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1 Introduction

Infrared (IR) dualities are useful tools to elucidate the non-perturbative dynamics of Quan-

tum Field Theory (QFT). Usually, establishing these dualities requires technical tools that

are available in two space-time dimensions or when supersymmetry is at work. However, in

the last years progress in understanding the dynamics of gauge theories in three space-time

dimensions has led to conjecture infinite families of non-supersymmetric dualities between

different gauge theories coupled to (bosonic and/or fermionic) matter species [1–5]. This

originated from ideas coming from condensed matter physics [6–15] and large N matter-

coupled Chern-Simons theories [16–22] and found several applications, including interesting

connections with domain walls of four-dimensional QCD [23–25]. See e.g. [26–47] for more

contributions in the non-supersymmetric framework.

In this work we study the IR behavior of three-dimensional gauge theories in presence

of a Chern-Simons term and coupled to Dirac fermions in the fundamental representation

of the gauge group. In [5] the complete phase diagram of three-dimensional SU(N)k gauge

theory coupled to F fundamental Dirac fermions with degenerate mass m (one-family

QCD3, from now on) was analyzed as a function of m.1

We want to extend the analysis of [5] to the case in which the phase diagram has

a two-dimensional structure. The simplest way to do this is to study an SU(N)k gauge

theory coupled to p fundamental fermions of mass m1 and F − p of mass m2. Con-

cretely, we are allowing mass deformations to explicitly break the global symmetry U(F )

1We adopt the usual convention where Gk denotes a gauge group G at level k = kbare − F/2, with

kbare ∈ Z the bare Chern-Simons level of the UV gauge theory and F the total number of fermions.

Hereafter, we assume k to be non-negative since one can always implement a time-reversal transformation,

which maps k into −k and flips the sign of the fermion masses.

– 1 –



J
H
E
P
0
8
(
2
0
1
9
)
1
5
3

to U(p)× U(F − p).2 We will explore the phase diagram varying the two mass parameters

and check that the dual bosonic theories, conjectured in [5], admit the same phases as the

fermionic theory, after deforming them with symmetry-breaking mass terms. Without loss

of generality, we will consider 0 ≤ p ≤ F/2.

On one hand, our analysis provides a non-trivial check that the conjectured bo-

son/fermion dualities can be extended to more complicated cases and still maintain their

validity. On the other hand, two-dimensional phase diagrams show a richer structure and

novel phenomena with respect to one-family QCD3 (including phase transitions between

new gapless phases), and allow to perform some interesting vacuum analysis on the bosonic

side of the duality, as well.

In the remainder of this section we briefly review the results of [5] about the phase

diagram of one-family QCD3. Then, in section 2, we present our main results, i.e. our pro-

posal for the phase diagram when two different masses are varied independently. Section 3

contains several checks of our proposal and gives also more details on the meaning of the

different phases the theory enjoys and of the phase transitions between them. We first

focus on asymptotic phases, where one of the two masses is sent to ±∞. These asymptotic

regions are effectively one-dimensional and the phase diagrams should reduce to those of

QCD3 with one species of matter fields. We then discuss in some detail the k = 0 case,

which is useful to perform some non-trivial consistency checks regarding time-reversal in-

variance and the Vafa-Witten theorem. We then analyze the vacua of the dual bosonic

theories, conjectured from boson/fermion dualities, and show that they perfectly match

the fermionic description in the neighborhoods of each critical point. Finally, we analyze

some relevant deformations of the mass-degenerate sigma-model phase, which confirm, in

a yet different way, our findings in a parametrically small neighborhood of the region with

maximal global symmetry. Section 4 contains a discussion and an outlook.

1.1 Review of one-dimensional phase diagram

The basic structure of the phase diagram of one-family QCD3 analyzed in [5] is as follows.

1. If k ≥ F/2 the global U(F ) symmetry is never broken and the theory has only two

phases, which are visible semiclassically. For m < 0 this is a topological SU(N)k−F
2

phase, while for m > 0 an SU(N)k+F
2

one. This can be seen recalling that integrating

out a massive fermion shifts the Chern-Simons level as k → k+ 1
2 sgn(m). Note that

both phases are gapped, since the gauge bosons get a tree-level mass from the Chern-

Simons term, but are non-trivial due to the topological nature of the Chern-Simons

coupling. There exists a phase transition between these two different TQFTs, which,

according to [1], can be equivalently described by a bosonic dual theory.

Indeed, the two topological phases are level/rank dual3 to U(k − F/2)−N and

2The global symmetry is actually given by the quotient U(F )/ZN , together with a discrete charge

conjugation symmetry [30]. However, this does not affect our analysis and we will naively refer to the

global symmetry as U(F ).
3The precise form of level/rank dualities requires the presence of a gravitational Chern-Simons coun-

terterm, see e.g. [2]. This term is generated on the SU side of the duality once massive fermions are

integrated out [12].
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SU(N)k + F ψ U(k + F/2)−N + F φ←→

SU(N)k−F
2

←→ U(k − F/2)−N SU(N)k+F
2

←→ U(k + F/2)−N

•
mm > 0m < 0

Figure 1. Phase diagram of SU(N)k + F ψ in the case k ≥ F/2. The phase transition between

the two gapped phases is indicated by the black dot.

U(k + F/2)−N . These are exactly the asymptotic phases of U(k + F/2)−N cou-

pled to F complex scalars in presence of a scalar potential. If one assumes that the

U(F ) global symmetry is not broken and the dynamics prefers to maximally Higgs

the gauge group, as the scalar mass M2 is varied this bosonic theory has one single

phase transition separating the same two phases as in the fermionic case. In fact,

in appendix A we provide a proof of this vacuum pattern, starting from a scalar

potential which contains all terms compatible with the symmetries of the problem,

up to quartic order in the scalar fields. The phase diagram in the k ≥ F/2 case is

summarized in figure 1.

