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1 Introduction

A common way to study non-equilibrium properties of quantum field theories is to subject

them to a quantum quench, i.e. introduce an explicit time dependence to parameters which

appear in the lagrangian. Among other things, this is interesting for several reasons. One

motivation is to study equilibration and possible thermalization of these systems. Suppose

the time dependent parameters approach constant values in the far past and future, and the

system is initially in the ground state. The quench then excites the system. At late times,

when the parameter again becomes a constant (which is generally different from the initial

value), one would like to know the nature of the excited state, and if it is approximately

described by a thermal state in some appropriate sense.

A second motivation — which is one of our main interests — is to study dynamics

in critical phase transitions [1–5]. Suppose the initial hamiltonian is gapped, while the

quench protocol crosses or approaches a critical point where the gap vanishes. On general

grounds one expects that various observables would obey universal behavior.

An early example of such a universal behavior is Kibble Zurek scaling for global

quenches [6–8] (where the parameters depend only on time). This holds in many sys-

tems when the time scale of the quench δt is large compared to the inverse of the initial

energy gap Eg. In this case, the initial time evolution is adiabatic. However since the

instantaneous gap is descreasing with time, adiabaticity breaks down at some time called

the Kibble Zurek time tKZ. This is typically determined by the Landau criterion,

1

Egap(t)2
dEgap(t)

dt
|t=tKZ

∼ 1 (1.1)

where Egap(t) is the instantaneous energy gap. This equation then determines tKZ in terms

of δt. According to the assumptions of Kibble and Zurek, the system soon enters a diabatic

regime, and the instantaneous correlation length at the Kibble Zurek time is the only length

scale in the problem.

In the following we will follow standard nomenclature to distinguish several classes of

quench protocols. The first protocol is called a trans-critical protocol (TCP). Here the

system begins in a gapped phase and the coupling varies monotonically across a critical

value, and approaches a final value which also corresponds to a gapped phase. The second

is called a cis-critical protocol (CCP) where the time dependence is not monotonic. Here

the system starts from a gapped phase, approaches a critical point and reverts back to a

constant value which also corresponds to a gapped phase. The third protocol is called a

end-critical protocol (ECP). Here the system begins in a gapped phase and monotonically

approaches a critical point at infinitely late time. In TCP or CCP, the response at early

times then scales as appropriate power of the correlation length, leading to a scaling as

some universal power of the quench time scale. For example the one point function of an

operator O will scale as

〈O〉 ∼ ξ−∆
KZ (1.2)

where ∆ is the dimension of O. For ECP, the appropriate scaling variable is the energy

scale at the Kibble Zurek time. At any given time the response will be adiabatic for
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sufficiently large δt, while for a small enough δt there will be Kibble Zurek regime. Such

scaling behavior has been observed for entanglement entropies in model systems [9–13].

Even though these assumptions appear to be drastic, such a scaling — together with

an accompanying mechanism for defect formation in symmetry breaking transitions —

appears to hold for many systems. Kibble Zurek scaling has been studied in a variety of

solvable models and in holographic setups [14–19]. The latter provide some insight into

the origins of universality. The best known results involve one point functions (e.g. defect

density) and correlation functions. However similar scaling holds for the entanglement

entropy of a subregion in some model 1 + 1 dimensional systems.

At the other extreme is instantaneous quench where a sudden change of a parameter

causes the system to go from a gapped phase to a critical point abruptly. In this case,

universal results are known for correlators and entanglement entropies of 1+1 dimensional

systems [20–22]. Of particular interest is the spread of entanglement with time [20, 21] —

this kind of spread has been conjectured to hold for higher dimensional systems [23–26]

and there has been evidence for this in holographic calculations [27–32] as well as in free

field theories.

More recently it has been found that in a relativistic theory there is an intermediate

regime where a different universal scaling holds [33–35] — a result which was first found

in holographic calculations [36–38] and later found to hold quite generally. Consider a

relativistic quantum field theory in d dimensional space-time which is obtained by the RG

flow from a UV fixed point. The action can be then written as

S = SCFT −
∫

dt

∫

dd−1x λ(t)O∆(~x, t) (1.3)

Here SCFT stands for the conformal field theory action at the UV fixed point and ∆ denotes

the conformal dimension of the operatorO∆(~x, t) in this CFT. The time dependent coupling

λ(t) goes from a constant value λ0 in the infinite past some other value λ1 in the distant

future, and the time dependence is in some time interval of size δt. Then this regime is

defined by

Λ−1
UV ≪ δt ≪ (δλ)−

1

d−∆ , (λ0,±)
− 1

d−∆ (1.4)

where λ± denote the largest and smallest value of the coupling and δλ is the excursion of

the coupling during the quench process. In this regime the one point function soon after

the quench is over scales as

〈O∆〉 ∼ (δt)d−2∆ (1.5)

This is a result in any relativistic field theory, and follows from two basic properties [33–35].

The first is causality. The second property is that the causal Green’s functions of a massive

theory become those of the UV conformal theory for space-time separations which are

small compared to the inverse mass gap. Once these properties hold, it turns out that

the dimensionless parameter which controls time dependent perturbation theory is the

combination of the coupling with an appropriate power of δt, and all other scales go away.

This combination is small in the fast quench limit and the result (1.5) follows from the

lowest order perturbation theory. This regime of scaling has been investigated explicitly
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in free field theories with time dependent masses and in conformal field theories with

relevant and marginal deformations [39–41]. In continuum free theories there appears to

be a smooth transition between Kibble-Zurek and Fast scaling regimes [42], while in lattice

theories this connects to the abrupt quench regime at quench rates at the scale of the lattice

spacing [43]. Apart from one point functions, the whole range of scaling behavior is visible

in quantities like the entanglement entropy [13] as well as circuit complexity [44, 45].1

In many situations, particularly in experimental setups, one is interested in non-

relativistic systems. Our ultimate goal is to investigate whether there are universal scaling

laws which hold in non-relativistic systems. While Kibble Zurek scaling is expected to

hold, the status of fast quench scaling is unclear. In specific models where non-relativistic

Lifshitz type dispersion relations appear, e.g. the anisotropic critical points of the Kitaev

model one indeed finds fast quench scaling with appropriate scaling dimensions [43]. More

generally, Lieb Robinson bounds [48] for lattice non-relativistic systems may provide the

necessary ingredient. Indeed in recent work in lattice models with dynamical exponent

z 6= 1 it has been found that the spread of entanglement following a sudden quench indeed

has an effective finite velocity [49]. However, such a finite speed has been also observed in

non-relativistic systems which do not obey Lieb-Robinson bound [50, 51].

In this work we study the issue of scaling in a specific solvable system: a system of

N mutually non-interacting non-relativistic fermions in a harmonic or inverted harmonic

potential with a time dependent frequency and a time dependent mass. Using the results

of [52–54] will show how the problem of quantum quench with some smooth quench pro-

file in such systems can be solved analytically once one can solve a nonlinear equation

(Ermakov-Pinney (EP) equation). The solutions of this equation can be in turn deter-

mined in terms of the solutions of the classical equation of motion of a single particle in

the same harmonic potential.

Indeed harmonic traps are of considerable interest in experimental cold atom physics:

quantum quench experiments often involve release of particles from harmonic traps.

Our interest in the inverted harmonic oscillator potential on the other hand stems from

its connection to two dimensional string theory [55–58]. As is well known, the double scaled

limit of the singlet sector of the quantum mechanics of a single hermitian matrix reduces to

a set of fermions in an inverted harmonic oscillator potential. The string coupling appears

as the mass of the fermion. Thus two dimensional string theory with a time dependent

coupling reduces to the problem of fermions with time dependent mass in such a potential.2

String theory with time dependent string couplings have been studied extensively in the

context of AdS/CFT to investigate thermalization via black hole formation [59, 60]. In

a different context these have been used as models of AdS cosmology [61–72], but the

outcome has been rather inconclusive. Here we hope to obtain exact results in a simplified

situation.

1Other aspects of time dependence of complexity following a quench have been studied earlier in [46, 47].
2Fermions in harmonic oscillator potentials also appear in the description of special states in the

AdS/CFT correspondence [74–76]. Introducing a time dependent mass for such fermions naively corre-

sponds to a time dependent coupling of the Yang-Mills theory. However this breaks supersymmetries: the

truncation of matrix models and therefore fermions do not hold any more.
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In this paper we will set up the formalism necessary to solve both the harmonic and

inverted harmonic potential problems. We present detailed results for the problem in

harmonic trap: the problem of two dimensional string theory will appear in a future pub-

lication [73].

We will solve the quantum mechanical time evolution of such a system for interesting

time dependent frequencies of the CCP and ECP type and calculate the early time response

of one point functions as well as entanglement entropies for a sub-region for arbitary quench

rates to find the scaling behavior in various regimes. We will also explore the late time

behavior of the entanglement entropy. We find Kibble-Zurek scaling for slow quenches,

while for fast quenches we show that the result scales in a way which is consistent with

time dependent perturbation theory. At late times the entanglement entropy in a CCP

oscillates with an amplitude which appears to remain constant in time. This reflects the

lack of thermalization of the system. For the ECP the entanglement entropy monotonically

goes to zero as a power law in time, reflecting the fact that the particles can now spread

all over space.

Such solvable systems have played a major role in providing insight into scaling prop-

erties of quantum quench in continuum relativistic theories and in spin systems which can

be reduced to lattice versions of relativistic fermions [33–35, 42, 43]. As we will see, our

example may not be the appropriate setup to explore a possible universal scaling at fast

rates. Neverthless, we hope that these exact solutions will provide some insight into the

general problem.

