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1 Introduction

Coupled fields and entanglement are ubiquitous in quantum field theory but it is challenging

to get a handle on the entanglement structure of an interacting macroscopic system. In

the thermofield double formulation, thermal field theories or black holes are represented by

very special entangled states. In light of this, previous work on thermal free field theory

and black holes [1, 2] suggests that specially entangled states of free field theory can mimic

effects of strongly coupled field theory. Since these indications are somewhat surprising,

it is important to check whether they are due to very fine-tuned entanglement. Requiring

also that it is posssible to prepare the entangled state dynamicallly, we are led to consider

entanglement generated by a quantum quench. The construction involves a pair of quantum

fields that are initially uniformly coupled at all points in space but otherwise free. The

coupling between the fields is quenched and the subsequent evolution of the decoupled, but

entangled, free field theories is then followed.
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The physics is similar to that seen in homogenous quantum quenches in quantum field

theories [3], but the explicit entanglement between subsystems brings in new features. The

late time behaviour of reduced density operators and correlation functions long after the

quench is approximately thermal in certain limits, but deviations from thermal behaviour

appear both in the decoupling of modes of a free field and from off-diagonal terms in the

modular Hamiltonian obtained for each mode. A quench of mixing between two interacting

subsystems would be expected to yield a purified double of a thermal state while in our

simple system we have to settle for a state in a generalised Gibbs ensemble.

The novelty of our approach is twofold. First, we probe the dynamic nature of the

entanglement generation from a local relativistic Hamiltonian. In this regard, our ap-

proach differs substantially from engineering a highly finetuned non-local Hamiltonian

whose ground state is the thermofield double state [4]. It can be viewed as a generalization

to states with a less restricted entanglement structure. Second, we can probe consequences

of entanglement that are independent of the coupling within the individual field theories.

Remarkably, some of our findings for free fields are similar to results that have been ob-

tained at intermediate or strong coupling. Our quench protocol is analogous to the recently

studied hard quench of interactions between two quantum-mechanical Sachdev-Ye-Kitaev

(SYK) models [5].1 The SYK model is of course quite different from a weakly interacting

local quantum field theory, having more in common with the strong-coupling physics of

holographic systems, yet we see some parallel behaviour.

We find, in particular, that a quench of coupled free fields yields qualitatively similar

results to a quench at strong coupling, when we study composite operators. An instan-

taneous quench is imprinted on response functions of composite operators long after the

quench. The quench induces oscillations, but even after these have subsided, composite

operators respond to disturbances at spacelike relative momenta. Such correlations are

forbidden in the vacuum of a relativistic field theory, but here they remain imprinted in

the medium arbitrarily late after the quench.

For a strongly coupled field theory, this effect has a curious holographic interpretation

in terms of so called evanescent modes, which are supported in the vicinity of black hole

horizons and decay exponentially radially outwards from the horizon [7]. Comparison

with this holographic result makes it clear that our example of entangled free subsystems

actually displays features which are commonly attributed to strongly interacting systems.

This opens up the possibility to model strongly interacting systems by simple entanglement

of very simple building blocks.

Our observation of evanescent modes after a quench even at weak coupling may be in-

terpreted in the form of a general ER = EPR relation [8] without requiring an explicit semi-

classical bulk description. The entanglement which is a dynamical consequence of the setup

leads to bulk evanescent modes detectable in each decoupled field theory. Entanglement is

also expected to be a minimal condition for the emergence of a smooth bulk geometry [9].

Since evanescent modes indicate bulk horizons, a simple bulk interpretation presents itself.

1In fact, the SYK quench of [5] and the quench considered in this paper are both modelled on the original

EPR quench [6].
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An Einstein-Rosen bridge connecting two asymptotically AdS regions, one for each field

theory. Except for this brief sketch, we defer a holographic analysis to section 5.

The presence of spacelike correlations has been seen previously in certain large N

thermal field theories, even in the limit of vanishing coupling [2, 10, 11]. That different

momentum modes thermalise independently after the quench however means that recent

bounds [12] on correlations at spacelike momenta, obtained from thermal field theory, are

not applicable. In fact, in contrast to the thermal case, correlators after the instanta-

neous quench are not exponentially damped at large momenta. However, softening the

quench from instantaneous to smooth improves the approximate fit to a thermal state and

introduces a temperature scale inversely related to the time scale of the quench.

We consider a system of two free O(N) models, each containing N free scalars related

by a global O(N) symmetry. This is the simplest large N system which can accommodate

the quench physics we are interested in. As further motivation, we note that a closely

related theory, the free massless O(N) model, is conjectured to have a higher spin grav-

ity dual [13]. The observed connections between doubled O(N) models and evanescent

modes [10, 11] are intriguing to explore in a standard field theory setting. The instanta-

neous quench amounts to suddenly removing an initially present local coupling between the

two O(N) models, at a time chosen to be t = 0 without loss of generality. In addition to

its intrinsic interest, the quench permits us to investigate if a state supporting interesting

modes with spacelike momenta can arise dynamically.

The paper is organised as follows. In section 2 we set up the mixed system, the quench

and much of our notation. Two technical sections follow. Section 3 describes the quantum

state of the system in a language appropriate after the quench, and especially how it ap-

pears if reduced to one of the decoupled fields. Similarities and differences to a thermal

description are probed and we observe that a smooth but fast quench provides a better

approximation to a thermal state than an instantaneous quench. In section 4 we calcu-

late two-point functions of composite operators, in particular dissipative contributions to

retarded correlators. This is where results reminiscent of strong coupling physics are ob-

tained, as discussed in section 5. Finally, our main conclusions are summarised in section 6.

Some technical details are referred from the main text to the appendices.

2 Mixing and quench of mixing

We wish to study the effect of suddenly decoupling fields which are initially mixed. We

thus consider a system of two O(N) vector models, described by fields ϕL and ϕR, with a

mass mixing that is turned off at time t = 0. The action is

S =
1

2

∫
ddx

[
∂µϕ

(a)
L ∂µϕ

(a)
L + ∂µϕ

(a)
R ∂µϕ

(a)
R −m

2
Lϕ

(a)
L ϕ

(a)
L −m

2
Rϕ

(a)
R ϕ

(a)
R − 2h2(t)ϕ

(a)
L ϕ

(a)
R

]
.

(2.1)

“(a)” is the O(N) index which from what follows we will drop to simplify our notation.

For an instantaneous quench, focus of our interest in most parts of this work, one has
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h2(t) = h2 θ(−t). At t < 0, because of the non-zero coupling, only the symmetry corre-

sponding to the diagonal part of the full O(N)L × O(N)R symmetry of two decoupled

theories is manifest in this action. In fact, the full symmetry breaking pattern can be un-

derstood as follows. For equal masses, mL = mR, and no mixing, h = 0, the action (2.1) is

invariant under O(2N). A mass difference breaks this symmetry down to O(N)L×O(N)R,

while a non-zero h breaks it down to a different O(N)+×O(N)−. Only the diagonal parts

of these subgroups agree and are unbroken in either case. In this sense the theory before

the quench breaks the post-quench O(N)L ×O(N)R down to O(N)diag.

