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1 Introduction

The cosmological constant (CC) problem [1] is the most intriguing problem in theoretical

physics. Various dynamical or historical solutions [2–6] have been proposed to address the

CC problem. However, the only known viable solution to this problem is an anthropic

one, proposed by Steven Weinberg in the 1970s [7]. Weinberg’s solution to the CC prob-

lem “predicts” a small but non-zero cosmological constant, which was later confirmed by

supernova and CMB measurements [8–10].

Weinberg’s solution to the CC requires two major ingredients (see [11] for a review).

Firstly, it requires a landscape of vacua. This landscape has many vacua so that in at

least one of the them, just by pure chance, the cosmological constant is as small as the one

we observe. Secondly, it calls for an anthropic principle, which postulates that only vacua

which support galaxy formation from initial density perturbations can support life. Since

the proposal of this solution, both criteria have been studied extensively.
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There are two major obstructions to testing the existence of other vacua. The first

problem is that once a bubble of another vacuum has been created, it will rapidly either

turn into a black hole or expand uncontrollably destroying our current vacuum and likely

life as we know it. The main observable signatures considered previously come from a

bubble collision in the distant past, typically during inflation, that left imprints which

have not yet been diluted away [12–25]. The second problem is that the barrier between

vacua may be extremely large resulting in the probability of creating a bubble of another

vacuum being infinitesimally small [26, 27].

Both of these obstructions are present in many of the explicit constructions of a land-

scape of de Sitter vacua in string theory and field theory. Perhaps the most notable attempt

was that of Bousso and Polchinski [28, 29]. In their seminal paper in the 90s, they provide

a construction of a string landscape where the distribution of vacua is mostly random:

nearby vacua in field space in the landscape have cosmological constants that are maxi-

mally different from one another, and separated by barriers with height close to the string

scale. These constructions led people to believe that direct tests of the string landscape

are unlikely.

The first obstruction is the statement that the phase transition is likely to be disastrous

if it happens now. Inspiration around this problem can be drawn from a condensed matter

system, e.g. a magnet. We never worry that a magnetized piece of iron will eventually

magnetize the whole universe. The critical difference between the vacuum transition and

the condensed matter system are finite density effects. As shown in [30] and [31], new

phases can exist in a very localized region inside compact objects, or a semi-local region

(confined bubbles) if the landscape contains close by, degenerate or near degenerate vacua.

These confined bubbles will be the main topic of this paper.

As a field theory example of a confined bubble, take a vacuum with higher energy than

our vacuum at zero density but with lower energy than our vacuum at finite density. If a

bubble of this vacuum is formed at finite density, then it will only expand a finite distance

until the density becomes small enough that it is no longer energetically favorable for it

to continue to expand. Therefore, the bubble is confined to a non-trivial region of space,

resulting in the ability to make non-lethal tests of the other vacua. Given that the highest

density in our universe is ∼ (100 MeV)4 inside a neutron star while the CC is ∼ meV4, the

first obstruction of lethal bubbles can in fact be circumvented for ∼ (100 MeV)4/meV4 ∼
1044 of the vacua in the landscape, leaving only the question of how reasonable is it to

expect these bubbles to form in the first place.

Recently, several low energy constructions of the landscape suggest that, at least in an

effective field theory (see [32, 33] and [34]), it is possible to construct a landscape which is

ordered : a situation where nearby vacua in the landscape have very similar cosmological

constants, and have a low potential barrier between one another. In these constructions,

some of the light fields can also have non-derivative couplings with the standard model

matter, and even appear “unnatural” due to the tuning of the cosmological constant [33]

or a discrete symmetry [34]. In this paper, we will denote these light scalars or pseudo-

scalars as landscape fields, and show a particular observational signature that is associated

with the existence of many vacua in the potential of these landscape fields.

– 2 –
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As discussed in [33] and [35], one of the main requirements for a multiverse and an-

thropic solution to the electroweak hierarchy and cosmological constant problems is the

existence of large volume extra dimensions and a zoo of light bosonic states that controls

the sizes and shapes of these extra dimensions. These bosonic states, dubbed dilatons,

moduli, string axions and dark photons, are the main target of low energy searches for

beyond standard model physics. It has been suggested [36, 37] that light scalars as light

as 10−22 eV can be the dark matter of our universe, and can lead to interesting observable

signatures when there are non-negligible self-couplings [38]. These new states, especially

light scalars and pseudo-scalars that have significant self-couplings and non-derivative cou-

plings with the standard model-and are therefore potentially unnatural-will usually have

potentials that can be easily disturbed by the presence of matter. In fact, for a field as light

as m ∼ 10−22 eV, assuming sub-Planckian field ranges and a technically natural potential,

the height of potential can only be as large as V ∼ m2m2
pl ∼ (100 eV)4. This is much

smaller than the densities in some of the densest objects in the universe, for example, a

neutron star. If the scalar potential has period much smaller than the Planck scale (a

scalar with attractive self-interactions), the potential barrier would be even shallower.

The fact that the potentials of light states can be disturbed by a thermal population

of particles they couple to has been known for a long time [39]. The QCD axion potential

only appears when the temperature of the universe drops below ΛQCD; the Higgs potential

receives thermal corrections at high temperature, which can potentially save the Higgs

from instability after inflation [40–42] and lead to interesting observable signatures [43].

The effect of density [31] was recently studied for a particular axion model and was shown

to cause local phase transitions inside compact objects like a neutron star, which can be

looked for with Advanced LIGO [44]. In some realizations of such an “appears-to-be-tuned”

axion [34], and a few other light scalars with“appears-to-be-unnatural” couplings, such a

phase transition will result in the formation of a bubble.

In this paper, we discuss one particular example of a confined bubble which can give

observable signatures near a supernova remnant. We only attempt to address the quali-

tative features of the bubble evolution, which can be achieved by analytical methods. In

section 2, we write a toy model of a potential and illustrate the features we will need from

our landscape field, and how they qualitatively affect the bubble evolution. In section 3, we

describe the formation of the bubble. In sections 4 and 5, we study the bubble expansion

and contraction in the spherically symmetric limit. Section 6 include some of the most

striking signatures associated with an isolated bubble. In section 7, we discuss some of the

qualitative features of asymmetric bubbles near a neutron star as well as their phenomeno-

logical implications. We conclude in section 8 and discuss some of the future directions.

2 A model that supports the creation of confined bubbles

In this section, we give an explicit example of a theory that supports both confined bubbles

and their copious production at high densities while treating the background standard

model densities as time independent. The effects associated with the dynamics of standard

model matter in the presence of a bubble will be discussed in sections 4 and 5.
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Figure 1. A schematic picture of the form of a scalar potential in environments with different

standard model densities that allow a confined bubble. (Left) At zero density, the standard model

minimum vSM and a different minimum vNEW are nearly degenerate. (Middle) At intermediate

density below the critical density, the standard model minimum vSM gets lifted by scalar interactions

with matter, and regions with φ = vNEW can expand. (Right) At high enough density, the barrier

disappears and the standard model minimum is no longer a minimum of the theory, and regions

with φ = vNEW can be classically generated. The horizontal dashed line shows the size of the barrier

of the potential in empty space. In terms of the toy model in 2.1, the full field range shown in the

figure is ∼ fa while the field value difference between vSM and vNEW is ∼ fa/N .