For large values of N and k with fixed k/N , and for large k and/or large F , it

is known that the phase transition is unique and second order [16–22, 48, 49]. In

other regions of the parameter space, instead, the minimal structure of the phase

diagram of [5] might change into a more intricate one. For example, recent results

suggest that at large N (with fixed k and F ) there are multiple first-order phase

transitions [50].4 Following [5], we will assume that QCD3 enjoys a single transition

(though not necessarily second order) for values of N, k and F all not too large.

2. If k < F/2 the previous picture is not true anymore,5 since the dual bosonic theory

flows to a sigma model at low energies for negative M2, being the global U(F )

symmetry spontaneously broken. The conjecture proposed in [5] is that the fermionic

theory admits an inherently quantum phase where the quark bilinear condenses and

breaks the global symmetry, leading to a sigma-model phase σ with target space the

complex Grassmannian

Gr(F/2 + k, F ) =
U(F )

U(F/2 + k)× U(F/2− k)
, (1.1)

4Note that even in this case, if one can match the vacuum structure on the two sides, boson/fermion

dualities are still informative, despite being less powerful than in the case of second order phase transitions.

We thank Zohar Komargodski for a discussion on this point.
5Here and elsewhere, when considering low values of k, we assume F to be smaller than the value

F ∗ above which the theory enjoys a single second-order phase transition (see [51] for recent progress in

rigorously estimating the bound F ∗).
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SU(N)k + F ψ U(k + F/2)−N + F φ←→←→U(F/2− k)N + F φ

SU(N)k−F
2

←→ U(F/2− k)N ←→ U(k + F/2)−N

SU(N)k+F
2

σ• •
m

Figure 2. Phase diagram of SU(N)k + F ψ in the case k < F/2. For |m| . g2 the theory enters

a quantum phase, with complex Grassmannian (1.1). The two phase transitions, at negative and

positive mass, are described by two different bosonic duals.

and a Wess-Zumino term Γ with coefficient N , see e.g. [52–54]. Thus, in addition to

the two asymptotic phases SU(N)k−F
2

and SU(N)k+F
2

(always visible semiclassically

for large negative and large positive value of m, respectively), we also have a purely

quantum sigma-model phase realized for small values of |m| (of order of the gauge

coupling constant g2). Note that now the two asymptotic phases are level/rank dual

to U(F/2− k)N and U(k + F/2)−N , respectively.

This means that in this case the phase diagram of the fermionic theory enjoys two

phase transitions. These two transitions can be described by two different dual

bosonic theories, U(F/2−k)N and U(F/2+k)−N , each coupled to F complex scalars.

When the squared masses of the scalars in the two theories are large and positive, they

flow respectively to the large negative and large positive mass phases of the fermionic

theory. Instead, when the squared masses of the scalars are negative, both theories

flow to the same sigma model with target space the complex Grassmannian (1.1). As

shown in appendix A, the same hypothesis on the structure of the scalar potential,

which leads to maximal Higgsing for k ≥ F/2, fixes, in the same negative squared

mass regime, the sigma model to have target space (1.1) in the present case.

The phase diagram in the k < F/2 case is summarized in figure 2.

We now present our proposal on how the one-dimensional phase diagrams discussed above

get extended when allowing for symmetry-breaking mass deformations.

2 The two-dimensional phase diagram

The phase diagram of SU(N)k gauge theory coupled to p fundamental fermions ψ1 and

F − p fundamental fermions ψ2, as a function of m1 and m2, turns out to have a different

structure, depending on the value of the Chern-Simons level k at fixed F and p: k ≥ F/2,

F/2− p ≤ k < F/2 and 0 ≤ k < F/2− p.
A property of all phase diagrams is that on the diagonal line m1 = m2, where the

global symmetry is enhanced to the full U(F ), one correctly recovers the corresponding

one-dimensional diagram reviewed in previous section. We now illustrate the three different

phase diagrams in turn.
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k ≥ F/2. In this case the phase diagram, which is shown in figure 3, presents only phases

which are visible semiclassically. Consistently, as we are going to show in section 3.3, the

full phase space can be equivalently described in terms of a unique dual bosonic theory,

with gauge group U(k + F/2)−N and two sets of p and F − p complex scalars in the

fundamental representation.

Conventions are as follows. The black dot at the origin represents the usual phase

transition of the SU(N)k + F ψ theory. Perturbing it by two independent mass defor-

mations, proportional to m1 and m2, one covers a two-dimensional space, enjoying four

different topological phases Ti defined as

T1 : SU(N)k+F
2

←→ U(k + F/2)−N (2.1)

T2 : SU(N)k+F
2
−p ←→ U(k + F/2− p)−N (2.2)

T3 : SU(N)k−F
2

←→ U(k − F/2)−N (2.3)

T4 : SU(N)k−F
2
+p ←→ U(k − F/2 + p)−N (2.4)

where ←→ stands for level/rank duality. Note that in the limiting case k = F/2, the

topological theory T3 becomes trivially gapped. Note also that, consistently, T1 and T3 are

the same topological phases one expects for the theory with common mass m = m1 = m2

in the range k ≥ F/2 (cf figure 1) for positive and negative m, respectively, and which one

should recover on the bisector of the first and third quadrants of figure 3.

