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1 Introduction

Since eleven-dimensional supergravity [1] is the low-energy limit of M-theory, worldline

methods for computing D = 11 supergravity amplitudes may lead to new insights into

M-theory. Worldline methods using the D = 11 superparticle in light-cone gauge were

developed in [2], but a super-Poincaré covariant description of the D = 11 superparticle

using pure spinors could be more powerful for making cancellations manifest and simplifying

amplitude computations.

Pure spinors were introduced in D = 10 and D = 11 supersymmetric field theories

in [3, 4] and [5], and were introduced in the context of superstring theory in [6] as extra dy-

namical variables on the worldsheet. These extra variables allowed super-Poincaré covariant

quantization using a simple BRST operator and simplified the computation of multiloop

scattering amplitudes as compared to the other superstring formalisms. Pure spinors have

also been used for worldline field theory computations in quantum field theories [7, 8] where

the ultraviolet behavior of the 4-point amplitude for ten-dimensional super Yang-Mills and

Type II supergravity up to 5-loops was studied using power counting arguments.

The eleven-dimensional analogs of pure spinors that are discussed here for the super-

particle were introduced in [9] and used by [10] to set up a framework for computing N -point

correlation functions at tree and loop level using a worldline field theory framework. Some

higher-loop computations using the non-minimal D = 11 pure spinor formalism of [11] have

been performed in [12, 13].

In this paper we provide evidence that contradicts some of the assumptions made

in [10]. We construct the ghost number one vertex operator as a perturbation of the BRST

operator. This will be BRST invariant only when the D = 11 supergravity equations of

motion are imposed. This vertex operator takes the form

U (1) = λα[hα
aPa − hαβdβ + ΩαabN

ab] (1.1)
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where hα
a, hα

β , Ωαab come from small perturbations of the eleven-dimensional vielbeins

and the structure equations of linearized D = 11 supergravity. They satisfy equations of

motion and gauge freedoms arising from the D = 11 supergravity dynamical constraints.

These determine their full θ-expansions as explained in [14] and these are required in

correlation function prescriptions involving U (1).

The eleven-dimensional pure spinor prescription for computing tree-level N -point cor-

relation functions given in [10] requires the existence of a ghost number zero vertex operator

satisfying the standard descent relation

{Q,V (0)} = [H,U (1)] (1.2)

where H = P 2 is the particle Hamiltonian. In this paper we will show that eq. (1.2) is

incompatible with linearized D = 11 supergravity and discuss some possible ways to fix

this problem without going into details. Our investigations were motivated by an attempt

to extend the 11-dimensional pure-spinor superparticle to an 11-dimensional pure-spinor

ambitwistor-string following [15, 16], but the incompatibility of (1.2) appears to be an

obstruction.

The paper is organized as follows. In section 2 we review the D = 11 pure spinor

superparticle. In section 3 we construct the ghost number one vertex operator by requiring

that the pure spinor BRST operator be nilpotent at first order as an on-shell geometric

deformation of the BRST charge. In section 4, we show the inconsistency between the de-

scent equation (1.2) relating ghost number one and zero vertex operators and the structure

equations of D = 11 supergravity. Finally, we give a self-contained review of the superspace

formulation of D = 11 supergravity in appendix A.

2 D = 11 pure spinor superparticle

The eleven-dimensional pure spinor superparticle action in a flat background is given by [9,

17]

S =

∫
dτ

[
Pm∂τX

m + pµ∂τθ
µ + wα∂τλ

α − 1

2
PmPm

]
. (2.1)

We will use lowercase letters from the beginning/middle of the Greek alphabet to denote

SO(10, 1) tangent/curved-space spinor indices and we will let lowercase letters from the

beginning/midle of the Latin alphabet denote SO(10, 1) tangent/curved-space vector in-

dices. The superspace fermionic coordinate θµ is an SO(10, 1) Majorana spinor and pµ
is its respective canonical conjugate momentum, and Pm is the momentum for Xm. The

variable λα is a D = 11 pure spinor variable1 satisfying λΓaλ = 0, and wα is its conju-

gate momentum which is defined up to the gauge transformation δwα = (Γaλ)αrm, for an

arbitrary gauge parameter rm. The SO(10, 1) gamma matrices denoted by Γa satisfy the

Clifford algebra (Γa)αβ(Γb)βσ + (Γb)αβ(Γa)βσ = 2ηabδσα. In D = 11 dimensions there exist

an antisymmetric spinor metric Cαβ (and its inverse (C−1)αβ) which allows us to lower

(and raise) spinor indices.

