu− 4(z−u)v

u−v log
u

v

]
log(1−u)

(3.11)

As before, we are writing these terms in a way that only makes the symmetries Z(X)
2 ×Z(W )

2

manifest. The remaining permutation symmetries are still present but not manifest.

We have thus shown that in this particular limit the Virasoro identity block (3.1) at

leading nontrivial order consists of two contributions: (i) the star channel global block

discussed previously, and (ii) another piece at O
(
hXhY hW

c2

)
involving logarithms and prod-

ucts of logarithms. Note that both of these pieces are O(c−2) in the regime of operator

dimensions under consideration. Any contributions at more dominant orders is not truly

connected and is cancelled by the normalization in (3.1). Subleading corrections to the

above expressions are O(c−3)

We will show in section 4 that the particular piece U (6,ext.)
T is the crucial contribution

responsible for six-point scrambling.

3.2 ‘Hefty’ operator regime: hi ∼ O(c1/2)

If hX ∼ hY ∼ hW ∼ O(c1/2), the reader can convince themselves that the leading diagrams

at large c are of the form illustrated in figure 3: they involve any number of propagators

between any of the bilocals, but no self-interaction vertices. However, we claimed that the

normalization in (3.1) serves to subtract out any disconnected diagrams. If this claim is

true, then any diagram of the type shown in figure 3 should drop out. Confirming this
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Figure 3. The leading reparametrization mode exchanges in the six-point Virasoro identity block

at large c in the ‘hefty’ regime where hX ∼ hY ∼ hW ∼ O(c1/2). All diagrams of this form

contribute at O(c0).

presents a good check of the statement that normalization by four-point blocks corresponds

to removing disconnected diagrams.

It is in fact a matter of simple combinatorics to sum all diagrams of this form. We

defer details to appendix A. The result confirms that all these diagrams should be thought

of as disconnected and that they do indeed cancel:

For hX ∼ hY ∼ hW ∼ O(c1/2) : V(6, star)
T = 1 +O(c−1/2) . (3.12)

This means that to leading order the ‘hefty’ Virasoro block is just built out of four-point

blocks, which are known [39] to be exponentials of the single-ε exchange (see (A.2)). The

latter are cancelled out by the normalization in the definition (3.1). In a dual gravitational

description, we are led to conclude that a six-point function of probes which are ‘hefty’ in

the sense of hi ∼ O(c1/2) does not probe gravitational self-interactions at leading order.

To see nonlinear effects in gravity (even at tree level), one needs to compute subleading

corrections.13

Subleading contributions at O(c−1/2). We can ask what are the first subleading

corrections, which contribute at O(c−1/2) to (3.12). Diagrammatically, these come from

the diagrams shown in figure 3 where either: any single pair of atomic
(
b
(1)
i

)2
is replaced

by a connected b
(2)
i , or: any three b

(1)
X b

(1)
Y b

(1)
W are contracted in a three-point vertex. A

trivial modification of the calculation in appendix A shows that all dressings by arbitrarily

many “rungs” 〈b(1)
i b

(1)
j 〉 and “melons” 〈

(
b
(1)
i

)2〉 cancels out and the remaining diagrams are

precisely the same as in (3.7). In other words, the ‘semiclassical’ result (3.9) applies in the

present ‘hefty’ regime as well:

For hX ∼ hY ∼ hW ∼ O(c1/2) : V(6, star)
T = 1 + G(6, star)

T + U (6,ext.)
T +O(c−1) . (3.13)

The only difference is that this is now an O(c−1/2) contribution and the next order correc-

tions are O(c−1).