Red lines represent phase transitions in the (m1,m2) plane which are absent in the

one-dimensional phase diagrams. For instance, each point on the red line separating phases

T1 and T2 defines a critical theory SU(N)k+F
2
− p

2
+ p ψ1. In bosonic language, this can

be equivalently described by U(k + F/2)−N + p φ1. The same logic applies to all other

red lines. Consistency with boson/fermion duality, which we elaborate upon in section 3.3,

suggests that the four red lines do indeed meet at a single point (black dot in the figure).

F/2−p ≤ k < F/2. In this case, besides genuine topological phases, the phase diagram

presents three inherently quantum phases. This implies, as we show explicitly in section 3.3,

that two different dual bosonic descriptions are needed to cover the full fermionic phase

diagram, i.e. U(F/2− k)N + p φ1 + (F − p) φ2 and U(F/2 + k)−N + p φ1 + (F − p) φ2.
The phase diagram is reported in figure 4. The black dots represent the two phase

transitions of the degenerate mass case, m1 = m2, cf figure 2. The topological theories

are now

T1 : SU(N)k+F
2

←→ U(k + F/2)−N (2.5)

T2 : SU(N)k+F
2
−p ←→ U(k + F/2− p)−N (2.6)

T̃3 : SU(N)k−F
2

←→ U(F/2− k)N (2.7)

T4 : SU(N)k−F
2
+p ←→ U(k − F/2 + p)−N (2.8)

where, again, T1 and T̃3 are the correct topological phases one should find on the bisector,

cf figure 2. The blue line represents a quantum phase, with target space (1.1) and a

– 5 –
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T1T2

T4T3

•
m1

m2

Figure 3. Phase diagram of SU(N)k + p ψ1 + (F − p) ψ2 in the case k ≥ F/2.

T1T2

eT3

σ23

σ43 T4

σσ2323 σ

σ4343

σσσσ
•

•

m2

m1

Figure 4. Phase diagram of SU(N)k + p ψ1 + (F − p) ψ2 in the case F/2− p ≤ k < F/2.

Wess-Zumino term with coefficient N . Finally, the shaded regions in the plane refer to

sigma-model phases, where the IR dynamics is not gapped, but it is described by non-

linear sigma models with different target spaces and a Wess-Zumino term with coefficient

N . In particular, the target space of σ23 is the complex Grassmannian

Gr(F/2− k, F − p) =
U(F − p)

U(F/2− k)× U(k + F/2− p)
, (2.9)

and that of σ43 is

Gr(F/2− k, p) =
U(p)

U(F/2− k)× U(k − F/2 + p)
. (2.10)

In the limiting case k = F/2 all sigma-model phases σ23, σ43 and σ trivialize, as well as the

topological phase T̃3. Thus, the two phase diagrams in figures 3 and 4 become topologically

– 6 –
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T1T2

eT3
eT4

σ14σ23 σ
•

•

m1

m2

Figure 5. Phase diagram of SU(N)k + p ψ1 + (F − p) ψ2 in the case 0 ≤ k < F/2− p.

equivalent, as expected. In the other limiting case, k = F/2−p, to which we connect next,

it is the sigma-model phase σ43 and the topological phase T4 which trivialize, instead.

As in figure 3, red lines represent phase transitions in the (m1,m2) plane. Here,

however, there also exist lines separating topological and massless phases. For instance,

each point on the red line separating T2 and σ23, and the corresponding one separating

the latter with T̃3, are the two phase transitions one expects for SU(N)k− p
2
+ (F − p) ψ2.

According to [5], these two phase transitions are described by two different bosonic duals,

U(k + F/2 − p)−N + (F − p) φ2 and U(F/2 − k)N + (F − p) φ2, respectively (similar

arguments hold when looking at σ43 as the gapless phase separating the topological phases

T4 and T̃3, the relevant fermionic theory on the red lines being now SU(N)k−F
2
+ p

2
+p ψ1).

Note that not all lines cutting through the two-dimensional phase diagram can be

effectively reduced to a one-dimensional phase diagram of a single family theory. This

applies, in particular, to the region of small masses, where different gapless quantum phases

meet and σ becomes a phase transition itself, which separates the gapless phases σ23 and

σ43. This is a novel phenomenon, which does not have any counterpart in one-family QCD3.

Indeed, in our case the pattern of symmetry breaking is richer, giving a variety of quantum

phases which meet in the region where both masses are, in modulus, � g2.

0 ≤ k < F/2 − p. Also in this range of parameters the phase diagram presents three

different quantum phases. The two dual bosonic descriptions needed to cover the full phase

space are again U(F/2−k)N +p φ1+(F −p) φ2 and U(F/2+k)−N +p φ1+(F −p) φ2. The

phase diagram, where the same conventions as before are adopted, is shown in figure 5.

The topological phases are now

T1 : SU(N)k+F
2

←→ U(k + F/2)−N (2.11)

T2 : SU(N)k+F
2
−p ←→ U(k + F/2− p)−N (2.12)

T̃3 : SU(N)k−F
2

←→ U(F/2− k)N (2.13)

– 7 –
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T̃4 : SU(N)k−F
2
+p ←→ U(F/2− p− k)N (2.14)

The sigma-model phases σ and σ23 are as before while σ14 has target space the complex

Grassmannian

Gr(F/2 + k, F − p) =
U(F − p)

U(F/2 + k)× U(F/2− p− k)
, (2.15)

and a Wess-Zumino term with coefficient N .

In the limiting case k = F/2−p, the phase σ14 and the topological phase T̃4 trivialize.

For k = F/2−p, the two phase diagrams in figure 4 and 5 become thus topologically equiv-

alent, as expected. Again, the quantum phase σ separates two different phases described by

the two Grassmannians (2.9) and (2.15). Note, in particular, that for sufficiently low values

of |m2|, the theory enjoys only sigma-model phases for all values of m1 (the asymmetry

between m1 and m2 is due to our choice p ≤ F/2).