The action in eq. (2.1) can be diagonalized by defining rotated fields χ±

(
ϕL
ϕR

)
=

(
cosα − sinα

sinα cosα

)(
χ+

χ−

)
, (2.2)

with tan 2α ≡ 2h2

∆m2 and ∆m2 ≡ m2
L −m2

R.

The action for the rotated fields takes the form

S =
1

2

∫
ddx

[ (
∂µχ

−)2 −m2
−(χ−)2

]
+

1

2

∫
ddx

[ (
∂µχ

+
)2 −m2

+(χ+)2

]
, (2.3)

with

m2
± =

1

2

(
m2
L +m2

R ±
√

4h4 + (∆m2)2
)
. (2.4)

This is the action that describes the complete pre-quench dynamics.

In the remainder of the paper, we will consider the special case mR = mL = m.

Correspondingly, ∆m2 = 0 and we obtain for the masses and the field relations

m2
± = m2 ± h2 θ(−t) , (2.5)

χ± =
1√
2

(ϕR ± ϕL) . (2.6)

This considerably simplifies many calculations. Nonetheless, our conclusions also apply to

the case of mL 6= mR.

Let us note here that in the case of equal masses, the action (2.1) for h = 0 has the

full O(2N) symmetry that would in principle allow us to choose χ± as a basis even after

the quench. In this case, the physical picture is that of two simultaneous mass quenches,

from m2 ± h2 to m2. However, we implicitly assume that there are observers associated

with the individual fields ϕL and ϕR, which can for example be made manifest by adding

explicit sources to the action (2.1). Correspondingly, we also choose to derive all results

explicitly in the basis of ϕL and ϕR. The only exception is section 3.3, where we use the

above O(2N) symmetry to make contact with existing results in the literature.
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2.1 Relation between quantum fields before and after the quench

Before the quench, i.e., for t < 0, the relevant mode expansion is in terms of the χ-fields

which we may expand in terms of momentum modes, which for t→ 0− take the form:

χ± =

∫
dk

(2π)d−1

1√
2ω±k

eik·x
(
a±k + (a±−k)†

)
, (2.7)

π±χ = ∂tχ
± = −i

∫
dk

(2π)d−1

√
ω±k
2
eik·x

(
a±k − (a±−k)†

)
, (2.8)

where ω±k =
√
|k|2 +m2

±. On the other hand, just after the quench, or equivalently for

t→ 0+, the relevant mode expansion is in terms of the ϕ-fields,

ϕL =

∫
dk

(2π)d−1

1√
2ωk

eik·x
(
Lk + L†−k

)
, ϕR =

∫
dk

(2π)d−1

1√
2ωk

eik·x
(
Rk +R†−k

)
,

(2.9)

πL = −i
∫

dk

(2π)d−1

√
ωk

2
eik·x

(
Lk − L†−k

)
, πR = −i

∫
dk

(2π)d−1

√
ωk

2
eik·x

(
Rk −R†−k

)
,

(2.10)

where now ωk =
√
|k|2 +m2.

We impose the matching conditions

ϕL =
1√
2

(
χ+ − χ−

)
, ϕR =

1√
2

(
χ+ + χ−

)
, (2.11)

πL =
1√
2

(
π+
χ − π−χ

)
, πR =

1√
2

(
π+
χ + π−χ

)
. (2.12)

These can be solved to yield the Bogolyubov transformations

Lk =
1√
2

∑
σ=±

uLσk aσk +
(
vLσk
)∗

(aσ−k)† , (2.13)

Rk =
1√
2

∑
σ=±

uRσk aσk +
(
vRσk

)∗
(aσ−k)† . (2.14)

The Bogolyubov coefficients are given by

uk =
1

2


√

ωk

ω+
k

+

√
ω+
k
ωk

−

(√
ωk

ω−k
+

√
ω−k
ωk

)
√

ωk

ω+
k

+

√
ω+
k
ωk

√
ωk

ω−k
+

√
ω−k
ωk

 , (2.15)

vk =
1

2


√

ωk

ω+
k

−
√

ω+
k
ωk

−

(√
ωk

ω−k
−
√

ω−k
ωk

)
√

ωk

ω+
k

−
√

ω+
k
ωk

√
ωk

ω−k
−
√

ω−k
ωk

 , (2.16)
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where rows of the matrices are labelled by L,R and columns by +,−. As one can easily

check, the respective matrix elements obey

|u|2 − |v|2 = 1 , (2.17)

thereby guaranteeing canonical commutation relations for all creation and annihilation

operators. Moreover, as evident from the above equations, the Bogolyubov coefficients for

the instantaneous quench turn out to be real functions of the modulus of k.

3 Signs of thermality and non-thermality

Just after the quench, at t = 0, the system is still found in the vacuum of the coupled

theories. However, in terms of the new Hamiltonian, this state corresponds to some highly

excited state with nontrivial time dependence. It can be described either as a pure squeezed

state of the fields ϕL,R, or, by integrating out one of the latter, as a density matrix of ϕL
or ϕR modes alone.

The nature of the density matrix depends on details of the quench. For example,

quenches in simple two-mode systems can give rise to so-called two-mode squeezed states

of the form (e.g. [14])

|ψ〉 = eζ
∗ab−ζa†b† |0〉 =

1

cosh |ζ|

∞∑
n=0

(
− ζ

|ζ|
tanh |ζ|

)n
|n, n〉 , (3.1)

where the parameter ζ is related to the strength of the quench and the state obeys a level

matching condition na = nb. The latter implies that |ψ〉 is a highly entangled state with a

very particular entanglement structure. Tracing over one of the modes leads to an exactly

thermal density matrix,

ρa =
1

cosh2 |ζ|

∑
n=0

tanh2n |ζ||n〉〈n| , (3.2)

with an effective inverse temperature β ∼ − log tanh2 |ζ|.
As we will see, in our case the entanglement structure is more complicated. As a

direct consequence of the relativistic invariance of the theory, the Hamiltonian at t < 0

mixes not only L and R modes, but also modes of wave vectors k and −k. Upon tracing

out e.g. the R-modes, this will lead to a density matrix for L that is off-diagonal in the

energy eigenbasis, with off-diagonal pieces parametrizing deviations from exact thermality

(subsection 3.1). Moreover, since we are dealing with a Gaussian field theory, with an

infinite number of conserved charges, true thermalisation after the quench will not occur.

At best, we can resort to the spirit of the generalized Gibbs ensemble [15]. There, one

introduces a chemical potential for the conserved charges, of which in the case of free

post-quench theories not all can be integrals over local functions of the fields [16, 17]. In

accordance, we observe a momentum-dependent temperature (subsection 3.2), similar to

the case of mass quenched free fields [18]. The deviations from thermality vanish in the

limit of weak coupling h and small momentum |k|.