Abrupt quantum quench in a system of free non-relativistic fermions which arise from

Matrix Quantum Mechanics with various potentials has been investigated in several pa-

pers [77–86, 89]. In particular [77, 78] has extensively studied the problem in terms of the

dynamics of the Wigner phase space density, investigated approach to a generalized Gibbs

ensemble and discovered interesting dynamical phase transitions. The papers [79–86] deal

with the fermion problem directly in the presence of various kinds of abrupt quenches.

Other aspects of the dynamics in such fermion systems (e.g. shock wave formation) have

been studied in [87, 88].

The paper [89] considers the dynamics of the Wigner phase space density as well as a

system of bosons and fermions using methods similar to us, in particular the EP equation.

The paper [90] considers slow smooth quenches for bosons also using the EP equation.

The EP equation has also been used to study entanglement dynamics following an abrupt

quench in a harmonic chain in [91].

Our work is complementary to these papers. We are interested in studying scaling of

various quantities as functions of the quench rate. We have been able to find exact analytic

solutions to several smooth quench protocols which we use for this purpose.

In section 2 we set up the second quantized fermion field theory and show how this can

be solved exactly for ±x2 potentials in terms of a function ρ(t) which satisfies generalized

Ermakov-Pinney equation and show how to obtain its solutions. In section 3 we quantize

these theories in the Heinsenberg picture “in” state and show how observables can be

expressed entirely in terms of ρ(t). In section 4 we provide exact solutions for some CCP

and ECP quench protocols for the harmonic problem. Sections 5–7 contain our results for
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the one point function of the quenched operator and the entanglement entropy for these

protocols and their scaling as functions of the quench rate. Section 8 deals with comments

about the behavior of the phase space density.

2 Fermion field theory

Consider a system of N non-relativistic fermions in 1 + 1 dimensions with a hamiltonian

given by

H =

∫

dx ψ†(x)

[

− ~

2m(t)

∂2

∂x2
± 1

2~
m(t)ν2(t)x2

]

ψ(x) (2.1)

where m(t), ν(t) are real smooth functions. The Schrodinger picture fermion field operators

above satisfy the usual anti-commutation relations

{ψ(x), ψ†(x′)} = δ(x− x′)

{ψ(x), ψ(x′)} = {ψ†(x), ψ†(x′)} = 0 (2.2)

The condition that the total number of fermions is N then leads to the constraint
∫ ∞

−∞
dx ψ†(x, t)ψ(x, t) = N (2.3)

The plus sign in (2.1) is the hamiltonian of particles with a time dependent mass in a har-

monic trap with a time dependent frequency. The minus sign with ν = 1 is the hamitonian

of the singlet sector of the double scaled single hermitian matrix quantum mechanics which

is dual to two dimensional string theory with a time dependent string coupling gs(t) = m(t).

The Heisenberg picture equation of motion is the Schrodinger equation

i
∂ψ(x, t)

∂t
=

[

− ~

2m(t)

∂2

∂x2
± 1

2~
m(t)ν2(t)x2

]

ψ(x, t) (2.4)

In the following we will set ~ = 1.

2.1 The general solution

In terms of a new time variable τ

dτ =
dt

m(t)
(2.5)

we can transfer the time dependence of the mass to the frequency term and (2.4) becomes

i
∂ψ(x, τ)

∂τ
=

[

−1

2

∂2

∂x2
± 1

2
ω2(τ)x2

]

ψ(x, τ) (2.6)

where

ω(τ) = m(t)ν(t) (2.7)

A solution to the equation (2.6) can be obtained in terms of the solution of the Schrodinger

equation with a constant mass and a constant frequency as follows [52–54]. First define a

new field Φ(x, τ) by

ψ(x, τ) = exp[−α(τ)x2 − β(τ)] Φ(x, τ) (2.8)

– 6 –
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Secondly, make a change of variables

τ → T =

∫ τ dτ ′

ρ(τ ′)2

x → y =
x

ρ(τ)
(2.9)

Then Φ(y, T ) satisfies

i
∂Φ(y, T )

∂T
=

[

−1

2

∂2

∂y2
± 1

2
y2
]

Φ(y, T ) (2.10)

provided

β(τ) = log[ρ(τ)]1/2 α(τ) = −i∂τβ(τ) (2.11)

and the function ρ(τ) satisfies a generalization of the Ermakov-Pinney equation [92, 93]

∂2
τρ(τ)± ω(τ)2ρ(τ) = ± 1

ρ(τ)3
(2.12)

Here the positive sign refers to the right-side up harmonic oscillator while the negative sign

refers to the inverted harmonic oscillator of relevance to the hermitian matrix model. The

latter case will be discussed in detail in [73].

In the adiabatic approximation the function ρ(τ) is simply 1√
ω(τ)

. A departure from

this value denotes a departure from adiabaticity and describes the exact response.

Furthermore the most general solution of (2.12) is given by

ρ(τ)2 = Af(τ)2 + 2Bf(τ)g(τ) + Cg(τ)2 (2.13)

where A,B,C are constants and f(τ), g(τ) are two linearly independent solutions of the

classical equation of motion of a single particle moving in a harmonic (inverted harmonic)

potential with the same time dependent frequency ω(τ)

∂2
τX ± ω(τ)2X = 0 (2.14)

Furthermore A,B,C must satisfy

AC −B2 = ± 1

Wr(f, g)2
(2.15)

where Wr(f, g) = f∂τg − g∂τf is the wronskian of the two solutions. By the equations of

motion this is a constant in time and can be therefore evaluated at any time.

The problem of fermions with a time dependent mass in a harmonic (or inverted

harmonic) potential with a time dependent frequency can be therefore reduced to a problem

with a constant mass and a constant frequency. The only equation one needs to solve is

the classical equation (2.14). As we will see below, many quantities of physical interest can

be expressed entirely in terms of the function ρ(t) = ρ(τ).

A general solution of the equation (2.10) has the form

Φn(y, T ) = Nn e−iλ(n)Tφn(y) (2.16)

– 7 –
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where φn denote a complete orthonormal set of eigenfunctions of the hamiltonian given by

the right hand side of (2.10) with eigenvalue f(n). Then the above discussion implies that

a general solution of the equation (2.6) may be written as

ψn(x, τ) =
1

√

ρ(τ)
exp

[

i

2

∂τρ(τ)

ρ(τ)
x2

]

Φn

(

x

ρ(τ)
, T

)

(2.17)

The orthonormality conditions for the eigenfunctions φn(y) then imply the orthonormality

conditions for the solution (2.17).

The form of the solution (2.17) reveals another physical meaning for the function ρ(τ).

In the wavefunctions of a harmonic oscillator at fixed frequency ω, one can rescale out the

frequency by x → √
ωx and τ → ωτ . The normalization of the wavefunction also involves

ω1/4, as would be required by the rescaling of x. In our problem ρ(τ) almost plays the role

of such a time dependent rescaling. The term which spoils this is the phase factor which

involves ∂τρ(τ). This is of course consistent with the fact that in lowest order of adiabatic

approximation ρ(τ) = 1√
ω(τ)

.

The function ρ(τ) is given by (2.13). The independent solutions f(τ), g(τ) and the

constants A,B,C have to be chosen so that the solutions (2.17) satisfy the correct initial

condition.

2.2 Solution in terms of phase space density

It will be useful to think in terms of the Wigner phase space density operator

u(q, p, t) =

∫

dxeipx/~ψ†(q − x/2)ψ(q + x/2) (2.18)

The condition (2.2) then becomes

u(q, p, t) ⋆ u(q, p, t) = u(q, p, t) (2.19)

while (2.3) becomes
∫

dqdp

2π~
u(q, p, t) = N (2.20)

where ⋆ denotes the Moyal star product. As shown in [94–96] the fermion field theory can

be expressed as a path integral in terms of these variables with a co-adjoint orbit action.

Formulating the theory in terms of u(p, q, t) is particularly useful in the classical limit

~ → 0, N → ∞ with N~ held fixed. In this limit the Moyal product reduces to an ordinary

product.

In this limit the operator u(p, q, t) satisfies the equation

[∂τ + p∂q ∓ ω2(τ)q∂p]u(p, q, τ) = 0 (2.21)

If we make the change of variables

τ → T =

∫ τ

dτ ′
1

ρ(τ ′)2

q → Q =
q

ρ(τ)

p → P = pρ(τ)− q∂τρ(τ) (2.22)

– 8 –
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the function

U(P,Q, T ) = u(p, q, t) (2.23)

satisfies

[∂T + P∂Q ∓Q∂P ]U(P,Q, T ) = 0 (2.24)

provided (2.13) holds.

This transformation is in fact a canonical transformation. Therefore the condition (2.20)

that u(p, q, t) describes N fermions transforms into the condition
∫

dPdQ u(P,Q, T ) = N (2.25)

The equation (2.24) is the equation satisfied by the phase space density operator for a

system of fermions which is in an external harmonic (or inverted harmonic) potential with

unit mass and unit frequency. Therefore once we know the solution for this latter case, we

can find a solution of the time dependent case in terms of a solution of the equation (2.12).