Let us close this discussion considering a few specific values for p.

When p = 0 the phase diagram of figure 4 disappears since its allowed range for k

becomes an empty set. Figures 3 and 5, instead, collapse to a single vertical line, the m2

axis, and their topology becomes the same as the one-dimensional diagrams of figures 1

and 2, respectively, as one should clearly expect. In particular, the sigma models σ, σ14
and σ23 become identical for p = 0, while T1 = T2, T3 = T4 and T̃3 = T̃4.

When p = F/2, the phase diagrams in figure 3 and 4 should be symmetric with respect

to the m1 = m2 line, while it is the phase diagram in figure 5 which now disappears.

Consistently, the sigma models with target spaces σ23 and σ43 coincide for p = F/2, as well

as the topological phases T2 and T4.

3 Consistency checks and beyond

We now present various checks for the validity of our proposed two-dimensional phase di-

agrams.

3.1 Asymptotic phases: matching ordinary QCD3

The proposed two-dimensional phase diagrams should satisfy various consistency checks

with the results in [5]. The simplest one is that the phase diagram of one-family QCD3

should be recovered on the m1 = m2 line, where the global symmetry is enhanced to U(F ).

This is something we have already noticed to hold. A more intricate set of checks comes

by studying extreme mass regimes.

Starting from the original SU(N)k + p ψ1 + (F − p) ψ2 theory, let us consider the

four different theories one obtains by integrating out, with either signs for the mass, one

of the two fermion families, ψ1 and ψ2. These are SU(N) gauge theories with a shifted

Chern-Simons level and coupled to p or F − p fundamental fermions with mass m1 or

m2, respectively. The IR phases of these theories are easily constructed by the same

methods of [5]. Such phases should coincide with the ones of our two-dimensional diagrams,

figures 3, 4 and 5, in the asymptotic, large mass regions. The four asymptotic theories and

their one-dimensional phase diagrams are the following:

– 8 –
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1. m1 → +∞: one ends up with SU(N)k+ p
2

+ (F − p) ψ2, which has only the two

semiclassical phases if k ≥ F/2− p. Its phase diagram has the following structure:

• k ≥ F/2− p: the two phases are T1 (for positive m2) and T4 (for negative m2).

The dual bosonic theory is U(k + F/2)−N + (F − p) φ2.
• 0 ≤ k < F/2 − p: the topological phases are T1 (for positive m2) and T̃4

(for negative m2), while the intermediate sigma-model phase is σ14. The dual

bosonic theories are U(k+F/2)−N + (F − p) φ2 (for positive m2) and U(F/2−
k − p)N + (F − p) φ2 (for negative m2).

2. m1 → −∞: one gets SU(N)k− p
2

+ (F − p) ψ2, which has only the two semiclassical

phases if k ≥ F/2. Its phase diagram has the following structure:

• k ≥ F/2: the two phases are T2 (for positive m2) and T3 (for negative m2).

The dual bosonic theory is U(k + F/2− p)−N + (F − p) φ2.
• 0 ≤ k < F/2: the topological phases are T2 (for large positive m2) and T̃3

(for large negative m2), while the intermediate sigma-model phase is σ23. The

dual bosonic theories are U(k + F/2− p)−N + (F − p) φ2 (for positive m2) and

U(F/2− k)N + (F − p) φ2 (for negative m2).

3. m2 → +∞: one ends up with SU(N)k+F
2
− p

2
+ p ψ1, which has only two semiclassical

phases for any non-negative k. The two phases are T1 (for positive m1) and T2 (for

negative m1). The dual bosonic theory is U(k + F/2)−N + p φ1.

4. m2 → −∞: one gets SU(N)k−F
2
+ p

2
+ p ψ1, which has only two semiclassical phases

if k ≥ F/2 or 0 ≤ k ≤ F/2− p. Its phase diagram has the following structure:

• k ≥ F/2: the two phases are T4 (for positive m1) and T3 (for negative m1).

The dual bosonic theory is U(k − F/2 + p)−N + p φ1.

• F/2− p ≤ k < F/2: the topological phases are T4 (for positive m1) and T̃3 (for

negative m1), and the intermediate sigma-model phase is σ43. The dual bosonic

theories are U(k−F/2 + p)−N + p φ1 (for positive m1) and U(F/2− k)N + p φ1
(for negative m1).

• 0 ≤ k < F/2− p: the two phases are T̃4 (for positive m1) and T̃3 (for negative

m1). The dual bosonic theory is U(F/2− k)N + p φ1.

It is easy to check that our proposed phase diagrams, figures 3, 4 and 5, exactly reproduce

this intricate structure in the large |m1| and/or |m2| regions.

3.2 k = 0 : time reversal and Vafa-Witten theorem

One interesting non-trivial check comes by taking k = 0, in which the theory we study

becomes SU(N)0 + p ψ1 + (F − p) ψ2. Since k = 0, time-reversal acts on this theory just

flipping the sign of the mass terms of the two sets of fermions. As a consequence, the

two-dimensional phase diagram should be symmetric with respect to the origin, modulo

the flipping of the effective Chern-Simons levels of the specular phases. This symmetry

– 9 –
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σ

SU(N)F
2

U(F/2)−N

←
→

←
→

SU(N)−F
2

U(F/2)N

SU(N)F
2 −p

U(F/2− p)−N

←
→

U(F/2− p)N

SU(N)p−F
2

←
→

σσ0 σ0

•

•

m1

m2

Figure 6. Phase diagram of SU(N)0+ p ψ1+(F − p) ψ2. The transition lines with the same color

are described by the same theories, up to a time-reversal transformation.