1Note that we do not require λΓabλ = 0 which would also be imposed by Cartan’s definition of purity.
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The BRST operator associated to this theory is defined to be

Q = λαdα (2.2)

where dα = pα − 1
2(Γaθ)αPa are the fermionic constraints of the D = 11 Brink-Schwarz-

like superparticle. The nilpotency of this operator follows immediately from the pureness

of λα, and thus physical states can be defined as elements of its cohomology. As shown

in [9], this BRST cohomology turns out to describe linearized D = 11 supergravity in its

Batalin-Vilkovisky formulation. The D = 11 supergravity physical fields are found in the

ghost number three sector of the cohomology. To see this, one can write the most general

ghost number three superfield

U (3) = λαλβλδCαβδ(x, θ) (2.3)

The physical state conditions will constrain the functional form of Cαβδ to be

Cαβδ = (γaθ)α(γbθ)β(γcθ)δCabc(x) + (γ(aθ)α(γb)cθ)β(γcθ)δhab(x)

+(γbθ)α[(γcθ)β(γdθ)δ(θγcd)ε − (γcdθ)β(γcθ)δ(γdθ)ε]χ
ε
b(x) + . . . (2.4)

where the fields Cabc(x), hab(x), χαb satisfy the linearized D = 11 supergravity equations

of motion and gauge invariances

∂c[∂chab − 2∂(ahb)c]− ∂a∂bhcc = 0 , δhab = ∂(bΛc)

∂d∂[aCbcd] = 0 , δCabc = ∂[aΛbc]

(γabc)αβ∂bχ
β
c = 0 , δχβa = ∂aΛ

β (2.5)

where Λa, Λbc, Λα are arbitrary gauge parameters.

The other BV fields of linearized D = 11 supergravity are placed into different ghost

sectors up to ghost number 7.

Following D = 10 dimensions [7, 8], one can attempt to define a pure spinor measure

from the eleven-dimensional scalar top cohomology, namely 〈λ7θ9〉 = 1 in order to give a

consistent prescription for computing N -point correlation functions. This measure is easily

shown to be BRST-invariant and supersymmetric and has already been successfully used

to get the kinetic terms of the D = 11 supergravity action from a second-quantized point

of view [9]. Using this one can then propose that the N-point amplitude should be given

by a correlation function of the form [10]

A11D
N = 〈U (3)

1 (τ1)U
(3)
2 (τ2)U

(1)
3 (τ3)

∫
dτ4V

(0)
4 (τ4) . . .

∫
dτNV

(0)
N (τN )〉 (2.6)

In this expression U (3) is the ghost number three vertex operator described above, U (1) is

a ghost number one vertex operator and V (0) is a vertex operator of ghost number zero.

Although it is possible to write an alternative prescription involving the ghost number four

vertex operator containing the antifields of the D = 11 supergravity physical fields, the

existence of V (0) clearly plays a crucial role for the computation of the N-point correlation

functions beyond N = 3 in this framework.

Having established the importance of the ghost number one and zero vertex operators,

we now discuss their construction.