We define a confined bubble as a region of the observable universe where a scalar field

lives in a minimum that is different from the one we are in today in the solar system. A

confined bubble and its production require the following conditions:

• In empty space, there are many vacua that scan the cosmological constant;1

• In empty space, tunneling between vacua is highly suppressed;

• (Bubble Creation) In medium, classical or quantum transitions between vacua are

fast enough so that we can explore the other vacua of the landscape;

• (Localization) The in medium vacua is localized to the areas of large density and do

not take over and destroy our small CC universe.

Once the above-mentioned conditions are satisfied, a confined bubble will likely exist in

our universe today. Confined bubbles appear in theories where there are degenerate or

near-degenerate vacua in the landscape which can be significantly split by finite density

effects. This occurs whenever the scalar fields scanning the landscape has a coupling with

the SM (see appendix A for more details). In figure 1, we show the qualitative features

of a scalar potential that will allow a confined bubble. The potential has many minima

in vacuum, guaranteeing an ability to scan the cosmological constant, while the dynamics

and signatures we discuss in this paper mainly depend on two of the many minima: the

standard model minimum vSM and a different minimum vNEW.

2.1 An explicit model

The explicit example containing confined bubbles that we will consider is the case of a light

axion [34]. In this subsection, we provide a concise summary. A technically natural light

1To be precise, only two minima are needed for the existence of a confined bubble. The requirement of

many vacua is only present if the field also scans the cosmological constant.
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axion has the potential

V ≈ −m
2
af

2
a

N2
cos

(
Na

fa

)
, (2.1)

where the axion a is the landscape field, fa is the axion decay constant (setting the inter-

action strength between the axion field a and the standard model matter) and m2
a ≈

m2
πf

2
π/(2

Nf2
a ) is the axion mass.2 In empty space, the vacua of the potential are at

a = 2πifa/N (i = 0, 1, 2 · · · ) and are all degenerate (see [31] for more detail). Such a

degeneracy can be very weakly broken, e.g. by higher dimensional operators suppressed by

the Planck scale [46]. As an explicit example, consider the case where the potential induced

by these operators is V = −ε4 cos (a/Fa − θ0) so that a/Fa ≈ θ0 is the true minimum, while

all other minima of equation (2.1) have slightly higher energy.3 These potentials combine

to scan the cosmological constant without any observational effect in vacuum. For sim-

plicity, we will first work in the limit where ε is small compared to everything else before

moving on to larger values of ε. That the potential can support confined bubbles is evident

from the fact that the finite density contribution to the potential is [31]

Vfinite = (σNnN ) cos

(
a

fa

)
(2.2)

where σN =
∑

q=u,dmq
∂mN
mq
≈ 59 MeV is a coupling that can be found from lattice [47]

while nN is the number density of nucleons. This finite density effect also breaks the

degeneracy between vacua resulting in a true minimum near i = N/2. In every other

vacua, the vacuum energy is larger due to the corrections from nucleon density and the

vacua becomes meta-stable. As a result, at finite density, a/fa ≈ ±π has lower energy than

a = 0 or the true vacuum in empty space with a/Fa = θ0.

The potential shown in eq. 2.1 not only supports confined bubbles but also provides a

production mechanism. In a very-high-density environments, such as a neutron star, the

density might even be large enough that the minima a = 2πifa/N all disappear and only

the minimum at a/fa ≈ ±π survives. In this case, the previous vacua are all classically

unstable and the field necessarily interpolates from a = ±πfa around the high-density

object to a = 0 far away.

Aside from neutron stars, other dense objects such as the Earth or Sun can also

support confined bubbles. Constraints arise from requiring that the Sun and Earth are

not surrounded by a confined bubble [31]. The Sun, being the denser and larger of the

two, places the strongest constraints shown in figure 2 and 3. In more detail, due to the

observations of neutrinos from the stellar core, we have observational evidence that θ ≈ 0

in the Sun.

In the following sections, we will be agnostic of the model that generates this ordered

landscape of vacua. The generation, evolution, and observable signatures of the bubble

can be described by the simple two-minima sub-structure of vSM and vNEW in the rich

landscape shown in figure 1.

2In the parameter space presented in the paper, N ∼ O(10) with N ≥ 3 being required for the mechanism

to work. In the original models of the axion, N was typically order few due to casmirs. An explicit breaking

of the ZN symmetry would be included to allow domain walls to decay [45].
3We choose the minimum we currently live in to be a = 0. Fa is a scale that can be comparable to fa

or much larger.
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3 The formation of bubbles

In this section, we discuss the formation of a bubble inside a region of very high density.

There are two possibilities for what occurs when the vacuum relaxes to the new in-medium

minimum. If the phase transition is first order, then the region containing a new phase

is created by bubble nucleation and it will start to expand and speed up. Eventually, it

leaves the dense region of space and starts to slow down. After a period of relaxation, it

will finally arrive at a stationary situation. Alternatively, the transition to a new vacuum

could be classical in nature. In this case the entire finite density region might transition

straight into the stationary solution rather than creating a bubble wall that expands and

contracts. To determine what happens in this case, we numerically solved a toy model.

The toy model has a real scalar φ with the potential

V = −m2φ2/2 + λφ4/4 + εφ− φnN . (3.1)

The small linear term ε biases the Mexican hat potential to favor the φ ≈ −m/
√
λ = −v

minimum. nN is the density of particles and favors the φ ≈ v minimum. We took a

spherically symmetric expression for nN where it is a constant for a radius r < Rc and

falls off according to various power laws for r > Rc. The density inside (for r < Rc) was

chosen large enough so that the φ ≈ −v minimum is no longer a minimum and is classically

unstable towards rolling to the φ ≈ v minimum. Taking φ = −v as initial condition, we

numerically solved for the evolution of the field φ.

We found that the entirety of the region r < Rc started to roll together and a bubble

wall is generated and ejected from the r < Rc region. This bubble expanded well beyond

the equilibrium position for φ masses larger than the inverse size of the high-density region.

The requirement that the φ mass is larger than the inverse size of the high-density region

is present so that gradient energy does not prevent the formation of a bubble altogether.

The final result is similar to what occurs in the case of bubble nucleation. A bubble

wall is generated and ejected well beyond the equilibrium position of the wall, before a

combination of bubble wall tension and vacuum pressure cause it to start contracting.

This behavior occurs robustly and is independent of the parameters used as long as the

density is large enough to destabilize the φ ≈ −v minimum in the dense interior and large

enough to accelerate the bubble into the less dense exterior.

As described before, during a process where the density of matter increases dramati-

cally, in particular during a core collapse supernova, a bubble can be produced and launched

outwards. Back to our axion example, the axion field a plays the role of the field φ in the

numerical solution, while the neutron star radius RNS and neutron number density play

the role of Rc and nN , respectively, As the matter density increases beyond the critical

density (σNnN ∼ m2
af

2
a/N

2) such that the barrier disappears, the landscape field a rolls

down the scalar potential to the minimum a = πfa inside the dense region while the field

is still at a = 0 everywhere else. The oscillation of the scalar field has a period that is

∼ 1/ma � RNS so that the bubble wall develops rapidly. Because the bubble wall mass

is much less than the total vacuum energy released, it is ejected at relativistic speeds.

Therefore, one can more or less study the dynamics of the scalar field assuming that the

matter density profile is static.