σ

SU(N)F
2

U(F/2)−N

←
→

←
→

SU(N)−F
2

U(F/2)N

σ

Trivially

gapped

Trivially

gapped

•

•

m2

m1

Figure 7. Phase diagram of SU(N)0 + F/2 ψ1 + F/2 ψ2. In the bosonic dual picture, the red

transition lines in the first and third quadrant are described by U(F/2)∓N + F/2 φ, respectively.

On the two black spots, where the global symmetry is enhanced, the number of scalars is F .

can be nicely observed in the phase diagram in figure 5, which we report in figure 6 for the

particular case k = 0.

It is a further consistency check that the sigma models with target spaces (2.9)

and (2.15) coincide for k = 0. We labelled this sigma model with σ0, whose target space is

Gr(F/2, F − p) =
U(F − p)

U(F/2)× U(F/2− p)
, (3.1)

and which includes a Wess-Zumino term with coefficient N . The sigma-model phases σ0
and σ enjoy time-reversal invariance for k = 0, as it should be [5].
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In addition to k = 0, let us also take p = F/2, i.e. we consider the same number of

fermions in the two sets. In this case the phase diagram should be also symmetric with

respect to the m1 = m2 line, besides being symmetric with respect to the origin. The phase

diagram for k = 0 and p = F/2 is depicted in figure 7. We easily see that σ0 trivializes,

as well as the topological theories SU(N)p−F
2

and SU(N)F
2
−p, leaving a trivially gapped

phase in the second and fourth quadrants. Moreover, the theories on the two red curves

are the same, up to the sign of the Chern-Simons level.

Another interesting check when k = 0 and p = F/2 is related to the expected enhance-

ment of time-reversal symmetry on the full m2 = −m1 line. This one-dimensional slice

of the diagram of figure 7 can be interpreted as a smooth gapping of an original SU(N)0
coupled to F massless fundamental fermions, which is time-reversal invariant and has been

suggested to break the full U(F ) global symmetry to U(F/2)×U(F/2) at strong coupling.

Then, the Vafa-Witten theorem [55–57] prevents this theory from developing a further

symmetry breaking of flavor and time-reversal symmetry along the line m2 = −m1. As

a consequence, on such line fermions can be safely integrated out, leading to a trivially

gapped vacuum outside the origin. At the origin, the breaking U(F )→ U(F/2)× U(F/2)

gives rise to the target space (1.1) with k = 0. The diagram in figure 7 exactly reproduces

all these features.

3.3 Dual bosonic theories: matching the phase transitions

In section 3.1 we have checked our two-dimensional phase diagrams in the large mass

regime, where they become effectively one-dimensional, against one-family QCD3. Here we

want to focus on the region near the critical points, i.e. the black dots in figures 3, 4 and 5.

This is done using boson/fermion duality, properly adapted to the two-family case. This

will also work as a nice consistency check of the duality itself.

From the conjectured boson/fermion duality of the one-family case, one can argue that

the bosonic theories one should consider near the critical points are

U(n)l + p φ1 + (F − p) φ2 , (3.2)

where (n, l) = (F/2±k,∓N) and φ1, φ2 are scalar fields in the fundamental representation

of the gauge group. Here, we have explicitly split the F scalars in two different sets, since

we want to deform the massless theories describing the critical points with the independent

massive deformations, M 2
1 and M 2

2 respectively.

We can reproduce the desired vacuum structure assuming that, when at least one of the

two sets condenses, the gauge group is maximally Higgsed and the unbroken global sym-

metry is maximized. In fact, exactly as for the one-family model discussed in appendix A,

it is possible to show that these assumptions hold true if we consider the scalar poten-

tial of the critical theory up to quartic order in the scalar fields, and then deform it with

symmetry-breaking mass operators. In terms of the gauge invariant operators X = φ1φ
†
1,

Y = φ2φ
†
2 and Z = φ1φ

†
2, we can write the (deformed) potential as

V = M 2
1 TrX+M 2

2 TrY +λ(Tr2X+Tr2Y +2TrXTrY )+ λ̃(TrX2+TrY 2+2TrZZ†) , (3.3)
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where X and Y are positive semidefinite Hermitian matrices of dimension p and F − p,
respectively, whereas Z is a p×F − p rectangular matrix. Note that the quartic couplings

in the potential are chosen to respect the full U(F ) symmetry. This is because we are

limiting ourselves to perturbations due to massive deformations only. In principle, there

could be other U(p) × U(F − p) preserving relevant deformations besides massive ones.

If boson/fermion duality is correct, these deformations should have a counterpart on the

fermionic side, but we do not consider them here.

For the same reasons as the one-family case discussed in appendix A, we take λ̃ > 0,

which requires λ̃+ min(n, F )λ > 0 in order for the potential to be bounded from below.

In the first quadrant of the (M 2
1 ,M

2
2 ) plane, where both M 2

1 and M 2
2 are positive, X,

Y and Z vanish on shell. This implies that there is no scalar condensation, all matter fields

are massive and can be integrated out, leading to a U(n)l topological theory in the IR.

In all other cases, the vacuum equations imply that Z = 0, while X and Y are diagonal

with respectively r1 and r2 degenerate non-negative eigenvalues given by

x =
−(λ̃+ λr2)M

2
1 + λr2M

2
2

2λ̃2 + 2λλ̃(r1 + r2)
,

y =
−(λ̃+ λr1)M

2
2 + λr1M

2
1

2λ̃2 + 2λλ̃(r1 + r2)
.