– 3 –
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3 Ghost number one vertex operator

The ghost number one vertex operator will be constructed from a small perturbation of

the pure spinor BRST operator whose nilpotency will follow from the D = 11 linearized

supergravity equations of motion and the pure spinor constraint. We give a detailed review

of the superspace formulation of D = 11 supergravity in appendix A.2 Let us write the

eleven-dimensional vielbeins in their linearized form

EA = EA0 + hA = (Dxa + habDx
b + haβdθ

β , dθα + hαβdθ
β + ψαb Dx

b) (3.1)

where

Dxb = dxb +
1

2
(θΓbdθ) , Dα = ∂α −

1

2
(Γcθ)α∂c (3.2)

These give dually to first order

Dα = Dα − hαβDβ − hαa∂a , Da = ∂a − ψαaDα − hab∂b (3.3)

On the other hand, using eq. (A.2) one can show that at linear order

[DC ,DD} = TCD
ADA − 2Ω[CD}

ADA (3.4)

where [·, ·} is the graded (anti)commutator. Using the D = 11 supergravity con-

straints (A.12), one then finds that

{Dα,Dβ} = (Γa)αβDa − 2Ω γ
(αβ)Dγ (3.5)

Thus if one defines the BRST operator to be

Q = λα
(
Dα + Ω γ

αβ λβ
∂

∂λγ

)
(3.6)

then its nilpotency property immediately follows from the e.o.m (A.23)

{Q,Q} = λαλβλδR(αβδ)
ε ∂

∂λε
= 0 (3.7)

After converting (3.6) into a worldline vector with ghost number 1 by replacing oper-

ators by corresponding worldline fields, one concludes that

Q = Q0 + U (1) + . . . , Q0 = λαdα (3.8)

where

U (1) = λα(hα
aPa − hαβdβ + Ω γ

αβ Nγ
β) (3.9)

and . . . means higher order terms. Thus {Q,Q} = 0 yields directly

{Q0, U
(1)} = 0 (3.10)

as desired.

2The linearized description of it can be readily obtained by dropping out interacting terms in the equa-

tions of motion displayed in this appendix.
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The e.o.m satisfied by the superfields in (3.9) can be easily found by plugging (3.3)

into (3.4). From the relation {Dα,Dβ}, one gets

2D(αhβ)
a + 2h(α

δ(Γa)β)δ − hba(Γb)αβ = 0 (3.11)

2D(αhβ)
δ − 2Ω(αβ)

δ − (Γa)αβψa
δ = 0 (3.12)

From the relation {Da,Dα} one finds

∂ahα
β −Dαψa

β + Taα
β − 2Ωaα

β = 0 (3.13)

∂ahα
b −Dαha

b + ha
β(Γb)βα = 0 (3.14)

From the relation {Da,Db} one obtains

∂aψb
α − ∂bψaα + Tab

α = 0 (3.15)

∂ahb
c − ∂bhac − 2Ω[ab]

c = 0 (3.16)

Moreover, the linearized supercurvature components can be written in terms of the super

spin-conection using eq. (A.4)

Rαβc
d = 2D(αΩβ)c

d (3.17)

Raαb
c = ∂aΩαb

c −DαΩab
c (3.18)

Rabc
d = 2∂[aΩb]c

d (3.19)

As a consistency check, one can verify that {Q0, U
(1)} = 0 as a consequence of the

e.o.m (3.11), (3.12), (3.17).

4 Ghost number zero vertex operator

In order for a consistent standard equation to be satisfied, a ghost number zero vertex

operator should exist and satisfy the relation

{Q0, V
(0)} = P a∂aU

(1) (4.1)

where U (1) is the ghost number one vertex operator discussed above. To solve eq. (4.1), let

us write first the most general ghost number zero vertex operator which is gauge invariant

under the pure spinor constraint

V (0) = P aP bGab + P adβΨβ
a + P aN bcWabc + dαdβPαβ + dαN

abTabα +NabN cdRab,cd (4.2)

– 5 –
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One can now compute the e.o.m that the superfields in (4.2) should satisfy such that (4.1)

holds. After some algebraic manipulations one finds that

λαP aP b
[
DαGab −Ψβ

(a(Γb))αβ − ∂ahαb
]

= 0 (4.3)

