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of these cosmological models in Calabi-Yau manifolds should occur around infinite field
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1 Introduction

In the effort of extracting precise predictions from string theory, it has been noticed that

there exist some common patterns, which characterize the string landscape of consistent

effective field theories1 (ETFs). In contrast, the set of inconsistent EFTs has been termed as

belonging to the swampland [1, 2]. Interestingly, these observations, elevated to conjectures,

have triggered the scientific community to investigate their phenomenological implications,

which often translate into constraints on the low energy effective theory. In fact, one can

show that many seemingly consistent EFTs do not however admit UV completion in string

theory. This definitely opens up an exciting avenue towards the possibility of extracting

low-energy predictions of quantum gravity.

1More concretely, these patterns only apply to EFT’s weakly coupled to Einstein gravity and that can

be UV embedded in a consistent theory of quantum gravity like string theory.
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The Swampland Distance Conjecture (SDC) [2] is a proposal for such a quantum

gravity constraint. It claims that traversing infinite field distances in string theory always

implies the appearance of an infinite tower of particles becoming exponentially light, thus

invalidating the EFT. This occurs when approaching a boundary of the string moduli space.

As long as we stay in this regime, the quantum gravity cut-off of the theory experiences

an exponential drop-off in terms of the field distance due to the appearance of the infinite

tower of states. This fact automatically translates into an upper bound on the scalar field

range ∆ϕ that an effective theory can accommodate as a function of the quantum gravity

cut-off ΛQG in energies, such as

∆ϕ <
1

λ
log

MP

ΛQG
. (1.1)

The larger the cut-off, the smaller the field range, so that infinite field ranges become

inconsistent with quantum gravity. Strong evidence for the SDC has recently been found

in [3, 4] by going to infinite distance limits in the moduli space of well known string

compactifications (see also [5–15] for previous works and [16, 17] for a recent analysis in

F-theory). The emergent field metric is in fact consistent with the exponential drop-off

behaviour of the mass tower predicted by the conjecture. Notice that λ in eq. (1.1) is an

unspecified parameter which, in principle, might depend on the type of trajectory followed

in the scalar field space. It has been conjectured, though, to be always of order one [2, 18]

disfavouring very large transplanckian distances (this is known as the Refined Swampland

Distance Conjecture [18]). In [19], the entire r.h.s. of eq. (1.1) has been encoded as an

order one factor and the corresponding equation denoted as Criterion 1. Among other

things, in this note, we aim to clarify the significance of this order one factor as well as the

evidence gathered regarding the concrete value of λ. We will give an overview of this topic

in section 2.

The SDC can therefore become a powerful and concrete tool in order to test the

regime of validity of ETFs with scalar fields coupled to gravity. The case of cosmological

inflation with a scalar field crossing a certain distance, in order to deliver around 60 e-

foldings of quasi-exponential expansion, is an exemplary situation to investigate. The

simple observation that the successful models of inflation should always satisfy H ≤ ΛQG,

with H being the expansion Hubble rate, will allow us to derive a precise upper bound

in terms of the tensor-to-scalar ratio, measured at typical Cosmic Microwave Background

(CMB) scales. We will discuss this in details in section 3.

Whereas previous studies have mainly focused on the constraints that the Swampland

imposes when inflation is driven by axionic fields with compact symmetries (see e.g. [20–26]

for some pioneering works), in this paper we focus on inflationary models which involve

saxions (non-periodic scalars) thus leading to non-compact trajectories (in this case, the

uncertainties regarding the value of λ are much lower and, in certain cases, it is even possible

to give a precise value). Specifically, we show that the emergent field metric predicted at

infinite distances by the conjecture and confirmed by the asymptotic properties of infinite

distance singularities, approaches the form of the one typical of the so-called α-attractor

– 2 –
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scenario of inflation,

Lkin = − 3α

4φ2
(∂φ)2 . (1.2)

This class of inflationary models has been first proposed in the context of supergrav-

ity [27, 28] but it has been soon realized that its fundamental nature is essentially con-

nected to the form of the inflaton kinetic term [29]. The latter induces an attractor for

cosmological observables, thus making them insensitive to a wide array of microscopical

details which characterizes the theory. The universality regime appears when the scalar

potential shows a certain regularity in the limit when the kinetic term shows a pole of order

two [29–31].

In the present work, we point out that a proper string theory realization of these

cosmological models should be engineered when the inflaton is identified with a scalar field

which approaches an infinite distance singularity in field space. This implies, among other

things, that the universality regime of α-attractor models occurs in the limit where the

kinetic Lagrangian eq. (1.2) becomes infinitesimally small rather than when approaching

the pole. In fact, in Calabi-Yau (CY) compactification manifolds, the inversion φ→ 1/φ is

not necessarily a symmetry and the two scenarios - α-attractors and pole-inflation - are not

equivalent. In this context, inflation can be interpreted as an infinite distance emergent

phenomenon and the parameter α in eq. (1.2) becomes essentially related to the properties

of the singularity and upper bounded by the complex dimension of the CY manifold. We

will discuss this in section 4.

However, approaching infinite distances is not only the limit where we expect the

universality of α-attractors to emerge but also the limit where the infinite tower of particles

becomes exponentially light and the cut-off decreases, signalling the breakdown of the

effective theory. It becomes then essential to check consistency of the α-attractor models

within the constraints imposed by the SDC. In section 5, we show that eq. (1.1) directly

translates into a bound on the total number of e-foldings N during inflation, which is

independent of the specific value of λ and all the subtleties related to the specific inflaton

trajectory. The result is that the EFT of an α-attractor model can never support the

typical infinite plateau, as expected by consistency with quantum gravity, but the SDC

poses nevertheless no restrictions to deliver more than 60 e-foldings of quasi-exponential

expansion. Furthermore, we get a relation such as α ∼ λ−2. Constraints on the value of λ

will therefore have a direct impact on α-attractor models.

While the above results apply for the case of a single saxion taking large field values,

in section 6 we will include some comments about the multi-field case and its implications

on the cosmological predictions.

In this note, we keep the focus of our investigation on the kinetic structure of the

theory. It is an open question whether the scalar potential can show some regularity at

infinite distances in string theory in order to actually reproduce the cosmological properties

of α-attractors. Notice that recent conjectures [19, 32, 33] would disfavour such a scenario.

We hope to come back to this issue in the future.

In the following, we will present in detail the arguments in the same order as outlined

above and then we will draw our conclusions.

– 3 –
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2 Swampland distance conjecture

The Swampland Distance Conjecture, proposed in [2], states that in an effective quantum

field theory that can arise from string theory, infinite distances in moduli space lead to an

infinite tower of states becoming massless exponentially fast in the proper field distance.

More concretely, if we consider an effective theory valid at a point Q in field space and

move to a point P , there should appear an infinite tower of states at P with characteristic

mass scale m such that

m (P )

m (Q)
→ e−γ∆(P,Q) as ∆ (P,Q)→∞ , (2.1)

where ∆ (P,Q) is the geodesic proper distance between the two points. Here γ is some

positive constant which depends on the choice of P and Q but which is not specified in

general. A refined version [18, 32] of this conjecture implies, however, γ ∼ 1 in Planck

units. The validity of this refined version, even if motivated by plenty of examples in string

theory, is under debate and topic of ongoing research. It is also possible to generalise the

above conjecture to non-geodesic distances by hiding the path dependence on the value of

γ. We will comment more on this in section 6.

