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E-mail: medina.daniel@itp.phys.ethz.ch

Abstract: Recent progresses in the computation of quantum string corrections to holo-

graphic Wilson loops are extended to the case of strings in AdS4 × CP 3. For this, the

ratio of 1
2 -BPS circular and 1

6 -BPS latitude fermionic Wilson loops in ABJM is considered

at strong coupling by studying the corresponding semiclassical string partition functions.

Explicit evaluation of fluctuation determinants using phaseshifts and diffeomorphism in-

variant regulators leads to exact matching with the recent field theory proposal. Key to

this computation is the choice of boundary conditions for massless fermions. In the limit for

which the latitude Wilson loop has a trivial expectation value, the long known localization

result for the 1
2 -BPS fermionic circular Wilson loop in ABJM is recovered.

Keywords: AdS-CFT Correspondence, Gauge-gravity correspondence, Wilson, ’t Hooft

and Polyakov loops

ArXiv ePrint: 1907.02984

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP08(2019)158

mailto:medina.daniel@itp.phys.ethz.ch
https://arxiv.org/abs/1907.02984
https://doi.org/10.1007/JHEP08(2019)158


J
H
E
P
0
8
(
2
0
1
9
)
1
5
8

Contents

1 Introduction 1

2 The circular and latitude Wilson loops 3

2.1 Latitude Wilson loops in ABJM 3

2.2 Classical strings in AdS4 × CP 3 4

3 Setup 5

3.1 The semiclassical partition function 6

3.2 Conformal frame and invariant regulators 7

4 Evaluation of determinants 7

5 Collecting all the pieces 16

6 The 1
2
-BPS fermionic circular Wilson loop 17

7 Conclusions 18

1 Introduction

The gauge-string correspondence has been one of the most exciting developments in theo-

retical physics as it allows for insights into the strongly coupled dynamics of gauge theories

by considering the corresponding weakly coupled strings. The best known examples of the

correspondence are the dualities between N = 4 super Yang-Mills with SU(N) gauge group

and type IIB strings in AdS5 × S5 [1], and between N = 6 Chern-Simons matter theory

with gauge group U(N)k ×U(N)−k and type IIA string theory in AdS4 × CP 3 [2].

Wilson loops have played an important role within the gauge-string correspondence as

they have a precise description at both sides of the duality [3, 4]. Localization [5] has lead to

remarkable progress in the field theory computation of Wilson loops, leading to exact results

for all orders in the coupling for certain configurations in supersymmetric field theories. On

the string theory side, the large N Wilson loop expectation value corresponds to the su-

perstring partition function [6] and only the leading contribution, and in only few cases the

next to leading order contribution, has been matched with field theory at strong coupling.

For the case of N = 4 SYM there exist exact results at all orders in the coupling

for the circular [5, 7, 8] and latitude Wilson loops [9]. From the string theory side in

AdS5 × S5 at 1-loop, based on the foundational work in [10], early attempts at matching

the field theory result in the planar limit for the circular Wilson loop lead to discrepancies

attributed to the normalization of the string path integral measure [11–13]. Renewed

interest in this program lead to the proposal of the 1-loop string theory computation of
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the ratio of 1
2 -BPS circular and 1

4 -BPS latitude Wilson loops, in which measure factors

would play no role [14, 15]. Despite early discrepancies [14–16], a precise matching of this

ratio was achieved at the first two leadings orders in strong coupling: initially only at first

order in small values of the latitude parameter [17], and finally at all orders in the latitude

parameter [18]. Recently, the 1
2 -BPS circular Wilson loop was successfully computed at

1-loop in string theory at strong coupling by considering the ratio between the semiclassical

string partition function dual to this configuration and the one dual to a latitude Wilson

loop with trivial expectation value [19].

InN = 6 Chern-Simons matter theory with gauge group U(N)k×U(N)−k, also referred

as ABJM, Wilson loops are among the most interesting observables. In this theory circular
1
6 -BPS bosonic [20–22] and 1

2 -BPS fermionic [23] Wilson loops were constructed and their

expectation values calculated in the planar limit at strong coupling using localization [24].

Planar corrections to these Wilson loops have been studied in detail [25], leading to exact

results at all orders in 1/N for any winding through the Fermi gas approach [26, 27]. Lati-

tude Wilson loops in ABJM were constructed in [28] and depend effectively on a parameter

ν ∈ [0, 1] which for the fermionic case interpolates between the 1
2 -BPS circular Wilson loop

(ν = 1) and a 1
6 -BPS latitude Wilson loop with trivial expectation value (ν = 0). These

latitude Wilson loops have been extensively studied in perturbation theory in [29] and re-

cently a result for their expectation value at all orders in the coupling was proposed in [30].

From the perspective of string theory in AdS4 × CP 3, much less is known regarding

the Wilson loop sector. The classical string configurations dual to bosonic Wilson loops

are not known, while for fermionic Wilson loops the dual string solutions have been found

for the circle [20] and latitude [31]. At strong coupling in the string theory side, the leading

contribution comes from the regularized minimal area and matches the field theory predic-

tions. However, string theory computations in AdS4 × CP 3 have been so far unsuccessful

beyond leading order. In [32] the semiclassical string partition function dual to the 1
2 -BPS

fermionic circular Wilson loop was computed using the Gel’fand-Yaglom method, leading

to a mismatch with the localization result found on [24]. Recently, the computation of the

ratio of fermionic 1
2 -BPS circular and 1

6 -BPS latitude semiclassical string partition functions

using zeta function techniques lead to discrepancies with the prediction from [30], although

a perturbative heat kernel approach agrees at first order for small latitude angle [33].