– 6 –
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The momentum dependence of the temperature is such that contributions to observ-

ables from high energy states are generally suppressed less than in ordinary thermal en-

sembles. In the case of an instantaneous quench, this holds up to arbitrarily high energies.

In subsection 3.3 we demonstrate that this can be cured by smoothing out the quench over

a time scale ∆t, in which case contributions from states with energy much greater than

1/∆t are in fact exponentially suppressed.

3.1 The ensemble of modes decoupled by the quench

Directly after the quench, the system will find itself in a squeezed state of the modes L

and R. Correspondingly, the reduced density matrix of e.g. the L modes will describe

a mixed state whose phase factors will depend on the Bogolyubov coefficients. If the

quenched state were an exact thermofield double state, the reduced density matrix would

be diagonal. Generically, however, it will be described for a given wave vector k by

ρkL = Nke
−Kk , (3.3)

where the coefficient Nk ensures unit normalization of the density matrix. To construct

K, we can make use of the fact that the pre-quench vacuum is a Gaussian state. Cor-

respondingly, the density matrix of a single mode will also be Gaussian, with a modular

Hamiltonian of the form [19]

Kk = Ak

(
L†kLk + L†−kL−k

)
+BkL

†
kL
†
−k +B∗kLkL−k , (3.4)

where O(N) indices are once again suppressed. The coefficient Ak is real. Bk, generally

complex, parametrizes the non-diagonal contributions to the density matrix and therefore

deviations from thermality, [H,Kk] ∼ BkL
†
kL
†
−k−B

∗
kLkL−k. The coefficients can be fixed

from low order correlation functions at t = 0, such as 〈L†kLk〉 and 〈L−kLk〉. These are

now calculated as usual via 〈Ok〉 = tr
(
Okρ

k
L

)
. Evaluation is simplest by performing a

Bogolyubov rotation on the creation and annihilation operators L in order to diagonalize

the modular Hamiltonian. We define

Lk = rkck + s∗kc
†
−k . (3.5)

Making the ansatz arg(sk) = − arg(rk), inserting into the modular Hamiltonian for a given

k-mode and demanding diagonalization of Kk as well as the proper commutation relations,

[ck, c
†
p] = (2π)d−1δ(d−1)(k− p), yields

|rk|2 =
1

2

(
1 +

Ak

εk

)
, (3.6)

|sk|2 =
1

2

(
−1 +

Ak

εk

)
, (3.7)

arg(rk) =
1

2
arg(Bk) , (3.8)

with the one-particle energy εk given by

εk ≡
√
A2

k − |Bk|2 . (3.9)

– 7 –
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Consequently, in the basis of ck, the modular Hamiltonian becomes

Kk = εk

(
c†kck + c†−kc−k

)
. (3.10)

We can now fix the normalization constant Nk, obtaining

1 = tr
(
ρkL

)
= Nk

 ∑
m+,m−

e−εk(m++m−)

N

= Nk
1

(1− e−εk)2N
, (3.11)

where we take the trace in the number basis of c±k, with m± the eigenvalues of the

respective number operator.

Inserting now the decomposition (3.5) and observing that only number conserving

operators can contribute, we obtain for the expectation values

1

N
〈L†kLk〉 = Nk

∑
m+,m−

e−εk(m++m−)
(
|rk|2m+ + |sk|2(m− + 1)

)
=
Ak

2εk
coth

(εk
2

)
− 1

2
,

1

N
〈L−kLk〉 = Nkrks

∗
k

∑
m+,m−

e−εk(m++m−) (m+ +m− + 1) =
Bk

2εk
coth

(εk
2

)
. (3.12)

As expected, 〈L−kLk〉, which is trivial in the L-vacuum, is directly proportional to Bk.

All expectation values can now equivalently be calculated directly in the pre-quench

vacuum state |0〉χ, making use of the Bogolyubov decomposition (2.13). We obtain

1

N
〈L†kLk〉 =

1

2

∑
σ

|vLσk |2 ,

1

N
〈L−kLk〉 =

1

2

∑
σ

uLσk
(
vLσk
)∗
. (3.13)

Equating the corresponding expressions yields for the coefficients

Ak =

∑
σ(uLσk )2 + (vLσk )2

2Fk
εk =

εk
4Fk

∑
σ

(
ωk

ωσk
+
ωσk
ωk

)
,

Bk =

∑
σ u

Lσ
k vLσk
Fk

εk =
εk

4Fk

∑
σ

(
ωk

ωσk
−
ωσk
ωk

)
, (3.14)

εk = 2 arccoth(Fk) ,

where we have defined

Fk ≡
1

2

√∑
σ,σ′

(uLσk + vLσk )2(uLσ
′

k − vLσ′k )2 =
1

2

ω+
k + ω−k√
ω+
k ω
−
k

. (3.15)

We thus have derived an explicit expression for the modular Hamiltonian for the density

matrix of L modes in the pre-quench vacuum. All deviations from thermality of correlation

functions of ϕL are due to the off-diagonal terms in this modular Hamiltonian, quantified

by the coefficient Bk.

– 8 –
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We note that this expression allows us to directly compute the entanglement en-

tropy between the L and R-modes, defined as the von Neumann entropy of the density

matrix (3.3),

SL ≡
1

2

∫
dk Sk

L ≡ −
1

2

∫
dk tr

(
ρkL log ρkL

)
, (3.16)

where the factor of 1
2 accounts for the fact that ρkL involves both signs ±k. Evaluated in

the number basis of c±k, (3.16) yields

SL = N

∫
dk

[
εk

eεk − 1
− log

(
1− e−εk

)]
, (3.17)

which can be shown to agree perfectly with previous results, for example found in [20] for

N = 1. We will not pursue further studies of entanglement entropy in this work.

As we will discuss in more detail in the ensuing sections, correlation functions of local

operators become approximately time translationally invariant long after the quench. In

that case, such late time observables can be obtained from an effective k-dependent thermal

density matrix,

ρeff
k = Nke

−βkωkL
†
kLk , (3.18)

with a temperature that is fixed by relations (3.12) and (3.13). In other words, one expects

approximately thermal occupation

〈L†kLk〉 = tr
(
L†kLk ρ

eff
k

)
=

1

eβkωk − 1
, (3.19)

which can be solved to give

βk =
1

ωk
log

(∑
σ(uLσk )2∑
σ(vLσk )2

)
. (3.20)

We will confirm this expectation explicitly in section 3.2 below. The k-dependence of

the temperature is natural, as discussed in the beginning of the section. The density

matrix (3.18) can be reproduced from a generalized Gibbs ensemble, constructed either

directly from the momentum space charges L†kLk or from a set of charges that is only

mildly nonlocal [17].