3 Quantization and the “in” state

The quantization of the fermionic field theory proceeds in a standard fashion. Given a

complete set of modes {ψn(x, τ)} which solve the equations of motion the Heisenberg

picture field operators may be expressed as

ψ(x, τ) =

∞
∑

n=0

an ψn(x, τ)

ψ†(x, τ) =
∞
∑

n=0

a†n ψ∗
n(x, τ) (3.1)

where the oscillators satisfy the standard anti-commutation relations

{am, a†n} = δmn {an, am} = {a†m, a†n} = 0 (3.2)

Different choices of modes determine different inequivalent quantizations related by Bo-

goliubov transformations.

We will be interested in profiles of m(t), ν(t) such that they approach constant values

min and νin as t → −∞, and their time derivatives approach zero. Furthermore we will

have choices of m(t) such that when t → −∞, one also has τ → −∞. In particular our

choices of m(t) are such that as t → −∞, we have m(t) → min so that τ → 1
min

t. The

equation (2.12) means that ρ(t) = ρ(τ) has the initial condition

Limτ→−∞ρ(τ) = ρin =
1√

minνin
=

1√
ωin

(3.3)

The corresponding solution ψn in (3.1) must then have the property that this is positive

frequency in the far past,

Limτ→∞ψn(x, τ) ∼ e−iατ α > 0 (3.4)

– 9 –
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We will consider the Heisenberg picture state which is the “in” ground state,

an|in〉 = 0 n ≥ N

a†n|in〉 = 0 0 ≤ n ≤ N − 1 (3.5)

3.1 Observables

The observables we will be interested in are the expectation value of the quenched oper-

ator and the entanglement entropy. We will now show that both these quantities can be

expressed in terms of the corresponding quantities in the time independent problem and

the function ρ(τ).

In the following we will consider the expectation value of the operator

O(τ) =

∫ ∞

−∞
dx x2ψ†(x, τ)ψ(x, τ) (3.6)

This is the operator which comes multiplied by the time dependent coupling ω2(τ) once the

theory is expressed in the time variable τ . In the spirit of response theory, the expectation

value then measures the response of the system to the external driving. 〈O(τ)〉 of our

problem can be expressed simply in terms of the expectation value of the quenched operator

in an auxiliary problem of a harmonic oscillator with unit mass and frequency, using (2.17)

〈in|O(τ)|in〉 =
N−1
∑

n=0

∫ ∞

−∞
dx x2 ψ∗

n(x, τ)ψn(x, τ) (3.7)

Using (2.16) and (2.17) this becomes, after a change of variables,

〈in|O(τ)|in〉 = ρ2(τ)
N−1
∑

n=0

∫ ∞

−∞
dY Y 2φ∗

n(Y )φn(Y ) = ρ(τ)2
N−1
∑

n=0

(n+ 1/2) =
N2

2
ρ(τ)2 (3.8)

where we have used the fact that the integral on the right hand side is the expectation

value of the potential energy of a single harmonic oscillator with unit frequency in the state

with quantum number n, and used the standard result.

For fermionic systems, the entanglement entropy of a subregion A has an expansion

in terms of cumulants of the particle number distribution [97–102]. In the leading order of

large N the dominant term is the variance of the expectation value of the particle number

in A,

SA(τ) =
π2

3
[〈NA(τ)

2〉 − 〈NA(τ)〉2] (3.9)

where the operator NA is given by

NA(τ) =

∫

A
dxψ†(x, τ)ψ(x, τ) (3.10)

where the integral is over the region A.

This simplifies for the “in” state. Using the mode expansion (3.1) and the state defined

in (3.5) it may be easily shown that

SA(τ) = 〈in|NA(τ)|in〉 −
∫

A
dx

∫

A
dy|C(x, y, τ)|2 (3.11)
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where

C(x, y, τ) = 〈in|ψ†(x, τ)ψ(y, τ)|in〉 (3.12)

This quantity can be also expressed entirely in terms of the expectation value of the phase

density operator as follows

SA =

∫ ∞

−∞
dp

∫

A
dx 〈in|u(p, x, τ)|in〉 −

∫ ∞

−∞
dp1dp2

∫

A
dxdy e−i(p2−p1)(x−y) 〈in|u(p1, (x+ y)/2, τ)|in〉〈in|u(p2, (x+ y)/2, τ)|in〉

(3.13)

Expressing the above expectation values in terms of the mode functions one has

〈in|NA(τ)|in〉 =

∫

A
dx

N−1
∑

n=0

ψ∗
n(x, τ)ψn(x, τ)

C(x, y, τ) =
N−1
∑

n=0

ψ∗
n(x, τ)ψn(y, τ) (3.14)

Using (2.17) it then follows that the entanglement entropy can be expressed in terms of the

entanglement entropy of a rescaled region in the ground state of the theory with a constant

mass and frequency. If the subregion A is defined by a ≤ x ≤ b then the rescaled subegion

is defined by

SA[ω(τ)] = SAP
[ω = 1] AP :

a

ρ(τ)
≤ x ≤ b

ρ(τ)
(3.15)

4 Results for fermions in harmonic oscillator potential

For the right side up harmonic oscillator, the two independent solutions of the equa-

tion (2.14) may be therefore chosen to be such that

Limτ→−∞f(τ) =
1√
2ωin

e−iωinτ g(τ) = [f(τ)]∗ (4.1)

To ensure that ρ(τ) is real we then need to choose

A = C = 0 B = 1 (4.2)

Therefore for this solution we have

ρ(τ) =
√
2 |f(τ)| (4.3)

This yields the final form of the solution

ψn(x, τ) =
1√
2nn!

[

1

πρ(τ)2

]1/4

exp

[

−i(n+ 1/2)

∫ τ dt′

ρ(τ)2

]

exp

[

i

2

(

∂τ log ρ(τ) +
i

ρ(τ)2

)

x2
]

Hn(x/ρ(τ))

(4.4)
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where Hn(x) denotes the n-th order Hermite polynomial. This solution approaches the

normalized solutions of the Schrodinger equation with a frequency ωin as τ → −∞. The

oscillators in (3.1) with these modes are in the “in” oscillators.

We now provide exactly solvable quench protocols for fermions with a fixed mass m

in a harmonic oscillator potential with time dependent frequencies. The two times t and τ

are then related by τ = t/m.

4.1 Cis-critical protocol

The first protocol is a cis-critical-protocol (CCP). As described in the introduction in such

a protocol the system starts from a gapped phase, approaches a critical point and then

turns back to another constant value. In this work we choose a protocol where the initial

and the final values are the same. More specifically we choose

ω(τ)2 = ω2
0 tanh2(τ/δt) (4.5)

This corresponds to a trap which is smoothly removed for a finite interval of time and then

re-introduced.

The solution to the equation (2.14) which behaves as e−iω0τ is then given by

fCCP(τ) =
1√
2ω0

2iω0δtcosh2α(τ/δt)

E1/2Ẽ
′
3/2 − E′

1/2Ẽ3/2

×
{

Ẽ′
3/2 2F1

(

a, b;
1

2
;−sinh2

τ

δt

)

+ E′
1/2sinh

τ

δt
2F1

(

a+
1

2
, b+

1

2
;
3

2
;−sinh2

τ

δt

)}

(4.6)

where we defined

α =
1

4

[

1 +
√

1− 4ω2
0δt

2
]

a = α− i

2
ω0δt, b = α+

i

2
ω0δt

E1/2 =
Γ(1/2)Γ(b− a)

Γ(b)Γ(1/2− a)
, Ẽ3/2 =

Γ(3/2)Γ(b− a)

Γ(b+ 1/2)Γ(1− a)

E′
c = Ec(a ↔ b)

(4.7)

The key function ρ(τ) is then given by (4.3) with f(τ) given by (4.6).

4.2 End critical protocol (ECP)

Another solvable quench protocol is the end critical protocol where the initial theory is

a harmonic oscillator with a frequency ω0 which monotonically descreases smoothly to a

vanishing frequency at infinitely late times. This corresponds to a smooth release from a

harmonic trap.

Consider the slightly more general protocol

ω2(τ) = ω2
0

(

a+ b tanh
τ

δt

)

(4.8)
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with the real constants a, b chosen such that a > b to ensure reality of ω(τ). Then the “in”

solution of the equation (2.14) is given by

fECP =
1√
2ωin

exp[−iω+τ − iω−δtlog(2cosh(τ/δt))]

2F1

[

1 + iω−δt, iω−δt; 1− iωinδt;
1

2
(1 + tanh(τ/δt))

] (4.9)

where we defined

ωin = ω0

√
a− b,

ωout = ω0

√
a+ b,

ω± =
1

2
(ωout ± ωin)

(4.10)

The end critical protocol we consider has a = −b = 1
2 . The function ρ(τ) which determines

the time dependence of the observables considered above is shown in figure 1 for both these

types of protocol.

At early times ρ(−∞) = 1√
2ωin

. For ECP ρ(τ) monotonically increases and behaves as

ρ(τ) ∼ τ at large τ . For CCP ρ(τ) initially increases and then starts oscillating. At late

times these oscillations are around a mean value which is roughly the initial value 1√
2ω

with

an amplitude which remains constant in time and with a frequency approximately given

by ω0.

5 The response and scaling: CCP

In this section we present the results of the expectation value of the quenched operator

O =
∫

dxx2ψ†ψ at early times for CCP (equation (4.5)) and investigate their scaling

behavior in various regimes. The details of the analytic approximations which lead to

these results are given in appendix A.