– 6 –
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Once a region where the scalar field is in the a = πfa minimum gets created inside

the densest region of the supernova, such a region will generally want to expand into

the surrounding less dense regions since the minimum where a = πfa has a lower energy

compared to the minimum at a = 0. During this step and subsequent steps, we can

approximate the field profile as a thin bubble wall since 1/ma is much smaller than the size

of the neutron star in most of the interesting parameter space.4 As is familiar from the

evolution of Coleman thin wall bubbles in empty space, as the bubble wall expands, the

energy difference between the two minima in matter is transferred into the kinetic energy

of the bubble wall. As the local density of matter decreases while the bubble moves out,

the energy differences between the two minima decreases and eventually is not sufficient to

support the bubble expansion against brane tension, and the bubble wall slows down and

comes to a stop. During the whole process, a significant portion of the mass energy of the

standard model matter inside the progenitor gets stored inside the bubble wall as particles

drop inside the bubble, and the bubble wall can carry a mass that is O(1%) of the total

mass of the progenitor. Section 4 contains a more detailed discussion.

The bubble wall expansion will eventually come to a stop due to brane tension. Quan-

titative understanding of the contraction phase depends strongly on treating the standard

model plasma properly and cannot be achieved with the simple approximation used in this

section. Section 5 contains a more detailed discussion.

4 Bubble expansion

In this section, we study the bubble expansion taking into account the standard model

plasma and its interactions with the expanding bubble. At the same time, we will remain

agnostic about the details for the interaction between the standard model matter and the

bubble wall but treat it as a change of the mass of the different states inside and outside

of the bubble wall. These calculations are completely analogous to those done in the

context of expanding bubble walls during the Electroweak phase transition in the early

universe [48–50], with the important caveat that a relativistic plasma has a much larger

pressure than a non-relativistic plasma.

The initial acceleration of the bubble is provided by the pressure of the particles inside

the bubble as well as the pressure that results from particles outside getting accelerated as

they cross the bubble wall. For example, in the particular case of a bubble wall constructed

out of the QCD axion, as baryons outside the bubble (θ = 0) penetrate the bubble wall to

get inside the bubble (θ = π), the baryon mass m decreases by δm ∼ σN (see definition of

σN below equation (2.2)). Such a mass decrease as particles drop into the region in the new

minimum can also be seen from the fact that the energy of the standard model minimum

is lifted compared to that of the new minimum in high-density matter in figure 1. During

this process, the baryons might penetrate the bubble wall and accelerate, or get reflected

4In the discussions of the bubble expansion in section 4, we will start the expansion assuming a non-zero

initial velocity for the field profile. However, this is not necessary as the field profile generally gains speed

through interactions with hot matter inside and outside of the bubble. Additionally, as we will discuss in

more details in section 5.1, a shock wave of standard model matter can usually help push the bubble out.

– 7 –
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by the bubble wall. The transmission and reflection coefficient can be calculated using 1D

Quantum Mechanics in the limit where the particles start at rest:

T =
4k′k

(k + k′)2
, R =

(k′ − k)2

(k + k′)2
, (4.1)

where k and k′ are the momentum of the incident and transmitted wave in the reference

frame of the bubble wall and T and R are the transmission and reflection coefficients. The

momentum the bubble gets from each particle is

δpbubble = (k′ − k)T− 2kR = 2k

(
k′ − k
k′ + k

)
, (4.2)

pointing towards the outside of the bubble. Therefore, the average effect of every particle

that starts off outside of the bubble is to accelerate the bubble.

For a non-relativistic bubble, k = mvwall while k′ =
√
k2 + 2mδm. If the wall velocity

vwall �
(
δm
m

)1/2
, the momentum that the transmitted particles get is much larger than the

incident momentum (k′ � k). In this case, the transmission coefficient T ∼ k/k′ � 1 while

the pressure on the bubble is approximately

P = nBvwallδpbubble = 2ρBv
2
wall, (4.3)

where nB and ρB are the number and energy density of baryonic matter near the compact

neutron star. The pressure is still positive despite the large reflection coefficient because

whenever a rare particle is transmitted, it transfers a large momentum kick to the wall.

For a relativistic bubble, k = γwallmvwall and k′− k ≈ δm/γwallvwall � k. In this case,

most of the baryons the bubble encounters in its expansion will penetrate the bubble wall.

The pressure on the bubble is approximately

P = nBγwallvwallδpbubble = ρB

(
δm

m

)
. (4.4)

In summary, we can find the equation of motion of the bubble wall (in the non-

relativistic and ultra-relativistic limit) due to its interactions with matter as
dγwall

dR
=
nBδm

T
− 2

γ2
wall + γwall − 1

γwallR
, for vwall �

(
δm

m

)1/2

dvwall

dt
=

2nBmv
2
wall

T
− 2

R
, for vwall �

(
δm

m

)1/2 , (4.5)

where T is the brane tension and R is the radius of the bubble, and the velocity vwall

should be replaced by vgas in the case where the standard model plasma collective motion

is comparable or faster than that of the bubble wall. The first term in the differential

equation is the pressure due to matter interacting with the wall. The second term is due

to tension and the increase in the mass of the wall as it expands. To simplify matters, we

assume, for now, that the difference in vacuum energy is small enough to be irrelevant to

the dynamics of the bubble.

– 8 –
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Using eq. 4.5, we find that after its initial launch by the supernova shock, the bubble

will get accelerated by its interactions with the gas outside the bubble to ultra-relativistic

speed very close to the surface of the neutron star. It reaches a maximal boost factor

γmax ≈
∫ Rmax

RNS

δm

m

ρB(R)

T
dR, (4.6)

where Rmax is the maximal size of the bubble. For a density profile outside of a neutron

star during a supernova, ρB(R) decreases as roughly ∼ 1/R3 outside the neutron star.

Therefore, the integral is dominated at short distances close to the neutron star, and can

be evaluated to be approximately

γmax ≈
δmnNSRNS

T
, (4.7)

reached at R ∼ 2RNS.

After the initial large boost, the bubble will continue to expand into the surrounding

matter, slowly converting its kinetic energy into potential energy stored in brane tension

while getting accelerated by the baryons entering the bubble. Such an expansion stops

when roughly all the energy is stored in the tension of the brane.

γmaxR
2
NS = R2

max. (4.8)

Because the initial boost is not particularly sensitive to the detailed density distribution, the

maximal size reached by the bubble is roughly always the same (up to a logarithmic factor):

Rmax = RNS

(
δmnNSRNS

T

)1/2

. (4.9)

Such a maximal radius is parametrically the same as the radius where a dynamical equi-

librium is reached between the gas pressure and the brane tension for an 1/R3 density fall

off n(Rmax)δmRmax ≈ T in the effective potential picture.

The expansion phase is also affected by the energy differences between the two minima

in empty space. If ∆V = V (vSM) − V (vNEW) > 0, the minimum we are in is the false

vacuum and the bubble expansion is assisted by this energy difference. For ∆V > T /Rmax

and ∆V > 0, the bubble deceleration will stop when R = T /∆V and will instead start

accelerating and expand indefinitely. The bubble will expand past its critical radius and

proceed to take over the whole observable universe. Such a bubble will encounter us at the

speed of light and does not satisfy the localization criterion.