In this paper we revisit 1-loop corrections to holographic Wilson loops in AdS4×CP 3

using the techniques developed in [18, 19]. First, we consider the ratio of semiclassical string

partitions functions corresponding to the 1
2 -BPS circular and 1

6 -BPS latitude fermionic

Wilson loops. For this we explicitly evaluate the functional determinants involved using

phaseshifts and diffeomorphism invariant regulators in a calculation analogous to [18]. As

we will see, due to the presence of fermionic massless operators in the AdS4 × CP 3 case,

the choice of fermionic boundary conditions has to be revised. Then, following the logic

of [19], we consider the 1-loop string theory computation of the 1
2 -BPS fermionic circular

Wilson loop by considering its ratio with a configuration dual to the 1
6 -BPS latitude with

trivial expectation value. The later result follows directly from the first computation and

is considerably simpler than in the AdS5 × S5 case [19] where the relative number of zero

modes in the ratio was non-zero.
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This paper is organized as follows. In section 2 we review the main field theory predic-

tions for latitude and circular Wilson loops in ABJM, as well as the corresponding classical

string solutions. Section 3 describes the setup for the calculation of the semiclassical string

partition functions. Then, in section 4, the functional determinants are evaluated explicitly

and the corresponding boundary conditions are discussed. Section 5 collects all the pieces

entering the ratio of 1
6 -BPS latitude and 1

2 -BPS circular Wilson loops, while section 6 dis-

cusses the 1-loop string theory result for the fermionic 1
2 -BPS circle. Conclusions and open

problems are presented in section 7.

2 The circular and latitude Wilson loops

2.1 Latitude Wilson loops in ABJM

The family of fermionic latitude Wilson loops in ABJM constructed in [28] are parametrized

by an effective parameter ν = sin 2αint cos θ0 ∈ [0, 1], where αint ∈ [0, π2 ] can be arbitrarily

chosen and denotes an angle that governs the coupling of matter to the internal R-symmetry

space, while θ0 is a geometric angle parameterizing the latitude contour. The expectation

value for this family of Wilson loops at non-integer framing f = ν was obtained in [30]

resulting in1

〈
W

1
6
F (ν)

〉
ν

=
iνΓ

(
−ν

2

)
csc
(
2πν
k

)
Ai
((

2
π2k

)−1/3 (
N − k

24 −
6ν+1
3k

))
2ν+1
√
πΓ
(
3−ν
2

)
csc
(
πν
2

)
Ai
((

2
π2k

)−1/3 (
N − k

24 −
1
3k

)) . (2.1)

By making use of the relations

λ =
N

k
=

log2κ

2π2
+

1

24
+O

(
κ−2

)
, gs =

2πi

k
, (2.2)

equation (2.1) can be expanded at strong coupling in the genus series〈
W

1
6
F (ν)

〉
ν

=

∞∑
g=0

g2g−1s

〈
W

1
6
F (ν)

〉
ν

∣∣∣∣
g

, (2.3)

where gs > 0 denotes the string coupling. At genus 0, the Wilson loop expectation value

reduces to 〈
W

1
6
F (ν)

〉
ν

∣∣∣∣
g=0

= −
2−ν−1κνΓ

(
−ν

2

)
sin
(
πν
2

)
√
πΓ
(
3
2 −

ν
2

) . (2.4)

Of special interest is the case when ν = 1, where the latitude reduces to the 1
2 -BPS circular

configuration. In this case the Wilson loop expectation value at strong coupling is given by〈
W

1
2
F

〉
= lim

ν→1

〈
W

1
6
F (ν)

〉
ν

∣∣∣∣
g=0

=
1

2
eπ
√
2λ. (2.5)

1In this expression we have omitted the overall normalization factor R =
(
e−i

πν
2 − ei

πν
2

)−1

used by

the authors of [30] such that at weak coupling the expectation value would go as 〈W 〉 ∼ 1 + O (λ). The

normalization used here, where the Wilson loop expectation value does not start with one at weak coupling,

is common in Chern-Simons theory [25].
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Another interesting case is when ν = 0, where the Wilson loop has trivial expectation value

lim
ν→0

〈
W

1
6
F (ν)

〉
ν

∣∣∣∣
g=0

= 1 (2.6)

and it reduces to a configuration similar to the one obtained in [34] for AdS5 × S5.

In this paper we set ν = cos θ0 for simplicity and consider the ratio of 1
2 -BPS circular

and 1
6 -BPS latitude Wilson loops, for which the field theory prediction at strong coupling is〈

W
1
2
F (1)

〉
1

∣∣∣∣
g=0〈

W
1
6
F (ν)

〉
ν

∣∣∣∣
g=0

= eπ
√
2λ(1−cos θ0)

Γ (2 + cos θ0) Γ
(
3−cos θ0

2

)
2Γ
(
3+cos θ0

2

) . (2.7)

Later in section 6, we study the case in which the latitude has trivial expectation value as

in (2.6), recovering the result for the fermionic circular Wilson loop (2.5).

2.2 Classical strings in AdS4 × CP 3

We briefly present the field content of the AdS4 × CP 3 background before reviewing the

string configuration dual to the femionic latitude Wilson loop. The metric for CP 3 is

given by

ds2CP 3 =
1

4

[
dα2 + cos2

α

2

(
dθ21 + sin2θ1dϕ

2
1

)
+ sin2α

2

(
dθ22 + sin2θ2dϕ

2
2

)
+cos2

α

2
sin2α

2
(dχ+ cos θ1dϕ1 − cos θ2dϕ2)

2
]
, (2.8)

where the angles have the range 0 ≤ α, θ1, θ2 ≤ π, while 0 ≤ ϕ1, ϕ2 ≤ 2π and 0 ≤ χ ≤ 4π.

The metric for AdS4 is

ds2AdS4
=
dx2µ + dz2

z2
, (2.9)

while the full metric is given by

ds2 = ds2AdS4
+ 4ds2CP 3 . (2.10)

This type IIA background is additionally supported by the fields

Φ = ln
2L

k
, F2 =

k

4
dA, F4 =

3

2
kL2 Vol (AdS4) , (2.11)

where L2 = π
√

2λ and A is a 1-form given by

A = cosαdχ+ 2cos2
α

2
cos θ1dϕ1 + 2sin2α

2
cos θ2dϕ2. (2.12)

The classical string solution dual to the fermionic latitude Wilson loop in ABJM is

given by [31]

xµ =

{
cos τ

coshσ
,

sin τ

coshσ
, 0

}
, z = tanhσ,

α = 0, ϕ1 = τ, sin θ1 =
1

cosh (σ + σ0)
, (2.13)
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where σ0 is related to the latitude angle θ0 by

cos θ0 = tanhσ0. (2.14)

It is easy to see that the string extends in the bulk of AdS and ends in a circle at the

boundary σ = 0, while in CP 3 the angle θ1 → θ0 when σ → 0.