λαP adβ

[
−DαΨβ

a −
1

2
Wa

bc(Γbc)
β
α − 2(Γa)αγPγβ + ∂ahα

β

]
= 0 (4.4)

λαP aN bc
[
DαWabc − (Γa)αβTbcβ − ∂aΩαbc

]
= 0 (4.5)

λαdβdγ

[
DαPβγ +

1

2
(Γab)γαTabβ

]
= 0 (4.6)

λβdαN
ab

[
DβTabα +

1

2
(Γcd)αβRcdab +

1

2
(Γcd)αβRabcd

]
= 0 (4.7)

λαNabN cdDαRabcd = 0 (4.8)

The first equation can be automatically solved if one identifies Gab = hab, Ψα
a = ψαa as can

be seen from (3.14). Replacing this into (4.4) one gets

λαP adβ

[
−Dαψ

β
a −

1

2
Wa

bc(Γbc)
β
α − 2(Γa)αγPγβ + ∂ahα

β

]
= 0 (4.9)

After taking a look at eq. (3.13), one concludes that this equation becomes an identity

if one identifies Wabc = Ωabc, −2(Γa)αγPγβ = Tαa
β . However this solution for Pαβ is

inconsistent as will be shown now. If this identification were true, it would imply that

Pαβ = − 5

192
(Γabcd)αβHabcd (4.10)

If one now tries to recover Tδa
β by multiplying eq. (4.10) by −2(Γa)δα, one finds that

− 2(Γa)δαP
αβ = − 5

24

[
(Γcde)δ

βHacde +
1

4
(Γabcde)δ

βHbcde

]
(4.11)

which is clearly an inconsistency because of the eleven-dimensional structure of maximal

supergravity (see eq. (A.21)).

Further evidence that D = 11 supergravity is inconsistent with eqs. (4.3)–(4.8) can be

found when trying to solve eq. (4.6). To see this, let us identify Tabα with one the D = 11

supergravity fields. Using dimensional analysis arguments one concludes that the most

general expression for Tabα should have the form

Tabα = Tab
α + a1(Γ[a|c|)

α
δTb]c

δ + a2(Γabcd)
α
δTcd

δ (4.12)

where a1, a2 are numerical constants to be determined. Using eq. (A.36), one can relate

the last two terms on the right hand side of (4.12) to the first one, since (Γ[a|c|)
α
δTb]c

δ =

Tab
α and (Γabcd)

α
δTcd

δ = 2Tab
α. This implies that Tabα = b1Tab

α where b1 is a constant

normalization factor. After plugging this and eq. (4.10) into (4.6) one demonstrates that

λαdβdγ

[
− 5

96
(Γbcde)βγDαHbcde + b1(Γ

ab)γαTab
β

]
= 0 (4.13)

– 6 –
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Since this equation is antisymmetric in (β, γ), it should be true for the all antisymmetric

gamma matrix projections of it, namely Cβγ , (Γfgh)βγ , (Γfghi)βγ . In particular, the 3-form

projection requires

(Γfgh)βγ(Γab)α
γTab

β = 0 (4.14)

However, the use of eq. (A.36) allows one to show that

(Γfgh)βγ(Γab)α
γTab

β = 24(Γ[h)αβTfg]
β (4.15)

which is non-zero and thus inconsistent with (4.6). Thus it is not possible to obtain a ghost

number zero vertex operator from the D = 11 supergravity fields that satisfy the standard

descent equation (4.1).

5 Discussion

In this paper we have constructed a ghost number one vertex operator involving more terms

in its definition compared to that presented in [10]. In principle, there is no physical reason

to ignore them in the 3-point function computations, so it would be interesting to see how

they affect the results found in [10]. Moreover, an explicit relation between U (1) and U (3)

would be important to understand the structures underlying the eleven-dimensional pure

spinor framework, for example to prove permutation invariance of the correlator. A first

step in this direction was provided in [18] where it was shown that

∂aU
(3) = (λΓabλ)Φb +Q(Ξa) (5.1)

where Φb = λαhα
b and Ξa is a ghost number two operator. It should be emphasized that

this superfield Φb has been successfully used to study D = 11 supergravity from a second-

quantized perspective [11, 12, 18]. In particular, note that Φb is contained in U (1) after

contraction with the momentum Pb.