Let us note that in the limit of small h, we have up to order h4 the following scaling

of the parameters:

ω±k ≈ ωk

(
1± h2

2ω2
k

− h4

8ω4
k

)
,

uLσk = σ

(
1 +

h4

32ω4
k

)
, vLσk =

1

4

h2

ω2
k

(
−1 + σ

h2

2ω2
k

)
, (3.21)

so that (3.14) becomes

Ak = εk , Bk =
h4

8ω4
k

εk , εk = log
16ω4

k

h4
− h4

16ω4
k

. (3.22)
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To leading order in h, the density matrix can be written as

ρkL ≈ Nke
−βkHk , with Hk = ωkL

†
kLk , (3.23)

and

βk ≈ ω−1
k log

16ω4
k

h4
, (3.24)

which can be easily checked to agree with the leading order contribution to (3.20). In

passing, we note that the temperature βk approaches a constant for long wavelengths. For

these, we obtain an effectively thermal ensemble with

T ≈ m

log 16m4

h4

. (3.25)

As we can also see, small mixing leads to low temperature, consistent with the expectation

that the effect of the quench decreases with decreasing coupling. Moreover, shorter wave-

lengths, with larger |k|, will see a higher effective temperature. Correspondingly, while

large |k| contributions to observables still decay, they do so slower than in an ordinary

thermal ensemble, as a power law instead of exponentially. This, however, is caused by the

instantaneous nature of the quench, as we demonstrate explicitly in subsection 3.3.

3.2 The effective temperature from correlators

As already mentioned above, one can define a generalized effective temperature by con-

sidering the large time behaviour of low order correlation functions of local operators [3,

18, 21, 22]. We illustrate this using a simple correlator, namely the expectation value of a

bilocal singlet operator in the pre-quench vacuum,

〈ϕL(x, t)ϕL(x′, t′)〉χ =

∫
dk dk′

(2π)2(d−1)
ei(k·x+k′·x′)

×

[
cosωkt cosωk′t

′〈ϕL(k, 0)ϕL(k′, 0)〉χ +
cosωkt sinωk′t

′

ωk′
〈ϕL(k, 0)πL(k′, 0)〉χ

+
cosωk′t

′ sinωkt

ωk
〈πL(k, 0)ϕL(k′, 0)〉χ +

sinωkt sinωk′t
′

ωkωk′
〈πL(k, 0)πL(k′, 0)〉χ

]
, (3.26)

where here and in the following 〈〉χ denotes expectation values in the pre-quench vacuum

|0〉χ. Expanding the above correlators in terms of χ±, we obtain in terms of the Bogolyubov

coefficients in (2.15) and (2.16),

〈T{ϕL(x, t)ϕL(x′, t′)}〉χ = N

∫
dk

(2π)d−1

eik·(x−x
′)

2ωk

[∑
σ

uLσk vLσk cosωk(t+ t′)

+
∑
σ

(vLσk )2 cosωk(t− t′) + e−iωk|t−t′|

]
. (3.27)

At late times after the quench we can neglect the first term (the one with (t + t′) depen-

dence) which oscillates with damped amplitude (cf. appendix B). The remaining two terms
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correspond precisely to a thermal correlator with inverse temperature given by

βk =
1

ωk
log

(∑
σ(uLσk )2∑
σ(vLσk )2

)
, (3.28)

in perfect agreement with (3.20).

3.3 Smooth quenches

If one chooses to smoothen out h(t) over a time scale ∆t then large momenta will be more

suppressed, effectively cutting off the growth of the effective temperature at |k| ∼ 1/∆t.

In fact, by representing our mixing quench as two mass quenches with subsequent field

rotation, we can directly use classic results from quantum field theory on curved space

time [23], as further developed in [24, 25]. As mentioned in passing in section 2 above, in

the case of mL = mR = m, there is no a priori need to perform the O(2) rotation in (2.2)

after the quench, since the action is already diagonal. Without it, the physical picture is

that of two simultaneous mass quenches,

m2
±(t) = m2 ± θ(−t)h2 . (3.29)

Now, instead of this instantaneous quench, we may consider a rapid, but smooth, quench

of the form

m2
±(t) = m2 ± h2

2

(
1 + tanh

(
t

∆t

))
, (3.30)

where ∆t is a predetermined (short) time scale. For this particular choice of time depen-

dence, the analytical solutions to the mode functions that solve the corresponding Klein-

Gordon equation, and thus the Bogolyubov coefficients relating incoming and outgoing

modes are known explicitly [23–25].

Concretely, the field decomposition is similar to (2.7) except now the mode expansion

also has a temporal profile,

χ± =

∫
dk

(2π)d−1
eik·x

(
f±k (t) a±k +

(
f±k (t)

)∗
(a±−k)†

)
, (3.31)

with time dependent functions fk(t). The incoming mode functions that correspond to

plane waves at t→ −∞ are expressed in terms of hypergeometric functions,

f±(in),k =
1√
2ωin

exp
(
−iω±p t− iω±m∆t log (2 cosh(t/∆t))

)
× 2F1

(
1 + iω±m∆t, iω±m∆t; 1− iω±in∆t;

1 + tanh(t/∆t)

2

)
, (3.32)

f±(out),k =
1√

2ωout
exp

(
−iω±p t− iω±m∆t log (2 cosh(t/∆t))

)
× 2F1

(
1 + iω±m∆t, iω±m∆t; 1 + iω±out∆t;

1− tanh(t/∆t)

2

)
, (3.33)
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where we have defined

ω±in =
√
|k|2 +m2 ± h2 , ωout =

√
|k|2 +m2 ,

ω±p =
1

2
(ωout + ωin) , ω±m =

1

2
(ωout − ωin) . (3.34)

The two sets of mode functions are related by Bogolyubov transformations,

f±(out),k = µ±k f
±
(in),k + (ν±k )∗

(
f±(in),k

)∗
, (3.35)

with coefficients

µ±k =

√
ωin

ω±out

Γ(1 + iω±out∆t)Γ(iωin∆t)

Γ(1 + iω±p ∆t)Γ(iω±p ∆t)
, (3.36)

ν±k =

√
ωin

ω±out

Γ(1− iω±out∆t)Γ(iωin∆t)

Γ(1− iω±m∆t)Γ(−iω±m∆t)
. (3.37)

Combining this with the O(2) rotation of the outgoing fields allows us to express the

Bogolyubov transformation for the L and R fields, (2.15) and (2.16), for a smooth quench,

uk =

(
µ+
k −µ−k
µ+
k µ−k

)
, vk =

(
ν+
k −ν−k
ν+
k ν−k

)
. (3.38)

In the weak coupling limit, we obtain for the above coefficients

µ±k = 1− h4

32ω4
out

(
1 + 2ω2

out∆t
2ψ (iωout∆t)

)
, (3.39)

ν±k =
πh2∆t csch (πωout∆t)

8ω3
out

[
± 2ω2

out + ih2ωout∆t
(
ψ (iωout∆t) + γ

)]
, (3.40)

where ψ(x) is the digamma function and γ the Euler-Mascheroni constant. We see that for

h → 0, all vk vanish, as they should. Moreover, for |k| � 1/∆t, the vk are exponentially

suppressed.