The key feature of the conjecture is that it predicts the existence of an infinite number

of particles becoming light. While a finite number of extra new light states would not give

necessarily rise to a dramatic change of the theory but to model-dependent corrections,

an infinite tower signals the complete breakdown of the effective theory. A quantum field

theory description of infinitely many fields weakly coupled to Einstein gravity is no longer

possible. One of the consequences of the conjecture is therefore an exponential drop-off of

the quantum gravity cut-off as follows,

ΛQG = Λ0 e
−λ∆(P,Q) (2.2)

where Λ0 ≤MP is the original naive cut-off of the EFT, and λ ∼ γ.

It is also natural to identify this cut-off ΛQG with the species scale2 of the tower

of particles, as done in [3, 39], implying λ = γ/3 in four dimensions. The species scale

indicates the scale at which quantum gravitational effects cannot be ignored due to the

increasing number of light fields weakly coupled to gravity. Evidence for this identification

can be found in [3] and has also been used in [40]. Notice that this cut-off is conceptually

different than the low energy cut-off of the effective theory corresponding to the mass of the

lightest particle of the tower. Above the species scale, gravity becomes strongly coupled

and any possible quantum field theory description completely breaks down. Furthermore,

this drop-off of the quantum gravity cut-off cannot be seen from the point of view of the

effective field theory (in the absence of quantum gravity), as expected from any swampland

criterium.

2.1 Evidence at infinite distance singularities

The SDC finds confirmation in the analysis of the physics around infinite distance singular-

ities (boundaries) of moduli spaces in string theory compactifications [3] (see also [4, 16]).

2The species scale [34–38] is given by Λ ∼Mp/
√
N where N is the number of light fields or species.

– 4 –
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In the following, we will briefly summarise the results and general insights of [3]. First,

notice that infinite geodesic distances can only occur when approaching a singularity in

the moduli space, where the volume of a cycle goes to infinity or to zero. Interestingly, we

can use the theory of limiting Mixed Hodge Structures and the Nilpotent Orbit Theorem

by Schmid [41] to give the local form of the Kähler potential (and the field metric) near

the singular loci. For Calabi-Yau manifolds, the Kähler potential near an infinite distance

singularity in moduli space located at φ→∞ takes the following form

K = − ln
(
p(φ) +O

(
e−T

))
, (2.3)

where T = φ + iθ is the complex field parametrising the scalar manifold. Here p(φ) =

φd+βφd−1 + . . . is a polynomial depending only on the radial transverse coordinate φ (the

saxion field) approaching the singular point. The degree d of the polynomial is fixed in

terms of the properties of the monodromy transformation around the singularity (see [3]

for more technical details), and it is used to classify the type of singularity. It is always

upper bounded by the complex dimension of the Calabi-Yau, d ≤ dimC(CY ) and it is

non-vanishing only if the singularity is at infinite distance. Notice that the leading term

of the Kähler potential only depends on the type of singularity and not on the Calabi-Yau

in which the singularity is embedded. We can trivially add longitudinal scalars directions

za along which the singularity expands by allowing the coefficients βi of the polynomial to

depend on these fields za, i.e. βi = βi(za). The generalisation to include more transverse

coordinates will be discussed in section 6.

The kinetic term for the field φ, associated to the Kähler potential eq. (2.3), reads

Lkin = − d

4φ2
(∂φ)2 (2.4)

which indeed generates a logarithmic divergence of the proper field distance, as it should

be when approaching an infinite distance singularity [42].

Recall that the above Kähler potential is a local expansion around the singularity

at φ→∞. The exponentially suppressed corrections become more important as we move

away from the singularity so the local expansion eventually fails and the effective description

needs to be replaced by another one. The Swampland Distance Conjecture refers, though,

to a breakdown of the effective theory that occurs as we approach the singular point, i.e.

precisely in the limit where the local expansion is better justified. Due to the appearance of

an infinite tower of states, quantum gravitational effects become important implying that

the effective theory completely breaks down and cannot be simply replaced by another

quantum effective field theory that keeps the same fundamental degrees of freedom. This

difference between a mild and a more drastic breakdown of the effective theory is explained

in more detail in appendix A.

The tower of states can correspond to a KK tower, winding modes or wrapping branes

that become light when moving towards the infinite distance singularity. In any case, using

the above parametrization, the mass of the tower of states scales as

m ∼ m0

φp
, (2.5)

– 5 –
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with p ∼ O(1). Combining eqs. (2.4) and (2.5) we can check that the tower of states

becomes exponentially light, in terms of the canonically normalised field ϕ, such as

m = m0 e
−γϕ , ϕ =

√
d

2
log φ (2.6)

as stated by the SDC, with γ = 2p/
√
d. Notice that the exponential mass behaviour

trivially originates from the universal local behaviour of the field metric near infinite dis-

tance singularities. More difficult is to check that there are indeed infinitely many particles

becoming massless at the singular point. This is clear when thinking of a Kaluza-Klein

tower at the large volume point, but becomes highly non-trivial for other infinite distance

singularities. In [3, 4], this has been checked for infinite distance singularities at the com-

plex structure moduli space of four-dimensional Type IIB Calabi-Yau compactifications

by using the theory of limiting Mixed Hodge Structures at the singular loci. This moduli

space presents a very nice and clean realization of these ideas where the massless tower

corresponds to BPS states arising from wrapping D3-branes. In this case, p = d/2, so

γ =
√
d and the exponential mass rate is simply controlled by the integer d characterizing

the monodromy transformation around the singularity. The same techniques and ideas can

also be generalized to Kähler moduli spaces [43].

Furthermore, there is a natural relation between this conjecture and the absence of

global symmetries in this setup. Since the leading term of the Kähler potential (2.3) does

not depend on the axionic partner θ, this field enjoys a global continuous shift symmetry

only broken by exponentially suppressed terms. This global continuous symmetry becomes

exact at the infinite distance singularity, so the SDC can be understood [3] as an obstruction

to recover this symmetry by means of an infinite tower of light particles yielding the

exponential drop-off of the quantum gravity scale.

Finally, notice that not every singularity is necessarily at infinite distance. If the

singularity is at finite distance, the leading polynomial term of the Kähler potential above

vanishes implying that the field metric can never take the form (2.4). In this case, there is

no infinite tower becoming light and, therefore, we do not expect to see an exponential drop-

off of the quantum gravity cut-off. Consistently, there is no global continuous symmetry

restored at the finite distance singularity.

To summarise, the scenario that seems to emerge underlying the Swampland Distance

Conjecture is as follows: the conjecture quantifies how close we can get to the infinite

distance point, i.e. how close we can get to the situation of recovering a global symmetry. It

does so by providing a relation between the cut-off and the field range due to the appearance

of an infinite tower of exponentially massless particles which were not part of the effective

theory. The exponential mass behaviour originates from the behaviour of the field metric

near the infinite distance singularity, and the infinite number of particles implies a drop-off

of the quantum gravity cut-off. In other words, above this cut-off quantum gravitational

effects cannot be ignored so the model must drastically change (the effects of the tower

will never be negligible or subleading). This is very similar to the magnetic Weak Gravity

Conjecture (WGC) [20], which quantifies how small a gauge coupling can be by providing

a relation between the gauge coupling and the cut-off scale. This way, the global symmetry

– 6 –
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limit g → 0 cannot be reached while keeping a finite cut-off. Finally, it was also observed

in [3, 39] that quantum corrections from integrating out the tower of exponentially massless

particles up to the species bound have in fact the structure to generate the infinite field

distance. Crucial for this argument is the role of the species bound, which implies an

exponentially increasing number of light fields as we approach the infinite distance point.