On the other hand, we have shown that it is not possible to write a ghost number

zero vertex operator made out of the D = 11 supergravity superfields satisfying a standard

descent equation. One possible resolution is to extend the present framework to its non-

minimal version by introducing the standard non-minimal pure spinor variables. In this

setting, a ghost number zero vertex operator can be defined using the relation

{b, U (1)} = Ṽ (0) (5.2)

where b was found in [12] and simplified in [19] where it was shown that b is nilpotent

up to BRST-exact terms. Since b satisfies {Q, b} = H, Ṽ (0) satisfies the standard descent

equation

[Q, Ṽ (0)] = [H,U (1)] (5.3)

Unlike the ten-dimensional case [8], Ṽ (0) cannot be split into a function depending only on

minimal variables plus a BRST-exact term as follows from our result in section 4. This im-

plies that Ṽ (0) will be a complicated function depending on minimal and non-minimal vari-

ables. It would be interesting to determine whether the non-minimal sector decouples from

the theory perhaps with the use of some appropriate measure in the correlation functions.

– 7 –
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Another approach is to impose additional constraints on the eleven-dimensional pure

spinor in such a way that more terms in the ghost number zero vertex operator are allowed.

For example, one could impose the full Cartan purity condition λΓabλ = 0 as was considered

in [5, 20], and it would be interesting to see if there is some relation of this constraint with

the present work.
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A Review of superspace formulation of D = 11 supergravity

In this appendix we will review the original superspace formulation of D = 11 supergravity

given in [21]. This turns out to be useful to fix conventions and get consistently the

equations of motion for the dynamical superfields, which in turn play a crucial role when

constructing the ghost number one and zero vertex operators of sections 3 and 4. Let us

start by fixing notation. Latin capital letters from the beginning/middle of the alphabet

will be used to represent tangent/coordinate superspace indices. The vielbein and spin-

connection will be defined to be 1-forms on superspace as follows

EA = dZMEM
A , ΩA

B = dZMΩMA
B (A.1)

where dZM = (dXm, dθµ). The existence of ΩA
B allows one to introduce a super covariant

derivative which will act on an arbitrary tensor FA1...Am
B1...Bn in the form

DFA1...Am
B1...Bn = dFA1...Am

B1...Bn − ΩA1
CFC...Am

B1...Bn − . . .+ FA1...Am
C...BnΩC

B1 + . . .

(A.2)

where d is the standard exterior derivative. Next one introduces the 2-form supertorsion

as the covariant derivative of the 1-form supervielbein

TA =
1

2
EAEBTBA

C = DEA

= dEA + EBΩB
A (A.3)

and the 2-form supercurvature as the covariant derivative of the 1-form super spin-

connection

RA
B =

1

2
ECEDRDC,A

B = DΩA
B

= dΩA
B + ΩA

CΩC
B (A.4)

– 8 –
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As usual, we will constrain the super spin-connection components to satisfy

Ωαβ =
1

4
(Γmn)αβΩmn (A.5)

and all the other components to vanish. This choice automatically implies that

RDC,αβ =
1

4
(Γmn)αβRDC,mn (A.6)

Using (A.2), (A.3), (A.4) one easily finds the so-called Bianchi identities

DTA = EBRB
A , DRAB = 0 (A.7)

which in component notation read

R[BD,C}
A −∇[BTDC}

A − T[BDFT|F |C}A = 0 (A.8)

∇[FRDC},A
B + T[FD

ER|E|C},A
B = 0 (A.9)

where [·, ·} is a graded antisymmetrization.