5.1 Slow quench regime

In the slow quench regime ω0δt ≫ 1 we can use the asymptotic form of gamma functions

Γ(z) ∼
√
2πe−z+(z− 1

2) log z, z → ∞ (5.1)

to obtain ρ(τ = 0). The leading expression for the one point function 〈O〉 at τ = 0 is,

using (3.8),

〈O(0)〉 ∼
√
π

2
N2

√

δt

ω0
(5.2)

This result is consistent with Kibble-Zurek scaling. The Landau criterion with the instan-

taneous frequency given by (4.5) leads to

1

ω0δt
cosech2(τKZ/δt) = 1 (5.3)
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(a) ω0δt = 1(CCP) (b) ω0δt = 1(ECP)

(c) ω0δt = 100(CCP) (d) ω0δt = 100(ECP)

(e) ω0δt = 0.01(CCP) (f) ω0δt = 0.01(ECP)

Figure 1. Relation between ρ(τ) and τ in various ω0δt cases.

which defines the Kibble-Zurek time τKZ. We expect a scaling behavior only when τKZ ≪ δt.

In this regime (5.3) leads to

τKZ =

√

δt

ω0
(5.4)

The condition τKZ ≪ δt then becomes consistent with the slow quench condition ω0δt ≫ 1.

This leads to the instantaneous frequency at the Kibble-Zurek time,

ω2
KZ =

ω0

δt
(5.5)
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According to the Kibble-Zurek argument ρ(τ) in the middle of the quench (which is τ = 0)

is roughly equal to its value at τ = τKZ. Since the system is approximately adiabatic at

τ = τKZ this is in turn roughly equal to ρadia(τKZ), the value of ρ for the fermions in a

harmonic oscillator potential with a constant frequency ωKZ. From (2.12) this is simply

ρ(τKZ) ∼ ρadia(τKZ) =
1√
ωKZ

(5.6)

leading to

〈O〉 ∼ N2

2

√

δt

ω0
(5.7)

which is in agreement with the result from the exact solution (5.2) upto a numerical factor.

5.2 Fast quench regime

We now consider the regime ω0δt ≪ 1. While we have the exact answer anyway, we are able

to approximate the answer by suitable expansions and obtain analytic expressions when we

have in addition ω0τ ≪ 1. The latter are useful to make a comparison with perturbation

calculations.

First consider the response at a time τ which is in the range

ω0τ ≪ ω0δt ≪ 1 (5.8)

In this case, for the CCP (equation (4.5) we get an expression (see appendix A.1, equa-

tions (A.8)–(A.18),

〈O(τ)〉 ≈ N2

2ω0

{

1 + 2log2 · ω2
0δt

2 + 2ω2
0δt · τ +O

(

ω4
0δt

4,
τ2

δt2

)}

(5.9)

This is the response at early times. At late times, (see equations (A.19) to (A.28))

ω0δt ≪ ω0τ ≪ 1 (5.10)

one gets instead

〈O〉 ∼ N2

2ω0

(

1 + 2ω0δtsin2ω0τ +O(ω2
0δt

2)
)

(5.11)

These results should also follow from usual time dependent perturbation theory. Let

us discuss this for a general perturbation δω(τ)2 from the initial value. The leading term

in the perturbation expansion is

〈O(τ)〉 = 〈O(−∞)〉 (5.12)

+
1

2

∫ τ

−∞
dτ ′

∫

dx

∫

dx′ (xx′)2δω(τ ′)2〈0|[ψ†(x, τ)ψ(x, τ), ψ†(x′, τ ′)ψ(x′, τ ′)]|0〉ω0

where 〈〉ω0
denotes the expectation value in the ground state of the theory at τ → −∞

which is the harmonic oscillator with a constant frequency ω0 and

δω(τ)2 = ω(τ)2 − ω2
0 (5.13)
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Figure 2. (Colour online) The response ρ2/(2δt) = 〈O〉/(N2δt) as a function of ω0δt for CCP

when τ = 0. The black dashed curve is the exact result obtained by using (4.6). The blue curve is

the leading Kibble Zurek result for ω0δt ≫ 1, i.e. eq. (5.7). The red curve is the leading behavior

when ω0δt ≪ 1, i.e. eq. (5.9). The green curve is the perturbation expansion result i.e. eq. (5.15).

The Green’s function which appears in the linear response can be calculated. The result is

G(τ, τ ′) = θ(τ − τ ′)
∫

dx

∫

dx′ x2 (x′)2 〈0|[ψ†(x, τ)ψ(x, τ), ψ†(x′, τ ′)ψ(x′, τ ′)]|0〉ω0

= −θ(τ − τ ′)
N2

ω2
0

sin[2ω0(τ − τ ′)] (5.14)

Now consider evaluating the response at a time which is of the order of τ ∼ +δt. In the fast

quench regime ω0δt ≪ 1. The limits of the integral in (5.14) can be replaced by (−δt, δt).

Suppose the form of δω(τ)2 is δω(τ)2 = δω2
0f(τ/δt) where δt is the time scale of the quench

and f(x) some smooth function. Using the above form of the Green’s function the linear

response becomes in the fast quench regime

〈O(τ)〉 − 〈O(−∞)〉 ∼ δω2
0

N2

2ω2
0

∫ δt

−δt
dτ ′ f(τ ′/δt) sin[2ω0(τ − τ ′)]

∼ δω2
0

N2

2ω2
0

ω0δt
2 (5.15)

In the protocol we are using δω2
0 = ω2

0 and f(τ/δt) = sech2(τ/dt). We therefore reproduce

the scaling in (5.9).

5.3 The exact response

The exact response for CCP is shown in figure 2. This shows that the analytic approx-

imatations in the fast and slow regime agree very well with the exact answer, and the

transition between the two regimes is rather sharp.
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6 The response and scaling: ECP

The investigation of the scaling behavior for the ECP case (4.8) follows along lines similar

to CCP.

6.1 Slow quench regime

In the slow quench regime (ω0δt ≫ 1) one expects a Kibble Zurek scaling. For the proto-

col (4.8) the Landau criterion determining the Kibble-Zurek time tKZ becomes

1

cosh2(τKZ/δt)(1− tanh(τKZ/δt))3/2
∼ ω0δt (6.1)

For ω0δt ≫ 1 the solution can appear only at late times. This yields

τKZ ∼ δt log(ω0δt) (6.2)

In this case the instantaneous gap vanishes in the infinite future. This means that in the

slow quench regime adiabaticity will fail at late times. The frequency at this time is

ωKZ = ω0

√

1− tanh(τKZ/δt)

2
∼ 1

δt
(6.3)

Therefore the standard Kibble Zurek argument would predict that the response at late

times is given by

〈O〉 ∼ 1

2
N2ρ(τKZ)

2 =
N2

2ωKZ
∼ 1

2
N2δt (6.4)

At a time earlier than the Kibble Zurek time i.e. when

τ < δt log(ω0δt), (6.5)

the adiabatic approximation is valid. Therefore if one measures the response at some fixed

value of τ/δt = ζ we should have

〈O〉 ∼ N2

2ω0

√

1−tanh(τ/δt)
2

∼ N2

√
2ω0

√
1− tanh ζ

(6.6)

This expectation needs refinement. Using the exact solution we can perform an ex-

pansion for ω0δt ≫ 1 and for τ ≫ δt logω0δt. We find that the leading term of ρ2(τ) is

ρ2(τ) ∼ δt

[

2

π

(

− logω0δt+ log 2− γE +
τ

δt

)2
+

π

2

]

∼ O(1) (6.7)

The additional logarithmic dependence is not easily visible from the naive Kibble-Zurek

argument.
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6.2 Fast quench regime

In the fast quench regime one can get an analytic expression

ρ2(τ) ∼ω0δt
2

(

−ζ(3)

4
ω2
0δt

2 +
τ

δt

)2

+
1

ω0
=

1

ω0
+ ω0τ

2 − ζ(3)

2
(ω0δt)

3τ. (6.8)

at late times, i.e. ω0δt ≪ ω0τ ≪ 1. Details of calculation which leads to (6.8) are summa-

rized in appendix A.2.

The limit δt → 0 is smooth. In this limit the expression (6.8) reduces to the result

which is obtained in an abrupt quench where the frequency suddenly changes from ω0

to zero,

ρ2abrupt(τ) =
1

ω0
[1 + (ω0τ)

2] (6.9)

In relativistic theories this limit is non-trivial because of UV divergences, as discussed

in [33–35].

Once again the answer should be obtainable by a perturbation expansion in ω0δt.

Again let δω(τ)2 = ω2
0f(τ/δt), where

f(x) =











0, x < −1;
1+x
2 , −1 ≤ x ≤ 1;

1, x > 1.

(6.10)

Then at late times,

〈O(τ)〉 − 〈O(−∞)〉 ∼ ω2
0

N2

2ω2
0

∫ τ

−δt
dτ ′ f(τ ′/δt) sin[2ω0(τ − τ ′)]

∼ N2

2ω0
sin2 ω0τ. (6.11)

Thus ω0τ ≪ 1 the perturbation expansion gives a good approximation.