(3.4)

The positivity condition on x and y implies that a simultaneous condensation of both φ1
and φ2 is only allowed in a subregion R of the third quadrant of the (M 2

1 ,M 2
2 ) plane, which

includes the line M 2
1 = M 2

2 . Outside this region and above (below) the bisector, only x

(y) can be non-zero, meaning that only φ1 (φ2) can condense. The ranks r1 and r2 are

non-negative integers which satisfy the constraints

0 ≤ r1 ≤ min(n, p) , 0 ≤ r2 ≤ min(n, F − p) , r1 + r2 ≤ min(n, F ) , (3.5)

and have to be determined by minimizing the vacuum potential, seen as a function of

(r1, r2). Once we determine these values, the spontaneous symmetry breaking of the flavor

symmetry follows the pattern

U(p)× U(F − p) −→ U(r1)× U(p− r1)× U(r2)× U(F − p− r2) . (3.6)

This leads, in the region where x and y do not vanish simultaneously, to a sigma model

with coset

Gr(r1, p)×Gr(r2, F − p) =
U(p)

U(r1)× U(p− r1)
× U(F − p)
U(r2)× U(F − p− r2)

, (3.7)

and an appropriate Wess-Zumino term. As we will show, the maximal symmetry pattern

selects, in all cases, values of r1 and r2 such that this target space reduces to a single

complex Grassmannian, which exactly matches the phases σ23, σ43, σ14 of figures 3, 4

and 5. Interestingly, these values correspond to minimizing the dimension of the target

space (3.7) with respect to r1 and r2, once we take into account the constraints they obey.
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AB

C D

Region r1 r2 Phase

A 0 0 U(n)l

B p 0 U(n− p)l

C p F − p U(n− F )l

D 0 F − p U(n− F + p)l

•
M 2

1

M 2
2

Figure 8. Phase diagram of the bosonic theory in the case p ≤ F − p ≤ F ≤ n. The region R of

double condensation coincides with C.

AB

C
D E

•

Region r1 r2 Phase

A 0 0 U(n)l

B p 0 U(n− p)l

C p n− p Gr(n− p, F − p)

D n− F + p F − p Gr(n− F + p, p)

E 0 F − p U(n− F + p)l

M 2
1

M 2
2

Figure 9. Phase diagram of the bosonic theory in the case p ≤ F − p ≤ n < F . The region R of

double condensation coincides with C +D, including the blue line.

In addition, the scalar condensation leads to a partial or total Higgsing of the gauge

group following the pattern

U(n) −→ U(n− r1 − r2) . (3.8)

In the same spirit of appendix A, one can show that the on-shell potential as a function

of (r1, r2) is never minimized inside the region defined in (3.5), so that the minimum of

the potential is achieved at the boundaries of this region. The maximal degeneracy of

the eigenvalues imply that, under our assumptions, there is never a case in which a sigma

model coexists with a TQFT in a given phase. In addition, all the other excitations get

a mass either by Higgs mechanism or from the scalar potential, and hence can be safely

integrated out.

In order to find the values of (r1, r2) and the pattern of Higgsing and global symmetry

breaking, one should consider four qualitatively different cases, depending on the value of

n, see figures 8, 9, 10 and 11. Tables collect all data necessary to pinpoint the phase the

scalar theory enjoys on the (M 2
1 ,M

2
2 ) plane, which can be either a TQFT or a sigma model.
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AB

C D

•

Region r1 r2 Phase

A 0 0 U(n)l

B p 0 U(n− p)l

C p n− p Gr(n− p, F − p)

D 0 n Gr(n, F − p)

M 2
1

M 2
2

Figure 10. Phase diagram of the bosonic theory in the case p ≤ n < F − p ≤ F . The region R of

double condensation coincides with C, including the blue line.

AB

C

•

Region r1 r2 Phase

A 0 0 U(n)l

B n 0 Gr(n, p)

C 0 n Gr(n, F − p)

M 2
1

M 2
2

Figure 11. Phase diagram of the bosonic theory in the case n < p ≤ F − p ≤ F . In this case, the

region R of double condensation shrinks to the blue line only.

Starting from the first quadrant, region A, where all scalars have positive mass, red

and green lines represent the critical theories where one of the two sets becomes massless

and condenses, whereas the blue line is the quantum phase of one-family QCD3. On the

red lines the first set of scalars condenses, partially or totally Higgsing the gauge group. In

the former case, the components of the second set of scalars charged under the unbroken

gauge group may still become massless and condense, this locus corresponding to the green

lines in the figure. Neutral components receive instead an additional positive contribution

to their squared mass from quartic terms of the potential. One can easily see that this

contribution makes their squared mass always positive, so that they never condense and

can be integrated out in the whole phase space. When the gauge group is completely

Higgsed by the first condensation, instead, all scalars that have not condensed first cannot

give rise to any other critical line.

Let us now specify the values of n to make contact with our conjecture and explore

the topological structure of the diagrams around the critical points.

If n = F/2+k, the allowed diagrams are given in figures 8, 9 and 10. It is now easy to

check that the range of validity of each diagram and its various phases exactly reproduce
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the topological structure of the fermionic diagrams in figures 3, 4 and 5, respectively, in

the neighborhood of the black dot in the first quadrant.

If n = F/2−k, the allowed diagrams are given in figures 10 and 11. It is again easy to

check that the range of validity of each diagram and its various phases exactly reproduce

the topological structure of the fermionic diagrams in figures 5 and 4, respectively, in the

neighborhood of the black dot in the third quadrant. Note that in this case, as in the

one-family case, cf. figure 2, the orientation of the bosonic diagrams should be reversed.