Therefore, the global symmetry and the infinite distance itself might be just emergent

phenomena from integrating out infinitely many fields.

3 SDC and inflation

One of the strongest implications of the SDC, and in particular of eq. (2.2), is a limit

on moduli space distances within any effective field theory which is consistent with string

theory and has a finite cut-off. Therefore, it is of potential phenomenological interest in

the context of inflation where both a high energy scale and a large field excursion may play

an important role.

In order to have a successful inflationary model, we need the cut-off to stay above the

Hubble scale, that is

H ≤ ΛQG . (3.1)

This simple observation allows us to give a model-independent upper bound on the proper

field distance ∆ϕ that any inflationary model (consistent with quantum gravity) can ac-

commodate

∆ϕ < ∆ϕSDC =
1

λ
log

Mp

H
, (3.2)

assuming that the conjecture is valid for any scalar field taking parametrically large values.3

Recalling that in the slow-roll limit we have

Mp

H
=

√
2

π2As r
, (3.3)

the bound eq. (3.2) can be expressed in terms of the tensor-to-scalar ratio r

∆ϕ < ∆ϕSDC = − 1

2λ

(
log

π2As
2

+ log r

)
, (3.4)

with As being the amplitude of scalar perturbations. Notice that the quantities H, As
and r are calculated at the scales which crossed the Hubble horizon around 60 e-foldings

before the end of inflation (the same scales are entering our present horizon and correspond

to the largest ones of our observable Universe). These are the only scales of interest for

the current analysis as they are associated with the highest inflationary energy we can

effectively probe through cosmic microwave background (CMB) experiments, such as the

Planck satellite [44, 45]. For the sake of simplicity, here and in the following, we do not

label these quantities with a star, as it is usually done in literature.

3More concretely, it applies to EFTs where the limit ∆ϕ → ∞ corresponds to approaching an infinite

distance boundary of the moduli space, as in most of the string theory realizations of large field inflationary

models.

– 7 –
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First of all, let us note that the lower the inflationary scale is, the milder the bound

becomes. This means that the EFT of models with a small Hubble parameter, which

generically correspond to scenarios where a sub-Planckian field excursion is sufficient to

generate 50-60 e-foldings of inflation, will be safe in this respect. The point in field space

where the EFT is supposed to break down reduces to smaller values together with the

increase of the inflationary energy scale, making large-field models more in tension with

such a conjecture. This behaviour is shown in figure 1 by the blue line, which represents

the bound eq. (3.2) for λ = 1.

The latest Planck results [44], through the upper bound on the tensor-to-scalar ratio

(dashed green line in figure 1), impose

Mp

H
> 3.7× 104 , (3.5)

which, once plugged into eq. (3.2), translates into a maximum field excursion set by the

SDC of around 10 Mp (when λ = 1). Interestingly, given the measured value of the scalar

amplitude As [45], the main contribution is given by the first addend in eq. (3.4) which

alone provides a super-Planckian excursion of around 9.19 Mp (λ = 1). A smaller value of

λ would allow to traverse a larger field displacement before the breakdown of the EFT of

inflation.4

The bound is therefore yielding a maximum field excursion which is roughly O(1)

in reduced Planck mass units (we note that while this is a consequence of the Refined

SDC [18], it was further emphasized as a swampland criterion in [32]), but it can still

leave considerable room for inflationary models with ∆ϕ > 1 allowed by the current data.

In fact, given the latest cosmological constraints provided by Planck [44], we expect at

most modest super-Planckian excursions and, therefore, determining the actual value of λ

becomes of crucial importance in order to determine any possible tension with the limit

imposed by the SDC. Furthermore, we would like to emphasize that this conjecture does

not provide a universal strict bound on ∆ϕ but rather a relation between ∆ϕ and ΛQG,

which are two quantities in principle disconnected in the absence of gravity. This can have

important implications for inflation, besides the constraint on the field range, due to the

premature breaking down of the EFT.

It is interesting to compare the upper bound eq. (3.2) with the famous Lyth

bound [46–48], which provides a minimum for the field excursion of slow-roll inflation-

ary models.5 Whereas the Lyth bound increases together with r, the SDC bound decreases

and the two functions define a finite area of validity for inflationary models consistent with

quantum gravity (see yellow area in figure 1). It is interesting to notice that many models

of inflation, which have been ruled out by the cosmological data of the last couple of years,

are also in very strong tension with quantum gravity arguments. A primary example of

4There might be some room to make λ smaller by travelling along non-geodesic trajectories in a multi-

field scenario. This is discussed in section 6.
5The original bound derived by Lyth [46] was taking into account just the small observable window

which CMB experiments have access to. Assuming that r monotonically increases as inflation proceeds,

one can extend this bound to the whole period of inflation (N ' 60).
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Planck 2018

ΔφSDC ΔφLyth
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Δφ

Figure 1. The blue line is the universal upper bound predicted by the SDC as function of the

tensor-to-scalar ratio r (we have assumed λ = 1). The orange line is the Lyth bound which provides

a minimum range for generic models of inflation. Scenarios of inflation whose EFT is consistent

with quantum gravity should have a field range which belongs to the yellow area. The green area

is the one allowed by Planck 18, via the upper bound r ≤ 0.064 (dashed green line).

this situation is provided by the simple quadratic model [49] of inflation (with r ∼ 0.1 and

∆ϕ ∼ 15), which is excluded by the swampland distance conjecture for λ ≥ 1.

Let us finally remark that the infinite tower of states is not part of the effective field

theory and can only be identified if one has a UV completion in a consistent theory of

quantum gravity. Therefore, the above bound could have never be obtained by studying

the validity of the model within the effective field theory itself, without extra input about

the tower of states. Furthermore, the bound disappears when decoupling gravity by sending

Mp → ∞, as any swampland constraint should.

4 α-attractors and string theory

4.1 Review: α-attractors = pole inflation

The α-attractors cosmological scenario [27, 28] has been proposed and developed in the

framework of supergravity (see also [50–52] for previous investigations with some working

examples for specific values of α) and subsequently studied in a variety of contexts. The

crucial observation is that the kinetic structure of the theory, and therefore the underlying

Kähler geometry, may act as an “attractor” thus determining the inflationary observables

unequivocally, irrespective of a certain array of details. Specifically, the predicted values for

the scalar spectral index ns and the tensor-to-scalar ratio r, measured by CMB experiments,

have universal form

ns = 1− 2

N
, r =

12α

N2
, (4.1)

at large values of the number of e-foldings N and with α being a numerical parameter

directly related to the curvature of the scalar manifold.

– 9 –
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The key ingredient of this universality is a dependence of the Kähler metric on the

inflaton φ such that

Lkin = − 3α

4φ2
(∂φ)2 . (4.2)

This situation appears for typical logarithmic Kähler potentials such as K = −3α ln(T+T̄ )

when the inflaton is identified with the saxion, that is φ ≡ ReT .