6.3 The exact response

The above discussion shows that for the ECP it is useful to look at the response for a fixed

value of τ/δt = ζ. Our analytic approximations then predict

2〈O〉
N2δt

=















1
ω0δt

+ (ω0δt)ζ
2 : ω0δt ≪ 1

constant : 1 ≪ ω0δt ≪ eζ√
2

(ω0δt)
√

1−tanh(ζ)
: ω0δt ≫ eζ

Figure 3 shows how the exact result compares with the above expectations. Here we

plot the quantity ρ2/δt = 2〈O〉/(N2δt) as a function of ω0δt for different values of ζ. For

very small ω0δt one reproduces the abrupt quench result. For slightly larger ω0δt we can

see the fast quench correction predicted in (6.8). To investigate the behavior in the fast

quench regime, it is useful to subtract the abrupt quench response. The quantity |ρ2(τ)−
ρ2abrupt(τ)|/δt is plotted in figure 4. This quantity is close to zero (and slightly negative)
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Figure 3. (Colour online) The response ρ2(τ)/δt as a function of ω0δt for ECP. The dots are

the exact results obtained by using (4.9) for fixed values of ζ = τ/δt = 0, 2, 4, 6, 8, 10, 12 which are

colored from red to blue respectively. The grey dot on each curve corresponds to ω0δt = eζ for

that particular ζ. Thus all points in the yellow shaded region are in the adiabatic regime. The

points which lie in the blue shaded region have 1 < ω0δt < eζ . For larger values of ζ there is

a small window in this regime where ρ2(τ)/δt is roughly constant which is the expectation from

Kibble Zurek scaling. The slight increase is consistent with the logarithmic term in (6.7). The dark

red and dark blue solid lines are the linear fitting (log y = P log x + Q) results of red (τ/δt = 0)

and blue dots (τ/δt = 12) when ω0δt ≫ eτ/δt (yellow region), respectively. Both the slopes P are

approximately −1. The orange, blizzard blue and light blue solid curves in the fast quench regime

(ω0δt ≪ 1) are the sudden quench result (6.9) for τ/δt = 2, 6, 10, respectively. For ω0δt < 1 the

data points lie on these solid lines. For ω0δt > 1 they continue to lie on the solid lines for a while

and then depart from them, reflecting the O(ω3δt3) terms in (6.8).

for sufficiently small ω0δt. For larger ω0δt this becomes positive and in a reasonable range

of ω0δt this is consistent with the (ω0δt)
3 term in the fast quench response, equation (6.8)

which are shown by solid lines. Note that the cusps in the data appear because the quantity

ρ2(τ)− ρ2abrupt(τ) changes sign and we are plotting the absolute value — there is nothing

singular here.

For sufficiently large values of ω0δt this quantity is proportional to 1/(ω0δt) with a

proportionality constant which depends on ζ, as expected from an adiabatic response.

There is a small window in the intermediate regime where ρ2(τ)/δt is roughly constant

upto a logarithmic dependence as in (6.7).

7 Entanglement entropy

In this section we present the results for the entanglement entropy of a subregion, its scaling

at early times and the time dependence at late times. As argued above, the entanglement

entropy in a given subregion for a time dependent frequency can be expressed entirely

– 19 –



J
H
E
P
0
8
(
2
0
1
9
)
1
7
6

Figure 4. (Colour online) The response
|ρ2(τ)−ρ2

abrupt(τ)|

δt as a function of ω0δt for ECP. The

dots are the exact results obtained by using (4.9) for fixed values of ζ = τ/δt = 0, 2, 4, 6, 8, 10, 12

which are colored from red to blue respectively. The vertical gridline ω0δt = 1 is the threshold

between fast quench and slow quench. The dashed lines are a set of cubic functions y = ax3, where

a = 10, 45, 80, 115 from the lowest one to the highest one, respectively to compare with the leading

term in (6.8).

in terms of the entanglement entropy of a scaled subregion for the system at fixed unit

frequency, with the scaling factor given by ρ(τ) (eq. (3.15)). In the following we will

examine the behavior of the entanglement entropy for a subregion −a ≤ x ≤ a. We will

also be interested in the limit N ≫ 1 so that we can use the expression (3.11).

We will be interested in the entanglement entropy for a subregion size

a

ρ(τ)
≪

√
N (7.1)

For ECP the function ρ(τ) monotonically increases with time, so this condition is equivalent

to the condition
√
ω0a ≪ 1 since ρ(−∞) = 1√

ω0
— the monotonicity then implies that once

we impose (7.1) at the initial time, this will continue to hold for all times. For CCP the

function ρ(τ) oscillates roughly around ρ(−∞) with an amplitude which is roughly constant

in time: once we pick a value of a such that this condition is satisfied at some sufficiently

large time, this will continue to be satisfied for all times.

The expression for entanglement entropy at large N can be written down us-

ing (3.11), (3.12) and (3.15) by using the Christoffel-Darboux formula for orthogonal poly-

nomials
n
∑

k=0

Hk(x)Hk(y)

k!2k
=

1

n!2n+1

Hn(y)Hn+1(x)−Hn(x)Hn+1(y)

x− y
. (7.2)
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This leads to

〈NA〉 =
1

Γ(N)2N
√
π

∫

AP

dξe−ξ2 [HN−1(ξ)H
′
N (ξ)−H ′

N−1(ξ)HN (ξ)] (7.3)

∫

AP×AP

dxdy|C(x, y)|2 = − 1

π22N (Γ(N))2
(7.4)

×
∫

AP×AP

dξdηe−(ξ2+η2)

(

HN−1(η)HN (ξ)−HN−1(ξ)HN (η)

ξ − η

)2

where the notation AP × AP means that the integrals go over the range defined by AP .

These expressions simplify in two regimes. First consider the regime

1√
N

≪ a

ρ(τ)
≪

√
N (7.5)

Then one gets, using (3.11)

SA ∝ 1

π2

{

1 + γE + log

[

4
√
2N

a

ρ(τ)

]}

(7.6)

where γE is Euler’s constant. The derivation (7.6) is given in appendix B.

The logarithmic dependence on the subsystem size is characterisic of 1 + 1 dimen-

sional systems. For relativistic systems the scale is provided by a UV cutoff. For free

non-relativistic fermions on a line the entanglement entropy is finite with the UV cutoff

replaced by N [103, 104]. A similar result holds for fermions in an invererted harmonic

oscillator potential [103–105]. For fermions in a harmonic oscillator potential with a con-

stant frequency this logarithmic dependence has been shown in the so called “bulk limit”

in [106].

For CCP protocols, ρ(τ) oscillates and the condition (7.5) continues to hold once it is

imposed at early times. However for the ECP ρ(τ) monotonically increases so that at very

late times the condition 1√
N

≪ a
ρ(τ) will be violated. It turns out, however, that for the

regime
a

ρ(τ)
≪ 1√

N
(7.7)

one can use a different approximation which yields

SA ∝
√
N

π

a

ρ(τ)
(7.8)

Note that the entanglement entropy is now proportional to a. However the proportionality

constant decreases steadily as 1
τ since the function ρ(τ) ∼ τ at late times. The derivation

of (7.8) is given in appendix B.

Plots of the time dependence of the entanglement entropy in various cases are shown

in figure 5. For the cis-critical protocol, the function ρ(τ) oscillates after an initial increase,

so that the effective size of the interval in the equivalent constant frequency problem also

oscillates. This would lead to oscillations in the entanglement entropy as well.

For ECP, however, ρ(τ) decreases continuously. This means that for a given a the

effective value of the interval in the equivalent constant frequency problem keeps decreasing
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(a) ω0δt = 0.1(CCP) (b) ω0δt = 0.1(ECP)

(c) ω0δt = 1(CCP) (d) ω0δt = 1(ECP)

(e) ω0δt = 10(CCP) (f) ω0δt = 10(ECP)

Figure 5. Time evolution of Entanglement Entropy SA(τ) in various cases. Red dots are exact

large N result from (7.4). Blue solid lines are results (7.6) in the regime (7.5). N = 50, a = 1.

with time. This should also mean that the entanglement entropy keeps desceasing with

time. This is basically because as the fermions are released from the trap they simply

spread out: both 〈NA〉 and 〈(∆NA)
2〉 keep decreasing leading to a loss of entanglement.

It follows from (7.8) that at late times the entanglement entropy goes to zero as a power

law ∼ 1
τ .
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8 Phase space density for harmonic oscillator potential

In this section we present the time evolution of the Wigner Distribution function, also called

the phase space density, u(x, p, τ), under CCP and ECP quench protocols in a right side

up harmonic oscillator potential. In the classical limit, which is given by ~ → 0, N → ∞
with N~ = fixed, u(x, p, τ) can only take values of 0, 1 since no two fermions can occupy

the same position and momentum. A value of 1 corresponds to the presence of one fermion

within a phase space volume between q and q + dq and p and p+ dp.

Using the canonical transformations in (2.22), we can write the time evolved phase

space density as a function of the original coordinates as

u

(

q

ρ
, pρ− qρ̇, τ

)

= θ

(

2Ef −
(

(
q

ρ
)2 + (pρ− qρ̇)2

))

(8.1)

Here Ef is the fermi level and defines the boundary of the phase space density, i.e. the

fermi surface. θ is the Heaviside step function which satisfies the relations

θ(x) =

{

1, x ≥ 0

0, x < 0
(8.2)

Equation (8.1) takes a value of 1 for q, p which satisfy the relation 2Ef ≥ ( qρ)
2+(pρ− qρ̇)2.

This will produce what we call a phase space ‘droplet’. As time evolves, the shape of this

‘droplet’ will evolve according to the chosen quench protocol. We present the results for

the ECP and CCP cases.

8.1 ECP case

Here we discuss the time evolution of (8.1) for the ECP case that has a ρ which is given

in (4.3) and (4.9).

In figure 6 we see that the phase space ‘droplet’ spreads out in the upper right and

lower left quadrants. This corresponds to motion along both directions of the infinite line.