3 Setup

In the gauge-string correspondence the string theory dual to the Wilson loop expectation

value corresponds to the string partition function. The later can be evaluated semiclassi-

cally by gauge fixing both κ-symmetry and the worldsheet metric, and considering small

fluctuations around the classical string solution [10]. Expansion of the Green-Schwarz ac-

tion to second order in fluctuations reduces the path integral to a Gaussian integral, which

after integration amounts to the evaluation of functional determinants. Schematically this

reduces to

〈W 〉 = Zstring
λ→∞

= e−S[Xcl]
det1/2D
det1/2K

, (3.1)

where the exponential contains the classical piece, while the semiclassical piece is given in

terms of determinants of transversal bosonic and fermionic operators K and D, respectively.

In expression (3.1) we have omitted the contribution from the ratio of ghost Faddev-

Popov determinants and bosonic directions longitudinal to the worldsheet. Despite ghost

and longitudinal modes having the same differential operator, the determinants are not

necessarily the same due to different boundary conditions [10]. The omission of these

contributions is justified when considering ratios of Wilson loops with the same topology

as possible contributions are expected to cancel in the ratio. Note that this was the case

for ratios of circular Wilson loops in AdS5 × S5 [18, 19].

Following the formalism of [10], we fix the worldsheet metric to be the metric induced

by the classical solution

ds2ws = Ω2
(
dτ2 + dσ2

)
, Ω2 =

1

sinh2σ
+

1

cosh2 (σ + σ0)
. (3.2)

The classical contribution to the partition function is given in terms of the regularized

area

S [Xcl] =

√
λ

2

2π∫
0

∞∫
ε

(
1

sinh2σ
+

1

cosh2 (σ + σ0)

)
dσdτ

∣∣∣∣∣∣
reg

= −π
√

2λ tanhσ0 (3.3)

and is in perfect agreement with the exponential behaviour in (2.7). We will now focus

on the semiclassical piece which accounts for the factor in front of the exponential in

equation (2.7).
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3.1 The semiclassical partition function

Expansion of the Green-Schwarz action to second order in fluctuations around the latitude

solution results in the following ratio of determinants [33]

Z =
detD1+ detD1− det1/2D2+ det1/2D2− det1/2D3+det1/2D3−

detK1 detK2+ detK2− det1/2K3+ det1/2K3−
, (3.4)

where the untilded operators above are given in terms of tilded operators through

K =
1

Ω2
K̃, D =

1

Ω3/2
D̃Ω1/2, (3.5)

and the tilded operators are

K̃1 = −∂2τ − ∂2σ +
2

sinh2σ
, (3.6)

K̃2α = −∂2τ − ∂2σ + αi (tanh (σ + σ0)− 1) ∂τ

+
1

4
(tanh (σ + σ0)− 1) (1 + 3 tanh (σ + σ0)) , (3.7)

K̃3α = −∂2τ − ∂2σ + 2αi (tanh (2σ + σ0)− 1) ∂τ

+ (tanh (2σ + σ0)− 1) (1 + 3 tanh (2σ + σ0)) , (3.8)

D̃1α = iτ1∂σ − τ2
[
i∂τ +

α

2
(1− tanh (2σ + σ0))

]
+

1

Ωsinh2σ
τ3 +

α

Ωcosh2 (σ + σ0)
, (3.9)

D̃2α = iτ1∂σ − τ2
[
i∂τ +

α

2
(tanh (σ + σ0)− tanh (2σ + σ0))

]
− 1

2

(
1

Ωsinh2σ
+ Ω

)
τ3 −

α

2Ωcosh2 (σ + σ0)
, (3.10)

D̃3α = iτ1∂σ − τ2
[
i∂τ +

α

2
(2− tanh (σ + σ0)− tanh (2σ + σ0))

]
− α sech2 (σ + σ0)

2Ω
(1− ατ3) , (3.11)

with the variable α being either a + or − sign and τi denoting the Pauli matrices. The

operator K1 corresponds to two fluctuations directions along AdS4, K2α comes from four

fluctuation modes along CP 3 while K3α results from a mixing of the remaining transver-

sal fluctuations along AdS4 and CP 3. Meanwhile, the fermionic operators Di result from

κ-symmetry gauge-fixing and choosing an appropriate basis for the gamma matrices enter-

ing the fermionic kinetic term in the Green-Schwarz action.

The asymptotic behaviour of the untilded operators far from the boundary is such that

lim
σ→∞

K̃i = K̃∞ = −∂2τ − ∂2σ ∀i ∈ {1, 2, 3}, (3.12)

lim
σ→∞

D̃iα = D̃∞ = iτ1∂σ − iτ2∂τ ∀i ∈ {1, 2, 3}, (3.13)

where the bosonic and fermionic asymptotic operators are related through(
D̃∞

)2
= 1 K̃∞. (3.14)

– 6 –
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3.2 Conformal frame and invariant regulators

To evaluate the semiclassical contribution (3.4) we need to evaluate the corresponding func-

tional determinants coming from string fluctuations. The later are naturally normalized

with respect to the induced worldsheet metric (3.2) [10, 18]

〈φ1|φ2〉 =

∫
dσ2
√
hφ†1φ2 =

∫
dτdσΩ2φ†1φ2 (3.15)

and the untilded operators are Hermitian with respect to this inner product.