This class of models is therefore characterized by an underlying scale invariance [53, 54]

which can be broken by means of various mechanisms (e.g. by a field-dependend term in

the superpotential [27, 28, 55], by Kähler [56], loop [57–61] or higher-derivative [62, 63]

corrections) thus generating an inflationary dynamics. In full generality, the universal

cosmological predictions arise when the scalar potential is regular at small-distance in field

space and can therefore be expanded as

V = V0 − V1 φ+O(φ2) , (4.3)

where the kinetic term eq. (4.2) shows a pole [29] (indeed, this class of models is often

termed pole inflation [30, 31]). This regularity translates into an infinite positive plateau

with a first exponential deviation in terms of the canonically normalized variable ϕ =

−
√

3α/2 lnφ. However, in order to solve the standard cosmological puzzles, one needs

just a finite amount of inflation (usually quantified with 50-60 e-foldings). Therefore, the

observational predictions would not be affected if this regularity holds just for a certain

finite field range, while allowing even singular behaviour in the limit φ→ 0. An interesting

example of this situation is the fiber inflation scenario [61], where power corrections to

the originally flat direction enters the potential with both signs, thus spoiling the infinite

quasi-de Sitter phase at very large field values.

It is therefore useful to give an expression of the canonical field range in terms of the

number of e-foldings N . This has been derived in [48] and reads

∆ϕ =
√

3α/2 lnN − ϕe , (4.4)

where ϕe is the point where inflation ends and it is usually a sub-leading contribution

at large values of N . As an example, models with α = 1 (including the Starobinsky

model [64]) will deliver 60 e-foldings of inflation when the scalar field moves of about 5

Mp. Therefore, modifications or breakdown of the EFT beyond this value will not affect

the original inflationary predictions. The above expression can be obtained by integrating

the relation dϕ/dN =
√

2ε, with the first slow-roll parameter being equal to ε = 3α/4N2,

at leading order in N .

In the following, we would like to argue that a proper realization of α-attractors in

string theory corresponds to taking the opposite limit φ→∞, that is the limit where the

kinetic term goes to zero and then has no pole.

4.2 String realisation of α-attractors at infinite distance (i.e. α-attractors 6=
pole inflation)

Let us start with the observation that the key-ingredient of α-attractors, namely the kinetic

term eq. (4.2), has the same φ-dependence of the metric eq. (2.4) appearing only when

– 10 –



J
H
E
P
0
8
(
2
0
1
9
)
1
6
0

approaching an infinite distance singularity in field space. This suggests a very natural

realization of α-attractors at the boundaries of the string moduli space. Here below, we

discuss this possibility and highlight the differences and possible issues with the original

pole-inflation scenario described above.

Let us first note that the kinetic term eq. (4.2) is invariant under the inversion φ→ 1/φ.

This implies that the phenomenology of α-attractors remains the same if the scalar potential

can be expanded at infinite distance such as

V = V0 − V1/φ+O(1/φ2) . (4.5)

Note that, after the inversion, the kinetic term eq. (4.2) will have no longer a pole in the deep

inflationary phase limit, rather will be infinitesimally small. Again, also in this parallel case,

positive power corrections might enter the above expression, while still yielding α-attractor

behaviour at infinite distance, if the plateau extends at least for 50-60 e-foldings.

While this discussion is correct at the level of the effective theory of inflation with a

single real scalar field, one has to be careful when embedding these models in string theory,

which necessarily implies new degrees of freedom coupled to φ.

Let us consider a simple supergravity embedding, in which the inflaton φ is identified

with the real part (saxion) of one complex field T parametrising a scalar manifold with

Kähler potential

K = −3α ln(T + T̄ + . . .) . (4.6)

This type of Kähler potential arises when working in a local region near an infinite distance

singularity (like e.g. large volume or large complex structure). As mentioned earlier in

section 2.1, we usually have only a local patch-wise description of the moduli space of a

string compactification. The latter expression should indeed be understood as an expansion

around an infinite distance singularity where we are neglecting sub-leading corrections

denoted by the ellipsis. The local form of the Kähler potential near infinite distances

singularities was given in eq. (2.3). Comparing both equations, it is trivial to check that

eq. (4.6) is a particular case of eq. (2.3) with p(φ) = (T + T̄ )3α = (2φ)3α.

If we now perform an inversion transformation such as T → T ′ = 1/T , the leading

term of the Kähler potential eq. (4.6) remains invariant (up to a Kähler transformation).

This implies that the kinetic Lagrangian

Lkin = −3α
∂T∂T̄

(T + T̄ )2
= − 3α

4φ2

(
(∂φ)2 + (∂θ)2

)
(4.7)

is covariant with respect to the inversion, so that Lkin(T ) = Lkin(T ′ = 1/T ). In terms of

the new field T ′ = φ′ + iθ′, the kinetic term for φ′ looks the same but the potential changes.

Assuming that φ enjoys a potential of the form eq. (4.5), the potential in terms of φ′ will

look as in eq. (4.3). This implies that the inflationary regime emerges for φ→∞, whereas

in the primed frame it does for φ′ → 0. At this point, it is interesting to notice that, since

the field metric is covariant under the inversion transformation, the decay constant of θ

goes to zero as φ→∞, while the decay constant of θ′ diverges as φ′ → 0. This happens in

the same physical situation (i.e. during inflation). However, only θ can be identified with

the true axion, as we explain in the following.
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In the new primed frame, the separation on K between a leading polynomial (depend-

ing only on the radial variable) and the exponentially suppressed corrections is no longer

true (this is generically the case for prototypical four-dimensional Calabi-Yau compactifi-

cations of Type II string theory). In particular, the angular variable θ′ is not an axion in

the sense that it does not enjoy an approximate continuous shift symmetry only broken by

exponentially suppressed corrections. Therefore, even if its field metric diverges, this does

not have the physical meaning of a “decay constant” and it does not make sense to apply

the bounds derived by the Weak Gravity Conjecture. The true axion is only θ, whose decay

constant goes to zero at the infinite distance singularity. Therefore, a kinetic term of the

form (4.7), where it is assumed that the corrections are exponentially suppressed so that θ

behaves as an axion, is only valid for φ→∞. This is clear from the fact that the inversion

transformation belongs to the group of linear transformations GL(2n+ 2, R) which leaves

invariant the Kähler potential up to Kähler transformations; while the true symmetries of

the action are a discrete subgroup M ∈ GL(2n+ 2, R) called the monodromy group. This

monodromy group does not include in general this inversion transformation implying that

the latter should not be understood as a symmetry but rather to a choice of frame (field

redefinitions or duality transformations). More comments in this regard can be found in

appendix B.

To sum up, the Kähler potential in eq. (4.6) is a local expansion at φ → ∞ and, in

general, it is inconsistent to work with this effective theory when moving to the pole φ→ 0

and assume that the corrections will be exponentially suppressed and remain negligible.

Furthermore, in Kähler manifolds, each infinite distance singularity implies the presence of

an axion in the effective theory with an approximate continuous shift symmetry, and whose

decay constant goes to zero at the singularity. This behaviour for the decay constant holds

for any infinite distance point that belongs to a single singular divisor in the moduli space,

meaning that we are sending only one field φ to infinity. As we will comment in section 6,

the case of sending several fields to infinity is more technically involved and has not been

proven yet, although we still expect it to be true. We hope to come back to a more detailed

analysis of the field metrics in this case in the future. Notice that fiber inflation [61] enters

in this category, as two Kähler fields are sent to large values simultaneously.