On the other hand, if ∆V < 0, the minimum we are in right now is the true vacuum and

the energy difference will help slow down the bubble in its expansion. For |∆V | > T /Rmax,

the bubble does not reach Rmax in its expansion. Rather, it stops when

4πγmaxT R2
NS ≈

4π

3
|∆V |R̃3

max → R̃max =

(
3γmaxT R2

NS

|∆V |

)1/3

. (4.10)

In the case where T
|∆V | is much larger than the size of the neutron star, adding the vacuum

energy changes the final radius of the bubble. In the other limit, the bubble containing the

– 9 –
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Figure 2. Parameter space of light axions with matter couplings shown in section 2.1. Supernova

constraints [51] and constraints coming from the measurement of solar neutrinos [31] are shown in

shaded grey. Bubbles can be launched by a neutron star in the region to the left of the neutron

star line (blue dashed). The bubbles will expand to roughly the size of a main sequence star at the

lower red dashed line, and to a radius of 100 seconds at the upper red dashed line.

neutron star will never grow outside the neutron star and remain confined to its surface.

The signatures will be similar to those discussed in ref. [31].

To conclude, in this section, we studied the expansion of a bubble following bubble

generation during a core collapse supernova. In figure 2 and 3, we summarized the sizes a

bubble can reach (Rmax) for two different types of interactions. Bubble can reach sizes as

large as hundreds of light seconds, many orders of magnitude larger than the size of the

forming neutron star (RNS ∼ 10 km). In the plots, we also show current constraints coming

from supernova cooling, fifth force experiments, and the requirement that the Sun is not

dense enough to source a bubble (see [31, 51] and references within).

5 Bubble contraction

In this section, we will discuss the contraction phase of the bubble that occurs after it

has reached its maximal size due to its brane tension. The contraction phase depends only

quantitatively on the difference of energy of the two vacua. Similar to the expansion phase,

we will focus on the case where ∆V ≈ 0 and comment on the case where ∆V �= 0 when it

becomes important.

For presentation purposes, we will first take the approximation that the initial shock

wave has already passed through the bubble and the density within the bubble can be

– 10 –



J
H
E
P
0
8
(
2
0
1
9
)
1
4
8

-15 -10 -5 0 5
-20

-15

-10

-5

0
-7-6-5-4-3-2-10123456789101112

-20

-15

-10

-5

0

Supernova

Sun

WD

FF

MS Radius

100 seconds10
4 seconds

Neu
tro

n
Sta

r

Figure 3. Parameter space of scalars which interact with nucleons as φ2

Λ2LSM. The shaded regions

are excluded by supernova [51], measurements of solar neutrinos [31], and fifth-force measurements

(see [52] and references within). Bubbles can be launched by a neutron star in the region to the

left of the neutron star line (blue dashed). The bubbles will expand to a size with roughly main

sequence star radius above the lower red dashed line, and 100 seconds (104 seconds) radius above

the middle (upper) red dashed line.

approximated by a power law of 1/Rα and leave the discussions of the shock to a separate

subsection. The density around the supernova shortly after the supernova passes through

can be best fitted by α ≈ 3 [53], which we will use for most of the discussion in this

section. The general features of the observable signatures are independent of the exact

density profile around the supernova, while the magnitude is sensitive to the exact density

profile. We leave the detailed calculations of the size of the effects to future work.

There are two types of contraction phases. The first phase is a fast contraction phase.

Equation 4.5 respects a t → −t symmetry so that because there exists a fast expansion

solution, there also exists a fast contraction solution. As will be discussed in more detail in

appendix B, this fast contraction phase, if ever present, lasts for only a short time before

friction ends this fast oscillation phase after a few cycles, making it mostly phenomenolog-

ically irrelevant. The second phase is a slow contraction phase and is the main subject of

this section.

During the initial stage of bubble contraction, the bubble will accelerate into very

dilute matter due to brane tension T and the energy difference between the two minima

∆V . While the initial rate of acceleration depends strongly on the relative size of the brane

tension and the difference in vacuum energy, the bubble quickly reaches a terminal velocity
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that is only weakly dependent on either T or ∆V (see figure 4). The mildly relativistic

terminal velocity, usually between 0.3 c and 0.9 c, is reached due to the balance between T
accelerating the bubble towards smaller radii and the friction force due to bubble-matter

interactions, which grows as the bubble shrinks.

Similar to the expansion phase, one of the most important parameters governing the

slow contraction phase is the critical velocity (δm/m)1/2. When the bubble is contracting

faster than (δm/m)1/2, the friction due to matter is independent of the velocity of the

bubble. When the bubble is contracting slower than than (δm/m)1/2, the deceleration

becomes proportional to v2
wall. During this phase, the bubble size shrinks by an O(1)

amount during a time period that is approximately ∼ Rmax.

Once the bubble wall becomes slower than (δm/m)1/2, it enters the second stage of the

slow contraction phase. It is roughly described by a damped oscillator, where the velocity

of the bubble decreases slowly as the bubble shrinks. In this phase, the brane tension T
(and the energy difference between the two minima in empty space ∆V ) are balanced by

the friction force due to interactions with matter. In this stage, the dynamics of the bubble

can be described by the simple equation:5

d2R

dt2
=
n(R)mv2

2T
− 2

R
− ∆V

T
. (5.1)

For n(R) ∝ R−3, this results in a scaling solution where the bubble velocity

vb ∝ R
(

1 +
∆V R

T

)1/2

. (5.2)

The second stage of contraction comes to an end when the bubble velocity decreases to

be comparable to the velocity of the standard model plasma confined inside the bubble, in

which case the friction force starts to grow as R−3 as the bubble shrinks. In this last stage,

the bubble velocity will quickly decrease to close to zero. The contraction due to T and

∆V is counteracted by a constant thermal pressure of the material inside. As the thermal

matter inside slowly radiates away its energy in photons, the bubble slowly contracts. Such

a dynamical equilibrium is described by

dR

dt
=

σT 4R

2T + ∆V R
,

n(R)T

T
=

2

R
+

∆V

T
, (5.3)

where σ is the Stefan-Boltzmann constant. In equation (5.3), we assume that the standard

model matter density outside the bubble wall is negligible while the density inside of the

bubble is n(R), since Standard Model matter does not have enough kinetic energy to exit

5In this subsection, we do not take into account the accumulation of matter as the bubble slowly

contracts. Such an accumulation depends on the density transport and heat conductance in the surroundings

of the neutron star, which we do not know how to treat properly without detailed numerical simulation.

In reality, such an accumulation effect will change how the density increases as the bubble contracts. For

a density profile that is n(R) ∝ R−3, this is likely a logarithmic increase.
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Figure 4. The evolution of a contracting bubble with different size of energy differences between

the two vacua ∆V . The blue, red and orange lines correspond to cases where ∆V Rmax/T =

{−1/2, 0, 1/2}, respectively. The bubbles in these plots have a Rmax = 100RNS when ∆V = 0. The

left figure shows how the bubble velocity evolves as a function of time with (δm/m)1/2 = 0.2. The

right figure highlights the late time evolution where v/R (arbitrary unit) approaches a constant.

the bubble during this slow contraction phase. We assume the emission from the region

inside the bubble is mainly from the surface during this stage due to the fact that the

bubble usually has already shrunk enough such that it is already in regions where the

density of matter is high enough such that it is opaque to the radiation from inside. We

assume the emission from the bubble has a blackbody spectrum because such a phase is

extremely long such that the standard model matter inside the bubble always has time

to thermalize. Given a density profile of standard model matter n(R), we can solve for

temperature T and radius R, and as a result thermal emission luminosity L, as a function

of time. The first part of equation (5.3) describes energy conservation, while the second

is basically the Young-Laplace equation in the spherically symmetric limit. For a density

that decreases as 1/R3, this results in a dependence

T ∝ t−1/4, R ∝ t−1/8, L ∝ t−5/4, (5.4)

for a bubble contracting due to brane tension. Note that the matter inside the bubble

cools a lot slower than normal thermal emission because the bubble wall is injecting its

rest mass as energy into the system. As a result, the anomalous thermal emission will be

at a relatively high temperature and luminosity long after the supernova has taken place

(see figure 5 and 6). This also implies that the final long term observational signature is

largely independent of the earlier stage of the bubble evolution, including the dynamics of

the shock wave, bubble irregularities and matter accumulation.