13We thank A. Streicher for discussions about this.
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3.3 ‘Heftier’ operator regime: hi ∼ O(c2/3)

We can ask if there is a regime of operator dimensions for which the Virasoro identity

block exponentiates in analogy with the four-point case [39]. We suggest that a simple

regime allowing for an analogous argument should involve ‘heftier’ operators with hX ∼
hY ∼ hW ∼ c2/3. With such a scaling, the leading connected diagrams discussed in (3.7) are

O(c0). Therefore, products of such diagrams are still connected and of leading order. All of

the following diagrams are O
((

hXhY hW
c2

)k) ∼ O(c0) and should be summed at leading order:

O(c0) :

One can show that diagrams built out of products of the basic three-point “star diagram”

and the “triangle diagram” are in fact all connected diagrams at this order. This is easy

to prove, but requires too much notation to be very illuminating. We therefore simply

present a few examples of graphs which are representative of connected diagrams that are

not of leading order at large c:

O(c−1/3) :

For instance, the sum of the first two diagrams combined is a shorthand for the genuinely

six-point piece 〈(b(1)
X )2 b

(2)
Y b

(1)
W 〉−〈(b

(1)
X )2〉〈b(2)

Y b
(1)
W 〉−〈(b

(1)
X )2 b

(1)
W 〉〈b

(2)
Y 〉−2〈b(1)

X b
(2)
Y 〉〈b

(1)
X b

(1)
W 〉+

O(c−4/3).

We can therefore proceed with summing the types of diagrams occurring at O(c0).

Simple counting arguments show that the symmetry factors work out to give precisely the

desired exponentiation:

For hX ∼ hY ∼ hW ∼ O(c2/3) : V(6, star)
T = exp

[
G(6, star)
T + U (6,ext.)

T

]
+O(c−1/3) .

(3.14)

It thus seems that we have identified a regime of operator dimensions, which allows for a

simple exponentiation argument in the six-point identity block. However, note the following

subtlety: at least in terms of diagrammatic perturbation theory, the four-point blocks

of ‘heftier’ operators are not easily understood. In this case, our normalization in (3.1)

therefore does something very nontrivial: it removes from the six-point block all dependence

on four-point blocks, the latter of which we do not understand per se. It is nevertheless

intriguing that there is a simple structure in the genuinely six-point part of the block, which

can be unearthed without having to study the four-point blocks themselves. We leave it

for the future to understand the implications of this better.

4 Six-point out-of-time-order correlators from the identity block

We have now collected all of the ingredients needed to calculate the identity block con-

tributions to the six-point out-of-time-order correlator (OTOC) of scalar operators. We
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will compute both the contribution from the global star channel block, and from the lead-

ing order Virasoro block. Interestingly, we will find that only the latter is relevant for

six-point scrambling.

Since we would like to compute the ‘fine-grained’ chaos exponent associated with the

fully connected six-point function, we must normalize by partially disconnected correlation

functions. That is we are interested in computing the following object:

OTOC6pt ≡
〈XYXWYW 〉β〈XX〉β〈Y Y 〉β〈WW 〉β
〈XYXY 〉β〈XXWW 〉β〈YWYW 〉β

≈ V0 V0 + . . .

≈
(

1 + G(6, star)
T + U (6,ext.)

T + . . .
)(

1 + G(6, star)

T̄ + U (6, ext.)

T̄ + . . .
)

+ . . . (4.1)

where we have indicated the relevant time ordering by the order of operators in the correla-

tion function, with operators inserted later in the Lorentzian time evolution placed further

to the left. In the above expression V0 is the identity Virasoro block, which we further

decompose according to our findings in the previous section. The subscript β indicates

that we evaluate the blocks in a thermal state.

Note that there is a larger space of six-point OTOCs [52, 53], of which the configuration

above only presents a special case. However, it was argued in [24] that the configuration

above is the most interesting representative, being both maximally out-of-time-order as

well as maximally braided in Euclidean time. Physically, it is distinguished by the fact

that its exponential growth lasts for the longest time out of all possible inequivalent six-

point OTOCs. We will confirm this expectation below.