The separation in the Kähler potential between the leading polynomial and the expo-

nentially suppressed corrections allows for the flattening of the scalar potential if V takes

the form (4.5). Therefore, as far as we can see, only if the inflaton is identified with a scalar

field approaching an infinite distance singularity, the characteristic plateau of α-attractors

can be safely generated. However, this might not be sufficient as higher order corrections

might spoil the dynamics. The advantage of identifying the inflaton with an axion is the

presence of an approximate continuous global symmetry which protects the scalar potential

from higher order corrections. This shift symmetry is inherited from the monodromy trans-

formation of infinite order present at any infinite distance singularity, which implies that

the axion does not appear in the Kähler potential up to exponentially suppressed correc-

tions. It is then natural to ask whether there is any analogous protection for a saxion field.

Even if this is generically not possible, the analogous protection for the saxion would come

from an approximate scaling symmetry, i.e. φ → ξφ with ξ being a constant, preserved
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at leading order in the Kähler potential. This scaling symmetry indeed corresponds to a

shift symmetry for the canonically normalised saxion [53, 65]. Unlike the axionic case, this

scaling symmetry will be related to the finite order part of the monodromy transformation.

Whether the monodromy transformation associated to an infinite distance singularity can

indeed generate this scaling symmetry, is not clear and deserves further investigation.

A last cautionary remark regarding the scalar potential is in order. In this note, we

only focus on the kinetic structure of the inflaton. Therefore, the proximity to these types

of singularities is a necessary but not sufficient condition to get the cosmological properties

of α-attractors. The analysis of the asymptotic behaviour of the scalar potential is left for

future work.

5 Swampland constraints on α-attractors

The Swampland Distance Conjecture suggests that the effective theory of any scalar field,6

when going to parametrically large enough values, exhibits a universal behaviour for the

kinetic metric. This is also confirmed by the analysis of the physics around infinite distance

singularities [3]. Interestingly, as we have pointed out in the previous section, this emergent

field metric eq. (2.4) precisely matches the one required for α-attractors eq. (4.2). By

comparing both equations, we are then encouraged to identify

d = 3α . (5.1)

Deviations from the perfect 1/φ2 dependence, as it is in eq. (4.2), may certainly occur but

this would affect the inflationary dynamics just at smaller values of the field and, then,

far from the CMB window where the observational predictions conform to eq. (4.1). If

the scalar potential takes the form (4.5) with V0 6= 0, the dynamics will eventually be

characterized by a long enough plateau and an inflationary α-attractor behaviour. Con-

trary, if V0 = 0, there will be an exponential runaway towards large field values, which

might be useful for quintessence. This latter behaviour would be in agreement with recent

conjectures [19, 32, 33, 40, 66].

The universality features of α-attractors occur at large values of φ, i.e. where the scalar

potential develops a quasi-de Sitter plateau in canonical coordinate ϕ. However, this is

also in the same limit where the infinite tower of states predicted by the SDC becomes

light and the effective theory breaks down. It is therefore essential to check how far we can

move along the plateau (towards the infinite distance point) before the quantum gravity

cut-off decreases such that becomes lower than the Hubble inflationary scale.

5.1 Universal bound independent of λ

The maximum field range that can be traversed before the effective theory breaks down is

given by eq. (3.2). We can combine the latter with eq. (4.4) in order to obtain

∆ϕ =
√

3α/2 logN ≤ 1

λ
log

Mp

H
, (5.2)

6We will comment on the generalisation to axions in section 6.
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which translates into a bound on the total number of e-foldings

N ≤
(
Mp

H

)√
2
3α

1
λ

. (5.3)

Let us recall that the parameter λ is a combination of the coefficient d appearing in

the field metric eq. (2.4) and the power of the mass p for the tower of states eq. (2.5) so

that λ = 2p/(3
√
d). Upon using eq. (5.1), we then obtain7

N ≤
(
Mp

H

) 3√
2

1
p

. (5.4)

This bound is universal for any α-attractor model and with a very mild dependence on α

through the energy scale (H ∝ √α). There is still some dependence on p, which is an order

one factor appearing in eq. (2.5) and which depends on the specific structure of the tower

of particles. Typically, p is a (half)-integer upper bounded by the complex dimension of

the internal space, i.e. p = 1/2, 1, . . . , 3 for a CY3, depending whether the tower of particles

arises from wrapping branes of different dimensionality, KK modes, winding modes, etc.

Clearly, the inequality eq. (5.4) easily holds for typical inflationary periods of 60 e-

foldings, given the current experimental bound on the Hubble scale eq. (3.5) coming from

the constraints on tensor modes. In the next subsection, we will get a stronger bound by

fixing the value of λ in concrete scenarios. It is worth to remark, though, that eq. (5.4)

is a universal upper bound for α-attractor models obtained by requiring consistency with

quantum gravity via the SDC, regardless of all the subtleties related to the exact value

of λ and independent of whether the field range is transplanckian or not. Furthermore,

since the dependence on d cancels out, this bound equally applies to the higher-dimensional

moduli spaces and any type of trajectory approaching an infinite distance point.

5.2 Bounds on λ, α and r

We can now be more restrictive and comment on the allowed range for λ. This is not

specified by the conjecture, although a refined version of the SDC states that λ should

always be of order one for geodesic trajectories. This would automatically imply that

α < 2
3O(1) and ∆ϕ < log

(
Mp

H

)
. Interestingly, we can give more quantitative bounds if

using the results for the geometry near infinite distance singularities of the moduli space.

In particular, in certain cases, we can fix this order one factor in terms of the type of

singularity arising at φ→∞.

In this section, for simplicity, we will only consider single field inflationary models in

one dimensional moduli spaces. We will comment on the generalization to more realistic

higher dimensional moduli spaces and more general trajectories in section 6. For single

7A slightly stronger bound can be obtained if we impose that the lightest state of the infinite tower

remains always heavier than H, such that the flatness of the inflationary potential is preserved. In this

case we get N ≤ (m0/H)
1√
2

1
p where m0 is the mass of the lightest state at the furthest point from the

singularity during inflation, that is where the inflationary dynamics ends. This bound is however more

model-dependent, thus we prefer to use the universal criterion given by the species bound.
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field, the factor d appearing in the field metric (2.4) is simply an integer that characterises

the type of infinite distance singularity and is given by the properties of the monodromy

transformation around the singularity.8 It is upper bounded by the complex dimension of

the compactification space (for a Calabi-Yau threefold, d = 1, 2, 3). Then, eq. (5.1) implies

α = 1/3, 2/3, 1 respectively. The maximum value d = 3 (α = 1) corresponds to a maximal

unipotency singularitiy, like the large complex structure point (or large volume). This

implies that, α-attractor models described by a single scalar field approaching an infinite

distance singularity in a one dimensional moduli space of Calabi-Yau compactifications of

Type II string theory have necessarily α ≤ 1, implying

r = 12α/N2 ≤ 0.003 , (5.5)

for 60 e-folds of inflation. This bound is valid for any Calabi-Yau manifold, but restricted

to a purely saxionic trajectory approaching the singularity. We will comment on more

general trajectories in the next section.