Since we are quenching to zero potential, we are ‘freeing’ the fermions from the harmonic

trap and they begin to spread over the real line. The rate at which the ‘droplet’ spreads is

related to δt, the timescale of the quench protocol.

8.2 CCP case

Here we discuss the time evolution of (8.1) for the CCP case that has a ρ which is given

in (4.3) and (4.6).

In figure 7 we see that the phase space ‘droplet’ initially spreads out and then begins

to rotate in a clockwise fashion. This rotation comes from the oscillatory nature of ρ in

the CCP case for τ > 0. We can understand the physical origin of this rotation. We are

quenching from a potential of frequency ω0, to 0, back to ω0 over a timescale of δt. The

fermions initially just spread along the real line as the potential barrier goes to zero just as

in the ECP case. However, when the barrier is restored to its original value, the fermions

hit the edge of the restored barrier and then reflect back. This reflection is indicated by

the rotation of the stretched droplet in a clockwise fashion. As time evolves the stretched
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(a) τ = −2 (b) τ = 0

(c) τ = 2 (d) τ = 4

Figure 6. Time evolution of a contour plot of the Wigner Distribution function in the classical

limit for the ECP case. The black region corresponds to u = 1 and the white region corresponds

to u = 0. We have taken δt = 1, ω0 = 1. The radius of the initial droplet is
√

2Ef = 2
√
2 and the

area, which is conserved in time, is N~ = 2πEf .

droplet will continue to rotate indefinitely as the electrons keep reflecting off the walls of

the potential barrier.

8.3 Time evolution of perturbations along fermi surface

In the previous subsection, we demonstrated the time evolution of a phase space ‘droplet’

under the influence of a right side up harmonic oscillator potential with a time dependent

frequency. In this subsection we consider the time evolution of a perturbation of the fermi

surface of this ‘droplet’. We would like to know how this perturbation evolves in time. To

gain a better understanding of what happens in this case, let us first consider the time
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(a) τ = −2 (b) τ = 0

(c) τ = 2 (d) τ = 4

Figure 7. Time evolution of the Wigner Distribution function in the classical limit for the CCP

case. We have taken δt = 1, ω0 = 1. The radius of the initial droplet is
√

2Ef = 2
√
2 and the area,

which is conserved in time, is N~ = 2πEf .

evolution under a harmonic oscillator potential with a time independent frequency. In

figure 8 we plot this evolution. As expected, we find that the perturbation maintains its

shape throughout all of time. This is a consequence of the harmonic oscillator frequency

being time independent. As a result, all points of an initial perturbation of the fermi

surface will move at the same angular frequency for all subsequent times leaving its shape

unaltered.

Now consider the case where an initial perturbation of the fermi surface of a phase

space ‘droplet’ evolves under the influence of a right side up harmonic oscillator potential

with a time dependent frequency. In particular, we consider the ECP quench protocol. We

plot this evolution in figures 9, 10. In this case we find something quite interesting. We
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(a) τ = 0 (b) τ = 2π
3

(c) τ = 4π
3

(d) τ = 2π

Figure 8. Time evolution of a perturbation of the fermi surface for a time independent harmonic

oscillator potential. We have taken ω0 = 1.

see that the perturbation develops what we call a ‘fold’. This is a phenomenon in which a

phase space point which is further from the fermi surface moves faster than a phase space

point which is closer to the fermi surface. As a result, at some time later than the initial

time, the outer most phase space points begin ‘folding’ over towards the fermi surface.

The feature of an initial perturbation developing a fold is characteristic of a system

evolving under the influence of a harmonic oscillator potential with any arbitrary time

dependent frequency. One can rewrite the phase space coordinates q, p in terms of polar

coordinates r, θ. One can then show that dθ
dτ ∝ f(θ, ω(τ), ω̇(τ)) and is therefore not constant

in time. On the contrary, if dθ
dτ = const, then all the phase space points rotate with the

same angular frequency. This is exactly the case for the harmonic oscillator potential with

a time independent frequency.
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(a) τ = −5 (b) τ = −3

(c) τ = 0 (d) τ = 3

(e) τ = 4 (f) τ = 5

Figure 9. Time evolution of a perturbation of the fermi surface for the ECP case. We have taken

δt = 1, ω0 = 1.
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(a) τ = 3 (b) τ = 4

(c) τ = 5

Figure 10. We zoom in to the region of the perturbation of the fermi surface to clearly see a ‘fold’

forming as time evolves.

9 Discussion

In this paper we considered quantum quench in a nonrelativistic field theory of fermions

in an external harmonic oscillator or an invererted harmonic oscillator potential with time

dependent mass and frequency. While the strategy we outlined to obtain exact solutions

hold for both these potentials, we gave results for the right side harmonic potential in

this paper. Explicit solutions for the inverted oscillator potential, which corresponds to

quantum quench in the Matrix Model description of two dimensional string theory, will be

presented in a future publication [73].

We examined scaling behavior of observables in the slow and fast quench regime. We

found that the slow quench scaling is consistent with Kibble Zurek, and the fast quench
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scaling is a result of perturbation theory. This system is, however, not suitable to explore

if there is a universal fast quench scaling. For the latter we would need to examine a

translationally invariant system with an upper bound on the energy spectrum (for example

a lattice system) so that a Lieb Robinson bound is possible. We are currently investigating

the quench problem in situations like this.
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A Approximation of ρ(τ )2 in various limits

In this appendix we explicitly derive approximated ρ(τ)2 and therefore 〈O〉 in various limits

from the exact CCP solution (4.6) and ECP solution (4.9). In appendix A.1 we study the

CCP case and in appendix A.2 we study the ECP case.

A.1 In CCP

Slow quench (ω0δt ≫ 1). We consider the behavior at τ = 0, in which case (4.6) can

be simplified into

f(τ = 0) =
1√
2ω0

2iω0δt

E1/2Ẽ
′
3/2 − E′

1/2Ẽ3/2

Ẽ′
3/2. (A.1)

Notice that in (4.7), Rea = Reb = Reα ∈ [1/4, 1/2], therefore we can utilize three identities

of the Gamma function

Γ(z)Γ(1− z) = πcscπz, 0 < Rez < 1, (A.2)

and

Γ(1 + iy)Γ(1− iy) = |Γ(1 + iy)|2 = πy

sinhπy
,

Γ(1/2 + iy)Γ(1/2− iy) = |Γ(1/2 + iy)|2 = π

coshπy
,

(A.3)

and simplify the denominator of (A.1) into

E1/2Ẽ
′
3/2 − E′

1/2Ẽ3/2

= Γ(1/2)Γ(3/2)|Γ(iω0δt)|2
(

1

Γ(a+ 1/2)Γ(1/2− a)Γ(b)Γ(1− b)
− (a ↔ b)

)

=
1

2ω0δtsinhπω0δt
(sinπ(1/2− a)sin(πb)− sinπ(1/2− b)sin(πa))

=
1

2ω0δtsinhπω0δt
sinπ(b− a)

=
i

2ω0δt
.

(A.4)
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On the other hand, according to the asymptotic behavior of the Gamma function

Γ(z) ∼
√
2πe−z+(z− 1

2
) log z, z → ∞ and | arg z| < π (A.5)

we can find [Γ(z)]2 ∼ Γ(z +1/4)Γ(z − 1/4) under the condition. Therefore, the numerator

of (A.1) satisfies

|Ẽ′
3/2|2 ≈

π

4

π

ω0δtsinhπω0δt

∣

∣

∣

∣

∣

∣

1

Γ
(

1+ i
4

√

4ω2
0δt

2−1− i
2ω0δt

)

Γ
(

1− i
4

√

4ω2
0δt

2 − 1− i
2ω0δt

)

∣

∣

∣

∣

∣

∣

×

∣

∣

∣

∣

∣

∣

1

Γ
(

1/2 + i
4

√

4ω2
0δt

2 − 1− i
2ω0δt

)

Γ
(

1/2− i
4

√

4ω2
0δt

2 − 1− i
2ω0δt

)

∣

∣

∣

∣

∣

∣

=
1

4

1

ω0δtsinhπω0δt







sinhπ
(

1
2

√

4ω2
0δt

2−1− ω0δt
)

1
2

√

4ω2
0δt

2 − 1− ω0δt

sinhπ
(

1
2

√

4ω2
0δt

2−1+ω0δt
)

1
2

√

4ω2
0δt

2 − 1 + ω0δt







1/2

→1

2

1

ω0δt

{

π

4ω0δt

}1/2

(A.6)

As a result,

ρ2(τ = 0) = 2|f |2(τ = 0) = 2
1

2ω0

1
1

(2ω0δt)2

1

2

1

ω0δt

{

π

4ω0δt

}1/2

=
√
π

√

δt

ω0
(A.7)

and thus (5.2).

Early time in fast quench (ω0τ ≪ ω0δt ≪ 1). When ω0τ ≪ ω0δt ≪ 1, in (4.7)

a = b∗, thus the Hypergeometric functions in (4.6) are real. Therefore,

E∗
c = Ec(a ↔ b) = E′

c, (A.8)

and

ρ2(τ) =
1

ω0

cosh4α(τ/δt)

|E1/2Ẽ
′
3/2 − E′

1/2Ẽ3/2|2

{

|Ẽ′
3/2|22F1

2

(

a, b;
1

2
;−sinh2

τ

δt

)

+|E′
1/2|2sinh2

τ

δt
2F1

2

(

a+
1

2
, b+

1

2
;
3

2
;−sinh2

τ

δt

)

+
(

Ẽ′
3/2E1/2 + Ẽ3/2E

′
1/2

)

sinh
τ

δt
2F1

(

a, b;
1

2
;−sinh2

τ

δt

)

× 2F1

(

a+
1

2
, b+

1

2
;
3

2
;−sinh2

τ

δt

)}

.