To diagnose fine-grained chaos in this way, we use the exponential map to transform

our vacuum blocks to thermal blocks for a CFT on the line:

xi → e
2π
β
x̃i , yi → e

2π
β
ỹi wi → e

2π
β
w̃i . (4.2)

We will be interested in the following arrangement:

x̃i = tX + σX − iεXi , ¯̃xi = −tX + σX + iεXi , (4.3)

ỹi = tY + σY − iεYi , ¯̃yi = −tY + σY + iεYi , (4.4)

w̃i = tW + σW − iεWi ,
¯̃wi = −tW + σW + iεWi , (4.5)

and to ensure the Lorentzian time ordering of interest, we will analytically continue from

the Euclidean configuration starting at tX = tY = tW = 0 with

εX1 > εY1 > εX2 > εW1 > εY2 > εW2 > 0 . (4.6)

In what follows, we will always take

tW < tY < tX , and σW > σY > σX . (4.7)

Under this analytic continuation to Lorentzian times, the relevant cross-ratios z, u, v (and

their ratios) cross the various branch cuts of the conformal blocks we have just com-

puted [54]. The trajectory followed by the relevant cross-ratios during the analytic contin-

uation is depicted in figure 4. As is clear from (2.44) (and less clear from (5.7)), the types
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Figure 4. The trajectory followed by the various cross-ratios under analytic continuation to

Lorentzian times. To make this figure we chose β = 2, σW = 0.5, σY = 0.25, and σX = 0, as

well as tX = 2tY , with tW = 0. The anti-holomorphic cross-ratios do not cross any branch cuts.

of branch cuts crossed are of those of the logarithm, which extendes from (−∞, 0] and the

branch cut of the dilogarithm, which extends from [1,∞). These satisfy:

for z ∈ (−∞, 0] : lim
δ→0

[ log(z + iδ)− log(z − iδ) ] = 2πi ,

for z ∈ [1,∞) : lim
δ→0

[ Li2(z + iδ)− Li2(z − iδ) ] = 2πi log z .
(4.8)

To obtain the six-point OTOC, we cross the various branch cuts of the blocks we

computed, before taking the limit z, u, v → 1. This is the Regge limit of these blocks. We

can now present our result.

The contribution considering only the global T block. Let us first give the result

of the global block alone, G(6, star)
T :

OTOC
star(global)
6pt ≈ 1 +

96iπhXhWhY
c2 εX12εY12εW12

ε3
X12

sinh4
(

2π(tYW−σWY )
β

)
sinh2

(
2π(tXY −σYX)

β

)
sinh2

(
2π(tXW−σWX)

β

)
+ε3

W12

sinh4
(

2π(tXY −σYX)
β

)
sinh2

(
2π(tYW−σWY )

β

)
sinh2

(
2π(tXW−σWX)

β

)
 (4.9)

where tAB = tA − tB and similarly for σAB and εA12 . Note that the above block does

not exhibit scrambling with the largest time difference tXW . The contribution of this

channel to the OTO correlator decays rather than grows, suggesting it is irrelevant for

diagnosing chaos.

The full OTOC. We have learned in section 3 that the Virasoro identity block has an

additional contribution on top of the global block G(6, star)
T , even at leading nontrivial order

– 22 –



J
H
E
P
0
8
(
2
0
2
0
)
0
0
2

in large c. Let us therefore compute the leading contribution to the OTOC taking into

account the Virasoro contributions in (3.9):

OTOC
star(Virasoro)
6pt ≈− 1152β4hXhWhY

c2π2εX12ε
2
Y12
εW12

sinh2

(
2π(tXY −σY X)

β

)
sinh2

(
2π(tYW−σWY )

β

)
(4.10)

up to terms at O(ε−3
ij ). For large time separations tXW � tXY ∼ tYW � β

2π , we notice

that this term grows exponentially as eλLtXW , with

λL =
2π

β
. (4.11)

Furthermore, the star channel Virasoro OTOC becomes O(1) (and our approximations

break down) when tXW ∼ 2 t?, i.e., the exponential growth lasts until twice the scrambling

time t? ≡ β
2π log c, as first noted in [24, 26] . This was seen in those references as an

indication that higher-point OTOCs contain novel information compared to the four-point

OTOC: they are sensitive to more fine-grained aspects of quantum chaos in the sense that

their characteristic scrambling time grows (linearly) with the number of insertions. Also

note that the butterfly velocity vB = 1 is the speed of light, as is typical for large-c 2d CFT.