The bubble evolution will eventually come to an end when the bubble slowly lands

on the neutron star. In most of the previous discussion, we have not taken into account

the temperature evolution of the neutron star itself. We will postpone these discussions to

section 6.1.

5.1 Shock wave

One particularly interesting element of bubble evolution after a supernova explosion is the

expansion of the shock wave (see [54] and references within). A core collapse supernova

– 13 –



J
H
E
P
0
8
(
2
0
1
9
)
1
4
8

starts when the compact inert core of a massive star exceeds the Chandrasekhar limit, where

the electron degeneracy pressure ceases to be large enough to counter the gravitational

pressure. The inner core will undergo a rapid implosion phase while the outer core, losing

its support from the inner core, also collapses due to gravity. The imploding material

accelerates to relativistic speed before bouncing off of the inner core, whose collapse is

terminated by neutron degeneracy pressure. The now outgoing shock wave loses energy

as it penetrates the material surrounding the proto-neutron star and comes to a stall as

it photo-dissociates the surrounding material. The shock is assumed to be revived when

the neutrinos produced in the supernova core heat up the materials around the shock and

create a temperature and pressure gradient near the shock location, which re-accelerates

the shock wave. The shock wave is accelerated to very high velocities close to the speed of

light as it eventually expands out of the progenitor star.

Initial expansion: the shock wave can be important for the initial expansion of the

bubble. Even if the field profile does not expand out of a neutron star fast enough due to

a lack of initial velocity, the initially fast expanding shock wave will have enough kinetic

energy to push out the scalar field bubble through its interaction with the bubble wall (see

equation (4.5) with vwall replaced by the relative velocity between the shock and the bubble

wall). The bubble wall and the shock wave quickly decouples as the shock wave comes to a

stall while the bubble wall continues to accelerate to relativistic speed during its expansion.

A full 3D simulation is likely needed to understand the complete effect of the shock wave

on the bubble as well as how much the expanding bubble affects the supernova explosion.

However, the details of shock wave dynamics should not strongly affect the signature we

propose to look for.

Subsequent contraction: the interaction between the shock wave and a contracting

bubble wall could potentially alter the supernova enough to lead to constraints. Though a

qualitative picture of a core collapse supernova has been understood for decades, there are

still a lot of uncertainties regarding the time-dependent density and temperature profile

of the surroundings of the proto-neutron star as the shock wave is propagating out. As a

result, there is an order-of-magnitude uncertainty on the velocity of the shock wave during

its initial expansion [55].

The properties of the shock wave can be significantly affected by the presence of a

contracting bubble. As an expanding shock wave with velocity vini hits a contracting

bubble wave with velocity vwall, the shock wave slows down by

vfi = vini − 2

(
δm

m

)(
1 + vinivwall

vini + vwall

)
, (5.5)

in the limit where δm
m � 1 and the shock wave is not ultra-relativistic. In the limit where

the wall is not moving (vwall = 0), this requirement simplifies to that the particles inside

the shock wave need to carry enough kinetic energy to exit the bubble. As the velocity of

the bubble increases, the reflection coefficient goes down and it gets easier for the shock

wave to pass through the bubble. However even in the relativistic limit, the final velocity

of the shock wave can still point inwards if the initial velocity is not large enough.
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Requiring that the shock wave exits the bubble and continue its outward expansion

would constrain the differences in the mass of particles inside versus outside of the bubble.

Unfortunately, there is a huge uncertainty in the predictions of the maximal velocity of

the shock wave after the shock is revived, ranging from 10−2 c to 0.3 c, as well as the time

dependence of the shock wave velocity [56]. Therefore, the measurement of the supernova

shock wave at late times does not place a strong constraint on the size of δm/m; a δm/m

larger than 0.1 may be in tension with the observation of various supernova remnants,

however it is difficult to be certain. With improved simulations of the supernova shock

wave expansion, in particular a simulation of the supernova environment with the addi-

tional scalar field, one might place a much stronger bound on δm/m of a proton or a

neutron. These simulations would have strong implications for particles with QCD axion

like couplings, since the fractional mass shift caused by these couplings will necessarily be

δm/m ≈ σN/mN ≈ 6 %.

6 Phenomenology of isolated spherical bubbles

6.1 A glowing bubble

The most important and potentially long-lasting phenomenological signature of the con-

fined bubble comes from the contraction phase of the bubble. As discussed in section 5, in

the last stage of the bubble evolution, the bubble releases its kinetic and mass energy into

the thermal energy of the plasma inside the bubble, which gets radiated away by thermal

or non-thermal radiation. For bubbles that are relatively small in size, in particular if there

is no significant separation between the maximal bubble size and the size of the neutron

star, the bubble evolution happens for a relatively short period of time, and we cannot

neglect the presence of a much hotter neutron star and its effect on the densities between

the bubble and the neutron star [57].

However, for bubbles that can potentially grow to sizes of order light seconds and

beyond (see figures 2 and 3), it is conceivable that dynamics are dominated by the matter

near the bubble rather than the neutron star at the origin. These densities can come from

the part of the outgoing shock wave that gets reflected by the bubble wall (see section 5.1),

as well as the residue density that is not carried away by the shock wave during the shock

expansion. In the case of a binary system, the matter density can also come from the

companion which donates matter to the neutron star. For bubbles with smaller brane

tensions, which are also the ones that grow to the largest sizes, the density required to

support a bubble can be as small as 10−6g/cm3, much smaller than the density of the core

or the progenitor.

During the bubble evolution, the thermal photons emitted far from the neutron star can

have temperatures that differ from that of the neutron star (see figures 5). Therefore, it is

possible to search for the existence of bubbles by measuring the thermal emission spectrum

after a supernova explosion. Since the shock wave passing through the bubble will tend to

increase the size of the bubble, a smooth slowly contracting phase can only start after the

shock wave has already passed through. After the shock wave and the surrounding matter

have blown away, an observation of the final state neutron star and the bubble around it
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Figure 5. Temperature of the gas inside bubbles of different maximal size as a function of time.

The blue, red and orange solid lines correspond to bubbles with maximal size of 1, 10 and 100

light seconds, respectively. The evolution of the bubble is terminated when the bubble radius

decreases to less than 200 km. The grey dashed line shows the temperature of a neutron star

cooling by emission of neutrinos in the neutron star core, while the gray shaded region shows the

temperature of the neutron star during subsequent cooling of the neutron star by photon emission

in different environments [57, 59]. The black dots represent the temperature for some of the known

neutron stars.

can be made.6 In reality, we would likely have to wait a bit longer until when the emission

of the shock wave can be spatially separated (if not spectroscopically separated) from that

coming from the neutron star and the bubble since the emissions from the shock wave are

likely very bright [58].

Due to the large uncertainties in the initial velocity of the shock, we do not know

the exact motion of the bubble after the shock has passed through it. However, this

does not spoil our signature as the bubble will eventually enter a slowly contracting phase

independent of its initial velocity. During this phase, measurements of the luminosity as

well as the frequency spectrum from the region around the neutron star when combined

can tell us about the radius at which radiation is emitted.