Furthermore, a 4-form superfield can be also introduced

H =
1

4!
EDECEBEAHABCD (A.10)

which will be required to satisfy dH = 0. This condition gives rise to a new identity, which

in component notation takes the form

∇[FHABCD} + 2T[FA
EH|E|BCD} = 0 (A.11)

In order to put the theory on-shell we will impose the standard conventional and

dynamical constraints, namely

Hαabc = Hαβδa = Hαβδε = Tab
c = Tαβ

δ = Taα
c = 0

Tαβ
a = (Γa)αβ , Hαβab = (Γab)αβ (A.12)

In this way, the only dynamical superfields of D = 11 supergravity are Habcd, Taα
β , Tab

α.

To see how this works one should solve the identities (A.8), (A.9), (A.11) by plugging (A.12)

into them. For instance, from eq. (A.11) one gets

(αβδγa) : 3T(αβ
AH|A|δγ)a = 0

→ 3(Γa)(αβ(Γab)δγ) = 0 (A.13)

(αβcde) : 2[Tαβ
AHAcde − 6T(α[c

AH|A|β)de] + 3T[cd
AH|Aαβ|e]] = 0

→ (Γa)αβHacde − 6T(α[c
δ(Γde])β)δ = 0 (A.14)

(αbcde) : ∇αHbcde + 2(3T[bc
βH|βα|de]) = 0

→ ∇αHbcde + 6(Γ[de)αβTbc]
β = 0 (A.15)

(abcde) : ∇[aHbcde] = 0 (A.16)

– 9 –
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The first equation is just a consistency check. The second equation (A.14) tells us that

Habcd =
3

16
(ΓaΓ[de)

α
δT|α|c]

δ

=
3

8
ηa[d(Γe)

α
δT|α|c]

δ +
3

16
(Γa[de)

α
δT|α|c]

δ (A.17)

which implies that (Γa)
α
δTαb

δ = 0 and

Habcd =
3

16
(Γa[de)

α
δT|α|c]

δ (A.18)

This implies that Tαa
β can be written in terms of Habcd. Using symmetry arguments one

finds that

Tαa
δ = c3(Γ

bcd)α
δHabcd + c5(Γabcde)α

δHbcde (A.19)

The use of eq. (A.14) tells us that

1

6
(Γa)αβHacde = c3(Γ

bfgΓ[de)(αβ)Hc]bfg + c5(Γ[c|abfg|Γde])(αβ)H
abfg (A.20)

= −6c3(Γ
g)αβHcdeg + c3(Γ

[de|bfg|)αβHc]bfg − 8c5(Γ
[de|bfg|)αβHc]bfg

which leads us to conclude that c3 = 1
36 and c5 = c3

8 = 1
288 . Thus one can write

Tαa
δ =

1

36

[
(Γbcd)α

δHabcd +
1

8
(Γabcde)α

δHbcde

]
(A.21)

Moreover, Habcd and Tab
α are related to each other via eq. (A.15)

∇αHbcde = −6(Γ[de)αβTbc]
β (A.22)

Next, one can use the Bianchi identity (A.8) together with eq. (A.6) to find

(αβδ)(γ) :
1

4
(Γab)(δ

γRαβ),ab + (Γa)(αβTδ)a
γ = 0 (A.23)

(aαβ)(γ) : (Γbc)(β
γR|a|α),bc − 4∇(αTβ)a

γ − 2(Γb)αβTba
γ = 0 (A.24)

(αβb)(c) : R(αβ),b
c + 2(Γc)γ(βTα)b

γ = 0 (A.25)

(abα)(β) :
1

4
(Γcd)α

βRab,cd + 2∇[aT|α|b]
β −∇αTabβ − 2Tα[a

δT|δ|b]
β = 0 (A.26)

(αab)(c) : Rα[a,b]
c − 1

2
(Γc)γαTab

γ = 0 (A.27)

(abc)(α) : ∇[aTbc]
α + T[ab

γT|γ|c]
α = 0 (A.28)

(abc)(d) : R[ab,c]
d = 0 (A.29)