To summarize, we have shown that the two-dimensional phase diagrams of the bosonic

theories are perfectly consistent with the fermionic ones, in the regions of the phase dia-

grams where the duality is supposed to hold. In particular, we have reproduced the peculiar

structure with critical points where more than three critical lines meet.

3.4 Perturbing σ via massive deformations

In the previous subsection we have shown that the vacuum structure of the fermionic theory

is exactly reproduced by the corresponding bosonic dual theories near each transition point.

We now want to see what happens when we perturb the non-linear sigma model σ (the blue

line in figures 4 and 5) with a small mass term which explicitly breaks the U(F ) symmetry

to U(p)× U(F − p).
A similar symmetry-breaking deformation was considered in [5] to check consistency

under flowing down from F to F − 1 (i.e. a flow in the space of theories). Our philosophy,

here, is to choose a symmetry-breaking perturbation that does not change the theory but

allows us to investigate the planar region in a neighborhood of the quantum phase σ.

To do that, we deform the mass of the p scalars φ1 with a small perturbation δM 2.

If δM 2 > 0 (< 0) we are investigating the region M 2
2 < M 2

1 (M 2
2 > M 2

1 ) where the set

φ2 (φ1) condenses first. In fermionic language M 2
2 < M 2

1 corresponds to m2 < m1 (i.e.

below the m1 = m2 line) for the bosonic theory U(F/2 + k) and m2 > m1 (i.e. above the

m1 = m2 line) for the bosonic theory U(F/2− k). Viceversa, for the case M 2
2 > M 2

1 .

Let us call n the rank of the bosonic theory gauge group, which can be either F/2 + k

or F/2− k. In these conventions, the target space of the sigma-model phase σ reads

Gr(n, F ) =
U(F )

U(n)× U(F − n)
. (3.9)

Massive deformations act modifying the target space, but they do not change the coefficient

N of the Wess-Zumino term. Let us now analyze the different possibilities, performing our

analysis in the underlying gauged linear model.

• If δM2 > 0 and F − p > n, the (F − p) φ2 condense first and completely Higgs the

gauge group U(n), whereas the p φ1 do not play any role. Indeed, since there is no

more gauge group, all the surviving φ1 are neutral and can be safely integrated out.

The resulting sigma model has target space Gr(n, F − p).

• If δM2 > 0 and F − p < n then the (F − p) φ2 cannot Higgs completely the gauge

group, but as they condense they Higgs it down to U(n − F + p) and then can be

integrated out. The charged components of the p φ1 then condense, whereas the
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neutral ones have a positive squared mass around this configuration. This leads to a

sigma model with target space Gr(F − n, p).

• If δM2 < 0 and p < n, then the p φ1 condense first and Higgs the gauge group to

U(n − p). By the same mechanism as before, the (F − p) φ2 condense, eventually,

leading to a sigma model with target space Gr(F − n, F − p).

• If δM2 < 0 and p > n then the p φ1 condense first and completely Higgs the gauge

group, whereas the (F − p) φ2 do not play any role. This leads to a sigma model

with target space Gr(n, p).

It is a tedious but simple exercise to check that specifying the above analysis to the

case of interest, i.e. n = F/2± k, the resulting sigma models coincide with those living in

the shaded regions around the quantum phase σ of phase diagrams in figures 4 and 5.

It is worth noticing that the above check is not entirely independent from the discussion

of the previous section, since we are actually using the underlying gauged linear sigma

model. It would be nice to have a proof directly in non-linear sigma-model terms. While

the above results would not change, at least qualitatively, such an analysis might shed light

on the nature of the phase transition around σ.

Note that adopting the same philosophy of [5], instead, one can consistently flow from

the theory coupled to F flavors to the one coupled to F − 1 flavors. This can be done by

giving a large mass to, say, one of the p fermions ψ1. After this deformation we get the

same duality with parameters

(N, k, F, p) −→ (N, k ± 1/2, F − 1, p− 1) , (3.10)

for a positive (negative) mass deformation.

Using the same approach one can also play with k. As already observed in section 3.2,

our proposal for k = 0 and p = F/2 is consistent with the Vafa-Witten theorem which

holds on the entire m2 = −m1 line, figure 7. We can use massive deformations to increase

the value of k, and show that if our proposal is correct for k = 0, it remains true even for

k > 0. In particular, all values of k up to F/2−p can be reached by integrating out by mass

deformations the p fields in the first set, whereas bigger values of k, up to F/2, are reached

by acting on the second set. This shows that one can consistently flow to (N, k, F, p) for

any k ≤ F/2.

4 Comments and outlook

In this work we have constructed the phase diagram of two-family QCD3, extending the

analysis carried out in [5] for the degenerate mass case. While our results agree with [5] in

the limits where the two-dimensional phase diagram becomes effectively one-dimensional,

there exist ranges in the parameter space which present novel phenomena. These are

inherent to the m1 6= m2 case, e.g. the shaded regions in figures 4, 5 and 6, which describe

new gapless phases, and phase transitions between them along σ.