5 Comparison with the global T block in the comb channel

So far we focused on the star channel blocks because these allow for the most natural six-

point generalization of the familiar identity blocks. However, as mentioned in section 2.1,

there also exists the comb topology (on the right of figure 1), which also admits a universal

contribution to the six-point function when the internal operator coincides with one of the

external ones. In this section we study the comb channel block in some more detail and

compare its properties with the star channel. For simplicity we shall only discuss the global

comb block for which an explicit expression is available [9].

Definition of the global comb block. The universal comb channel six-point CPW is

defined by projecting the fusion of X and W operators onto the identity representation

using |T | and inserting a projection |Y | in the middle of the six-point function:

Ψ
(6,comb)
T ≡

〈
X(x1)X(x2) |T |Y (y1) |Y |Y (y2) |T |W (w1)W (w2)

〉
〈V V 〉〈XX〉〈WW 〉

=
Γ(2hY )

πΓ(1−2h̄Y )

(
3

πc

)2
∫∫∫

d2za d
2zb d

2zc

〈
X1X2Ta

〉
〈X1X2〉

〈
T̃aY1Yb

〉〈
ỸbY2Tc

〉
〈Y1Y2〉

〈
T̃cW1W2

〉
〈W1W2〉

(5.1)

where we abbreviate X1 ≡ X(x1) etc. This OPE channel is illustrated in the right panel of

figure 1. It was discussed more generally in [9], where comb channel blocks were determined

explicitly in terms of generalizations of hypergeometric functions. See also [6, 8, 10, 11, 47]

for physical applications and [5, 7, 12–15] for discussions in the context of Witten diagrams

and AdS/CFT.
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Casimir equations. The comb channel block G(6, comb)
T (z, u, v) in the right of figure 1

has the X and W operators fusing into stress tensors, which results in G(6, comb)
T (z, u, v)

also satisfying (2.19) and (2.21). However, instead of (2.20) it must satisfy:

C(x1, x2, y1)
[
〈XX〉〈Y Y 〉〈WW 〉Ψ(6, comb)

T

]
= hY (hY − 1) 〈XX〉〈Y Y 〉〈WW 〉Ψ(6, comb)

T

(5.2)

In terms of cross-ratios, we have (2.6), (2.7) and in addition the following equation:{
v2(1− v)∂2

v + u2(1− u)∂2
u + uv[(1− u) + (1− v)]∂u∂v + (1− z)

[
v2∂v + u2∂u

]
∂z

− v(v − 2hY )∂v − u(u− 2hY )∂u

}
G(6, comb)
T (z, u, v) = 0 (5.3)

Explicit form of the comb block. The comb channel expression (5.1) was worked out

in [9] (see also [55–58] for earlier papers where the relevant hypergeometric functions make

an appearance). Writing their result in terms of our cross-ratios (2.3), we obtain:

G(6, comb)
T (z, u, v) =

2hXhWh
2
Y

c2

(u− v)2(1− z)2

v2z2
FK

[
2, 2, 2, 2

4, 2hY , 4

∣∣∣∣1− 1

z
,
u

z
, 1− u

v

]
(5.4)

where the hypergeometric function of three variables is defined as:

FK

[
a1, b1, b2, a2

c1, c2, c3

∣∣∣∣χ1, χ2, χ3

]
≡

∞∑
n1,n2,n3=0

(a1)n1
(b1)n1+n2

(b2)n2+n3
(a2)n3

(c1)n1(c2)n2(c3)n3

χn1
1

n1!

χn2
2

n2!