As an application, we calculate the effective temperature in the small h limit, as

per (3.22) and (3.24), where now Bk is complex but |Bk| ∼ h4 as before. We obtain

βk ≈ ω−1
k log

(
16ω2

k sinh2 (πωk∆t)

π2∆t2h4

)
, (3.41)

which for large k becomes

βk ≈ 2π∆t+
1

|k|
log

(
4|k|2

π2h4∆t2

)
. (3.42)

For fixed h, the temperature goes to a constant value at large |k| that is set purely by the

time scale of the quench. This reflects the fact that modes with |k| � 1/∆t see an almost

adiabatically changing mass and thus the probability of exciting them is exponentially

small. Note also that for fixed ∆t, the temperature goes to zero for h→ 0.
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Let us end this section with a remark on the instantaneous limit of smooth quenches.

It was noted in [24] that in this limit, certain UV dominated quantities (e.g. 〈φ2〉) exhibit

divergences at early times for δt→ 0, if the number of dimensions is large enough. These

are not vacuum divergences, but instead stem from the thermal parts of the propagators due

to the k-dependent temperature. For any nonzero δt, βk goes to a constant for sufficiently

large k � δt−1. The Boltzmann factor thus provides a natural UV regulator. In stark

contrast, in the case of an instantaneous quench, the Boltzmann factor only supplies a

power law damping factor which fails to regulate UV divergences for a sufficiently high

number of dimensions. We observe similar behavior for the spectral functions that we

evaluate in the next section.

4 Spacelike correlations in the post-quench background

In a non-vacuum background, such as a heat bath, correlation functions may exhibit be-

haviour that is forbidden in vacuum. Below, we illustrate how, even long after the quench,

the non-trivial background is imprinted on the response of the system to small pertur-

bations. In particular, modes which are exchanged with the background contribute to

discontinuities of the retarded Green’s function. We devote special attention to the regime

|ω| � |k|, with |k| larger than any other scale. We can picture the damped spectral density

we find in this parameter region intuitively in terms of an effective (approximate) thermal-

isation. Furthermore, there is an interesting parallel with strong coupling physics and dual

gravity, discussed further in section 5.

The spectral density function of the operator O(x, t) in the state |ψ〉 is defined as

A(k, ω) = −2 Im[GR(k, ω)] , (4.1)

where GR(k, ω) is the Fourier transform of the position-space retarded Green’s function,

which in turn is defined as

GR(x, t) = −iθ(t) 〈ψ| [O(x, t),O(0, 0)] |ψ〉 . (4.2)

In our case, |ψ〉 is the vacuum before the quench |0〉χ, i.e. the vacuum of the theory (2.1)

with constant h, and O(x, t) =:ϕLϕL: (x, t) is an O(N) singlet operator, normal-ordered

with respect to the physical vacuum after the quench, i.e. when the fields ϕL and ϕR
diagonalize the action.

The definitions (4.1) and (4.2) rely on space- and time-translation invariance. More

generally, GR is defined as

GR(x,x′, t, t′) = −iθ(t− t′)
〈
[O(x, t),O(x′, t′)]

〉
χ
, (4.3)

but in order to Fourier transform from the spatial coordinates to a single (d− 1)-vector k

and from the time coordinate to a single frequency ω, we need GR to depend on only one

(d−1)-vector x and one time-coordinate t. In the case at hand, time-translation invariance

is explicitly broken by the quench but re-emerges at late times, as we will see below. Taking
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Im =

2

Figure 1. Extraction of imaginary part of Green’s function using ordinary Cutkosky cutting

rules. The on-shell propagators are thermal, with individual contributions to the right hand side

illustrated in figure 2.

a Fourier transform of the resulting approximately time-translation invariant result leads

to an effective GR(k, ω) that makes physical sense for a late-time observer.

The computation of the position-space retarded Green’s function in (4.2) is straight-

forward. The main steps are outlined in appendix C and the end result is

GR(x, t) = −iθ(t)
〈
[:ϕLϕL:(x, t), :ϕLϕL:(0, 0)]

〉
χ

= −iθ(t)N
∫

dk dk′

(2π)2(d−1)

1

4ωkωk′
e−i(k−k

′)·x

×
∑
σ

[(
1 + (vLσk )2 + (vLσk′ )2

)(
e−i(ωk+ωk′ )t − ei(ωk+ωk′ )t

)
+
(

(vLσk′ )2 − (vLσk )2
)(
ei(ωk−ωk′ )t − e−i(ωk−ωk′ )t

)]
. (4.4)

This can readily be Fourier transformed and extracting A(k, ω) according to (4.1) yields

A(k, ω) = πN

∫
dk′

(2π)d−1

1

2ωk′ωk−k′

×
∑
σ

[(
1 + (vLσk′ )2 + (vLσk−k′)

2
)(
δ(ωk′ + ωk−k′ − ω)− δ(ωk′ + ωk−k′ + ω)

)
+
(

(vLσk′ )2 − (vLσk−k′)
2
)(
δ(ωk′ − ωk−k′ + ω)− δ(ωk′ − ωk−k′ − ω)

)]
. (4.5)

As a consistency check, we note that A(k, ω) satisfies well-known positivity constraints

that are a consequence of unitarity. In particular, ωA(k, ω) > 0, which is obvious for the

terms on line two of (4.5) and for the terms on the bottom line it follows from the fact

that v2
k is a monotonically decreasing function of |k|.

A simple diagrammatic representation of the spectral density is given in figures 1 and 2.

A corresponds to the imaginary part of the diagram depicted in figure 1, obtained by cutting

the loop and putting intermediate particles on shell. The terms on line two of (4.5) are

due to on-shell creation of perturbations (figure 2a, non-vanishing also in vacuum, i.e. for

h → 0), with an additional contribution from creating a perturbation while collectively

exciting the background (figure 2b). Both legs are either outgoing or incoming, whereby
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ϕ2
L

(a)

ϕ2
L

(b)

ϕ2
L

(c)

Figure 2. Different processes contributing to the spectral density. In all figures, the short dashed

arrow is the momentum of a background excitation, the short solid arrow is the momentum of an

external excitation, and the long arrow is the sum of the two. A plus sign represents a positive

energy excitation whereas a minus sign represents energy absorption from the background. The

process depicted in the final panel does not contribute in thermal equilibrium.

ωk′ and ωk−k′ enter with the same sign. The terms on the third line of (4.5), on the

other hand, correspond to processes where the momentum of the composite operator is

absorbed by the background, while the total energy of the latter is lowered. Hence, one of

the frequencies enters with a negative sign (figure 2b).