Just as done in [18, 19], for simplicity we will work with the tilded operators instead

of the untilded ones appearing originally in the partition function. The tilded operators

are Hermitian with respect to the inner product

˜〈φ1 |φ2〉 =

∫
dτdσφ†1φ2. (3.16)

Tilded and untilded operators are related by a conformal transformation of the form

hµν = Ω2δµν → δµν . As discussed in [18], this map is singular at σ = ∞ and changes

the worldsheet topology from that of a disc to a semi-infinite cylinder. Evaluation of func-

tional determinants on the cylinder requires an IR regularization implicit in our calculations

of section 4, where artificial boundary conditions are imposed at a large but finite value

σ = R. Imposing this cut-off R effectively affects the determinants as in the original frame

it amounts to introducing a small hole in the disk. As done in [18], we will introduce a

diffeomorphism-invariant regularization by choosing the area removed s to be the same for

all values of σ0

s =

∞∫
R

2π∫
0

Ω2dτdσ ' 4π
(
1 + e−2σ0

)
e−2R. (3.17)

Solving for R one obtains the σ0 dependent cut-off

R (σ0) =
1

2
ln

8π

s (1 + tanhσ0)
. (3.18)

We will now proceed to evaluate the determinants on the cylinder, or equivalently, the

determinants for the tilded operators.

4 Evaluation of determinants

Before evaluating individual determinants, we briefly present the general prescription used.

For more details we refer the reader to [18].

Let K̃ a differential operator of the form

K̃ = −∂2τ − ∂2σ + V (∂τ , σ), (4.1)

with V (∂τ , σ)→ 0 as σ →∞. Fourier expansion of the eigenfunction φ (τ, σ) = e−iωτχ (σ)

along the τ direction effectively reduces the spectral problem to a 1-dimensional problem

K̃χ =
[
ω2 − ∂2σ + V (−iω, σ)

]
χ =

(
ω2 + p2

)
χ, (4.2)

with eigenvalue ω2 + p2 and eigenfunction χ.

– 7 –
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For bosonic operators we impose Dirichlet boundary conditions along the σ direction

χ (σ = 0) = 0. (4.3)

The eigenfunctions of the asymptotic operator K̃∞ with vanishing potential correspond to

plane waves of the form χ∞ ∝ sin(pσ). Meanwhile, for the original operator K̃ the eigen-

function far from the origin approaches a plane wave solution with a scattering phaseshift

due to the potential V

lim
σ→∞

χ ∝ sin (pσ + δ (ω, p)) . (4.4)

To evaluate the determinant we impose an “artificial” boundary condition χ(R) = 0 at the

large but finite IR cut-off R discussed in section 3.2. The later results in

pR+ δ (ω, p) = πn (4.5)

for n ∈ Z. The above implies a density of states for the continuum spectrum given by
dn
dp = R

π +
∂pδ(ω,p)

π . In terms of the phaseshift and the IR cut-off, the functional determinant

is given by

ln det K̃ =
∑
ω

∞∫
0

dp

π
(R+ ∂pδ (ω, p)) ln

(
ω2 + p2

)
. (4.6)

Notice that in the equation above only the derivative of the phaseshift plays a role, thus,

phaseshifts are fixed up to a constant, which for convenience we set such that δ
p→∞→ 0.

Summation over periodic Matsubara frequencies ω ∈ Z and contour integration as

shown in [18] result in

ln det K̃ = −
∞∫
0

dp cothπp [δ+ (p) + δ− (p) + 2Rp] (4.7)

for bosons, where δ± (p) = δ (±ip, p) as integration over ω in intermediary steps2 picks up

poles at ω = ±ip. Thus, to compute a bosonic determinant one uses equation (4.7) where

the phaseshift is read at large σ after explicitly solving (4.2) with ω = ±ip

K̃χ
∣∣∣
ω=±ip

=
[
−p2 − ∂2σ + V (±p, σ)

]
χ = 0 (4.8)

subject to the boundary condition (4.3).

To evaluate fermionic functional determinants, the following equation is used

ln det D̃ = −
∞∫
0

dp tanhπp [δ+ (p) + δ− (p) + 2Rp], (4.9)

2See [18] for more details.
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which results from summation over anti-periodic Matsubara frequencies ω ∈ Z + 1
2 [18].

After Fourier expansion of the eigenfunctions, phaseshifts are read from the oscillatory

behaviour at large σ of the 2-component spinor eigenfunctions χ (σ) satisfying

D̃χ|ω=±ip = 0, (4.10)

subjected to the required boundary condition along the σ direction.

Boundary conditions for fermions will play a key role in the present calculation. In

previous works [18, 19, 35] a generic solution to the fermionic spectral problem (4.10)

corresponded to a superposition of two eigenfunctions with divergent behaviour at σ → 0,

namely of the form

lim
σ→0

χ ' A1σ
−lχ(1) +A2σ

−lχ(2) +O
(
σ0
)
, (4.11)

where l > 0 while A1 and A2 denote the coefficients of the superposition. A natural choice

of boundary conditions corresponded to choosing the superposition which is well behaved

for σ → 0 since the resulting eigenfunction would be normalizable. Such choice of fermionic

boundary conditions lead to perfect agreement with field theory predictions in [18, 19, 35].

As we will see later, the above prescription for fermionic boundary conditions can be

easily applied for the massive operators D̃1α and D̃2α as in these cases l = 1. However, for

the massless fermionic operator D̃3α this prescription can not be used since the behaviour

at the origin is such that l = 0 for both eigenfunctions in the superposition. Consequently,

boundary conditions for fermions have to be revised such that they are compatible with pre-

vious results, while also sorting out the ambiguity for the massless fermionic operator D̃3α.

In the cylinder, fermionic boundary conditions at σ = 0 will be introduced using the

projector3

Π± =
1

2
(1± iγ∗γµnµ) , (4.12)

where nµ = {nτ , nσ} = {0, 1} is the inward pointing unit vector orthogonal to the boundary,

γµ denotes the gamma matrices γτ = −τ2 and γσ = τ1, while γ∗ = iγτγσ = −τ3 is the

chiral matrix. It is easy to see that this projector satisfies

Π+ + Π− = 1, Π±Π± = Π±, Π±Π∓ = 0. (4.13)

To evaluate the functional determinants, we have performed a conformal transformation

hµν = Ω2δµν → δµν and considered a finite spatial interval 0 ≤ σ ≤ R. Appropriate

boundary conditions for spinors in the finite spatial interval in flat space can be found

by supersymmetry considerations and amount to two possible sets in which Dirichlet and

Neumann conditions are satisfied along the different spinor components [36]. By explicit

calculation it can be checked that for the massive operators D̃1α and D̃2α, the superpositions

picked by the prescription of [18, 19, 35] correspond to two sets of boundary conditions

χ±|σ=0 = 0 ∧ ∂σχ∓|σ=0 = 0, (4.14)

3Note that the ± in the definition of Π± is not related to the ± sign resulting from the ω = ±ip leading

to (4.9) and (4.10). The two are independent.
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where χ± = Π±χ denote the spinor projections. Boundary conditions of this type, where

one projection satisfies Dirichlet while the complementary projection satisfies Neumann, are

sometimes referred to as “mixed” boundary conditions and are natural boundary conditions

for spin-12 fields [37].