χn3
3

n3!
. (5.5)

For the values of (ai, bi, ci) appearing in (5.4), the hypergeometric function can be further

simplified. We provide some of the steps in appendix B. After some simplifications, the

final result can be written in terms of single-variable hypergeometric functions:

G(6, comb)
T (z, u, v) =

36hXhY hW
c2

[
J (z, u, v) + J

(
1

z
,
u

z
,
v

z

)]
(5.6)

where we defined the function

J (z,u,v)≡ u

2

(
u+v

u
− 2v

u−v log
u

v

)(
1+z

z
+

2

1−z logz
)

+hY

(
2− u+v

u−v log
u

v

)(
2+

1+z

1−z logz
)

+
1

2hY +1

{[
F1(u)+F1(v)

]
− 4uv

(u−v)(1−z)
[
F2(u)−F2(v)

]
+

(u+v)(1+z)

2(u−v)(1−z)
[
F3(u)−F3(v)

]}
(5.7)

where for ease of notation, we abbreviate

F1(χ) ≡ χ2
2F1(1, 1; 2hY + 2; χ) (5.8)

F2(χ) ≡ χ 3F2(1, 1, 1; 2, 2hY + 2; χ) (5.9)

F3(χ) ≡ χ2
3F2(1, 1, 2; 3, 2hY + 2; χ) (5.10)

It can be checked that, for hY ∈ Z, these functions reduce to polynomials multiplying

logs and dilogs. Therefore, similar to the star channel block, this result displays a rich
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Figure 5. Permutation symmetries of the comb channel block.

structure of branch cuts. Note also that the first line of (5.7) can be recognized as being

closely related to the disconnected product of two four-point blocks. It is straightforward

to check that the above expression satisfies the required Casimir equations.

Symmetry properties. The symmetries of the comb channel block are slightly different

to the star channel. They can be summarized by the group
(
Z(X)

2 ×Z(W )
2

)
oZ(refl.)

2 , where

the first two factors are the same as for the star channel, and the “reflection” Z(refl.)
2 acts by

(X1, X2, Y1)↔ (W1,W2, Y2).14 We illustrate these symmetries schematically in figure 5.

Physical significance. Let us now comment on the physical significance of this global

block. Recall that in the previous section we found that growing contribution to the OTO

correlator at six points in the star channel came from the contribution U (6,ext.)
T to the

block and not G(6, star)
T . We thought it prudent to compare the contribution of U (6,ext.)

T to

the comb block. Namely, we assume there exists a comb channel Virasoro identity block

V(6, comb)
T whose leading large-c expansion is

V(6, comb)
T ≈ 1 + G(6, comb)

T + . . . (5.11)

We will ignore the possibility that there are additional terms at the same order, though it

would be interesting to explore this possibility further. We leave the exploration of these

additional terms to future work, as it would require developing novel techniques, beyond

the scope of our current setup, for computing them. Under this assumption we can compute

the six-point OTOC and find:

OTOCcomb
6pt ≈−

576β4hXhWhY (2hY +1)

c2π2εX12ε
2
Y12
εW12

sinh2

(
2π(tXY −σY X)

β

)
sinh2

(
2π(tYW−σWY )

β

)
(5.12)

which displays the same late-time dependence as in the case of the star channel Virasoro

block (4.10).

6 Conclusions and outlook

The ideas presented here combine two topics of recent interest. The first topic is the con-

formal block decomposition of correlation functions in large-c CFTs. Recent developments

14At the level of cross-ratios, Z(refl.)
2 acts as: (z, u, v) 7→

(
u
v
, u, u

z

)
.
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have shown how topologically distinct Virasoro conformal block expansions can exchange

dominance in describing a certain correlation function [3, 38, 40, 59]. For the case of six-

point functions, the topological distinction is borne out even in the global blocks, which

are distinguished by a choice of OPE channel.