In the low energy regime |ω| � |k|, it is only the absorption terms on the bottom

line of (4.5) that contribute, since the other delta functions cannot be satisfied. Taking

m2/|k| � ω and inserting the Bogolyubov coefficients (2.13) we obtain, to leading order,

A(k, ω)
∣∣∣
|ω|�|k|

' Nh4

2d+4πd−2

∫
d|k′| 1

|k′|5|k− k′|
(δ(|k′|−|k−k′|+ω)−δ(|k′|−|k−k′|−ω)) .

(4.6)

The integral can be evaluated in spherical coordinates. Denoting the angle between k and

k′ by θ, with 0 ≤ θ < π for d > 3, the arguments of the delta functions are zero at

θ± = arccos

(
|k|2 ∓ 2|k′|ω − ω2

2|k||k′|

)
. (4.7)

The solutions θ+ and θ− only exist for

|k′| ≥ |k| − ω
2

and |k′| ≥ |k|+ ω

2
, (4.8)

respectively, which places lower limits on the range of integration over |k′|. For d = 3,

one has additional solutions at −θ± because in this case θ ∈ [−π, π). Rewriting the delta

functions using

δ
(
|k′| −

√
|k|2 + |k′|2 − 2|k||k′| cos θ ± ω

)
=

2(|k′| ± ω)√
(|k|2 − ω2)((2|k′| ± ω)2 − |k|2)

δ(θ − θ±) ,

(4.9)

performing all angular integrals in (4.6), shifting |k′| → |k′| − ω/2 in the first term and

|k′| → |k′|+ ω/2 in the second, and neglecting higher order terms in ω we obtain

A(k, ω)
∣∣∣
|ω|�|k|

=
V ′d−2

22d−4πd−2

Nh4 ω

|k|

∫ ∞
|k|
2

d|k′| (4|k
′|2 − |k|2)

d−4
2

|k′|5

=
Γ
(
4− d

2

)
22d−7π

d
2
−1

Nh4 ω

|k|9−d
, (4.10)
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where

V ′d−2 =
2π

d
2
−1

Γ
(
d
2 − 1

) , for d ≥ 4 , (4.11)

is the volume of the (d−2)-sphere divided by the contribution to this volume by the θ-angle.

Equation (4.10) is our final expression for the spectral density in the low energy regime

|ω| � |k|. It is valid for d < 8 since otherwise the dimensionless integral diverges due

to the growth of phase space compatible with the on-shell condition in (4.6) and the

insufficient suppression of high momenta. As discussed in section 3, however, this is caused

by the instantaneous nature of the quench. We will return to this at the end of this

subsection. Furthermore, one finds agreement between (4.10) evaluated at d = 2 and an

explicit computation in two dimensions. Hence, (4.10) is valid for 2 ≤ d ≤ 7.

We note that using the effective temperature (3.24), we can write (4.10) as

A(k, ω)
∣∣∣
|ω|�|k|

∼ Nω

|k|5−d
e−βk/2

|k|
2 , (4.12)

where the factor of 1/2 in the exponent has been fixed by physical expectations, as the imag-

inary part of the retarded Green’s function at low frequencies can be related to the absorp-

tion of an external perturbation with ω ≈ 0 and momentum k by a particle in the “bath”

with frequency ω = |k|
2 and momentum −k

2 while the latter remains on-shell [26]. As ex-

pected, we find agreement with free thermal field theory in the high temperature phase [2].

Finally, if we consider a smooth but rapid quench rather than an instantaneous one,

then according to subsection 3.3, the temperature is bounded by the time scale of the

quench, βk → β∞ ≡ 2π∆t for |k| → ∞. This has two important consequences. First,

the integral in (4.10) is rendered finite due to the exponential suppression of contributions

from large |k′|, and second, the lower integration limit directly provides a Boltzmann factor

e−β∞
|k|
2 , leading to perfect agreement with [2].

The support for momenta outside the light-cone in the absorptive part of the re-

sponse function means that the background acts as source and sink of composite operators

with such momenta. Although these operators are formally local, their constituents have

non-trivial momentum distributions due to the background. In effect, the composite op-

erators inherit a relative position distribution, with a scale determined by a characteristic

wavelength. In the background they function as extended objects whose size enters their

correlation functions. This argument does not really depend on interaction strength and

we are led to expect qualitatively similar ‘non-localities’ at weak and strong coupling.

Another perspective on the importance of compositeness is interference: the spectral den-

sity (4.5) includes ‘beats’, i.e. terms with frequency equal to the difference of frequencies

of the constituent fields. Interference with modes in the background is directly detectable

in composite operators. In the particle picture, constituents are exchanged with the back-

ground and it is crucial that energy quanta can be extracted from the background.

5 The holographic perspective

All quantum field theory results of the previous sections can be given a holographic interpre-

tation. It works for large N quantum field theories with scale symmetric high energy limits,
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in particular for free massive O(N) models whose high energy limits are the corresponding

massless models. We now explain this interpretation and argue that the quench setup

permits a realisation of the proposed ER = EPR relation [8]. It states that Einstein-Rosen

bridges, which are inside black hole horizons and connect two different regions of asymp-

totic spacetime, are dual to Einstein-Podolsky-Rosen entanglement of two corresponding

quantum subsystems. We have constructed entangled states of two quantum field theo-

ries from a quench à la Einstein-Podolsky-Rosen. The present section first explains our

perspective on holography, then how black holes can be detected in general, how to probe

the geometries from the boundary, and finally how it can be seen that there is a bridge

between two asymptotic regions of spacetime.

Assuming that quantum field theories can be decoded as bulk gravitational physics [27]

has led to many insights and new ideas. It can even be taken to define bulk physics. In the

following we will probe bulk physics operationally from its detection at the boundary. For

quantum field theories with an ultraviolet fixed point, like the model we consider, the holo-

graphic dictionary is unambiguous. The fixed point corresponds to an asymptotically AdS

region in which spins and masses of bulk fields are given by the spins and scaling dimen-

sions of boundary operators. What happens deep inside the bulk depends on a background

configuration of bulk fields and on interactions between the bulk modes corresponding to

boundary operators. The interpretation is then organised by the expansion parameter 1/N

in large N gauge theories or O(N) models.

Although we wish to emphasise general holography rather than a particular model,

there is one proposed and partially tested holographic duality, which is closely related to

our O(N) model setup. After the initial connection between AdS higher spin symmetry

and holography [28–30] the massless free and critical O(N) models were proposed [13] as

boundary duals of pure Fradkin-Vasiliev higher spin theories [31–33]. For a review of these

theories, their holography and tests of it, see [34]. For our purposes it is enough to know

that we are working with a massive (infrared deformed) version of a model dual to a (higher

spin) gravitational theory, thus a geometry that deviates from AdS in the interior, but not

asymptotically. It is thus an example of the framework sketched above. Spins and masses

of bulk fields are given by the spins and scaling dimensions of boundary operators and the

interpretation is organised by the expansion parameter 1/N .