(A.9)

Similar to the calculation of (A.4), we can find

E1/2Ẽ
′
3/2 + E′

1/2Ẽ3/2 =
1

2ω0δtsinhπω0δt
sinπ(b+ a) → 1

2
+O(ω4

0δt
4), (A.10)

since α ∼ 1
2 [1− ω2

0δt
2] when ω0δt ≪ 1.
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On the other hand, notice that

Γ(z + ǫ) ≈ Γ(z) + Γ′(z)ǫ+O(ǫ2) = Γ(z)(1 + ǫψ(z)) +O(ǫ2), (A.11)

where ψ(z) ≡ Γ′(z)/Γ(z) is Digamma function. Moreover, the Gamma function satisfies

duplication formula

Γ(2z) =
1√
2π

22z−1/2Γ(z)Γ(z + 1/2). (A.12)

Then we can find

|Ẽ′
3/2|2 ≈

π

4
|Γ(iω0δt)|2

∣

∣

∣

∣

∣

1

Γ
(

1− 1/2ω2
0δt

2 − i
2ω0δt

)

Γ
(

1/2 + 1/2ω2
0δt

2 − i
2ω0δt

)

∣

∣

∣

∣

∣

2

≈ π

4

|Γ(iω0δt)|2
|Γ
(

1− i
2ω0δt

)

|2|Γ
(

1/2− i
2ω0δt

)

|2

× 1
[

1−ω2
0δt

2Reψ
(

1− i
2ω0δt

)] [

1+ω2
0δt

2Reψ
(

1/2− i
2ω0δt

)]

≈ 1

4ω2
0δt

2

1

1− ω2
0δt

2Reψ
(

i
2ω0δt

)

+ ω2
0δt

2Reψ
(

1/2 + i
2ω0δt

)

(A.13)

We can further simplify it since

ψ(2z) =
1

2
ψ(z) +

1

2
ψ

(

z +
1

2

)

+ log 2 (A.14)

and

Reψ(iy) = 1− γ − 1

1 + y2
+

∞
∑

n=1

(−1)n+1[ζ(2n+ 1)− 1]y2n, (|y| < 2)

→ −γ + y2 + (ζ(3)− 1)y2 = −γ + ζ(3)y2, (|y| ≪ 1)

(A.15)

and obtain

|Ẽ′
3/2|2 ≈

1

4ω2
0δt

2

1

1 + 2ω2
0δt

2
[

Reψ(iω0δt)− Reψ( i2ω0δt)− log2
]

≈ 1

4ω2
0δt

2

{

1 + 2log2 · ω2
0δt

2 +O(ω4
0δt

4)
}

.

(A.16)

Similarly, we can find

|E′
1/2|2 ≈

1

4

{

1− 2log2 · ω2
0δt

2 +O(ω4
0δt

4)
}

. (A.17)
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Inserting the coefficients back into (A.9), we keep the results to order ω2
0δt

2 and τ/δt,

s.t. 2F1
2(ã, b̃; c̃;−sinh2 τ

δt) ∼ 1 for arbitrary (a, b, c). We find

ρ2(τ) =
1

ω0
cosh4α(τ/δt)

{

{

1 + 2log2 · ω2
0δt

2
}

2F1
2

(

a, b;
1

2
;−sinh2

τ

δt

)

+ ω2
0δt

2sinh2
τ

δt
2F1

2

(

a+
1

2
, b+

1

2
;
3

2
;−sinh2

τ

δt

)

+ 2ω2
0δt

2sinh
τ

δt
2F1

(

a, b;
1

2
;−sinh2

τ

δt

)

2F1

(

a+
1

2
, b+

1

2
;
3

2
;−sinh2

τ

δt

)

+O(ω4
0δt

4)

}

=
1

ω0

{

1 + 2log2 · ω2
0δt

2 + 2ω2
0δt · τ +O

(

ω4
0δt

4,
τ2

δt2

)}

(A.18)

and therefore (5.9).

Late time in fast quench (ω0δt ≪ ω0τ ≪ 1). Rewrite (4.6) by applying identity

2F1(a, b; c; z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(−z)−a

2F1

(

a, 1− c+ a; 1− b+ a;
1

z

)

+
Γ(c)Γ(a− b)

Γ(a)Γ(c− b)
(−z)−b

2F1

(

b, 1− c+ b; 1− a+ b;
1

z

)

.

(A.19)

to each Hypergeometric function on the r.h.s. When τ > 0, (−z)1/2 = sinh τ
δt , thus we

can find

fCCP =
1√
2ω0

2iω0δtcosh2α(τ/δt)

E1/2Ẽ
′
3/2 − E′

1/2Ẽ3/2

×
{

(

E1/2Ẽ
′
3/2 + E′

1/2Ẽ3/2

)

(−z)−a
2F1

(

a, 1/2 + a; 1− b+ a;
1

z

)

+2E′
1/2Ẽ

′
3/2(−z)−b

2F1

(

b+
1

2
, b; 1− a+ b;

1

z

)}

,

(A.20)

where z ≡ − sinh2 τ
δt .

Similar calculations to (A.13) show

2E′
1/2Ẽ

′
3/2 =2

π

2
Γ(−iω0δt)

2 · 1

Γ(a)Γ(a+ 1/2)Γ(1/2− b)Γ(1− b)

=2
π

2
Γ(−iω0δt)

2

(

1√
2π

22a−1/2 1

Γ(2a)
· 1√

2π
22(1/2−b)−1/2 1

Γ(1− 2b)

)

≈1

2
· 2−i2ω0δt

Γ(−iω0δt)
2

Γ(1−iω0δt)
(

1−ω2
0δt

2ψ(1−iω0δt)
)

Γ(−iω0δt)
(

1+ω2
0δt

2ψ(−iω0δt)
)

≈ i

2ω0δt
· 2−i2ω0δt 1

[

1 + ω2
0δt

2 (ψ(−iω0δt)− ψ(1− iω0δt))
]

(A.21)

We further simplify the equation by using relations

Reψ(iy) = Reψ(−iy) = Reψ(1 + iy) = Reψ(1− iy), (A.22)

– 32 –



J
H
E
P
0
8
(
2
0
1
9
)
1
7
6

and

Imψ(iy) =
1

2y
+

1

2
πcothπy, (A.23)

Imψ(1 + iy) = − 1

2y
+

1

2
πcothπy. (A.24)

Then we see that

ψ(−iω0δt)− ψ(1− iω0δt) = iImψ(−iω0δt)− iImψ(1− iω0δt) = − i

ω0δt
(A.25)

thus

2E′
1/2Ẽ

′
3/2 =

i

2ω0δt
· 2−i2ω0δt

1

1− iω0δt
(A.26)

Notice that when τ ≫ δt, −sinh2 τ
δt → − e2τ/δt

4 + 1
2 , cosh

2 τ
δt → e2τ/δt

4 + 1
2 , and therefore

2F1 → 1 +O(e−2τ/δt). Thus, after inserting the coefficients into (A.20) and expanding the

result to the order ω0δt, we obtain

f =
1√
2ω0

cosh2α(τ/δt)

{

−iω0δt2
iω0δt(−z)−a

2F1

(

a, 1/2 + a; 1− b+ a;
1

z

)

+(1 + iω0δt)2
−iω0δt(−z)−b

2F1

(

b+
1

2
, b; 1− a+ b;

1

z

)}

→ 1√
2ω0

(

eτ/δt

2

)2α






−iω0δt2
iω0δt

(

eτ/δt

2

)−2a
(

1 +O(e−2τ/δt)
)

+(1 + iω0δt)2
−iω0δt

(

eτ/δt

2

)−2b
(

1 +O(e−2τ/δt)
)

+O(ω2
0δt

2)







=
1√
2ω0

{

e−iω0τ + 2ω0δtsinω0τ +O(ω2
0δt

2)
}

.

(A.27)

i.e.

ρ2(τ) = 2|f |2 ≈ 1

ω0

(

1 + 2ω0δtsin2ω0τ +O(ω2
0δt

2),
)

(A.28)

and therefore (5.11).