The second topic of the paper was to provide some further developments in the shadow

operator formalism for stress tensor exchanges and its nonlinear generalization. The close

connection with recent studies of theories of reparametrization modes in CFTs offers a

powerful framework for computing observables such as the star channel six-point block,

and higher order interactions.

The optimal choice of block decomposition, measured by its relevance to a physical

process, can only be determined by comparison. In this paper we found explicit expressions

for global six-point blocks with internal stress tensor exchanges in the comb and in the star

channel, as well as additional terms that contribute to the star channel Virasoro block

at the same order as the global block. While these have interesting commonalities (such

as multiple branch cuts of higher transcendentality), we found that only the non-global

terms in the star channel, as well as the global comb channel give the leading contribution

to scrambling. Interestingly, the star channel global block, which captures a nonlinear

gravitational three-point interaction in the holographic dual, does not seem relevant for

the connected six-point OTOC [24, 26]. Nevertheless, it may give insights into subtle

gravitational physics, which we hope to explore further.

It is interesting that the star channel Virasoro identity block in various kinematic

regimes receives leading contributions other than the global block, and these correspond

to multiple linearized graviton exchanges. The fact that these are not only present but in

fact crucial for quantum chaos was anticipated in [24, 26]. If we interpret these results in

terms of an effective field theory of chaos described by reparametrization mode exchanges,

the lesson is similar: self-interactions are less relevant for quantum chaos than multiple

connected linearized exchanges [60–62]. Furthermore, in the comb channel, we observe

that the global block is sufficient for diagnosing chaos, but nevertheless there could be

additional contributions appearing at the same order which we have not yet computed, in

direct analogy with the piece U (6,ext.)
T that appears in the star channel. If such contributions

exist, we expect them to not affect the time dependence of the chaotic growth of the

OTO configuration. It would be interesting to understand the general lesson behind these

observations and see if the methods developed herein can be useful to the understanding

of eikonlization, even in higher dimensions [63, 64]. Perhaps we need to look beyond chaos

to diagnose nonlinearities in gravity.

In the future, we would also like to explore how to generalize these results to full

Virasoro six-point blocks. One block of particular interest is the semiclassical “HHLLLL

block” with two heavy operators (hY ∼ O(c)) and four light probes (hX ∼ hW ∼ O(c0)).

This was computed in a particular regime in [11] (see also [47]) in the semiclassical limit

where all operator dimensions scale linearly with c, with the light operators having small

h{X,Y }/c. Interestingly, the large-c expansion of the result of [11] only gives a piece of

the global star block computed here, without the dilogarithms. It would be interesting

to understand how to obtain the full star block as a limit of the monodromy method for
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heavy-light correlators. This would allow us to more finely probe a black hole microstate

with four operators, in the geometric optics limit, sensitive to the nonlinear gravitational

self-interaction.

Based on insights for the four-point HHLL block [65], there is a natural guess for what

the HHLLLL Virasoro six-point identity block would be: we conjecture that it is given by

the leading block G(6, star)
T + U (6,ext.)

T presented in section 3.1 evaluated in the coordinates

w(x) = xα where x = z, u, v and α =
√

1− 24hY /c (see eq. (1.3) of [65]). While this seems

natural, it would be interesting to verify it in detail.
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A Six-point Virasoro block for ‘hefty’ operators

In this appendix we give the derivation of the result that the star channel Virasoro identity

block is trivial at leading order, assuming operator dimensions scale as c1/2, i.e., the fact

that (3.13) has no nontrivial contribution at order O(c0).

Translating the definition (3.1) into diagrams, at leading order we need to sum all

diagrams of the form presented in figure 3. We begin by computing the simplest ingredient

in (3.1), i.e., the one-point functions. For ease of notation we will henceforth drop the

explicit spacetime arguments of the bilocals. We find:

〈
Bε,hX

〉
O(c0)

=
〈

expB(1)
ε,hX

〉
=
∑
`1≥0

=
∑
`1≥0

1

(2`1)!
(2`1 − 1)!!