We will see that for the massless fermionic operator D̃3α imposing a set of boundary

conditions (4.14) fixes the superposition and its corresponding phaseshift, leading to agree-

ment with the field theory prediction of [30]. Note that similar mixed boundary conditions

for massless fermions were also necessary to match field theory predictions in the calcula-

tion of the 1-loop partition function for strings in AdS4 × CP 3 ending in cusped lines at

the AdS boundary [38], solving previous discrepancies found in [39].

Operator K̃1. The spectral problem for this operator is(
−∂2σ +

2

sinh2σ

)
χ1 = p2χ1. (4.15)

The eigenfunctions satisfying this equation are a superposition of the Jost functions

Y1 = eipσ
ip− cothσ

ip− 1
, Ȳ1 = e−ipσ

ip+ cothσ

ip+ 1
. (4.16)

The superposition satisfying the boundary condition χ1 (σ = 0) = 0 corresponds to

χ1 ∝ eipσ (ip− cothσ)− e−ipσ (−ip− cothσ) . (4.17)

Consequently, the phaseshift is given by

δ1 = δ±1 = − arctan p+
π

2
(4.18)

and the determinant is

ln det K̃1 =

∞∫
0

cothπp (2 arctan p− π − 2Rp) dp. (4.19)

Operator K̃2α. The spectral problem for this operator is[
−∂2σ +

1

4
(tanh (σ + σ0)− 1) (±4αip+ 1 + 3 tanh (σ + σ0))

]
χ2α = p2χ2α. (4.20)

The eigenfunctions satisfying this equation are a superposition of the Jost functions

Y2α = e±αipσ
(

1 + tanh (σ + σ0)

2

)−1/2(±αip− 1+tanh(σ+σ0)
2

±αip− 1

)
, (4.21)

Ȳ2α = e∓αipσ
(

1 + tanh (σ + σ0)

2

)1/2

. (4.22)
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The superposition satisfying χ2α (σ = 0) = 0 is given by

χ2α ∝ e±αipσ
√

1 + tanhσ0
1 + tanh (σ + σ0)

(
±αip− 1 + tanh (σ + σ0)

2

)

+ e∓αipσ

√
1 + tanh (σ + σ0)

1 + tanhσ0

(
∓αip+

1 + tanhσ0
2

)
. (4.23)

From the above, the phaseshift is given by

δ2α = δ±2α = −1

2
arctan p+

1

2
arctan

2p

1 + tanhσ0
(4.24)

and the determinant is

ln det K̃2α =

∞∫
0

cothπp

(
arctan p− arctan

2p

1 + tanhσ0
− 2Rp

)
dp. (4.25)

Operator K̃3α. The spectral problem for this operator is[
−∂2σ + (tanh (2σ + σ0)− 1) (±2αip+ 1 + 3 tanh (2σ + σ0))

]
χ3α = p2χ3α. (4.26)

The eigenfunctions satisfying the equation above are a superposition of the Jost functions

Y3α = e±αipσ
(

1 + tanh (2σ + σ0)

2

)−1/2(±αip− 1− tanh (2σ + σ0)

±αip− 2

)
, (4.27)

Ȳ3α = e∓αipσ
(

1 + tanh (2σ + σ0)

2

)1/2

. (4.28)

The superposition satisfying the boundary condition χ3α (σ = 0) = 0 is given by

χ3α ∝ e±αipσ
√

1 + tanhσ0
1 + tanh (2σ + σ0)

(±αip− 1− tanh (2σ + σ0))

+ e∓αipσ

√
1 + tanh (2σ + σ0)

1 + tanhσ0
(∓αip+ 1 + tanhσ0) . (4.29)

From the above, the phaseshift is given by

δ3α = δ±3α = −1

2
arctan

p

2
+

1

2
arctan

p

1 + tanhσ0
(4.30)

and the determinant is

ln det K̃3α =

∞∫
0

cothπp

(
arctan

p

2
− arctan

p

1 + tanhσ0
− 2Rp

)
dp. (4.31)
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Operator D̃1α. The spectral problem for this operator can be written as[
τ3∂σ +

i

Ω sinh2σ
τ1 +

α

Ω cosh2 (σ + σ0)
τ2 −

α

2
(1− tanh (2σ + σ0))1

]
χ1α = ±ip χ1α.

(4.32)

The eigenfunctions satisfying this equation are given by a superposition of

Y1α = e±iαpσ

(
δα,+

[
cI1
cII1

]
+ δα,−

[
cII1
cI1

])
, (4.33)

Ȳ1α = e∓iαpσ

(
δα,+

[
c̄I1
c̄II1

]
+ δα,−

[
c̄II1
c̄I1

])
, (4.34)

where

cI1 =
eσ/2eσ0/4

(
±iαp− 1

2

(
cosh(2σ+σ0)

sinhσ cosh(σ+σ0)
−1
))

(
±iαp− 1

2

)
21/4cosh1/4 (2σ+σ0)

, (4.35)

cII1 =
iαeσ/2eσ0/4Ω(

±iαp− 1
2

)
25/4cosh1/4 (2σ+σ0)

, (4.36)

c̄I1 =
iα2−7/4e−σ/2e−σ0/4Ω(

±iαp+ 3
2

)(
±iαp+ 1

2

)
coshσ0cosh3/4 (2σ+σ0)

×
((
±iαp+

1

2

)
(2+cosh(2(σ+σ0))−cosh2σ)+sinh(2(σ+σ0))−sinh2σ

)
, (4.37)

c̄II1 =
2−7/4eσ/2e−5σ0/4Ω1/2(

±iαp+ 3
2

)(
±iαp+ 1

2

)
cosh1/4σ0

√
sinhσ cosh(σ+σ0)

×
[
e−3σ

(
p2+

1

4

)
+

(
±iαp+

3

2

)(
e−σ

(
±iαp− 1

2

)
+2e2σ0 sinhσ

(
±iαp+

cothσ

2

))]
.