A.2 In ECP

Late-time approximation (τ ≫ δt, and τ ≫ δt logω0δt). According to identity

2F1(a, b; a+ b; z) =

Γ(a+ b)

Γ(a)Γ(b)

∞
∑

n=0

(a)n(b)n
(n!)2

[2ψ(n+ 1)− ψ(a+ n)− ψ(b+ n)− log(1− z)](1− z)n,

(|1− z| < 1&| arg(1− z)| < π)

(A.29)

we can see that for large τ/δt, in which case

z ≡ 1 + tanh(τ/δt)

2
= 1− e−2τ/δt, (A.30)
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eq. (4.9) can be rewritten into

fECP→
1√
2ω0

exp

[

− i

2
ω0τ +

i

2
ω0δtlog(e

τ/δt)

]

2F1

[

1− i

2
ω0δt,−

i

2
ω0δt; 1−iω0δt; 1−e−2τ/δt

]

=
1√
2ω0

Γ(1− iω0δt)

Γ
(

1− i
2ω0δt

)

Γ
(

− i
2ω0δt

)×

∞
∑

n=0

(

1− i
2ω0δt

)

n

(

− i
2ω0δt

)

n

(n!)2

[

2ψ(n+1)− ψ

(

1− i

2
ω0δt+ n

)

− ψ

(

− i

2
ω0δt+ n

)

+ 2
τ

δt

]

× (e−2τ/δt)n

(A.31)

When τ ≫ δt logω0δt, one can keep the leading term,3 then by using Digamma function

ψ(1) = −γE (A.32)

and

ψ(1− z) = ψ(z) + π cotπz, (A.33)

we find

fECP → 1√
2ω0

Γ(1− iω0δt)

Γ
(

1− i
2ω0δt

)

Γ
(

− i
2ω0δt

)

[

−2γE − 2ℜψ
(

i

2
ω0δt

)

+ iπ coth
πω0δt

2
+ 2

τ

δt

]

+O(e−2τ/δt) (A.34)

Therefore,

ρ2(τ) ∼ 1

ω0

∣

∣

∣

∣

∣

Γ(1− iω0δt)

Γ
(

1− i
2ω0δt

)

Γ
(

− i
2ω0δt

)

∣

∣

∣

∣

∣

2

×
[

(

−2γE − 2ℜψ
(

i

2
ω0δt

)

+ 2
τ

δt

)2

+

(

π coth
πω0δt

2

)2
]

= δt

(

π

2
coth

πω0δt

2

)−1(

−γE −ℜψ
(

i

2
ω0δt

)

+
τ

δt

)2

+ δt

(

π

2
coth

πω0δt

2

)

.

(A.35)

One special case of ρ2(τ) is when ω0δt ≪ 1, in which π
2 coth

πω0δt
2 ∼ 1

ω0δt
. Therefore,

ρ2(τ) ∼ω0δt
2

(

−ζ(3)

4
ω2
0δt

2 +
τ

δt

)2

+
1

ω0
=

1

ω0
+ ω0τ

2 +O(ω3
0δt

3). (6.8)

according to identity (A.15). Another case is when ω0δt ≫ 1, in which coth πω0δt
2 → 1.

Thus by using the identity

ℜψ(iy) ≈ log y +
∞
∑

n=1

(−1)n−1B2n

2ny2n
∼ log y +O(y−2), y → ∞ (A.36)

we can find

ρ2(τ) ∼ δt

[

2

π

(

− logω0δt+ log 2− γE +
τ

δt

)2
+

π

2

]

(6.7)

3
τ ≥ δt logω0δt is a sufficient condition to keep (A.31) to the leading term.
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B Entanglement entropy

In this appendix we explicitly derive the approximated Entanglement Entropy (7.6)

and (7.8). In appendix B.1 we figure out 〈NA〉 and in appendix B.2, we figure out
∫

AP×AP
dxdy|C(x, y)|2.

B.1 〈NA〉

First, we rewrite 〈NA〉 into

〈NA〉 =
1

Γ(N)2N
√
π

∫

AP×AP

dξdηδ(ξ−η)e−
ξ2+η2

2
HN−1(η)HN (ξ)−HN−1(ξ)HN (η)

ξ − η
(B.1)

s.t. 〈NA〉 has similar form to
∫

AP×AP
dxdy|C(x, y)|2 in (7.4). One can easily prove

that (B.1) and (7.4) are identical.

In the large N limit, the Hermite polynomial shows the following asymptotic behavior

e−
x2

2 ·Hn(x) ∼
2n√
π
Γ

(

n+ 1

2

)

cos
(

x
√
2n− nπ

2

)

(B.2)

We use this to simplify the integrand on the r.h.s. of (7.4) or (B.1),

1

Γ(N)2N
√
π
e−

ξ2+η2

2 [HN−1(η)HN (ξ)−HN−1(ξ)HN (η)]

=
1

2π

[

−(−1)N sin
(

η
√
2N − 2 + ξ

√
2N

)

− sin
(

η
√
2N − 2− ξ

√
2N

)

+(−1)N sin
(

ξ
√
2N − 2 + η

√
2N

)

+ sin
(

ξ
√
2N − 2− η

√
2N

)]

.

(B.3)

Now, change the variables of integration by defining

u ≡ ξ + η√
2

, v ≡ ξ − η√
2

, (B.4)

and we obtain

〈NA〉 =
1

2π

∫

AP×AP

dudv
δ(v)

v

{

−(−1)N cos
[

(
√
N−1 +

√
N)u

]

sin

[

v√
N−1 +

√
N

]

+cos

[

− u√
N − 1 +

√
N

]

sin
[

(
√
N − 1 +

√
N)v

]

}

.

(B.5)

Note that

∫

AP×AP

dudv =

∫

√
2a
ρ

0
du

∫

|v|≤
√
2a
ρ
−u
dv +

∫ 0

−
√
2a
ρ

du

∫

|v|≤
√
2a
ρ
+u
dv = 2

∫

√
2a
ρ

0
du

∫

|v|≤
√
2a
ρ
−u
dv

(B.6)

since the integrand is even for both u and v. Moreover, because of the Dirac delta function,

∫

AP×AP

dudv → 2

∫

√
2a
ρ

0
du

∫ ǫ

−ǫ
dv, (B.7)
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and the integrand can be expanded around v = 0:

〈NA〉 =
1

π

∫

√
2a
ρ

0
du

∫ ε

−ε
dvδ(v)

{

−(−1)N cos
[

(
√
N − 1 +

√
N)u

] 1√
N − 1 +

√
N

+cos

[

− u√
N − 1 +

√
N

]

(
√
N − 1 +

√
N)

}

=
1

π

{

(−1)N−1 sin

[

(
√
N − 1 +

√
N)

√
2
a

ρ

]

1

(
√
N − 1 +

√
N)2

+ sin

[ √
2a
ρ√

N − 1 +
√
N

]

(
√
N − 1 +

√
N)2

}

→ 1

π
(
√
N − 1 +

√
N)

√
2
a

ρ
+O

(

1

N

)

(B.8)

when √
2a
ρ√

N − 1 +
√
N

≪ 1. (7.1)

B.2
∫

AP×AP
dxdy|C(x, y)|2

Similar to 〈NA〉 (appendix B.1),
∫

AP×AP

dxdy|C(x, y)|2

≈ 2

π2

∫

√
2a
ρ

0
dv

∫

√
2a
ρ
−v

0
du

1

v2

{

−(−1)N cos
[

(
√
N − 1 +

√
N)u

]

sin

[

v√
N − 1 +

√
N

]

+cos

[

u√
N − 1 +

√
N

]

sin
[

(
√
N − 1 +

√
N)v

]

}2

. (B.9)

In the limit (7.1),

sin

[

v√
N − 1 +

√
N

]

∼ v√
N − 1 +

√
N

≪ 1 ∼ cos

[

u√
N − 1 +

√
N

]

. (B.10)

This implies that we can ignore the 1st term in the integrand of (B.9) and replace the

cosine by 1. As a result,
∫

AP×AP

dxdy|C(x, y)|2 → 2

π2

∫

√
2a
ρ

0
dv

1

v2
sin2

[

(
√
N − 1 +

√
N)v

]

(√
2
a

ρ
− v

)

= − 1

π2

{

1 + γE − cos

[

(
√
N − 1 +

√
N)2

√
2
a

ρ

]

− Ci

[

(
√
N − 1 +

√
N)2

√
2
a

ρ

]

+ log

[

(
√
N − 1 +

√
N)2

√
2
a

ρ

]

−
[

(
√
N−1 +

√
N)2

√
2
a

ρ

]

Si

[

(
√
N−1 +

√
N)2

√
2
a

ρ

]}

(B.11)

The asymptotic behaviors of Trigonometric integrals are

Si(x) =
π

2
− cosx

x

(

1− 2!

x2
+

4!

x4
− 6!

x6
· · ·

)

− sinx

x

(

1

x
− 3!

x3
+

5!

x5
− 7!

x7
· · ·

)

Ci(x) =
sinx

x

(

1− 2!

x2
+

4!

x4
− 6!

x6
· · ·

)

− cosx

x

(

1

x
− 3!

x3
+

5!

x5
− 7!

x7
· · ·

) (B.12)
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when x → ∞, and

Si(x) =
∞
∑

n=0

(−1)nx2n+1

(2n+ 1)(2n+ 1)!
= x− x3

3! · 3 +
x5

5! · 5 − x7

7! · 7 ± · · ·

Ci(x) = γE + lnx+
∞
∑

n=1

(−1)nx2n

2n(2n)!
= γE + lnx− x2

2! · 2 +
x4

4! · 4 ∓ · · ·
(B.13)

when x ≪ 1. Thus (B.11) can be further simplified into
∫

AP×AP

dxdy|C(x, y)|2 →

− 1

π2

{

1 + γE + log

[

(
√
N − 1 +

√
N)2

√
2
a

ρ

]}

+
1

π
(
√
N − 1 +

√
N)

√
2
a

ρ
,

(B.14)

when √
N − 1 +

√
N ≫ a

ρ
≫

√
N −

√
N − 1; (7.5)

and
∫

AP×AP

dxdy|C(x, y)|2 → 0 +O
(

Na2

ρ2

)

, (B.15)

when

(
√
N − 1 +

√
N)

a

ρ
≪ 1. (7.7)

Inserting (B.14) and (B.15) back into (3.11) together with (B.8), one can get (7.6) and (7.8),

respectively.
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