〈(
B(1)
ε,hX

)2
〉`1

= exp

[
1

2

〈(
B(1)
ε,hX

)2
〉]

(A.1)

where all equalities hold up to subleading terms of order O(c−1/2). The factor (2`1 − 1)!!

is a symmetry factor counting the number of ways to contract 2`1 copies of B(1)
ε,hX

in pairs.
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Next, we turn to the four-point functions in the denominator of (3.1) (this part of the

calculation is similar to one presented in [27]). We find:

〈
Bε,hX Bε,hY

〉
O(c0)

=
〈

exp
(
B(1)
ε,hX

)
exp

(
B(1)
ε,hY

)〉
=
∑
`1≥0

∑
`2≥0

∑
k1≥0

=
∑
`1≥0

∑
`2≥0

∑
k1≥0

(
2`1+k1
k1

)(
2`2+k1
k1

)
(2`1−1)!! (2`2−1)!!k1!

(2`1+k1)!(2`2+k1)!

×
〈
B(1)
ε,hX
B(1)
ε,hY

〉k1
〈(
B(1)
ε,hX

)2
〉`1 〈(

B(1)
ε,hY

)2
〉`2

= exp

[〈
B(1)
ε,hX
B(1)
ε,hY

〉
+

1

2

〈(
B(1)
ε,hX

)2
〉

+
1

2

〈(
B(1)
ε,hY

)2
〉]

(A.2)

where we again included appropriate symmetry factors, this time also doing the binomial

counting of possible numbers of ways to choose k1 out of (2`1 + k1) copies of B(1)
ε,hX

(and

similarly for B(1)
ε,hY

).

Finally, the three-point function in the numerator of (3.1) gives the following:〈
Bε,hX Bε,hY Bε,hW

〉
O(c0)

=
〈

exp
(
B(1)
ε,hX

)
exp

(
B(1)
ε,hY

)
exp

(
B(1)
ε,hW

)〉

=
∑

`1,`2,`3
k1,k2,k3

=
∑

`1,`2,`3
k1,k2,k3

(
2`1+k1+k3

k3

)(
2`1+k1
k1

)(
2`2+k2+k1

k1

)(
2`2+k2
k2

)(
2`3+k3+k2

k2

)(
2`3+k3
k3

)
(2`1−1)!! (2`2−1)!! (2`3−1)!!k1!k2!k3!

(2`1+k1+k2)! (2`2+k2+k3)! (2`3+k3+k1)!

×
〈
B(1)
ε,hX
B(1)
ε,hY

〉k1
〈
B(1)
ε,hY
B(1)
ε,hW

〉k2
〈
B(1)
ε,hW
B(1)
ε,hX

〉k3
〈(
B(1)
ε,hX

)2〉`1〈(
B(1)
ε,hY

)2〉`2〈(
B(1)
ε,hW

)2〉`3
= exp

[〈
B(1)
ε,hX
B(1)
ε,hY

〉
+
〈
B(1)
ε,hY
B(1)
ε,hW

〉
+
〈
B(1)
ε,hW
B(1)
ε,hX

〉
+

1

2

〈(
B(1)
ε,hX

)2〉
+

1

2

〈(
B(1)
ε,hY

)2〉
+

1

2

〈(
B(1)
ε,hW

)2〉]
(A.3)

Putting these pieces together we find that the Virasoro identity block with these scal-

ings and at this order is just 1. All nontrivial dependence is cancelled by the normalization

in (3.1). This is a nontrivial confirmation of our claim that all disconnected diagrams

are cancelled.

B Simplification of the comb channel block

In this appendix we provide some details on simplifying the hypergeometric function (5.5)

to obtain the comb channel block (5.6). The hypergeometric function can be written as a
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sum over lower order hypergeometric functions:

FK

[
a1, b1, b2, a2

c1, c2, c3

∣∣∣∣χ1,χ2,χ3

]
=
∞∑
n=0

(b1)n(b2)n
(c2)n

χn2
n! 2F1(b1+n, a1, c1;χ1) 2F1(b2+n, a2, c3;χ3) .