6 Comments on the multi-field case

The generalisation of the SDC to more than one scalar field is subject of controversy and

open questions. Similar to the case of a single scalar, one would expect that, as long as the

trajectory in the scalar manifold approaches an infinite distance point, an infinite tower

of states will become exponentially light and the effective theory will eventually break

down. However, the point at which these effects become relevant for inflation will depend

on the rate at which the states become light, which is parametrised by λ in eq. (3.2).

From a geometric point of view, the concrete value of λ can in principle depend on the

type of trajectory followed in the field space. Any attempt to give a universal value for

λ will imply to constrain both the geometry of the scalar manifold as well as the type of

scalar potential that can arise from string theory, thus effectively constraining the type of

trajectories allowed by quantum gravity. This is a very difficult question since it would

imply to know the full potential including all possible backreaction effects, to determine

the final trajectory followed in the field space. However, we can aim at least to determine

the value of λ associated to each trajectory, even if we do not know what trajectories

will be eventually allowed by quantum gravity. The advantage of using the Nilpotent

Orbit Theorem to determine the Kähler potential is that we can avoid part of the path

dependence issues, as we will see below. We will distinguish a few cases depending on their

level of technical difficulty.

6.1 Saxionic trajectories

Let us still assume we are moving only along saxionic fields, i.e. on radial directions to the

singularity. In a higher dimensional moduli space, with multiple saxions, we can distinguish

two cases depending on the number of transverse coordinates to the singular point.

8More concretely, d is an integer corresponding to the maximum power of the nilpotent monodromy

operator that does not annihilate the period vector. More details can be found in [3].
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Figure 2. Sketch of different trajectories in the moduli space. The straight black lines correspond

to singular divisors, while the blue lines correspond to different type of trajectories approaching

the singular loci. The left figure refers to whether the trajectory is approaching a one-parameter

(point P ) or a multi-parameter degeneration (point R). Notice that, even if each singular divisor

has one transverse complex coordinate Ti, the left drawing corresponds to the plane spanned only

by the two real components φi. The right figure corresponds instead to the complex plane spanned

by T1 = φ1 + iθ1. It can be therefore seen as a transversal view of the left figure so that one of the

singular divisors appears as a point. Different trajectories α, β, γ correspond to different mixings of

the saxion φ1 with the axionic field θ1, so that γ is a purely saxionic trajectory.

• One-parameter degenerations: the singular point is located at a single singular divisor

at φ→∞. In other words, there is only one transverse complex coordinate T to the

singularity and, therefore, only one radial way φ to approach it.

• Multi-parameter degenerations: the singular point is located at the intersection of

multiple singular divisors, each of them located at φi →∞ where i runs over the num-

ber of singular divisors. In other words, there is more than one complex coordinate

transverse Ti to the singular point.

These two cases have been schematically shown in figure 2, where the point P is a one-

parameter degeneration while R is a multi-parameter degeneration as corresponds to the

intersection of two singular divisors.

It is important to remark that, in this paper, we have only investigated the cosmological

implications of one-parameter degenerations. The Kähler potential was given in eq. (2.3).

For multi-parameter degenerations, the polynomial in e−K will be an expansion over each

transverse coordinate. Interestingly, there is a very rich underlying structure of the possible

enhancements and intersections which will again constrain the physics and geometry around

these points. This has been analysed in [4]. Even if path dependence issues become more

important, it is possible to classify paths into different growth sectors and to determine

how the masses of the tower of states behave within each growth sector. A more detailed

analysis of the field metrics in these growth sectors is left for future work.

Even if we restrict ourselves to one-parameter degenerations, there can also be addi-

tional scalar fields za parametrizing the longitudinal directions to the singular divisor. All

the bounds obtained for the single field case still apply in this case, with the difference that

the constant d appearing in the leading term of the kinetic term for the saxion is replaced

by some deff which will also depend on the other spectator fields za. However, deff is upper

bounded by the integer d, i.e. deff ≤ d, so the bounds on the field range for purely saxionic

trajectories become even stronger.
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6.2 Saxion-axionic trajectories

Let us finally consider the case in which we also displace some axionic field. Varying

the saxion is equivalent to moving along the radial direction towards the infinite distance

singularity, while varying the axion corresponds to circle around the singularity. In the

previous section, we only considered purely saxionic trajectories, as in the original models

of α-attractors. Here we will comment on the bounds for more general trajectories in

which we also move along the axionic direction. Different trajectories have been depicted

in figure 2 (right figure). For simplicity, we will assume that the moduli space is only

parametrised by one complex scalar field T = φ+ iθ. The leading term for the kinetic field

metric near the infinite distance singularity reads

L = − d

4φ2
(∂φ)2 − d

4φ2
(∂θ)2 . (6.1)

It can be proved [42] that any real smooth trajectory approaching the point φ → ∞ has

infinite length,

∆ϕ &

√
d

2
log(φ)→∞ , (6.2)

even if it has an axionic component. In particular, a trajectory involving a linear combi-

nation of saxion and axion such that

(φ, θ) =

(
φ0 + δφ,

1

a
δφ

)
(6.3)

has a length given by

∆ϕ =

√
d(1 + a2)

2a
log(φ0 + δφ) . (6.4)

However, it is not enough to know the field metric in order to determine the drop-off of

the cut-off and the maximum field range consistent with the conjecture. We also need

information about the mass behaviour of the tower of particles. For a single complex field,

it is still expected that the mass scales at leading order as

m ∼ m0

φp
. (6.5)

Plugging eq. (6.4) into the species bound for this tower of particles, and denoting λ =

2p/
√

3d as before, we get

∆ϕ ≤ ∆ϕSDC =
1

λ

√
1 + a2

a
log

Mp

H
. (6.6)

This is the same formula used in the previous analysis but with a new effective factor

λeff = λ a√
1+a2

which now depends on how much we are moving along the axionic direction.

For a→∞, the trajectory is mainly saxionic and we recover the results of section 5. The

field range cannot be made parametrically large and it is upper bounded by λ−1. For

a → 0, the trajectory is mainly axionic and in principle λeff � λ so ∆ϕSDC can be made

parametrically larger. This limit is equivalent to consider an axion monodromy inflationary
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model [67, 68] in which backreaction effects involve some displacement of the saxion fields

which is quantified by the value of a. If a is very small means that backreaction effects are

negligible and the trajectory is mainly axionic. For this to happen, one needs to be able

to engineer a mass hierarchy such that the axion is much lighter than the saxion [7]. The

question, though, is whether there exists a potential in an effective theory consistent with

quantum gravity that allows us to generate this mass hierarchy and move along this almost

purely axionic trajectory. In many cases, it turns out that the same tuning required to get

this mass hierarchy in string compactifications, also brings the effective theory away from

the perturbative controllable regime [9, 13] (see though [69]). Therefore, it remains as an

open challenge to fully globally engineer a controllable model of this type.9 All we can say,

though, is that this type of monodromic axionic trajectories are still the best candidates

to generate larger field excursions as of now.