We now want to discuss a few directions along which our work could be extended.
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As far as the bosonic analysis is concerned, we have limited ourselves to quartic cou-

plings. This is done in analogy to ordinary Wilson-Fisher fixed points for O(N) vector

models, and it has been, in fact, the general approach when considering boson/fermion

dualities. However, the scalar theory one is dealing with is a gauged U(N) linear sigma

model and, as of today, a full understanding of the nature of its fixed points (if any) has

not yet been achieved. Strictly speaking, one cannot exclude that along the RG-flow higher

order operators acquire large (negative) anomalous dimensions and the effective low-energy

theory should take several such operators into account. What one usually does is to start

considering those operators whose dimensions near the Gaussian fixed point are the lowest,

i.e. quadratic and quartic couplings. In three space-time dimensions sextic scalar operators

are classically marginal, so including them in the analysis would be the first natural exten-

sion one should look for. It is possible that the inclusion of such operators does not change

qualitatively the picture we have outlined, at least in some region of such an extended

space of couplings, but this is a point worth investigating further. In a similar vein, one

could consider quartic couplings not respecting the full U(F ) global symmetry but just

U(p)×U(F − p). This could correspond to yet other relevant deformations of the massless

theory, different from mass terms.

If boson/fermion duality is correct, all these (putative) novel relevant deformations

should have a counterpart on the fermionic side of the duality (the first natural guess

being Gross-Neveu-Yukawa couplings, in analogy with [3]). In this respect, the two-family

QCD3 case could work as the simplest laboratory to extend (and check) boson/fermion

dualities beyond present understanding.

Our work does not address the issue of the actual order of the phase transitions in

QCD3. While it is known that in certain limits such phase transitions are second order [16–

22, 48, 49], there are hints this is not the case, in general [50]. Having a clear picture

about this aspect would give crucial insights on how we should think about boson/fermion

dualities in general.

In our two-dimensional phase diagrams, there are some phase transitions that might

be more amenable to treatment, namely the transitions between different sigma models. It

would be nice to have a more detailed description of these transitions directly in non-linear

sigma-model terms.

Finally, one could explore other situations where two-dimensional phase diagrams are

expected. For instance, situations where matter fermions are in other representations of

the gauge group, such as the adjoint. In such cases, two-dimensional phase diagrams can

be used as a tool to guess what happens along the diagonal, where the global symmetry

is enhanced.
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A U(n) gauge theories coupled to f scalars

Let us consider a three-dimensional gauge theory with gauge group U(n) and Chern-Simons

level l, coupled to f scalar fields in the fundamental representation φαi , where α = 1, . . . , n

is the gauge index and i = 1, . . . , f the flavor index.

The gauge invariant operator which can be built out of the scalar fields is the meson

field X = φφ†. In components

X j
i = φαi φ

∗j
α , (A.1)

which is an f × f Hermitian matrix whose rank r satisfies

r ≤ min(n, f) . (A.2)

This matrix can be diagonalized and put in the form

X = diag(x1, x2, . . . , xr, 0, . . . , 0) , (A.3)

where xi are the r positive eigenvalues of X.

The potential which preserves the U(f) global symmetry reads, up to quartic terms in

the scalar fields

V = µ(TrX) + λ(TrX)2 + λ̃(TrX2) , (A.4)

where we take λ̃ > 0, which requires λ̃ + min(n, f)λ > 0 in order to make the potential

bounded from below. If µ ≥ 0 then the minimum of the potential is achieved for X =

0. This corresponds to the case where the gauge group is not Higgsed, so that at low

energies the (massive) scalars can be integrated out and the effective theory is pure U(n)

at level l. If µ < 0, instead, minimizing the potential one gets the following equation for

the eigenvalues xi
µ+ 2λTrX + 2λ̃ xi = 0 , (A.5)

which implies that

xi =
−µ

2λr + 2λ̃
∀i = 1, . . . , r , (A.6)

meaning that all non-vanishing eigenvalues are degenerate. Moreover, on these minima the

potential is

V = − µ2r

4λr + 4λ̃
, (A.7)

which is minimized when r is maximum, i.e. when r = min(n, f). Note that the condition

for the eigenvalues xi being positive is the same which assures the stability of the potential.

– 18 –



J
H
E
P
0
8
(
2
0
1
9
)
1
5
3

If f < n this means that the Higgsing is maximal, the gauge group is broken in f

independent directions and the global symmetry U(f) is unbroken. After integrating out

the massive fluctuations of the scalars around their minimum configuration, we get as the

resulting IR theory pure U(n− f) at level l.

If f > n the gauge group is completely Higgsed and the global symmetry is sponta-

neously broken to U(n) × U(f − n), leading to an IR dynamics described by a non-linear

sigma model with target space

Gr(n, f) =
U(f)

U(n)× U(f − n)
, (A.8)

and a Wess-Zumino term with coefficient |l|.
Note that the above result, i.e. maximal Higgsing for f < n and degeneracy of non-

vanishing eigenvalues for f > n, depends crucially on assuming a quartic scalar potential

with a single trace contribution (similar observations were done, in a different context,

in [3, 58] and also appear in [50]). One should also assume λ̃ to be positive to get the

aforementioned pattern. Indeed, for negative λ̃ the minimum of the potential (whose

stability now requires λ + λ̃ > 0) is achieved at r = 1, meaning that only one scalar field

condenses, giving rise to a different vacuum structure in the negative squared mass phase.

If one allows higher-order terms in the potential, one would expect that there still

exists a region in such a larger space of couplings for which the above extremization pattern

holds. Clearly, it is not fully satisfactory that one is required to make assumptions on the

scalar potential in order to match the fermionic phase diagram. However, gaining complete

control on the structure of the scalar potential for generic values of n, f and l, in such a

non-supersymmetric context, is presently beyond reach.

When applied to QCD3 with one species of fermions, this explains, upon use of bo-

son/fermion duality, the level/rank dualities in the m < 0 regime, as well as the structure

of the Grassmannian (1.1), see figures 1 and 2.

As discussed in section 3.3, allowing a scalar potential with all possible gauge invariant

operators only up to quartic terms has the same effects as those discussed here also in the

more intricate two-dimensional phase space.
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