(B.1)

For the values of (ai, bi, ci) appearing in (5.4), this can be further simplified. Note that:

FK

[
2, 2, 2, 2

4,2h,4

∣∣∣∣χ1,χ2,χ3

]
(B.2)

=
36

χ3
1χ

3
3

∞∑
n=0

n!

(2h)n

χn2
n2(n−1)2

(
(2−χ1+nχ1)− 2−χ1−nχ1

(1−χ1)n

)(
(2−χ3+nχ3)− 2−χ1−nχ3

(1−χ3)n

)
The terms n = 0, 1 can be evaluated directly and give finite logarithmic terms. We can

consider each term in the remaining sums separately and write it in terms of hypergeometric

functions. To this end, we write the two n-dependent brackets as follows:(
(2− χ1 + nχ1)− 2− χ1 − nχ1

(1− χ1)n

)(
(2− χ3 + nχ3)− 2− χ1 − nχ3

(1− χ3)n

)
= (1 + η1)(1 + η3)

(
1− η−n1

) (
1− η−n3

)
+ n

[
2
(
1 + η−n1

) (
1− η−n3

)
+ 2

(
1− η−n1

) (
1 + η−n3

)
− (1− η1)(1− η3)

(
1− η−n1 − η−n3 − 3 (η1η3)−n

)]
+ n(n− 1) (1− η1)(1− η3)

(
1 + η−n1

)
(1 + η3)−n .

(B.3)

where ηi ≡ 1− χi. Then, note the following identities:
∞∑
n=2

n!

(2h)n

χn

n(n− 1)
=

1

2h(2h+ 1)
χ2

2F1(1, 1; 2h+ 2; χ)

∞∑
n=2

n!

(2h)n

χn

n(n− 1)2
=

1

2h(2h+ 1)
χ2

3F2(1, 1, 1; 2, 2h+ 2; χ)

∞∑
n=2

n!

(2h)n

χn

n2(n− 1)2
=

1

4h(2h+ 1)
χ2

3F2(1, 1, 1; 3, 2h+ 2; χ)

(B.4)

Using (B.3) in (B.2), the identities (B.4) allow us to perform all the sums. We further

use the contiguous relation 3F2(1, 1, 1; 3, a; χ) = 2 3F2(1, 1, 1; 2, a; χ)− 3F2(1, 1, 2; 3, a; χ).

The result is (5.6). The first line of (5.6) corresponds to the terms n = 0, 1 of the sum (B.2).

Properties of the comb block hypergeometric functions. Note that the generalized

hypergeometric functions have the following structure for integer values of h:

2F1(1, 1; 2h+ 2; χ) = −(2h+ 1)
(1− χ)2h

χ2h+1
log(1− χ) + . . .

3F2(1, 1, 1; 2, 2h+ 2; χ) = (2h+ 1)
1

χ
Li2(χ) + (. . .) log(1− χ) + . . .

3F2(1, 1, 1; 3, 2h+ 2; χ) = 2 (2h+ χ) (2h+ 1)
1

χ2
Li2(χ) + (. . .) log(1− χ) + . . .

(B.5)

where dots denote rational functions of χ.
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For the OTOC calculations, we need the discontinuity of the hypergeometric functions

across their branch cut:

lim
δ→0

[ 3F2(1, 1, 1; c1, c2; z + iδ)− 3F2(1, 1, 1; c1, c2; z − iδ) ] (B.6)

= 2πi
Γ(c1)Γ(c2)

Γ(c1 + c2 − 2)
z2−c1−c2(z − 1)c1+c2−3

2F1(c1 − 1, c2 − 1, c1 + c2 − 2; 1− z−1) .

for z ∈ (1,∞). Relevant for us are values c1 ∈ {1, 2, 3}.
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