(4.38)

The asymptotic behaviour at large σ of these solutions is given by

lim
σ→∞

Y1α = e±iαpσ

(
δα,+

[
1

0

]
+ δα,−

[
0

1

])
, (4.39)

lim
σ→∞

Ȳ1α = e∓iαpσ

(
δα,+

[
0

1

]
+ δα,−

[
1

0

])
, (4.40)

while for σ → 0 they have the following behaviour

lim
σ→0

Y1α =
v1
σ

(
δα,+

[
1

−αi

]
+ δα,−

[
−αi

1

])
+O

(
σ0
)
, (4.41)

lim
σ→0

Ȳ1α =
v̄1
σ

(
δα,+

[
1

−αi

]
+ δα,−

[
−αi

1

])
+O

(
σ0
)
, (4.42)
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with

v1 = −(1 + tanhσ0)
1/4

25/4
(
±iαp− 1

2

) , v̄1 =
iα2−3/4

(
±iαp+ 1

2 + tanhσ0
)

(1 + tanhσ0)
1/4 (±iαp+ 3

2

) (
±iαp+ 1

2

) . (4.43)

A natural choice of boundary conditions is to pick the superposition which is well behaved

at σ → 0. This fixes the superposition up to an overall constant

χ1α ∝ Y1αv̄1 − Ȳ1αv1. (4.44)

Note that this superposition satisfies for both ± signs coming from ω = ±ip and α

Π+χ1α|σ=0 = 0, Π−∂σχ1α|σ=0 = 0. (4.45)

From the superposition, the phaseshift is given by

δ1α = δ±1α =±α
2

Arg

(
v̄1
v1

)
=−arctan2p− 1

2
arctan

2p

3
+

1

2
arctan

p
1
2 +tanhσ0

+
π

2
(4.46)

and the determinant is

lndetD̃1α =

∞∫
0

tanhπp

(
2arctan2p+arctan

2p

3
−arctan

p
1
2 +tanhσ0

−π−2Rp

)
dp. (4.47)

Operator D̃2α. The spectral problem for this operator can be written as[
τ3∂σ−

i

2

(
1

Ωsinh2σ
+Ω

)
τ1−

α

2Ωcosh2 (σ+σ0)
τ2

−α
2

(tanh(σ+σ0)−tanh(2σ+σ0))1

]
χ2α =±ipχ2α. (4.48)

The eigenfunctions satisfying this equation are given by a superposition of

Y2α = e±iαpσ

(
δα,+

[
cI2
cII2

]
+ δα,−

[
cII2
cI2

])
, (4.49)

Ȳ2α = e∓iαpσ

(
δα,+

[
c̄I2
c̄II2

]
+ δα,−

[
c̄II2
c̄I2

])
, (4.50)

where

cI2 =
21/4

√
cosh (σ + σ0)

(
±iαp− cothσ

2

)
eσ0/4cosh1/4 (2σ + σ0)

(
±iαp− 1

2

) , (4.51)

cII2 = − iαcosh1/4σ0
√

Ω cschσ

23/4
(
±iαp− 1

2

)
eσ0/4

, (4.52)

c̄I2 = − iαeσ0/4 cosh (σ + σ0)
√

Ω cschσ

25/4
(
±iαp+ 1

2

)
cosh3/4σ0

√
cosh (2σ + σ0)

, (4.53)

c̄II2 =
eσ0/4cosh1/4 (2σ + σ0)

(
±iαp+ cothσ

2

)
21/4

√
cosh (σ + σ0)

(
±iαp+ 1

2

) . (4.54)
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The asymptotic behaviour at large σ of these solutions is given by

lim
σ→∞

Y2α = e±iαpσ

(
δα,+

[
1

0

]
+ δα,−

[
0

1

])
, (4.55)

lim
σ→∞

Ȳ2α = e∓iαpσ

(
δα,+

[
0

1

]
+ δα,−

[
1

0

])
, (4.56)

while for σ → 0 they have the following behaviour

lim
σ→0

Y2α =
v2
σ

(
δα,+

[
1

iα

]
+ δα,−

[
iα

1

])
+O(σ0), (4.57)

lim
σ→0

Ȳ2α =
v̄2
σ

(
δα,+

[
1

iα

]
+ δα,−

[
iα

1

])
+O(σ0), (4.58)

with

v2 = −(1 + tanhσ0)
−1/4

23/4
(
±iαp− 1

2

) , v̄2 = − iα(1 + tanhσ0)
1/4

25/4
(
±iαp+ 1

2

) . (4.59)

A natural choice of boundary conditions is to pick the superposition which is well behaved

at σ → 0. This fixes the superposition up to an overall constant

χ2α ∝ Y2αv̄2 − Ȳ2αv2. (4.60)

Note that this superposition satisfies for both ± signs coming from ω = ±ip and α

Π−χ2α|σ=0 = 0, Π+∂σχ2α|σ=0 = 0. (4.61)

From the superposition, the phaseshift is given by

δ2α = δ±2α = ±α
2

Arg

(
v̄2
v2

)
= − arctan 2p+

π

2
(4.62)

and the determinant is

ln det D̃2α =

∞∫
0

tanhπp (2 arctan 2p− π − 2Rp) dp. (4.63)

Operator D̃3α. The spectral problem for this operator can be written as[
τ3∂σ + i

sech2 (σ + σ0)

2Ω
(τ1 + αiτ2)

− α

2
(2− tanh (σ + σ0)− tanh (2σ + σ0))1

]
χ3α = ±ip χ3α. (4.64)

The eigenfunctions satisfying this equation are given by a superposition of

Y3α = e±iαpσ

(
δα,+

[
cI3
0

]
+ δα,−

[
0

cI3

])
, (4.65)