5.1 Horizon detection

In order to establish a holographic interpretation of our results, let us first review some

basic properties of horizons as seen from the boundary in semiclassical gravity on AdS.

Observing analogous signatures in our weakly coupled boundary theories will then allow

us to draw an approximate holographic picture.

Black hole-like objects can be detected by scattering waves against the object and

looking at the size of its shadow. In asymptotically AdS geometries scattering and wave

detection is represented by boundary correlation functions, which can be obtained in quan-

tum field theory according to AdS/CFT. We have chosen 2-point correlation functions of

scalar operators corresponding to bulk scalar fields. Now, for the interpretation we need

to know the signal from scattering on an AdS black hole.
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V

r∗

(a)

V

r∗

(b)

Figure 3. Depiction of the effective Schrödinger potential in (a) Schwarzschild-AdS, and (b) Global

AdS. The lower red line corresponds to the global minimum in pure AdS whereas the upper red

line in (a) corresponds to the local maximum of the angular momentum barrier.

The propagation of scalars in an AdS black hole background is encoded in its mode

spectrum, which depends on the radial wave equation in the geometry. The wave equa-

tion, in its turn, is affected by the geometry through an effective potential Veff including

an important term from angular motion, which produces an angular momentum barrier

(figure 3). The results described in section 4 have an interesting counterpart in so-called

evanescent modes in gravitational theories dual to strongly coupled gauge theories [7]. We

review in appendix A how the effective potential is obtained and the definition of the

convenient radial “tortoise coordinate”. Here we focus on the evanescent modes.

Two properties are now important for our discussion:

• If there are modes with frequency lower than the minimum allowed by the AdS back-

ground matching the geometry asymptotically, they are asymptotically suppressed

relative to the AdS modes.

• When the angular momentum barrier is responsible for the asymptotic suppression,

the damping is stronger with increasing angular momentum. The damping is expo-

nential in momentum when, as is typical, the WKB approximation is applicable.

We refer to modes satisfying the above criteria as evanescent, because of their falloff in

the radial direction, perpendicular to their propagation in angular directions. As a rule of

thumb, they appear if the effective potential has a sufficiently deep and wide well inside

the angular momentum barrier. In particular, this happens for AdS black holes, where the

well extends to the horizon at r = −∞ in tortoise coordinates. It has also been argued

that stars of ordinary matter are unlikely to be small enough to have the requisite well in

their effective potential [7].

To connect to the flat space quantum field theory calculation we now take a large

radius limit. The curvature of the fixed radius surfaces vanishes in this limit, angles go

to flat coordinates and angular momentum goes to momentum after rescaling. Evanescent

modes in the resulting planar geometry are then characterised by spacelike wave-vectors

in the transverse space, due to the anomalously low frequency mentioned above. The low

frequency is due to the strongly attractive nature of the effective potential.
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5.2 Horizon detection from quantum field theory

We are now ready to interpret our quench results holographically. Since the quench injects

energy into the system, the post-quench state is characterised by a finite expectation value

of the stress energy tensor. According to the standard holographic dictionary, this implies

deviations of the bulk metric from empty AdS to some asymptotically AdS spacetime.

To obtain basic information on the deviation of the geometry from AdS, we can probe

it with bulk fields. The simplest bulk probe is dual to the boundary operator :ϕ2:. We

calculated its response function in the field theory in section 4 and found support for its

absorptive part at spacelike momenta. This detects absorption. Furthermore, the damp-

ing of large momenta in the absorption becomes exponential if the instantaneous quench

is smoothed out, Such behaviour is in fact familiar from the evanescent modes discussed

in the previous horizon detection section. There, the absorptive part means absorption

at the horizon. It comes about because gravitational attraction wins against an effective

(angular) momentum repulsion in the deep interior horizon region. The momentum sup-

pression is crucial to this identification, since it indicates that bulk modes have to tunnel

through the momentum barrier in order to get absorbed. To summarize, a standard probe

interpretation of the boundary correlation function conforms qualitatively with boundary

correlator probes in a classical geometry with a black hole horizon.

Wave equations require specification of boundary conditions at horizons and waves

which are absorbed or emitted from a horizon correspond to dissipation with a continuous

spectrum. If, on the other hand, the bulk spacetime has no horizon, then the spectrum will

in general be discrete. Thus, in so far as the evanescent mode spectrum of our field theo-

retic system is continuous, as demonstrated by the spectral density (4.10), a holographic

interpretation includes a horizon.

5.3 Bridge over censored regions

The after-quench system can be viewed entirely in terms of the L degrees of freedom

to describe a single sided bulk space time with an effective horizon. The R degrees of

freedom yields a mirror image of the black hole. When L operators exclusively, or R

operators exclusively, are used to probe the system, the effect is identical to tracing over the

other Hilbert space, effectively working in mixed ensembles resembling thermal ensembles,

as demonstrated in previous sections. The L,R system of independent quantum fields

represents the two independent boundaries. Just as in the eternal black hole [35], L and R

fields are correlated only by an entangled state, here resulting from the quench. The non-

zero correlation, is crucial: it guarantees that bulk geometry is connected. We conclude

that we have a connected L-R-symmetric geometry with two asymptotic regions and two

horizons, much like a standard eternal black hole.

In the quench, the microscopic O(N)L and O(N)R degrees of freedom are correlated

due to the mixing in the pre-quench Hamiltonian, which prepares the state. The free

O(N)L × O(N)R symmetry is then broken to O(N)diag. This symmetry breaking is in

common with the high temperature phase of O(N) singlet models [2, 10].
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6 Conclusions

In this paper we have considered a pair of free field theories in a highly entangled state,

generated by the instantaneous quench of a mixing interaction between the fields. Probing

the entangled system long after the quench, using operators restricted to a single field

theory, reveals an approximately thermal background at long wavelengths. The similarity

to a thermal system becomes more pronounced when the quench is described by a smooth

but rapidly varying coupling rather than an instantaneous jump.

Interesting parallels with strongly coupled theories and holographic duality emerge

when the post-quench state is probed by composite operators, rather than just the el-

ementary fields. Correlations between quadratic composite operators remain long after

oscillations induced by the quench have subsided. This includes, in particular, correla-

tion functions that are damped but non-vanishing at spacelike momenta, in contrast to

correlation functions of elementary excitations in the post-quench background or indeed

correlation functions of the same composite operators in the vacuum.

Analogous behaviour is seen in well established gravitational duals of strongly coupled

gauge theories [7]. There one considers boundary-to-boundary correlation functions in

asymptotically AdS geometries with localised bulk gravitational sources (typically black

holes) and finds non-vanishing correlations at spacelike momenta. On the gravity side,

these correlations are associated with so-called evanescent modes, modes that are radially

localized near the bulk source and exponentially suppressed towards the boundary.