If the existence of thermal radiation being emitted from a radius larger than the neutron

star radius can be confirmed at a supernova remnant, young or old, follow-up studies are

required to determine whether such a radius is the surface of a bubble or merely the

exterior of some photon emission region. If it were the surface of a bubble, then the bubble

radius would decrease in a way that can be described by equation (5.3). In the beginning

of this contraction phase, the temperature of the gas inside the bubble as well as the

bubble radius should scale close to that of equation (5.4). As the gas and the neutron

6It is not clear how long after a supernova one would have to wait. For example, we still have not seen

the neutron star/black hole created after supernova 1987A.
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Figure 6. Power emitted by the gas inside of bubbles of different maximal size as a function of time.

The blue, red and orange solid lines correspond to bubbles with a maximal size of 1, 10 and 100

light seconds, respectively. The grey dashed line shows the thermal power of a neutron star cooling

dominantly by emission of neutrinos in the neutron star core, while the gray shaded region shows

the power of thermal emission during subsequent cooling of the neutron star by photon emission in

different environments [57, 59]. The black dots represent the observed power for some of the known

neutron stars. The black dashed lines shows the Eddington luminosity of a solar mass blackhole

and the solar luminosity (top and bottom respectively).

star continue to cool, the density profile of the gas inside the bubble should also start

evolving. As the density profile deviates from a 1/R3 scaling, the temperature and density

evolutions will also deviate from T ∝ t−1/4 and R ∝ t−1/8. A detailed simulation would be

required to understand the exact evolution of the bubble radius and temperature. However,

independently from the exact bubble dynamics, during this last stage of the evolution, a

δm/m portion of the total progenitor mass will be released in X-rays over the whole period.

A faster evolution [60] compared to that shown in figures 5 and 6 or, in particular, a sudden

change of the evolution process of the bubble would likely be an even more prominent a

signal as a huge amount of power will likely be released from the supernova remnant in

a very short amount of time. Moreover, independent of the exact form of the density

profile, and correspondingly the temperature and luminosity as a function of time, we can

use the measurement of the spectrum as a function of time to extract the most important

information, the brane tension T and the energy difference ∆V with equation (5.3).

In the absence of a detailed simulation of the evolution of the density near the rem-

nant neutron star, we will just show the temperature and luminosity as a function of time

assuming a 1/R3 profile in figures 5 and 6 to demonstrate some of the important qualita-

tive features for different size bubbles. These plots should not be taken as a prediction,

especially beyond time scales that are close to the accretion time scale of a neutron star.
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6.2 Species dependent interactions

In the previous sections, we have treated the bubble wall as a surface separating two regions

where the mass of a particle differs by a fixed fractional amount δm/m independent of

whether it is a proton, a neutron or an electron. In reality, the matter coupling of the

scalar φ likely breaks the equivalence principle and causes a species dependent mass shift.

In this section, we will mainly discuss observable effects of two types of mass shifts, which

can be looked for with spectral measurements of the neutron star.

The first generic type of couplings are those similar to the matter couplings of a

QCD axion. These couplings modify the masses of the proton and neutron differently (see

reference [31] for more details) and affect minimally the properties of an electron. The

mass differences between neutron and proton can change by a maximal amount of 10 MeV

if θ = π. This will likely make several of the stable elements unstable inside the bubble

surrounding the neutron star [53]. The existence of oxygen, nitrogen, neon and, most

importantly, iron can potentially be established near the surface of neutron stars through

measurements of X-ray emission. For example, if θ = π inside the bubble, 56Co will

probably become lighter than 56Fe and the lifetime of iron would be short. An observation

of a Fe Kα line from regions inside the bubble would indicate the stability of iron and likely

exclude this scenario. Likewise, couplings that will make the neutron much lighter than

the proton can also be constrained if abundant hydrogen lines are observed.

The second generic type of couplings are those that are similar to the matter coupling

of a dilaton. These couplings result in a modification of the masses of all the standard

model particles, and in particular the electron mass and therefore a fractional shift of all

the characteristic emission lines in the form δω/ω = δme/me at leading order. Discovery of

this type of overall shift is hard given that gravitational redshift has the same qualitative

effect. As a result, we can probably only look for couplings that modify the electron mass

by close to unity, which cannot be faked by gravitational redshift around a neutron star

with GMNS/rNS ∼ 0.1. Various other effects such as pressure broadening and Zeeman

splittings must also similarly be well understood. Such a situation occurs when there

are universal couplings of the scalar as well as for scalars with lepto-philic couplings, or

couplings that modify the fine structure constants (see [52] for more details on dilaton-like

couplings to matter).

Localized regions where particle physics parameters differ from our own, or simply a

spatially dependent fundamental constant have been looked for at great length in the past

(see references in [52]). We suggest searching for spectroscopic features in localized regions

with fundamental constants that differ from our own. To establish that a bubble is the

reason behind these anomalous spectroscopic features, further investigation is required to

discover the neutron star and the thermal emission properties from around the bubble wall.

7 Phenomenology of non-spherical bubbles

In this section, we discuss deviations from the spherical approximation of isolated bubbles

as well as bubble-bubble collisions and bubble-star collisions. As answering most of the

questions posed will require numerical simulations, we focus on describing qualitatively

what occurs.
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7.1 Bubble non-sphericity

The growth of the bubble in a dense medium, unlike in empty space, can make a bub-

ble very asymmetric. In the thin wall limit, the bubble evolution can be described by

modifying equation (4.5) to a bubble that is not spherical symmetric. The non-sphericity

of the bubbles in our case can arise due to two main reasons. Firstly, the distribution

of the collapsing standard model matter near a supernova is likely not totally spherically

symmetric, which will result in an asymmetric push on the bubble through matter inter-

actions. Secondly, when the bubble speed is less than (δm/m)1/2, the pressure difference

between the two sides of the bubble, and therefore acceleration, grows with the velocity

(see equation (4.5)). Such a positive feedback might greatly enhance the non-sphericity.

In figure 7, we show the evolution of spherical bubbles which have slightly different initial

velocity. These bubbles can grow to very different sizes at intermediate times. Though

such an exercise does not take into account the effect of the brane tension, which favors a

spherical bubble, it is likely that even if a spherical bubble is nucleated at rest, a significant

asymmetry can arise as it accelerates into non-spherically symmetric matter.

The bubble will become more and more spherically symmetric as it expands into re-

gions with less matter density due to brane tension. However, the asymmetry can come

back once the bubble starts to contract into matter, if the matter density is not fully spher-

ically symmetric. Unlike the case of expansion where there is a positive feedback, during

contraction, the friction force is proportional to the bubble velocity and therefore helps to

smooth out the non-sphericity. Therefore, the bubble is very likely spherically symmetric

when it falls back onto the neutron star. A major complication is the effect of the passing

shock wave, which, if non-spherical, would increase the non-sphericity as it passes through

the bubble wall by O(1). A full 3D simulation is needed to understand how non-spherical

the bubble is as the bubble expands and contracts, which is beyond the scope of this paper.

7.2 Bubbles colliding with stars

For the interactions we consider in this paper, a bubble never grows to be much larger

than a few light hours, which is much smaller than the average distances between neutron

stars and stars (neutron stars) in galaxies. Therefore, it is very unlikely that the bubble

from a neutron star can collide with a nearby star or neutron star. In the rare case

where a supernova happens in a binary, however, it might be possible for the bubble wall

to interact with a star, a neutron star, or even another bubble. In this subsection, we

will discuss some qualitative features of bubbles in a binary, focusing on bubble-star and

bubble-bubble collisions.