Ȳ3α = e∓iαpσ

(
δα,+

[
c̄I3
c̄II3

]
+ δα,−

[
c̄II3
c̄I3

])
, (4.66)
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where

cI3 =
eσe3σ0/4

23/4
√

cosh (σ + σ0)cosh1/4 (2σ + σ0)
, (4.67)

c̄I3 =
αi
(
±iαp+ 1 + cothσ

2

)
e−σ−3σ0/4Ω1/2sech3/4σ0sinh3/2σ(

±iαp+ 3
2

) (
±iαp+ 1

2

)
21/4

√
cosh (2σ + σ0)

, (4.68)

c̄II3 =
23/4e−σ−3σ0/4

√
cosh (σ + σ0)

sech1/4 (2σ + σ0)
. (4.69)

The asymptotic behaviour at large σ of these solutions is given by

lim
σ→∞

Y3α = e±iαpσ

(
δα,+

[
1

0

]
+ δα,−

[
0

1

])
, (4.70)

lim
σ→∞

Ȳ3α = e∓iαpσ

(
δα,+

[
0

1

]
+ δα,−

[
1

0

])
, (4.71)

while for σ → 0 they have the following behaviour

lim
σ→0

Y3α = v3

(
δα,+

[
1

0

]
+ δα,−

[
0

1

])
+O (σ) , (4.72)

lim
σ→0

Ȳ3α = v−13

(
δα,+

[
i α4 sech2σ0

(
±iαp+ 1

2

)−1(±iαp+ 3
2

)−1
1

]

+δα,−

[
1

i α4 sech2σ0
(
±iαp+ 1

2

)−1(±iαp+ 3
2

)−1
])

+O (σ) , (4.73)

with

v3 =

(
1 + tanhσ0

2

)3/4

. (4.74)

Imposing the boundary conditions

Π−χ3α|σ=0 = 0, Π+∂σχ3α|σ=0 = 0, (4.75)

fixes the superposition (up to an overall constant) to be

χ3α ∝ Y3αv̄3 − Ȳ3αv3, (4.76)

where

v̄3 = −
iα sech2σ0

(
1+tanhσ0

2

)−3/4
2
(
p2 + 1

4

) (
p2 + 9

4

) [
±αip− 2cosh2σ0

(
p2 +

1

4

)(
p2 +

9

4

)
+

1

2

(
p2 − 3

4

)]
.

(4.77)

From the superposition, the phaseshift is given by

δ3α = δ±3α =±α
2

Arg

(
v̄3
v3

)
=

1

2
arctan

p

−2cosh2σ0
(
p2+ 1

4

)(
p2+ 9

4

)
+ 1

2

(
p2− 3

4

) (4.78)

– 15 –



J
H
E
P
0
8
(
2
0
1
9
)
1
5
8

and the determinant is

ln det D̃3α =

∞∫
0

tanhπp

(
− arctan

p

−2cosh2σ0
(
p2 + 1

4

) (
p2 + 9

4

)
+ 1

2

(
p2 − 3

4

) − 2Rp

)
dp.

(4.79)

5 Collecting all the pieces

The semiclassical string partition function results from collecting all the contributions

entering (3.4), obtaining

lnZ (σ0) =

∞∫
0

dp

[
cothπp

(
arctan

p

1 + tanhσ0
+ 2 arctan

2p

1 + tanhσ0
− arctan

p

2

−4 arctan p+ π

)
− tanhπp

(
2 arctan

p
1
2 + tanhσ0

− 6 arctan 2p

−2 arctan
2p

3
+ arctan

p

−2cosh2σ0
(
p2 + 1

4

) (
p2 + 9

4

)
+ 1

2

(
p2 − 3

4

) + 3π

)

+ 8Rp (cothπp− tanhπp)

]
. (5.1)

Using equation (5.1), the ratios of 1-loop string partitions functions can be evaluated by

direct integration. The easiest way to do this is by first differentiating with respect to σ0

d

dσ0
lnZ (σ0) =

1

cosh2σ0

∞∫
0

dp p

2
tanhπp

p2 +
(
1
2 + tanhσ0

)2 +
1

2

tanhπp

p2 +
(

1 + tanhσ0
2

)2
− 1

2

tanhπp

p2 +
(

1− tanhσ0
2

)2 − cothπp

p2 + (1 + tanhσ0)
2 −

cothπp

p2 +
(
1+tanhσ0

2

)2


+
dR

dσ0
. (5.2)

Using the following identities

tanhπp = 1− 2

e2πp + 1
, cothπp = 1 +

2

e2πp − 1
, (5.3)

∞∫
0

dp p

(e2πp + 1) (p2 + c2)
= − ln c

2
+

1

2
ψ

(
c+

1

2

)
, (5.4)

∞∫
0

dp p

(e2πp − 1) (p2 + c2)
=

ln c

2
− 1

4c
− 1

2
ψ (c) , (5.5)
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the integral over p reduces to

d

dσ0
lnZ (σ0) =

sech2σ0
2

(
H 1−tanh σ0

2

+H 1+tanh σ0
2

− 2H1+tanhσ0

)
+

1− tanhσ0
2

+
dR

dσ0
.

(5.6)

Replacing the diffeomorphism invariant regulator (3.18), the last two terms on the right

hand side cancel and integration over σ0 results in

ln
Z (∞)

Z (σ0)
= ln Γ (2 + tanh σ0) + ln Γ

(
3− tanhσ0

2

)
− ln Γ

(
3 + tanhσ0

2

)
− ln 2. (5.7)

In terms of the angle θ0, the semiclassical contribution to the ratio is4

ln
Z (0)

Z (θ0)
= ln Γ (2 + cos θ0) + ln Γ

(
3− cos θ0

2

)
− ln Γ

(
3 + cos θ0

2

)
− ln 2. (5.8)

Collecting the classical and semiclassical contributions (3.3) and (5.8), respectively, leads to〈
W

1
2
F (0)

〉
〈
W

1
6
F (θ0)

〉 =
Zstring (0)

Zstring (θ0)
= eπ

√
2λ(1−cos θ0)

Γ (2 + cos θ0) Γ
(
3−cos θ0

2

)
2Γ
(
3+cos θ0

2

) , (5.9)

in perfect agreement with the field theory result (2.7).