Regarding the cosmological predictions, in the case of a mixed saxion-axion trajectory,

asymptotic to eq. (6.3) at infinite distance, one would generically still expect an emergent

inflationary behaviour typical of α-attractors (provided the conditions on the potential

discussed above). In fact, the kinetic term has still an effective 1/φ2 dependence along

that path. In the ideal case of perfect linearity, with a being a constant along the whole

trajectory, the inflationary predictions will be again given by eq. (6.3) but with α being

replaced by αeff such as

α → αeff = α
1 + a2

a2
. (6.7)

For small a, that is when the axionic component becomes relevant, the tensor-to-scalar

ratio will therefore increase.

However, moving away from the singularity, deviations from the linear saxion-axion

combination are generically expected. These will depend on the specific details of the

full scalar potential,10 with direct consequences on the resulting inflationary dynamics.

The evolution along the axionic direction can in fact lead to phenomenologically distinct

scenarios. Here below, we give an account of quite generic situations, keeping in mind that

many model-dependent subtleties might come into play.

One possibility is that the parameter a effectively increases thus yielding a purely

saxionic trajectory. If the potential is such that the last 60 e-foldings of inflation happen

along this path, then we recover the original predictions given by eq. (6.3). On the contrary,

if the trajectory becomes mainly axionic (effective reduction of a) and if the potential

is suitable to sustain again at least 60 e-foldings of quasi-exponential expansion, then

the predictions will be strictly dictated by the form of the axionic potential (with model

dependent outcomes). In fact, CMB observations will ‘see’ just the last stage of inflation,

thus ignoring the preceding cosmological history.

9See, though, the recent work [14] where the backreacted kinetic term along the axionic trajectory goes

as 1/δφ, seemingly implying a parametrically large axionic field displacement. However, in this case, the

axion varies over a non-compact spatial dimension.
10Deviations from the linear case eq. (6.3) can be again encoded in the trajectory-parameter with a

dependence such as a = a0 + a1/φ+O(1/φ2).
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Another possibility is that the first stage of inflationary attractor along the diagonal is

interrupted with a subsequent phase, which can sustain an insufficient period of inflation

or even no inflation at all (thus leading to a premature ending of inflation). In both cases,

the cosmological predictions will read

ns = 1− 2

(N + δN)
, r =

12 αeff

(N + δN)2 , (6.8)

with N ≈ 60 and δN being a positive quantity in case the inflationary period is prematurely

arrested (see e.g. [70]), while it is a negative number if there is a second stage of insufficient

inflation, with a duration of |δN | < 60 e-foldings (see e.g. [71, 72]).

7 Conclusions

In this paper we have discussed the interplay between the Swampland Distance Conjecture,

the physics at infinite distance singularities and its implications for inflation. Specifically,

we have pointed out that the emergent field metric predicted by the SDC (and confirmed

by explicit analysis in the context of Calabi-Yau manifolds [3]) is the same as the typical of

α-attractor models of inflation. The SDC therefore suggests that any scalar field travelling

along a non-compact trajectory towards a boundary of the string moduli space will exhibit

the phenomenology of α-attractors for large enough parametrically field values, provided a

certain regularity on the scalar potential (see section 4). However, the conjecture implies

also that the limit where the universal inflationary behaviour emerges is the same where the

effective field theory is supposed to break down cause of the appearance of an infinite tower

of massless states. We have investigated these aspects and found a number of interesting

results:

• We have first pointed out that assuming validity of the EFT of inflation (i.e. H ≤
ΛQG) and eq. (1.1) automatically leads to a universal upper bound on the inflaton field

range in terms of the tensor-to-scalar ratio r measured at horizon exit. This bound

scales as ∆ϕ . − log(r) and, when compared with the Lyth bound (∆ϕ &
√
r), it

defines an area of inflationary models consistent with the quantum gravity constraints

imposed by the SDC (see figure 1).

• We have argued that if α-attractors are realised within string theory and by means of

only one radial transverse direction evolving during inflation, then the kinetic met-

ric eq. (1.2) should vanish in the deep inflationary limit. This happens because the

physics emerges around infinite-distance singularities in field space. In Calabi-Yau

string compactifications, the symmetries of these spaces typically do not include the

inversion transformation, which makes this inflationary construction intrinsically dif-

ferent from the pole inflation scenario [29–31] (although with identical predictions).

Interestingly, this realization comes together with the additional feature that the de-

cay constant of the axion partner goes to zero in this limit, thus implying consistency

also with the bounds imposed by the WGC. The increase of the axion decay constant

towards the end of inflation might lead to interesting phenomenological consequences.
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• We have proven that, although the infinite long plateau typical of α-attractors is

forbidden by the SDC, these models can still deliver a sufficient amount of inflation

(N > 60) with cosmological predictions equal to eq. (4.1). For α-attractor models

arising at infinite distances, the upper bound on the total number of e-foldings is

given by eq. (5.4).

• The realization of α-attractors at infinite distances, allowed us to relate, through

eq. (5.1), the parameter α of these inflationary class of models with the parameter

d, the latter being intimately related to the fundamental geometric properties of the

singularity (see eq. (2.3) and eq. (2.4)). For saxionic trajectories, d is upper bounded

by an integer depending on the properties of the monodromy transformation of infinite

order around this point (which translates to the shift symmetry of the axion partner

in the effective theory), thus implying an upper bound eq. (5.5) on the tensor-to-scalar

ratio. It is also eventually related to the rate at which the infinite tower of particles

becomes light, as both parameters are connected to the asymptotic structure of the

kinetic term. More concretely, we get α ∼ λ−2 where λ appears in the definition of

the SDC eq. (1.1). A bound on λ has, therefore, a direct impact on α-attractors.

Many of the results discussed in this paper are (model-independent) consequences of

applying the Nilpotent Orbit Theorem [41] to the Kähler potential of Calabi-Yau compact-

ifications. Therefore, the validity of these conditions is restricted to these spaces, although

their deep relation to the SDC suggests that they might be valid in general. It is impor-

tant to remark, though, that they have only been proven for one-parameter degenerations,

meaning that there is only one saxion going to infinity while all the other fields are kept

finite. Even if we expect them to be true in general, we cannot apply yet our results to mod-

els like fibre inflation [61], which involves two fields moving towards a singular point located

at the intersection of multiple singular divisors (see e.g. point R of figure 2). Although we

have already outlined some of the generic expectations of multi-parameter degenerations

in section 6, we leave this interesting but more involved analysis for future work.

Finally, we want to remark that much more effort is still required to prove the con-

jecture and determine the parameter λ in eq. (1.1) from first principles. This is essential

in order to ever give precise constraints on inflation which aim to be universal. Interest-

ingly, the mathematical structure underlying the infinite distance singularities can also be

used to potentially constrain the asymptotic structure of the scalar potential in flux string

compactifications. This would represent an essential complementary analysis, since in the

present work we have focused just on the kinetic structure of the inflaton field. We hope

to return soon to these interesting topics.
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A SDC vs validity of the EFT

Consider the moduli space of some string compactification. In general, there does not

exist a single effective field theory that is valid globally over the entire moduli space, but

we need to work with different effective descriptions which are valid over local patches of

finite size. To get these effective theories, we usually expand the field metric and physical

observables around special points which correspond to singularities of the moduli space.