Bubbles colliding with stellar objects can occur when one of the stars in a binary

undergoes a supernova. For example, supernovae can occur in binaries due to constant

accretion from one star (usually a red giant) onto another (usually a white dwarf) and are

thus a natural candidate. Though a typical type Ia supernovae usually does not lead to the

formation of a neutron star, it is possible that supernovae can happen in a binary system

(type Ib supernovae), or even a system with active accretion. In these types of systems,

it is unclear how spherically symmetric the bubbles are, since the environment has matter
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Figure 7. We show how two bubbles with the same initial size can end up with much larger

fractional differences in bubble radius (∆R/R). The blue solid line shows how different in size two

bubbles can get with different initial velocities. The two bubbles are assumed to start at 10% and

90% of the initial shock wave velocity. The red lines show how different in size two bubbles can get

with different matter densities. The two bubbles are assumed to start in regions where the matter

densities differ by 50% (upper red dashed line) and 25% (lower red dotted line), respectively.

densities that are very non-spherically symmetric. Additionally, some of the assumptions,

in particular the ones about the progenitor, used in section 4 and 5 may no longer be

valid. In some parts of parameter space, the bubble can expand to be large enough that it

collides with the companion. Here, we will only discuss the case where the companion has

properties similar to our Sun. The end result of the collision between the bubble and the

star depends on the relative speed between the bubble and the companion.

Consider first the case where the bubble is traveling at non-relativistic speeds (vwall �
(δm/m)1/2). As shown by equation (4.5), the reflection coefficient is large so that the

majority of the star it encounters will be pushed away, while a small portion of the star

will leak inside the bubble with v ∼ (δm/m)1/2. The star will receive a kick from the

collision with the bubble and some oscillatory modes of the star may be excited. The part

of the bubble wall that collides with the star will get accelerated due to this collision and

the bubble will grow asymmetrically as a result.

If the bubble speed is ultra-relativistic (γwall � 1), the bubble will instead swallow

the majority of the star as it expands out. The star will be relatively unperturbed while

the bubble itself will grow extremely asymmetric as the part of the bubble that encounters

the star will receive a huge amount of energy from the δm/m of the star it encounters.

Such a bubble, as it contracts, will encounter the star again. Such a collision might lead

to dramatic effects both to the star and also to the bubble itself. The bubble might even

fragment into two bubbles during the collision as it grows to be extremely non-spherical.

We do not think analytical estimates can resolve what occurs in this situation.
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One other case that might be constrained is the case where the bubble encounters the

star when it has a speed of order (δm/m)1/2 towards the end of its decelerating expan-

sion phase. In this case, as the bubble enters the star, it might tear up the star as the

transmission and reflection coefficients are both order unity if (δm/m)1/2 is larger than the

escape velocity of the star. The hydrodynamical stabilization of a star is likely completed

destroyed even if (δm/m)1/2 is slightly smaller than the escape velocity. It is unclear to us

what will happen after the split as no example of this sort is known.

7.3 Bubbles colliding with bubbles

Bubble-bubble collisions can occur if supernova occurs when the progenitor is already in

a binary with a neutron star. The expanding bubble from a supernova can potentially

collide with the slowly contracting bubble surrounding the companion. A complete study

of bubble-bubble collisions is beyond the scope of this paper. Here, we will only summarize

some of the main qualitative features. As discussed in section 7.1, the bubble can grow to

be very non-spherical as it expands, due to the density inhomogeneity during a supernova

explosion. Therefore, as pointed out in [61], these bubble collisions can release a significant

portion of its energy into gravitational waves. Our discussion on bubble wall collisions

will mirror bubble wall collisions that occur during phase transitions in the early universe

(see [21] for a recent review).

During a bubble collision, most of the energy released should go into a flux of scalars

as the merging bubbles start to oscillate. The flux of scalars will be spread over a time

scale that is at least the light crossing time of the bubble, that is, roughly the size of

the binary system. In the case where the scalars are emitted with semi-relativistic speed

from a collision, these scalars will be spread over a time scale that is the distance to the

binary over the velocity dispersion. Either way, the flux of the emitted scalar will be quite

independent of the micro-physics couplings that produce the bubble:

F ∼
(
δm

m

)
Mprogenitor

4πtfluxd
2
bi

, (7.1)

where tflux > abi is the time duration of the scalar flux, while abi and dbi is the size of

the binary and the distance from the binary to us, respectively. For a binary with abi of

a few light seconds like that of a Hulse-Taylor pulsar binary [62], a binary that undergoes

supernova explosion within dbi . 10 kpc could lead to fluxes comparable or larger than that

of the dark matter on Earth with δm/m ∼ 10−2. This is very unlikely to happen since we

have not seen a supernova explosion within a binary in our galaxy in the past thousands

of years. Given that no DM experiments have been able to cut into the respective range

of parameter space, we would have to be incredibly lucky to see such an event.

A subcomponent of the energy goes into gravitational waves. The emitted gravitational

waves will be at a frequency that is roughly inverse the size of the binary. The amplitude of

the gravitational wave from bubble collisions in a binary similar to that of the Hulse-Taylor

binary will be at most of order

h ∼
(
δm

m

)
GMprogenitor

dbi
, (7.2)
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if the bubble is O(1) asymmetric. For a binary that is O(10 kpc) away, the amplitude at

Earth is at most O(10−19), with a frequency that can range from a few Hz to as small as

10−4 Hz. Such an amplitude might be observable as a transient by space-based gravitational

wave detectors such as LISA or AGIS [63, 64]. However, it is quite unlikely such an event

takes place so close to us. It might still be interesting to understand the collision of these

bubbles, as future gravitational wave detectors might give us the chance to look for these

collisions outside of our own galaxy.

8 Conclusion and remarks

In this paper, we showed how a bubble containing a different minimum compared to the

minimum we currently live in can be generated at the time of a supernova explosion, or

similarly violent events where the density of matter undergoes a very sudden change. We

described how such a bubble would evolve after a supernova explosion in the spherical

bubble limit, and sketched how asymmetries can be generated for these confined bubbles.

The bubble that gets generated during a core collapse supernova can accelerate to ultra-

relativistic speed very quickly and reach sizes as large as ∼ 100 seconds at the end of its

expansion. The bubble eventually contracts into matter surrounding the neutron star and

slowly loses all its energy through interactions with standard model matter. Such a process

can last for thousands of years and leave striking signatures as a result of this slow release

of energy into the environment.

The bubble can be potentially observable both right after a supernova explosion, as

well as much later from its effect on the surrounding environment of the supernova remnant.

Thermal and non-thermal radiation from a supernova can teach us a great deal about the

potential existence of a confined bubble. We suggest measuring the emission spectrum of

relatively young supernova remnants and how it evolves with time as a way to find evidence

of a contracting bubble. However, these signatures depend strongly on how bubbles evolve,

and details of the environment the progenitor is in, and detailed simulations are likely

needed to compare with observation.

We have known for a long time that many stable and meta-stable vacua can exist,

especially in various condensed matter systems. These vacua can appear and disappear

depending on the environmental parameters of the system, leading to different forms of

matter. Similarly, in quantum field theory, and especially in string theory, there can also

be a wide variety of different vacua, whose properties can also depend strongly on the

environment. The QCD axion and the Higgs are two prime examples where the potential

changes dramatically as a result of the thermal effects in the early universe.