Our results suggest that this a general phenomenon associated with composite oper-

ators in non-trivial backgrounds, independent of coupling strength. Indeed, similar be-

haviour has been observed in thermal free field theory [2, 10, 11] and there are general

arguments for a thermal field theory bound on the size of spacelike correlators at large

momenta [12], for any coupling. More generally, composite operators are sensitive to non-

trivial backgrounds, both thermal and non-thermal, at both weak and strong coupling.
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A Effective potential for scalar waves around black holes

Following [7] we consider a minimally coupled scalar field Φ on a static spherically sym-

metric geometry described by the line element

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

d−1 . (A.1)
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The Klein-Gordon equation in this background can be solved by separation of variables,

Φ(t,Ω, r) = e−iωtY (Ω)φ(r), and with d denoting the spatial dimension, the radial equation

takes the form

0 =
1

rd−1
∂r

(
f rd−1∂rφ

)
+

(
ω2

f
− l(l + d− 2)

r2
−m2

)
φ , (A.2)

which is conveniently rewritten by replacing φ(r) = u(r)/r
d−1
2 and using “tortoise” coor-

dinates, dr∗ = dr/f :

0 =
d2u

dr2
∗

+
{
ω2 − V (r(r∗))

}
u , (A.3)

where the effective potential V is given by

V (r) =

[
l(l + d− 2)

r2
+

(d− 1)(d− 3)f(r)

4r2
+

(d− 1)f ′(r)

2r
+m2

]
f(r) . (A.4)

The advantage of these coordinates is that we recognise the form of the radial time-

independent Schrödinger equation, and can invoke our intuition about its solutions.

B Stationary phase approximation

Since the state after the quench is not time independent, correlation functions are not

bound by time translational invariance. In particular, two-point functions of the form

〈O(t)O(t′)〉 will acquire an explicit dependence on t+ t′. However, as we demonstrate here,

for a large class of operators these contributions decay sufficiently fast at late times, thus

implying an emergent time-translational invariance.

The most general form of a factor depending on (t + t′) that appears in relevant

expressions is ∫
dk f(k) e±i(ωk(t+t′)−k·x) . (B.1)

Now, ωk has a global minimum at k = 0 which implies that the main contribution to the

integral for large t + t′ and fixed x will be around this point. Thus the integral can be

approximated by that over an ε-ball around k = 0,∫
ε
dk f(k) e±i(ωk(t+t′)−k·x) '

∫
ε
dk f(k) e

±i
((

m+
|k|2
2m

)
(t+t′)−k·x

)

' f(0) e±im(t+t′)

∫
ε
dk e±i

|k|2
2m

(t+t′)

' f(0)

(
2m

t+ t′

) d−1
2

e±im(t+t′)

∫
dy e±iy

2
, (B.2)

where in the last step we have formally extended the region of integration back to Rd−1,

since for large (t+t′) the two integrals agree up to exponentially small corrections. The final

integral can be easily verified to be finite, whereby we see that for d > 1 the integral (B.1)

will go to zero at late times.
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C The retarded Green’s function

In order to compute the retarded Green’s function we need the field operator, ϕL(x, t)

which assumes a mode expansion of the form

ϕL(x, t) = e−iHtϕLe
iHt =

∫
dk

(2π)d−1

1√
2ωk

(
Lke

−ik·x + (Lk)†eik·x
)
, (C.1)

with k · x ≡ ωkt− k · x and ϕL given in (2.9).

Our aim is to compute the retarded Green’s function, (4.3) at a late time, t for the O(N)

singlet operators in the pre-quench vacuum characterized by non-vanishing coupling, h:

GR(x,x′, t, t′) = −iθ(t− t′)
〈 [

:ϕLϕL:(x, t), :ϕLϕL:(x′, t′)
] 〉

χ
. (C.2)

Using the Bogolyubov transformation defined in (2.13) the normal ordered singlet

operator can be expanded as

:ϕL(x, t)ϕL(x, t): =

∫
dk dk′

(2π)2(d−1)

1√
4ωkωk′

(
LkLk′e

−i(k+k′)·x + L†kL
†
k′e

i(k+k′)·x

+ L†kLk′e
i(k−k′)·x + L†k′Lke

i(k′−k)·x
)
, (C.3)

with

Lk =
1√
2

∑
σ

uLσk aσk + vLσk (aσ−k)† . (C.4)

As an intermediate step, let us investigate the individual terms in (C.2), namely the

two point correlator of the singlet field operator,

C(x,x′, t, t′) =
〈

:ϕLϕL:(x, t) :ϕLϕL:(x′, t′)
〉
χ
. (C.5)

Quite a lot of simplifications are already in order at this level:

• Each term will contain a product of four creation and annihilation operators sand-

wiched between the pre-quench vacuum states. Only number-preserving permuta-

tions among these would give non-vanishing contributions to (C.5).

• The summation over O(N) indices will give rise to different scaling behaviours with

powers of N for different terms in the expansion of (C.5). It can be readily verified

using the canonical commutation relations of the creation and annihilation operators

that the terms either scale as N or as N2. For instance, while the terms containing

the permutations, 〈a−k a
−
k′(a

−
k′′)
†(a−k′′′)

†〉χ and 〈a−k a
+
k′(a

−
k′′)
†(a+

k′′′)
†〉χ scale as N , the

terms consisting of 〈a−k (a−k′)
†a−k′′(a

−
k′′′)

†〉χ and 〈a+
k (a+

k′)
†a−k′′(a

−
k′′′)

†〉χ scale as N2.

• However, since the total O(N2) contribution to (C.5) just corresponds to the dis-

connected piece of the Green’s function, it is necessarily symmetric under x ↔ x′.

Such terms are therefore guaranteed to give vanishing contributions to the retarded

Green’s function (C.2) by definition. Therefore for our purpose, it is sufficient to

consider terms which give O(N) contributions to (C.5).
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• For the same reason, terms which are only functions of (x+ x′) can be ignored.

• Last but not least, invoking the results from appendix B, all terms containing

e±iωk(t+t′) can be rendered negligible as far as their late time behaviours are con-

cerned. This yields an emergent time-translation invariance at late time which allows

us to set t′ = 0 for all practical purposes in view of the fact that ultimately we are

interested in evaluating the Green’s function at late times.

These steps lead to a simple expression for the Green’s function, displayed also in the

main text as equation (4.4).

GR(x, t) = −iθ(t)
〈
[:ϕLϕL:(x, t), :ϕLϕL:(0, 0)]

〉
χ

= −iθ(t)N
∫

dk dk′

(2π)2(d−1)

1

4ωkωk′
e−i(k−k

′)·x

×
∑
σ

[(
1 + (vLσk )2 + (vLσk′ )2

)(
e−i(ωk+ωk′ )t − ei(ωk+ωk′ )t

)
+
(

(vLσk′ )2 − (vLσk )2
)(
ei(ωk−ωk′ )t − e−i(ωk−ωk′ )t

)]
. (C.6)
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