These singularities can be either at finite or infinite distance. The presence of the latter

implies that moduli spaces have finite volume but are non-compact. When we move away

from the special point, corrections become more and more important and at some point the

local expansion fails. For instance, near an infinite distance singularity (like large volume,

large complex structure point or weak coupling points11) the Kähler potential takes the

form given in eq. (2.3). Recall that this is a local expansion around the singularity at

φ→∞. Consequently, the exponentially suppressed terms become more important as we

move away from the singularity, and at some point (defined as the radius of convergence)

the effective description breaks down and needs to be replaced by another one.

There is some confusion whether this range of validity of the effective theory is the same

predicted by the SDC. The answer is no. The SDC is related to a complete breakdown of

the effective theory when approaching an infinite distance point (i.e. when moving towards

the boundaries of the moduli space), since the quantum gravity cut-off also goes to zero

there. Hence, we cannot just find another quantum effective field theory description (while

keeping the same fundamental degrees of freedom) that works when the first one breaks

down, as quantum gravitational effects become important. Furthermore, notice that the

SDC implies the breakdown of the effective theory when approaching the special point,

instead of when going away from it. In other words, precisely in the limit where the local

expansion is better justified, the SDC tells us that the effective theory must break down

due to an additional infinite tower of particles becoming light, which was not present in

the low energy effective theory. Therefore, as expected from a swampland constraint, this

breakdown cannot be seen without additional information of the UV completion.

The intuitive reason is because there are global symmetries that would be recovered

otherwise at the infinite distance boundaries of the moduli space, and global symmetries

are not allowed by quantum gravity [73]. Therefore, even if near the boundary it seems

we can always12 find a weakly coupled effective theory description enjoying approximate

global symmetries and which is seemingly under control from the point of view of QFT,

11Most of effective theories obtained from string theory compactifications usually involve working near

one of these limits. This is why the SDC has the potential to constrain many inflationary models in string

theory. There can be, though, other examples of infinite distance singularities.
12The SDC is deeply linked to the appearance of dualities in string theory.
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φ = 1

φ = 0

SDC

Figure 3. Sketch of a moduli space with different local patches describing the different regimes of

validity of an effective theory. For simplicity, we only draw two singularities, assuming one of them

at infinite distance (φ = ∞) and the other one at finite distance (φ = 0). The effective field theory is

valid at a finite region around the singularity. When going away (red or blue arrow), corrections will

become important and eventually has to be replaced by another effective description. Quantifying

these corrections defines the radius of validity (dashed circles) of the EFTs. Contrary, the SDC

gives information on how close we can go to the singular point (yellow arrow). Even if in this limit

the metric at leading order is well described by 1/φ2 and corrections are negligible, there is an

additional infinite tower of particles which will yield an exponential drop-off of the energy cut-off.

This sets a new boundary (yellow dotted circle) and a corresponding area where the EFT breaks

down by quantum gravity effects (yellow area).

it must still breakdown continuously when approaching the infinite distance boundary by

quantum gravity effects to avoid the restoration of the exact global symmetry.

Of course, string theory has a way to resolve these infinite distance singularities (e.g.

by growing extra dimensions) so the global symmetry is embedded in a higher group of

diffeomorphisms or gauge transformations. But this changes drastically the effective theory

and the fundamental light degrees of freedom are intrinsically different.

Let us finally remark that the effective theory also breaks down at finite distance

singularities because of the presence of some new light state. However, since the number

of new degrees of freedom is expected to be finite, we can always integrate them in and

continue working with the same effective theory plus the new states. There is no need of

changing to a dual picture and, consistently, the quantum gravity cut-off does not go to

zero in these cases. There have been some works [13] studying if a Refined SDC [18, 19]

forbidding transplanckian geodesic field distances could still be valid in these regimes, even

if there is no infinite tower becoming light. They find agreement with the refined conjecture

in the sense that the analysed geodesics trajectories are still subplanckian.

B Comments on the inversion transformation

In this appendix we would like to further comment on the shortcomings of using an inversion

transformation φ → 1/φ to relate α-attractor and pole inflation models.
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First of all, let us notice that the inversion transformation should not be understood

as a symmetry but more as a duality or field redefinition. It is part of the group of

linear transformations GL(2n + 2, R) which leaves invariant the Kähler potential up to

Kähler transformations. However, in general, these transformations do not correspond

to symmetries of the effective theory but rather to a choice of frame (field redefinitions

or duality transformations). The true symmetries of the action are a discrete subgroup

M ∈ GL(2n + 2, R) called the monodromy group, which does not include in general this

inversion transformation. This is more clear if the scalar fields are part of N = 2 vector

multiplets together with U(1) gauge fields (as in the complex structure (Kähler) moduli

space of IIB (IIA) Calabi-Yau compactifications). The scalar field metric is then related

to the gauge coupling, and the inversion transformation implies in turn a transformation

on the gauge coupling g → 1/g and the exchange between electric and magnetic gauge

fields. At a given point of the moduli space, an effective description in terms of electric

gauge fields is dual to a description of the magnetic gauge variables, but if the electric

gauge coupling goes to zero, the magnetic one will diverge and there is no weakly coupled

effective Lagrangian that we can write for the magnetic variables. It is more useful then to

work with the electric fields. Similarly, for the scalar manifold, there are frames which are

more useful than others depending on the point of the moduli space. When approaching

an infinite distance singularity, there is a “clever” frame for the Kähler potential in which

the corrections are exponentially suppresed with respect to the leading term, so the shift

symmetry of the axion is manifest. But in this frame, the singularity is located at φ→∞
so the result is only valid for large φ. The Nilpotent Orbit Theorem naturally selects this

“clever” frame and gives the leading form of the Kähler potential at any type of infinite

distance singularity, regardless of the specific Calabi-Yau compactification space or the

scalar field under consideration.

Notice that there can be exceptions for particular scalar manifolds in which the in-

version transformation is indeed a true symmetry of the theory, as in toroidal compacti-

fications. There, the monodromy group is SL(2, Z) and both limits φ → ∞ and φ → 0

correspond to infinite distance singularities. For Calabi-Yau compactifications, only special

examples exhibit infinite distance singularties at small φ which are in fact characterized

by small values of d in eq. (2.4) (in particular, d < 3 for Calabi-Yau threefolds [3]) which

imply in turn small values of α. Clearly, one can always choose to work in the frame in

which the singularity is located at infinity, so the presence of the axion is manifest and

everything works as described above. However, in these cases, both θ and θ′ behave as

axions in the effective theory.
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[48] J. Garćıa-Bellido, D. Roest, M. Scalisi and I. Zavala, Lyth bound of inflation with a tilt,

Phys. Rev. D 90 (2014) 123539 [arXiv:1408.6839] [INSPIRE].

[49] A.D. Linde, Chaotic Inflation, Phys. Lett. B 129 (1983) 177 [INSPIRE].

[50] R. Kallosh and A. Linde, Universality Class in Conformal Inflation, JCAP 07 (2013) 002

[arXiv:1306.5220] [INSPIRE].

[51] J. Ellis, D.V. Nanopoulos and K.A. Olive, Starobinsky-like Inflationary Models as Avatars of

No-Scale Supergravity, JCAP 10 (2013) 009 [arXiv:1307.3537] [INSPIRE].

[52] D. Roest, M. Scalisi and I. Zavala, Kähler potentials for Planck inflation, JCAP 11 (2013)

007 [arXiv:1307.4343] [INSPIRE].
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