The eqs. (A.23), (A.25) imply that

1

2
(Γab)(δ

γ(Γa)|ε|βTα)b
ε + (Γa)(αβTδ)a

γ = 0 (A.30)
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After replacing (A.21) in (A.30), one gets

Hcdef

[
3

2
(Γcd)(δ

γ(Γef )αβ) +
1

16
(Γab)(δ

γ(Γabcdef )αβ)

−(Γc)(αβ(Γdef )δ)
γ − 1

8
(Γa)(αβ(Γacdef )δ)

γ

]
= 0 (A.31)

which is an identity as can be shown by multiplying on both sides of (A.31) by (Γa)α,

(Γab)αβ , (Γabcde)αβ .3

Using eqs. (A.24), (A.27) one gets a set of constraints on Tab
α. Let us see how this

works. The use of eq. (A.27) allows us to write

(Γbc)β
γRaα,bc = −(Γbc)β

γ(Γc)αδTab
δ +

1

2
(Γbc)β

γ(Γa)αδTbc
δ (A.32)

Plugging this expression into eq. (A.24) ones arrives at the relation

− (Γbc)(β
γ(Γc)α)δTab

δ +
1

2
(Γbc)(β

γ(Γa)α)δTbc
δ − 4∇(αTβ)a

γ − 2(Γb)αβTba
γ = 0 (A.33)

Moreover, from eqs. (A.21), (A.15) one finds

∇(αTβ)a
γ = −1

6

[
(Γbcd)(β

γ(Γ[cd)α)δTab]
δ +

1

8
(Γa

bcde)(β
γ(Γde)α)δTbc

δ

]
(A.34)

Thus eq. (A.33) becomes

−(Γbc)(β
γ(Γc)α)δTab

δ +
1

2
(Γbc)(β

γ(Γa)α)δTbc
δ − 2(Γb)αβTba

γ

+
2

3

[
(Γbcd)(β

γ(Γ[cd)α)δTab]
δ +

1

8
(Γa

bcde)(β
γ(Γde)α)δTbc

δ

]
= 0 (A.35)

After multiplying on both sides by (Γa)αβ , (Γab)αβ , (Γabcde)αβ one arrives at

(Γabc)αβTbc
β = (Γab)αβTab

β = (Γb)αβTab
β = 0 (A.36)

Using this result and eq. (A.15) one learns that

(ΓcdΓ[ab)αβTcd]
β = −7Tabα , Tab

α =
1

42
(Γcd)αβ∇βHabcd (A.37)

Plugging this back into eq. (A.15), one finds that

∇αHabcd =
1

7
(Γ[cdΓ

ef )α
δ∇δHab]ef (A.38)

On the other hand, after multiplying by (Γcd)β
α and ηbd on both sides of eq. (A.26)

one obtains

Rac =
1

8
∇αTacα −

1

8
(Γcb)β

αTα[a
δT|δ|b]

β (A.39)

3The GAMMA package [22] turns out to be useful for this type of computations.
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The first term vanishes as a consequence of eqs. (A.25), (A.21). The second term in (A.39)

takes the simple form

(Γc
b)β

αTα[a
δT|δ|b]

β =
2

3
HadefHc

def − 1

18
ηacHdefgH

defg (A.40)

Thus, the graviton e.o.m is given by

Rac = − 1

12
HadefHc

def +
1

144
ηacHdefgH

defg (A.41)

Finally, one can obtain the e.o.m for the 4-form field strength by multiplying on both sides

of eq. (A.26) by (Γc)β
α and using (A.37) to get

1

42
(Γc)β

α(Γde)βδ∇α∇δHabde −
1

1296
εabcdefghijkH

defgHhijk = 0 (A.42)

So after antisymmetrizing in (a, b, c) one concludes that

∇dHdabc +
1

1192
εabcdefghijkH

defgHhijk = 0 (A.43)

where the identity (Γb)βα∇αHbcde = −3
7(Γ[c)

β
δ(Γ

fg)δγ∇γHde]fg was used.
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