In a recent paper [31] and this paper, we discussed how matter densities can affect the

minimum structure and the observational consequences of such a situation. In a companion

paper [43], we will discuss how we can look for the existence of a new Higgs minimum

with cosmological observations, providing exciting new probes into the nature of the Higgs

potential at large field values. The old examples and new possibilities we considered in the

series of papers are summarized in the table 1. We hope many new exciting examples will

emerge in the near future.
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Present Past

New vacua appear — Axion potential turning on & EWSB

New vacua disappear Non-lethal Bubble Higgs instability [43, 65]

Vacua move (Potential flip) NS Force [31] —

Table 1. Scalar potentials can be affected by thermal and density corrections. Minima can appear

as the universe cools down both during the electroweak symmetry breaking (EWSB) and QCD

phase transition. Vacua can disappear due to both density and thermal effects and also move (flip

sign) due to density effects.
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A Another explicit example of a landscape field

In the main text, a model was presented where an axion was a landscape field. In this

appendix, we demonstrate how a scalar modulating the mass of a fermion directly can

also play the role of a landscape field. For simplicity, we will take the fermion to be the

electron, but it can be any fermion in the theory. The model consists of N copies of the

Standard Model all exchanged via a ZN symmetry while φ→ φ+ 2πf/N under the same

ZN symmetry. The landscape scalar, φ, couples to the N copies of the electron as

L =
N−1∑
k=0

(
me − ε cos

(
φ

f
+

2πk

N

))
eke

c
k. (A.1)

where e
(c)
0 is the electron and e

(c)
j are the electrons in the other decoupled sectors. The

expectation value of φ couples to the electron mass so that the electron mass me is different

in the various minima of the theory fractionally by O(ε/me). Integrating out the fermions

generates a potential for φ

Vφ ∼ m4
e

εN

mN
e

cos

(
Nφ

f

)
. (A.2)
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Additionally, we allow for a very soft breaking of the ZN symmetry in the form of a potential

term Vφ = δ4 cos
(φ
f + θ

)
. Thus, the final potential for the scalar φ is

Vφ =
m2
φf

2

N2
cos

(
Nφ

f

)
+ δ4 cos

(
φ

f
+ θ

)
. (A.3)

where we are assuming that m2
φf

2/N2 � δ4.

In empty space, there are many vacua that scan the cosmological constant.

The potential shown in eq. A.3 has a landscape that scans the CC with step sizes δ4

N .

Additionally, the vacua are all ordered so that the vacua with small CC are all close to

each other in field space.

In empty space, tunneling between vacua is highly suppressed. The vacuum

tunneling rate depends exponentially sensitively on the bounce action

B ∼ ∆φ4

∆V
∼ f2

N2m2
φ

� 1. (A.4)

In this paper, we consider regions of parameter space where 1015 GeV & f/N & 109 GeV

and mφ . 10−2 eV. Clearly the tunneling rate is much longer than the age of the universe.

In medium, classical or quantum transitions between vacua are fast. We first

estimate the size of finite density effects on the potential of φ. Take the medium to have a

number density of electrons ne and electrons to be non-relativistic.

Vfinite density = me(φ)ne =

(
me − ε cos

(
φ

f

))
ne (A.5)

In order for the classical transition to be fast, we assume that the finite density effect

is larger than the bare potential, εne > m2
φf

2/N2. If this is the case, then φ will classically

roll to the bottom of the potential where φ = 0. We see that once all other parameters are

fixed and as long as mφ is small enough, finite density effects will always be significant and

cause fast transitions.

Early universe constraints. Obtaining the correct relic abundances of primordial

atoms such as hydrogen and helium, places a constraint on any change of values of con-

stants such as the electron mass. Requiring that the in medium transitions between vacua

are slow at Big Bang nucleosynthesis (BBN) places a weaker bound than requiring that

the Sun does not source confined bubbles. The reason is that the universe at BBN was less

dense than the Sun.

The reheating temperature of these theories must be low. At high temperatures, the

finite density minima has a minimum at φ = 0, see eq. A.5. Therefore, in the early

universe, φ ≈ 0. Eventually the vacuum piece starts to dominate and φ oscillates around

its minimum. Estimating the energy density in φ, one finds that it over-closes the universe.
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Localization. An important point about the finite density potential in eq. A.5 is that its

minima are misaligned with the true minimum outside of the finite density system. Values

were chosen so that at finite density, the true minimum is located at φ = 0. However, in

empty space, the true minimum is located at φ = −θf .

In order to minimize the total energy, the field φ must transition to φ = 0 at large

enough distances. We have thus shown that the bubble will necessarily be localized around

the object sourcing it.

B Fast oscillation and time reversal asymmetry

In the main text, we described a slow contraction phase which ends with the bubble releas-

ing a significant portion of its energy into heat. Depending on the details of the dynamics

of the shock wave (see section 5.1), the bubble might contract with enough kinetic energy

to reach relativistic speed, and move through the standard model matter inside the bubble,

and enter a period of fast oscillation. The fast contraction phase is simply the time rever-

sal of the fast expansion phase. Similarly to the relativistic expansion phase, during the

fast contraction phase the standard model matter the bubble encounters is mostly unper-

turbed. What eventually stops the periods of fast expansion and contraction is the presence

of friction. A significant amount of friction can be generated during the non-relativistic

part of the initial and final stage of the contraction/expansion phase. This friction results

from the large reflection coefficient present at low velocities. As the bubble slows down,

the matter that is reflected from the bubble wall does not encounter the bubble wall ever

again, permanently removing energy from the system.

To estimate how much energy is lost per oscillation, we take the approximation that

any particle reflected off the wall is assumed to never hit the wall again. Thus, any energy

that they extract from the wall is never re-injected into the system. There are other

sources of friction present,7 but none remove parametrically more energy than this effect.

Consider a single particle at rest that encounters the bubble when it is expanding and has

just become non-relativistic. These particles remove an energy

δE = R×
(

(2k)2

2m

)
≈


δm2

mv2
wall

, vwall & (δm/m)1/2,

mv2
wall, vwall . (δm/m)1/2.

(B.1)

The majority of the energy will be removed when the wall has velocities vwall ∼ (δm/m)1/2

so that it is neither fully relativistic nor non-relativistic. This is why our equation (4.5),

which describes the expansion and contraction in the non-relativistic and ultra-relativistic

limit, has an apparent time reversal symmetry at leading order.

Combining the above result with the fact that the bubble expansion and contraction

starts and finishes with a period of non-relativistic bubble motion, we find that the quality

7For example, particles with very small velocities cannot exit the wall because it doesn’t satisfy energy

conservation, while particles with very small velocities can enter the bubble. Similarly, particles that enter

the bubble during expansion and exit during bubble contraction carry away energy from the bubble due to

thermalization.
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factor of the bubble evolution is

Q ∼ δmNrel

δENnr
.

m

δm
log

[
Rmax

RNS

]
(B.2)

for a 1/R3 density profile, where Nnr and Nrel are the total number of particles the bubble

passes through while non-relativistic and relativistic, respectively.

Because each oscillation lasts for only about Rmax time, it is very unlikely that such a

fast oscillating phase can last for long enough in the high-density region near the neutron

star to be observable. Since the equilibrium radius between the brane tension and the pres-

sure from the density of matter for a semi-relativistic bubble is very close to the maximum

radius Rmax of the bubble, the bubble will eventually end in the slow contracting phase

starting from around Rmax independently of the early stages of the evolution.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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