6 The 1
2
-BPS fermionic circular Wilson loop

We now consider the string theory computation in AdS4 × CP 3 of the 1
2 -BPS fermionic

circular Wilson loop in ABJM at next to leading order at strong coupling. To do this, we

consider the ratio between this Wilson loop with θ0 = 0 and the 1
6 -BPS latitude Wilson

loop with angle θ0 = π
2 and trivial expectation value (recall equation (2.6)).

For the case of AdS5 × S5, the analogous computation in [19] lead to successful

matching with the field theory prediction for the 1
2 -BPS circle (θ0 = 0) in N = 4 SYM:

ln 〈WC〉 =
√
λ− 3

4 lnλ+ 1
2 ln 2

π +O
(
λ−1/2

)
. In string theory the

√
λ term comes from the

regularized minimal area, the ln λ is commonly attributed to three ghost zero modes, while

the λ0 term comes from ghost/longitudinal modes and string fluctuations. Meanwhile, for

the (θ0 = π
2 ) 1

4 -BPS “special” latitude Wilson loop one has that ln 〈WL〉 = 0, where the√
λ term is zero due to the areas over AdS and S canceling each other, while cancellation

of the lnλ term comes from the three ghost zero modes being cancelled by three bosonic

zero modes due to degeneracies of the classical solution at θ0 = π
2 [34].

4This result can be rewritten in a form closer to the expressions presented in [33]

ln
Z (0)

Z (θ0)
= − ln

(
4 cos

(
π cos θ0

2

)
π sin2θ0

)
− 2 ln cos

θ0
2
− 2 ln Γ

(
cos2

θ0
2

)
+ ln Γ (1 + cos θ0) ,

where the first term on the right comes from the massless fermionic operator D̃3α.
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When doing the AdS5 × S5 computation of [19], ghost and longitudinal contributions

are assumed to cancel in the ratio and thus are not taken into account. Consequently,

the ratio of Wilson loops with angles θ0 = 0 and θ0 = π
2 results from both considering

the three bosonic zero modes from the moduli of the classical solution at θ0 = π
2 and

from string fluctuations given in terms of phaseshifts and regulators. Just considering only

the contributions to the determinants in terms of phaseshifts and IR regulators leads to a

divergent result for the ratio of the θ0 = 0 and θ0 = π
2 Wilson loops.5 This divergence is

compensated by the zero modes of the moduli leading to a finite end result [19]. Effectively,

the moduli account for the ln λ term in the logarithm of the ratio of Wilson loops, while the

λ0 term results after careful evaluation of both the moduli and fluctuation contributions.

For the case of fermionic latitude Wilson loops in AdS4 × CP 3 the situation is quite

different. From the field theory predictions (2.4), (2.5) and (2.6), we see that there are no

lnλ terms appearing in the logarithm of the ratio of any two latitude Wilson loops with

angles θ0 ∈
[
0, π2

]
. This suggests that in string theory at 1-loop the relative number of zero

modes between any two fermionic latitudes is zero.6

In this paper we have assumed cancellation between ghost/longitudinal mode contri-

butions when considering ratios of Wilson loops in AdS4×CP 3. Assuming that additional

zero modes (if any) appearing for individual Wilson loops are cancelled when considering

ratios, the entire answer is given only in terms of phaseshifts and diffeomorphism invariant

regulators. Explicit integration of the ratio of non-zero mode semiclassical contributions

for θ0 = 0 and θ0 = π
2 coming from (5.1), unlike in the AdS5 × S5 case, indeed results

in a finite answer. Direct evaluation of the required expressions for θ0 = π
2 (σ0 = 0), or

equivalently taking the limit θ0 → π
2 in (5.9), leads to〈

W
1
2
F

〉
=

Zstring (0)

Zstring

(
π
2

) =
1

2
eπ
√
2λ, (6.1)

which matches the localization result for the 1
2 -BPS fermionic circular Wilson loop in

ABJM [25].

7 Conclusions

In this paper we have shown how quantum string corrections in AdS4 × CP 3 reproduce

the expectation value at next to leading order at strong coupling in ABJM for the ratio of
1
6 -BPS latitude and 1

2 -BPS circular fermionic Wilson loops, as well as the known localization

result for the 1
2 -BPS circular Wilson loop.

For the 1
2 -BPS circular Wilson loop we considered its ratio with the latitude Wilson

loop with trivial expectation value and assumed that zero mode contributions of individual

5It is important to note that in AdS5×S5 the phaseshifts and IR regulators fully account for the ratio be-

tween the θ0 = 0 and θ0 ∈
[
0, π

2

)
latitudes leading to a finite result [18]. In such calculation the relative num-

ber of zero modes between the Wilson loops is null since the classical solution is only degenerate for θ0 = π
2

.
6Furthermore, inspection of the classical solution in AdS4 × CP 3 at θ0 = π

2
does not seem to lead to

bosonic zero modes, unlike in the AdS5×S5 case. From the perspective of the bosonic differential operators,

K1 and K3α also appeared in the AdS5 × S5 case where they had no zero mode contributions, while K2α is

easily related to K3α after doing σ → 2σ and τ → 2τ .

– 18 –
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Wilson loops cancel in the ratio. In string theory it is unclear how this latitude Wilson

loop has trivial expectation value beyond leading order as the usual counting argument for

C.K.V.’s and moduli has to be revised. Despite there being a qualitative argument for the

analogous configuration in AdS5 × S5 [34], precise derivations for these individual loops

are missing in string theory.

Another open question concerning Wilson loops in AdS4 × CP 3 is the matching with

field theory results for Wilson loops with winding [26, 27, 40]. It would be compelling to un-

derstand such winding contributions in string theory, although attempts for the AdS5 × S5

case have yet to agree with field theory [11, 41]. Finally, natural steps towards a better

understanding of Wilson loops in string theory would be to compute individual circular

Wilson loops instead of ratios and to extend current techniques beyond 1-loop.
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